
BetterState Tutorial

BetterState Pro 3.0
An Introduction to Designing with

Extended State Diagrams

First Time User Tutorial
© 1994, 1995 R-Active Concepts, Inc. All rights reserved

No part of this manual may be copied or distributed, transmitted, transcribed,
stored in a retrieval system, or translated into any human or computer lan-
guage, in any form or by any means, electronic, mechanical, magnetic, man-
ual, or otherwise, without the express written permission of R-Active Con-
cepts, Inc.

R-Active Concepts, Inc.
20654 Gardenside Circle
Cupertino, CA. 95014-5081
phone: (408) 252- 2808
fax: (408) 438-7684
email addresses:
Technical Assistance, doron@ractive.com
Sales Assistance, bweeks@ractive.com

Printed in the United States
Ver 2.0 October 1994, Rev 2.1 December 1994, Rev 3.0 July 1995

BetterState 3.0 Tutorial page 1

BetterState Tutorial

This software product is copyrighted and all rights are reserved. FoxPro,
Visual Basic, Visual C++, Access and Microsoft SDK are registered trade-
marks of Microsoft Corporation. R-Active Concepts, Inc. the R-Active
logo, BetterState, BetterState Lite, BetterState Pro, BS4VisualBasic and
SuperState Pro are registered trademarks of R-Active Concepts, Inc. Object
Graphics is the registered trademark of Symantec. Visual Solutions, Delphi
and BCW are the registered trademarks of Borland International. Copyright
Meta Software Corp. Copyright Exemplar Logic and Synopsys. V-Systems
Windows is the registered trademark of Model Technology Inc. All com-
pany product names are registered trademarks of their respective owners.

BetterState's Context Sensitive Help was developed with WYSI-Help from
UDICO.

Even though R-Active Concepts, Inc. has tested the software and reviewed
the documentation, R-Active Concepts, Inc. makes no warranty or represen-
tation, either expressed or implied, with respect to this software and docu-
mentation, its quality, performance, and merchantability, or fitness for a par-
ticular purpose.

R-Active Concepts especially cautions about using this software for life
threatening applications.

Disclaimer Notice:

R-Active Concepts Inc. and Co-Active Concepts do no guarantee or imply a
guaranteed behavior of the code generated by their code generators. You are
cautioned that such a behavior depends on the semantics of the underlying
language and the behavior of the compiler, interpreter, or synthesis tool used
to realize the code BetterState products generate, on a lower level platform,
Operating system or hardware. For example, the behavior of a BetterState di-
agram for which C code is generated, depends on the semantics of the C lan-
guage and the particular C compiler used, and the particular behavioral phe-
nomena induced by the operating system under which this code will execute.

To be more explicit: your design is by no means verified until you complete
thorough testing of the final application running on the target platform or
hardware. For example, you should test the C code BetterState generates af-
ter compiling it into machine code, and running it within the final applica-
tion on the target platform or hardware, using the operating system you will
use in the field (if any).

BetterState 3.0 Tutorial page 2

BetterState Tutorial

BetterState Pro Tutorial
Table of Contents

TUTORIAL OVERVIEW...

PART ONE, DESIGNING WITH BETTERSTATE PRO..

PART TWO, AN INTRODUCTION TO STATE DIAGRAM DESIGN METHODS.............................

Transformational (sub) Systems...
Reactive Systems..

STATE DIAGRAMMING BASICS...
Types of State Diagrams..

Traditional State Diagrams...
Extended State Diagrams..

State Diagram Notation...
System States..
Changing States...
Conditions and Actions...
Your FIRST State Diagram design..
Design Hierarchy..
Independent Threads of Control...
Visual Synchronization..
Visual Switch / Case (decision polygon)...
Design Exercise...
Consistence Check Guide Lines..
Critical Regions...

PART THREE, BETTERSTATE QUICK START..

The Quick Start Project...
Getting Started...

CODE GENERATION...
DRAWING HIERARCHY..
INTEGRATING YOUR BETTERSTATE GENERATED CODE...

When C is the underlying language..
When C++ is the underlying language...
When VHDL is the underlying language..
When Verilog HDL is the underlying language...
When Visual Basic is the underlying language..

PART FOUR, DIAGRAMMATIC PROGRAMMING IN VISUAL BASIC..

SUMMARY...

PART FIVE, VISUAL DEBUGGING...

INTERACTIVE STATE ANIMATION..
STATE TRAVELER..
ANIMATED PLAYBACK..

BetterState 3.0 Tutorial page 3

BetterState Tutorial

Tutorial Overview

The purpose of this tutorial is to provide the reader with a quick overview of the Better-
State Pro design environment and the design methods it includes. There are four parts to
this tutorial. Each part builds upon the information provided in the preceding sections.

 Part One provides an easy to understand overview of the BetterState de-
sign environment. This section covers how BetterState Pro operates, what's
required from you and what BetterState will do for you.

Part Two is for those who are new to designing with State Diagrams or
those who just need a quick refresher on state diagramming design tech-
niques. In this section we'll spend a little more time on the fundamentals of
this popular design method, describing how to use it and working through
some simple examples.

Part Three is our Quick Start section for those of you who just can't wait
to get started. If you have a good understanding of state diagram design
methods and you want to get a feel of how BetterState works, then Part
Three is the place to start. In Part Three we'll get you familiar with the Bet-
terState design area and show you where the various design tools are lo-
cated. You will work through a very simple design, generate code and be on
your way.

Part Four of this tutorial focuses exclusively on BS4VisualBasic. It will go
through a simple design, covering every detail from initial design to inter-
facing with your Visual Basic front end.

Part Five covers BetterStates unique and powerful Visual Debugging capa-
bilities.

à In your BetterState directory there is an examples\ simple sub directory
with example programs that can be used with this tutorial. For example, the
telephon.dsd (this is a BetterState diagram) resides in the examples \ simple\
telephon directory. There is also a telephon.mak file for the front end of
telephone example. By opening the telephon.dsd in BS4VisualBasic and the
telephone front end design (either via Visual Basic or directly by double
clicking on telephon.exe) simultaneously, you'll be able to see BetterStates
animation taking place.

If you would like a little extra help, there are Hot Spot Tutorials for Ex-
tended State Diagrams and VB 4 VisualBasic accessible from the Help
Menu. The context sensitive Help can be opened by pressing the right
mouse button or by pressing Control - F1.

BetterState 3.0 Tutorial page 4

BetterState Tutorial

Part One, Designing with BetterState Pro

BetterState Pro is extremely easy to use. In fact, in less than 15 minutes you can be gen-
erating code for your first design. There are three simple steps between your conceptual
idea and the code required to implement it. The following is a quick overview of how to
design with BetterState. Remember, if you have ever hand drawn a state transition dia-
gram you already know how to use BetterState.

BetterState 3.0 Tutorial page 5

Step 1. Draw your design. To start your design go
to the File Menu and open a New Project. When the
Chart Dialog box appears, select the programming
language you will be using, the type of diagrams
you want to create, name your project and start to
draw your design. If you need assistance, Better-
State has an extensive HELP system with HOT Spot
Tutorials and Context Sensitive Help text.

Step 2. Generating code with BetterState is sim-
ple. Just select the Code Generation option from the
Tools Menu and select style of code you want to
generate. Once you press OK, everything else is au-
tomatic. After your code is generated you'll be
asked to give it a file name and that's it.

Step 3. Integrating the BetterState generated code is
straight forward. How the code is integrated de-
pends upon the language you are using but basically
all you need to do is tell your main code when you
want to call the BetterState generated code. Go to
Part Three of this tutorial for language specific ex-
amples of how to use BetterState generated code.

BetterState Tutorial

BetterState 3.0 Tutorial page 6

BetterState Tutorial

Part Two, An Introduction to State Diagram Design Methods

Virtually all software can be thought of as a state machine specification. A
state machine is a common term used to describe what a system should be
doing under certain conditions and the order they should be done in. Just
like the statements a programmer writes will be executed in a certain order
and each statement specifies the changes in the computer's state.

The concept of describing systems behavior with state machines using their
visual counterpart, state diagrams, is a very popular design method. State di-
agrams can be used to model the behavior of systems and sub systems rang-
ing from simple business applications to the most sophisticated communica-
tions protocol.

There are two categories of system behavior. The two categories are Trans-
formational and Reactive. Understanding the differences between these two
types of system behavior is important to learning the basics of state dia-
grams.

Transformational (sub) Systems

Transformational (sub) Systems are those which have all inputs ready when
invoked and the outputs are produced after a certain computation period; see
Figure 2.

Figure 2 A simple Transformation System

Examples of Transformational Systems are data acquisition systems and
voice-compression systems (software and hardware) or even a simple proce-
dure which calculates the square root of an input. Top-down decomposition
is a natural design methodology for transformational systems because it
breaks down complex input/output (functional) relationships into simpler,
more manageable ones. Similarly, conventional programming and system-
level specification languages are transformational oriented and cater to top-
down functional design.

BetterState 3.0 Tutorial page 7

BetterState Tutorial

Reactive Systems

A well understood reactive system is a traffic-light controller. It never has
all its inputs ready--the inputs arrive in endless and perhaps unexpected se-
quences. It is virtually impossible to write a transformational program that
implements a controller such as this. In fact, most controllers are by defini-
tion reactive, not transformational, with application domains ranging from
process control, military, aerospace, and automotive applications to DSP,
ASIC design, medical electronics, and similar embedded systems.

Figure 3 A simple Reactive System

Just about every system has a reactive component, because a system is sel-
dom isolated from its environment. On the contrary, the reason the system
exists is typically to collaborate or interact with some entity or entities in its
environment. Such collaboration is done by sending, receiving, recognizing
and subjecting sequences of symbols--a reactive behavior.

State Diagrams (as well as Statecharts and Petri Nets) relate to Reac-
tive Systems. Reactive Systems are BetterStates forte. Throughout
our documentation we often call a reactive subsystem a "controller".
This should not be confused with classical control theory.

BetterState 3.0 Tutorial page 8

State Diagramming Basics

Types of State Diagrams

Before we get started discussing state diagramming design methods it is im-
portant to note that there are two commonly used types of state diagrams;
State Diagrams and Extended State Diagrams (the second being an extension
of the first). We will discuss both types. BS4VisualBasic and BetterState
Pro supports both types, however our focus will be on Extended State Dia-
grams.

Finite state machines (FSMs) and their diagrammatic counterpart, state dia-
grams have traditionally been used to specify and design reactive (sub)-sys-
tems. They are well known, well accepted, highly visual and intuitive.
Their ability to describe finite and infinite sequences, combined with their
visual appeal, has made FSMs one of the most commonly accepted for-
malisms in the electronic industry.

Traditional State Diagrams

State diagrams are easier to design, comprehend, modify and document than
the corresponding textual approach. Traditional State Diagrams haven't
changed much over the past years and suffer from limitations when applied
to today's reactive applications. Later on in this section you'll discover how
Extended State Diagrams resolve these limitations. Some of the limitations
of Traditional State Diagrams include:

þ They are flat, they do not cater to top-down design and information hid-
ing. Moreover, top-down design concepts require interactive software to en-
able the user to manipulate and browse through complex designs.

þ Traditional FSMs are purely sequential, whereas applications are not.
Modern reactive subsystems (which we call controllers) need to react to sig-
nals to and from a plurality of entities in their environment. Consider an an-
swering machine controller specified to cater to a "second call waiting" situ-
ation in addition to the "first caller." A conventional FSM needs to account
for all possible combinations of states catering to the first and second callers,
which leads to the well-known state-blowup phenomenon.

Extended State Diagrams

Compensating for these limitations are Extended State Diagrams designed
by David Harel and described in his paper "Statecharts: a Visual Approach to
Complex Systems" published in Science of Computer Programming (1987).
While addressing the hierarchy, concurrence, priorities, and synchronization
within state diagrams, Extended State Diagrams retain the visual and intu-
itive appeal inherent to Finite State diagrams.

The following text will discuss basic design methods that apply to both tra-
ditional and extended state diagrams. The discussion in the latter part of
this section discusses design methods unique to extended state diagrams.

State Diagram Notation

The major components of a state diagram are states and arrows representing
state changes or transitions. There are a number of different types of sym-
bols used to graphically represent a state. The symbols are circles, rectan-
gles and rectangles with rounded corners. BetterState uses rectangular boxes
with rounded corners to graphically represent a system state.

System States

Webster's New World Dictionary defines a "state" as follows:

"A set of circumstances or attributes characterizing a person or thing at a
given time; way or form of being;..."

State Diagrams are used to graphically show the states and the interaction
between states at any given time. The simplest state diagram will have a
source state and a transition to a target state.

Target StateSource State
Transition

Figure 4 A simple state diagram

An observable state that the system is in can only correspond to a period of
time when:

Ê it is waiting for something in the external environment to occur or

Ë it is waiting for a current activity in the environment (like mixing,
washing, filling, calculating) to change to some other activity.

This does not mean that our systems are incapable of taking action. We will
discuss actions later on in this section. However, it is important to note that
actions are not the same as states which represent observable conditions that
the system can be in. Thus a state must represent some behavior in the sys-
tem which is observable and that lasts for some finite period of time.

Note: In BetterState, when you have finished drawing a state a dialog box
appears. In this dialog box you can enter the states name, the type of action
required (more on this topic later) and select other options relative to the
state. This topic is discussed in detail in the BetterState Pro Users Manual,
Chapter 4.

Changing States

A system typically has rules governing its behavior. It's these rules that
specify when the system will change from one state to another state. A
valid state change is called a transition. A transition will connect relevant
pairs of states. The notation for a transition is a line that ends with an arrow-
head. The arrow head points in the direction of the transition. The state di-
agram in Figure 5 shows that the system can change from state 1 to state 2.
It also shows that when the system is in state 2 it can change to either state 3
or back to state 1. However according to this state diagram the system can-
not change from state 1 directly to state 3. On the other hand the diagram
tells us that the system can change directly from state 3 back to state 1. Note
that state 2 has two successor states (states 1 and 3). This is common in state
diagrams. Indeed any one state might lead to any number of successor
states, but usually under different circumstances.

State1

State2

State3

Figure 5 Simple three state FSM

Figure 6 gives us some interesting information about the time dependent be-
havior of a system. However it leaves out a very important element of our
system. That is, what is the systems initial states? Indeed Figure 6 is a
model of a system that has been active forever and will continue to be active
forever. Realizable systems must start operating somewhere.

State2

State1

State3

State4

State5

Figure 6 illustrates a simple state diagram without a specific start state.

With BetterState an initial or start state is identified with a default symbol.
The default symbol is a D with a circle around it. Figure 6.1 shows the same
state diagram (Figure 6) with a specified Default state.

State2

State1

D

State3

State4

State5

Figure 6.1 Simple state diagram with specified start state.

Note: A simple FSM might only have a single initial state. However, ex-
tended state diagrams, due to hierarchy and concurrency, can have multiple
starting states and multiple state machines running at any given time.

Conditions and Actions

To make our state diagram complete there are two additional options you
may want to add:

Ê the (optional) conditions that cause the change of the state and

Ë the (optional) action that the system takes when it changes states.

Note: In the case of Visual Basic, it is a Visual Basic event that causes
the change of state. More information on this subject is located in the
BS4VisualBasic Users Manual.

A transition condition is some condition in the external environment that the
system is capable of detecting. It might be a signal, an interrupt, or the ar-
rival of a packet of data. This can be anything that will cause the system to
change from one state waiting for x to a new state of waiting for y, or carry-
ing out activity x to carry out activity y.

As part of the change of states, the systems can take one or more actions. It
will produce an output, display a message on the users terminal, carry out a
calculation, and so on. Actions shown on the state diagram are either re-
sponses sent back to the external environment or they are calculations whose
results are remembered by the system in order to respond to some future
event.

Source State Target StateCondition

?

Action

!

Figure 7 Simple state diagram with specified Conditions and Actions.

Note: In BetterState, when you are finished placing a transition between two
states, a dialog box will appear. In this dialog box you define the conditions
for the transition and what action is required. This topic is discussed in detail
in the BetterState Pro Users Manual, chapter 4.

Your FIRST State Diagram design

You now have enough knowledge of state diagram design methods to model
the behavior of our first system. Our first design is going to be challenging.
We are going to design an Ice Cream Stand Logic that detects the sale
of 3 ice cream cones. You can draw this design with pencil and paper so
you can get a feel of how it was done in the old days or you can jump right
in and use BetterState.

Please keep in mind that the purpose of Part Two of this tutorial is to intro-
duce you to designing with extended state diagrams. As such we spend very
little time in this section on how to use BetterState. This topic is discussed
in detail in Part Three. If you want to enter this design using BetterState we
suggest you review Part Three which will walk you through a similar design
example.

In this simple example, you might start by first drawing the initial state
called Start. Then draw a second state and name it One Sold. The state
One Sold represents the state your system will be in after you have sold one
cone. Now you need to traverse from Start to One Sold. However, you
don't want your system to make the transition (from Start to One Sold) un-
less one ice cream cone is sold. So the condition to transition from Start to
One Sold is Cone Sold. This process continues until three cones are sold.
In this example we are not using actions but we could. We could add an ac-
tion that records the sale in the cash register everytime a cone is sold.

Start

D

One Sold

Two Sold

Be Happy

Cone Sold

?

Cone Sold

?

Cone Sold

?

Figure 8 Illustrates the Ice Cream Stand computer system specification.

So far we have discussed the basic principals of state diagrams. These prin-
cipals hold true for both state diagrams and extended state diagrams. Now
the fun part. From this point on Part Two focus on the enhanced capabili-
ties of Extended State Diagrams. We will briefly cover these enhanced capa-
bilities and try to give you a good introductory understanding of the inherent
design horsepower of BetterState Pro. For complete detailed discussion on
these and other Extended State Diagram capabilities, please see the Better-
State Pro Users Manual.

Design Hierarchy

In a complex system, there could be dozens of distinct system states. It
would be difficult if not impossible to show all of them is a single diagram.
Hierarchy is a well accepted approach for designing and managing complex
designs. Hierarchy is used to group sets of states together. Hierarchy helps
the human abstraction process and is generally accepted as a basic feature of
modern computer software.

In BetterState hierarchy is drawn by placing states within states. Figure 9
shows an example of what we are talking about. In this example, hierarchy
is used to group sets of states together. High Level transitions have an exis-
tential meaning, in this example, the transition is traversed if the High Level
State is either State1 or State2. If it's State2 it is either State3 or State4.

High Level State

State1

State3 State4 State5

State2

Figure 9 Shows a hierarchical state with 2 sub-states, one of which has 2
additional sub-states.

So how is hierarchy applied in the real world? Let's go back to our Ice
Cream Stand Computer and change the specifications. Now instead of our
computer just detecting the sale of 3 ice cream cones, we want it to de-
tect the sale of 3 ice cream cones OR the sale of one or more cones fol-
lowed by a sale of a container of ice cream.

Start

D

One Sold

Two Sold

Be Happy

One Container Sold

Cone Sold

?

Cone Sold

?

Cone Sold

?

Container Sold

?

Figure 10 Illustrates the design of our modified specification using hierar-
chy.

By simply placing a new state around states One Sold and Two Sold we
have created a high level state that in this example represents the sale of a
container of Ice Cream. The condition Container Sold is called a High-
Level transition. High-level transitions have an existential meaning. In this
example, the high level transition is traversed if the High Level State is in ei-
ther state One Sold or state Two Sold and the Container Sold condition is
satisfied. In our example that means if one or more cones are sold followed
by a container of ice cream being sold, then transition to the state Be Happy.

Independent Threads of Control

Extended State Diagrams also provide a way to capture independent se-
quences of input events. This means that when a state is entered it can fork
into two or more threads of control. Each thread of independent control be-
haves like a state machine on its own right. Hence, these threads of control
traverse their transitions in parallel. Independence (also called Concur-
rency) is a very powerful design capability. Please see the BetterState
Users Manual, chapter 4 for complete details and more examples of using
Concurrency / Independence.

To illustrate this example, lets expand our ice cream system model to in-
clude processing hot dogs . In this example, in addition to counting ice
cream cones and container of ice cream sold we want to accommodate those
customers who ask for hot dogs.

Now you could design a new state diagram and have two separate diagrams
that might look like Figure 11.

Customer
Arrives

Hot Dog in
Microwave

Ready to serve

Charge Money

Prep

Start

One Sold Two Sold

Be Happy

Container Sold

Cone Sold

?

Cone Sold

?

Cone Sold

?

Container Sold

?

timeout

?
Customer
Gone

?

Figure 11 Illustrates the two separate tasks that are performed while at
work.

Independence gives you a powerful design tool that can significantly sim-
plify the design illustrated in Figure 11. To design with independence, draw
a state and then select the Concurrency / Independence option from the Cre-
ate Menu. A dialog box appears so you can name your newly created
"threads of control". Now you can draw state diagrams within the new
thread.

Figure 12 shows our ice cream / hot dog design, now drawn as independent
threads of control within the "Work" state.

Work

Hot Dog State Diagram Ice Cream State Diagram

Start

One Sold Two Sold

Be Happy

Container Sold

Customer
Arrives

Hot Dog
in

Ready to
serve

Charge
Money

Prep

Start New
Day

Cone

?

Cone

?

Cone

?

Containe

?

timeo

?
Custo
mer

?

Figure 12 Shows how the two threads of control could be designed.

Notice how much easier it is to read Figure 12. Before (Figure 11) we had
two separate state diagrams but there was little information on how (if at all)
the diagrams were related. In Figure 12 it is easy to see how the two sub-
state diagrams relate. That is, you go to work at the start of the new day.
While at work, at any given time, you can be selling ice cream and preparing
hot dogs. Then, when it's dark , you shut down both activities.

With Hierarchy and Independence we can take complex tasks and break
them down to smaller more manageable diagrams.

Visual Synchronization

Visual Synchronization gives us a graphical method to show how indepen-
dent threads interact with each other. Visual synchronization is powerful
because no text based message passing mechanism is used; the precise be-
havior is induced from the diagram alone. For example, let's change our de-
sign in Figure 12 to force the hot dog thread to charge money when the ice
cream thread has finished a " happy " sale. Figure 13 shows what our new
diagram would look like.

Work

Hot Dog State Diagram Ice Cream State Diagram

Start

D

One Sold Two Sold

Be Happy

Container Sold

Customer
Arrives

D

Hot Dog
in

Ready to
serve

Charge
Money

Prep

Start New
Day

Night

Cone Sold

?

Cone Sold

?

Cone Sold

?

Container Sold

?

timeout

?
Customer
Gone

?

it's dark

?

Figure 13 shows how the state Be Happy is synchronizing state Charge
Money.

Visual Switch / Case (decision polygon)

In a traditional Finite State Diagram, a condition, X for example, can have
only one of two possible outcomes. That is the condition evaluation to True
or False. The Visual Switch/ Case capabilities in BetterState functions like a
decision polygon in a flow chart and can have one of several outcomes.
You're not restricted to one of two outcomes, it can support virtually any
number of outcomes.

A Visual Switch / Case visually represents a decision that will be made be-
tween two or more resulting target states. The transition leading into the
Visual Switch/Case specifies the expression that is to be evaluated. Depend-
ing on the value of the expression, the diagram will go to one of a number of
resulting next states.

At any state, at any level in the Extended State Diagram the designer can
draw a Visual Switch/Case which is a diagrammatic representation of a C /
C++ / Verilog switch, Visual Basic Case Select, and VHDL Case State-
ments.

Figure 14 shows an example of how a Visual Switch/ Case would be used.
We'll use a state diagram with a Visual Switch/ Case to show our behav-
ior on a rainy day. In this diagram, our behavior will depend upon how
much it is raining. If it's raining alot we're going back home. If its raining
moderately; we'll just open our umbrella and continue on with our business.
If its light rain, we'll just ignore it altogether and be on our way.

Start

Expression to be
evaluated

Go-Home

Open
Umbrella

Ignore

Value of the expression

Resulting State

It's Raining

?

Heavy

?

Medium

?

Light

?

Figure 14 Illustrates an extended state diagram that shows your behavior on
a rainy day.

Design Exercise

Here's a fun exercise you can try. Draw a system describing this Telephone
Answering Practice: When I'm busy, I skip 2 out of 3 calls, unless it's my
BOSS!! Again, you can try it the old fashion way with pencil and paper or
you can do it the BetterState way.

Here's some helpful hints you might want to consider before you start the ex-
ercise.

Ê What do you do when you are busy?

Ë What are the possible states in your system ? Start, Waiting For Call, One
Call and etc.

Ì When you finally answer the phone, is it your boss?

Your finished behavioral model regarding the Telephone Answering Prac-
tices may look something like the one in Figure 15.

I'm Busy

Wait

First
Call

Second
Call

Answer

Two Calls

APOLOGIZE

Start Tele_Ringing

? Tele_Ringing

?

Tele_Ringing

?

It's My Boss

?
False

?

True

?

I'm not busy

?

I am busy

?

My boss enters my office

?

Figure 15 Illustrates one possible design of the Telephone Answering Prac-
tices specifications.

Consistence Check Guide Lines

When you have finished building your preliminary state diagram you should
carry out the following consistence check guidelines:

Ê Have all the states been identified? Look at the system closely to see if
there is another observable behavior or any other conditions that the system
could be in besides the ones you have identified.

Ë Can you reach all the states? Have you defined any states that do not have
paths leading into them?

Ì Can you exit from all states? There are only two types of states that you
cannot, or may not, exit from, one is a History State and the second is a Ter-
minal State. The use of these states is beyond the scope of this tutorial how-
ever they are discussed in detail in Chapter 4 of the Users Manual.

Í In each state does the system respond properly to all the possible condi-
tions? This is one of the most common errors when building state diagrams.
The designer identifies the state changes when normal conditions occur but
fails to specify the behavior of the system for an unexpected condition. Sup-

pose the designer has modeled the behavior of a system and expects the user
will press a function key on his terminal to cause a change from state 1 to
state 2 and a different function key to change from state 2 to state 3. But
what if the user presses the same function key twice in a row? Or they press
some other key?

Before we end this section of the tutorial, we would like to discuss one
last important topic called Critical Regions.

Critical Regions

Critical Regions (drawn as purple boxes around groups of states), overlap
two or more threads and place limitations on simultaneous visits to states in
the Critical Region. For example, a Critical Region overlapping states s1,s2
in thread A and states s3,s4 in thread B means that if s1 or s2 are visited in
thread A, then thread B cannot visit s3 and s4, and visa-versa. Figure 16 il-
lustrates the capabilities of Critical Regions.

Go-Home

Start Walking Call a Taxi

Wait

D

Enter
Taxi

Cancel
Taxi

Wal

D

Run Enjoy
Critical Region

Start

Open
Umbrell

Ignore

Think
about it

Rainbow Out

?

No

?
Yes

?
Taxi

?

It's Raining

?

Med.

?

Light

?

Heavy

?

Figure 16 Illustrates how Critical Regions work.

The example in Figure 16 shows all the extended state diagramming capabil-
ities we have discussed so far. In an earlier example we modeled our behav-
ior to rain using the decision polygon. Figure 16 is a model of that behav-
ior, that is, if it's raining is the expression to be evaluated, Heavy is one of
the evaluations and if it is raining Heavy we Go Home.

Figure 16 details how we are going home. We're either going to walk or call
a cab. Note the independent threads Start Walking and Call a Cab are si-
multaneous.

We have also added a Critical Region to this design. The Critical Region
sets limits on the number of simultaneous states that can be visited within
the region. In this example you cannot Enjoy the walk home while you are
riding (Enter Cab) in the cab.

So far we have discussed the basics of designing with extended state dia-
grams. BetterState Pro's extended state diagrams also support History
States, InterActive State Animation, and many other important design and
debug capabilities. And remember, this is just the design front end of Bet-
terState Pro and BS4VisualBasic. Once your initial design is completed (or
anytime during the design process) you can automatically generate code us-
ing BetterStates proprietary code generators. For detailed information on
Code Generation and BetterStates unique animated debug and analysis capa-
bilities, please see the BetterState Pro Users Manual.

Now you are an expert on designing with Extended State Diagrams. Go on
to Part Three and discover how easy BetterState is to use.

Part Three, BetterState Quick Start

This section has been developed to help you jump right into diagrammatic
programming using BetterState Pro. In this section we assume that you are
familiar with extended state diagramming methods.

Throughout these sections be on the look for the + symbol. Should you
have some questions or want to learn more about a topic, this symbol will
point you to the chapters covering this topic in the BetterState Pro's User
Manual.

Note: Of course you can by-pass the manual and try BetterStates Hot Spot
Tutorials and on-line help (+ select Help).

Now to get started, make sure BetterState is loaded on your computer, (+
see the section on Installation in Introduction Chapter). These are the
items you will be working with in Part One.

The Quick Start Project

To show how easy BetterState is to use, we have selected a simple counter
for our Quick Start Project.

The specifications for the counter are as follows: A simple car counter that
raises a Flag if 3 cars are detected. Assume that the variable, “new_car”
is a 1.

(Obviously this is an example that could be easily hand coded. However for
training purposes we picked an example that was easy to understand.)

Getting Started

The first step in using BetterState is to start a project and to select an associ-
ated programming language. To do so:

Ê Select New Project from the File Menu. (+ for more information on
BetterState Projects see Working with Projects in the Introduction Chapter
and Starting a Project in Chapter 4, Extended State Diagrams).

Ë When the Chart Dialog box appears, name your chart (for example: Sim-
ple Counter).

Ì Select the programming language you want to relate to (this information is
user information that is used by the code generator). In this example we are
going to use C. However, if you do not have the C code generator you can
select C++, VHDL or Verilog HDL. This example is not for Visual Basic.
Visual Basic is used in Part Four.

Note: The code generators installed in your copy of BetterState depend upon
what you purchased. BS4VisualBasic just has the Visual Basic code genera-
tor. Visual Basic is included in all other configurations of BetterState Pro.

Í The diagram type should be Extend State Diagrams.

Click on OK when you are done.

Figure 18 This is the BetterState Chart Dialog box that appears everytime
you start a new project or a new chart to an existing project.

Î To place your first “state” move your cursor to the vertical Icon Bar and
click once on the icon showing a box with rounded corners. Notice how
your cursor changes. Move your cursor to the location where you want to
place the first state and press your left mouse button once.

Ï Once you have drawn the state a Dialog Box appears (note, you can always
go back to the Dialog Box by double clicking on a specific state). Make this
state the default state with the name Start. You also want to specify if the C
or C++ action specified is on-entry or on-exit. In this state the action is
Flag=0 and it is an Entry Action. When you have completed the Dialog
Box entries click on OK. (+ For more information see States and Transi-
tions in Chapter 4, Extended State Diagrams).

Figure 19 This is a BetterState State dialog box that appears when you
draw a State.

Now that you have selected OK from the dialog box, notice in the design
area how the Action descriptions are displayed with the state and an arrow
show the type of action (on-entry or on-exit). The “on-entry” action text as-
sociated with the start state may be moved and resized but it will automati-
cally remain a region of the “start state”(+ for more information see States
and Transitions in Chapter 4, Extended State Diagrams).

Start

D

Flag=0

!

Figure 19.1 Shows the initial start state with the on-entry action Flag=0

To move or resize the action dialog, select the green arrow icon on the ver-
tical menu bar to change your cursor to a pointer. Click once on the “on-en-
try” dialog box (the box with Flag=0) and notice how a group of small solid
color outline boxes appear. These boxes are called handles and they allow
you to resize the selected item. You can also move the box by placing your
cursor anywhere within the box, and pressing the left mouse button down
while moving the box to it’s new location.

Ð Since we are designing a 3 car counter let’s now place three more states,
one for each event (car1, car2 and car3 being counted). Note there is no need
to add any action dialog to these states.

Ñ Once we have drawn the states we need to define the transitions between
the states. This is done by selecting the “transition” button (the icon button
with an arrow pointing down to the right) from the vertical menu bar. Once
you have selected this button, move your new cursor to some location any-
where inside the first state (start state) and press the left mouse button.
While holding the mouse button down, move your cursor to some location
anywhere inside the next state (Car1) and release the mouse button. A tran-
sition should have been drawn between the two states with the arrow head
pointing in the direction you moved the mouse. (+ see States and Transi-
tions in Chapter 4, Extended State Diagrams and Creating Connectors in
Chapter 3, Using BetterState).

Ò Once you have drawn the “transition”, the transition Dialog Box appears
and you should enter New_Car as the condition for the transition to fire. A
similar transition should be drawn between the Car1 and Car2 states and the
Car2 and Car3 states.

Figure 20 Shows a BetterState C++/C Transition Dialog box.

Ó We stated in our specification that we wanted a flag raised (Flag=1) when
three cars were detected. Go to the Car3 state and specify that action. To
do this, place your cursor on the state Car3 and double click on the state us-
ing the left mouse key. This will bring up the state dialog box for that state
and you can enter Flag=1 in the Action Field.

Your finished state diagram should look similar to this one:

Figure 21 Shows the design of our car counter project.

Code Generation

To generate code for this design do the following;

Ê From the Menu Bar select Tools.

Ë From the Tools Menu select Code Generation. After the Code Generation
option is selected you might see a message page that will tell you if you have
any design errors that need to be corrected before code can be generated. If
there are no errors the next screen to appear will be the Code Generation
Menu. To select the default conditions press OK. (+ for more information

on code Generation see Chapter 6)

You can now view or compile the code that was just generated.

Figure 22 Shows the C Code Generation Menu that was selected at the be-
ginning of the project

Let’s take a look at a slightly more complex example. The new specification
is as follows:

Now instead of raising the flag when three cars are detected, the specifi-
cation now states that the flag will be raised if one or more cars is de-
tected followed by a truck.

Drawing Hierarchy

In BetterState hierarchy is drawn by placing states within states. Hierarchy
is used to group sets of states together. In this example we can create a hier-
archical state around the states Car1 and Car2. We can name this new high
level state Truck. This gives your diagram the following meaning. If three
cars are counted OR if one or more cars followed by a Truck are counted a
Flag will be raised. The following will show you how easily your original
BetterState diagrams can be modified to accommodate the new specification.

Ê Simply select the state button from the vertical menu bar. Place the state
cursor somewhere on your design just above the Car1 state and while hold-
ing the left mouse button down, drag the cursor down and over the Car1 and
Car2 states. Then release the mouse button. When you release the mouse
button a State Dialog Box appears and you can name your new state Truck.
You’ve now created a hierarchical state with two sub states, Car1 and Car2.
(+ for more information on hierarchy see Hierarchy in Chapter 4, Ex-
tended State Diagrams).

Ë Now place a transition between your high level state and the Car3 state.
Specify the condition as New_Truck.

Your design should look similar to this one:

Start

Flag=0

!

D

car1 Car2 Car3

Flag=1

!
Truck

New_Car

?

New_Car

?
New_Car

?

New_Truck

?

Figure 23 Illustrates our new design with the higher level state Truck.

Now generate code for your newly modified design. Again, go to the tools
menu and select Code Generation. It's that simple!

Integrating your BetterState Generated Code

The code generated by BetterState is typically a component of your overall
system-level design. Thus it needs to be integrated into your system level
code. In C, this component is a function; in C++, it's a class, in Visual Basic
its a module, in VHDL its an architecture, and in Verilog it's a “task” or “al-
ways” statement. In each language (except Visual Basic), this component
needs to be invoked by the system-level code.

For example, in C/C++ this is done by a function call, where each call to the
function realizes one pass over transitions in the diagram, firing one or more
concurrent / independent transitions, and then returning control to the calling
program. (+ for more information on Scheduling see Chapter 6).

The BetterState code generator generates code that can be scheduled in a
flexible way. This enables very powerful possibilities for realizing your
overall system. In addition to the code being generated from the chart, you
should have an envelope program in which the external variables, signals,
I/O, and functions being used in your chart are defined. (+ Some examples
exist in the examples sub-directory of your installation directory.)

When C is the underlying language

Then the envelope program should call the controller(s) using the function
call CHRT_xxx(int reset) (where xxx is the user defined name of this chart).
Each such call acts like a clock tick; it enables one cycle of execution where
the controller advances its state in all active threads of computation.

(+Simple.c in the examples sub-directory of your installation directory is an
example of such an envelope program developed under Microsoft's Visual
C.)

When C++ is the underlying language

For C++, BetterState generates a class for each controller. The class con-
structor resets the object upon creation. The BS_Fire() member function fires
the controller for one cycle, in which all enabled transitions may fire once,
after which program control is returned to the calling program. Hence, the
C++ code supports the same flexible scheduling capabilities offered by our C
product.

(+ An example of using your BetterState generated C++ code is located in
the examples sub-directory of your installation directory. Select its_cpp sub
directory.)

When VHDL is the underlying language

In VHDL the envelope is an entity. The controller's VHDL code generated
by the code generator is an architecture for that entity. The controller is
scheduled by an input CLOCK and has an (asynchronous) reset signal

(+An example for a VHDL entity is listed in the examples sub-directory of
your installation directory. Select VHDL sub directory.)

When Verilog HDL is the underlying language

When Verilog is the underlying language, the envelope module should call
the controller(s) using the task call CHRT_xxx (reset,terminal) (where xxx
is the user defined name of this chart). Each such invocation is typically
caused by the CLOCK, but can be invoked by any event; it enables one cy-
cle of execution where the controller advances its state in all active threads
of computation.
Always @ (posedge clock)
CHRT_xxx (reset, terminal)

Alternatively, you can choose to realize your Verilog controller as an always
@ (posedge CLOCK) statement.

(+An example of using the Verilog HDL is listed in the examples subdirec-
tory of your installation directory. Select Verilog sub directory. In this di-
rectory there is also a sample of BetterState generated code that was synthe-
sized using Synopsys, see synopsys.n)

When Visual Basic is the underlying language

For complete details on using Visual Basic as the underlying language, see
the BetterState for Visual Basic Users Manual.

Congratulations! You just completed your first
BetterState design.

You can continue to Part Four and see how easy it is to put Visual Basic to
work for you as a visual prototyping tool.

Part Four, Diagrammatic Programming in Visual Basic

In this section we will go through a simple design example using Visual Ba-
sic and BetterState For Visual Basic. This design example will focus on de-
signing the state diagrams within the BetterState environment. It is up to the
user to set up the Visual Basic front-end portion of this design.

Note: The Visual Basic Code Generator is also available in every version of
BetterState Pro.

Consider a simple example, where a Visual Basic form consists of a standard
Visual Basic Timer control named Timer1 and a custom bitmap control rep-
resenting a traffic light, named Light1, which can be either Green or Red.
Suppose we want the light to toggle between Green and Red every time a
Timer event occurs. This behavior is conveniently modeled as a State Ma-
chine, and visually depicted as a state diagram, as illustrated in Figure 24.

Figure 24 Shows our simple traffic light controller with two states.

The state machine starts operating in a state labeled Green, and each time
the Timer1_Timer event occurs, which happens at fixed time intervals, the
state machine toggles between the Red and Green states, thereby asserting
Light1's color property appropriately. Obviously, we could achieve the same
result using plain Basic code within the Timer1_Timer event Subroutine, us-

ing a variable, say LightState, being 0 or 1, and using an if-then-else state-
ment that toggles the value of this variable.

 If (LightState=0) Then

 LightState = 1
 Light1.Color = 1 ‘RED

 Else
 LightState = 0

 Light1.Color = 0 ‘GREEN
 End If

 In fact, this is exactly what BetterStates automatic code generator does for
you; you draw the diagram, and the code generator automatically generates
the code. However, the benefits of such a diagrammatic programming vehi-
cle go much further. Lets consider a few more complex examples.

 The first enhancement to the example in Figure 24 consists of the following
modifications:

· Two push-button controls, named NewTruck and NewCar, exist.

· Light1 now switches from Red to Green after 3 clicks on the NewCar
button or, after one or more NewCar clicks followed by a NewTruck
click.

Figure 25 Shows the modified traffic light controller that now includes
the new specifications.

Figure 25 illustrates the Extended State Diagram (ESD) that captures this
behavior. Note that we have added hierarchy to the diagram, where the tran-
sition connecting the OneORMore state to the Green state means that if one
or more NewCar clicks have occurred (implied by the present state being one
of the substates of OneORMore), and a NewTruck click occurs, then the
next state will be the Green state.

Such hierarchical design capabilities allow any Visual Basic user to practice
one of the most fundamental concepts of modern programming, namely,
top-down design. For example, it allows you to design a high-level diagram
that consists of the Green and Red states alone, and design the contents of
the Red state later, or assign the design responsibility for the contents of the
OneORMore state to someone else.

Note how the ESD is actually memorizing sequences of input events for
you and presenting those sequences in a visual manner. This is one of the
primary missions of a state machine of any kind.

ESD's can be beneficial in many other ways as well. One other important
service they provide is to visually capture independent, especially partially
independent, sequences of input events.

Let's enhance the specification for our example one step further, as follows:

· Grid control, named Grid1, is added to the Visual Basic front end.

· After any Grid1 key is pressed while Light1 is Red, then once the
NewTruck button is clicked, a Camera bitmap should appear until Light1
goes Green again.

· Obviously, this behavior describes yet another sequence of input events,
which can conveniently be described using a State Diagram. This behav-
ior is independent of the activities discussed earlier and could be de-
scribed by a completely separate ESD. However, suppose we want the
Camera bitmap to become visible, for a half a second, after two NewCar
clicks have been detected, while Light1 is Red. Now, the two ESD de-
signs are not entirely independent; the second ESD design must be able
to sense the state of the first ESD.

Figure 26 Shows the enhanced design with two independent threads of control.

Figure 26 illustrates an ESD which captures the entire design; the two
dashed boxes, labeled Count and Camera, are called threads, and each en-
capsulate a “sub”- ESD, one for the Counting activity and the other for the
Camera activity. The two threads operate independently of one another. For
example, the Counter might move from state c_0 to state c_1 when the New-
Car button is clicked, in which case the Camera does nothing, and therefore
remains in it's present state, or, when the NewTruck button is clicked, they
might both traverse transitions. The transition from c_2 to Shoot realizes the
specification that required some dependency, where the Camera must move
to the Shoot state (thereby making the Camera bitmap visible) when the
Counter has counted two NewCar clicks.

By now you most probably have figured out that we have been building a
game or a prototype of a traffic light and it's controlling software. Such event
driven programs can become large, complex, and completely unreadable
when described in plain Basic code. Moreover, debugging an equivalent Ba-
sic program becomes a real nightmare, with the flow of control jumping be-
tween the various event procedures. Debugging plain Basic code for such a
design is especially difficult when independent and partially independent ac-
tivities are involved, because the Basic code, being textual, is by definition
sequential, whereas independent activities are conceptually simultaneous.

Therefore, an important capability supported by leading diagrammatic pro-
gramming tools is the ability to debug the diagrammatic behavior on the dia-
gram itself, in a WYSIWYG (What You See Is What You Get) way. Such
debugging capabilities include two main features:

Ê Animation, where the states of the diagram change colors as input events
are accepted; for example, when a NewCar event occurs, the c_1 state should
be colored Red (or flicker, or use some other visual highlighting mecha-
nism), to visually highlight the fact that the present state is c_1, whereas the
c_0 state should be black again (it is no more the present state). The figure
on the next page illustrates how InterActive State Animation operates.

Ë Break-states, much like Visual Basic breakpoints, you might want the Vis-
ual Basic debugging session to stop when a certain state is reached.

Summary

We have shown how state Diagrams, especially Extended State Diagrams,
can replace much of the plain textual Basic coding effort that still exists be-
hind the highly visual front-end given by VisualBasic. This allows non expe-
rienced programmers to design highly complex behavior for their VB appli-
cations, as well as reduce the development time and error count within non-
trivial Visual Basic applications. In addition, the same diagrams can become
part of the documentation for your design, eliminating the need to draw them
somehow just for that purpose.

Part Five, Visual Debugging

One of the most useful and powerful features of BetterState Pro is its Visual
Debugging capabilities. With capabilities like InterActive State Animation
you can visually view and animate the execution of your BetterState gener-
ated program, state by state. With InterActive State Traveler you can vis-
ually navigate through complex transitions without exiting BetterState to
compile your code. Animated PlayBack give you the powerful capability of
recording the actual execution of your program (in the lab or in the real envi-
ronment) and then later playing back the execution on your PC.

InterActive State Animation

While interpreting or executing your BetterState generated code, your dia-
gram is automatically animated to reflect program execution. The first step
in establishing this link is to generate code that supports InterActive State
Animation.

The code generation menus for the Visual Basic, C and C++ code generators
allow the user to specify if they want to generate code for InterActive State
Animation. If this option is enabled the code generator will generate code
that can be used with Visual Basic, MS Visual C, C++ and other compiler /
debuggers.

Figure 27 Shows the C Code Generation Menu with various
code generation options.

For example, via DDE communications, while you are running Microsoft
Visual Basic in one window, you can activate a Visual Basic “control” and

view the actual execution of your Extended State Diagram or Petri Net run-
ning in a BetterState window.

Figure 28 Shows BetterState interacting with Visual Basic.

In Figure 28 everytime you feed it an event, either from the timer or you
click a button, a state changes. BetterState will animate the state changes au-
tomatically and highlight them in RED. This way you can visually inspect
the behavior of your diagrammatic design.

With InterActive State Animation you can set "break states" in the Better-
State diagram, so that when program computation reaches such a state the
Visual Basic, C or C++ program will stop.

Note: InterActive State Animation is not PlayBack. It only animates what-
ever is done in the debugger or during execution (e.g. Visual Basic, Visual
C++ or during execution; etc.) however, you can force the debugger to stop,
by placing a break state in your diagram.

Figure 29 shows another example of InterActive State Animation, this time
linking BetterState with Visual C++.

State Traveler

State Traveler provides the designer with a tool to visually see the effect of
a transition, or a complex transition, on the compound state of his controller.
For example, you might want to inspect the states that are reached if the
complex transition fires. To do so, simply select the transition (click on it),
and then click on the traveler Icon button. When you click on the Traveler
button, the states that will become the present states when that transition
fires are highlighted in RED.

Figure 30 shows an example of two threads of control. In this example it
might not be clear what the next state will be as a result of any of the transi-
tions firing. This situation is easily viewed using State Traveler. Just select
the transition your inquiring about, then click the Traveler button, and you'll
see the resulting next state.

T1 T2

D

D

Figure 30 Which state is the next state?

Now, given that you know what states are the present states you can choose
another transition and see the effect on the present states.

With State Traveler we are not executing code that has been generated by the
code generator; everything is internal to BetterState. In fact, the condition
code and action code associated with the selected transition are ignored; Bet-
terState is showing you "what happens IF the transition fires". There-
fore, the traveler's behavior does not depend on the stimuli the controller is
suppose to receive.

To summarize, the Traveler is an on-line inspection tool, which is very pow-
erful as a learning vehicle (e.g., to understand the meaning of complex and
compound transitions).

Note: The Traveler needs a file called Travel.dbf. This file is generated via
code generation. Therefore, for the Traveler to work properly, you need to
generate code for the diagram (but you do not need to compile, synthesize or
execute this code).

Animated PlayBack

BetterState supports a third animation feature called Animated PlayBack.
Animated PlayBack serves two purposes:

Œ It provides a visual simulation/debug vehicle for the development phase
of your design and  it provides a visual analysis tool for the actual field us-
age phase of your project.

Once again, code that supports Animated PlayBack is produced by the code
generators.

Figure 31 Shows the PlayBack option on the C Code Generator Menu.

Selecting the PlayBack option instructs BetterState to generate code that
writes details of the on-going execution (whether running under the debugger
or not) into a FoxPro file called Record.dbf, which consists of one record per
invocation of the controller, a record that consists of ID's of all ESD states,
or PN places, visited during this invocation.

For example, if in Figure 32, at time t states s1 and s3 are visited, and at
time t+1, s2 and s3 are visited, and at t+2, s2 and s4 are visited, then the
three corresponding records will be <s1,s3>, <s2,s3>, and <s2,s4>.

t1 t2
s1

s2

s3

s4

Figure 32

Now run your application, either under a simulator/debugger, or as an exe-
cutable. Obviously running it under a simulator/debugger allows you to feed
in artificial stimuli (+ see the Section named "Using your Debugger as a
Simulator" in the Advanced Topics Chapter of the BetterState Pro Users
Manual), whereas running it as an executable requires a mechanism for cap-
turing real stimuli and feeding them into the controller, a mechanism that is
always part of the final, released application.

In fact, you can run the application in the field using real-life stimuli, pro-
vided that the application is an embedded PC application (because the file
system is required in order to write Record.dbf). Any one of these ways of
execution will write a Record.dbf file.

Finally, in BetterState, select the PlayBack button; this will cause a VCR-
like tool bar to replace the conventional toolbar. Figure 33 shows a Play-
Back screen shot.

Figure 33 Screen shot of BetterState PlayBack.

With this user-interface you can "play" the execution that has been recorded
in Record.dbf. You can do the following:

· Single step forwards and backwards through states; each time you click
one of these buttons the next (previous) state(s) will be highlighted.

· Animate forwards and backwards through states; these buttons will go
(forwards or backwards) through the records in Record.dbf and highlight
the states visited, until stopped by the stop PlayBack button, or until the
end of Record.dbf is reached.

· Fast animate forwards and backwards through states; these buttons will
go (forwards or backwards) through the records in Record.dbf and
highlight the states visited, until stopped by the stop PlayBack but-
ton, or until the end of Record.dbf is reached.

· Run forwards and backwards until a breakpoint state is reached (you can
specify any state to be a BP state, by editing it and selecting the break-
point check box).

Figure 34 Shows how a Break State is set.

Note: In earlier versions of BetterState the break-state symbol was a "cas-
sette". In version 3.0 it has been changed to a "stop sign" symbol. So if
you select a state and define it as a Record/Break state you'll see a "stop-
sign" type of symbol next to the state.

Animated PlayBack of the execution can help you to debug your design;
rather than looking at state names (or even ID's) in the simulator/debugger
environment, you can inspect the state sequences visually. Moreover, you
can use this tool as an analysis tool, to analyze real life behavior.

For example, consider an embedded PC application controlling a traffic
light, using one of the Traffic Light Controller (TLC) diagrams we've dis-
cussed in this manual. If the TLC is using code BetterState generated with
the PlayBack and graphing CG option, then the entire daytime behavior of
the TLC can be recorded in Record.dbf. PlayBack can be used to trace and
play, forwards and backwards, through the sequence of states that had been
visited throughout the day, and thereby understand how certain problems oc-
curred and what sequence of states (and corresponding stimuli) caused these
problems.

Although PlayBack is done after the fact, you can use the PlayBack tool al-
most simultaneously with the simulator/debugger. To do so, have two win-
dows open, one with the simulator/debugger (if it's a Windows 3.1 tool) and
the other with BetterState, as illustrated using the Visual C++ debugger.

Figure 35 Shows BetterState with Visual C++

Now, you can single step in the debugger, or run the debugger through one
or more calls to the controller, and then, in the BetterState window, observe
the behavior visually by stepping or running the VCR; and so on.

	Transformational (sub) Systems
	Reactive Systems
	Types of State Diagrams
	Traditional State Diagrams
	Extended State Diagrams

	State Diagram Notation
	System States
	Changing States
	Conditions and Actions
	Your FIRST State Diagram design
	Design Hierarchy
	Independent Threads of Control
	Visual Synchronization
	Visual Switch / Case (decision polygon)
	Design Exercise
	Consistence Check Guide Lines
	Critical Regions
	The Quick Start Project
	Getting Started
	When C is the underlying language
	When C++ is the underlying language
	When VHDL is the underlying language
	When Verilog HDL is the underlying language
	When Visual Basic is the underlying language

