6
Computer-Assisted Instruction

6

Computer-Assisted Instruction

Preschool to college and beyond.

 Is the computer a learners' magic wand?Preschool Block Letters and Data Compaction 165
Homework Helper: Fractions 168
Homework Helper: Division 173
Name That Bone 176
Computer Techniques for Tutoring the Mentally Handicapped 181
Typing for Accuracy 186
Civil Engineering Fundamentals 189
Almost Everything You Ever Wanted to Know About Music . . . But Were Afraid to Ask. 196
Let's Learn Notes 199
Notes on A Computer Score:
Part 1: The TI-99/4A Conducts Music Theory Drill in a Traditional Classroom setting 205
Part 2: The Tl-99/4A Assists Gifted Children in the Learning Process 212
A Music Text Editor \& File Player for the TI-99/4A 215
Music Maker 218

Most kids aged 100 weeks to 100 years old are fascinated by computers. And small kids are really fascinated by a computer's video screen; it's like a TV, but they can control it. When mine were just learning the alphabet, they would wriggle in between Dad and the computer, then push the " A " key so an " A " would pop onto the screen. But the popping part was the problem. A computer doesn't draw (write) letters on the video screen-it "pops" up the whole letter at once. (Or at least to our slow eyes it "pops"' the whole letter at once.) But kids can't just squeeze a crayon and have a letter pop onto a piece of paper. They have to learn a series of hand motions in order to make a recognizable " A " on a piece of paper.

But just maybe the computer could make large letters by popping short line segments in sequence onto the screen if. . . . This was the start of my idea. The finished product is in the program that follows, Preschool Block Letters. And the intervening (gory) details are about data compaction.

Most home computers don't have point-addressable graphics, but they do have character graphics that can produce line segments at various angles. Thus, I thought, I would build the letters and numbers from short line segments. Easier said than done. What I really needed to build the letters and numbers was some help. Fortunately, my wife, a teacher, retaught me the correct way to form letters; I, in turn, taught the computer.

Then I had to store about 3500 pieces of information concerned with which line segments go where to form each letter and number. Each piece of information as a number requires 4 to 8 bytes depending on the computer. But strings
require only one byte for each stored character. And among letters, numbers and punctuation marks, there are enough different characters so that over 40 unique values can be stored using only one byte per value.

Furthermore, strings can be very long, so this helps hold down the overhead to identify each string. Thus, to change the piece of information to the value of a valid ASCII character, I just added a constant to each piece of information. The characters were thus grouped into strings, and the strings stored in DATA statements. The SEG $\$$ and ASC functions retrieve the information as required. And that's how computers came to draw rather than pop letters. Note: Make sure ALPHA LOCK is DOWN.

EXPLANATION OF THE PROGRAM Preschool Block Letters

Lines Nos.

130-230
240-330
340-360
360-490
560-590
1700-2040
2050-2100
2110-2320
2330-2430

Program initialization.

Scan keyboard looking for a letter or number key.
Change ASCII code to number between 0 and 35.

Draw line segments of letter or number in an array.
Store geometry of " W " in array.
Define line segment characters used to make letters and numbers.
Input word from user.
Have little man hold up letter.
Get key pushed. If it matches letter that man is holding, then draw letter.

$0123456789:$: 0000123456789

1000000000001234567123 4 512314
$0123456789: 100000005555$;

000000000000123456712345
0123456789 : ; 00000055555
$\operatorname{VVVVVVVVVVVVVV} \operatorname{V}$ R R R R R R R P P P P P P P P

" $32100000123456789: ; ; ; ; ; ; ;: 9877$

00000100000077777777771234

000000000000101
$0123456789:$;00
VVVVVVVVVVVVVVLLRMP "
" 6666666665432100567
"123456789: ; <<< ; : 9000 "
"UUUUUUUUUKCDQFB KTPPP
00000000001234563344556.6

00000000001234567
01123456789
$\checkmark V V V V V V V V V V V V P P P B P B P$
00000000001234876599999999
$0123456789: 0123012301234567$

0000000000112233445566777 $77{ }^{7} 7$

9 :

S S

00012345689
$: ; ; ; ; ; ; ;: 9876654321$

$0000000000012345677654321 " 1$
$0123456789: 10000012345555$
VVVVVVVVVVVVVRRRFGBIKCDEPPIP*
43210000000123456788888887
00123456789
987654321
RDECIKSSSSI h/BFGPEDCKJVVVVHIB 00000000001234567765432144
$0123456789: ; 00001234555567$

$2100000123455566789: ; ; ; ; ; ;: 9$

4444444444440123456789
$0123456789: 100000000$ "

> Homework Helper: Students do their class assignments on paper in the usual way. . . and then can use the Homework Helper to quickly correct their assignments.

The Homework Helper series is designed to quickly give answers to students checking their assignments. It is not meant to be a tutorial; it does not teach concepts nor quiz the student. Rather, it gives the answers to the problems without showing all the intermediate steps.
The students are encouraged to do their class assignments on paper in the usual way, writing the problems down and working the problems step-by-step. Then, they can use the Homework Helper to correct their assignments quickly.

Fractions

This program, involving fractions, is for correcting the homework problems of elementary school math students (4th, 5th, and 6th graders). Written in TI BASIC, it employs color graphics and sound, and is interactive. There are seven sections, each introduced with a simple color representation of what that section is doing with fractions. Musical phrases from Mendelssohn, Handel, and Beethoven are played at the same time.

1. Equivalence. Two fractions are of the form

$$
\frac{\mathrm{A}}{\mathrm{~B}}=\frac{\mathrm{C}}{\mathrm{D}}
$$

Any one of the four positions can be the unknown. The user designates the unknown, and inputs the three given values. The computer finds the unknown and prints the equivalent fractions. A student can also use this section to find equivalent ratios.
2. Simplification. The user inputs a numerator and a denominator. The computer simplifies (reduces) the fraction or tells if it cannot be simplified.
3. Multiplication. The user designates the number of fractions to be multiplied, then enters the numerator and denominator for each one. The computer multiplies them and simplifies the final fraction.
4. Division. Two fraction are entered; the first is then divided by the second, and the answer is simplified.
5. Addition-Like Denominators. The user specifies the number of fractions to be added, the common denominator and then enters the numerators. The computer adds the numbers and simplifies the result.
6. Addition-Unlike Denominators. This section may be used to add fractions with like or unlike denominators. The user specifies the number of fractions up to five (which should be sufficient for elementary school mathematics), and then inputs the numerator and denominator of each. The computer adds the fractions and simplifies the result. A student can also use either Section 5 or 6 for subtraction problems by entering a negative numerator.
7. Comparisons. As many as ten fractions may be compared on a number line. The user enters the number of fractions to be compared (up to ten), and then enters the numerator and denominator of each. The computer then arranges the fractions from the smallest to the largest and prints them.

To stop any section of the program press SHIFT C. To restart, enter RUN.

Simplifying Fractions

One basic technique of simplifying fractions is to start with the numerator as the first factor and see if it can be divided evenly into the denominator. If it can, both numerator and denominator are divided by that factor immediately to yield the simplified fraction. If the denominator cannot be evenly divided, the factor is reduced by one, and the numerator and denominator are tested to see if they are divisible by the new factor.

In each successive test, the factor is reduced by one. When both numerator and denominator can finally be evenly divided by the factor, that factor is the greatest common factor. The numerator and denominator are then divided by this factor to yield the reduced fraction

For larger numbers, the technique can take a lot of time. In this program, the algorithm has been made more efficient by first checking to see which is smaller, the numerator or the denominator. In improper fractions the denominator will be smaller. The starting factor, PLIM, is set equal to the smaller number (Statements 1380 to 1410).

Another efficiency technique is not to test all even factors if either numerator or denominator is an odd number. This technique cuts the search time in half. In Statements 1420 to 1450 the step size, S , is set equal to -2 if either the numerator or the denominator is odd; S is set equal to -1 if both numerator and denominator are even numbers.

The simplifying algorithm is implemented with a FORNEXT loop. The starting trial factor is reduced by the step size, S, to a lower limit of 2 in line 1460 .

Within the loop, Statements 1460 to 1510 set A = NS/P (where NS is the numerator) and set $\mathrm{B}=\mathrm{DS} / \mathrm{P}$ (where DS is the denominator). Then they check to see if $A=\operatorname{INT}(A)$; if equal, then $B=\operatorname{INT}(B)$ is checked. If both statements are true, the simplified fraction is A / B. Otherwise, P is incremented by S , and the loop continues. If the lower limit is reached without finding a successful factor, the user is notified that the fraction cannot be simplified (Statements 1520-1540).

When combining several fractions in multiplication or addition, another efficiency technique sets the starting
factor equal to the largest denominator of the orginal fractions (Statements 2250-2340). The common denominator may be much larger than the original denominators, but the largest factor will always be the largest original denominator.

Comparisons

The schoolroom technique for comparing fractions is to find the common denominator and then compare the adjusted numerators. This technique is far too slow for computers, especially when comparing many fractions and/or fractions with large numbers. A very fast technique which achieves the same result is to compute and compare the decimal equivalents of the fractions.

As the fractions are read in, the numerator NNN (I) is divided by the denominator DD (I) and stored as a decimal fraction in two identical arrays, FRC (1) and FRD (I) (Statements 5170-5230). A standard sort routine sorts the first array FRC from the smallest to the largest. The subscripts are changed as the decimal fractions are arranged in order (Statements 5250-5330).

The first element of FRC is compared with each clement of the second array, FRD. When a match is made, the subscript value J is used to retrieve the numerator and denominator of the corresponding fraction for printing. The process is repeated in order for each element in the FRC array (Statements 5340-5390).

EXPLANATION OF THE PROGRAM Homework Helper: Fractions

Line Nos.
160-170
Sets T and $T 2$ for the time in the music statements.
180-250 Defines characters and colors in four different character sets for use in graphics.
260-390 Prints title screen, "HOMEWORK HELPER'.
410-550 Prints "Fractions" and blinks an outline of asterisks around it.
580-640 Prints the menu screen for the seven sections of the program.
670-730 The user presses a key to choose which of the 7 sections is wanted, and the computer branches to that section.
749-890 Prints the screen for Equivalence.
900-960 Asks for the unknown, A,B,C, or D.
970-1190 Depending on which is the unknown, asks for the given values and calculates the unknown. If the unknown is not a whole number, it will be rounded to two decimal places.
1200-1230
Prints the equivalent fractions.
1240-1310 Asks if there is another problem or to stop. If " 2 "' is pressed, the menu screen is returned.
1320-1350 Prints screen for Simplifying.
1360-1370
Asks for the fraction.
1460-1540 Simplifies and prints the result.
1550-1620 Continue, or go to menu screen.
1530-1650 Prints screen for Multiplying.
1660-1710 Asks for the fractions.
1720-1770 Multiplies the fractions.
1780-1800 Prints the problem and the simplified answer.
1810-1880 Continue, or go to menu screen.
1890-1930 Subroutine for printing the problem.

1940-2150 Subroutine for simplifying and printing.
2160-2360 Subroutine for sorting and simplifying. These Subroutine for sorting and simplifying. These
three subroutines are used for simplifying and printing in other sections of the program also.
2370-2340
2440-2470
2480-2490
2500-2540
2550-2620
2630-2680
2690-2760
Aks for fractions and adds the numerators.
2770-2820 Prints the problem and the simplified sum.
2830-2990 Continue, or go to menu screen.
2910-2960 Prints screen for Adding with unlike denominators.
2970-3090 Asks for the fractions and calculates a common denominator.
3100-3150 Adds the adjusted numerators and prints the problem and the simplified result.
3160-3230 Continue, or go to menu screen.
3240-4090 Sound subroutines musical phrases.
4100-5020 Draws color graphics for each title screen.
5030-5120 Prints screen for Comparisons.
5130-5230 Asks for fractions and converts fractions to decimals.
5240-5330 Sorts fractions from the smallest to the
5340-5390 Prints fractions in order.
5400-5470 Continue, or go to menu screen.
5480-5670 Music and graphics for Comparisons.
To stop the program, press SHIFT C (BREAK). For the student's convenience, at the end of each problem he can choose to do another problem of the same type or go to the menu screen and do a problem of a different type.

35701				
3580	$C^{\text {C }}$			
3590	CALl SOUND (ta2, 932, 2)			
3600				
3610	CALL L SOUND (T) $\mathbf{2}$, 7884, $\mathbf{2}$)			
3620				
3630	CALL SOUND(500, 698, $\mathrm{S}^{\text {a }}$)			
3640	RET URAN			
3650	Call sound (ta, 659,2)			
3660				
3670				
3680	CALL SOUND (T, 440, $\mathbf{S}^{\text {a }}$)			
3690	CALL SOUND (T, 698, 2,440 ,	, 5		
3700	CALL SOUNDIT, $784,2,587$,	, 51		
3710	CALL SOUNDUT2, 6988, $\mathbf{2}$, 3992	2, 5)		
3720	CALL SOUND (T2, 659, ${ }^{\text {a }}$,			
3730	CALL SOUND 1000, 698, 2 , 4	440, 51		
3740	RETURN			
3750		23,440		
		${ }^{3} \cdot 4$		
3760 37 7 7	hestore 3750 FOR I=1 \quad TO 9			
37880				
3790	cial l sound (ta, m, 2)			
3800	NEX T 1 I			
3810	CALL SOUND (500,440, 2)			
3820	RETURN			
3830	Call sound (600, 262, 10)			
3840				
3850	Call $\operatorname{SOUND}(450,392,4)$			
3860	Call $\operatorname{SOUND}(150,349,4)$			
3870	CALL L SOUND ($3000,311,6)$			
3880				
3890				
3900	teturn er			
3910				
3920	Cail			
3930				
3940				
3950				
3960				
3 9 8 8 3 9 0				
30 40900 400				
4040100	$C A L S O U N D(1000 \cdot 440,2)$			
$\begin{array}{llll}40 \\ 40 & 10 \\ 20\end{array}$	RETURTV			
4020				
4030				
4040	$C A L L S O U N D(200,440,7)$			
4050	$C A L L D S U N D(400,587,66)$			
4060				
4070				
4080				
4090	Call sound ($200,440,4,4$			
4100	CALL Sound (200 , 4984 , 5)			
4110	CALL SOUND ($5000,1,392,6)$			
4120	RETURN			
4130				
4140				
4150				
${ }^{4} 1160$				
$\begin{array}{lllll}4 & 1 \\ 4 & 7 & 0 \\ 0\end{array}$	$\mathbb{N E}$			
41900				
${ }_{4}^{4} 4201000$				
4 4 4 24000				
4250				
4260				
4270	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \end{array}$			
	NEXT FOR X=11 TO 13 STEP			
43000	(ex			
4310				
4320				
4330				
143440				

$\mid 43$ 3|0|
$\begin{array}{llll}4 & 3 & 3 & 6 \\ 4 & 0 \\ 4 & 3\end{array}$
4370
4380
VEXT

4400 CALL VCHAR (10, Y, 144 , 5)
4410 NEXT Y
4420 RETURN
$4430 \quad Y=6$
$4440 \quad$ FOR $\quad \mathrm{I}=1 \mathrm{TO} 5$
4450 CALL VCHAR (10, Y, 136 , 2)

$4480 \mathrm{CALL} \mathrm{VCHAR}(12, \mathrm{Y}+1,128,4)$
$4490 \quad \mathrm{Y}=\mathrm{Y}+5$
4500 NEXT 1
4510 REETUR
4520 CALL HCHAR (10, 11, 136,13)
4530 CALL HCHAR (11, 11, 136, 13)
4540 FOR $X=12$ TO 14

4560 NEXT X
4570 Call vchar (7, 17, 93 , 11)
4580 RETUR N
4590 CALL HCHAR (10, 8,128 , 2)
4600 CALL VCHAR (11, 8 , 152 , 4)
4610 CALL VCHAR(11, 9 , 152 2, 4)
4620 CALL VCHAR (10, 13, 128, 4)
$4630 \mathrm{CALL} \mathrm{VCHAR}(10,14,128,4)$
4640 CALL HCHAR(14, 13, 152,2$)$
4650 CALL VCHAR(10, 118 , 128 , 2)

4680 CALL $\mathrm{VCHAR}(12,19$, 15 2, 3)

4700 CALL VCHAR (10, $24,128,13)$
$4710 \mathrm{CALL} V C H A R(13,23,152,2)$
4720 CALL VCHAR (13, $24,152,2)$
4730 RETURN

4750 CALL VCHAR(14, 8, 136, 3)
4760
4770
4780
4790
4800
4810
4820
4830
4840
4850
4860
4870
4880
4890
4900
4910
4920
4930
4940
4950
4960
4970
4980
4990
5000
5010
5020 CALL HCHAR 10141443
5030 CALL $\mathrm{HCHAR}(9,13,144,4)$
$5040 \mathrm{CALL} \mathrm{HCHAR}(8,13,144,4)$
5050 RETURN
5060 DATA 67, 79, 77, 80, 65, 82, 73, 83, 79, 78 83, 32
5070 HESTORE 5060
5080 FOR $Y=11$ TO 22
5090 READ L

HLMEWURK HELPER

 DIVISION> Homework Helper: Students do
> their class assignments on paper in the usual way. . . . and then use the Homework Helper to quickly correct their assignments.

Division gives the answers to three types of homework problems an elementary school student may encounter: division with a remainder, division with a decimal in the quotient, and division to convert a fraction to a decimal.

Only the answers are given, not the step-by-step process of long division. The student is encouraged to do the homework-writing each step in the division process and then using this program to check the answers. Music and graphics enhance the interaction.

1. Division with Remainder. Most math problems can simply be corrected with a calculator. However if there is a remainder, a calculator converts it to a decimal equivalent. This program keeps the answer in quotient-plus-remainder form. The student enters the divisor and dividend; the quotient and remainder are printed.
2. Division with Decimal. Usually after students master the idea of a remainder, they are taught how to place a decimal and keep dividing. In this section, a student enters the divisor and dividend; the quotient with a decimal fraction is printed. 3. Convert Fraction to Decimal. A fraction is converted to a decimal by dividing the numerator by the denominator. The student enters the numerator then the denominator; the equivalent decimal fraction is returned.

After each problem, a student may enter another problem of the same type. If there are no more problems of the same kind or the student wishes to stop, he enters zero and the menu screen will return.

EXPLANATION OF THE PROGRAM Homework Helper: Division

Line Nos.
130-770

1820-1940
1950-2050
2060-2320

780-1680 Plays music; prints menu screen and branches appropriately for student's response.
1690-1810 Subroutine to print labels of division problem.
Prints title screen and blinks color while special graphics characters are defined. Routine for division with remainder. Routine for division with decimal. Routine for converting fraction to decimal.

พ7x

NAME THAT BONE

Tlime to review Ezekiel's "Dry Bones" song: "Leg bone connected to the hip bone. . ." Or was it the ankle bone? Or what bone is where?? This program is designed to teach the names of the major bones of the human body and where they are located, and then turn what could be a dry, repetitious drill into an enjoyable game of Name That Bone.

The menu screen of the program gives the choice of major parts of the body, head, arms, torso, and legs, or end the program. Each section will label the main bones of the part of the body chosen:

1. HEAD: frontal, parietal, zygomatic, temporal, maxilla, mandible.
2. ARMS: humerus, ulna, radius, carpus, metacarpus, phalanges.
3. TORSO: spine, ribs, clavicle, scapula, sternum, ilium, ischium, sacrum, coccyx.
4. LEGS: femur, tibia, fibula, patella, tarsus, metatarsus, phalanges.
You may study the labeled diagram of the bones as long as you wish, then press ENTER. The labels will be erased and it will be your turn to Name That Bone. The bones are listed in a random order at the left of the screen for your choice of answers. A bone will be chosen randomly and will blink red and white until you press a number corresponding to the name of the bone. If you are correct, an arpeggio is played; if you are incorrect, a noise is sounded. You must press the correct answer to continue, and it won't take long for you to learn the names of your bones.

After each bone is chosen once, you will be asked TRY AGAIN? (Y/N). If the response is N, the program returns to the menu screen. If the response is Y , the names of the bones will be rearranged and the bones will be chosen in a different order.

Programming Techniques

There are four main parts of the body from which to choose, and each part uses the same program logic, so subroutines are used. The subroutines are located at the beginning program. For some microcomputers, execution is faster for subroutines called closer to the beginning; however, the speed in TI BASIC does not seem to depend upon the location of the subroutine.

For each part of the body, different characters are defined. The appropriate DATA statement is RESTOREd, then the subroutine to define characters (lines 160-210) is called. After the labels for the bones are printed, the bones are drawn, again RESTOREing the corresponding DATA statement and calling a subroutine (lines 320-360).

The main procedure is in Lines 370-980. The program will read from DATA the names of the bones and the character set number, then randomly print the bones and choose the bones for the quiz.

The graphics characters were designed so that a specific bone could be blinked by using CALL COLOR statements. The characters of one bone must be in one character set, and another bone in another character set. When the main part of the body is first drawn, all the characters are yellow, but as the bone is chosen, the characters in that set will blink. An example is shown with the skull bones.
(NOTE: The wrist and hand bones are known either as the carpus and metacarpus or carpals and metacarpals. The carpals are the elements of the carpus (wrist bone). You may wish to relabel these parts to be consistent with the way you teach them.)

EXPLANATION OF THE PROGRAM Name That Bone		$\begin{aligned} & 1270-1300 \\ & 1310-1350 \end{aligned}$	Clears labels. Main procedure for head.
Line Nos.		1360-1440	Defines character for arm.
150	Branches to title screen.	1450-1510	Labels arm bones.
160-210	Subroutine reads C and $C \$$ from DATA to define graphics characters.	1520-1590	Draws arm bones and waits for user to press enter.
220-310	Subroutine prints PRESS ENTER and waits for the user to respond.	$\begin{aligned} & 1600-1630 \\ & 1640-1680 \end{aligned}$	Clears labels. Main procedure for arm.
320-360	Subroutine reads DATA to draw graphics.	1690-1830	Defines characters and colors for torso.
370-980	Subroutine for main program logic.	1840-1860	Labels torso bones.
370-390	For the number of bones R, reads the name of the bone and the corresponding character set number.	$1870-2030$ 2040-2090	Draws torso bones and waits for user to press ENTER. Clears labels.
400-520	Randomly prints the names of the bones for the multiple-choice answers and arranges the corresponding character set number and answer number.	$\begin{aligned} & 2100-2170 \\ & 2180-2250 \\ & 2260-2270 \\ & 2280-2380 \end{aligned}$	Main procedure for torso. Defines characters for leg. Labels leg bones. Draws leg bones and waits for user to press
530-580	Prints NAME THAT BONE at the top of the screen.	2390-2420	ENTER. Clears labels.
590-660	Randomly chooses a bone and blinks it red and white while waiting for the user to press the	$\begin{aligned} & 2430-2470 \\ & 2500-2610 \end{aligned}$	Main prodecure for leg. Prints title screen and draws stick figure.
670-780	answer. If the answer is correct, plays an arpeggio and goes to the next bone; if the answer is incorrect,	2620-2710	First time through the program defines the first character in each character set as a solid block. It then asks if instructions are desired.
790-980	sounds a noise and awaits another key press. Prints TRY AGAIN? (Y/N) and branches appropriately after Y or N is pressed	$2720-2800$ $2810-2900$	Prints instructions and waits for user to press ENTER.
990-1100	Defines graphic characters for head.		program.
1110-1120	Labels head bones.	2910-3000	Waits for user's choice and branches
1130-1260	Draws skull and waits for user to press ENTER.		appropriately.

1270-1300
1310-1350
1360-1440
1450-1510
1520-1590

1600-1630
1640-1680
1690-1830
1840-1860

2040-2090
2100-2170
2180-2250
2260-2270

2390-2420
2430-2470
2620-2710

2720-2800
$2810-2900$
2910-3000

Clears labels
Defin procedure for hcad.
Defmes character for arm

Draws arm bones and waits for user to press
lears labels.
Dain procedure for arm.
and colors for torso.
Labels torso bones. ENTER

Clears labels
Dain procedure for torso.

Draws leg bones and waits for user to press ENTER.

Main prodecure for leg.
Pint title sereen and draws stick figure.
First time through the program defines the first It then asks if instructions are desired
Prints instructions and waits for user to press ENTER program
appropriately.

Computer Techniques for Tutoring the Mentally Handicapped

Huzzah, the revolution has just started! And the fact that you're reading The Best of 99'er signifies that you are very much a part of it-a revolution fueled by the availability and affordability of computer power to millions of consumers. As more and more softwarecomputer programs that can meet a large number of everyday needs, as well as solve problems encountered in special areas-is developed, the computer will become as common in our homes as the telephone.

Our task in this generation is to learn to take advantage of this tool in a variety of areas, disciplines and endeavors. In this article, we would like to focus the application of computer technology on what may seem at first to be a most unlikely area-tutoring the developmentally disabled.

Retardation is defined as "below average intellectual functioning that originates during the developmental stages with associated maladaptive behavior." In the search for tools to combat retardation, the microcomputer has shown itself to be extremely valuable by assisting the retarded population to develop skills, abilities, concepts, and even behaviors. Preliminary testing demonstrates that not only can these individuals use a keyboard, but they can learn it very quickly-finding it attractive, novel and magnetic. Options such as the light pen, joystick, and voice synthesizer provide capabilities that can be used to adapt numerous programs for this special population.

Help for the Schools

Of more than eight million handicapped children in the U.S., reportedly only half are receiving appropriate educational services. School districts under ever-tightening budgets struggle to meet the needs of these children. It therefore appears highly probable that using microcomputers to assist in meeting the needs of these children will be both an economic boon to schools, and a valuable enhancement to the learning process of these youngsters.

Despite traditional controversies regarding the learning process, there are some areas of general agreement. These areas have provided us with a basis for software geared to the special learning needs of the retarded-programs utilizing the unique qualities of the computer to further stimulate learning.

Fascination With the Medium

Retarded and non-retarded alike are able to learn more, as well as more easily, from teaching aids that effectively focus their attention on the content. Attention management for the retarded youngster is especially critical. In this regard,
the computer, keyboard, and CRT have a fascination that commands attention with an immediacy that is unparalleled. When a youngster is seated before a console, the attraction of the mechanism coupled with the allure of a good interactive program provides an incredible amount of motivation and drive. If you have children who play computer games or other electronic games using a microprocessor, you already know just how difficult it is to distract them and draw their attention to something else-like homework, eating, or cleaning their room.

Nothing Succeeds Like Success

As human beings, we tend to strive toward success or try to avoid failure. In the search for success, the "locus of control" is usually internal. This is to say that in the process of maturing, a person begins to realize a power or ability to control events, and begins to set goals. We begin to become efficient in attaining goals. Actually attaining them brings a sense of success which is its own reward and prompts one to continue to strive for success.

Avoiding failure, on the other hand, means maintaining a mere minimum of effort so as not to incur some type of punishment. Consequently, the locus of control is external. For a majority of developmentally disabled, avoiding punishment becomes the usual way of behaving. They are not given to setting goals since they have not come to experience the internal locus of control and the possibility of success.

With the use of computers, a learning environment can be created which can provide a retarded child or adult with the experience of success. As the experience is repeated, the locus of control begins to shift from without to within. This is a natural reward process which has more lasting effects than punishment or negative reinforcement. As the repertoire is gradually expanded, the retarded individual begins to realize a potential: a power for success.

A Multisensory Lens

Another important element in the learning process of the retarded person is the ability to focus in on significant cues. Once again, the hardware's attractiveness (or novelty, if you will) is so engaging and attention-riveting (thereby limiting external or irrelevant stimuli or signals) that the person learns to be attentive to only the important and discriminating cues. Furthermore, the multisensory impact of the computer provides an additional quality which is extremely valuable in the learning process of the retarded person: The more you can use, engage, and impact many sensory modalities-
and do it repeatedly in an interesting manner-the greater the likelihood of retention and learning.

An Example Program

The following is a simple program designed for teaching retarded persons the extremely abstract concepts of number recognition, counting and subtraction. We feel that the program demonstrates the principles stated in this article, as well as the uniqueness of the computer as a tool especially well-suited to meeting the learning needs of the developmentally disabled. We wish to emphasize that the computer does not totally substitute for a teacher. The retarded individuals on whom we tested the program required personal assistance and encouragement at the beginning of the lesson. Reaction to the computer ranged from reluctance to eager enthusiasm. In some cases, we first used another program (a keyboard trainer) to familiarize the student with the key locations on the console. The TI-99/4 keyboard is highly suited for use by those unfamiliar with typewriters. We found it helpful, however, to cover the letter keys with masking tape to reduce distractions. Also, we noted some confusion created by the shift characters above each number-a small problem we hope to overcome by trying a number of key covers. Based on field testing of this program, we are convinced that this approach can be extended to many areas of work with this group, a group whose needs are so unique that conventional methods have been only moderately successful. Using this technology, we have a potential for far greater success and the possibility of doing things that were unthought-of for this segment of the population.

The Program

The program opens with several options which must be selected. The instructor is informed that a performance rating of the student's progress is available by pressing the AID key. This rating gives the number of trials, correct answers, and percent correct. If you wish to reset the options later, simply press the BACK command and re-enter. The AID and BACK commands can be entered during the main lesson, thus giving the instructor flexibility in choosing the set of options most appropriate to the student's level of ability. The program also has a speech selection option that permits its use without the Speech Synthesizer and Speech Editor Command Cartridge. [The extensive use of graphics in this program precludes the use of the speech editor resident in the Extended BASIC Command Cartridge with its fewer available character sets.-Ed.] Although the actual lesson is designed for non-readers, the initial option selection must be performed by an instructor or someone who can read. These options can be selected in any combination from the following list:

Select:

$1=$ Random presentation
$2=$ Serial presentation
3 = End lesson
-Display the number above the gulls (Y / N)
-Pronounce each number as it is printed (Y / N)
-Computer says press_(number) after a row of gulls is put on the screen $(\mathrm{Y} / \mathrm{N})$
Select format for placing of gulls on the ocean:
1 = Horizontal Row
$2=$ Diagonal Pattern
3 = Random row placement
After the options are selected, the screen clears and a seascape is painted on the screen. A picture of a deep blue
ocean and a steamship liner on the horizon moving toward a tropical island focuses the student's attention immediately. The gulls appear on the water from left to right, and a shark's fin begins to circle the gulls while waiting for the student to press the key representing the number of gulls. If the response is correct, a musical fanfare is played, followed by the computer saying "Right (number)," and the ship moves one column to the left, emitting smoke puffs from the stacks (the number of puffs equal to the number of gulls). However, if the student's response is incorrect, the computer says, "Uh oh,"' and the shark stops circling the gulls, emerges from the water and devours the last gull (with sound effects)! Then the computer asks the student, "What number is left?" and waits for the student to press the key representing the number of remaining gulls. If incorrect again, the computer says, "That is incorrect," gives a short laugh, and then engulfs the next gull! This can continue until no gulls remain; the program then recycles and another trial begins. On a correct response the computer says "Right (number)" and the ship is advanced one column to the left with the appropriate number of smoke puffs. Each correct response advances the ship toward the island until it is "docked" and the computers says, "You win." It then recycles the program, placing the ship back at the right side of the screen, and continues the lesson.
We recommend that students start with the Serial option rather that the Random. This starts with the number 1 and adds a number on each correct trial, but will not add a number on an error. In this way, a student cannot be challenged by the larger numbers until he has displayed mastery of the smaller ones. In general, we also recommend the strategy of starting a student with all prompt options operating, then removing them as the student demonstrates competence.

Her

EXPLANATION OF THE PROGRAM Computer Techniques for Tutoring the Mentally Handicapped

Line Nos.
160-280
290-820
830-1310
1320-1450
1460-1550 Calculates the appropriate number of gulls to
1560-1590 Clears screen from row 10 to 24.
1600-1820 Places gulls in the water.
1830-1890 Controls movement of shark fin from left to right.
1900-1960 Evaluates key response while shark circles gulls.
1970-2120 Musical fanfare on correct response.
2130-2220 Controls movement of shark fin from right to left background.
2130-2290 Evaluates key response.
2300-2530 Controls animation of shark eating gulls.
2540-2620 Evaluates key response and clears screen to right
2630-2660
2670-2740 Verbal response to correct key press; increments
2750-2810 number of trials and right responses.
2750-2810 Moves ship, controls puffs of smoke and sound
2920-2950 Prompts to press a number if a letter was pressed.
2960-3060 Routine when boat reaches island.
3070-3100 Calculates performance scores.
3110-3170 Prints option to end and branches appropriately.

2230
2250
2260
2270
2280
2290
2.300

23110
2320
$2330 \quad \mathrm{R}=10$
2340 IF SP=1 THEN 2360
23350 CALL SAYY"UHOH
2360 TRIAL=TRIAL+1
2370 F $\$=$ = FFF 7 E SC1800000000.
2380 CALL CHAR (100, FS
2390 FOR I = $9+(2 * N)$ TO 10 STEP - 2
2400 FOR $\mathrm{J}=1$ TO 2

Call Char 97 bs:
教
245
2460
247
2480
24
2500
251
5 Mー
2540 REM after eating gull waltis for c orrect answer for number left
$\mathrm{F} \quad \mathrm{S}=1 \mathrm{~T}$ HEN 2570

CAL KEY (O.K
IF $\mathrm{S}=0 \quad \mathrm{~T}$ HEN 2570
For =1 to $2 a$
cal h hichar (loop, 140,32-1
If $\mathrm{K}=\mathrm{ASC}(\mathrm{STR} \$(\mathbb{N})) \mathrm{THEN} \mathbf{2 6 9 0}$

Sp=1 1hEN 266

$\mathrm{Nim}=0$
THEN 1470

GHT=RIGHT+1
$\mathrm{N} M=0$ COLUMN

CALL hClhar (9, 11, 145, 21)
CALL HCHAR (8, 11, 145, 21)
-

CALL HCHAR (8, 29-X, 128)
$\begin{array}{llllll}\mathrm{FO} & \mathrm{OR} & \mathrm{I}=1 & \mathrm{~T} & \mathrm{O} & \mathrm{N}\end{array}$
gh honar 20 ,
$F O R \quad D=1$ TO 50
NEXT D

THEN 2940
$\mathrm{T}: \mathrm{R} \mid \mathrm{I}: \mathrm{L}=\mathrm{T}: \mathrm{R}: \mathrm{A}: \mathrm{L}+1$

TI
BASIC

TTyping for Accuracy provides practice for students who are somewhat familiar with the keyboard.

Seven finger-placement categories using different typewriter keys are offered: home keys; home row; top row, middle finger; top row, pointer finger; ring finger; little finger; and bottom row. A typist may choose one of the categories for each drill.

The program uses graphics and sound effects to liven up the drill: A rocket appears on the screen, and a word is printed on the rocket while a 1.5 -second tone sounds. A student then types and ENTERs the word. If it has been typed incorrectly, the rocket blasts; if it has been typed correctly, a second tone sounds and the score goes up. The rocket then takes off (with gases trailing behind), and a different word appears.

At the end of ten words the student's score is tabulated and displayed as a percent accuracy rating. The student may then choose from the seven drills or may exit the program.

This drill is not meant to be a speed drill because beginning typing students must gain accuracy and familiarity with the keyboard before working on speed. However, if the student wants a timed test, an approximate words-per-minute rate can be estimated using the tones-i.e., if the student presses ENTER as the tone ends, the rate is 40 wpm .

EXPLANATION OF THE PROGRAM Typing for Accuracy

Dimensions the array A\$ to allow for twenty words.
Sets the y-coordinate for drawing the rocket.
Words used in the drills.
Prints the title screen.
Prints instructions.
Prints the menu screen of the seven categories. Awaits the student's choice. Depending on the category chosen, a certain DATA statement is RESTOREd which contains the words for that particular category.
Draws the rocket.
Reads the number of words in the category and stores the words in the A\$ array. Initializes the score.
Randomly chooses a word. Once a word is chosen it is not used again in the drill. Calculates the coordinate for printing the word. Sounds the tone for 1.5 seconds.
Prints the word to be typed on the rocket. Awaits the student's typed word.
Compares the student's word with the given word. If it is incorrect, a white noise is sounded; if it is correct, a tone sounds and the score is incremented.
If it is the first word, draws the bottom of the rocket.
If it is the second word, completes the fins of the rocket.
The rocket moves up and has a trail under it. The words are cleared.
A $\$$ set to zero so the word cannot be used again.
Returns for the next word.
Prints score and waits until student is ready to continue.
END.
Prints title screen with music.
Prints instructions.
Prints menu screen of seven categories.

CALL SOUND (1, 44000, 30)
$C A L L A C H A R C X C-1, Y-2,98,7$

$\mathrm{A} S(\mathrm{~W})={ }^{\circ} 0$
NEXTI K
call clema
$\begin{array}{lllll}\mathrm{FOR} & \mathrm{I}=2 & \mathrm{~T} & \mathrm{O} & 8\end{array}$

NEXTI I
$\mathrm{SC=10*SCORE}$
cent accubacy

870

$\begin{array}{llll}1 & 3 & 4 & 0 \\ 1 & 3 & 5 & 0\end{array}$
$\begin{array}{lllll}1 & 3 & & \\ 1 & 3 & 6 & 0 \\ 1 & 3 & 7 & 0\end{array}$

1390 NEXT

CIVIL ENGINEERING

SIMPLE BEAMS

The purpose of this program is to tutor civil engineering students who are studying statics or structures. It is limited to a simple determinate beam supported at the ends and loaded with a concentrated load, a uniform load, or a combination of a concentrated load and a uniform load. Basic knowledge of elementary statics is a prerequisite.

1. Concentrated load at the center

Newton's laws of force and moments are reviewed. The general solution of a load P applied at the center of a beam of length L is developed for the reaction forces A and B at each end of the beam. The student then does two problems. The load P and the length L are chosen randomly for the problems. If the student enters an incorrect solution, the correct one is given, and he is given another problem, 2. Concentrated load anywhere

The general solution of a load P applied a distance D from end A on a beam of length L is derived for the reaction forces A and B at each end. An example problem is given and solved. Then a problem is given for which the student enters his answers. The program prints the method of solution. For the next problem the student enters his solution. If he is incorrect, the program shows him how to solve the problem, and he is given another problem to solve.

3. Uniform load

The uniform load is considered as an equivalent concentrated load acting at the centroid of the loading pattern. The first example is a uniform load for the length of the beam and is solved in general terms. The student is then given a problem. If he enters an incorrect answer, he is shown the correct solution and given another problem.

4. Combination loads

Instructions are provided for placing a beam with one concentrated load and one uniform load. The student is then given a problem with combination loads chosen randomly.

The program draws and labels the beam for each problem. If the student enters an incorrect solution, the correct solution is printed and he is given another problem.

5. Problems

No instruction is given. The program randomly chooses a beam length and loading pattern, and prints the problem. It then draws and labels the beam. The student enters his answers; if he is incorrect, the correct answers are given and another problem is printed.

6. Your own problem

The student enters the beam length and loading specifications. The program computes the reaction forces A and B at the ends.

After each section has been completed with correct solutions, the student is given the choice of having more of the same kind of problems, entering his own problems, or returning to the menu screen.

Programming Techniques

This program is a teaching aid or tutor, so it incorporates pauses, allowing the student to work on the problem before continuing. The student must enter a correct solution to the problem before he or she can go on to a different kind of problem. If the student enters an incorrect solution, the correct answers are printed and another problem of the same type is presented.

The numbers for each problem are chosen randomly (yet appropriately) for each beam. The length of the beam is between 10 and 20 feet. The concentrated load is 100 times a random number from one to twenty (i.e., 100 to 2000 pounds), and is placed at a distance D from end A (randomly chosen within the bounds of the length of the beam).

The uniform load is 10 times a random number from one to ten (i.e.,to 100 pounds per foot). For some of the problems, the uniform load is acting over the length of the beam.

For more advanced problems, it acts between two endpoints, L1 and L2, given as distances from end A. L1 must be equal to or greater than zero and less than the total length of the beam. L2 must be greater than L1 and less than or equal to the total length of the beam.
The problems are written in "story problem" form by using PRINT statements in subroutines, with the program using only the statements that are necessary for each loading condition.

After the student has had time to draw and label the problem on his own paper, the computer will ask him to "PRESS ENTER TO CONTINUE', and the beam will be drawn on the screen with approximate proportions.
The general beam is drawn with a pin at end A and a roller at end B.
The distances are approximated by using a variable y -coordinate-an integer value of the fraction of the distance (D or L1) divided by the total beam length multiplied by the number of characters printed in the general beam. For example, Statement 6750 is:

$$
\mathrm{Y}=\mathrm{INT}(\mathrm{~L} 1 / \mathrm{LL} * 22)+6
$$

Y is the y-coordinate used in CALL HCHAR or CALL VCHAR statements. And 6 is the displacement of the end of the beam from the left side of the screen.

In statement 6760:

$$
\mathrm{Z}=\mathrm{INT}(\mathrm{D} 2 / \mathrm{LL} * 22)-1
$$

Z is the number of characters to be printed horizontally for the uniform load. D2 is the distance L2-L1.

Figure 1.

LB $\$=\mathrm{STR} \(PP)
For $\mathrm{II}=1$ TO LEN(LB\$)
$\mathrm{JJ}=\mathrm{II}+\mathrm{J}-4$
CALL HCH
(SEGS(LB\$,11,1)))
Converts PP to a string variable. LEN finds the length of LB\$.
Calculation for y-coordinate.

NEXT II

CALL HCHAR $(1-5, \mathrm{JJ}+1,32)$ Prints a space after last digit.
CALL HCHAR $(1-5, \mathrm{JJ}+2,76)$ Prints L .
CALL•HCHAR $(1-5, \mathrm{JJ}+3,66)$ Prints B .
CALL HCHAR $(\mathrm{I}-5, \mathrm{JJ}+4,83)$ Prints S .
The labels for the values on the beam are variable and are printed using string variables. For example, the concentrated load P may be three or four digits long (100 pounds to 2000 pounds) in the written problems, but the student may input an even longer number. This label printed by using Statements 5850-5930 (see Figure 1).

EXPLANATION OF THE PROGRAM Civil Engineering Fundamentals

Line Nos.

100-250
250-330
340
350-540

550-680
690
700
710-810
820-900
910
920-1000
1010-1070
1080-1180
1190-1270
1280-1330
1340-1370
1380-1400
1410-1440
1450
1460-1540
1550-1580
1590-1610
1620-1700
1720-1790
1800-1870
1880-1970
1980-2050
2060-2160
2170-2190
2210-2240
2250-2270
2280-2290

2340-2360
2370-2530
2540-2600

2300-2330 Solution was correct. If it is the second pro-
Prints the title screen.
Blinks a blue border.
Clears the screen.
Defines special graphics characters for drawing the beam and loading, and sets the color for them.
Prints second screen, diagram of simple beam.
Goes to menu screen for choice of problems. Choices 1 and 2, concentrated loads, branch to here.
Prints instruction screen.
Prints second instruction screen.
For choice 2, branches to 1720.
Prints problem.
Draws and labels general beam.
Shows solution of reaction forces in general lerms.
Draws and labels beam with centrally-applied load.
General statement for central load.
Chooses random numbers for problem. Writes the problem.
Draws and labels the beam.
Asks for A and B from student.
Compares student's answers with calculated solution and prints appropriate remark. Has another problem.
Asks if student wants more problems and branches accordingly.
Draws and labels a beam for student's problem.
Prints instructions for second type of beam, concentrated load anywhere.
Draws and labels beam.
Solves the problem.
Chooses a problem and prints it.
Draws and labels the beam.
Solves the problem.
Compares input answers with calculated solution.
If student is incorrect, solves the problem in detail.
Returns for another problem.
blem, another problem is chosen.
Offers the student the choice for more problems.
Solves a problem the student enters.
Prints the general problem for a uniform load.

 4290 PRINT: : "*** CORRECT ****
4300 GOSUB 5590
4310 GOSUB 6.290
4320 I F KEEY=49 THEN 3990

4340 PRINT: : : "SOREY, THE ANSWER I GET

4370 GOSUB 5590
4380 GOTO 3990
4390 CALl Cleair
4400 PRIINT "YOU MAY ENTEER YOUR OWN

4430 PRINT:
4440 PRINT: : : : II WILLL GIVE THE ANSWERS
4450 gOSUB 5590
$4460 \quad 1=16$
$4470 \quad \mathrm{~J}=12$
$4480 \quad \mathrm{~L} 1=0$
$4490 \quad \mathrm{~L}=0$
4500 D2 $2=0$
4510 LOAD=0
4520 GOSUB 5370
4530 GOSUB 5560

$4550 \quad Y=16$
$4560 \quad \mathrm{z}=5$
4570 GOSUB 6370

4590 CALL HCHAR (I $+2,13,76$)

4610 CALL HCHAR (I $\mathrm{I}+1, \mathrm{Y}+1,49)$

4640 CALL HCHAR (I-1, 8 , 68)

4660 GOSUB 5310

4680 IF PIP $=0$ THEN 4740
4690 INPUT "DISTANCE D =

4710 IF D $>=0$ THEN 4740
4720 PRINT: :" SORRY: 0
4730 GOTO 4690
4740 INPUT "LOADING W = $4: \mathrm{WW}$
4750 IF $W W=0$ THEN 4880

4770 I F L $1<0$ THEN 4790
4780 IF L $1<L \operatorname{L}$ THEN 4810

4800 GOTO 4760

4820 II F 2 $2<=\mathrm{L} 1$ THEN 4840

4850 GOTO 4810
$4860 \quad \mathrm{D} / 2=\mathrm{L} 2-\mathrm{L} 1$
4870 LOAD $=W W * D 2$
$4880 \quad B B=(P P) * D+L O A D *(D 2 / 2+L 1)\} / L L+.005$
$4890 \quad B \quad B=1 E-2 *(I N T(B B * 1 E 2))$
4900 A $A=P \mathrm{P}+\mathrm{LOAD}-\mathrm{BB}$
4910 PRINT: : "A = "; AA; "POUNDS

4930 GOSUB 5590
4940 PRINT: :"ANOTHER PROBLEM? (Y Y//N)
4950 CALL KEY(O, KEYY, STM)
4960 I F KEY=89 THEN 4480
4970 I F KEYY=78 THEN 5000
4980 GOTO 4950
4990 END
5000 calle clear
5010 CALL SLCEEN(5
5020 FOR E $=1$ TO 8

5820 PRINT, DRAW AND Label the problem,

5830 GOSUB 5590

5840 RETURA

5870 IJ $=1 \mathrm{I}_{1}+\mathrm{J}-\mathbf{4}$
 1) ! !

5890 NEXT II

5910 CALL HCHAR(I-5, JJ +2 2, 76

5930 CALL HCHAR(I-5), JI $+4,83$
5940 RETURN

5960 FOR I I $=1$ TO LEN (FTT()
$5970 \quad \mathrm{~J}=12+112$

6000 CALL HCHAR(I) 1 , JJ J $+2,70$
6010 CALL HCHAR(I+1, JJ+3, 69,2

6030 RETURN
6040 CALL HCHAR ($23,3,98$)

6080 PRINT "WRITE THELEQUTION
6090 GOSUB 5590
6100 RETURN

Almost Everything You Ever Wanted

Is music terminology Greek to you? Do you feel deficient in certain areas of your musical ability? How are your listening skills? If you enjoy music and want to test and improve your abilities, TI's Music Skills Trainer can be a valuable tool. This program provides practice in aural recognition of pitches, intervals, and chords, and develops your ability to remember musical phrases. You can control the complexity of each drill by selecting various options including note range, use of sharps (\#) and flats (${ }^{\circ}$), types of chords and intervals, and the playing of random music between examples.

Since the program is designed to provide drill and does not teach the underlying concepts involved, this article will first cover relevant aspects of music theory. We'll then follow it up with a review of Music Skills Trainer.

Figure 1. Piano Keyboard

The Scale

The fundamental concept involved is that of the scalean ordered group of tones within an octave. The \mathbf{C} Major scale, with which almost everyone is familiar, provides the standard pattern for every major scale (Do-Re-Mi-Fa-Sol-La-Ti-Do). This pattern originated with the Greeks and is based upon the tetrachord. A tetrachord can be thought of as half a scale; it consists of four tones arranged so that they contain two whole steps followed by a half step. Refer to the diagram of a piano keyboard in Figure 1. Starting at middle \mathbf{c}, each progression up the keyboard represents a half step or semitone. For example, all the following represent half steps: $\mathbf{c - c} \#, \mathbf{c} \#-\mathbf{d}, \mathbf{d}-\mathbf{d} \#, \mathbf{d} \#-\mathbf{e}$, e-f, etc. The first tetrachord for the \mathbf{C} Major scale consists of the following two whole steps: $\mathbf{c - d}$ and d-e followed by the natural half step e-f. The second tetrachord begins with \mathbf{g} and again consists of two whole steps followed by a half step, ending with
c' (an octave above middle \mathbf{c}). This tetrachord pattern $(1+1+1 / 2)$ was referred to as a diatonic scale.

In order to accommodate Oriental and other music, Greek theorists modified the two middle tones of the diatonic tetrachord in several ways. One of these, called the chromatic tetrachord, consisted of the pattern $11 / 2+1 / 2+1 / 2$ (e.g., $\mathbf{e}, \mathbf{d} \#, \mathbf{e}, \mathbf{f}$,). Various combinations of these two tetrachords necessitate the division of an octave into the familiar twelve equally spaced intervals referred to as the chromatic scale: $\mathbf{c}, \mathbf{c} \#, \mathbf{d}, \mathbf{d} \#, \mathbf{e}, \mathbf{f}, \mathbf{f} \#, \mathrm{~g}, \mathrm{~g} \#, \mathrm{a}, \mathbf{a} \#, \mathbf{b}, \mathbf{c}$.
Pitch refers to the location of one of these tones in a scale, and is defined by a regular frequency of vibrations. In the United States the standard assignment for a above middle c is 440 vibrations per second. It happens that a pure octave differs from any reference pitch by a factor of exactly 2 , so that a two octaves above middle $\mathbf{c}=880$ and \mathbf{A} below middle $\mathbf{c}=220$.

Although knowledge of frequencies is not required for use of the Music Skills Trainer, you may be interested to know how frequencies are assigned to other scale positions. Because each octave is divided into twelve equally-spaced intervals, the factor $2^{\frac{1}{12}}$ is used to define the relative frequencies of successive tones. For example,

$$
\begin{gathered}
\text { If } \mathbf{a}=440 ; \\
\mathbf{a} \#=440 \times 2^{\frac{1}{12}}, \\
\mathbf{b}=\mathbf{a} \# \times 2^{\frac{1}{12}}=\mathbf{a} \times 2^{\frac{1}{12}} \times 2^{\frac{1}{12}}=\mathbf{a} \times\left(2^{\frac{1}{12}}\right)^{2} .
\end{gathered}
$$

Given any reference frequency, f_{0}, then the relative pitch of any other scale position, f, can be calculated by counting the number of half steps to that position, N , and using the formula:

$$
\mathrm{f}=\mathrm{f}_{0}\left(2^{\frac{1}{2}}\right)^{\mathrm{N}} .
$$

The following program calculates and plays a chromatic scale beginning with middle \mathbf{c} (262).

Scales in Various Keys

Now let us return to the diatonic (major) scale. A major scale can have a starting or root note of any of the twelve chromatic pitches. As in the case discussed above, a major scale is constructed, starting from the root, with two diatonic tetrachords ($1+1+1 / 2$) separated by a whole step. A more convenient way to construct a major scale is simply to remember that half steps occur between the third and fourth and the seventh and eighth tones. Referring to Figure 1, a major scale with e^{b} as the root would be constructed using the following steps:

This scale is referred to as an \mathbf{E}^{b} Major scale, or a scale in the Key of \mathbf{E}^{b}, since \mathbf{e}^{b} is the root. Similarly, a major scale in the key of \mathbf{G} is constructed as follows:

Steps

While there are twelve such different diatonic scales, they all sound the same because they are based on the same pattern of diatonic steps. The following program plays these scales beginning with \mathbf{C} Major.

Intervals

An interval is the difference in pitch between two notes. Interval names indicate the number of included tones of the major scale. Starting with middle \mathbf{c} in Figure 1, the basic interval names are as follows: c-c, unison (prime); c-d, second; c-e, third; c-f, fourth; c-g, fifth; c-a, sixth; c-b, seventh; and $\mathbf{c - c}$ ', octave. $\mathbf{c - f}$ is a fourth because it includes
the following diatonic tones of the \mathbf{C} Major scale: $\mathbf{c}, \mathbf{d}, \mathbf{e}$, and \mathbf{f}. Similarly in the \mathbf{E}^{b} Major scale, a fourth is $\mathbf{e}^{\mathrm{b}}-\mathbf{a}^{\mathrm{b}}$, and in the \mathbf{G} Major scale a fourth is $\mathbf{g - c}$ '. However, as in the case of scales, an interval in one key sounds like that interval in another.

Four of the eight intervals can exist in one of four forms. If the upper note of the interval lies within the major scale of the lower or root note, the interval may be classified as major. If the upper note is lowered a half step, however, the interval then becomes minor. For example, $\mathbf{c}-\mathbf{e}$ is a major third and $\mathbf{c}-\mathrm{e}^{\mathrm{b}}$ a minor third. This rule applies to four intervals; the second,third, sixth, and seventh. The remaining intervals-fourth,fifth, and octave-are classified as perfect: They do not exist in major and minor forms. The following program plays all of the intervals above in the C Major scale, i.e., with middle \mathbf{c} as the lower or root note.

The remaining two categories of intervals-augmented and diminished-are not used in the TI Music Skills Trainer and so will not be discussed in detail. They are formed as follows: augmented-a major or perfect interval is made one half step larger; diminished-a minor or perfect interval is made one half step smaller.
Finally, intervals may be classified according to which note is played first. If the lower note is played first, the interval is said to be ascending ($\mathbf{c}-\mathbf{e}$), and if the upper note is played first, it is descending (e-c).

Chords

A chord is several notes played simultaneously, usually three or more. When a chord consists of three tones it is called a triad. Given any major scale, four triads can be formed from the starting note (root) of that scale: major, minor, augmented, and diminished. A major triad consists of the root, the third, and the fifth. For example, in a \mathbf{C} Major scale, starting with the root \mathbf{c}, the third is $\mathbf{c}-\mathbf{e}$, and the fifth is c-g. The major chord is then c-e-g. Similarly, in the \mathbf{E}^{b} Major scale, given the root \mathbf{e}^{b}, the third \mathbf{g}, and the fifth \mathbf{b}^{b}, the major chord is $\mathbf{e}^{\mathrm{b}}-\mathbf{g}-\mathbf{b}^{\mathrm{b}}$.

The major chord is changed to a minor chord by lowering the second note (i.e., the third) one half step. For example, the \mathbf{C} Major chord $\mathbf{c}-\mathrm{e}-\mathrm{g}$ becomes the \mathbf{C} minor chord $\mathbf{c}-\mathbf{e}^{\mathrm{b}}-\mathbf{g}$ and the \mathbf{E}^{b} Major chord becomes the \mathbf{E}^{b} minor chord $\mathrm{e}^{\mathrm{b}-\mathrm{g}^{\mathrm{b}}-\mathrm{b}^{\mathrm{b}} \text {. }}$

A minor chord can further be changed to a diminished chord by lowering the third note (i.e., the fifth) one half step. For example, the \mathbf{C} minor chord $\mathbf{c}-\mathrm{e}^{\mathrm{b}}-\mathrm{g}$ becomes the \mathbf{c} diminished chord $\mathbf{c}-\mathrm{e}^{\mathrm{b}-\mathbf{g}^{\mathrm{b}}}$ and the \mathbf{E}^{b} minor chord \mathbf{e}^{b} - \mathbf{g}^{b} -
 "b double flat" and is the same note as a.)

The augmented chord is formed by raising the third note of the major chord (i.e., the fifth) one half step. For example, the \mathbf{C} Major chord $\mathbf{c - e - g}$ becomes the \mathbf{C} augmented chord $\mathbf{c - e - g} \#$ and the \mathbf{E}^{b} Major chord becomes the \mathbf{E}^{b} augmented chord $\mathbf{e}^{\mathrm{b}}-\mathbf{g}-\mathbf{b}$.

As in the case of scales and intervals, chords with the same name sound alike. All major chords sound alike; all minor chords sound alike, etc.

If the lowest note of the chord is the root, the chord is said to be in root position. All four types of triads (chords), however, can be played in inverted form. For example, the C Major chord e-e-g may be altered from its root position form to one of the following inversions by making the lowest note either the third or the fifth: e-g-c' and g-c'es'. Similar-
$l y$, the inverted forms for the \mathbf{E}^{b} minor-which in root position is written or played $\mathbf{e}^{\mathrm{b}}-\mathbf{g}^{\mathrm{b}}-\mathbf{b}^{\mathrm{b}}$-are $\mathbf{g}^{\mathrm{b}}-\mathbf{b}^{\mathrm{b}}-\mathbf{e}^{\mathrm{b}}$, and $\mathbf{b}^{\mathrm{b}}-\mathbf{e}^{\mathrm{b}}$ g^{b} '.

Chords of more than three notes can be formed, and there are several different varieties. One of them, the seventh, is used in the Music Skills Trainer. The seventh chord contains the root, third, fifth, and the seventh lowered by a half step. For example, a seventh in the key of C Major is $\mathbf{c}-\mathbf{e}-\mathbf{g}$ and \mathbf{b} lowered by a half step or \mathbf{b}^{b}. Similarly, in the key of e^{b} the seventh chord is $e^{b}-g-b^{b}-d^{b}(\mathbf{d}$ lowered by a half step).

While the seventh chord contains four notes, the TI-99/4A can play only three notes simultaneously; therefore, following traditional rules of harmony the fifth of the chord (third note) may be omitted to give a seventh in the form of $\mathbf{c - e - b}{ }^{\mathrm{b}}$. As in the case of triads, the seventh may appear in inverted forms.

TI Music Skills Trainer

The Music Skills Trainer from Texas Instruments is a program written in TI BASIC (it will also run in Extended BASIC without modification). The program is available on cassette or diskette.

Four types of drill are provided: Pitch Guess, Interval Recognition, Chord Recognition, and Phrase Recall. The user selects the type of drill desired from a menu.

Pitch Guess

In this drill, you try to identify the pitch of a single note. While it might seem that this would require perfect pitch, you will find after several examples that you have "tuned in'" and are able to identify pitches by relating each new one to the one that has preceded. The difficulty of this exercise can be controlled by specifying the starting note and range size in half steps (up to two octaves). In addition, you can choose to have notes selected from either the \mathbf{C} Major diatonic or chromatic scales by answering "No" or "Yes" to the option of including sharps and flats. TI has included yet another means of increasing the level of difficultyRandom Music. If chosen, random music is played between examples, making it more difficult to remember the preceding note. The program provides up to ten examples and keeps score: 10 points for each correct answer.

We recommend that when first using this drill, you use c as the starting note, a range size of 13 (one octave), no sharps and flats, and no random music. After a little practice, it shouldn't be that difficult to identify notes.

Interval Recognition

This drill helps to develop your ability to recognize intervals. There are three levels, each of which adds more intervals to those included in the drill. For instance, if you choose Level 1, the examples are composed of major thirds, fourths, and fifths. Level 2 adds half steps, whole steps, and minor thirds. and Level 3 sixths, sevenths, and octaves. You can choose to have the intervals presented in ascending or descending order. For an added difficulty, you can also choose to have the lower note be random; it is otherwise c each time. You can also choose to have random music
play between exercises. Up to ten examples are provided, and you receive 10 points for each correct answer.

Chord Recognition

This drill provides practice in recognizing chords. Again there are three levels, with Level 1 consisting of major and minor chords, Level 2 adding seventh and diminished, and Level 3 adding augmented. If you choose the Random Bass option, the root can be any note; otherwise it is a c. If you choose the Random Inversions option, inverted chords will be played; otherwise, a root-position chord is always played. If you choose the Chord Only option, the three notes will be played simultaneously. If you don't choose it, the notes comprising the chord are first played individually and then together. As in the previous drills, you can select the Random Music option. You receive 10 points for each, up to 10 problems.

Phrase Recall

This drill develops your ability to remember a sequence of as many as nine random notes. A blank keyboard overlay, provided with the program, is used to label the keys with their corresponding pitch, covering two octaves much like the layout of a piano keyboard. You can select the starting note and range size, and determine whether sharps and flats are to be included in the examples. You can also specify the number of notes which constitute the phrase (1-9). After a phrase is played, you respond by entering notes from the keyboard as if it were a piano. As you play the notes, you hear them and they are displayed as well; if you make a mistake, you can use SHIFT T to start over again without penalty. When you have entered the notes that you think correctly represent the phrase, you press ENTER. The correct notes are then displayed below your response, and you are awarded points based on the number of correct notes and the number of notes included in the phrase. Up to ten examples are given with a possible total score of up to 100 points. As in the previous drills, the Random Music option can be chosen to make this drill even more difficult.

We feel that TI's Music Skills Trainer will be useful even for experienced musicians who want to keep their auditory skills sharp. We would also recommend it for novices interested in further developing their knowledge and abilities in areas of music theory covered by the program.

Fin

Let's Learn Notes

Let's Learn Notes was designed for beginning music students. A piano or organ teacher can use the program during a lesson to give the student a different approach to learning musical notes, or a student can run the program before or after the regular lesson. Students can also use the program at home for additional practice in learning musical notes. Even preschool children can begin learning the notes with this program.

The program is written in TI BASIC and uses color graphics to draw piano keyboards, musical staves, and notes. In addition, the program generates musical tones.

This program provides three options: Keyboard Learning, Treble Clef Learning and Bass Clef Learning. Each option asks for ten responses. An incorrect response is recognized by a slight non-musical noise; the correct response must be entered before the program will continue.

Keyboard Learning randomly selects and displays one of two piano keyboards (starting at the left with either two black keys or three black keys). It then randomly selects one of the 11 displayed piano keys and flashes a question mark on the key. The student responds by pressing the letter on the computer keyboard that corresponds to the letter name of the piano key shown. If the response is correct, the corresponding musical tone is played and the letter name is printed on the piano key. The program randomly chooses Keyboard 1 or Keyboard 2 for each question. If the

Keyboard 1

Keyboard 2
keyboard chosen is the same as for the previous question, the keyboard is not redrawn.

Treble Clef Learning displays a staff and treble clef. A note is selected randomly from Middle \mathbf{C} to high \mathbf{F} (top line of the staff) and displayed as a red quarter note. The student presses the letter on the computer keyboard that corresponds to the letter name of the note. If the response is correct, the corresponding musical tone is played and the letter name is printed on the note.

Bass Clef Learning displays a staff and bass clef. A note is selected randomly from low \mathbf{G} (bottom line of the staff) to Middle \mathbf{C} and displayed as a red quarter note. The student presses the letter on the computer keyboard that corresponds to the letter name of the note. If the response is correct, a five-note scale is played and the letter name is printed on the note.

This program is very easy to use and "student-friendly",-even for the youngest piano learners. A student can select the three learning options either at the beginning of the program or after each option has finished, simply by pressing 1,2 , or 3 on the computer keyboard. If a number greater than 3 is pressed, the program ends.

This program makes repetitious drill much more fun for the piano student and much less boring for the teacher. TI's color graphics and sound in this program greatly enhance the student's motivation to learn the letter names of piano keys and notes.

Hid

EXPLANATION OF THE PROGRAM Let's Learn Notes

Line Nos.

150 T=1500 for the CALL SOUND(T,--,-) 170-450 statements
, screen.
460-1220 Displays the characters for musical notes and a treble clef for the title screen. Musical tones of the C Major scale and arpeggio are played while the title screen is displayed.
1230 Asks which option the student wants and branches to that option.
1240-1340 Option 1, Keyboard. Defines color and characters for drawing the keyboard.
1360 COUNT set to zero and incremented for each question. There are 10 questions in each option. Keyboard number is randomly chosen, 1 or 2.
1380-1440 Prints "NAME THE KEY".
1450-1550 Draws the white keys.
1570-1730 Draws the black keys for one of the two piano keyboards.
1740-1750 Chooses one of the 11 keys randomly.
1760-1810 Blinks a red question mark on the key.
1820-1830 Reads the student's response.
1840-2680 Tests the response. If it is incorrect, there is a nonmusical sound and another response is required. If it is correct, the corresponding musical tone is played and the letter name of the key is displayed on the key.
2690-2710
2720-2730 Delays, then erases the letter name. Increments COUNT and determines if there have been 10 questions.
2740-2750 Chooses keyboard pattern randomly. If it is the same as the previous question, only a new key is chosen; if it is different, a new keyboard is drawn before the key is chosen.

2760
2770-2800
2810-3270
3280
3290-3340
3360-3450
3460
3470-3530
3540-3550
3560-4010

4020-4030

4040-4160
4170-4230
4240
4250-4310
4320-4330
4340-4900

4910-4920

4930-4970
4980-5060
5070-5210
5130-5210
5220-5390
5230-5240
5250-5260
5260-5390
5400-5430
5540-5490
5500

Treble Clef and Bass Clef option.
Resets colors for this screen.
Defines special characters for staff, treble clef, and note.
Draws staff.
Prints "NAME THE NOTE".
Treble Clef option. Draws the treble clef. Sets COUNT for number of problems. Chooses note and draws it.
Reads the student's response.
Tests the response. If it is incorrect, there is a nonmusical sound and another response is required. If it is correct, the corresponding musical tone is played and the letter name is displayed on the note.
After a delay, erases the note and chooses a new note. If there have been 10 notes, the options are listed again.
Bass Clef option. Defines special characters for the bass clef.
Prints bass clef.
Sets COUNT $=0$ for the number of problems.
Chooses one of 11 notes randomly and draws it. Reads the student's response.
Tests the response. If it is incorrect, there is a nonmusical sound and another response is required. If it is correct, a five-note scale is played starting at frequency J, and the letter name is displayed on the note.
After a delay, erases the note and chooses a new note. If there have been 10 notes, the options are listed again.
Subroutine for playing the 5 -note scale.
Subroutine for drawing the staff.
Subroutine for drawing the note.
Draws the stem of the note up or down from the note, depending on where the note is.
Subroutine for procedure after each note.
Delays
Increments and tests COUNT.
If COUNT <10, erases the note and returns. If COUNT $=10$, prints menu screen of options. Branches to Option 1, 2, or 3.
If 4 is pressed, the program ends.

1/31910|
$|D| \AA|T| A|7| 8|,|6| 5|, 7|7|, 6|9|, 3|2|,|4| 4|, 7| 2|,|6| 9|,|3| 2|, 7| 5 \mid$, 69, 89

1400

hestore 1390
1410 FOR Y=11 TO
22

| 14 | 40 | N | E |
| :--- | :--- | :--- | :--- | T Y

1450 PAT=KB
1460 R EM DRAN KEYBOARD

1500 CALL VCHAR (8), 32, 109 , 10

1520 CALL VCHAR(8),Y-1,109,10)
1530 C ALL VCHAR(8 , Y, 107,10)

1550 NEXT Y
1560 I $\mathrm{F} \quad \mathrm{K} \mathrm{B}=2 \mathrm{~T} \mathrm{HE} \mathrm{N} \quad 1660$
1570 REM KEYBOARD 1
1580
1590 RES TORE 1580
1600 FOR I $=1 \quad$ TO 8
1610 READ Y
1620 CALL VCHAR (8 , Y, $1.105,7$)

1640 NEXT I
1650 GOTO 1740
1660 REM KE Y BOARD 2
$1670 \quad \mathrm{D} \AA \mathrm{T} \AA$ A, $6,9,15,18,24,27,30,30$
1680 RESTORE 1670
$1690 \quad \mathrm{FOR} I=1 \quad \mathrm{~T} O \mathrm{O}$
1700 READ Y
$1710 \quad$ CALL \quad VCHAR (8 , Y, 105,7)
1720 CALL VCHAR (8, Y + 1 , 106 , 7)

$1750 \quad N \mathrm{~N}=\mathrm{I} N \mathrm{~T}(11 * * \mathrm{R} \mathrm{D})+1$
$1760 \quad \mathrm{~J}=3 \times N \mathrm{~N}-1$
1770 CALL HCHAR(16), J, 63)
$1780 \quad \mathrm{~F} O \mathrm{R} \quad \mathrm{I}=1 \quad \mathrm{~T} O \mathrm{O}_{1} 10$
$1790 \operatorname{CAL} \operatorname{COLOR}(4,2,7,1)$
1800 CALL COLOR ($4,1,16,7)$
1810

1	8	2	0
1	8	3	0
1	8	0	

1840
1850
1860
1870
1880
1890
1900
1910

| 19 | 2 | 0 |
| :--- | :--- | :--- | :--- |
| 19 | 3 | 0 |
| 1 | | |

1940
1950
1960
1970
1980
19900
2010
$\begin{array}{llll}2 & 0 & 1 & 0 \\ 2 & 0 & 2 & 0 \\ 0\end{array}$
L SOUND (T, 247,2)
2030 CALL HCHAR(16, 11, 66)
2040 GOTO 2690
2050 IF NOTEL 2 THEN 1870
2060 C ALL SOUND(T, 262 , 2)
2070 I F KB=2 THEN 2100
2080 CAL L HCHAR(16), 2, 67)
2090 GOTO 2690
2100 CALL HCHAR (16, 14, 67)
2110 GOTO 2690
2120 I F NOT E < 28 THEN 1870
$21310|C A| L|L| S O U N D \mid(|T|, 294|, 2|)$

2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
22.70

2280
2290
2300
2310
2320
2330
2340
2350
2360
2330
2380
2390
2400
2.410

2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
280
2810
2820
2830
2840
2850
2860
2870
2880
2890
$\begin{array}{llll}2 & 9 & 0 & 0 \\ 2 & 9 & 1 & 0\end{array}$

GOTO 2690
$C A L L H C H A R(16,17,68)$
GOTO 2690
I F NTE $<1>9 \mathrm{THEN} 1870$
$C A L L S O U N D(T), 330,2)$
$1 \mathrm{~F} \quad \mathrm{~KB}=2 \mathrm{~T}$ HEN 2240
$C A L L H C H A R(1,6,8,69)$
GOTO 2690

GOTO 2690
I F NOTEく〉70 THEN 1870

I F KB=2 THEN 2310
CALL hChal (16, 11, 70
GOTO 2690
CALL hCHAR (16), 23, $\mathbf{7} 0$ GOTO 2690

C ALL SOUND (T, $\mathbf{3} \mathbf{9} \mathbf{2}$ 2, 2
IF KBB=2 THEN 2380°
CALL HCHAR (16, 14, 71
GOTO 2690
CALL H CH:AR|(16), 2 6, 7 1) GOTO 2690
IF NOTE<>65 THEN 1870 CALL SOUND (T), 440, $\mathrm{I} F \mathrm{~K} \quad \mathrm{~B}=2 \quad \mathrm{~T} \mid \mathrm{H} E \mathrm{~N}$ 2450

GOTO 2690
CALL HCHAR(16, 29, 65) GOTO 2690
I F NOTE $<1>66$ THEN 18170
CALL SOUND (T), 494, 2,

CALL HCHAR (16, 20, 66)
GOTO 2690
$C A L L H C H A R(16,32,66)$ GOTO 2690
$1 \mathrm{~F} \quad \mathrm{NOT} \mathrm{E} \ll 67 \mathrm{~T}$ THEN 18870

 GOTO 2690
I F NOTE <186 THEN 1870
CALL SOUND(1) T, 587, 2)
$C A L L H C H A R(16,26,68$
GOTO 2690
1 F NOTE $<>69$ THEN 1870

$\mathrm{C} A \mathrm{~L} \mathrm{~L} \quad \mathrm{HCH} A \mathrm{~A}(16,29,69)$
GOTO 2690
IF $N O T \mathrm{E}<>70$ THEN 1870
$C A L L S O U N D(1 T, 698,2)$

$F O R$ DELAY $A=1$ TO 100
NEXT DLELAY
$C A L L H C H A R(16, j, 109)$
COUNT $=\mathrm{COUNT}+1$
I F COUNT=10 THEN 5400
$\mathrm{K} B=I N T(2 * R N D)+1$

$F O R \quad I=1=10115$

N E X T

CALL CHAR (105, "OOOOOCOFOFO783C

FF 40404040202020

29210 2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
$\left.\begin{array}{llll}3 & 0 & 9 & 0 \\ 3 & 1 & 0 & 0\end{array} \right\rvert\,$
3100
3110
3120
(3)130

3140
3150
$\begin{array}{llll}3 & 1 & 6 & 0 \\ 3 & 1 & 0\end{array}$
3170
$\begin{array}{llll}3 & 1 & 8 & 0 \\ 3 & 1 & 9 & 0\end{array}$
3200
3210
3220
3230
3240
$\begin{array}{llll}3 & 2 & 5 & 0 \\ 3 & 2 & 0\end{array}$

3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370

3380
3390

3400

3410

3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
35080
|3 5190

43510 4360 437 GOTO 4320 4370 4380 4390 4400 4410 4420 4430 4440 4460 GOTO 4910
4470 I F NOTE $<>66$ THEN 4350 $4480 \quad J=123$
4490 GOSUB 4930
4500 CALL HCHAR(18, 16, 66)
$4510 \quad \mathrm{GO} \mathrm{T} O \quad 4 \mathrm{O} 10$
4520 IF $\mathrm{NOTE}<>67$ THEN 4350
$4530 \mathrm{~J}=131$
4540 GOSU B 4930
4550 CALL HCHAR (17, 16, 67)
4560 GOTO 4910
4570 I F NOTE E 4.38 THEN 4350 4580 I $=147$
4590 GOSUB 4930
4600 CALL HCHAR (16, 16, 68)
4610 GOTO 4910
4620 I F NOTE <169 THEN 4350
4630 J $=165$
4640 GOSUB 4930
4650 CALL HCHAR (1/5, 16, 69)
4660 GOTO 4910
4670 I F NOTE $<>70$ THEN 4350 $4680 \mathrm{~J}=175$
$4690 \quad \mathrm{GOSU}$ B 4930
 4710 GOTO 4910
4720 I F NOT E $\angle>71$ T HEN 4350 4730 I =196
4740 GOSUB 4930
4750 CALL HCHAR(13, 16, 71)
4760 GOTO 4910
4770 I F NOTEL< 65 THEN 4350 $4780 \quad I=220$
$4790 \quad \mathrm{GO} \mathrm{S} \mathrm{U} \mathrm{B} \quad 4930$
4800 CALL HCHAR (12, 16, 65)
4810 GOTO 4910
4820 IF NOTE $<>66$ THEN 4350 $4830 \quad \mathrm{~J}=247$
4840 GOSUB 4930
4850 CALL HCHAR(11,16, 66)
4860 GOTO 4910
4870 II $\mathrm{NOTE}<>67$ THEN 4350 $4880 \quad \mathrm{~J}=2.62$
4890 GOSUB 4930
4900 CALL HCHAR (10, 16, 67)
4910 GOSUB 5220
4920 GOTO 4260
4930 FOR I=1 TO 5
4940

4960 NEXT I
4970 RETURN
4980 REM STAFF
4990 FOR X=12 TO 20 STIEP 2 5000 CALL HCHAR (X, 1, 96,31) 5010 N EXT X

5030 CALL HCHAR (X, 1, 141)
5040 C ALL HCHAR(X+1,1,126)
5050 NEXT X
506 RETURN
5070 R EM NOT E
5080 C ALL HCHAR(M, 15, 152)
090 C L LCHB

5120

Recently I returned to my job as elementary music teacher is the Rossford (Ohio) School District after an exciting and rewarding summer. When reading students' responses to the question, "What did you most enjoy about music last year?" on a first-day questionnaire, I was pleased to see the number of students responding, "The computer." At New Horizons Academy for the Gifted, a Computer-Assisted Music Program held in the summer of 1981 elicited a similar response from students. In both of these very different educational contexts, computer usage has proved to be a strong motivational force in students' acquisition of music theory and skills.
Last year my husband and I purchased a TI-99/4 with some rather nebulous ideas about potential applications in the general music curriculum. Together we worked on the development of programs-trying to incorporate motivational strategies which apply in virtually any teaching situation-and experimented with various uses of commercially available software (e.g., the Music Maker Command Cartridge and Music Skills Trainer). We tried many techniques in the classroom to determine the children's responses. The result has been the continuing evolution of a computerassisted music curriculum tailored to the needs of my teaching situation. It has been a stimulating year-one which progressed from ignorance about using the computer and apprehensions concerning its effectiveness to one of the most exciting experiences of my teaching career.

Whether you are a teacher planning a Computer-Assisted Instruction (CAI) project or a parent considering the potential educational value of a computer in your home, it may not be necessary to know exactly where you are going before you take the first step. Our experience has shown that the element of discovery inherent in developing a curriculum interactively with children can be as rewarding and exciting a learning process for the educator as is the use of the final product for the student.

Glenwood School in the Rossford (Ohio) district is a typical elementary school with an enrollment of 400 students in grades 1-6. I incorporated the computer into my general music curriculum for grades 4-6 during the fall semester of the 1980-81 school year (my first year in this system). Classes
were intact groups which met for two 35 -minute periods each week in the "music room"-a corner of the cafeteria. Average class size was 25 students, with pupils from the Adjusted Curriculum (learning difficulties) as well as Project Horizons (gifted) programs mainstreamed into the regular classes

My classes are organized around the belief that music should be fun and provide students with an outlet for their creativity. Although music class can be a break from routine academics, children must be equipped with basic knowledge of the fundamentals of music reading and theory upon completion of a general music course. A variety of experiences -singing, movement, listening and playing instrumentsshould be provided. The computer was employed as an additional enrichment activity-one which turned out to be unusually effective for the students, as well as challenging for the teacher.
The general approach I employ involves an initial experiential emphasis (e.g., singing and movement) followed by instruction in the basic theory required to read music. In addition to providing knowledge of theory, this approach readies students for potential participation in band and choir.

Two computer programs, Rhythm and Mystery Words, were used to reinforce two aspects of the curriculum: (1) aural recognition of rhythmic patterns, and (2) knowledge of musical notation for note names in both treble and bass clef.

In teaching students how to discriminate between various note values and rests, I first used "Echo Clapping" in which 1 clapped a rhythmic pattern and the students tried to reproduce it. Next, students were taught to associate appropriate music terms with relative durations (whole, half, quarter, eighth and their corresponding rests).

Then we progressed to an activity called "Rhythmic Dictation" in which students wrote in musical notation the
 as not to get too complex at the beginning, only the $\boldsymbol{d}, \boldsymbol{\infty}$ and \& were taught.

Following presentation of the concepts and introduction to initial rhythmic dictation exercises, many students reach
a plateau when acquiring the skill of describing rhythmic patterns in musical notation. Representation of rhythmic patterns by clapping is to some extent an abstraction because it requires analysis of the relationship between a steady beat and intervals between claps. Although most children are highly motivated to acquire this skill, many encounter difficulties which result, in part, from its abstract nature.
To address this problem, we tried to incorporate two principles into the Rhythm program: (1) concreteness, and (2) immediacy of feedback. At the same time, in order to optimize the effect of one computer on 25 children, we decided to use a game format-allowing for the possibility of up to ten teams within a class. We also put a lot of effort into the introductory portion of the program to catch students' attention with the color and sound capabilities of the $\mathrm{TI}-99 / 4$.

I initally introduced this program in my sixth grade classes after considerable time had been spent practicing rhythmic dictation. Periodic quizzes showed that a fair number of students in all three classes had not grasped the concept. After three sessions with the Rhythm program, almost every student had become competent in clapped rhythmic dictation.
I believe several factors contributed to this remarkable improvement: The activity was conceptually more concrete than rhythmic dictation, and it provided students with immediate feedback which included the correct response when mistakes were made. Concentration and motivation were improved, in part, simply by the uniqueness of the computer activity. It was not uncommon for several students to show up in the music room shortly after their bus arrived, in the hope of spending ten minutes working with a computer music game before school started. When teachers arrived after a general music class to take their students back to their classrooms, we invariably had to pry some of them away; classes sometimes had to be actually extended 10 to 15 minutes!

The group dynamics involved also played a significant role. During the first session, the sixth graders asked to have team scores added together for comparison with the other sixth grade classes. Because each class represented an intact group with some history and cohesiveness, a positive atmosphere prevailed in which the student working at the computer was supported and encouraged by the cheers and comments of fellow classmates. All students had several opportunities to make a contribution to the class total score.

Next, I used the Rhythm program in the fifth grade. Most students were aware through word-of-mouth that the sixth graders had been using a computer and naturally were interested in the top score the sixth graders had achieved. The typical score for the first day in the sixth grade had been 15 to 20 . By comparison, the first day scores in the fifth grade were as high as 45 ! Similar enthusiam was observed in the fourth grade.

For the most part, I anticipated these outcomes, although the actual impressive results far exceeded my expectations. There were also some genuine surprises: First, using the computer allowed me to observe and diagnose the problems of individual students and, where necessary, to take them aside and give special attention to their needs while the class was occupied with the computer. Learning the concept was important to them in order to make points for their class.

Another gratifying result was that the students with learning difficulties found it easier to master this more concrete activity and took a great deal of pride in their contributions to the class score. It was indeed rewarding to see their beaming faces as classmates cheered and patted them on the back after their correct responses.

Following the computer activity, nearly every student had achieved competency in the basic rhythms which had been presented, and they were able to apply this knowledge in the playing of rhythm instruments. I wrote several lines of rhythmic patterns on the board in musical notation and asked individuals or small groups to play them. Subsequent$l y$, the patterns were played to accompany class singing or listening to records.

The rhythm unit was followed by the study of musical notation for pitch. Students were introduced to this concept through a discussion of the importance of learning the note names on the staff in order to read music when singing or playing instruments. I compared note reading to reading a foreign language, using symbols and notes instead of words to create a musical story.

Initial instruction presented the familiar phrases "Every Good Boy Does Fine" and "F A C E" to facilitate learning the position of notes in the treble clef, and this was followed by drills to further reinforce note name recognition. Students were promised that the computer would be brought back to class when they learned these note names well enough to play a computer game. Thereafter, the Mystery Words game listed at the end of this article was introduced.

Mystery Words is a game that is based upon the use of note name letters to spell a variety of words, for example,"cabbage," "bead," and "facade." The program randomly chooses one of these words and represents it in music notation graphics in the treble clef, the bass clef, or both. The teacher has the option of excluding words with more difficult meanings (such as "facade" or "accede") when using the game with younger students.
The screen is divided in half with a red side and a blue side corresponding to the red and blue teams into which the class is divided. One member of each team is seated at the console. Before the presentation of a Mystery Word each player must signal he is ready by pressing the " 1 " or " 0 " key. As each team member signals readiness, a traffic light on each side of the screen changes from red to yellow to green, the Mystery Theme is played, and the graphic representation of the Mystery Word appears. The first student to decipher the word presses the 1 or 0 key, and the graphic representation disappears. He is then instructed to enter the answer using the keys 3 through 9 which have been labeled A through G on a blank keyboard overlay. As each letter is pressed, it appears in the graphics window. If the entire word is entered correctly, the graphic representation reappears with notes above the letters entered by the student, and the team's score is incremented. In the event an incorrect letter is entered, the opposing team member is instructed to try.

When the game was introduced in class, only the treble clef option was selected since previous instruction did not include the bass clef. Prior experience suggested that the presentation of both treble and bass clefs was too confusing for the average elementary age student. But using the
computer, students quickly mastered treble clef note names and requested that they be allowed to try working with the bass clef as well. Their ability to learn bass clef note names rapidly with minimal prior classroom work and to work with both clefs simultaneously was truly amazing.

Use of Mystery Words was accompanied by the same intense interest and motivation as Rhythm. Although this game was also constructed for intra-class competition, students again asked that team scores be added together for comparison with other classes. Some students began showing up before school with younger brothers and sisters to explain the computer games to them, and I became a popular figure among students in the cafeteria at lunch time-the main topic of conversation being the computer.

Seymour Papert defines three components for learning mathematics: the Continuity Principle, the Power Principle and the Principle of Cultural Resonance.* These principles, of course, may be applied to the acquisition of any content domain-not just mathematics. This is to say that a concept or skill may be acquired with the least effort if it (1) is continuous with what the learner already knows, (2) empowers him to achieve personal objectives which could not be achieved otherwise, and (3) makes sense within a larger social context. Construing the computer-assisted units on these principles may help to elucidate some of the elements which I believe are critical to the success of this application (and for that matter, of any learning environment).

All children are intimately familar with music in their everyday environment. The initial emphasis on those aspects
of music already familar to them, i.e., singing and movement, helped to give a sense of continuity with respect to subsequent course material. Second, the computer activity was integrated into a larger social context by the students themselves when they asked that team scores be added together for comparison with other classes. This phenomenon was also apparent when students in lower grades expressed interest in the scores obtained by the upper grades and used this information in the setting of personal goals.

But perhaps the most important element is the Power Principle. Students perceived that the acquisiton of music skills would enable them to make contributions toward group achievement in the computer music game. Later they found that they were able to play rhythm instruments and read musical notation, and at the same time, they realized that these skills may be useful to them in the future when participating in band and chorus activities, which are themselves part of a meaningful social context.

In summary, use of the computer increased student motivation, and at the same time allowed abstract material to be represented in a concrete way, leading to more rapid acquisition of skills and concepts. The computer also made it possible to diagnose individual weaknesses and provide individualized remedial work. Discipline problems arising from boredom and lack of interest were nonexistent when the computer was in the classroom. In general, a positive environment, cooperation, and mutual support predominated.
*Papert, S. Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books, 1980.

 0, 1821, 1822, 1823
ATA 1824, 1924, 2024, 2124, 2224, 2324 $2424,2423,2422,2421,2420,1729$, 172

A 1926, 2026 , 2027 7, 2028 , 2029, 21129 , 222 2, 2329 , 2328 , 2327 , 2 32 6
1340 FOR I =1 TO 59
1350 READ SETTS(I)
1.360

1370
 $55,257,254,251,312,412,414,452,455$, $5 \mathbf{5} 2 \mathbf{2}, 577,612,614,654,717,755,712,1$ 754
1380

1390
 $5,655,31754,456135,453145$, 31122175

 66135

\section*{1400
 1410
 1420
 1430
 1440
 $\begin{array}{llll}1 & 4 & 5 & 0 \\ 1 & 6 & 0\end{array}$
 | 1 | 4 | 6 |
| :--- | :--- | :--- |
| 1 | 7 | 0 |}

1480
1490
1500
$\begin{array}{llll}1 & 5 & 1 & 0 \\ 1 & 5 & 2 & 0 \\ 1 & 5 & 0\end{array}$
1530

1	5	4	6
1	5	5	0

1560
1570

| 1 | 5 | 8 |
| :--- | :--- | :--- | :--- |
| 1 | 5 | 0 |
| 1 | 90 | |

$\begin{array}{llll}1 & 6 & 0 & 0 \\ 1 & 6 & 1 & 0\end{array}$

1	6	1
1	6	2

$\begin{array}{llll}1 & 6 & 3 & 0 \\ 1 & 6 & 4 & 0\end{array}$

1	6	4	0
1	6	5	0

1	6	5
1	6	6
1	0	

16
16
1680
1
1690
$\begin{array}{llll}17 & 7 & 0 \\ 17 & 1 & 0\end{array}$
1720
1730

| 17 | 4 |
| :--- | :--- | :--- |
| 17 | 0 |
| 1 | 5 |

$\begin{array}{lll}1750 \\ 17 & 6 \\ 1 & 0\end{array}$
1770
1780
1790
180
1810
$\begin{array}{llll}1 & 8 & 2 & 0 \\ 1 & 3 & 3 & 0\end{array}$
1830
$\begin{array}{llll}18 & 4 & 0 \\ 1 & 5 & 0\end{array}$

1860 CALL COLOR (13, 5, 5)
1870 CAL L COLOR (2, 7,7
1880 CALL COLOR (3, 2, 16
1890 CALL COLOR (4, 2, 16)
1900 CAL L COLOR (13, 15,1)
1910 CAL LOLOR (14; 15, 1)
1920 GOSUB 3830
$1930 \mid C_{C=13}$ |
$|19| 4|0||T| r|Y|=1$
1950 FOR I =5 TO 12
1960 CALL COLOR (II, 16 , 16)
1970 NEXT
1980 CALL HCHAR (2, 13, 95,13)
$1990 \quad \mathrm{FOR} \quad \mathrm{I}=3 \mathrm{TO} \quad 7$
20000 CALL HCHAR (I), 13, 103, 13)
2010 NEXT
2020 CALL HCHAR (9, 13, 95, 13

2040 CALL HCHAR (10, 13, 95,13)
2050 FOR I =11 TO 15

2070 NEXT

$2090 \mathrm{CALL} \mathrm{HCHAR}(20,19$, 95,12)
$2100 \quad \mathbb{N}=\mathrm{I} \mathbb{N}(\mathbb{N} S \mathrm{ET} * \mathbb{R} \mathrm{~N})+1$

2120 FOR I=1 TO LEN (WORDS)
$\begin{array}{llll}2 & 1 & 3 & 0 \\ N\end{array}=1$
2140 FOR K=1 TO 3
$2150 \quad \mathrm{NL} \mathrm{I} \mathrm{NE}(\mathrm{K})=0$
2160 NEXT K

2	1	7	0
2	I	F	

2180 FOR I=1 TO 2

2200 IF L $=0$ THEN 2230
2210 NLI I E E (N) =L
$\begin{array}{lllll}2 & 2 & 2 & 0 & 0 \\ N\end{array}=\mathrm{N}+1$
2230 N EXT I
2240 I F CLEF 1 THEN 2330
2250 FOR J = 1 TO 2

2270 I F L = O THEN 2320
2280 I F CLEF 2 THEN 2300
$2290 \quad \mathrm{~L}=\mathrm{S} \mathrm{G} N(\mathrm{~L})$ * ($\mathrm{ABS}(\mathrm{L})+8)$
2300 NLINE(N) $=$
$\begin{array}{llll}2 & 3 & 1 & 0 \\ 0 & N \\ = & N+1\end{array}$

| 2 | 20 |
| :--- | :--- | :--- |
| N | $\mathrm{EX} T$ |

$\begin{array}{llll}2 & 3 & 3 & 0 \\ N\end{array}=N-1$
2340 I F N $=1$ THEN 2360
$\begin{array}{llll}2 & 3 & 50 \\ N\end{array}=\mathrm{I} \mathrm{N}(\mathbb{N} * \mathrm{R} / \mathrm{N})+1$
$2360 \mathrm{~L}=\mathrm{N} L \mathrm{~L} \mathrm{NE}(\mathrm{N})$
2370 I F L <0 THEN 2450
2380 I F L $=2$ THEN 2420
2390 I F L $=10$ THEN 2420
2400 C AL L HCHAR (L, C 1.19
2410 GOTO 2430

$2430 \quad \mathrm{C}=\mathrm{C}+2$
2440 GOTO 2530
$2450 \mathrm{~L}=\mathrm{A} B \mathrm{~B}(\mathrm{~L})$
2460 I F L $=3$ THEN 2500

2490 GOTO 2510.
2500 CALL HCHAR(L-1, C, 123)
2510 CAL L HCHAR (|L, C), 121
$2520 \quad \mathrm{C}=\mathrm{C}+2$
2530 NEXT
$2540 \quad$ ROW 20
2500 MSG G = "READY
$2560 \mathrm{COL}=3$
2570 GOSUB 4600
2580 COL=19
2590 GOSUB 4600
2600 CAL L COLOR (13, 15, 1
2610 C L L HCHAR (12, 3 , 13.7)
2620 CALL HCHAR(12, 30,137)
$2.630 \mathrm{CALL} \quad \mathrm{HCHAR}(8,3,128)$

2650 CALL COLOR (13, 7, 1)
2660 CAL L SOUND (100, 880,1)
2670 FOR $\mathrm{I}=5 \mathrm{~T}$ T $\mathrm{O} \quad 8$
2680 CALL COLOR (I, 2,16
2690 NEXTI

$2710 \mid$

 3510 MSGS="RIGHT"

$3530 \quad \mathrm{COL}=3$
3540 goto 3560
3550 COL=19
$3560 \mathrm{GOSU} \mathrm{B} \quad 4580$

3580 RED $=$ RED +1
$3590 \quad \mathrm{C}=3$
3600 SCORE=RED
3610 GOTO 3650
3620 BLUE $=B L U E+1$
$3630 \quad \mathrm{C}=29$
3640 SCORE=BLUE
3650 MSG $\$=\mathrm{ST} \mathrm{T}$ \$(SCORE$)$
3660 GOSUlB 4640
3670 FOR I=1 TO 500
3680 NEXT I
3690 GO TO 1930
3700 CALL SOUND (100, 110, 1)
3710 IF TRY=2 THEN 1930
$3720 \quad \mathrm{TR} \mid \mathrm{Y}=\mathrm{T} \mathrm{R} \mathrm{Y} \mathrm{Y}+1$
3730 CALL HCHAR(9, 13, 95, 13
3740 IF TEAMS="RED"" THEN 3780
3750 TEAMS $=$ "RED"
$3760 \quad \mathrm{COL}=3$
3770 GOTO 3800
3780 TEAM|S="BELUE
3790 COL=19
3800 MSG\$="YOU TRY_"\&TEAMS
3810 GOSUlB 4580
3820 GOTO 3310
3830 CALL SCRIEEN(2)
$3840 \quad \mathrm{FOR} \quad \mathrm{I}=1 \mathrm{TO}$ 1.6

3860 NEXT 1
3870 FOR $1=17$ TO 32

3890 NEXT 1
3900 FOR I=2 TO 4
3910 CALL HCHAR (1, 2, 95 , 4)
3920 CALL HCHAR/I, 28, 95 , 4

3950 C/ALL $\mathrm{HCHA} / \mathrm{R} /(1), 2,95,14$
3960 CALL HCHAR (I), 18, 95, 14
3970 NEXT I

3990 CALL HCHAR(2, $\mathbf{7}, \mathbf{9 5}$, 20)
$4000 \quad \mathrm{FOR} \quad \mathrm{I}=3 \mathrm{TO} 7$

4020 NEXT I
4030 FOR I=8 T O 10
4040 CALL HCHAR (1), 7, 95, 200)
4050 NEXT I

40710 CALL VCHAR $(3), 7,98,14)$
4080 IF CLEF=2 THEN 4110
4090 gosub 433_{0}
4100 gOTO 4140
$4110 \quad \mathrm{R}=3$
4120 GOSUB 4480
4130 GOTO 4230
4140 IF CLEF 1
4150 FOR I = 11 TO 15
4160 CALL HCHAR(I), 8 , 103, 19)
4170 NEXT
$4180 \quad$ CALL $\mathrm{H} \mid \mathrm{CHAR}(16), 7,95,20$
$4190 \quad \mathrm{CALL}$ VCHAR (7, $7,98,8$)
4200 CALL hCHAR (15, $\mathbf{7 1 , 9 5)}$
$\begin{array}{llll}4 & 2 & 10 & R=11\end{array}$

$4230 \quad F O R \quad I=7$ TO 13
4240 CALL hCHAR (I), 2, 136, 3)
4250 C:ALL HCHAR (I, 29, 1366, 3)
4260 NEXT I

4300
4310
4320
$\begin{array}{ll}4 & 3 \\ 4 & 3 \\ 4 & 4 \\ 4\end{array}$
4350
4360
4370
$\begin{array}{llll}43 & 8 & 0 \\ 43 & 9 & 0\end{array}$
4400
4410
$\begin{array}{lllll}4 & 4 & 2 & 0 \\ 4 & 4 & 3 & 0 \\ 4 & 0\end{array}$ 4440 4450 4460 4470 4480 4490 4500 4510 4520 4530 4540 4550 4560 4570 4580

4600 4610
4620
4630 4640 4650 4660 4670
46180
4696
4750
4716 4720 4730 4740 4750 47601

CALL HCHAR (10, 30,137$)$

RETURN

C $A \operatorname{LL} \quad \mathrm{HCHAR}(3,10,100)$

$\mathrm{C} \AA \mathrm{L} \mathrm{L} \quad \mathrm{HCHA}(4,9,102)$

CALL HCHAR (6, 9, 108)
CALL HCHAR ($6,1,10,100$)
CALL HCHAR (7, 9, 90)
RETURN
CALL HCHAR (R) 8 , 1100)
CALL HCHAR ($\mathrm{R}, \mathrm{g}, 1,1 / 1 / 1)$

RETURN

$\mathrm{F} O \mathrm{R} \quad \mathrm{I}=0 \mathrm{~T} O \quad \mathrm{~L} \mathrm{EN}(\mathrm{MSGS})-1$
CAL L HCHAR (ROW),COL+I), ASC(SEGS (MSGS
, $\mathrm{I}+1,1$, (1)

 \(\mathrm{N} |\)\begin{tabular}{l|l|l|l}
 N \& T \& I

S \& I

\hline
\end{tabular}

 RETURK
 I F LEN (MSGS)=2 THEN 4660

$c=c+1$
N E
RETURN
$F O R \quad M M M=1 \quad T O M$

CALL HCHAR (R-1, 6 , 96
CAL L SOUND:50, -7, 5)

$\operatorname{C}\left|A_{1} \mathrm{~L}\right| \mathrm{L}|, \mathrm{H}| \mathrm{C}|\mathrm{H}| \mathrm{A}_{\mid} \mathrm{R} \mid(|\mathrm{R}|-2|, 8|, 9|7|)$

- The TI-99/4 Assists

Gifted Children in

Although the TI-99/4 proved itself a valuable enrichment tool in my traditional music classes, I began to realize its full potential during a summer program for gifted children at New Horizons Academy. It was exciting to let a curriculum evolve as children enthusiastically identified their own interests and pursued ways of expressing them creatively through use of the computer.

The Educational Setting

New Horizons Academy is a private school that was founded by Nanci Lucas in the belief that children are naturally excited about learning and capable of handling academic pursuits beyond their years. When an individualized curriculum is designed to allow for advancement through basic skills and extensive opportunity for enrichment and acceleration, children find learning to be exciting and meaningful.
In addition to the regular academic curriculum, the Academy periodically provides workshops that are open to any interested children. Since 1978, "Summer Spectacular" has offered courses in computers, creative dramatics, archaeology and photography. I became involved with New Horizons last summer when I taught two sessions in "Computer Music" with our TI-99/4.
The Computer Music classes were intended to familiarize students with basic music concepts and provide for individualized and accelerated learning in a manner consistent with the philosophy of the Academy. A typical group consisted of eight students ranging in age from 7-13. The group was scheduled to meet eight times in a two week period with each session lasting one hour. After the first day, however, the students "demanded" that I arrive at 8:45 A.M. and not leave until 2:15 P.M. Several times it was even 3:45! To see students asking to cut other classes, skipping lunch, and having their parents pick them up late-all just so they could work on their projects-was tremendously rewarding.

The Educational Mode

I employed Renzulli's theoretical framework, The Enrichment Triad Model. ${ }^{1}$ The model contains three constructs
which convey the types of learning activity believed to be best for gifted children.

In General Exploratory Activities (Type I) students are exposed to a broad range of possibilities. None of these is presented in detail. The purpose is merely to introduce the students to the range of possible alternatives open to them. Group Training Activities (Type II) follow, providing the students with fundamental information of potential use in subsequent development of their interest areas. These activities are oriented toward content.

During the two preceding phases, students begin to identify their interests and develop the skills to create a final product. In Individual and Small Group Investigations of Real Problems (Type III), each student determines a problem or project of particular interest that is based on the information obtained in the previous activities, and then pursues that choice in greater depth.

This final element of the Enrichment Triad is perhaps the most important. Ideally, the students will exemplify the "turned-on professional" and pursue their objectives with intense motivation and commitment.

In many respects, Renzulli's model parallels Seymour Papert's principles of continuity, power, and cultural resonance. ${ }^{2}$

Implementation of the Model

In the first few days, I exposed the students to a variety of musical activities including a TI-99/4 concert of familiar children's songs such as "Happy Birthday," "Yankee Doodle," and "Pop Goes the Weasel"-all complete with graphics. We also played rhythm instruments, the autoharp, resonator bells and recorders, drew on impressions of music while listening to recordings, identified environmental sounds, and discussed the commonalities and differences of all sounds.
The Texas Instruments Music Maker Command Cartridge contains two options with which children can write music. In the exploratory activities, they utilized the Sound Graphs option, in which "the composer" need not have any prior knowledge of music notation and theory. In this mode the students experimented with duration of notes by con-
trolling the length of the line in whatever voice they were composing (3 voices or 3 -part harmony is possible). Frequency is determined by the height of the line on the screen, and there is a volume choice. From all of our exploratory activities, students came to the conclusion that all sounds have duration, frequency, and volume in common. These concepts were effectively and concretely exemplified by the Music Maker's Sound Graphs Mode.

In summary, I believe that the exploratory activities altered the students' experience of music. They began to see music in a new way, as part of the continuum of sound and noise; the "freshnesss" of this new perspective contributed to their desire to move toward the next phases of the model.

Group Training Activities were concerned with contentoriented learning. The objectives were to provide students with a basic knowledge of music theory and an understanding of how a computer program is written-information which they could use as tools in developing their interest areas. Several computer music games and drills were used by the entire group, but as a child's interest waned, he was allowed to break away from the group activity and pursue individual work in his primary interest area.

The computer games included (1) Mystery Words, in which the players learned the names of treble and bass clef notes; (2) Rhythm, which provided ear training in the recognition of quarter notes, eighth notes, and quarter rest patterns; and (3) TI's Music Skills Trainer, which contains
quarter, eighth and sixteenth and their corresponding rests relate to each other and can be organized into a composition that is musically correct.
In moving into Type III of Renzulli's model, almost all students elected to write a computer program to play a musical composition; some students selected pieces with which they were already familar, and others wrote original compositions. Many investigated how to use graphics and color to enhance their creations, and designed title screens to be displayed during the computer's performances of their works. Compositions included "The Entertainer," "Mr. Tambourine Man," "Amazing Grace,' Beethoven's Ninth Symphony (Ode to Joy), and "Jingle Bells." Three students, Byron, Allan, and Peggy, exhibited a competitive spirit when comparing the number of lines and difficulty of their programs. Steve wrote his program to play Beethoven's Ninth Symphony in three-part harmony; Bryan wrote his original composition to flash a change of screen color to emphasize musical contrasts at appropriate points in the music; Peggy reworked her original composition many times until she was satisfied with the rhythmic structure .
It is important to note that not every student was equally enthusiastic about programming. For example, Adrienne seemed to prefer taking Computer Music for enjoyment and the personal satisfaction of becoming familiar with it but did not have a genuine interest in becoming a creative producer.

66
Seeing your students eagerly asking to cut other classes . . . and having their parents pick them up late - all just so they could work on their projects - was tremendously rewarding.

99
four games to improve the player's skills in recognition and recall of pitches, intervals, chords, and phrases played by the computer.

We took a look at the program listings for our favorite songs and games and "brainstormed" about what all those commands could possibly mean. Discovering how changing the duration, frequency, and/or volume in a CALL SOUND statement affects the tones produced by the computer was a popular Group Training Activity. The children soon started drawing conclusions and generalizations about how to program. At this point it was necessary to hand out information from the User's Manual for students to take home and study over the weekend-homework at their request!

Additional content-oriented learning took place when students experimented with the Traditional Mode of the computer's Music Maker Command Cartridge. I used the traditional mode to help children discover information about key signatures, time signatures, tempo, and music notation-including how various notes such as whole, half,

The satisfaction children feel from communicating the results of their work to an audience was obvious when three ladies from Springfield (Ohio) School District and a banker visited our classroom one day. Byron stopped his work to take over for Mrs. Lucas and me as we were explaining the Computer Music Class. He and two others enthusiastically gave a presentation of their music and proudly explained what had gone into its composition. In addition, the already high level of enthusiam increased when the class found out they could present their finished products to their parents and others on Visitation Day and possibly have them published in 99'er Magazine.

With this group, I served mainly as a resource person and passed the responsibility for learning and investigating on to the students. Students were introduced to concepts of programming and music theory as they explored and used this knowledge to make their programs more complex. It was a good example of making material relevant. The Computer Music course allowed for freedom of choice in that no course requirements were established ahead of time; instead,
the class members were allowed to devolop their own "courses of study" as their interests developed. Likewise, the time allocations were flexible because the entire staff allowed students to skip their classes and come to Computer Music all day if they wanted.

By requiring students to play the games described in Type II activities only until they no longer were interested, mastery of competencies became more streamlined and excitingas Renzulli suggests. After playing Mystery Words about ten minutes, seven-year-old Michael put it this 'way, "Do we have to play it anymore? We know this now!'"

It was interesting to observe how the gifted children mastered the basics much more rapidly and efficiently than my regular general music students. The need for individualization and enrichment for the gifted is obvious when one realizes that playing the same games which intrigued my regular classes for several of their thirty minute music periods tired the gifted in ten to fifteen minutes; they then requested permission to return to programming their own creations. This is an example of Renzulli's differentiation of "real investigative activities" for the gifted from "training exercises." This differentiation prompted the development of his Enrichment Triad Model.

It is important to point out that Renzulli's model is not a fixed, rigid framework; the three activity types often overlap. For example, while the actual composing of music is Type III (Individual and Small Group Investigations), the trial-and-error initial discoveries of the computer's musical capabilities might be considered Type I (Exploratory). Likewise, there is overlap in some of the students' other Type II activities. Since brainstorming provides children with the skills needed to explore alternative solutions to problems, our discussions about environmental sounds and computer language were exercises in developing the processes that enable a learner to deal more effectively with content, yet took place during an exploratory activity.

Furthermore, process training (Type II) occurred when students wrote their own programs. As Byron observed, "The computer really programs you; you don't program it." He was referring to the fact that the best programmers learn to think like the computer, in that they think out the process of writing their programs instead of memorizing what to write. Essentially, they must consider how the computer thinks, then determine what to say to get the computer to accomplish their goals. Obviously, the programming required to achieve the final product is a Type IIl activity, yet the development of thinking processes involved in Type II is also present.
The experience of teaching at New Horizons has given me new insights into how children think and how different their learning styles can be. It was exciting to allow a curriculum to evolve as children enthusiastically identified their own interests and pursued ways of expressing these interests creatively.

Postscript

Although the Academy already had four CBM computers and a TRS-80, the magical attraction of students to our TI-99/4 did not go unrecognized. Soon the Academy purchased a TI-99/4A, and subsequently a second one, together with a variety of the high quality educational software offered by Texas Instruments.

My husband and I have conducted several other enrichment sessions at the Academy and have become increasingly excited about the profound potential of computerfacilitated learning.

References

1 Renzulli, Joseph S. The Enrichment Triad Model: A Guide for Developing Defensible Programs for the Gifted and Talented. Connecticut: Creative Learning Press, Inc., 1977.
2 Papert, Seymour. Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books, Inc., 1980.

A Music Text Editor \& File Player for the TI-99/4A

For those readers who do not as yet have a Music Maker but would like to experiment with music writing anyway, we are offering a primitive music text editor, which has two of the three voices of the TI99/4A, as well as a file player program and the input required to play.

The Music Text Editor program creates a tape file which is read and played by the Music File Player that follows it. Although the file can be played by the editor, the tempo will be somewhat slower than when performed by the separate player program.

Use the following symbols to write note values:

$$
\begin{array}{ll}
\text { W-Whole } & \text { H-Half } \\
\text { Q-Quarter } & \text { E-Eighth } \\
\text { S-Sixteenth } &
\end{array}
$$

For a dotted note value, put a period after the symbols, for example, S.,Q., etc.
Use the following symbols for pitches:

A A\#	E
B	FF\#
C C\#	G G\#
D D\#	R-Rest (a pitch with value 0)

After each pitch, give the octave (1-4):
Octave Begins
Bass clef, bottom space ($\mathrm{A}=110 \mathrm{cps}$)
Bass clef, top line ($\mathrm{A}=220 \mathrm{cps}$)
Treble clef, 2nd space from bottom ($A=440 \mathrm{cps}$)
Treble clef, 1st ledger line above ($\mathrm{A}=880 \mathrm{cps}$)
[NOTE: SAVE your input periodically! An input of any note plus an accidental but without an octave number (e.g., A\#) may cause your program to crash.]

The Music Text Editor will first ask you for the composition's and the composer's names. Then the prompt M.M will ask you for a tempo in quarter notes per minutecorresponding approximately to a metronome beatbetween 56 and 126 per minute. (NOTE: The program won't accept any value larger than 126 ; the computer will reject an overly-funereal beat because the value put in the duration parameter of CALL SOUND will be too large.)

The program then begins requesting input for the composition, line by line for the two voices. After the program displays the line number, you enter the duration (W, Q., S, \ldots, . , followed by the pitch values and octave ranges for each of the two voices. You must separate these values by
a slash (/), and end the line with a slash. For instance, to play simultaneously the dotted eighth notes $\mathbf{F} \#$ in octave 2 and \mathbf{C} in octave $\mathbf{1}$, followed by a sixteenth rest in the first voice and a $\mathbf{B}^{\text {b }}$ sixteenth note in the second, after the first program line number prompts $(1=)$ you would enter:

$$
\begin{aligned}
& 1=\mathrm{E} . / \mathrm{F} \# 2 / \mathrm{C} 1 / \\
& 2=\mathrm{S} / \mathrm{R} / \mathrm{A} \# 1 / \\
& 3=
\end{aligned}
$$

When the program prompts you for the next line of notes (in this instance line 3), you may instead enter one of the following commands:

CHANGE, REDO, LIST, PLAY, or SAVE.

CHANGE, REDO and LIST will ask for a range of lines. The SAVE command merges new data with data already stored in the tape file. Unless you answer the question, "FINISHED?" with a "YES', no end-of-file mark will be written on the tape file. Until the file has an end-of-file mark, it can't be read. The Music File Player can read and play a file consisting of up to 550 lines.

Fugue in G minor

$1=\mathrm{Q} / \mathrm{G} 2 / \mathrm{R} /$	$28=5 / A 3 / R /$
$2=\mathrm{Q} / \mathrm{D} 3 / \mathrm{R} /$	$29=5 / \mathrm{G} 2 / \mathrm{R} /$
$3=\mathrm{Q} / \mathrm{A} \# 3 / \mathrm{R} /$	$30=5 / \mathrm{A} / \mathrm{R} / \mathrm{R}$
$4=E / A 3 / R /$	$31=\mathrm{S} / \mathrm{D} 2 / \mathrm{R} /$
$5=\mathrm{E} / \mathrm{G} 2 / \mathrm{R} /$	$32=5 / D 3 / \mathrm{R} /$
$6=E / A \# 3 / R /$	$33-S / C 3 / R /$
$7=E / A 3 / R /$	$34=S / A \# 3 / R /$
$8=E / G 2 / \mathrm{R} /$	$35=S / A 3 / R /$
$9=E / F \# 2 / R /$	$36=S / \mathrm{G} 2 / \mathrm{R} /$
$10=E / A 3 / R /$	$37=5 / \mathrm{A} \# 3 / \mathrm{R} /$
$11=\mathrm{Q} / \mathrm{D} 2 / \mathrm{R} /$	$38=S / A 3 / R /$
12-E/G2/R/	$39=S / \mathrm{G} 2 / \mathrm{R} /$
$13=E / D 2 / R /$	$40=S / F \# 2 / R /$
$14=E / A 3 / R /$	$41=S / A 3 / R /$
$15=E / D 2 / R /$	$42=S / \mathrm{G} 2 / \mathrm{R} /$
$16=\mathrm{E} / \mathrm{A} \# 3 / \mathrm{R} /$	$43=S / D 2 / R /$
$17=5 / A 3 / R /$	$44=5 / \mathrm{C} 2 / \mathrm{R} /$
$18=S / G 2 / R /$	$45=S / A 3 / R /$
$19=\mathrm{E} / \mathrm{A} 3 / \mathrm{R} /$	$46=S / A \# 3 / R /$
$20=E / D 2 / R /$	$47=5 / C 3 / R /$
$21=E / G 2 / R /$	$48=S / D 3 / R /$
$22=5 / D 2 / R /$	$49=S / E 3 / \mathrm{R} /$
$23=S / \mathrm{G} 2 / \mathrm{R} /$	$50=S / F 3 / D 2 /$
$24=\mathrm{E} / \mathrm{A} 3 / \mathrm{R} /$	$51=\mathrm{S} / \mathrm{E} 3 / \mathrm{D} 2 /$
$25=S / D 2 / R /$	$52=S / D 3 / R /$
$26=5 / A 3 / R /$	$53=S / F 3 / R /$
$27=\mathrm{E} / \mathrm{A} \# 3 / \mathrm{R} /$	$54=$ S/E3/A3/

$M M=100$
by Bach

	$82=5 / \mathrm{C} 3 / \mathrm{A} 21$
	$83=5 / A 4 / A 2 /$
	$84=$ S/C\#3/E2/
	$85=5 / A 4 / E 2 /$
	$86=$ S/G3/A $2 /$
	$87=5 / \mathrm{A} 4 / \mathrm{A} 2 /$
	$88=5 / \mathrm{D} 3 / \mathrm{F} 2 /$
	$89=5 / \mathrm{A} 4 / \mathrm{F} 2 /$
	$90=\mathrm{S} / \mathrm{G} 3 / \mathrm{E} 2 /$
	$91=$ S/A4/D2/
	$92=5 / \mathrm{C} \# 3 / \mathrm{E} 2 /$
	$93=S / A 4 / E 2 /$
	$94=5 / \mathrm{C3} / \mathrm{E} 2 /$
	95-S/A4/A2/
	$96=5 / \mathrm{F} 3 / \mathrm{D} 2 /$
	$97=$ S/D3/D2/
	$98=5 / C \# 3 / A 2 /$
	$99=5 / D 3 / D 2 /$
	$100=5 / \mathrm{C} 3 / \mathrm{L} 2 /$
	$101=5 / \mathrm{D} 3 / \mathrm{A} 2 /$
	$102=$ S/C\#3/A2/
	$103=$ S/D3/E 21
	$104=S / A 4 / F 2 /$
	$105=S / D 3 / F 2 /$
	$106=$ S/C\#3/E2/
	$107=$ S/D3/D2/
	$108=5 / \mathrm{G} 3 / \mathrm{E} 2 /$

$109=$ S/D3/A2/	$136=5 / \mathrm{C} 3 / \mathrm{F} \mathrm{\#} 2 /$
$110=\mathrm{S} / \mathrm{C} \# 3 / \mathrm{A} 3 /$	$137=$ S/A4/F\#2/
$111=$ S/D3/G21	$138=$ S/G3/D2/
$112=\mathrm{E} / \mathrm{A} 3 / \mathrm{F} 2 /$	$139=$ S/A4/D2/
$113=\mathrm{E} / \mathrm{F} 3 / \mathrm{D} 2 /$	$140=S / A^{\prime} 3 / \mathrm{G}_{2} /$
$114=$ E/G $2 / \mathrm{E} 2 /$	$141=S / G 3 / R /$
$115=\mathrm{E} / \mathrm{E} 3 / \mathrm{C} \# 2 /$	$142=S / F \# 3 / R /$
$116=\mathrm{E} / \mathrm{F} 2 / \mathrm{D} 2 /$	$143=S / \mathrm{G} 3 / \mathrm{R} /$
$117=\mathrm{E} / \mathrm{A} 3 / \mathrm{D} 2 /$	$144=S /$ A $3 / \mathrm{D} 2 /$
$118=\mathrm{E} / \mathrm{D} 3 / \mathrm{F} 2 /$	$145=S / F 3 / \mathrm{R} /$
$119=$ S/F3/A3/	$146=S / E 3 / R /$
$120=S / \mathrm{F} 3 / \mathrm{B} 3 /$	$147=5 / F 3 / \mathrm{R} /$
$121=\mathrm{E} / \mathrm{D}+3 / \mathrm{C} 3 /$	$148=$ E/G1/A\#2/
$122=\mathrm{E} / \mathrm{A} 4 / \mathrm{C} 3 /$	$149=\mathrm{E} / \mathrm{D} \# 3 / \mathrm{R} /$
$123=\mathrm{E} / \mathrm{A} 4 / \mathrm{D} 3 /$	$150=\mathrm{E} / \mathrm{C} 2 / \mathrm{R} /$
$124=\mathrm{E} / \mathrm{D} \# 3 / \mathrm{A} \# 3 /$	$151=E / A 2 / R /$
$125=S / D 3 / \mathrm{C} 3 /$	$152=\mathrm{E} / \mathrm{A} \# 2 / \mathrm{E} /$ /
$126=$ E/D3/A $+3 /$	$153=E / R / D 1 /$
$127=\mathrm{E} / \mathrm{G} 3 / \mathrm{A}+\mathrm{t} 3 /$	$154=E /$ R/F 1
$128=$ E/C3/A\#3/	$155=$ E/R/G 1
129 = S/D3/A3/	$156=\mathrm{Q} / \mathrm{D} / / \mathrm{R} /$
$130=\mathrm{E} / \mathrm{D} 3 / \mathrm{C} 2 /$	$157=\mathrm{Q} / \mathrm{A} 2 / \mathrm{R} /$
$131=S / R / A \# 3 /$	$158=$ Q $/ \mathrm{F} 1 / \mathrm{R} /$
$132=S /$ C3/A3/	$159=\mathrm{E} / \mathrm{E} / \mathrm{R} / \mathrm{R}$
$133=$ S/A\#3/A3/	$160=E / D 1 / R /$
$134=$ S/C3/C $2 /$	161 = E/F $1 / \mathrm{R} /$
$135=$ S/D $3 / \mathrm{G} 2 /$	$162=E / E 1 / R /$

$163=E / D 1 / R /$ $163=E / D 1 / R /$
$164=E / C H 1 / A 2 /$ $165=$ E/EI/A H $2 /$ $166=\mathrm{Q} / \mathrm{A} / / \mathrm{R} /$ $167=$ S/R/Г $2 /$ $168=S / R / E 2 /$ $169=\mathrm{E} / \mathrm{D} / \mathrm{I} / \mathrm{F} 2 /$ $170=E / A 1 / R /$ 171 - E/E1/C\#2/ $172=\mathrm{E} / \mathrm{F} 1 / \mathrm{D} 2 /$ $173=\mathrm{Q} / \mathrm{A} 1 / \mathrm{D} 2 /$

Music Maker

A
 TI Command Cartridge

TTo paraphrase Shakespeare, "The computer that hath no music in its chips, nor is not programm'd with concord of sweet sound is fit but for business, mathematics, and sorts." The TI-99/4A is definitely not one of these.
Outstanding music and sound effects capabilities are among the many features which set the T1-99/4A apart from other personal computers. A user can generate three simultaneous tones and a noise, and can specify their duration, pitch, and loudness-all with a single TI BASIC statement. The sound is played through the speaker of the color monitor or TV display.
Of course, an assortment of beeps, "ta-daas" and outer space sounds can greatly enhance a graphics presentation and provide useful auditory feedback during the program execution. But when the sophisticated sound capabilities of the TI-99/4A become the focus of the programmer's attention, the Texas Instruments machine becomes a musical instrument in its own right. Whether playing a Bach sonata or your own composition, a successful TI-99/4A performance is worth the programming effort.

With the introduction of TI's Music Maker Command Cartridge, you can take full advantage of the TI-99/4A's sound capabilities without having to write a complex BASIC program. The Music Maker allows you to write a composition using either of two methods-Traditional Mode or Sound Graphs. While Traditional Mode requires some knowledge of fundamental music theory, Sound Graphs does not. Both methods are graphics-based, in contrast to
other music editor formats which require entry of notes using ASCII characters. Both also make superb use of the TI-99/4A's outstanding color graphics capabilities. Notes are entered by manipulating the cursor with either the joysticks or the arrow keys. A composer can then print out the bass and treble clefs of each measure-complete with all notes, sharps, flats, and rests-with TI's thermal printer (using its special graphic character set). It's also possible to save the completed musical score on cassette tape or diskette.

Traditional Mode

In Traditional Mode, notes are entered directly on the music staff using standard notation. The first step involves defining the key, meter, and tempo. All possible key signatures ($0-7$ sharps or flats) are allowed. The meter or time signature options for the denominator are $1,2,4,8$, and 16 -corresponding to the unit of measure receiving one beat (i.e., whole, half, quarter, eighth or sixteenth note). The numerator of the time signature indicates the number of such units which comprise a measure. Your options here are restricted to values equal to, or less than, the denominator. Examples of allowable time signatures are:

$$
\frac{4}{4}, \frac{6}{8}, \frac{2}{2}, \text { and } \frac{3}{4} ;
$$

on the other hand,

$$
\frac{3}{2}, \frac{12}{8}, \text { and } \frac{5}{4}
$$

are not allowable, because the numerator exceeds the
denominator. This limitation is significant, because there is a natural accent which falls on the first beat of every measure when music is accurately interpreted by a performer. This regular impulse, together with phrasing and secondary accents in compound meter, gives a composition its underlying rhythmic structure. The Music Maker does not automatically provide for this natural rhythm. The implementation of accent is entirely up to you. For example, a composition written in $4 / 4$ time may be made to sound like $3 / 2$ time with proper phrasing and specification of accent. Therefore, the time signature limitation does not actually limit the music you can write with the cartridge. Finally tempo is specified as a number from 1 to 30 , corresponding approximately to metronomic indications from 25 to 128 quarter notes per minute-sufficient range for nearly all compositions.
After these parameters are defined, the graphics representation for the first measure appears. Some music editors for other machines do not use graphics at all. It is a great advantage to see your composition displayed in standard notation as you are writing it.
Up to three voices may be "drawn" using whole, half, quarter, eighth and sixteenth notes and their corresponding rests. Single dotting can be used with notes, but not with rests. The notes for each voice are represented in a different color, which facilitates identification of voices when editing.
The pitch range is three octaves, extending from the second \mathbf{A} below middle \mathbf{c} (bottom space of bass clef) to the second a above middle \mathbf{c} (first ledger line above treble clef). This may seem like a wide range. In arranging several piano pieces for the TI-99/4A, however, we found that it was frequently necessary to make octave transpositions for notes extending beyond the Music Maker's pitch range in Traditional Mode. On the other hand, the Music Maker is not really intended for the transcription of existing music for other instruments, but rather to facilitate original composition. Like all instruments, it too has limitations which must be taken into account when preparing an original composition.
Accidentals (sharps, flats, or naturals different from the key signature) must be written for each note; once written, they do not carry over through the entire measure as they do in standard notation. For someone who is accustomed to standard notation, this may take a little getting used to. Additionally, the large and legible graphic symbols that the cursor picks up from the menu become too small to be easily read when placed beside a note.

Graphics

Graphics characters for the notes themselves resemble square notation, but we do not feel this detracts from their readability (especially when compared with the legibility of many manuscripts). However, in drawing clusters of two or more notes, we encountered a peculiar graphics-related difficulty. This is a function of the position (up or down) of an existing note stem. You will find that a note for one voice can not be placed at a pitch immediately above or below an existing note if that pitch is occupied by the stem of the existing note. The stems for voices one and two go upward unless they are placed immediately below a note in another voice which has its stem going upward. The opposite is true of voice-three notes. This means that while it is possible to represent any two-note cluster, the process can be more involved than would seem necessary. For instance, suppose you have already written a voice-one quarter
note at middle \mathbf{c}, and you want to write a voice-two note at dimmediately above it. Finding that you cannot do this simply, you would have to do the following: Change voices, erase the \mathbf{c}, change voices, draw the \mathbf{d} (voice-two), change voices, redraw the \mathbf{c} (stem down), and finally change back to voice-t wo to continue. A cluster of three notes with adjacent pitches cannot be written at all. These problems will be troublesome only in the event that the composer wants to write dissonant chords in the form of clusters.
At the bottom of the display is a double row of squares; the upper row is used to specify volume for each note. There are eight levels of volume which allow a very smooth crescendo or diminuendo without abrupt transitions from one level to the next. Some other music editors do not allow this degree of versatility in dynamics. This default value for loudness is the maximum level of eight. If you want to accent selected notes, say the first note of every measure, you must drop the volume of all other notes. A default loudness of six or seven might have been a little easier to use in this regard.

The bottom row of squares is used to indicate the width of each note; this is very helpful in positioning them. It also allows one to create rests without using rest graphics by simply leaving a gap between one note and the next. Two adjacent notes of the same pitch are automatically tied. The only way to articulate them is to leave a gap in between. For instance, one might write a dotted quarter rather than a quarter note, and the resulting gap would then prevent a tie with the next note.
At any point during the writing of a measure, you can play an individual voice or all voices. If you decide to make a change, this is easily accomplished by erasing an individual note or the entire voice. You cannot, however, insert or delete notes without making necessary adjustments to other notes in the measure.

Repetition is easily handled by copying an individual voice or all voices from a previous measure, and this can save a great deal of time. A given voice cannot, however, be copied as another voice. So if you want to use the copy feature to write rounds, they have to be scored differently than they would be in traditional composition. Any two voices can be copied by copying all three and then erasing the one which is not wanted.

When you are finished with a measure, you can either go on to the next measure or back to a menu which allows you to edit, play, save, or print your composition. If you choose to edit, you will be shown the number of measures completed and the percentage of file space used, and you will be given the option of changing the tempo. To play the composition, you specify which voices are to be played, and you are given the option of hearing the music transposed up or down by as many as eleven half steps (twelve half steps are an octave). If you transpose a note so that it falls below the Music Maker's range, it will not be played. You can interrupt the playing of a composition and view the graphic representation of the measure being played at that point, but graphics are not used when the piece is actually being played.

There are a few features present in some music editors for other machines which are not present in Music Maker. For example, the only way to initiate repeats is by manually pressing "SHIFT R" during the playing of a piece; no form of looping can be structured into a compostition.

Given the relatively vast storage space available (compared with music compositions written in TI BASIC), together with the copying feature, the lack of repeat capability is less significant than it might otherwise be. With 16 K of RAM, you will be able to write about 900 notes for each of the three voices. For example, writing all sixteenth notes for three voices, the file could be 57 measures long; with all quarter notes, it could be 224 measures. Additionally, there is no capability to write phrases and then arrange them in different voices. This capability could be useful when employing the device of imitation, such as writing canons and fugues. Even so, the same effect can be achieved with Music Maker-it just takes a little more effort.

In summary, despite the few shortcomings mentioned, the Traditional Mode provides a beautiful graphics-based editor which makes the process of writing music as enjoyable as listening to the finished product. Even if this were the extent of the Music Maker's capabilities, we feel it would be an excellent investment at the suggested retail price of $\$ 39.95$.

Sound Graphs

While some knowledge of music theory is essential for effective use of the Traditional Mode, the Sound Graphs method may be used without any prior understanding of music terminology. As the name implies, music is entered in a Cartesian coordinate graph format. The frequency graph can have a resolution of one-hundred-twenty vertical positions (frequency) by twenty horizontal positions (duration) per "measure." A Sound Graphs music file may contain up to 46 measures. A color-coded line is plotted on the graph with the cursor, and as in Traditional Mode, a different color is used for each voice.

The volume graph has a resolution of eight vertical positions (volume) by twenty horizontal positions (duration), and appears below the frequency graph. A separate volume graph may be plotted for each voice appearing in the frequency graph (default is the highest volume). In addition to the three voices, a Sound Graph may also include a noise which is plotted on the volume graph.

The user has the option of either Discrete or Continuous tones. Under the Discrete option, the vertical axis is divid-
ed into thirty frequencies, consisting of \mathbf{C} Major diatonic pitches from the second \mathbf{A} below middle \mathbf{c} to the third \mathbf{b} above middle \mathbf{c}. You can, however change any or all of these pitches with the List Tones option. Although any frequency from 110 Hz to $20,000 \mathrm{~Hz}$ can be used, tables are provided in TI's excellent documentation, giving the frequencies for chromatic, pentatonic, and gypsy scales. The frequencies can be changed at any time, even during or after the plotting of a Sound Graph.

Under the Continuous option you specify the upper and lower limits of the frequency range. These can be changed as often as you wish. The frequency axis is divided into 120 steps within this range, giving a frequency "slide" which sounds continuous and can be used to create sound effects such as whistles and sirens as well as interesting experimental music sounds. When you take into consideration the fact that a noise can be used in addition to three voices and that the composition can be played as fast as twenty characters per second, the range of possibilities is quite extensive.

In evaluating the noise, we were surprised to find that we could not distinguish any difference between the periodic and "white noise" groups-i.e., noises 1-4 and 5-8, respectively. Noise 1 appears to be the same as noise 5 ; noise 2 the same as 6 , and so on. If you are familiar with the difference between periodic noise and white noise in TI BASIC, do not expect to find the same distinction in the Music Maker.

Other aspects of using Sound Graphs are identical with the corresponding procedures used in Traditional Mode (namely editing, playing, saving, and printing).

If you have no knowledge of music theory, using Sound Graphs is a great way to begin exploring the TI-99/4A's music capabilities. Even if you are familiar with music fundamentals, you will be amazed at the versatility of the Sound Graphs method, and you will find that your TI-99/4A has potential you would not have thought possible.

In conclusion, the Music Maker Command Cartridge will greatly enhance one of the already outstanding features of your computer-its capacity for sound and music. We believe it is an accessory you will not want to be without.

