
PrintWorks Help Contents
Introduction

      Overview
      File Distribution
      Integrating With Visual Forms for Windows
      Using Metric and Other Units
      Support for Visual C++

Properties
      Document Management

CreateDocument
CreatePage
DeleteDocument
DocTitle

HideButton
hMetaDC
Landscape
PageTitle
PaperHeight
PaperWidth
Resolution
SavePage

      Object Sizing & Positioning
Aspect
ObjHeight
ObjWidth
EndAngle
Radius
StartAngle
XPos
X2
YPos
Y2

      Object Appearance
BackGroundColor
EdgeColor
FaceColor
LineColor
LineWeight
LineWeightR
MakeTransparent
MakeOpaque
Pattern

      Three-D Objects
ThreeDAngle
ThreeDBar



ThreeDPie
ThreeDThickness

      Drawing Text
FieldWidth
GetXTextPos

GetYTextPos
Indent
Italic
Justify
LineSpacing
MulitLine
NameFont
Paragraph
PrintText
Rotation
SelectFont
SizeFont
Underline
WeightFont

      Line Drawing
DrawCircle
DrawLine
Pie
Rectangle

      Area Fills
CurrentPoint
FillCircle
FillPolygon
FillRectangle
NumPoints
SetPoint

      Adding Graphics
DrawBitmap
Filename
MergeMetaFile
MetaFile
StretchBitmap

      Filling In Forms
ClearFields
FieldData
FieldID
FieldNumber

FillFieldID
FillFieldNumber
FormFile
MergeForm
TemplateFile

      Printing



FirstPrintPage
LastPrintPage
PrintAll
PrintDocument
PrintDialog
PrintEventOnly
XPrintOffset
YPrintOffset

    Previewing
DeskColor
DisplayPageNum

DrawNow
PercentScreen
PictureScale
Preview
ShadowWidth
StartCloseUp

Events
ClickIn
PreviewClosing
PrintEvent



CreateDocument Property
CreateDocument is the first step in using PrintWorks.    This property must be called 

to prepare for Creating Pages, Printing, and Previewing.    

Set the DocTitle property before calling CreateDocument.

Refer to Document Management for an overview.

Data Type:    Action - executed when set to True



CreatePage Property
CreatePage initializes a new page in your document.

Set the TemplateFile, PaperWidth, PaperHeight,    Resolution, and Landscape 
properties before calling CreatePage.

Refer to Document Management for an overview.

Data Type:    Action - executed when set to True



DeleteDocument Property
DeleteDocument deletes a document from memory and performs other important 

housekeeping chores.    You must call DeleteDocument before exiting your program if a 
document has been created, unless Preview was called.    Preview calls DeleteDocument 
itself, so it is not necessary to do it in your code.

Data Type:    Action - executed when set to True



PageTitle Property
PageTitle sets the name of the page that is displayed in the status bar of the 

Preview window.

Data Type:    String    (char*)



PaperWidth Property
PaperWidth sets the physical width of the paper to be displayed or printed.    Keep in

mind that PrintWorks printing logic automatically offsets the printed page 1/4 inch to the 
left and 1/4 inch up to allow for the unprintable zone in most printers.    This allows you to 
specify a page as its actual width (for example 8.5 inches) rather than a narrower width, 
and then having to offset the output on the page.    Also, the page will be displayed 
correctly on the screen, which has no unprintable zone.    Make sure you do not put any 
graphics or text in the unprintable zone, because on most printers they will not be 
displayed properly, or at all.

When including Lanscape oriented pages, reverse the height and width when 
setting PaperWidth and PaperHeight.    This will cause the page to be readable on the 
screen.    Use the Landscape property so the page will be properly rotated when printing.

Data Type:    Real    (float)



PaperHeight Property
PaperHeight sets the physical height of the paper to be displayed or printed.    Keep 

in mind that PrintWorks printing logic automatically offsets the printed page 1/4 inch to the 
left and 1/4 inch up to allow for the unprintable zone in most printers.    This allows you to 
specify a page as its actual height (for example 11.0 inches) rather than a shorter height, 
and then having to offset the output on the page.    Also, the page will be displayed 
correctly on the screen, which has no unprintable zone.    Make sure you do not put any 
graphics or text in the unprintable zone, because on most printers they will not be 
displayed properly, or at all.

When including Lanscape oriented pages, reverse the height and width when 
setting PaperWidth and PaperHeight.    This will cause the page to be readable on the 
screen.    Use the Landscape property so the page will be properly rotated when printing.

Data Type:    Real    (float)



Resolution Property
Resolution sets the nominal resolution for a page.    Although PrintWorks creates 

scalable metafiles, Resolution is used to calculate the thickness of lines and the height of 
fonts.    You can make the line thickness independent of resolution by using LineWeightR 
instead of LineWeight to set line thickness.

If you are using inches as your unit of measure, a resolution of 300 is recommended
because it is one pixel on a laser printer at standard resolution.    If you are using metric 
units, use 118 (300 / 2.54).    Also, if you are using metric (or other) units, use LineWeightR 
to set the line weight.    Refer to Using Metric and Other Units.

Data Type:    Integer    (int)



DocTitle Property
DocTitle sets the title in the title bar of the Preview window.

Data Type:    String    (char*)



Preview Property
Preview activates the Preview window.    This is a fully functional print preview 

window that allows you to scroll through the pages in your document, zoom in or out, set 
the zoom scale, and print.

Set PercentScreen, StartCloseUp and the print option properties before calling 
Preview.    Also, you must have created a document and at least one page.    You do not 
need to call DeleteDocument after exiting Preview, because it is done automatically.    When
Preview is closing, it fires the PreviewClosing event.    Respond to this event to execute any 
clean up code.

Click on the toolbar controls shown below for details on their operation.

Data Type:    Action - executed when set to True



FormFile Property
FormFile specifies the file name of a Visual Forms for Windows form that has been 

saved as a Windows metafile.    A form can be added to a page using the MergeForm 
property.

Refer to Filling In Forms for details on working with forms and templates.

Data Type:    String    (char*)



MergeForm Property
MergeForm adds a Visual Forms for Windows form to a page.    

Set the FormFile property before calling MergeForm.

Refer to Filling In Forms for details on working with forms and templates.

Data Type:    Action - executed when set to True



XPos Property
XPos sets the horizontal position of the starting point of a figure, in inches (or othe 

units).    It is measured from the left edge of the page.    If you are working with a Landscape
page, the left edge is the short side (it will be rotated when printed).

Data Type:    Real    (float)



YPos Property
YPos sets the vertical position of the starting point of a figure, in inches (or othe 

units).    It is measured from the top edge of the page.    If you are working with a Landscape
page, the left edge is the long side (it will be rotated when printed).

Data Type:    Real    (float)



ObjWidth Property
ObjWidth sets the width of an object.    The width is always parallel to the top edge 

of the page.

Data Type:    Real    (float)



ObjHeight Property
ObjHeight sets the height of an object.    The height is always parallel to the left 

edge of the page.

Data Type:    Real    (float)



MergeMetaFile Property
MergeMetaFile adds a Windows disk based metafile, specified by MetaFile (the file 

name)    to the page.    The upper left corner of the metafile is drawn at XPos, YPos, and the 
width and height are ObjWidth and ObjHeight, respectively.

Set MetaFile, XPos, YPos, ObjWidth, and ObjHeight before calling MergeMetaFile.

Data Type:    Action - executed when set to True



MetaFile Property
MetaFile specifies the file name of a Windows metafile.

Data Type:    String    (char*)



PercentScreen Property
PercentScreen specifies what portion of the available Preview screen is used to 

display a page, in percent.    If PercentScreen is 100, the page uses the maximum available 
screen real estate.

Data Type:    Integer    (int)



ShadowWidth Property
ShadowWidth specifies the width, in pixels, of the page shadow on the screen.

Data Type:    Integer    (int)



FieldNumber Property
FieldNumber specifies a data field in a TemplateFile, by its sequential number.    

Refer to the template.TXT file produced by Visual Forms for Windows, for a listing of the 
fields and their respective numbers.

Refer to Filling In Forms for details on working with forms and templates.

Data Type:    Integer    (int)



FieldID Property
FieldID specifies a data field in a TemplateFile, by its name.    Refer to the 

template.TXT file produced by Visual Forms for Windows, for a listing of the fields and their 
respective names.

Refer to Filling In Forms for details on working with forms and templates.

Data Type:    String    (char*)



FillFieldNumber Property
FillFieldNumber fills a data field in a template by referencing its sequential number.

Set the FieldNumber and FieldData properties before calling FillFieldNumber.

Refer to Filling In Forms for details on working with forms and templates.

Data Type:    Action - executed when set to True



FillFieldID Property
FillFieldID fills a data field in a template by referencing its name, or ID.

Set the FieldID and FieldData properties before calling FillFieldID.

Refer to Filling In Forms for details on working with forms and templates.

Data Type:    Action - executed when set to True



FieldData Property
FieldData contains the actual text string that will be placed in a template's data 

field.

Refer to Filling In Forms for details on working with forms and templates.

Data Type:    String    (char*)



ClearFields Property
ClearFields erases the text assigned to all of a template's data fields.    Call 

ClearFields after creating a page, and before assigning any data to data fields.

Refer to Filling In Forms for details on working with forms and templates.

Data Type:    Action - executed when set to True



PrintDocument Property
PrintDocument allows you to print your document without invoking the Preview 

window.    It works the same as from within the Preview window, except the PrintEvent 
custom event is not fired.    You may print directly, or use the PrintDialog.    If the PrintDialog
is not used, all pages in the document are printed if PrintAll is True, otherwise, page 
numbers FirstPrintPage to LastPrintPage are printed.

Set PrintAll, FirstPrintPage, LastPrintPage, and PrintDialog before calling 
PrintDocument. 

Make sure you call DeleteDocument after calling PrintDocument.

Data Type:    Action - executed when set to True



FirstPrintPage Property
FirstPrintPage specifies the first page in the document to be printed.    This property 

is over-ridden if PrintAll is True.

Data Type:    Integer    (int)



LastPrintPage Property
LastPrintPage specifies the last page in the document to be printed.    This property 

is over-ridden if PrintAll is True.

Data Type:    Integer    (int)



PrintCurrent Property

Data Type:    Action - executed when set to True
Data Type:    True/False    (BOOL)
Data Type:    Integer    (int)
Data Type:    Real    (float)
Data Type:    String    (char*)



PrintRange Property



PrintAll Property
PrintAll instructs the printer to print all the pages in the document.    When True, this

property over-rides the FirstPrintPage and LastPrintPage properties.

Data Type:    True/False    (BOOL)



SetPoint Property
SetPoint creates a point in an array of points prior to a call to FillPolygon.    It uses 

XPos and YPos, to set the value of point in the array specified by CurrentPoint.

Set the CurrentPoint, XPos and YPos properties before calling SetPoint.

Data Type:    Action - executed when set to True



NumPoints Property
NumPoints specifies the number of points in the point array to be used by 

FillPolygon.    There are a maximum of 100 points available, using an index base of 1 (i.e. 
allowable range = 1 - 100; NOT 0 - 99).

Data Type:    Integer    (int)



Radius Property
Radius specifies the radius of a circle, ellipse, or pie.

Data Type:    Real    (float)



ThreeDThickness Property
ThreeDThickness specifies the edge thickness of a ThreeDBar or ThreeDPie.

Data Type:    Real    (float)



ThreeDAngle Property
ThreeDAngle specifies the angle a bar is rotated to achieve a ThreeDBar.    The 

greater the angle of rotation, the more of the edge is visible.

Data Type:    Real    (float)



FaceColor Property
FaceColor is the color of the two dimensional face of a filled or three dimensional 

object.    It is also the foreground color used to draw monochrome bitmaps.    Color bitmaps 
ignore this property.

Data Type:    RGBCOLOR    (long)



EdgeColor Property
EdgeColor is the color of border drawn around a filled object, or the edge of a 

ThreeDBar or ThreeDPie.

Data Type:    RGBCOLOR    (long)



StartAngle Property
StartAngle is the beginning angle, in degrees, of a circle, ellipse, or pie.    Circles, 

ellipses and pies are always drawn from the StartAngle counter-clockwise to the EndAngle.   
The allowable range is 0 to 360.    It is allowable for the StartAngle to be greater than the 
EndAngle.    When this is the case, drawing of the figure passes 0 degrees, and continues to
the EndAngle.

Data Type:    Real    (float)



EndAngle Property
EndAngle is the ending angle, in degrees, of a circle, ellipse, or pie.    Circles, 

ellipses, and pies are always drawn from the StartAngle counter-clockwise to the EndAngle. 
The allowable range is 0 to 360.    It is allowable for the EndAngle to be less than the 
StartAngle.    When this is the case, drawing of the figure passes 0 degrees, and continues 
to the EndAngle.

Data Type:    Real    (float)



Polygon Property

Data Type:    Action - executed when set to True
Data Type:    True/False    (BOOL)
Data Type:    Integer    (int)
Data Type:    Real    (float)
Data Type:    String    (char*)



FillPolygon Property
FillPolygon fills a polygon with the FaceColor and Pattern, and encloses it with a 

border of EdgeColor and LineWeight.    The polygon is defined by an array having NumPoints
points created using SetPoint.

Create a point array using SetPoint, and set FaceColor, Pattern, LineWeight (or 
LineWeightR), EdgeColor and NumPoints before calling FillPolygon.

Data Type:    Action - executed when set to True



DrawCircle Property
DrawCircle draws a circle, arc or ellipse.    The center is specified by XPos and YPos; 

the size is specified by Radius and Aspect; and, the angles are specified by StartAngle and 
EndAngle.    The circle's color is LineColor, and line thickness is LineWeight (or 
LineWeightR).

Set the XPos, YPos, Radius, Aspect, StartAngle, EndAngle, LineColor and LineWeight 
(or, LineWeightR) before calling DrawCircle.

Data Type:    Action - executed when set to True



FillCircle Property
FillCircle fills a circular area with FaceColor and Pattern.    The dimensions are the 

same as for DrawCircle.

Set the XPos, YPos, Radius, Aspect, StartAngle, EndAngle, FaceColor, EdgeColor, and
Pattern before calling FillCircle.

Data Type:    Action - executed when set to True



Pie Property
Pie draws a pie-shaped figure.    It is the same as DrawCircle, except the starting and

ending radii are drawn.

Set the XPos, YPos, Radius, Aspect, StartAngle, EndAngle, LineColor, LineWeight (or, 
LineWeightR) properties before calling Pie.

Data Type:    Action - executed when set to True



ThreeDPie Property
ThreeDPie draws a three dimensional pie slice (or complete pie).    The face of the 

slice is the same as FillCircle.    The wedge is "extruded" downward by the amount of 
ThreeDThickness.    The extruded portion has the color EdgeColor.    ThreeDPies are solid 
objects, even if a pattern is used for the face.    For three dimensional pie charts to render 
properly, start with the slices in the back and move forward.    This will ensure that the edge
of the most forward slices is visible, rather than the edge of one of the slices in the back.

Set XPos, YPos, Radius, Aspect, StartAngle, Endangle, FaceColor, Pattern, 
BackGroundColor and EdgeColor before calling ThreeDPie.

Data Type:    Action - executed when set to True



ThreeDBar Property
ThreeDBar draws a three dimensional vertical bar.    The face of the bar is the same 

as FillRectangle, except that XPos and YPos refer to the lower left corner of the bar.      The 
edge is "extruded" toward the background at an angle defined by ThreeDAngle, and 
thickness defined by ThreeDThickness.    The extruded portion has the color EdgeColor.    
ThreeDBars are solid objects, even if a Pattern is specified for the face.    Make sure that you
draw bars that are in the background first, and in the foreground last.    Also, if you are 
stacking bars, as in the demo, draw the bottom bar section first, proceeding upward to the 
top portion last.

Set XPos, YPos, ObjWidth, ObjHeight, FaceColor, Pattern, EdgeColor, 
BackGroundColor, ThreeDThickness and ThreeDAngle before calling ThreeDBar.

Data Type:    Action - executed when set to True



Aspect Property
Aspect is the ratio of the vertical radius to the horizontal radius of a circular or 

elliptical figure.    A perfectly round figure has an Aspect of 1.0.    Use a "flattened" Aspect 
for pie charts (less than 1.0) for a three dimensional effect.

Data Type:    Real    (float)



TemplateFile Property
TemplateFile specifies the name of a template file containing a data template.    The 

TemplateFile must have been created using Visual Forms for Windows.    TemplateFile must 
be set before calling CreatePage.

Data Type:    String    (char*)



Pattern Property
Pattern specifies a pre-defined pattern to use in filling an area.    The color of the 

pattern lines is the FaceColor property.    There are six standard Windows patterns, 
numbered 0 - 5.    Use a Pattern value of -1 to create a solid fill.    When patterns are drawn, 
they are either transparent or opaque.    Transparent patterns are created by calling 
MakeTransparent.    When they are drawn, transparent patterns, leave the background 
intact between the pattern lines.    Opaque patterns are created by calling MakeOpaque.    
When they are drawn, opaque patterns fill the are between the pattern lines with the 
BackGroundColor.

Available patterns:

-1 Solid
0 Horizontal
1 Vertical 
2 Forward Diagonal
3 Backward Diagonal
4 Cross Hatch
5 Diagonal Cross Hatch

Data Type:    Integer    (int)



LineColor Property
LineColor specifies the color to use when drawing line objects.    Set the LineColor 

whenever you wish to change colors of lines you are drawing.

Data Type:    RGBCOLOR    (long)



LineWeight Property
LineWeight and LineWeightR specify the thickness of lines to be drawn.    The 

LineWeight property specifies the thickness in pixels, while the LineWeightR property 
specifies the thickness in units (usually inches or cm).    When using metric or other units 
than inches, it is recommended that LineWeightR be used to ensure line thicknesses will 
scale properly.    Using a LineWeight (or, LineWeightR) of zero, draws a one pixel thick line, 
no matter what the display or printer resolution.

Data Type:    Integer    (int)



DrawLine Property
DrawLine draws a solid line from XPos, YPos to X2, Y2, using the current LineWeight 

(or, LineWeightR) and LineColor.

Set XPos, YPos, X2, Y2, LineWeight (or, LineWeightR), and LineColor before calling 
DrawLine.

Data Type:    Action - executed when set to True



X2 Property
X2 specifies the x (or, horizontal) coordinate of a destination point of a figure.    It is 

measured in units (usually inches or cm) from the left edge of the page. 

Data Type:    Real    (float)



Y2 Property
Y2 specifies the y (or, vertical) coordinate of a destination point of a figure.    It is 

measured in units (usually inches or cm) from the top edge of the page.

Data Type:    Real    (float)



BackGroundColor Property
BackGroundColor specifies the color to fill in between Pattern lines when drawing an

object as opaque (after a call to MakeOpaque).    This color is ignored when filling 
transparently.

Data Type: RGBCOLOR (long)



Rectangle Property

Rectangle draws a rectangle from XPos, YPos as the upper left corner, to X2, Y2 as 
the lower right corner, using the current LineWeight (or, LineWeightR) and LineColor.

Set XPos, YPos, X2, Y2, LineWeight (or, LineWeightR), and LineColor before calling 
Rectangle.

Data Type:    Action - executed when set to True



FillRectangle Property

FillRectangle draws a rectangle from XPos, YPos as the upper left corner, to X2, Y2 
as the lower right corner, and fills it with the current FaceColor and Pattern.    The outline of 
the rectangular area is drawn with the current EdgeColor and LineWeight (or, LineWeightR).

Set XPos, YPos, X2, Y2, LineWeight (or, LineWeightR), Pattern, and EdgeColor before 
calling FillRectangle.

Data Type:    Action - executed when set to True



CurrentPoint Property
CurrentPoint specifies the number (in the range of 1 to 100) of an array index for 

the points describing a polygon.    It is used with SetPoint to add a coordinate pair (XPos and
YPos) to the array.

Data Type:    Integer    (int)



StartCloseUp Property
StartCloseUp, when True, instructs the Preview window to initially display pages 

zoomed in.    When False, the Preview window initially displays pages in full-page, or 
zoomed out.

Data Type:    True/False    (BOOL)



MakeOpaque Property
MakeOpaque sets the background filling mode to opaque.    When this is True, the 

existing background is replaced by the BackGroundColor when filling areas, and is visible 
between the lines of the Pattern.    If a solid Pattern is used, this property has no effect.

Data Type:    Action - executed when set to True



MakeTransparent Property
MakeTransparent sets the background filling mode to transparent.    When this is 

True, the existing background is visible between the Pattern lines in an area fill.    If the 
Pattern is solid, this property has no effect.

Data Type:    Action - executed when set to True



SizeFont Property
SizeFont specifies the height of a font in points; where, one point is 1/72 of an inch 

(or, 72 points per inch).    If you are using other units than inches, scale the SizeFont 
appropriately.    

Example Metric scaling:

For a 12.0 point font, SizeFont = 12.0 x 2.54 = 30.5

Data Type:    Real    (float)



NameFont Property
NameFont specifies the name of the TrueType font (i.e. "Arial").    Only TrueType fonts

may be used with SelectFont.

Data Type:    String    (char*)



WeightFont Property
WeightFont specifies the weight of the font (allowable range: 1 - 10).    A medium 

weight or regular font would typically have a WeightFont of 5.    Light fonts would typically 
be 3; and, bold fonts would typically be 7.

Data Type:    Integer    (int)



Italic Property
Italic specifies that the font to be selected will be an Italic font.

Data Type:    True/False    (BOOL)



Underline Property
Underline specifies that the font to be selected will be underlined.

Data Type:    True/False    (BOOL)



Rotation Property
Rotation specifies the angle at which text will be printed.    Normal text is printed 

with an angle of zero.    The formatting capabilities of Paragraph, the text drawing property, 
are available for the four major orientations (see table below).    Text drawn at other angles 
should always use a value of zero for Justify (i.e. left justified).    Keep in mind that Rotation 
is a property of a selected font and is fixed when SelectFont is called.    It is not a property 
of the text itself.    If you are using the same font in a number of orientations, Rotation must 
be specified and SelectFont called appropriately.    For efficiency draw all text having a 
common font and/or Rotation at one time.

The font Rotation angle is in degrees, starting from east going counter-clockwise.

Major Orientations:
Portrait       0 degrees
Landscape       90 degrees
Reverse Portrait       180 degrees
Reverse Landscape       270 degrees

Data Type:    Real    (float)



PrintText Property
PrintText is the text string to be printed (or, drawn) using the Paragraph property.

Data Type:    String    (char*)



FieldWidth Property
FieldWidth specifies the width of a text field in inches (or, other units).    The width of

the field is used to determine how a line of text is formatted.    For example, with left 
justified text, the first character abuts the left side of the field.    Centered text is centered 
within the field, and with right justified text, the last character abuts the right side of the 
field.    The field begins horizontally at XPos.    For decimal aligned text, the decimal point is 
placed at XPos.    The baseline of the field (the imaginary line that text "sits on" is YPos.

Data Type:    Real    (float)



Indent Property
Indent specifies the distance in inches (or, other units) to indent the first line of a 

Paragraph.

Data Type:    Real    (float)



LineSpacing Property
LineSpacing specifies the vertical distance between successive lines in a multi-line 

Paragraph.    This property is ignored if MultiLine is False.

Data Type:    Real    (float)



Justify Property
Justify specifies how text is formatted within a text field.    It works together with 

FieldWidth which specifies the width of a text field in inches (or, other units).    For example, 
with left justified text, the first character abuts the left side of the field.    Centered text is 
centered within the field, and with right justified text, the last character abuts the right side
of the field.    Fully justified text is the equivalent of left and right justified.    The last 
justification option is decimal alignment.    In this format, the decimal point in the text string
is placed at the left edge of the field, and the rest of the line is drawn accordingly.

Justification Options:

0 Left Justified
1 Centered
2 Right Justified
3 Fully Justified
4 Decimal Align

Data Type:    Integer    (int)



SelectFont Property
SelectFont selects a TrueType font with the characteristics specified by NameFont, 

SizeFont, WeightFont, Italic, Underline, and Rotation.    All subsequently drawn text will use 
this font, until another is selected.    For efficiency and speed, it is recommended that all 
text using a particular font be drawn before selecting another font.

Set NameFont, SizeFont, WeightFont, Italic, Underline, and Rotation before calling 
SelectFont.

Data Type:    Action - executed when set to True



Paragraph Property
Paragraph draws one or more lines of formatted text in the current LineColor using 

the current font.    You first call SelectFont, then Paragraph to draw the text.    The text is 
drawn in a field, which is determined by XPos as the beginning, YPos as the baseline 
(imaginary line the text sits on), and FieldWidth as the width of the field.    Only those words
that will fit in the field are drawn.    The text is formatted according to the Justify property; 
and may be more than one line if MultiLine is True.    If more than one line are drawn, the 
subsequent lines are LineSpacing below the previous line.    The first line is indented by the 
amount of Indent.

After a call to Paragraph, the GetXTextPos and GetYTextPos properties are updated 
to reflect the position where text drawing ended.    This is useful if you wish to mix fonts on 
the same line.    For example, drawing a bold label, followed by data.    You would select a 
bold font, print the label, select a regular weight font, set XPos = GetXTextPos and YPos = 
GetYTextPos and then, print the data.    You could determine the correct printing postion of 
the data directly, without having to resort to trial and error.

Set XPos, YPos, PrintText, FieldWidth, Indent, LineSpacing, Justify, LineColor, and 
MultiLine before calling Paragraph.

Data Type:    Action - executed when set to True

NOTE:    It is not necessary to call SelectFont if the current font (i.e. last font selected) is the
proper font.



GetXTextPos Property
GetXTextPos contains the horizontal position, in inches (or, other units) where the 

last call to Paragraph finished drawing text.

Data Type:    Real    (float)



GetYTextPos Property
GetYTextPos contains the vertical position, in inches (or, other units) where the last 

call to Paragraph finished drawing text.

Data Type:    Real    (float)



MultiLine Property
MultiLine specifies whether more than one line of text can be drawn when 

Paragraph is called.

Data Type:    True/False    (BOOL)



DrawBitmap Property
DrawBitmap adds a disk-based bitmap, contained in the file specified by Filename, 

to a page.    It is positioned with the upper left corner at XPos, YPos.    The width is ObjWidth,
and the height is ObjHeight.    If StretchBitmap is False, the bitmap will not be scaled to fill 
the ObjWidth and ObjHeight dimensions, but will be drawn at it's non-scaled size when 
printed or displayed at full resolution.    If you don't know the actual size of a bitmap, set 
StretchBitmap to True, so you can control it's size.    If you are sure of the size, and are 
happy with the size, set StretchBitmap to False, to obtain a more accurate rendering.

Color bitmaps are drawn with its colors un-altered.    Monochrome bitmaps are 
drawn with the FaceColor as the foreground color, and BackGroundColor as the background 
color.

Set XPos, YPos, ObjWidth, ObjHeight, Filename, FaceColor, BackGroundColor, and 
StretchBitmap before calling DrawBitmap.

Data Type:    Action - executed when set to True



StretchBitmap Property
StretchBitmap specifies whether a bitmap can be scaled to fit a specified area 

(True), or should be drawn at its original dimensions (False).

Data Type:    True/False    (BOOL)



Filename Property
Filename specifies the name of a disk file.    It is used for some action properties that

require the name of a file.

Data Type:    String    (char*)



XPrintOffset Property
XPrintOffset adjusts the horizontal positioning of the page to be drawn on the 

physical paper, with positive values moving the printing to the right on the page.    It is 
useful for printers that do not line up paper correctly, and when you are printing close to 
the edge.    Keep in mind that PrintWorks automatically adjusts the print position 1/4 inch to
the left and upward, to account for the un-printable zone in most printers.    You can over-
ride this adjustment by setting XPrintOffset and YPrintOffset to 0.25.    XPrintOffset and 
YPrintOffset appear in the PrintDialog dialog box, so the user can make adjustments for his 
specific printer.

Data Type:    Real    (float)



YPrintOffset Property
YPrintOffset adjusts the vertical positioning of the page to be drawn on the physical 

paper, with positive values moving the printing toward the bottom of the page.    It is useful 
for printers that do not line up paper correctly, and when you are printing close to the 
edge.    Keep in mind that PrintWorks automatically adjusts the print position 1/4 inch to the
left and upward, to account for the un-printable zone in most printers. You can over-ride 
this adjustment by setting XPrintOffset and YPrintOffset to 0.25.    XPrintOffset and 
YPrintOffset appear in the PrintDialog dialog box, so the user can make adjustments for his 
specific printer.

Data Type:    Real    (float)



hMetaDC Property
hMetaDC contains the metafile device context of the current page.    It is useful if 

you wish to access the Windows API directly.    You can have all the capabilities of the 
Windows GDI for your own specialize routines.    Any calls to the GDI will add records to the 
metafile representing the current page.

Data Type:    Integer    (int)

NOTE:    C/C++ users must cast this to a handle to a device context (i.e. (HDC) hMetaDC)



SavePage Property
SavePage allows you to save the current page to a disk file, specified by Filename.    

When SavePage is called, the page is closed, and you cannot add additional graphics.    If 
you are planning to Preview or Print the document, make sure the page is complete.    You 
can create a page for the sole purpose of saving it.    For example, you might like to create a
scalable logo as a Windows metafile.    Make sure to call DeleteDocument if you do not call 
Preview.

Data Type:    Action - executed when set to True



PrintDialog Property
PrintDialog, when True, causes the print dialog box shown below, to be displayed 

when you are about to print.    This can be from within the Preview window, or from a call to 
PrintDocument.    The PrintDialog gives the user the opportunity to select the pages to print,
adjust the printer offsets, or cancel printing.    Click on the fields in the dialog shown below 
to view help topics for that field.

Data Type:    True/False    (BOOL)



Landscape Property
Landscape instructs the printing logic to rotate the page to Landscape orientation 

for printing.    This allows you to display your Landscape pages with the long edge of the 
paper horizontal on the screen, for easy reading.    If you use this approach, make sure you 
set PaperWidth to the length of the paper (typically 11.0 inches, or other units), and the 
PaperHeight to the width of the paper (typically 8.5 inches, or other units).    Landscape 
must be set prior to calling CreatePage.

Data Type:    True/False    (BOOL)



HideButton Property
HideButton hides the PrintWorks control button on your form.    Set HideButton to 

true if you do not want your code to respond to the ClickIn event.    The ClickIn event will 
still be fired if the user clicks in the hidden button's area, so make sure you do not place 
any code in the ClickIn event unless you want to respond.

Data Type:    True/False    (BOOL)



LineWeightR Property
LineWeight and LineWeightR specify the thickness of lines to be drawn.    The 

LineWeight property specifies the thickness in pixels, while the LineWeightR property 
specifies the thickness in units (usually inches or cm).    When using metric or other units 
than inches, it is recommended that LineWeightR be used to ensure line thicknesses will 
scale properly.    Using a LineWeight (or, LineWeightR) of zero, draws a one pixel thick line, 
no matter what the display or printer resolution.

Data Type:    Real    (float)



PrintEventOnly Property
PrintEventOnly, when True, does not invoke PrintWorks' printing logic when the Print

ToolBar Button is clicked.    It only fires the PrintEvent custom event.    This gives you the 
opportunity to design your own printing logic.

Data Type:    True/False    (BOOL)



DisplayPageNum Property
DisplayPageNum determines what page in your document is displayed, and how the

control is displayed.    If DisplayPageNum is zero,    the control is a push button.    If 
DisplayPageNum is greater than zero, the control becomes like a picture control, displaying 
the page within it.    The page number must not be greater than the number of pages in the 
document.    The page is actually displayed when the DrawNow action property is called.    
Typically, you would create the document and pages in your code at the appropriate time, 
and call DrawNow to display it.

Data Type: Integer (int)



DrawNow Property
DrawNow causes the page specified by DisplayPageNum to be drawn in the control.

Data Type: Action - True/False (BOOL)



DeskColor Property
DeskColor is the color of the preview window behind the page being previewed.    Its 

default value is the Windows system desktop color, but you can set it to any color you like.

Data Type: RGBCOLOR (long)



PictureScale Property
The PictureScale property determines the size of the image when the control is 

being used as a picture control.    The default scale is 1.0, where the entire image is 
displayed.    Increasing the scale, zooms in on the image.    Scroll bars automatically appear 
when zoomed in (i.e. PictureScale > 1.0).    If a PictureScale of less than 1.0 is used, the 
image will become smaller, and will be placed in the upper left portion of the picture 
control.    This property can easily be hooked up to a scroll bar, or other type of slide control
to enable the end user to adjust the scale.    The demo program shows how to use control 
buttons to adjust the zoom level.



Overview
PrintWorks is a Visual Basic custom control that greatly simplifies creating, 

previewing and printing documents of any kind.    Documents are created as a group of one 
or more pages that may be viewed on the screen, or printed directly.    PrintWorks provides 
custom properties and events for creating the content of the pages in the document, 
controlling the appearance of the preview window, and managing printing.    If you are using
Visual Forms for Windows, PrintWorks adds the additional functionality of allowing your 
pages to have a base form, including a template for filling in the form with data.    
Properties are provided for creating stunning reports containing formatted text, graphics, 
and charts and graphs.

PrintWorks provides a built-in, highly functional Preview window.    One line of code 
launches this window from within your applications, allowing users to scroll through the 
pages, zoom in or out, and print some or all of the pages.    Documents may contain pages 
of different sizes and orientations.    Print jobs can have mixed orientations.    PrintWorks 
works directly with the Windows API printing functions, so you can print to any type of 
Windows printer, including a FAX.    You may also preview individual pages in the control 
itself (similar to a picture control).

PrintWorks creates output by actually drawing it, not by using graphics controls or 
executing a form print.    The latter two methods, which are available from within Visual 
Basic, drain resources, are difficult to create, display slowly, and produce poor quality 
output.    PrintWorks uses the inherent graphics capabilities of the Windows API to create 
scalable metafiles to represent each page.    A metafile is Windows internal device 
independent graphics file format.    Output stored in this manner can be previewed or 
printed in the most efficient and highest quality possible.    You can save each metafile to 
disk for later use, as an archive, or for other applications.    It is an efficient way to save 
data.

PrintWorks uses a powerful Windows Dynamic Link Library (DOCMAN.DLL), written in
C++, to process your documents.    This results in very fast displaying and printing, because
it communicates directly with the Windows API.    In addition to managing documents, this 
DLL also contains a graphics library so you can easily create your output.    The graphics 
and text action properties are modeled after traditional BASIC commands.    In addition, the 
handle to the metafile device context is always available during creation of a page.    This 
permits you to execute your own graphics functions, or access the Windows API directly 
from your code.    Thus, PrintWorks is inherently extensible.

The PrintWorks can appear and function like a standard command button.    When 
clicked, it fires the ClickIn event, where you place your code to construct your document, 
preview it, and/or print it.    If you wish to connect your code to another event, command 
button, or sub-routine, you can hide the button using the HideButton property.    This 
approach makes it possible to handle all use of PrintWorks through one, hidden control.    
The control can also appear like a picture control, and the page can be drawn directly in it.

Documentation Conventions
PrintWorks is controlled by setting its various properties.    Some of these properties 

are quantitative, such as Resolution; and, other are action properties, such as Preview.    In 
this documentation, the action properties are often referred to as calls, because they act 
similar to procedure or function calls.    In reality, that is what they are.    Setting an action 
property to True, causes a function in the DLL to be called to perform the action.    When 
you see the phrase "call DeleteDocument", for example, it means the same as "set the 



DeleteDocument property to True".

All examples are given in Visual Basic code.    The reason is this code is both correct 
for VB programmers, and a good pseudo code for Visual C++ (and other C\C++) 
programmers.    C\C++ programmers should refer to the section Support For Visual C++ for
details on using PrintWorks in other programming environments.

Demo Programs
A Visual Basic demo program TEST1.EXE is provided to demonstrate the features of 

PrintWorks.    The source code is provided in the file: TEXT1.FRM to show how the various 
programming tasks are accomplished.    The demo program has a number of PrintWorks 
buttons that demonstrate different aspects of the control.    The code attached to each 
control is commented and logically arranged to make it easy to understand.    If you prefer, 
you can cut and paste code from these examples to save time.    Each action property    that
is used to accomplish a particular task is immediately preceded by code that sets the 
quantitative properties that it depends on.    Source comments are provided to explain what
each section of code does.      The source code for the demo is considered an integral part of
the documentation for PrintWorks, and it is recommended you review it.    In addition, it is 
recommended, you read the entire Introduction portion of the on-line help.

The demo program consists of 8 controls (at this writing).    The names of the 
controls and the particular portion of PrintWorks that they demonstrate are as follows:

DMWin1 - Line Objects, Direct API Call
DMWin2 - Three-D Bar, Bitmaps, starting Preview close up
DMWin3 - Three-D Pie
DMWin4 - Filled Objects
DMWin5 - Fonts & Text
DMWin6 - Rotated Text, PrintEvent and PreviewClosing custom events
DMWin7 - Multiple Pages, Forms, Templates, Data Fields, Metric Units, Landscape 

Orientation
DMWin8 - Invisible Control (code is actually executed in the Command2 control's 

click event)

A second demo program TEST2.EXE demonstrates using the control as a picture 
box.    Command buttons show how to zoom in and out, and how the scroll bars 
automatically appear when needed.    This demo also shows how the PrintDocument 
property can be used with the control as a picture box to create your own custom print 
preview window.

Additional demo programs may be available.    They will follow the naming 
convention of TESTx.EXE.



Document Management
PrintWorks has a specific architecture for managing documents.    It is both flexible 

and convenient.    A document consists of one or more pages, which are created and 
composed in sequential order before printing or previewing.    You use the following steps:

1.    Create the document with the CreateDocument property
2.    Create a page with the CreatePage property
3.    Compose the page by adding text and/or graphics
4.    Specify a form and/or template to attach to the page
5.    Add data to the template's fields
6.    Display the document
7.    Delete the document using DeleteDocument (done automatically if the 

document is Previewed)

Steps 2 through 5 may be repeated to add additional pages.    Steps 4 and 5 are 
optional, and are only available if you are using Visual Forms for Windows to create 
background forms and/or data templates.

When a page is rendered, it is done so in three layers.    The first, or bottommost 
layer is the page itself.    This page is blank when the page is created in your code.    It can 
ultimately contain whatever runtime text or graphics you decide to add.    In addition, the 
data supplied for fields in a data template are added to the page layer at runtime using the
FillFieldID and/or FillFieldNumber properties.    When the page layer is drawn, it fills the 
entire logical page that you specify with the PaperWidth and PaperHeight properties prior to
calling the CreatePage property.

The second layer is the form layer, which is a static metafile on disk.    Typically you 
would create the form using Visual Forms for Windows.    However, it could be any valid 
Windows metafile.    When the form layer is drawn, it also fills the entire logical page, and 
can be thought of as a full page overlay.    If you create this layer using Visual Forms for 
Windows, make sure the paper dimensions are consistent, so it will scale properly.    If you 
create this metafile by some other means, keep in mind it will be scaled to fill the entire 
page.

The third layer is another disk based metafile, but it does not have to fill the entire 
page.    You specify the position and size using the appropriate properties, and then call the 
MergeMetaFile property.    Typically you would add graphics in the form of bitmaps; 
however, sometimes it is convenient to use a metafile produced by some other software, 
such as a graphing package, or possibly a scalable logo.    PrintWorks automatically 
manages loading, merging and deleting from memory this metafile.    You may add 
additional metafiles, using the handle to the metafile device context provided by the 
hMetaDC property.    If you add a metafile, or any object in this way, you are responsible for 
cleaning up the memory afterward.

Pages are created in sequence.    Creating a new page, closes the previous one.    If 
you wish to add text or graphics to a page, do so while the page is open.    Also, the 
hMetaDC property always applies to the currently open page.    The last page in your 
document is closed automatically when you use the Preview, PrintDocument, or 
DeleteDocument properties.    When the Preview is activated, it takes control of your 
application until it is closed.    During this time you cannot modify any properties or pages in
your document.

Automatic memory clean up is performed when DeleteDocument is called.    



DeleteDocument is called automatically when the Preview window closes.    If you don't call 
Preview, you must call DeleteDocument.

Pages are always displayed (on both the screen and printer) with the width parallel 
to the top of the screen or physical page.    If you wish to display a landscape oriented page 
on the screen set the width to 11.0 and the height to 8.5 (for letter size in inches).    Also, 
set Landscape equal to True, so the printer will rotate it when it is printed.    This 
methodology makes it easy to create landscape documents without having to convert 
coordinates.    Coordinates always are referenced to the upper left corner of the page, 
increasing from left to right, and top to bottom.    If you mix orientations on the same page, 
make sure you compute your reference points (XPos, YPos, X2 and Y2) relative to the upper
left corner of the page.



Filling In Forms
PrintWorks provides properties for easily filling in forms that were created with 

Visual Forms for Windows.    Template files (usually with the TF extension) contain 
specifications for placement of data fields on a form.    PrintWorks takes these specifications
and adds the text you specify to compose the data field.

The first step is to connect the template to the page.    This is done by setting the 
TemplateFile equal to the file name of the template file prior to calling CreatePage.    The 
template file may or may not contain text for the data fields (depending on whether you 
entered text in Visual Forms for Windows).    If some data fields contain text, you may clear 
all the fields of data with the ClearFields property.    Also, whenever new data is assigned to 
a field, the old text or data is first cleared.    Using ClearFields will alert you to fields that you
forgot to update in your code as they will be blank on the page.

The second step is to assign current data to each of the data fields you wish to 
display.    You first identify the field with either the    FieldNumber or FieldID property.    Set 
the FieldData property equal to the text string you wish to print; and, use either 
FillFieldNumber or FillFieldID to actually place the data in the field.    You may reference and 
fill a data field by either it's numerical number or it's ID or name.    Make sure you use the 
proper pair (i.e. either FieldNumber and FillFieldNumber OR FieldID and FillFieldID)    If you 
are unsure of the field's name and/or number, refer to the TXT file created with your 
template for a listing.    FillFieldNumber is more efficient and faster, particularly if there are 
a lot of data fields.

PrintWorks keeps a list of all the data fields for the page, and their data.    When the 
page is closed, the data is actually drawn on the page layer for later display.    You may 
change the contents of the fields any number of times prior to closing the page.



Drawing Text
Drawing text involves two basic operations: (1) defining and selecting a font; and, 

(2) calling the Paragraph property.    PrintWorks font selection and text rendering only 
support TrueType fonts.    If you wish to use other Windows fonts, use the hMetaDC property
and the Windows API directly.    The orientation, or angle that text is printed (portrait, 
landscape, etc.), is a function of the font, not the text.    If you change angles or 
orientations, you must select a new font.    To maximize the efficiency of your code, print all 
text for a single font at one time, rather than repeatedly changing fonts.    

NOTE:    It is not necessary to select a font for filling in data fields in a data template.
The data template file contains all the information for the required font.

Text is always printed in fields.    A field is an invisible bounding rectangle that 
contains the text.    The lower left corner of the field is defined by XPos and YPos, and the 
width of the field is FieldWidth.    The field always proceeds from left to right (as text is 
normally written) in the orientation of the text.

The Paragraph property handles all printing of text, even a single line, or character.   
Keep in mind that the five values available for the Justify property only work for text in 
portrait, landscape, reverse portrait or reverse landscape orientations.    For text printed at 
any other angle (for example 45 degrees), always set the Justify property to zero (left 
justification).    Also keep in mind that when Justify = 4 (decimal alignment), the decimal 
place is set at the XPos position.



Line Drawing
The line drawing properties use XPos, YPos, X2 and Y2 to define the location of the 

object.    The characteristics of the line being drawn are defined by the LineWeight (or, 
LineWeightR) and LineColor properties.    The line weight, or thickness, can be expressed in 
one of two ways.    The LineWeight property is expressed in pixels, with higher values 
resulting in heavier weight lines.    When a line is rendered, the actual thickness is the 
number of pixels defined by LineWeight.    The LineWeightR property is expressed in units 
(inches, cm, etc.), with higher values also resulting in heavier weight lines.    When a line is 
rendered, the actual thickness is computed using the page's Resolution.    LineWeightR is 
more versatile because it is resolution independent.    If you are using metric units, use 
LineWeightR to get a properly weighted line.    In either case, a line weight value of zero 
results in a one pixel thick line.

Colors can be especially tricky when dealing with lines, particularly thin lines.    
Some colors require dithering (mixing of colors, including in some cases, the white 
background).    It is possible for a thin, dithered line to not show up at all because it merely 
blends with the background.    Try to select only line colors that are solid, to avoid this 
pitfall.



Area Fills
Area fills are enclosed figures of various shapes.    They are defined by their 

geometric properties, XPos YPos, X2, Y2, Radius, Aspect, etc. and by their colors and 
pattern.    All area fills have a FaceColor, a BackGroundColor, an EdgeColor and a Pattern.    
The face of the figure using the FaceColor and the Pattern (either solid, or one of 6 pre-
defined patterns).    If the background mode is transparent (from a call to MakeTransparent),
the BackGroundColor is ignored.    If the background mode is opaque (from a call to 
MakeOpaque), the background color is used to fill in between the lines in the pattern.

The EdgeColor is used to draw a border around the figure.    The thickness of the line
is determined by LineWeight (or, LineWeightR).



Printing
Printing may be handled in one of several ways.    The Preview window has printing 

support built in.    Simply click on the Print Toolbar Button.    You may also print directly from 
your code without invoking the Preview window.    You may also do a combination of both.    
A custom event, called PrintEvent, is fired when the Print Toolbar Button in the Preview 
window is clicked.    You may add code to this event to perform whatever pre-printing task 
you like, including doing something totally un-related to printing.    You can use the PrintAll, 
FirstPrintPage and LastPrintPage properties to set up the Print Options dialog.    You may 
even bypass the built in printing logic altogether.



Previewing
Previewing is done via the Preview window.    Simply call the action property Preview

after composing your document.    The Preview window permits scrolling through the pages 
in your document, zooming in and out, and printing.    It provides considerable functionality 
with just one line of code.    Properties are provided to customize the appearance of the 
Preview window.

A page may also be displayed in the control itself, rather than the Preview window, 
by setting DisplayPageNum equal to the page number, and calling DrawNow.



Object Sizing & Positioning
These properties control the size and position of graphical objects and text fields.



Three-D Objects
These objects are useful for constructing three dimensional charts and graphs.



Object Appearance
These properties control the colors, patterns and line properties of objects.



Adding Graphics
Graphics may be added in two ways.    Each page may have one Windows metafile 

placed at any point on the page.    In addition, you may add any number of Windows device 
independent bitmaps (usually having the DIB or BMP extension).    These may be positioned
and sized independently.    Bitmaps are good for displaying logos, graphs, charts, etc.    A 
number of graphics programs and controls provide output in the form of bitmaps, that can 
be easily incorporated into PrintWorks.

NOTE:    It is technically possible to save a device dependent bitmap to disk, and some 
software may do this.    Only device independent bitmaps are recognized and displayed by 
PrintWorks.    This is to ensure that the pages in the document are completely device 
independent, so they will display and print correctly on all devices.



File Distribution
PrintWorks requires two files to operate in runtime mode: (1) the VBX file: 

DMWIN.VBX; and, (2) the DLL: PWDLL.DLL.    Both of these files should be distributed with 
your application.    An additional license file: DMWIN.LIC, is required for design time support 
(Visual Basic, Visual C++, and other development environments).    This file indentifies you 
as a PrintWorks licensee, and MUST NOT be distributed.    

All other files supplied on the distribution disk, including form files, template files, 
font lists, metafiles, bitmaps and this help file may not be distributed, unless specifically 
authorized.    It is suggested the VBX and DLL files be installed on your user's \WINDOWS\
SYSTEM directory.    The LIC file should be installed on the local directory for your 
development environment, or on your    \WINDOWS\SYSTEM directory.    If you get a 
message when loading PrintWorks that the license file was not found, make sure it is in a 
directory where your development environment can find it.



Integrating With Visual Forms for Windows
Visual Forms for Windows (VFW) is an interactive form design program also 

marketed by Bytech Business Systems, Inc.    This program is useful for rapidly designing 
base forms for documents.    PrintWorks is designed to support the metafiles produced by 
VFW.    You must simply set the FormFile property to the file name of the form's metafile, 
and set the MergeForm action property to True while constructing a page.    The form will 
then be printed with that page of your document.    You must distribute the metafile for the 
form (WMF file, NOT the VFW file) with your application as well as the font list (TFL file) that
pertains to the form.    If you plan to have many different forms in a project, it is 
recommended that you use a common font list file to minimize the number of files to be 
managed.    You must also be sure your users have the TrueType fonts required by your 
forms and documents.    If some fonts are not found, Windows will make a substitution.    
Experience has shown these substitutions are usually not satisfactory.

 VFW also permits the creation of Template Files (usually with the TF extension).    A 
template file is a subset of the objects in the form, including only text fields that were 
defined in VFW as data fields.    The text in the data field text objects are not included in the
form's metafile, in order that the contents of that field may be determined at runtime.    
PrintWorks provides properties for specifying a template file and dynamically setting the 
text data at runtime.



Using Metric and Other Units
PrintWorks is based on standard Windows metafiles, which are scalable.    As such, 

they are somewhat independent of units of measure, since their size depends on the 
number of pixels available in the display device..    When the documents are rendered on a 
display device (either a screen or printer) it is scaled to fill the available pixels.    Since 
different displays can have a wide range of resolutions (and, therefore available pixels) 
PrintWorks uses inches (or other units you choose) for the properties that relate to position 
and size of the various graphics and text objects, to allow the documents to be device 
independent.    The units of measure are related to pixels through the resolution property 
that is specified when creating a page.

Througout this help file, by convention, these dimensions are referred to as inches.   
A typical 8.5 x 11.0 inch page, with a 1/4 inch border, at 300 dots/inch resolution, has 2400 
x 3150 pixels available.    The number of pixels is constant since it is a property of the 
device.    To use different units, the resolution property for each page should be adjusted 
accordingly.    For example, if centimeters are used, the page height and width would be 
2.54 times the value in inches.    Therefore, it would be necessary to divide the resolution 
property by 2.54 to maintain the proper number of pixels.

In addition to adjusting the resolution property, there is one other area to be aware 
of: the size of a font.    Font size (or, height) is always represented in Points, whatever the 
units of measure.    One point is 1/72 of an inch; or, there are 72 points per inch.    If you are 
not sure how to determine the point size of a font, it is recommended you experiment, 
starting with 10 to 12 points for normal text.

Example:

Inches: Centimeters:

Width, inches: 8.0 Width, cm: 20.32
Height, inches: 10.5 Height, cm: 26.67
Resolution: 300 Resolution: 118
Width, pixels: 2400 Width, pixels 2400
Height, pixels: 3150 Height, pixels: 3150
12 Point font size: 12 12 Point font size: 30.5



Support for Visual C++
PrintWorks supports Visual Basic Level 1 compatibility.    That means that it is fully 

supported by Visual C++ and other programming environments that support Level 1 VBX's. 
To access the design time properties of PrintWorks, use the "Styles" section of the 
properties dialog in App Studio.    To access the runtime properties, use the CVBControl 
class of the Microsoft Foundation Class library.    The example below shows how to use the 
CVBControl class to set or retrieve the resolution property.

Example:

CVBControl* pPrintWorks1 = GetDlgItem(IDC_PRINTWORKS1);

pPrintWorks1->SetNumProperty("Resolution", 300L); // This function expects 
a "long"

int reso = (int) pPrintWorks1->GetNumProperty("Resolution"); // This function 
returns a "long"

None of the properties supported by PrintWorks are arrays, so the array parameter 
in SetNumProperty and GetNumProperty may be ignored.



Close ToolBar Button
Click the Close (or Exit) ToolBar button or open the system menu to exit the Preview 

window.    The PreviewClosing event is fired when the Close button is clicked.



Print ToolBar Button
Click the Print ToolBar button to invoke the Preview windows printing logic.    As soon

as the button is clicked, the PrintEvent event is fired.    If PrintEventOnly is True, control is 
returned to the Preview window immediately after returning from the PrintEvent handler.    If
PrintDialog is True, the Print Options Dialog is displayed after returning from the PrintEvent 
event handler.



Zoom Scale ToolBar Button
Enter a Zoom In value in the edit box to set the scale for zooming in on a page.    

The scale is in percent and can be in the range of 10 - 100 (a pixel for pixel representation, 
based on the Resolution property).    If you select a scale that will display a page smaller 
than full page, the scale will default to 100 percent.



Full Page ToolBar Button
Click the Full Page button to view the page in Full Page View.    Full Page View can 

also be activated by clicking the left mouse button in the screen's client area when Zoomed
In.



Zoom In ToolBar Button
Click the Zoom In ToolBar button to view the page close up.    Clicking the left mouse

button in the preview window during Full Page view, also activates the zoom in button.



PageUp ToolBar Button
Click the PageUp ToolBar button to view the previous page in the document.    If the 

document has only one page, this button is disabled.



PageDown ToolBar Button
Click the PageDown ToolBar button to view the next page in the document.    If the 

document has only one page, this button is disabled.



Ok Print Option
Printing commences when this button is clicked.



Cancel Print Option
Printing is cancelled when this button is clicked.



ClickIn Event
The ClickIn event is fired when a left mouse click is made over the PrintWorks 

button.    This event is fired even if the HideButton property is True.    You would typically 
place code for creating documents in the ClickIn event handler.



PrintEvent Event
The PrintEvent event is fired whenever the Print ToolBar Button is clicked from the 

Preview window.    You may modify the Preview window's printing logic by placing your own 
custom code in the PrintEvent event handler.



PreviewClosing Event
The PreviewClosing event is fired when the Preview window is about to close.    If you

wish to execute code at this time, such as special memory clean up (or destroying objects 
in C++), add that code to the PreviewClosing event handler.



Visual Forms for Windows
Visual Forms for Windows is a graphical program for interactively designing forms 

for reports.    It works similar to many paint or draw programs, but is specifically designed 
for developing custom forms and base sheets for reports.    Visual Forms for Windows has 
an integrated data field template generator, so you can graphically add data fields to your 
forms or reports.

Visual Forms for Windows is totally supported by PrintWorks, and makes it possible 
to save many hours and lines of code when developing the static (base form) portion of 
your documents, and their data templates.



Print Copies
Enter the number of copies of each page to print.



z




