
11 =Mr
. 11

Emommi

 	 iii

noa 	CEAR

11(1 EAU CHAMPA. 111.1 00.151'.:0

3D1101, -)

HAPIOPPLZE

51]0 	LI SCREEP{2,

Ad4 	 tO 20

1.§0 Cal 5FAFTVOAMONTIA,
3.1.3,92.12L.AdmAlloo..51-2

.25.1/2.561401471-.51.A.IWRA

obdo)-2.25+A::".!;un„

=_J-""'„

3
Inside BASIC and Extended BASIC

F ir 	 110" 	
.11Ic

11111111;
jAl 1

.11; 1111i1" 1 11 1;1111.11 112.5m II I 11111 110111
P.

3
Inside BASIC and
Extended BASIC

Ready to try it on your own? All it takes is BASIC logic—
and a few tricks.

TRS-80 BASIC to TI BASIC 	 71

APPLESOFT to TI BASIC 	 73

The Secret of Personal Record Keeping 	 76

Dynamic Manipulation of Screen Character Graphics 	78

How to Write a BASIC Program that Writes BASIC Programs:
Part 1: A Surprising Discovery with

TI's Programming Aids III 	 85
Part 2: Rules of the MERGE Format 	 89

How E-X-T-E-N-D-E-D is Extended BASIC? 	 92

Pocket Tower of Hanoi 	 94

Language Conversion:

TRSd-80 BASIC
to

TI BASIC

Tucked away in my basement, I have both a Radio
Shack TRS-80 and a Texas Instruments TI-99/4A.
The half-dozen personal computer magazines I read

each month provide coding and ideas for many new pro-
grams for my TRS-80. I now have a large collection of these
programs and have grown to appreciate greatly the help and
enjoyment this software library provides. Unfortunately, it
just hasn't been that easy to acquire software for the TI
machine. [But now, with the birth of 99'er Magazine, this
situation will be rapidly remedied.—Ed.] The solution for
me was obvious. I'd convert my TRS-80 programs to TI
BASIC.

At the suggestion of 99'er Magazine's editor, I read an
article by Harley M. Templeton appearing in the November
1980 issue of Personal Computing magazine. Although the
article highlighted the major differences between the ver-
sions of BASIC used on the two systems, it didn't point
out which differences matter and which are merely in-
teresting but of little practical importance. As you might
expect, the only way to find out is actually to convert a pro-
gram and learn from the problems that you encounter.

To set up a fair test, I selected TRS-80 programs from
opposite ends of the spectrum: The first was a "number
cruncher" which I had written to convert the number cor-
rect on a test to a scaled value on a continuum of learning.
(My nine-to-five job involves the management of the stan-
dardized testing programs for the Portland, Oregon, School
District.) The other program was an adaptation of the ideas
behind a slot machine in David Ahl's Basic Computer
Games—a program with extensive use of graphics.

The first trouble I encountered was in converting the
PRINT AT command available on the TRS-80. The pro-
cedure suggested by Templeton was to set a loop as follows:

400 A$="PR1NT THIS STARTING AT 10,2"
500 C ALL CLEAR
600 FOR 1=1 TO LEN(AS)
700 N1=ASC(SEGS(AS,I,1))
800 C ALL HCHAR(10,(1+1),N1)
900 NEXT I

In theory this works fine, but it is s ow if the string length
is long; single characters don't walk across the screen—
they crawl! Since the program requires a prompt printed
in the middle of the screen to cue the operator to enter the
next five values for the scaling procedure, my final solu-
tion was to use the following coding:

100 PRINT "MESSAGE AT THE MIDDLE OF THE
SCREEN"

200 PRINT 	
This procedure causes the text prompt to scroll up from the
bottom to the middle of the screen. It is not especially
speedy, but it is fast enough for the data entry in cases where
you don't need lines that disappear at the top of the screen
as the result of this scrolling action.

The ease with which the "number crunching" code con-
verted was a pleasant surprise. It was important to keep
track of the differences in the line numbers for GOTO's
and other branches, but that, in fact, presented little pro-
blem. What was more difficult was converting the logic of
IF-THEN-ELSE clauses. TRS-80 (Microsoft) BASIC allows
multiple statements following the THEN- and ELSE-coding
that are difficult to keep straight and re-code. The multiple
line conditionals can be converted, but the conversion re-
quires a clear head and a basic understanding of how the
program works.

Because I had written the TRS-80 program myself (it had
more lines of documentation than coding) and naturally
understood its operation, the conversion was fairly straight-
forward. After I changed nearly all the PRINT and PRINT
AT statements, the program worked the first time (surprise).
To check it out, I made a comparison run on the TI-99/4
and the TRS-80. Surprisingly, they ran the same job in
almost the same time: three minutes for a forty item test.
Finally I spruced up the program a little with CLEAR and
CALL SCREEN commands to take advantage of the col-
or options available on the TI machine.

The second program was a challenge. It had essentially
four main parts: (1) an introductory message, (2) the set-
up graphics of the "slot machine," (3) the rotation of the
wheels in the slot machine, and (4) the determinaton of the
winnings and losses. The first and easiest part of the pro-
gram to set up was the section which printed the introduc-
tory messages. I couldn't resist adding the CALL SCREEN
command and sprucing up the comments to make it more
attractive (at least to me). In this instance, the lack of speed
for the HCHAR command was a benefit since it painted
the screen at a leisurely-yet-pleasing pace. Before I was
through, I had changed all the code in this section for
aesthetic reasons.

My real conversion problems began in the second sec-
tion. There, I came face-to-face with the significant dif-

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	71

SUMMARY OF COMMANDS
TRS-80 Commands

Not Requiring Conversion

ABS
	

GOSUB
ASC
	

INPUT
ATN
	

INT
CHR$
	

LEN
COS
	

LET
DATA
DIM
END
EXP
	

VAL
GOTO

TRS-80 Commands
Easily Converted

TRS-80 	 TI BASIC

CLS 	 CALL CLEAR
INT
CALL KEY
INN IT,.

t.cr I >03.N) 	 ,N)

MU 	• 1,N2) 	>a •11,N2)
RA 	' 	 ••• ZE
RIG.. • rot$,N)

SEG Z(A1S,M,N)
RND(N) 	 INT(N*RND+1)
STOP 	 • <
TAB 	 —,,with comma)

PRINT
REM

T RS-80 Commands
That Can Be Ignored

Commands Difficult to Convert to TI BASIC

TRS-80 	 TI BASIC

IF.. THEN.. ELSE 	IF.. THEN.. ELSE*
refer to line ',JO* ,

POINT 	 CALL CHAR 	CHAR
POKE (graphics) 	CALL CHAR 	iCHAR
PRINT AT

NEXT
PRINT .. FOR .. PRINT " "
NEXT

RESET
	

CALL CHAR CALL HCHAR
SET
	

CALL CHAR CALL HCHAR
* Improved capability with multi•lina statements

in Extended BASIC.

Commands Not Available In TI

PEEK
	

STRINCI
POKE
	

USR
POS
	

VARPTR
RESUME
	

PRINT USING

**Mort of the equivalent commands are available in
TI Extended BASIC.

ERL
ERR
ERROR
ON ERROR

ferences in the way graphics are handled by the two systems.
In moving from a screen of 16 x 64 to one of 24 x 28, I had
to stop and develop a new outline shape for the slot
machine—one that would fit the TI screen. Deciding the
colors to be used in defining the outline of the machine and
the shapes to be matched (cherry, bar, bell, orange, lemon)
took extra time. After some experimentation using dark blue
against a white background, the lemon became a lime (dark
green). To develop a new set of four characters for the
orange, I experimented with CALL CHAR until the figure
finally looked like a circle instead of one of Dali's explod-
ed watches. Since there isn't an orange color available, the
orange became a plum (magenta). I was still a character
short, so I used the heart from the back of the user's manual.

En route to coding this part of the program, I had to
devise the shapes, assigning them to one of the sixteen
character sets. Twice, however, I made the mistake of try-
ing to conserve memory by using one of the character sets
with pre-defined codes. This caused errors in the print
statements using these codes. The moral of that experience:
Whenever possible, stay away from the first eight character
sets when defining new characters. It took a while to work
the kinks out of this section, but the addition of color made
a tremendous diffence, and I became hooked on TI
graphics. (I'll probably never turn the TRS-80 version of
this program again).

At this point, I realized that virtually every line of the
original program had been rewritten in the move to the TI
machine. Since this was to be an article on program con-
version, not programming, I called the editor at 99'er
Magazine to make sure I hadn't missed the point of the ar-
ticle. Gary, however, wasn't surprised at all, and encouraged
me to include suggestions on rewriting as well as conversion.

The third section of this program was probably the
toughest to convert. I have been responsible for program-
ming and systems analysis for over ten years on a variety
of large computer systems. This has required establishing
structured programming standards for every program with
which I work. Even though I had personally keyed in the
slot machine program, I had forgotten how poorly it was
documented. This is not a criticism of Ahl's book, but rather
a realistic comment on what you are likely to encounter

An Example of Code Translation
From TRS•80 BASIC to TI BASIC

120 FOR II = 1 TO NI
130 IF IZ(I1)< > 0 THEN PRINT "THIS ITEM
DROPPED";ID$: GOTO 160
140 IF K$ = K1$ THEN IF C1(I1)=0 GOTO 160
ELSE C2= 10*C1(I1) + 200
150 DX = C3 – C2
160 NEXT II
Translates to:
120 FOR II = 1 TO NI
130 IF IZ(I1)= 0 THEN 140
132 PRINT "THIS ITEM DROPPED";ID$
134 GOTO 160
140 IF K$ < > K1$ THEN 150.
142 IF Clap= 0 THEN 160
144 C2= 10*C1(I1) + 200
150 DX = C3 – C2
160 NEXT II

when converting a program. After an hour of tracing
through a maze of GOSUBs without the benefit of a single
comment, I decided on a total rewrite.

The TRS-80 version had the program determine the coor-
dinates of one of the nine open spots on the slot machine
and then perform a PRINT AT at the location. Using FOR-
NEXT loops, I was able to overprint the nine spots to give
the illusion of a rotating machine wheel. By converting the
PRINT AT commands to HCHAR calls and storing the
four codes for each shape in an array, I simulated this ac-
tion on the TI-99/4. The graphics were fantastic (an un-
biased estimate), but the speed was disappointing. In the
TRS-80 version it was necessary to insert dummy FOR-
NEXT loops to slow down the rotation of the wheels; the
TI version, on the other hand, was too slow right from the
start.

The single enhancement I had made to the TRS-80 ver-
sion was to have the wheels stop one at a time, to prevent
giving away the final result of the pull during rotation. To
keep the wheels moving at a constant speed on the TI-99/4,
I included dummy counting loops as each wheel was
stopped. In spite of its lack of speed, the richness of the
TI-99/4 graphics made the TI BASIC program a more ap-
pealing simulation of real slot machine action than the
TRS-90 version.

To summarize, if the program you want to convert is a
number cruncher with a few graphics, the conversion should
go smoothly and result in a TI BASIC program which runs
with speed roughly comparable to its TRS-80 cousin. But
if the program involves the heavy use of graphics, expect
to rewrite it. And if the program is poorly documented to
boot, keep a bottle of aspirin handy. Futhermore, because
of the limitations of the TI BASIC IF-THEN-ELSE, and
the lack of a PRINT AT command you can expect nearly
every converted program to increase in length. On the plus
side, however, the extended variable names available in TI
BASIC make it possible to enhance the quality of the
documentation and structure of the rewritten program.

One final note: TI's Extended BASIC Command Car-
tridge adds the PRINT AT and PRINT USING statements,
has the capability of controlling up to 28 moving objects
simultaneously, has improved IF-THEN-ELSE capability,
and supports true subroutine definition (a significant aid
in structuring programs). Although Extended BASIC pro-
bably won't alter the need for rewriting graphic programs,
it should make the job a lot easier.

72 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

Language Conversion:
VoUS T 2

APPLESOFT
to

TI BASIC

The Apple II has also generated its fair share of ap-
plications and games programs—most of them tak-
ing advantage of the Apple's color graphics capability.

In this regard the Apple is more like the TI-99/4A than the
non-color TRS-80.

The APPLESOFT language card has about 29 non-
graphic commands which are identical to TI BASIC. These
commands, shown in Table 1 below, can be copied without
much concern over compatibility.
ABS DEF GOTO ON...GOSUB SOP
ASC DIM INT READ STEP
ANT END LEN REM STOP
CHM' EXP LET RETURN STR$
COS FOR...TO LOG SGN TAN
DATA GOSUB ON...GOTO SIN

Table 1
In the remaining 26 or so commands, the differences range
from very slight to major. Most importantly, the differences,
though slight in format or content, can cause major prob-
lems in converting code. I'll go into each command, show-
ing what to look for and how to resolve difficulties.

String Commands
APPLESOFT uses three different commands (LEFT$,

M1D$, and R1GHT$) in place of the TI's SEG$. The state-
ment LEFT$(A$,N) references the first N characters of
string A$. This directly translates into SEG$(A$,1,N).
MID$(A$,M,N) is the same as SEG$(A$,M,N).
Right$(A$,N) references the last N characters in string AS.
The best way to duplicate this is to combine the LEN and
SEG commands as follows: SEG$(A$,LEN(A$) — N + 1,N).

The VAL function acts the same way in both AP-
PLESOFT and TI BASIC if the field being VALed is a valid
numeric string. That is, both will return 45.2 as the value
of "45.2". If the string does not contain valid numeric
characters, however, the results are very different. TI BASIC
will stop the program if the field contains non-numeric
characters. APPLESOFT, however, will return with the
numeric equivalent of the numbers found in the string before
the first non-numeric character. For example: VAL
("123AB") will return with 123. If the first character of the
string isn't numeric, APPLESOFT returns a 0.

This is important because it means that APPLESOFT
does not have to edit a string prior to the VAL statement.
A typical program will have code such as:

10 INPUT A$
20 X = VAL(A$)
30 If X = 0 THEN 10

I've found that in most cases, I can ignore the whole issue
by using TI's built-in numeric editor and coding INPUT
X in place of statements 10 to 30 above. If you can't do
this, use the following routine to replace the APPLESOFT
VAL command:

10 FOR Y = 1 TO LEN (A$)
20 IF (ASC(SEGS(A$,Y,1))< 48)

+ (ASC(SEG$(A$,Y,1))> 57)THEN 40
30 NEXT Y
40 IF Y = 1 THEN 80
50 Y = Y — 1
60 Y = VAL(SEG$(A$, 1,Y))
70 GOTO 90
80 Y = 0
90 END

Note: This is not a rigorous equivalent of APPLESOFT's
VAL, but it is sufficient for whole numbers greater than — 1.

FOR-TO-STEP -NEXT
In the usual run of programs, the FOR-TO-STEP state-

ment is identical in the two interpreters. There is, however,
a very significant difference to look out for. The BASIC
statement FOR Z = 5 TO 4 will execute once in AP-
PLESOFT but will not execute at all in TI BASIC! This
difference is important but can easily be spotted while
transcribing a program. It isn't so obvious if the statement
is FOR Z = A TO B where A and B are computed variables.
The safest thing is to test for A greater than B. If it is, make
B equal to A before entering the loop.

Both interpreters treat the STEP statement the same way
and are very similar in the format of the NEXT statement—
though in APPLESOFT, NEXT may be used by itself to
end a single FOR loop. If the FOR loops are nested,
however, APPLESOFT needs the control-variable name
following NEXT, as does TI BASIC.

INPUT/OUTPUT (I/O)
Both machines use very similar INPUT and PRINT

statements. They differ only in the use of print separators.
Both use the comma as a tab command and the semicolon
as a non-space separator. APPLESOFT reserves the colon

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	73

for a special use and doesn't treat it as a new line separator.
When converting, always keep this in mind because it pro-
vides a powerful formating tool when converting PRINT
statements. The TAB command is similar in both inter-
preters, but TI machine skips to a new line if a TAB value
is less than the current column location. The APPLE will
ignore the TAB statement in this case.

As part of the print function, APPLESOFT has a com-
mand of the format SPC(N), which is used to print N spaces.
This must be replaced with a string of N spaces in the TI
PRINT statement. APPLESOFT has to be very careful with
spaces because it does not format a number with leading
and trailing spaces the way TI BASIC does. This means that
it is very rare to see something like PRINT J;K in
APPLESOFT—a perfectly acceptable command in TI code
since all numbers are printed with a trailing space.

The APPLE II screen starts off with the cursor at the
top and works its way down to the bottom before scrolling
begins. The APPLE uses HTAB and VTAB statements to
shift the print position horizontally and vertically in order
to print information at different locations on the screen.
TI BASIC uses the colon, instead, to force line feeds. When
converting, either change the print format to use line-feeds
(colons), or use HCHAR to print at an equivalent location.
Note: TI provides a full PRINT AT (using HCHAR) routine
as part of its Programming Aids I package, but it is very
slow. In many cases (where scrolling is acceptable), you are
better off setting up a sequence of PRINT commands us-
ing the colon (PRINT) If you must use the
HCHAR method of print out, here's a routine to print string
A$ at row RO, column CO:

10 FOR X =1 TO LEN(A$)
20 CALL HCHAR
(RO,C0 + X — 1 ,ASC(SEG$(A$,X,1)))
30 NEXT X

This routine is much faster but requires you to remember
to begin at column 3 (where TI BASIC begins its PRINT
line) and not to allow A$ to extend past column 30 (where
TI ends its PRINT line).

The prompt for APPLESOFT input is the same as for
TI BASIC except that it uses a semicolon in place of the
colon to separate the prompt from the input variable. For
example:

10 "ENTER A NUMBER";Q
VS

10 "ENTER A NUMBER":Q

The last I/O difference concerns getting a single character
without using the INPUT statement: APPLE uses the GET
statement, while TI uses the CALL KEY statement.

SCREEN COMMANDS
The APPLE has three modes of processing: Text mode

and two different graphics modes. While in Text mode, the
programmer has a number of commands which provide a
wide range of control over the screen. The APPLE screen,
in this mode, acts like the TI—except it starts at the top
and works its way down to the bottom before scrolling. It
also allows the programmer to set the width of the print
screen ("text window") and the length (number of lines)
of the text window, among other things. Some of the most
commonly encountered commands are:

CALL — 936 Clears the screen inside the test window
CALL — 912 Scrolls the text window up 1 line
CALL — 868 Clears the current line from the cursor

to the right
HOME
	

Same as TI's CALL CLEAR
POKE 33,L Sets left margin of window to L
POKE 33,W Sets width of window
POKE 34,T Sets top of window
POKE 35,B
	

Sets bottom of screen
FLASH
	

Starts 'flashing' output from white let-
ters on black to black letters on white
and back again

INVERSE
	

Reverses output to black letters on white
NORMAL
	

Resets FLASH and INVERSE
POS(N)
	

Gets current horizontal column of the
cursor (i.e., N will have column number
0-39)

To simulate FLASH or INVERSE, use TI BASIC's CALL
COLOR statement. For Example, CALL COLOR (3,16,2)
gives white numbers from 0 to 7 on a black background.
Changing this to CALL COLOR (3,2,16) will cause the in-
verse of it to appear (black numbers on a white background).

RANDOM NUMBERS
Because APPLESOFT has the ability to retain a random

number for re-use, you cannot always convert the APPLE
RND statement directly to TI. In APPLESOFT, if the state-
ment is RND(), APPLESOFT re-uses its last random
number. If the statement is RND(N) where N is positive,
it gives a new random number. If the statement is RND(N)
where N is a negative number, N acts as a 'seed' number,
and all other RND statements will follow a standard se-
quence. Note that the value N can be any positive number
in order to give a new random number.

If you see a statement using RND(), backtrack to the
last statement with RND(N) and save that random number
in place of RND(). For example:

10 If RND(2) < .5 THEN 500

60 If RND(0)< .75 THEN 600
in APPLESOFT would convert in TI BASIC to:

10 Q = RND
15 IF Q < .5 THEN 500

60 IF Q < .75 THEN 600

MULTISTATEMENT LINES
A key point about APPLESOFT that I haven't yet men-

tioned is that it allows multiple statements on one program
line. Each statement is separated by a colon. This allows
code like:

10 X=X+Y:Y=Y+ 1:Z=Z+ 1
Translating multistatement lines can be a big problem
because there may not be available line numbers to assign
to the converted statement lines. For example:

400 A= A+ 1:FOR I= 1 TO X:B = I*A:NEXT I
401 GOSUB 403
402 RETURN
403 REM
404 GOSUB 600
405 A = A + 10
406 RETURN

74 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

The problem here is that there is no room to separate the
multiple statements on line 400.

You can get around this by using a line number transla-
tion: Multiplying all line numbers by 10 allows you space
to insert the extra line of code. The translated code is as
follows:

4000 A = A + 1
4002 FOR I = 1 TO X
4004 B= I*A
4008 NEXT I
4010 GOSUB 4030
4020 RETURN
4030 REM
4040 GOSUB 6000
4050 A=A+ 10
4060 RETURN

IF-THEN -ELSE
APPLESOFT does not require the ELSE feature of an

IF statement because it allows other statements after the
THEN part of the IF statement, as in the following:

10 IF A=X THEN X=X+1:Y=Y+ 1
20 A=X+Y

If X is equal to A, all statements following THEN are ex-
ecuted. If X isn't equal to A, the program simply advances
to statement 20. The TI BASIC equivalent is:

10 IF X = A THEN 15 ELSE 20
15 X = X + 1
16 Y=Y+1
20 A=X+Y
Because TI BASIC lacks multiple statements per line, it

requires much more coding and a concurrent increase in
memory needed for code. Keep this in mind if you are temp-
ted to enter a program requiring 16K RAM in AP-
PLESOFT; it probably won't fit in your TI machine. [Of
course, if you have TI Extended BASIC, all this is moot,
since this Command Cartridge allows multiple statement
lines. See "HOW E-X-T-E-N-D-E-D IS EXTENDED
BASIC?"—Ed.]

LOGICAL EXPRESSIONS
Both interpreters allow logical expressions to be used as

if they were numeric values. APPLESOFT treats true ex-
pressions as if they are equal to 1, while false expressions
are equal to 0. For TI BASIC true expressions are — 1, false
are 0. Whenever converting code from APPLESOFT,just
insert a " — " in front of the logical expression:

10 X = (OS = "A")*5
becomes

10 X = — (0$ = "A")*5

AND/OR
APPLESOFT allows multiple IF tests to be combined us-

ing the Boolean operators AND and OR. TI BASIC also
allows this using the "*" and " + " arithmetic operators,
respectively. For example:

10 IF (A = B) AND (C = D) THEN X = X + 1
is replaced with

10 IF (A = B)*(C = D) THEN 15 ELSE.. .
15 X = X + 1

In some cases, a straight conversion of the APPLESOFT
IF-THEN will result in wasteful code. It is always a good
idea to understand the purpose of the tests being made, and
if possible, re-code them more efficiently. For example:

10 IF (A = B) AND (C = D) THEN X = X + 1
20 Y = Y + 1

would convert to:
10 IF (A = B)*(C = D) THEN 15 ELSE 20
15 X = X + 1
20 Y = Y + 1

but it would take less code (and therefore less core!) to in-
vert the test:

10 IF (A < > B)+ (C< > D) THEN 20
15 X = X + 1
20 Y = Y + 1

SPECIAL FUNCTIONS
Each interpreter has special functions oriented toward the

manufacturer's hardware. Some of these are similar to other
functions available in a different computer. I will list only
the ones most commonly seen in APPLESOFT programs.
CLEAR Initializes all variables. Automatically

done by TI BASIC as part of RUN.
HIMEM
	

Sets highest and lowest memory
LOMEM 	available to BASIC. No equivalent in

TI BASIC.

FRE(0)
	

Gets amount of available memory left.
PDL(N)
	

GETS joystick input. In TI BASIC,
use CALL JOYST instead. The PDL
function returns with values from 0 to
255. If the value of N is 0 to 3, you
are referencing the joysticks, but values
from 4 to 255 can do weird things.
Luckily, the APPLE joysticks don't
seem to be used much. Also, the only
way to test for the 'FIRE' buttons is
to PEEK(— 16287) through
PEEK(— 16284) for paddles 0 thru 3.

POP
	

Cancels the last GOSUB. This is most-
ly used in edit subroutines where an
error causes the progam to go to an
error routine instead of RETURNing.
The only way to code an equivalent in
TI BASIC is to have the edit routine
coded in an error switch which is inter-
rogated as soon as the subroutine
RETURNs.

ON ERR
RESUME
	

This tells APPLESOFT to GOTO a
part of the program if it encounters
certain errors while processing. In TI
BASIC, any errors are either handled
by the BASIC interpreter (e.g.,
dividing by zero), or cause the pro-
gram to end (e.g., reading past the last
DATA statement). The ON ERR is
most often used to trap an error ex-
pected by, or consciously caused by
the programmer.

USR(X)
	

Jump to a machine language
subroutine.

As you can see from the foregoing, converting most code
from APPLESOFT to TI BASIC is straightforward,with
most of the effort devoted to converting PRINT statements.
Most importantly, don't get frustrated if your first attempts
don't succeed the way you intended. After a while, it will
all become second nature.

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	75

The Secret of
Personal Record Keeping:

Implementing

DISPLAY AT
and

ACCEPT AT

Without Extended BASIC

S ome of you may have accidentally stumbled upon
features of the TI-99/4 that are not described
anywhere but which are nonetheless quite helpful. I

did. . .and what happily resulted was a way to quickly print
text to and accept it from anywhere on the screen without
having to pass through loops or causing the screen to scroll.

Those of you with Extended BASIC already have this
capability with the DISPLAY AT and ACCEPT AT
statements. Now you can have these powerful features in
TI BASIC (the language built into the TI-99/4 and 99/4A
computers), provided the Personal Record Keeping Com-
mand Cartridge is inserted. This cartridge, which is quite
powerful and versatile in itself, will interface with the con-
sole's BASIC routines and allow you to use two new
statements: CALL D and CALL A. [See "Personal Record
Keeping: Managing a Mobile Home Park" for more infor-
mation on the PRK cartridge.Those of you without the PRK
cartridge but who happen to have the Statistics cartridge
should be able to use that instead.—Ed.]

Before getting into the documentation, I should, of
course, mention that you can also print anywhere on the
screen without CALL D by handling the printing character
by character using the subroutine given in the examples in
your manuals, i.e., "Character Definition." The drawbacks
of that method include lack of speed (the letters appear one
by one), more cumbersome programming and more
memory space taken up.
1. DISPLAY AT — numerical data

CALL D (R, C, L, V)

R = row number of first character of print line
C = column number of first character of print line
L = maximum length of print line; must be > =1
V = variable for the value that is to be printed

R/C— The R(ow) and C(olumn) variables are meaningful
with values between 1 and 24, and 1 and 28, respec-
tively (the print field 24 x 28 is used). Values below
the minimum of 1 (0 and negative numbers) are
treated as the value 1. Values above the maximum

(24 or 28) are automatically subtracted as many
times as is required to bring the result between 1
and 24 or 28; this result is then used as the R and
C value. This is a nice feature that eliminates many
program halts of "BAD VALUE" that often result
from careless programming. Data at the end of the
screen line is not printed at the beginning of the
next screen row as is the case with the CALL
HCHAR statement.

L— The L position can be used with a fixed number
(the maximum meaningful number is 28) or as a
variable to which the function can be assigned in
numerical form, like SEG$ in strings.

V— Instead of a numerical variable, you can also put
a number in this position; it will then be printed
on the screen in a position according to the rules
above.

Example 1
100 CALL CLEAR
110 V = 326525
120 CALL D(12, 10, 5, V)
130 GOTO 130

Of course you can explain why this program displays only
3265 in the middle of the screen. (Remember that a sign—
equivalent to a digit—precedes each number, and that plus
signs are suppressed on printing.) How would you have to
change line 120 to give the full 326525?

2. DISPLAY AT - string data

Version 1: CALL D(R, C, L, S$)
Version 2: CALL D(R, C, L, ("PAUL W. KARIS")
Version 3: CALL D(R, C, L, CHR$(N))

The variables R, C, and L work as described previously
under section 1, above.
Here expecially, L can be put to good use as a built-in SEG$.

76 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

Version 1: the string variables S$ is printed
Version 2: the string between quotes is printed
Version 3: a complicated way of saying CALL HCHAR(R,
C, N) that is merely men 	here as illustration of the
possiblities

Example 2
100 CALL CLEAR
110 A$ = "THIS IS MID-SCREEN"
120 CALL D(12, 4, 19, A$)
130 GOTO 130

3. ACCEPT AT – numerical data
The ACCEPT AT statement works like INPUT but can

be formated anywhere on the screen. The input prompt can
be printed in the appropriate place with the technique of
section 2, above. The built-in value checks are an additional
feature.

CALL A(R, C, L, F, A, MN, MX)

R, C, and L have been explained in section 1.

F = function variable
A = accept variable
MN = minimum value
MX = maximum value

F— The numerical variable in this position assumes a
value 1-7 depending on certain function keys be-
ing depressed. The values connected to these func-
tions in this way should not be confused with the
ASCII values of these functions that can be useful
in CALL KEY statements. For completeness, I'll
also tabulate the ASCII values here.

Function Key
CALL A value

(F position)
ASCII value

TI-99/4A TI-99/4

C.CD •cr
C

l
 N

N

U

)
 e
-

FCTN 5 SHIFT W — BEGIN 14

FCTN 8 SHIFT R — REDO 6

FCTN 7 SHIFT A — AID 1

FCTN 9 SHIFT Z — BACK 15

FCTN 4 SHIFT C — CLEAR 2

FCTN 6 SHIFT V — PROC'D 12

ENTER 13

CLEAR will not only give F a value of 2, but it
also clears the input printing field on the screen and
is to be used when typed input is not yet entered
and should be changed. Warning: This means that
if you write a program that continually loops to
a CALL A statement, CLEAR cannot be used to
break the program. Only QUIT or cutting the
power will work then, but it will also erase your
program in the process! The solution to this prob-
lem is to program your escape routine, e.g., IF
F = 3 THEN 10000 enabling you to use AID to
bring the program to line 10000 which reads: 10000
END.

A— The variable in the position of A assumes (accepts)
the value you typed in much in the same way as
the input variable does after you depress ENTER.
The F variable, of course, then gets the value 1 since
you have used the function key ENTER. If you
press ENTER when the print/input field contains
no information (only "space"), F will take on the

value in the above table if one of the function key s
has previously been pushed.

MN— The numbers or the values of the numerical
MX— variables in the positions MN and MX respectively

determine the minimum and maximum values that
A will accept. A gentle beep when you press the
ENTER warns you if you try to step beyond these
imposed limits. The screen, of course, will accept
any numerical data, provided that the length does
not exceed L(e.g., if L = 2 and MX = 10000 you still
cannot get A to become more than 99 since the
screen will not accept more than 2 digits). Since the
plus and minus signs (+ and –) as well as the let-
ter E (scientific notation) are all considered to be
numerical input, they will also be accepted. String
data, however, are not accepted by the screen at
all when you use CALL A in this way.

If MN = MX, A will accept only the MN and the MX value.
If MN > MX, A shouldn't accept any value at all, but il-
logically, it does accept the MN value.

Example 3
100 CALL CLEAR
110 CALL D(3, 3, 28, "ENTER 1, 2, OR 3")
120 CALL A(10, 25, 1, F, B, 2, 3,)
130 CALL CLEAR
140 FOR T = 1 TO 500
150 NEXT T
160 CALL D(15, 3, 28, "YOUR CHOICE WAS")
170 CALL D(15, 20, 2, B)
180 FOR T = 1 TO 500
190 NEXT T
200 GOTO 100

4. ACCEPT AT – string data
CALL A(R, C, L, F, A$)

R, C, and L are explained in section 1.
F is explained in section 3.
A$ = accept string variable.

A$ 	The variable in the A$ position is filled with the
typed string information when you press ENTER.

Example 4
100 CALL CLEAR
110 M$ = "PLEASE ENTER YOUR NAME"
120 CALL D(5, 3, 26, M$)
130 CALL A(10, 3, 20, F, N$)
140 CALL CLEAR
150 FOR T = 1 TO 500
160 NEXT T
170 CALL D(5, 2, 28, "THANKS " & N$)
180 FOR T =1 TO 500
190 NEXT T
200 GOTO 100

Now you're on your own: It's your turn to apply these
two new commands and, perhaps, discover some additional
ones.

[Note: In the event that Texas Instruments gets away from
producing "hybrid" Command Cartridges (containing both
BASIC and GPL coding), future releases of Personal
Record Keeping will not offer the capabilities described in
this article.—Ed.]

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	77

W ould you appreciate being able to write shorter
programs that effectively do the same thing as
longer ones? Or, would you enjoy watching the

computer do a large amount of the tedious and boring
designing, defining and selecting of dozens of graphics
characters—work that you would otherwise have to do
yourself? If your answer to both of these questions is YES,
read on, fellow 99'er.

The scheme used in the TI-99/4A to represent screen
character patterns with hexadecimal numbers is compact and
convenient—ingenious really. It's compact because only 16
digits uniquely specify the on-off states of the 64 pixels in
each 8 x 8 pixel character block. Such a system is certainly
more satisfactory than display systems that provide only a
small selection of predefined characters. It's convenient
because the programming requires only simple statements
of the form:

CALL CHAR(IJK,"0123456789ABCDEF")

to define any 8 x 8 character imaginable. Likewise the
statement:

CALL HCHAR(ROW,COLUMN,IJK,REPEAT)

will put character IJK anywhere on the screen. After a brief
period, one is able to work intuitively, giving little conscious
thought to the format.

Yet even with this system, there remains a considerable
amount of tedious work to be done because every character
we want on the screen (beyond the resident alphabet, etc.)
must be defined and must be located. Doing this for many
characters can mean lots of work, as in Figure 1, where a
graphic occupying less than half the screen contains 33 dif-
ferent characters. All 64 user-definable characters would use
up 64 lines of code just to define; if resident characters were
redefined, we could end up having in memory a hundred
or so program lines devoted to this one purpose.

In addition, there is the wear and tear on the program-
mer. He gets his ears burned if he leaves out one of those
quote marks. Additional possibilities for errors include leav-
ing out a comma or parenthesis or, worse, having a pattern
identifier string with more or less than 16 numbers, or in-
advertently typing in a nonhexadecimal symbol. Just type
in four or five dozen CALL CHAR(IJK,"0123456789
ABCDEF") statements and you will surely develop an acute
case of boredom. Such static definition—with a program
line for every new character and the resulting long list of
CALL CHAR statements—is a lot of trouble and a source
of errors.

It is also unnecessary. A little experimenting will show
that we can define screen characters with data statements
and a loop. Only a single CALL CHAR statement need be

78 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

typed in and carried in memory. Such a method was used
in the program which draws Figure 1. The program is given
in Listing 1, Xmas-Tree. The hexadecimal strings which
define the screen characters to be used are in data statements
starting at line 270. The loop starting at line 440 reads a
data statement and puts the hexadecimal string it has pick-
ed up into a CALL CHAR statement. Thus the definition
is sent off to graphic memory where it can be used later
in the program as many times as needed. In this program,
each data entry contains a comment to help one figure out
what is happening on the screen, and each data entry con-
tains three items: identification string, character number,
and pattern-identifier string. On the next pass through the
loop, another hexadecimal string is picked up and put in
the CALL CHAR statement. Thus another defined screen
character is sent off to memory.

After the program has cycled the last time through the
loop, all the screen characters described in the data
statements are in memory. They are now available using
CALL HCHAR or CALL VCHAR statements just as if
the program had run through dozens of CALL CHAR lines.
Fewer program lines have been used, the possibility of er-
rors reduced, and life has been made much easier for the
programmer.

In a similar manner, characters are located on the screen
beginning at line 740. For this application the data entries
have the form: identification string, row number, column
number, character number. The identification string serves
only as documentation. The loop at line 940 puts this in-
formation in a CALL HCHAR statement which then sends
it off to the video display processor. All characters will now
appear on the screen at their assigned locations. Of course,
the information we have in data statements could also be
stored on a floppy disk.

Dynamically defining characters and putting them on the
screen with data statements and loops (1) saves program lines
and effort, (2) reduces errors, and (3) can make a program
easier to follow if documentation is added. Although for
this program no special attempt has been made to reduce
the memory required, the information in data statments
could be packed tighter by omitting identification. Also, we
could incorporate the number of repetitions in the data
statements.

Figure 1. Mans different characters can mean lots of work for the programmer.
Figure 2. Screen characters used for one-pixel resolution in bar height.

Figure 3. Bar graph with one-pixel resolution.

Figure 4. Three variables plotted with one-pixel resolution.

Figure 5. An example of 99/4 graphics.

Another opportunity for making character definition and
placement a part of program dynamics occurs in plotting
bar graphs. Bar graphs are a frequent application for com-
puter graphics, and they look terrific on the color monitor.

On the TI-99/4A it is easy to plot a bar (Y characters
high) by just using CALL VCHAR(ROW,COLUMN,IJK
,Y). But the resolution will be very poor because we can
adjust the bar height in increments of only one full character,
which is about 3/8 of an inch on the 13-inch monitor. Ideally
we'd have a continuously adjustable bar height, but this in-
finite resolution cannot be realized with raster-scan systems.
We can, however, get resolution equal to the pixel height.
Toward this end we will define eight screen characters as
shown in Figure 2, The first character has the bottom row
of pixels turned on, the next one has the bottom two rows
turned on, etc. The eighth character has all pixels turned on.

These characters are then used as bar tops. Stick the right
one on top of your bar graph and you have resolution of
one pixel (which is 1/8 of a character)—quite satisfactory
with existing CRT's. On the 13-inch monitor this height in-
crement is about 3/64 of an inch.

The program in Listing 2, Bar-Topper,which uses this
method, plots the bar graph in Figure 3. The characters
available for use as bar tops are defined beginning at line
360. Scale of 1 character = 10 units is applied to the value
entered at the keyboard starting at line 700. The integral
value of Y is found and the remainder used to select the
bar top character needed. The actual selection is done by
the ON GOTO statement at line 780.

This program does work, but represents a brute force ap-
proach. If there is only one bar on the graph, then only one
character will be used at the bar top. Yet eight bar-top
characters have been defined and are sitting in memory. To
take an extreme case, suppose we have four variables to be
represented by four bars of different colors. Here, 32
characters must be defined and available for use as bar tops,
yet only four bar-top characters will actually be used. Besides
taking up memory, we have used half of the user-defined
characters. This approach is wasteful. Why define characters
that sit in memory but are never used?

Let's try a better idea by devising a program that defines
bar-top characters after reading the data. Then it can define
only characters that are needed. In other words, the data
determine what bar-top characters are defined. To do this,
we will have in the program a master string containing four-
teen zeros and sixteen F's. Segments exactly sixteen spaces
long can be taken from this master string with a SEG$ state-
ment. Next, the segment can be used as the pattern-identifier
string and put in a CALL CHAR statement to define a bar
top. Where will these 16-space segments start? Well, the data
can cause a character with the first row of pixels turned on
to be defined, or a character with the second row turned
on, etc.

A possible coding to do this might be as follows:

110 MASTER$ = "0000000000000OFFFFFFEFFFFFFFFF"
115 REMAINDER = BARHEIGHT — INT(BARHEIGHT)
120 TOPPATTERN= INT(REMAINDER*8 + .5)+ 1
130 STARTPOSITION = 2*TOPPATTERN —1
140 TOPPATTERN$ =SEG$(MASTER$,STARTPOSITION,16)
150 CALL CHAR(97,TOPPATTERN$)
160 CALL HCHAR(21 —Y,16,97,3)

Here the 21 in 21 — Y allows the bar to be up to 20 rows high.
Suppose, for example, that data calls for a bar top with

the bottom two rows turned on. Then TOPPATTERN will

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	79

be 2. Then STARTPOSITION = 3. Then the pattern-
identifier string created in line 140 will be

TOPPATTERN$="00000000000OFFFF"

(as you can see, if you will take the trouble to count this
off, starting at the third position in the master string). The
resulting screen character that is defined in line 150 will be
one with the bottom two rows of pixels turned on. As the
program runs, we want each datum to determine where the
16-space segment will begin. Thus we have used the re-
mainder to calculate STARTPOSITION. By notching back
and forth with STARTPOSITION, the routine will define
any character needed to top off a bar.

With this particular routine there will be a little problem
associated with rounding up to the next higher grid line on
the next higher row. For instance, if the scale used is 1
character = 10 units, we would want 99.9 to appear on the
graph as 100. Another problem (I didn't say this was too
simple) involves the character to be used for the body of
the bar. This character must have all pixels turned on, but
the routine above will not create such a character for all
values of the data set.

Auto-Top, a program in which these problems are solv-
ed, is given in Listing 3. A routine similar to the one above
starts on line 750. Character 96, which is used for the body
of the bar, is defined earlier in the program. Note that this
master string contains 18 F's. (If you try this program, you
had better count them carefully.) TOPPATTERN = 9 will
pick up the extra F's at the 17th and 18th positions.

The problem of rounding up to the next higher grid line
(so 99.9 will show up as 100 as in the earlier example) is
taken care of in lines 820 and 830 where a one-row-on
character is defined and put on the very top of the bar if,
and only if, TOPPATTERN = 9.

A graph with only one bar is not very useful. We can
generate additional bars with a loop. The routine in Listing
4, Three-Bars, plots three bars of different colors. See line
680. (My 13-inch monitor displays a lot of spillover with
most colors—especially with red. There is less spillover with
light or medium green or blue, and with white and yellow.)
As the loops runs, it will shift to succeeding color sets with
the expression 89 + BAR*8 as can be deduced by consider-
ing the statement

CALL CHAR(89+BAR*8,TOPPATTERN$).

When BAR = 1, this statement defines character 97; when
BAR = 2, character 105; and when BAR = 3, character 113.
The first character is in color set 9, the second in color set
10, and the third in color set 11, allowing for three bars of
different colors.

The position of the bars is shifted by the expression.
11 + 5 = 16 is the position of the left edge of the first bar,
and the left edges of all bars are 5 columns apart. These
bars are three columns wide. Figure 4 shows this graph as
photographed on the 13-inch monitor.

This program and the earlier ones here might be a little
longer than if they were written in the standard way.
However, they will not get much longer if the graphics are
made more elaborate. For example, the bar graph program
does not get much longer if more bars are added.

The bar graph in Figure 5 was made using these tech-
niques. I present it here just to show off the kind of
goodlooking graphics that can be made with the TI-99/4A
and TI BASIC. This program—with its outlining and the
fact that it reads and writes data for eight variables from
files and calculates items such as percentages—is more in-
volved than the listing given here.

This brings up a new problem that has been created: In
many of my programs I run out of characters. I did not
notice this limitation when I was typing in so many CALL
CHAR, CALL HCHAR, and CALL VCHAR statements.
Actually when you think about it, there are not very many
characters available. If you start at the left of the screen
and put a different character in each space, you will run
out of characters in the fifth line if you include punctua-
tion, number, the alphabet, and the eight user-definable sets.

In other words, it takes only about 17% of the screen
to display all available characters. Mathematically, we are
not about to run out of characters since there are 256 dif-
ferent ways to put together just one row of a character. And
the number of characters that can be on the screen in this
graphic mode is 24 rows of 32 columns = 768 spaces.

Since my interest is primarily in graphics, available user-
definable characters are more important to me than
memory. Memory problems can often be avoided. To put
a unique character on every space on the screen would re-
quire 48 character sets—several times more than any home
computer presently has. I do not know if this is
unreasonable. Two years ago the idea of a 48K memory
sounded unreasonable. Perhaps some computer architect
will devise a method of going to a higher resolution with
nested character sets. [For a discussion of the high-resolution
bit-mapped graphics supported by the TI-99/4A, see "3 – D
Animation with the TMS9918A Video Chip."—Ed.]

Finally, note that for some applications it can be useful
to define random graphics characters. This process,
however, really eats up character sets. In Listing 5, Twinkle,
random characters are defined that also have a certain
amount of shape. Line 240 of this code generates random
numbers from 1 to 16, and lines 480 to 620 convert them
to hexadecimal notation 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.
These numbers are assembled into a 16-space string. This
hexadecimal string then goes into a CALL CHAR state-
ment to define a random graphic characher.

Shape is forced on the character in lines 280 to 470 by
rejecting certain numbers generated by the random number
generator. In this particular application, the edges of the
characters are "rounded off" so they will not appear square.

I use such random-patterned screen characters to soften
up the edges of my "block graphics" designs. ("Blockhead
graphics?") Another application is to create dramatic ef-
fects as is done in Twinkle given in Listing 5.

I also use random characters to induce variations on
things that, as in nature, change with time-shadows or ex-
plosions, for instance. Some video games could undoubtedly
profit from this technique. I get a little tired of aliens that
always blow up the same way. Hmm—come to think of it,
there is that video game with the pigeon in it. . . .

80 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

Listing 1 610
620

C
C

AL L
AL L

C
C

H AR
H AR 1

3
2

4
5

4
4

3
3

6
5

100 R E * * * 630 C AL L C H AR 6 4 3 	4
110 R E * X A S -THE E * 640 C AL L C H AR 1 6 4 3 	3
120 R E * * * * 650 C AL L C HAR 9 6 14 3 3
130 660 C AL L C HAR a 7 14 3
140 670 R E --TR RU
150 EI ABOUT 7 5 68 B Y TE S 680 C AL L C HAR(2 0 7 4 2 	2)
160 EM PRESS A NY K E Y T 0 	E N S C H E EN 690 R E --PL A PO

4 , 2) ISPLAY 700 C AL L C HAR(2 2 6 4
1'7 0 ALL SCREEN 2 710 C AL L C HAR(2 2 7 5 0 , 3)

8 0 ALL COLOR(9 7,1) 720 C AL L C HAR(2 2 4 7 	2)
9 0 ALL COLOR(0 ,14, 730 R El C BEEN AT ON DA A

2 0 0 ALL COLOR(,14, 4 740 R El 0 RI AT NT FI CAT RO CO
2 0 ALL COLOR(2 ,12, 4 L UI 	N H ARAC ER
2 2 0 ALL COLOR(3 ,2,4 750 D ATA 0 T BA EF IDE 2 4 6 4 6 , P
2 3 0 ALL COLOR(4 ,7,4 0 T 	B A 	E RIG ID , 2 4,8 1 4
2 4 0 ALL COLOR(5 	, 1 5 , 760 R E FO A

0 ,18, L 2 5 0 ALL COLOR(1 6 ,5,1 6 770 D ATA 6 , 8 	2 3 6 LO 7
2 6 0 E PATTER N IDEN T IF E 	S ,96 , 17 , 2 3 6 , o , 16 6 L I 6
2 7 0 E FORMAT IDEN T IF C A T 0 N C H AR A 2 ,13 6 	L 0,15 9 6 , 15 , 3 3 6

TER NUMBER HEXA D EC M A L S T N G 780 D ATA 0 , 14 , 6 , L ,1 4 	3 3 6 LO 3 ,
2 8 0 E EXAMP L E TR E E T U N K 4 2 4 E9 3 2 ,96 , 13 , 3 3 6 , o, 12, 9 6 L I 2 ,

635C659487 A THE E B 0 D Y 4 3 0 0 00 0 4 ,13 6 	L 0,11 9 6, 1, 11, 3 6
000000000. 790 D ATA 0 10, a 9 6 , L ,1 0,5 3 6 LO , 4

290 ATA LEFTSI E OUT 96 0 	0 7 0 7 0 F 0 F OF 96, L 9 '5, 3 6
7F,RIGHTSI E OUT 97 8 0 E 0 E 0 F 9 F 0 F0 F 800 D ATA 0 5,6 9 6 5 , 7 	1 3 8 6 	6 9
FE,BORDERT 0 P,98 7 F7 F 3 F 0 7 0 7 01 0 00 6 ,LI 7 13 6 7 5, 7 9 1 3

00 ATA TREE B 0 TTO , 9 9 F F F 8 F 8 F OF 0 E OC 0 L 0,8 9 6,L 8 6 36
0,B,100,FF 3 FOF07 70 3 0 	0 0 810 D ATA 0 5,8 7 RO 8,9 7 6, 7 13

10 ATA BORDER TOP,1 2 F F F F F F F F F F 0 00 0 7 ,R0 8 ,97 7 , 7 ,1 37, 8 9 , 9 , R
0,BORDER B 0 TTO , 1 0 3 0 0 0 0 0 0 F F F F FF F ,8, a 3 7,R 9 10 97
FF 820 D ATA ,B,B 3 , 1 0 	1 0 9 7 RI 1 0 ,

20 ATA PLU ,1 0 4,10F FE F E F E 7 C 3 81 0 BE 9 ,13 7 0,1 1 97 RI 	, :11 1 0 37 o,
,107,10103 8 387C7 7C F E 2,1 9 7,RI 2 10 13 7

30 ATA
OND,113,10

PLU ,1 2,10F
0387C

E FE
F E7

F F E
3 8 1

7 C
0

3 8
B E

0
L L

DI
11

A
5

830 D
4

ATA
,12

0
7

,13,
,RI,

1
1 4,

7 ,
1,

13,
3 i ,R0 1 5

3 7
2 , 	7

, 	1
, R

101038387C 7 C 7CFE ,15 ,137 LO 16 12 ,97
340 ATA PLU ,1 2 0,10F E FE F E F E 7 C 3 8 1 0 DI A 840 D ATA ,16, 1 1 	, 37 LO ,17 3 7 ,

121,101038 7 C FE7C 81 0 B E L L 1 2 3 10 7 ,12 3 7, LO 18 13 97 8 2 3 7
38387C7CFE F E 19, 99,B , 9 , 1 39

3 50 ATA PLU ,1 2 8,10F E FE F E F E 7 C 3 8 0 DI A 850 D ATA ,19 1 a0 BO 	19 9
OND,129,10 1 0387C F E7 3 8 1 0 B E L L 13 860 D ATA 0 TT 0 20 5, 9 6 , 	, 0 9 9 9 19
101038387C 7 C 7CFE 7,1 3 B, 19 8 , 9, ,1 9,4 1 0 , 5

3 60 ATA LEFT I N SIDE, 36 F E F 8 F 0 F 0 E 0 E 0 140 19 ,2 96 1 9, 3,9
00,RIGHT I N SIDE, 37 7 F 1 F 0 F 0 F 0 7 07 0 870 D ATA IN 1 8 7 13 9 OU 3 6
00, T,138, F FE7E7 30 0 	0 0 1 880 R E CR SS

70 ATA BOTTOM IN,13 ,0 0 7 0 7 0 F 0 F 0 F 3F F 890 D ATA 0 P, 2, 7 , 	1 2 , ADI A 2 6 5 3
,B,140,80C 0 EOEOE FO F F F R RA D A L,2 8 , 	1 3, ADI A 1 7 , 	5 4 ,

380 ATA TRUNK, 42,4E 3B 6 3 5 C 6 5 9 4 8 7A B RA D A L,3 7 , 5 4, AD, 4 7 54
E BODY,143 00000 00 0 0 0 0 0 0 0 0 PO T 900 R E - -0 AM NT
144,3F3F3F 3 F3F3F 3 F3 F 910 D ATA U TSI D LL 7, 9,1 4 2

90 ATA POT LE F T BOT 0 4 6 3 F 3 F 3F 3F 3 2 ,10 7 	P LU 4 4 , 1 2, DIA 13 9 ,1
3F0F0F,POT R,147 F C F F C F C F F CF CF 3,B E 	L ,16 15

00 ATA POT R B ,149, F C F F 	F C F C F F0 F0 920 D ATA L UI , 	3 11 2 2 1 2 8 , D
B,150,FFF F FFFFF F F F F F F A 0 N 14, 4 2 LL,17, 3 3

10 ATA TOP,15 2 , 3C3 C 8 8 3 C C 3 C 3 , S TA 930 R BEE N AT ON 	LOO
RADIAL,153 FFFFF 0 0 0 0 F F F F F F S T AR 940 H 0 A Y =86

RADIAL,154, E 7E7E7 7 E 7 E 7 E 7 E 7 950 R EST 0 750
2 0 RE DEFINE LOOP 960 F OR C A RACT R=1 0 0 A
3 0 RESTORE 290 970 R EAD D ENTI ICA 0 RO 0
4 0 FOR CODE =96 T 0 15 4 A RAC NUI B
5 0 READ IDENTI F C ATIO N $ H A A C T E N U B 980 C ALL C HARI OW, CO N,C A A TE

ER,HEX$ B ER)
6 0 IF CHARACTE N Ui HER CO D E T H E N 4 8 990 N EXT C H A RAC ER
7 0 GOTO 490 1000 C ALL K E Y (0, ,S)
8 0 C ODE= CHARAC T E RNU B E 1010 I F 	S 0 T HE N 100
9 0 C ALL CHAR(C 0 D E,HEX $ 1020 E ND
0 0

0
NEXT
REi

CODE
START S BEEN D IS P L A Y Listing 2

2 0 CALL CLEAR 1 00 RE
3 0 RE ----TR E E BOD Y 110 RE BA R 0
4 0 CALL HCHAR(2 4 1,1 4 3 3 2 120 RE * * * * * *

5 0 CALL HCHAR(9 '6,1 4 3 130 RE
6 0 CALL HCHAR(8 2 ,1 4 3 ,1 140 RE
7 0 CALL HCHAR(7 ,3,1 4 3 ,9 150 RE
8 0 CALL HCHAR(6 , 3,1 4 3 ,8 160 RE P E I S S 	A 0 0 A
9 0 CALL HCHAR(5 , 4,1 4 3 ,7
0 0 CALL HCHAR(4 , 4,1 4 3 ,7 1 7 0 	V ER T C A L A X 2 0

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 	81

1'8
190

0 SCALE
CALL

='VERT
CLEAR

I C A L MA X 1 12 0
816

8 7 0
GOTO
CALL

970
HCHAR 2 Y 6 1 0 0 3

200 LABELS="ENT E HO R S E P 0 ER 8 8 0 GOTO 970

210 RO =12 8 9 0 CALL HCHAR 2 Y 6 1 0 1 3

220 COLU N=15 9 0 0 GOTO 970

230 GOSUB 1000 9 0 CALL HCHAR 2 Y 1 6 1 0 2 3

240 LABELS= 0 T 0 2 09 9 2 0 GOTO 970

250 RO =13 9 3 0 CALL HCHAR 2 Y 1 6 1 0 3 3

260 CO UMN=19 9 4 0 GOTO 970
270
280
290 CALL

GOSUB
INPUT

1000

SCREEN(8)
HOR S E P 0 E R

9
9
9

5 0
6 0
7 0

CALL
CALL
CALL

HCHAR
HCHAR
KEY(0

2
2
K
0
S

Y
Y

6
1 6 9

0 3
6

3

300 CALL COLOR(9,13,8) 9 8 0 IF S=0 THE N 9 7 0

310 CALL COLOR(10,2,5) 9 9 0 END
320 RE DEFINE CHARACTER 0 0 0 FOR POSITI 0 N 1 T 0 L E N A
330 RE FORMAT:IDENTIF1 ATIONS, H A A 0 0 LETTERS=SE G LA B E L $ P 1

34 0
CT
RE

RNU
GRID--
BER,HEKADE

-
IMA $ 0

0
2 0
3 0 CALL

CODE=ASC(L
HCHAR

E T
R
T ER
0 W , C o

l
L U M N 0

GRID 35 0 DA A L1NE,91,000 000000000 0 F F ODE)
VERTICAL AXIS,92,010 010101010 1 0 1 0 4 0 NEXT POSIT 0 N
,TIC MARK, 93,01010101 101017F 1 0 5 0 RETURN

3 60 REM --DEFINE BAR TOP
3 70 DATA

00
BOTTO)

0000000OFF,SE
RO OF PI

OND RO
ELSON,96,

ON,97,
0 	0
0 	0 L sting 3

00 00000OFFFF,THIRD RO ON 0 0 REM * *

3 8 0 DATA 98,0000000000FFF FF,FOURTH 9 0 RE AU T 0 T 0 P
,0 00000OFFFFFFFF,FIF H 100,000 0 0 0 2 0 RE * * * * *

FF FFFFFFF,SIXTH,101, 00OFFFFFF F 	F 3 0 REM
FF 4 0 REM

3 9 0 DA A SEVENTH,102,00FF FFFFFFFFF F 5 0 RE ABOU T 5 2 88 B Y T E S
El HTH,103,FFFFFFFFFF FFFFF 1 6 0 RE PRES S A N Y K E Y T 0 0 A

4 0 0 RE --- BASELINE - -- 7 0 VERTICALM A X 2 00
4 0 DA A BASE,104,FFOOOOF 000000FF 8 0 S ALE=VER T C A LM A X 2 0
4 2 0 RE DEFINE LOOP 9 0 CALL CLEA
4 3 0 RE TORE 350 2 0 0 LABEL$="E N T E H 0 S E OW
4 4 0 FO CODE=91 TO 104 2 1 0 RO =12
4 5 0 RE D 1DENTIFI ATIONS, HARACTERN U M B 2 2 0 C O UMN=15

ER HEX$ 2 3 0 GO UB 870
4 6 0 IF CHARACTERNUMBER>C0 E THEN 48 0 2 4 0 LA EL = 0 T 0 2 0 9
4 7 0 GO 0 490 2 5 0 RO =13
4 8 0 CO E=CHARACTERNUMBER 2 6 0 COLUMN =19
4 9 0 CA L 	CHAR(CODE,HEX$) 2 7 0 GOSUB 870
5 0 0 NE T 	CODE 2 8 0 INPUT " 0 0 WE
5 0 HE START SCREEN DISPLAY 2 9 0 CALL SCRE E N 8
5 2 0 RE ---GRAPH GRID-- - 3 0 0 CALL COLO 9 1 3 8
5 3 0 CA L 	HCHAR(22,13,104 8) 3 0 CALL COLO 0 2 5
5 4 0 FO RO =21 TO 1 STEP -1 3 2 0 RE DEFT N E C A A C T E
5 5 0 CALL H HAR(ROW,14,91, 7) 3 3 0 RE FORM A T D E N T F 1 C A HARA
5 6 0 NEXT R TERNUI BER P A T T E N
5 7 0 LABELS HORS E P 0 E R 3 4 0 DATA GRID L N E 9 1 0 0 0 a a 00OFF
5 8 0 RO =9 ,VERTICAL A X S 9 2 0 1 0 1 1 10101
5 9 0 CO U 	N 1 ,TIC ARK 9 3 0 1 0 1 0 1 0 7
6 0 0 GO UB 000 3 5 0 DATA BAR, 9 6 F F F F F F F F F BASEL
6 1 0 CA L 	V HAR(1 1 3 9 2 	2 1 IN ,104,F F 0 0 0 0 F F 0 0 0 0
6 2 0 FO RO =21 T 0 1 S T E P 5 3 6 0 DATA RESE R V E D F 0 R T T 0 X
6 3 0 RO NUMBER=20 0 1 0 * 	R 0 1) 3 7 0 DATA RESE V E D F 0 L A B
6 4 0 LABEL$ =STR$ 0 N U M B E R) 3 8 0 DATA RESE V E D F 0 R L E G
6 5 0 COLD' N=10 3 9 0 DATA RESE V E D F 0 A D D 0 A AR A
6 6 0 GOSUB 1000 CT RS
6 7 0 CALL HCHAR(R OW, 1 3 9 3 4 0 0 REM DEFT N E L 0 0 P
6 8 0 NEXT RO 4 0 RESTORE 3 4 0
6 9 0 REi CALCUL AT E B AR H EIGHT 4 2 0 FOR CODE= 9 T 0 1 0 4
7 0 0 BARHEIGHT=H OR SE P OW E /SCAL E 4 3 0 READ IDEN T F C A T 0 N A A UM
7 0 Y=INT(BARHE 1G HT ER, PATTER N
7 2 0 REMAINDER=B AR HE GHT INT(B A H E 1 H T 4 4 0 IF CHARAC T E N U M B E C 0 4 6 0
7 3 0 CALL VCHAR(22 -Y 16, 1 03,Y) 4 5 0 GOTO 470
7 4 0 CALL VCHAR(22 -Y 17, 03,Y) 4 6 0 CO E=CHAR A C T E H N U MB E
7 5 0 CALL VCHAR(22 - Y 18, 1 03,Y) 4 7 0 CALL CHAR C 0 D E P AT T E
7 6 0 RE' SELECT B AR TOP 4 8 0 NEXT CODE
7 7 0 TOPPATTERN= IN T((REM A I NDER 8 5 4 9 0 RE STAR T S CREEN D S A
7 8 0 ON TOPPATTE RN +1 GOT 0 790, 8 1 0 83 0 	8 5 0 0 RE - --G A P H GRI D

0 4 50,870,890, 91 0 , 930, 9 50 5 0 CALL HCHA 2 2,13, 1 8
7
8
9 0
0 0

CALL
GOTO

HCHAR(
970

21 -Y ,16, 9 6,3) 5
5
2 0
3 0

FOR
CALL

RO
HCHA

=2 1
H

T 0
H OW,

1 S
14

T E
9
P
1

1
7

8 0 CALL HCHAR(21 Y 16 9 7,3) 5 4 0 NEXT RO
8 2 0 GOTO 970 5 5 0 LA ELS= H 0 S EPOWE R
8 3 0 C ALL HCHAR(2 Y 6 	9 8 3) 6 0 RO =9
8 4 0 GOTO 970 5 7 0 COLD N=1
8 0 CALL HCHAR(2 Y 6 	9 9,31 5 8 0 GOSUB 870

82 	The Best of 99'er Volume 1 Copyright © 1983 Emerald Valley Publishing Co.

9 0 ALL VC H A 1 1 3 9 2 2 1
0 0 OR RO 2 1 	T 0 	1 S T E P 5
0 OWN UMB E 2 0 0 1 0 0 w 1

2 0 ABE L$= S T $ R OW N U M B E
3 0 OLU MN= 1 0
4 0 OSU B 8 7 0
5 0 ALL HC H A R 0 W 1 3 , 9 3
6 0 EXT RO
7 0 EM CA L C U L A T E B AR H E G H T
8 0
9 0

ARH
=IN

EIG
T(B

H T
A

HO
H El

S E
G H T

P OW E R S A L E

0 0 EMA IND E B A R H E G H T N T B A H E G H T)
0 ALL VC H A R 	2 2 	Y 1 6 9 6 Y

2 0 ALL VC H A 2 2 	Y 1 7 9 6 Y
3 0 ALL VC H A R 	2 2 	Y 1 8 9 6 Y
4 0 EM SE L E C T B A R T 0 P
5 0
6 0

OPP
AST

ATT
ER$

E R N
0 0 0

N
0 0 0

T
e
l

0 0 0
E M
0

A
0 0

N D
F F

E
F F

* 8
F F F F

5
F F F

FFF FFF
7 0 TAR TPO S 1 T I0 N 	2 TO P A T T E N
8 0 OPP ATT E N S E G (M A T E R S T A T P 0 S

ION ,16
9 0 ALL CH A 9 7 T 0 P PA T E N
0 0 ALL HC H A 2 1 	Y 16 9 7 3
0 F 	T OPP A T T E N 9 T H E N 8 4 0

2 0
3 0

ALL
ALL

CH
HC

A R
H A

9
R 	2

0
0 	Y

0 00
16

0 0 0
9 8

0 0
3
0 0 0 0 0 F F 1

4 0 ALL KE Y 0 S
5 0 F 	S =0 T E 8 4 0
6 0 ND
7 0 OR POS 1 T 0 N =1 T 0 LE N L A B E L
8 0 ETT ER$ S E G (L A B E L $, P 0 S T 0 N 1)

9 0 ODE =AS C L E T TE
0 0 ALL HC H A R OW 0 L UM N 1 P 0 S T 1 0 N C

DE)
1 0 EXT POSI T 	0 N
2 0 ETU N

Listing 4
0 0 RE * *

1 	0 RE T H E E BA R S
2 0 RE * * 	* * * ** * *

3 0 RE
4 0 RE
5 0 RE AB 0 U T 	5 1 60 B Y T E S
6 0 RE PR E S S 	A N Y K E Y T 0 S T 0 P D 1 S P L A Y
7 0 VER T C A L M A X 	2 00
8 0 SCA L E =V E T 	C A L A X 2 0

1 9 0 OPT 0 N B A S E 	1
2 0 0 DI (3
2 1 0 Y(1 13 3
2 2 0 Y(2 15 9
2 3 0 Y(3 99 9
2 4 0 C AL L SC R E E N 	8
2 5 0 C AL L CO L 0 9 5, 8
2 6 0 C AL L CO L 0 R 	0 .3 8
2 7 0 C AL L CO L 0 , 6 8
2 8 0 C AL L CO L 0 R 	2 ,2 5
2 9 0 RE DE F N E HA R A C T E S
3 0 0 RE FO M A T ID N T F A T 0 N H A R A

C TE R N Ui B E P A TT E N
3 1 0 DAT A GR D L 	N E, 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F F

,VE T IC A L A X S, 9 2 0 1 0 1 0 0 0 0 0 0 1
,TI MA K 9 3 01 0 1 0 0 0 0 0 7 F B A 	1
,96

3 2 0 DAT A F F F F F F F F FF F F F F F F B A R 2 1 0 4 	F F F
FFF F F F F F F F F F F ,B A 3 1 1 2 F F F F F F F F F F F
FFF F F B A S E L 	N E, 2 0 F F 0 0 0 0 F F 0 0 0 0 0 0 F
F

3 3 0 DAT A R E S E V E D F 0 T T L B 0 X
3 4 0 DAT A S E V E D F 0 L A B E L S
3 5 0 DAT A R E S E R V E D F 0 R L E G E N D S
3 6 0 DAT A E S E V E D F 0 A D D T 0 N A L C H AR A

CTE R S
3 7 0 REM DEFINE—LOOP
3 8 0 RES TORE 310
3 9 0 FOR CODE=91 TO 120
4 0 0 REA D 	IDENTIFICATION$, H A A C T E N U B

ER, PATTERN$

4 1 0 F H A A ER 0 4 3 0
4 2 0 OTO 4 4
4 3 0 ODE= A A MB
4 4 0 ALL A 0 AT ER
4 5 0 EXT 0
4 6 0 EM A SCREE IS A
4 7 0 ALL A
4 8 0 RINT A 1 31;Y(1) TA 1 8 2

4 9 0 EM A PH GR ID
HCH 5 0 0 ALL A 22,13 , 	1 2 0 8

5 1 0 OR R OW= 2 1 TO 1 ST 1
5 2 0 ALL HCH A ROW,1 4, 9 1 7
5 3 0 EXT ROW
5 4 0 ABEL $=" 0 SEPOW ER
5 5 0 OW=9
5 6 0 OL N=1
5 7 0 OSUB 87
5 8 0 ALL VCH A 1 1 3 92 21
5 9 0 OR R OW= 2 1 1 ST
6 0 0 OWNU MBE 2 1 0* RO w 1
6 0 ABEL $=S OW ER
6 2 0 OLU N=1
6 3 0 OSUB 87
6 4 0 ALL HCH A OW 1 3 9 3)
6 5 0 EXT ROW
6 6 0 EM CAL A OT A
6 7 0 ASTE R$= 0 00 0 0 0 0

FFFF FF"
6 8 0 OR B AR= 3
6 9 0 ARHE IGH A /S AL
7 0 0 Y=IN T(B A
7 0 EMA1 NDE A GH A RHEIGHT)
7 2 0 ALL VCH A 2 2 1 +B A 5 88+BAR*8

YY)
7 3 0 ALL V A 2 2 1 2 +B A 5 88+BAR*8

YY)
7 4 0 ALL V A 2 2 1 3 +B A 5 88+BAR*8

YY)
7 5 0 OPPA A R*81+ 5)
7 6 0 TART 0 2 TO PA
7 7 0 OPPA A ST TARTPOSI

ION, 1 6
7 8 0 ALL A 8 9 A 8 TO PAT ERNS)
7 9 0 ALL A 2 1 +B A R*5 89+BAR*8

3)
8 0 0 F TO A 9 EN 830
8 0 A L A 9 A "0 000 0 0 0 0

F)
8 2 0 A L A 2 1 1 +B A R*5 9 0 A 8

3
8 3 E T A
8 4 A L
8 5 F S= 4
8 6

7 0 P 0 0 1 0 EN A
8 E TE A EL ,P 1

8 9 0 E= A
9 0 A L A 0 OL MN 0

D 1
9 0 E X T 0 0
9 2 0 E UR

Listing 5
100 Ft
110 R
120 R EM
130 R
140 R
150 R ABOUT 4504 BYTES
160 R HOLD DOWN ANY KEY TO STOP

LA
170 C AL L SCREEN(8)
180 C AL L COLOR(9,10,8)
190 R EM SHAPED RANDOM CHARA TERS
200 R AN DOMIZE
210 F OR J=1 TO 4
220 F OR 1=0 TO 15

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 	83

2 3 0 RE GENERATE RANDOM N M B E S BE T WE 0 $="P
EN 0 AND 15 2 0 OTO 640

2 4 0 N=INT((15-0+1)*RND)+0 3 0 $=ST R$(N)
2 5 0 RE PUT ON CONSTRAINT S T 0 E L N A 4 0 EX$= HEX$&G

TE CORNERS 5 0 EXT
2 6 0 ON 1+1 GOTO 280,300,34 0 3 6 0 4 10 4 3 6 0 ALL CHAR(9 5 H E X$

0,490,490,490,490,410 4 3 0 3 4 0 ,3 6 0 7 0 OTO 680
280,300 8 0 EX$=

270 REM TOP & BOTTO ROWS 9 0 EXT 1
280 IF N>1 THEN 240 0 0 EM DISPLA Y T T L E
290 GOTO 490 0 ATA 57,57, 3 9 6 9 82 3 2 7 7 6 5 7 1 6 5
300 IF N=0 THEN 490 90,7 3,78,6 9
310 IF N=8 THEN 490 2 0 ALL CLEAR
320 GOTO 240 3 0 Ei -BOA D E •

330 REI 2ND & 7TH R W 4 0 OR C OL=6 I 0 2 6
340 IF N>3 THEN 240 5 0 =INT ((4-1+) R N D)+
350 GOTO 490 6 0 ALL HCHAR(4 3 2 L 9 5 N)

360 IF N>12 THEN 240 7 0 ALL HCHAR(0 C 0 L , 9 5 N)
370 FOURTEST=N/4—INT(N/4) 8 0 EXT COL
380 IF FOURTEST=0 THEN 490 9 0 OR R OW=10 T 0 4
390 GOTO 240 0 0 =INT I
400 REM 3RD & 6TH ROWS 0 ALL 1(i 4 HArl 0 w, 6 95 N)

410 IF N>7 THEN 240 2 0 ALL V HAR(2 4 —R 0 W ,2 6 9 5 N)

420 GOTO 490 3 0 EXT ROW
430 IF N=15 THEN 240 4 0 EM ...TIT L E
440 EVENTEST=N/2—INT(N /2) 5 0 ALL H HARI 2 1 0 32 1 4)
450 IF EVENTEST=0 THE N 490 6 0 ES TO RE 710
460 GOTO 240 7 0 OR I =1 TO 4
470 REM 4TH & 5TH RO S NO C 0 N S T AI N T S 8 0 EAD LETTER
480 REM FOR N>9 MUST CONV E H T T 0 HE X N 9 0 OLU N=9+I

OTATION; NOTE IN HEX N 0 T A T 0 N A 0 0 0 ALL HCHAR(2 0 L UI N 9 6)
,B=11, =12 ETC 0 ALL HCHAR(1 2 0 L UM N L E T E)

4 9 0 IF N>9 THEN 500 ELSE 6 3 0 2 0 EXT 1
5 0 0 ON N-9 GOTO 510,530,55 0 5 7 0 5 90 6 1 3 0 Ei .TWI N K L E

0 4 0 =0
5 1 0 G$="A" 5 0 OLU N=INT(2 6 6 1) * R N D) 6
5 2 0 GOTO 640 6 0 =INT ((4-1+ R N D 1+ 1
5 3 0 G$= "B" 7 0 ALL HCHAR(0 C 0 L UI N 9 5 N)

5 4 0 GOTO 640 8 0 ALL HCHAR(1 4 3 2 CO L U M N 9 5 N 1
5 5 0 G$="C" 9 0 =C+1
5 6 0 GOTO 640 0 0 F C> 45 THE N 8 5 0
5 7 0 G$="D" 0 ALL KEY(0, K S)
5 8 0 GOTO 640 2 0 F K> 31 THE N 0 4 0
5 9 0 G$="E" 1 3 0 OTO 950
6 0 0 GOTO 640 4 0 ND

84 	The Best of 99'er Volume 1 Copyright © 1983 Emerald Valley Publishing Co.

How to Write A BASIC Program
That Writes BASIC Programs

PART 1:

A SURPRISING DISCOVERY
WITH TI'S PROGRAMMING AIDS III

T I's Programming Aids III opens the door to some
powerful programming techniques. The Cross
Reference and Editor capabilities of this software will

be appreciated by the serious Extended BASIC program-
mer. But the excitement really begins when you realize how
this software does its thing.

PA III can provide (1) a tabular, line-number cross
reference for all variables, arrays, keywords, functions, and
line-number references in a program and (2) the ability to
delete, move, or resequence specified groups of lines within
a program much more quickly than could be done manually
at the keyboard.

Required Hardware
Programming Aids III is a set of four Extended BASIC

programs (LINPUT, CREF, CREFPRINT, and EDITOR)
available on disk at a suggested retail price of $19.95. In
addition to a disk controller, disk drive, and the Extended
BASIC Command Cartridge, a printer is a practical necessi-
ty; either the TI Thermal Printer or an RS232-compatible
printer may be used. In fact, there is no provision for screen
display of the output from the Cross Reference procedure.
(I use the inexpensive "Paper-and-Pencil Printer," however,
and so modified the CREFPRINT program to display the
cross reference table on the screen, using the crude SHIFT
C—CONTINUE method to stop and start the output. These
simple changes are given at the end of this chapter.)

EDITOR
The EDITOR program makes possible virtually any

desired modification of line numbers in a BASIC or Ex-
tended BASIC Program. Heretofore, the only way to rese-
quence a program was to use the RESEQUENCE (RES)
command, which affects all line numbers within a program.
By contrast, EDITOR allows one to resequence specified
sections of a program without affecting others.

If, for instance, you have numbered subroutine statements
in a manner which is easy to remember (1000, 2000, 3000,
etc), you can retain this numbering and "open up" a
previous part of the program for insertion of additional
lines. An even more useful application would be the rear-
rangement of sections of BASIC code. Suppose, for exam-
ple, you want to merge several programs, each of which con-
tains subroutines. Without EDITOR, you would be faced

with the time-consuming chore of moving all subroutines
to the end of the merged program. With EDITOR, this pro-
cedure can be completed very simply and quickly by re-
numbering all subroutine lines.

Finally, the EDITOR program allows deletion of sections
of BASIC code. If you want to get a subroutine out of one
program to use in another, it's no problem.

How EDITOR Works
If you are wondering how a BASIC program can alter

another BASIC program, be assured that it's not done with
mirrors. It is a relatively simple procedure which anyone
with Extended BASIC can use to write all custom utility
programs and even BASIC programs which write other
BASIC programs!

The technique is based upon what happens to a program
when it is saved with the MERGE option (see pp.122-3 of
the TI Extended BASIC manual). If you have ever cataloged
a disk containing a file saved with the MERGE option, you
may have noticed that, unlike an ordinary program which
carries the Type description PROGRAM, a program saved
with MERGE is actually a data file consisting of display
code with variable length records having a maximum length
of 163 bytes. A BASIC program can access this sequential
file like any other file.

In addition to creating a data file form, saving a program
with MERGE makes two other important changes. First,
the order of program lines corresponds to the order of pro-
gram line numbers. (By contrast, when a program is saved
without MERGE, the file is a program memory image, and
lines are placed in program memory in the order in which
they were entered—not according to line number.) Second,
the content of each line is represented in condensed format:
All non-essential information is deleted in a coding process.
When a program saved with the MERGE option is loaded
into memory with the MERGE Command and LISTed (see
TI Extended BASIC Manual, page 114), the coding pro-
cess is reversed and each program is reconstructed.

In order to understand how the EDITOR program works,
it is necessary to know how line numbers are represented
in condensed format. The first two bytes of each record con-
tain the line number represented in ASCII code. Table 1
shows how the line numbers "80" and "9020" are
represented in ASCII characters. Starting with the line

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	85

number 80, the first step involves representing the base 10
number in binary. Two bytes (8 bits each) are available for
this representation. Next, the base 10 representation of each
byte is determined and the corresponding ASCII symbol
produced. In this case, the character with an ASCII code
of 80 is "P". Applying this process to the number 9020 gives
the ASCII representation "# < ".

Table 1
ASCII Coding of Line Numbers

Line Number 	 80

i 	.• • 	1
Binary 	 I•n "....00
Base 10 	 t, 	 nu
ASCII 	 P

Line Number 	 9020

Byte 1 	 Byte 2
Binary 	 00100011 	 00111100
Base 10 	 35 	 60
ASCII 	 # 	 <

Table 2
Sample Cross Reference Output

MUSIC 2/I
PROGRAM UNIT (MAIN)

STRING ARRAYS 	BASIC KEYWORDS 	REM

	

N$ I I 	 CALL 	 220

	

100 	 130 	 RETURN

	

120 	 230 	 260

	

140 	 240 	 STOP

	

0 	 210
NUMERIC ARRAYS 	DATA

	

NT I / 	 190 	 BASIC FUNCTIONS

	

100 	 200 	 &

	

120 	 DIM 	 140

	

240 	 100

	

FOR 	 siIRPFInGRAMS
NUMERIC VARIABLES 	110
I 	 150

	

110 	 GOSUB 	 SO UND

	

120 	 160 	 230

	

140 	 NEXT 	 240

	

180 	 170 	 250

	

240 	 180
J 	 PRINT 	 LINE REFERENCES

	

150 	 '140 	 220

	

170 	 READ 	 160
120

In condensed code format, when the left-most bit of a
byte is "on," the software which reconstructs a program
from the code is signaled that some special action will be
required in the reconstruction process. In the case of line
numbers, this principle applies to the first bit of the first
of the two line-number bytes. When all bits except the left-
most one are "on" in both bytes, the number represented
in base 10 is 32767 (in binary, 01111111 11111111), the
highest allowable line number in a program. When the left-
most bit is added, the two-byte combination becomes an
end-of-file mark. Thus the first two bytes of the last con-
densed format record must be CHR$(255)&CHR$(255),
equivalent to 65535 in base 10.

With this information, you should be able to understand
the basic operation of the EDITOR program. The program
to be edited is first saved with the MERGE option, and then
the EDITOR program is loaded and run. Upon entry of
the "OLD" command provided, EDITOR inputs each
record in the condensed format file and constructs the line
number from the ASCII codes of the first two bytes. Pro-
gram line numbers thus obtained are stored in an array, with
array position corresponding to record number. After the
user has altered these numbers using the DELETE (DEL)
and RESEQUENCE (RES) commands provided, the SAVE
command initiates the process in which altered numbers are
reassigned to records in the file. As each record is read a
second time, the corresponding line number in the array is
translated into two ASCII characters which are substituted
for those on the record, and the new record is written to
a new file (after making the necessary changes to any line
references). At the end of this process, the end-of-file mark

is written as the last record on the new file. After initializ-
ing program memory with the NEW command, all you need
to do is load the new file with the MERGE command. The
program will then be reconstructed and can be SAVEd in
the usual way.

CROSS REFERENCE
The remaining three programs (LINPUT, CREF, and

CREFPRINT) are used to produce a complete tabulation
of all lines in which each variable, array keyword, function,
and line number reference occurs. An independent tabula-
tion is provided for each subprogram. The cross reference
table will give you detailed documentation for use in pro-
gram development, and would also seem to be a useful tool
in analyzing a poorly documented program. (See Table 2)

As in the case of the EDITOR program, the first step
involves saving the program to be cross referenced by us-
ing the MERGE option. The LINPUT program converts
the DISPLAY records of the merged file to INTERNAL
code, presumably to speed subsequent execution. The CREF
program then reads in each record of the file and analyzes
its contents for the presence of all keywords, functions, etc.,
which occur in TI Extended BASIC, as well as in the user's
variable names, arrays, line references, and subprograms.
The output, a list of the line numbers in which each ele-
ment is found, is written to a disk file. The file is then printed
by the CREFPRINT program.

The instructions recommend that the CREF program be
run in TI BASIC, rather than Extended BASIC, to speed
execution. Even with this advantage, however, the cross
referencing of a large program should be planned so that
you can be doing something else—like taking a trip to
Switzerland. Actually, it doesn't take quite that long: Cross-
referencing a program of moderate size (270 lines) takes 35
minutes.

HOW CREF Works.
Although a detailed analysis of the cross reference pro-

gram is beyond the scope of this article, generalization of
the principles involved presumes an understanding of the
structure of condensed code. As mentioned previously, the
method used to signal the reconstruction software that it
is encountering an "instruction" byte involves an "on"con-
dition in the left-most bit. In contrast to line numbers, most
"instructions" in condensed code consist of a single byte.
When the left-most bit is "on" (i.e., 10000000) the base 10
representation is 128. Instructions thus begin with the
number 10000001 or 129

ASCII byte codes used by the reconstruction software to
generate BASIC keywords, punctuation, etc., are
translatable with the program Condensed Format Code
Table. This program generates a file called
DSK1.FILENAME which is in condensed format. Each
record in the file contains a single byte in the third position
beginning with ASCII 129 and ending with ASCII 254. This
byte will be interpreted as an "instruction" by the
reconstruction software. Preceeding the byte, a two-byte line
number is written; following it is an end-of-line mark, ASCII
0. Line numbers have been set equal to the ASCII code for
ease in subsequent interpretation of the results.

In order to view the reconstruction of each potential
BASIC element, you first initialize program memory with

86 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

the NEW command, then load the output file with the
MERGE command, as if it were a program, i.e., MERGE
DSKI.FILENAME. The result is given in Table 3. For
example:

CHR$(129) is reconstructed as ELSE
CHR$(130) as :
CHR$(166) as WARNING

0 0 RE * * * * * * * * * *

1 0 RE *
2 0 RE 0 N D E N S E D F 0 RM AT *
3 0 RE C 0 D E T A B L E
4 0 RE *
5 0 RE * * * * * * * * * *
6 0 RE
7 0 RE
8 0 RE
9 0 RE

2 0 0 RE * * *
2 0 RE
2 2 0 RE 0 P E N 0 U U T F L E
2 3 0 RE D S K 1 F E N AM E
2 4 0 RE U S N G P A A M ET E R S 0 F
2 5 0 RE M E R G E D F L E F 0 MA
2 6 0 RE
2 7 0 RE * * * *
2 8 0 RE
2 9 0 OPE N D S K 1 F L E N AM E D S P L A Y 0

UTP U T V A R A B L E 6 3
30 0 RE
31 0 REM * * * * * *
32 0 RE
33 0 RE B EG N C 0 U N T N G I)
34 0 RE I T H H G H B T 0 N
35 0 REM 1 2 9 1 3 0 2 5 4
36
37

0
0

RE
RE

11111:*

* * * *
38 0 RE
39 0 FOR 2 9 T 0 2 5 4
40 0 RE
41 0 RE *

C

 A
F

* * * * * * * * * * *

42 0 RE
43 0 RE L U L A T E V A L U S F 0 R
44 0 RE R S T T WO B Y T E S TO
45 0 RE R E P R E S E NT L N E NO. S
46 0 RE S 0 T H A L N E N 0 L L
47 0 RE E Q U A L A SC C 0 D E
48 0 RE
49 0 RE * * * * * * *
50 0 RE
51 0 LNB Y TE 1 N T 2 5 6
52 0 LNB Y TE 2 2 5 6 * L N B Y E
53 0 RE
54 0 RE * * * * * * *
5 5 0 RE
5 6 0 RE R T E R E C 0 D
5 7 0 RE
5 8 0 RE B Y T E 1 2 L N E N UI B E
5 9 0 E B Y T E 3 C 0 D E D B A SIC
6 0 0 R E B Y T E 4 E N D 0 F I NE
6 0 R E
6 2 0 R E * * * * * * * *
6 3 0 R EI
6 4 0 P RI N T C H R $ L N B Y T E 1)& H R L N B Y 	E

2 1& H R $ C H R $ 0
6
6

5 0
6 0 R

E
E * * * * * * * * * *

6 7 0 R EI
6 8 0 R E E P E A T L 0 0 F 0 NE T
6 9 0 R E A S C 0 D E
7 0 0 R EI
7 0 EI * * * *
7 2 0 E

7 3 0 N E
7 4 0 E M
7 5 0 E M *
7 6 0 E M
7 7 0 R E M
7 8 0 R E M M A
7 9 0 R E 0 6 5 5 3 5
8 0 0 E M
8 	0 E M
8 2 0 E M
8 3 0 P N 2 5 5 2 5 5
8 4 0 R E M
8 5 0 E M *
8 6 0 E M
8 7 0 E M C 0 A 0
8 8 0 E M
890
930
910 C LO S E 1
920 S TO P

Table 3
Condensed Format Code Table

129 ELSE 	 171 777 	 213 LEN
130 : : 	 172 777 	 214 ,...7
131 	I 	 173 	77? 	 215
132 	IF 	 174 ? 7 ? 	 216
133 GO 	 175 7?? 	 217
134 GOTO 	 176 THEN 	 218:._
135 GOSUB 	 177 TO 	 219 STR$
136 "` -r"RN 	 178 STEP 	 220 ASC
137 	 179 , 	 221 	..
138 u.M 	 180 : 	 222
139 END 	 181 	-. 	 223 .•
140 FOR 	 182 I
141 	I 	 183 I 	 225
142 	 184 & 	 226 err
143 	'.• 	X 	 185 777 	 227 777
144 	' 	 186 r. ,7 	 228 777
145 	'. 	...:E 	 229 177
146 	•• 	 188 	 230 7 17
147 	 189 ' 	 231 	7??
148 	 1E 	 190 = 	 232 NUMERIC
149 . 	'• 	MIZE 	 191 < 	 233 DIGIT
150 I 	• ' 	 192 > 	 234 UALPHA
151 READ 	 193 , 	 235 SIZE
152 STOP 	 194 — 	 236
153 DELETE 	 195 • 	 237 	.. ■
154 REM 	 196 / 	 238
155 ON 	 197 A 	 239 	c
156 PRINT 	 198 77? 	 240 AT
157 CALL 	 199 7?? 	 241 BASE
158 OPTION 	 200 777 	 242 777
159 OPEN 	 201 77? 	 243 VARIABLE
160 	. 	 202 .'•'< 	 244 • 	VE
161 	• 	 203 	 •• 	 245 	'.' 	..*.
162 	7, y 	 204 	'. 	 246
163 	•• 	 205 	 247
164 	• 	 206 ..A. 	 248
165 	. 	 207 INT

208 LOG 	 250 	•
167 	 209 SGN 	 251 	• Y VENT

. 168 	 210 SIN 	 252 	.• 	 ,
169 	 211 	SOR 	 253 4R—rfles)
170 -.7., JT 	 212 TAN 	 254 VALIDATE

Table 4
Condensed Record Structure

OPEN #1: "DSK1.BASIC",INPUT,DISPLAY,VARIABLE 163

ASCII CODE FOR LINE 100

3 	159* 	 23 	179*
4 253* 	 24 	162*
5 	200* 	 25 	179*
6 1 	 26 	243*
7 49 	1 	 27 	200*
8 	181* 	 28 	3
9 199* 	 29 49 1

10 	10 	 30 	54 6
11 	68 D 	 31 	51 3
12 	83 S 	 32 	0
13 75 K
14 	49 1
15 	46 	.
16 	66 B
17 	65 A
18 	83 S
19 	73 I
20 	67 C
21 	179*
22 146* 	PRESS ANY KEY TO CONTINUE

At the same time, several codes are reconstructed into
things which can't be understood directly (e.g., 171-175, 185,
and 198-201). It is apparent that some of the ASCII codes
are used for purposes other than direct translation to
BASIC. Some might be used as descriptors of subsequent
bytes (e.g., for purposes of identifying trailing bytes as

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 	87

numeric data, line numbers references, string data, etc.)
while other of these ASCIII codes may not be assigned at all.

Putting this question aside for the moment, let us see how
we could write a program that would remove all REM
statements from another program. The ASCII code for
REMARK (REM) is found in Table 3 to be 154. If we
assume that the ASCII character with code 154 will be found
in the third position of a REM statement in condensed for-
mat (following the line-number bytes), we can write a REM
Remover program very simply. Such a program would need
to read a record from a program file saved with the MERGE
option, see if the third byte is CHR$(154), and if not, print
the record in a second file. That is what the following pro-
gram does. To use it with the "Condensed Format Code
Table" program, save that program with the MERGE op-
tion (SAVE DSK1.CODE,MERGE), run the REM
Remover, and load the output file, DSK1.REMFREE, with
the MERGE command (MERGE DSK1.REMFREE).
Presto, Chango! L1STing the program shows it to be
"REMless," and this version may now be saved in the usual
way under a new file name.

0
1 1

0 	RE
0 	RE

*
*

*

E
**
E OV

*
E

* *
*

2 0 	RE * * * *
1 3 0 	RE

4 0 	RE
5 0 	RE
6 0 	RE
7 0 	PRI N T E N T E F ILE N A M E
8 0 	INP U T D S K 1 X YZ' X
9 0 	OPE N 1 X D S PLAY N P U T V A AB L

E 1 6 3
2 0 0 	OPE N 2 D S K RE F E E D S P L A Y

TPU T V A R A B L E 163
2 0 	EOF C H $ 2 5 5 &CHR 2 5 5
2 2 0 	LIN P U T 1 X
2 3 0 	IF S E G X 2 E F T H E N 2 7 0
2 4 0 	IF S E G X 3 H 1 5 4 T H E N 2 60
2 5 0 	PRI N T 2 X
2 6 0 G •T 2 2 0
2 7 0 	P N T 2 HR 255) H 2 5 5
2 8 0 C L • E 1
2 9 0 C L • S E 2
3 0 0 	S T • P

Of course, more complex applications require a more
detailed knowledge of condensed format structure. The
Condensed Record Structure program listed below will allow
you to examine the condensed structure of every line in any
BASIC program. With such a representation and the list
of codes in Table 3, a great deal of additional information
can be deduced.

For purposes of illustration, let us treat the "Record
Structure" program itself as the program to be analyzed.
First enter the program without the REM statements, and
then save it as DSK I .BASIC,MERGE. Now enter RUN to
display the code structure of each line. The display for the
first line is shown in Table 4.

The first column in each pair of columns shows the posi-
tion of the byte code. The first position displayed is 3
because 1 and 2 are used for the line number. An asterisk
has been placed beside all ASCII codes which exceed 128

to easily identify them as "instruction" codes. Codes which
are between 32 and 94 are followed by their corresponding
ASCII character representations.

0 0 REl * * * * * * * * ********
1 0 RE *

2 0 RE * 0 N D E N S E D RECORD *
3 0 RE S U T URE
4 0 RE
5 0 RE * * * * * * * * ********
6 0 RE
7 0 RE
8 0 REl
9 0 REl

2 0 0 OPEN D S K A S C ,INPUT D S P L A
Y , V A A B L E 6

2 	0 LINP U T 1 X
2 2 0 BYTE 1 A S C S E G X 1 1)
2 3 0 BYTE 2 A S C S E G X 2 1)
2 4 0 LINE N U M B Y T E * 5 6 B Y TE2
2 5 0 IF L N E N U M 6 5 5 5 H E N 430
2 6 0 DISP L A Y A T 1 3 E A S E A LL A S C 0

DE F 0 R L N E T L I ENU
2 7 0 COL= 1 0
2 8 0 FOR 3 T 0 L EN X
2 9 0 IF I 6 2 T H E N 4 0
3 0 0 RO = 2 * C 0 L 1
3 1 0 J=J+ 1
3 2 0 DISP L A Y A T OW 0 L STR$(1)
3 3 0 Y=AS C S E G X $,
3 4 0
3 5 0

DISP
IF

L
Y

A Y
1 2

A
8

T
H E N

OW 0
S P L

3)
A Y AT(ROW,

TRW!)
C 0 L 	6

) *
3 6 0 IF Y 3 A D Y 1 H E N DISPLAY A

0 ,C 0 L 6) C H R Y
3 7 0 IF J 2 0 E 3 0
3 8 0 COL= C 0 L 1 0 1
3 9 0 NEXT
4 0 0 DISP L A Y A 2 4) B E E P ES S A N Y E

Y TO C 0 N T N U E
4 1 0 CALL K E Y 0 K S F 0 T H E N 4
4 2 0 GO TO 2 0
4 3 0 STOP

Since it is known that the first line of the program is
OPEN #1;"DSK1.BASIC", INPUT, DISPLAY,
VARIABLE 163, let us see what sense can be made of the
corresponding condensed code. Codes 159 and 253 corres-
pond to OPEN and #. Although the meaning of code 200
is not known, in looking ahead to colums 6 and 7 we might
hypothesize that 200 means "A number is about to be en-
countered, and the next byte will give the number of bytes
used to represent that number."

Although 181 is a ":", 199 is another unknown. Look-
ing ahead at positions 10-20, we might again hypothesize
that 199 is used for strings, in the way that 200 is used for
numbers. The "10" in position 10 is consistent with this
hypothesis since DSK1.BASIC is 10 characters long. Next,
we encountered the codes for INPUT, DISPLAY,
VARIABLE. In position 27 another 200 is encountered, and
the hypothesis applied earlier to the 200 in position 5 is con-
sistent with what follows—a "3" in position 28 followed
by the 3 numbers "163". Finally, a 0 is encountered that
indicates end-of-line. By writing program lines specifically
for the purpose, you can use the Condensed Record Struc-
ture program to deduce additional information about con-
densed format.

88 	The Best of 99'er 	Volume 1 	 Copyright C) 1983 Emerald Valley Publishing Co.

How to Write A BASIC Program
That Writes BASIC Programs

PART 2:

RULES OF MERGE FORMAT

Ia
n the previous section, MERGE format was discussed
in connection with TI's Programming Aids III. When
n Extended BASIC program is saved with the

MERGE option (disk only), a data file is written such
that each record in the file contains a coded representa-
tion of one line of BASIC code. This file can then be load-
ed into program memory with the MERGE command.
Because the file is a data file, it can also be generated
by a BASIC program. If all of the rules of MERGE for-
mat are observed, the file is indistinguishable from one
created by saving a program with the MERGE option and
can be loaded into program memory with the MERGE
command. Thus an Extended BASIC program can, in ef-
fect, write another Extended BASIC program.

One can think of a variety of contexts in which this
program generation capability could be used. For in-
stance, a program might allow preparation of music or
graphics in an interactive, "high level" format and then
use this data to write a BASIC program or subroutine
which produces the music or graphics display.

File Structure
The MERGE format file consists of sequentially

organized records, each corresponding to one line of
BASIC code. Records are of variable length with a max-
imum length of 163 display format characters. The OPEN
statement for a MERGE format file might be:

OPEN #1:"DSK1.FILENAME",VARIABLE 163

Record Structure
Records in the file each represent a line of BASIC as

strings of ASCII characters. The ASCII codes of the first
two characters represent the line number, the last
character designates "end-of-line", and the BASIC state-
ment(s) are represented in coded form in between.

Let's consider first how line numbers are represented.
You are probably aware that code numbers are associated
with the character patterns used to display information.
The character associated with a code can be obtained with
the CHR$ function; PRINT CHR$(65) displays the pat-
tern of the character with ASCII code 65 on the screen—
the letter A. (ASCII, by the way, stands for American
Standard Code for Information Interchange.)

While some ASCII characters, like the letter A, have
an associated pattern, others do not. However, any of
the 256 ASCII characters can be accessed with the CHR$
function and subsequently used in strings just like any

of the more familiar characters. PRINT CHR$(32)&-
CHR$(255) displays two characters. Neither has a pat-
tern, so neither can be seen, but the computer is able to
recognize each character nevertheless.

A character consists of a "byte," and a byte can be
thought of as an eight-place binary number. Just as the
decimal number system contains 10 digits (0-9), the binary
system contains two digits, 0 and 1. In the decimal system,
the first place to the left of the decimal point counts in
units of one. Each successive place counts in units of the
number base 10 multiplied times the units of the
preceeding place—i.e., 1 's, 10's, 100's, 1000's, etc.
Similarly the first place in a binary number counts 1 and
successive places in units of the number base 2, multiplied
times the units of the preceeding base; i.e., l's, 2's, 4's,
8's, 16's, etc. Thus the eight-place binary number
00110001 is equivalent to 0 + 0 + 32 + 16 + 0 + 0 + 0 + 1 or
49 in decimal. The binary number 11111111 is equivalent
to 255 (128 + 64 + 32 + 16 + 8 + 4 + 2 + 1), and this is the
largest ASCII code because it is the largest number that
can be represented with a byte. The 256 ASCII characters
are thus numbered from 0 through 255.

The decimal equivalent of ASCII code is used to repre-
sent the line number, but with only one byte, the largest
line number which could be represented is 255. To allow
representation of high line numbers, a second character
is added giving a total of 16 binary places. Applying the
same principle used above, the places count (from right
to left) in units of 256 (128*2), 512, 1024, etc. When plac-
ed in the first two positions of a MERGE format record,
CHR$(2)&CHRS(8)—i.e., 00000010 00001000—would
represent the line number 520 (512 + 8). A quick method
of determining the decimal representation of any two
characters is to multiply the code of the first by 256 and
add the code of the second. In the above example,
520 = 2*256 + 8.

The highest allowable line number in TI BASIC is
32767 (01111111 11111111 or CHR$(127)&CHR$(255)).
Adding the left digit gives the end-of-file mark used in
MERGE format, equivalent to a line number of 65535.
These two bytes, CHR$(255)&CHR$(255) must be in the
first two positions of the last record in a MERGE for-
mat file.

Just as these two characters signal the end of the file,
the byte CHR$(0) is used to signal the end of each line.
This character must be the last one in each record.

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	89

MERGE Format Code
This brings us to the question of what to put between

the line number and end-of-line mark and before the end-
of-file mark, viz., the coded BASIC statements. Many
elements which comprise Extended BASIC statements are
listed in Table 3 together with their ASCII character
tokens. In MERGE format, the BASIC elements listed
are represented by a single ASCII character. For instance,
CHR$(156) represents PRINT, CHR$(130) the statement
separator, CHR$(213) the LEN function, etc. In order
to prepare BASIC statements in MERGE format,
however, one must also know how to represent variable
names, numeric and string constants, and line numbers
occurring within statements.

The easiest of these to represent is the variable name;
the normal ASCII representation for each character of
the name is used. Consider the line:

10 PRINT XYZ

The MERGE format record used to represent this line
would be:

CHR$(0)&CHR$(10)&CHR$(156)&"XYZ"&CHR$(0)

That is, seven bytes would be concatenated in a string
and written in the appropriate disk file record. The first
two bytes represent the line number; the next, the
keyword PRINT; the next three, the variable name; and
the last, the end-of-line mark. Assuming that the com-
plete file corresponds to the requirements of MERGE for-
mat in other respects, when loaded into program memory
with the MERGE command LISTing, the program will
show it to contain the line intended.

Numeric constants and unquoted string constants are
handled differently from variable names: Each number
of unquoted string must be preceded by two identifying
bytes. The first is CHR$(200), the character which signals
the beginning of an unquoted string. Following
CHR$(200), a byte must be included to indicate the
number of subsequent characters in the string or number.
This byte is simply the character with the code equal to
the length of the string—i.e., if the string were five
characters long, CHR$(5) must be included; if 12
characters, CHR$(12). For example, consider the
statement,

10 PRINT X + 345

The statement would be represented in MERGE format
with 11 bytes as follows:

CHR$(0)&CHR$(10)&CHR$(156)&"X"&CHR$(193)
&CHR$(200)&CHR$(3)&"345"&CHR$(0)

Here, CHR$(200)&CHR$(3)&"345" first indicates that
an unquoted string is to be encountered, then indicates
how long that string is, and finally gives the string.

Quoted strings are handled in much the same way, ex-
cept that CHR$(199) is used instead of CHR$(200):

10 RUN "DSK.1.FILENAME"

would be represented as

CHR$(0)&CHR$(10)&CHR$(169)&CHR$(199)&
CHR$(13)&"DSK1.FILENAME"&CHR$(0)

Notice that quote marks are not explicity included in the
string representation. They are automatically provided
for by the use of CHR$(199).

Finally, line numbers included in program statements
such as GOTO and GOSUB must consist of two bytes
coded in the same way as the line number bytes which
begin each record. Moreover, these two bytes must be
preceded by CHR$(201) to indicate that they are to be
interpreted as a line number. The statement:

10 GOTO 200

would be represented as follows:

CHR$(0)&CHR$(10)&CHRS(134)&CHR$(201)
&CHR$(0)&CHR$(200)&CHR$(0)

Program Generation
Although MERGE format programs can be generated

with the above technique, its use would be
cumbersome—to say the least. The following method
simplifies the process considerably.

For the moment, let's put aside the question of
generating the portion of the character string associated
with the BASIC statement. Assume that this string is
generated and assigned to the string variable LINE$. Each
time a L1NE$ string is constructed, two line number bytes
must be added to the beginning, an end-of-line byte to
the end, and the whole thing must then be written as a
record in the MERGE format file. The easiest way to han-
dle the operations which follow the construction of
LINE$ is to use a subroutine. Given a starting line
number, LN, the following subroutine constructs the two-
byte ASCII line number representation and writes the file
record. It then increments the line number by 10.

9000 PRINT #1: CHRUINT(LN/256))&CHR$
(LN — 256*INT(LN/256))&LINES&CHR$(0) ::
LN = LN + 10 :: RETURN

After the BASIC statement portion of the record is
assigned to L1NE$, a simple GOSUB 9000 takes care of
all the rest.

The construction of L1NE$ strings can be simplified
by assigning ASCII character codes to string variables
with easy to remember names. For instance:

100 REM$ = CHR$(154)::FOR$ = CHR$(140)::NEXT$
= CHR$(150)::IF$ = CHR$(132)::THEN$ = CHR$(176)
::TO$ = CHR$(177)

Some string functions are followed by a "5" and are
reserved words. But in TI BASIC, they can be embedd-
ed in a variable name so that one could use variable names
like @SEG$, @STR$, etc., for storage of the appropriate
ASCII character. Punctuation, arithmetic operators, and
characters 199-201 also must be assigned "creative" string
variable names: Q$ for quoted string, UQ$ for unquoted
string, CM$ for comma, etc.—whatever will be easiest
for you to remember.

The next level of simplification involves user-defined
functions to include more than one byte whenever possi-
ble. For example, it is clear that CALL will always be
followed by an unquoted string; CALL COLOR, CALL
SPRITE, CALL SOUND, etc. For that matter, the un-
quoted string token will always be followed by a byte in-
dicating string length. Construction of strings which in-

90 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

elude the call keyword can therefore be simplified by
defining function appropriately:

110 DEF UQ$(X) = CHR$(200)&CHR(X)::CALLS(X)
= CHR$(157)&UQRX)

A statement like CALL SCREEN (2) can then be written:

120 L1NE$ = CALL$(6)&"SCREEN"&LPS&UQ$(1)&
"2"&RP$::GOSUB 9000

(if CHR$(183), the left parenthesis, had previously been
assigned to LP$ and 182, the right parenthesis, to RP$)

By making the function definitions a little more complex,
the statement can be even further simplified:

110 DEF UQ$(X$) = CHR$(200)&CHRS(LEN(X$))&X$
120 DEF CALL$(X$) = CHR$(157)&UQS(XS)

makes it possible to write CALL SCREEN (2) like this:

130 LINE$ = CALLS("SCREEN")&LMUQ$("2")&
RP$::GOSUB 9000

It's beginning to look a lot like BASIC.
Built-in functions can similarly be defined to facilitate

construcion of MERGE format strings. For instance,

140 DEF INT$(X$) = CHR$(207)&LP$&X$&RPS

allows one to write X = INT(Y/256) as

150 LINE$ = "X"&EQS&INTS("Y"&DIVS&UQ$
("256"))::GOSUB 9000
(if CHR$(190) had been previously assigned to EQ$ and
CHR$(196) TO D1V$)

Similarly, line numbers occurring within statements,
such as GOTO or GOSUB, can be simplified with the
following function:

160 DEF LN$(X) = CHR$(201)&CHR$(INT(LN/256))
&CHR$(LN — 256*INT(LN/256))

so that the statement GOTO 200 can be written simply as

170 LINES = GOTO$&LN$(200) GOSUB 9000
(if GOTO$ had previously been assigned CHR$(134))

Using string variable names and user-defined string
functions, you can create your own custom "language"
for use in writing MERGE format records.

The following program may help to tie up the concepts
presented; it is a trivial example of a music program
generator. The program writes CALL SOUND
statements in the MERGE format file "DSK1.BASIC"
as the user presses a single key.

1 0 0
0

2 0
3 0

REM
REM
REM
REM

USIC PROGRA M G E N E R A T OR

4 0 REM ASSIGN STRING V A S
5 0 REM

1 6 0 CM$= CHR$(179):: LP $ C H R 8 3) R P
$=CHR$(182)

7 0 RE
1 8 0 REM DEFINE STRING F U N C T 0 N S

9 0 REM
2 0 0 DEF UQ$(X$) =CHR$(2 0 0 H LE N

) &X$ DEF CALL$ 1 H R 15 7 U Q
S(XS)

2 	0 REM
2 2 0 RE ASSIGN FIRST L N E N 0
2 3 0 RE
2 4 0 LN=100
2 5 0 REM
2 6 0 REM OPEN MERGE FI L E
2 7 0 RE
2 8 0 OPEN #1: DSK1 BAS C V A R A B LE 1 6 3
2 9 0 RE
3 0 0 RE DISPLAY INSTRU C T I0 N S
3 1 0 RE
3 2 0 DISPLAY AT(7,11ERA S E A L TO E N TE R

A NOTE PRESS ONE 0 F T H E F 0 LLOW NG
KEYS:

3 3 DISPLAY AT(12,5): A B D E F G
: DISPLAY AT(20,7 P E S S P T 0 ST 0
P"

3 4 0 RE
3 5 0 RE ACCEPT KEY IN P U T
3 6 0 RE
3 7 0 CALL KEY(0,KEY,ST A T U S F K E Y 	8 0

THEN 500 ELSE IF K E Y 6 5 0 R K E Y 	7
THEN 370

3 8 0 KEY=2*KEY-130 F K E Y 2 T HE N K E Y
=KEY-1 :: IF KEY> 7 T H E N K E Y =K E Y 	1

39 0 REM
40 0 REM CO PUTE FREQU E N Y
41 0 REM AND PLAY NOTE
4 2 0 RE
4 3 0 FREQ=INT(440*(2"(1 1 2 A K E Y 5

4 4 0
CALL
RE

SOUND(500,FR E Q , 0 1

4 5 0 REM FORT MERGE ST A TM T
4 6 0 REM
4 7 0 LINES=CALLS(SOUN D ") L P U Q $ 	(5 0 0

)&CM$&UQS(STR$IFR E Ol C M U Q$ 0
&RP$ GOSUB 490

4 8 0 GOTO 350
4 9 PRINT #1:CHRS(INT L N 2 5 6 CH R $ L N

256*INT(LN/2561) L N E C H R $1 0
LN=LN+10 RETUR N

5 0 0 REM WRITE END OF F L E
5 1 0 RE
5 2 0 PRINT 1: HR$(255 C H R 2 5 5
5 3 0 CLOSE N1
5 4 0 RE
5 5 RET LOAD INSTRUCT 0 N S
5 6 0 RE
5 7 0 DISPLAY AT(12,1)E A S E A L L TO L 0 A D

THE PROGRAM: :: D S P L A Y A T(1 5 2
:"1> ENTER 'NEW'

5 8 0 DISPLAY AT(17,2): 2 E N T E E R G
DSK1 BASIC' : D 	S P L A Y A T 19 2 1
3> ENTER 'RUN': E N D

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 	91

HOW

)CrIENENE
IS EXTENDED BASIC?

Nothing caused as much excitement and anticipa-
tion in the TI-99/4A community as the announce-
ment (which now seems like an eternity ago) that

Extended BASIC would be forthcoming. Well, now that
the new programming language is being gobbled up by
hungry Home Computer users, the question on
everyone's mind is, naturally enough, "Was it worth
waiting for?"

For the answer to this, and to help put the new soft-
ware in proper perspective, we should first examine TI's
claims for the language (in the introduction to the
reference manual): "Texas Instruments Extended
BASIC. . .has the features expected from a high level
language plus additional features not available in many
other languages, including those designed for use with
large, expensive computers." The key words here are "ex-
pected" and "not available." Features such as DISPLAY
AT, ACCEPT AT, PRINT. . .USING, IMAGE, ON
ERROR, multiple statement lines, expanded IF-THEN-
ELSE statements, PEEK, Boolean operators, and
assembly language subroutine calls are indeed "ex-
pected." Unfortunately, they were expected in the or-
dinary TI BASIC, since they're standard features of
various Microsoft BASICs found in other machines. But
just as plain, old, ordinary TI BASIC has its share of
surprises that aren't commonly found in other BASICs
(e.g., CALL SAY, RESEQUENCE, complete EDIT,
TRACE, and BREAK utilities, plus its marvelously sim-
ple character definition and color assignment facilities),
TI Extended BASIC also has its own unique bag of tricks
not found on other machines. And this bag of tricks in-
cludes some mighty impressive feats of computing magic.

But before we get into these extended features, let's
examine some of the obvious changes from TI BASIC.
First, there's the matter of a slight reduction in usable
RAM. The maximum program size in Extended BASIC
is 864 bytes smaller than in TI BASIC. Although this
represents only about a 6% reduction, any reduction in
user memory is significant if it prevents certain applica-
tions from being RUN. And, in fact, as little as 500 bytes
is frequently the critical amount of extra memory need-
ed. (Witness the several programs in this volume that can-
not be loaded or RUN with the disk controller's power
on—even with the CALL FILES(1) command that frees
all but the 500 bytes for the disk system.) So program-
mers without the 32K RAM expansion should try
wherever possible to make up the loss with Extended
BASIC's built-in memory saving features: multiple state-

ment lines (with more allowable characters per line), ex-
panded IF-THEN-ELSE statements, multiple variable
assignments, trailer comments that immediately follow
statements (instead of separate REMs), repetition of
strings with the RPT$ function, and the use of MIN and
MAX functions.

The loss of user-definable characters in the character
sets 15 and 16 is another departure from the TI BASIC
standard. These custom characters are no longer available
to programmers since the memory area is needed to keep
track of sprites. Therefore, a TI BASIC program that
doesn't use these character sets is supposed to RUN in
Extended BASIC in most circumstances—unless, of
course, you've done something that will obviously cause
trouble, such as accidentally using a TI Extended BASIC
keyword as a variable in your TI BASIC program (e.g.,
DIGIT, ERASE, ERROR, IMAGE, MERGE, MAX,
MIN, SIZE, WARNING, etc.) [See the July/August 1981
issue of 99'er Magazine for an analysis of what is and
isn't interchangeable.—Ed.]

Now, let's take a peek (no pun intended) into the "bag
of tricks" I mentioned earlier. A good place to start is
with Extended BASIC's exciting new graphics
capabilities. Nine new subprograms (plus 2 redesigned
ones) provide the ability to create and thoroughly con-
trol the shape, color, and motion of smoothly-moving,
high-resolution graphics. These are the true sprites—
graphics that can be displayed and moved at any of 49,152
positions (192 rows x 256 columns) rather than the 768
positions (24 rows x 32 columns) CALLed by the
VCHAR and HCHAR statements of TI BASIC. But
that's only the beginning. Sprites can be set in motion
with simple X and Y velocity components and will con-
tinue their motion without further control; they can grow
and shrink at will, be relocated or "hidden", and even
pass over and blot out fixed objects and other sprites to
give the illusion of depth and 3-D animation. [This is a
function of the three-dozen stacked image planes of the
Home Computer's video display processor chip—a uni-
que graphics display explained more fully in "3-D Anima-
tion."—Ed.]

Although games aficionados and educators have every
right to be overjoyed with the new sprites capability,
TI-99/4A users who are more interested in business,
scientific and professional applications will be drawn to
other Extended BASIC features. First on the list is the
impressive subprogram capability. Several options exist
for passing values (and entire arrays) between main and

92 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

subprograms. There's also built-in protection to prevent
subprogram's local variables from affecting the main
variables. Additionally, commonly used subprograms
may be SAVEd on a separate disk, and later MERGEd.
This will allow programmers to build up a library of
"universal" subprograms that can be called upon to
supply the appropriate cartridges for new programming
tasks—without time-consuming re-coding and debugging.

If this new subprogram flexibility is not enough for
your most demanding tasks, how about "program chain-
ing," where one program can load and RUN another pro-
gram from a disk. This means that multi-part programs
of almost unlimited size can now RUN on the TI-99/4A
if they are broken into pieces and each segment is allowed
to RUN the next. And at any point in this chain, a
"menu" may be inserted, allowing the user to choose with
a single keystroke the particular program to be RUN. Im-
agine the possiblities!

Those of you with a speech synthesizer, or thinking of
purchasing one, will be happy to learn that Extended
BASIC includes a speech editor. You will no longer need
the separate Command Cartridge (with a retail price of
about $45). What's more, with the combination of CALL
SPGET, the capability of subroutine MERGEs, and the
data for the code patterns (that TI supplies in the appen-
dix of the reference manual), you can now easily add the
suffixes ING, S, and ED to the roots of words in the resi-
dent vocabulary. And if TI ever supplies users with their
master file of coded speech patterns and rules for com-
bining them, it will be possible to create your own new
words. As of now, TI provides only one cryptic state-
ment: "Because making new words is a complex process,
it is not discussed in this manual."

Incidentally, this capability of having the computer say
what you want it to say rather than being limited to a
fixed vocabulary will, in fact, be implemented through
a related approach. I'm referring to the "text-to-speech"
capability of the forthcoming Terminal Emulator II Com-
mand Cartridge, which is programmable in TI BASIC.
Since only one Command Cartridge at a time can be at-
tached to the TI-99/4A, text-to-speech cannot be used
with the Extended BASIC Command Cartridge. [See
"Text to Speech on the Home Computer."—Ed.]

The final two features I'm going to cover in this over-
view provide a fair degree of software protection and
open the door to additional language capabilities. Con-
sequently, these are the particular features that may have
the most profound impact on the entire TI-99/4A
community—ultimately determining the quality and
quantity of most of the commercial software for this
machine.

Extended BASIC programs can be SAVEd in a PRO-
TECTed form to guard against software piracy. This ir-
reversible feature allows a program to be RUN or load-
ed into memory only with an OLD command. A program
thus PROTECTed cannot be LISTed, EDITed, or SAV-
Ed. If the program was originally SAVEd and PRO-
TECTed on a disk, you must still use the protect feature
of the Disk Manager Command Cartridge to completely
"lock up" the software by preventing it from being
copied as well.

Extended BASIC has the capability to CALL and RUN
assembly language programs if the 32K RAM expansion
peripheral is attached to the computer. Since Assembly
Language has a much faster execution speed than BASIC,
many applications programs that are unfeasible to write
in either TI BASIC or TI Extended BASIC (and Extend-
ed BASIC is not significantly faster than its predecessor)
can now be written in TMS9900 Assembly Language,
LOADed into the expansion memory peripheral, and
RUN on a TI-99/4A. This paves the way for some fairly
sophisticated applications programs that can now be
targeted for TI-99/4A users. [See the related assembly
language sections in this book.—Ed.]

Even though a TI-99/4A with Extended BASIC and
the memory expansion peripheral can CALL and RUN
Assembly Language programs and subroutines, it can-
not be used to write them at present. And instead of a
direct implementation of the POKE command, TI gave
users an indirect implementation. To load data directly
into memory locations, they can use CALL LOAD with
the optional fields specifying a starting address followed
by data bytes. The TMS9900 Assembler, available on the
Editor/Assembler Command Cartridge and its accom-
panying diskettes, allows Home Computer owners to
write their own Assembly Language programs and call
them up through Extended BASIC. Besides this obvious
use of an assembler, it opens up other exciting
possibilities: More exotic languages can be written in
TMS9900 Assembly Language especially for TI-99/4A
implementations. FORTH, for instance, is now available.

The bottom line is more software tools for developers
and more economic incentive for them to produce
valuable programs that can be protected against most
piracy. This means that the TI-99/4A user community
will be seeing a lot more useful software enter the market.
Being able to run this software should more than justify
the $100 (retail) price for this filled-to-capacity 36K byte
TI Extended BASIC Command Cartridge with accom-
panying 224-page reference manual. Therefore, the
answer to the title's rhetorical question, "How Extend-
ed is Extended BASIC?" is apparently, "Extended
enough. . . . " o

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	93

POCKET
TOWER
OF
HANOI

you are in an ancient temple at the center of the
earth where three diamond needles bear eighty
golden rings of graduated sizes. At the beginning

of time the rings were all on one needle; but now the tem-
ple monks are transferring the rings, one at a time, from
needle to needle, never setting a ring on a smaller ring.
When they have moved all eighty rings to one of the other
two needles, the world will end .. .

Possibly you have seen a children's toy along these
lines—four or five disks of various colors and sizes,
drilled to fit on three wooden pegs. The object is to start
with the disks on one peg, and by moving one at a time—
and never setting a disk on a smaller one—transfer the
entire pile to another peg. If you don't have one of these
in your closet, here is a pocket program of the puzzle for
you and your friends.

When the program is run, four "rings" (they will
actually look more like short bars) will appear on the left
of the screen. There is room on the screen for three piles
of rings. (To make the game pocket-sized, the pegs were
left out.) To move a ring from one pile to another, press
key 1, 2, or 3 to designate which pile (left, center, or right)
to take the ring from, and then press 1, 2, or 3 to
designate which pile to move the ring to. That's all there
is to it.

The program works this way: rings are represented by
the numerals 1, 3, 5, and 7. Peg (1), Peg (2), and Peg
(3) are variables in which the presence of rings on the three
pegs (or piles) are recorded. Thus in line 200, which is
part of the initial setup portion of the program, Peg (1)
is given the value 1.357 corresponding to the presence of
all four rings on the first peg. The leftmost numeral is
the one on top.

At the beginning, pegs #2 and #3 are empty. When a
ring is moved from one peg to another, the values of the
"peg()" variables change accordingly. For example, if
our first move is to place the top ring from peg #1 onto
peg #2, then Peg (1) changes from 1.357 to 3.57 and Peg
(2) changes from 0 to 1.

These changes are performed in line 450 (where the
"size" of the ring being moved is figured out) and in lines
500 and 510 where the values of the "peg()"s are actually
changed. "From" and "too" identify the pegs. They are
given values when the keys 1, 2, or 3 are pressed. The
three "top()" variables are strictly for the graphic
display; they record the positions of the tops of the piles
on the screen. Conveniently, the rings are 1, 3, 5, and
7 characters wide.

100 RE * * ** *

110 RE T O W E R 0 F H A N 0 *

120 RE * * * * ** * * * * * * * *

130 RE
140 RE
150 RE
160 RE
170 DI P EG 3) 	,T P 3
180 CALL CO L 0 (7 , 	1
190 CALL CO L 0 (8, 2 2
200 PEG(1)= 3 57
210 PEG(2 1 = 0
220 PEG(3)= 0
230 TOP (1 =1 0
240 TOP (2)=1 4
250 TOP (3)=1 4
2 60 C ALL CLE AR
2 70 C ALL HCH AR(0 6 88
80 C ALL HCH AR(1 5 	88, 3
90 CALL HCH AR(2 4 , 88 , 5
00
10

CALL
CALL

HCH
KEY (

AR(
3 ,

3
F 	0

3 , 88
, STA

, 7
T S)

320 IF ST ATU S=0 T HE N 	31 0
330 CALL KEY (3,D U Y 	ST A T S
340 IF ST ATU S=-1 TH EN 3 3 0
350 FRO1 = FRO M-48
360 CALL SOU ND(1 00, 110, 3
370 CALL KEY (3 , T 00, S TAT U S
380 I F ST ATU S=0 THE N 	37 0
390 CALL KEY (3,D U Y , ST A T
400 IF ST ATU S=-1 TH EN 3 9 0
410 TOO=T 00— 48
420 CALL SOU ND (1 00, 262, 2)
430 I F (F RO <1)+ (FR 0 	>3) T 0 0 > 3 T 0 0

1) THE N 3 10
440 I F (P EG FRO 1=0 + ((P E G T 0 0 > 0 * P

EG(FR 0 >PEG (TO 0))) T H E N 3 0
450 SIZE= IN T (PEG (FR 0 	11
460 TOP (T 00 =TOP (TO 0)-1
470 CALL HC A R T OP FRO 3 F 0 M 1) 9

.5*(7 —S ZE 87 SIZE)
480 TOP (F RO)= T 0 P(F RO)
490 CALL HC H AR T OP TOO) 3 T 0 0 9 5

(7—S IZ E 	/, 88 ,S ZE)
5 0 0 PEG(F RO 1 = 10 P EG(F R 0 M S E
5 0 PEG(T 00 1* PEG (TOO) S Z E
5 2 0 GOTO 31 0

"Status" is used as part of the "call key" routine to
tell the machine when a key has been released so that the
program can go ahead. Now read through the program
and see if you can follow what is happening.

Stacks
The piles of rings in this program are particularly

graphic illustrations of the stack, a ubiquitous and very
important idea in practically every kind of software. Like
the rings in these piles, things stored on software stacks
(subroutine return addresses, interrupts, whatever . . .)
come off the stacks in reverse order to the way they went
on. Because the items stored on our pegs are only single
numerals, we are able to use a simple "trick"' to repre-
sent each of our three stacks. We just construct a number
for each digit we want to represent. The 99/4A employs
numbers accurate to 13 decimal places using a radix-100
representation, so we can push and pop numerals onto
and off the left end of these with abandon, multiplying
and dividing by 10 without fear of a roundoff error.

CD
I lf you find an application for this "trick" in a program of your own, you will
be entitled to call it a "method." (A "method" is a trick used twice).

94 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26

