
Sierra On-Line Common Install
Product Specification v. 2.x

Authors: Peter Sarrett
 Willie Eide
 Jay Lee (2.X)
 September 15, 1995

Help File: Susan Frischer

Contents

Sierra On-Line Common Install

1.0 Overview

2.0 Start Up

3.0 Main Menu

3.1 Install

3.1.1 The SIERRA.INF File

3.1.1.1 Requirements

3.1.1.2 Identification

3.1.1.3 Archives

3.1.1.4 Files

3.1.1.5 Dialogs

3.1.1.6 Setup

3.1.1.7 Script

3.1.1.8 Preview (Not implemented)

3.1.1.9 Billboards

3.1.2 The LANGUAGE.INF File

3.1.2.1 Identification

3.1.2.2 Strings

3.2 TEST - The System Test Results Dialog Box

3.2.1 Display

3.2.2 Sound

3.2.3 CDROM

3.2.4 Memory

3.2.5 Miscellaneous

3.2.6 Joystick

3.2.7 Printer (No longer supported)

3.3 Register

3.4 Read Me

3.5 Uninstall

3.6 Support

3.7 Exit
3.8 About Icon

Sierra On-Line Common Install

This document describes the common Install/Setup program(s) being written for use with all products in
the Sierra family. This version of the spec covers the specification for a Windows only Setup program.

2.X Note
Setup will run under Windows 3.x as well as Windows 95. Some features have been added that are
Win95 only, notably the ability to write to the Win95 registry and support for the DirectX facilities of the
Microsoft Game SDK.

1.0 Overview

Sierra is pushing for brand recognition across its product line, uniting all of our subsidiaries under the
banner logo of Sierra. A big step in this effort is the creation of a common install program to be used by
all products in the Sierra family. Aside from eliminating redundant development work, such an install
would provide a familiar "face" to all Sierra products. Users who successfully install one product will find
it much easier to install their next Sierra product. This will reduce tech support calls. Indeed, the install
program is being designed to help reduce tech support calls from novice users by testing various aspects
of the user's system and suggesting ways that common problems can be fixed. By simplifying,
streamlining, and standardizing the Sierra installation process, we hope to reduce support costs and gain
a competitive advantage in the marketplace.

The Sierra Windows Setup (hereafter referred to as Setup) uses standard Windows controls which will be
familiar to Windows users. It uses a script to allow Sierra developers to customize the process to suit an
application's needs, yet is smart enough to handle the most common tasks without being directed to do
so by the script. Setup allows the user to enter registration information on-line, then dump it to a printer
or register directly via modem. Setup will allow a user to easily uninstall products from his system.

2.0 Start Up

Setup actually consists of multiple parts: Presetup, Setup, Setup32 and a DLL full of language-specific
resources. Presetup is the uncompressed SETUP.EXE which must reside in the root directory of the first
distribution disk. Setup is called _SETUP.EXE and Setup32 is called SETUP32.EXE and they are
compressed, along with MIDITEST.MID, one or more language DLLs and one or more help files in a file
called SETUP.SOL. This file must be in the same directory as SETUP.EXE. The compressed language
DLLs are named SOL_XXX.DLL where XXX is one of ENG, FRE, GER, SPA, or ITA for English, French,
German, Spanish, or Italian, respectively. Similarly, the help files are SOL_XXX.HLP (these help files are
the appropriate language version of what would be called _SETUP.HLP).

When Presetup is run, it gives the user an error message and exits if there's not enough room in the
user's temporary directory (or C:\ if no TEMP dir is defined) for the uncompressed _SETUP.EXE,
SETUP32.EXE, MIDITEST.MID, and appropriate SOL_XXX.DLL and SOL_XXX.HLP (as determined by
the sLanguage entry in the [intl] section of the user's WINDOWS.INI file). Otherwise, it uncompresses
these files to the user's temporary directory, runs _SETUP.EXE, and waits for _SETUP.EXE to terminate.
At that time, it deletes all the temporary files and exits. SOL_XXX.DLL is uncompressed as
SETUPL.DLL. SOL_XXX.HLP is uncompressed as _SETUP.HLP.

Presetup check in WIN.INI to determine what language the user is running and copies the appropriate
DLL and HLP for that language. Setup then proceeds to run in the language that the user is running.

_SETUP.EXE will be copied to a permanent location as SETUP.EXE when the user installs a Sierra
product. Thereafter, Setup can be run directly from the user's hard drive should the user wish to test his
hardware, uninstall, or perform any of the other functions Setup allows.

Setup plays a .WAV fanfare and displays a basic animated Sierra logo before presenting the user with the
main menu.

2.X Note
Setup has been updated to look for a file called LOGO.BMP from the directory that it was launched from.
If found, it will use this as the logo instead of the default Sierra Half Dome logo. The use of this feature is
discouraged as it runs counter to the desire to have a single corporate identity. As of this writing, the only
approved use of this is for educational products for sale in Europe.

3.0 Main Menu

The main menu looks like this:

This dialog disappears or goes to the background when any of the right-hand buttons are pressed,
reappearing when the function indicated by that button has finished. Setup will never exit completely
without the user pressing the Exit button from this dialog first, unless the product allows the user to reboot
his machine or restart Windows as part of that product's installation process.

When the Install, Register, Read Me, Test, Uninstall or Support buttons are pushed, Setup will try to
determine which product the user wants to operate on. For Install and Test, Setup will search the
directory from which it is run for a SIERRA.INF file. This file contains important information about the
product being installed (size, system requirements, etc.). If a SIERRA.INF file is found, Setup will
assume that the user wants to install the corresponding product. Otherwise, Setup will search the user's
system for a SIERRA directory or subdirectory. If found, Setup then searches all subdirectories off the
SIERRA directory for SIERRA.INF files. Each such file corresponds to a Sierra product the user has
previously installed. For Install and Test, Setup will also check the user's floppy drives and CD-ROM
drive for SIERRA.INF files. If all these searches fail, Setup will politely inform the user that something is
wrong and will gracefully exit.

When Setup finds SIERRA.INF files, it brings up a dialog listing all the corresponding products in a list
box:

The user chooses a product, which lets Setup know which .INF file to use for system requirements and
other information.

Note that this dialog never appears if Setup finds a SIERRA.INF file in the directory from which it
was run.

3.1 Install

Setup's philosophy is inspired by the Disney theme parks where rides take you along predetermined
pathways from which you may not deviate. Setup isn't quite as restrictive as Walt, allowing developers
some customization options to tailor Setup's behavior to an application's needs. Setup uses a limited
scripting language and acquires information from the SIERRA.INF file. The script language allows the
use of user-defined dialogs and the ability to launch a separate module if your application requires special
handling not easily supported within Setup itself (for example, if you wanted to use Microsoft's Setup to
install Video for Windows). Setup uses the PKWare libraries for file compression. Why? It's fast,
compresses well, is easy to use, and works under Windows, 16 and 32 bit. If the compression algorithm
is deemed insufficient, effort can be directed towards changing the algorithm to a method accepted by all
of Sierra. Note that the PKWare compression libraries do not use the ZIP format. Thus files for use with
Setup need to be compressed with a custom program (PKCOMP) which we provide.

3.1.1 The SIERRA.INF File

The SIERRA.INF file provides most of the information Setup needs to install a product (the remainder is
specified in a LANGUAGE.INF file (see Section 3.1.2)). Each product must have a SIERRA.INF file in
the same directory as SETUP.EXE on the installation disk. The SIERRA.INF gets copied to the user's
hard drive during the installation process. Setup modifies this copy of SIERRA.INF to allow Setup to
later determine which drive the product was installed from. Most aspects of Setup, including the
hardware tests, will not work correctly until Setup has found a SIERRA.INF file to refer to.

The SIERRA.INF file looks similar to a Windows .INI file. Not surprising, since Setup uses the Windows
PrivateProfile interface to read and write to the .INF file. The sections of the .INF may appear in any
order, but must be separated by a single blank line consisting solely of a carriage return. Setup may
interpret other blank lines as indicating the end of a section, so blank lines should only be used to
separate sections. Some keys in some sections are optional. If such a key is missing, Setup will use
the default value indicated in curly braces ({}).

Any line beginning with a semicolon (;) is a comment and will be ignored by Setup. The examples given
in each section use semicolons to separate explanatory comments from the examples themselves-- these
comments, which appear on the same line as actual .INF entries, are not legal .INF comments. A line
must begin with a semicolon for it to be a legal comment.

3.1.1.1 Requirements

The Requirements section contains information about the application's hardware and software
requirements. Any key in this section which has a default value is optional.

[Requirements]

Colors= colors

ScreenWidth= xres

ScreenHeight= yres

VideoSpeed= Kpixels

Wave=0 | 1 | 2

MIDI=0 | 1 | 2

CDROM=0 | 1 | 2 | 3 | 4

MemKB= memory

PhysicalMem= memory

WinVer= winver

CPU=386 | 486 | Pentium- speed

Joystick=0 | 1 | 2

SetupVer= setupver

Colors
colors = Number of colors required by the application (2, 16, 256, etc.). {16}

ScreenWidth
xres = Minimum screen width. {640}

ScreenHeight
yres = Minimum screen height. {480}

VideoSpeed

Kpixels = Thousands of pixels per second that video card must support.

Wave
0 = Product doesn't support .WAVs.
1 = Product supports .WAVs but doesn't require them.
2 = Product requires .WAV support. {0}

MIDI
0 = Product doesn't support MIDI.
1 = Product supports MIDI but doesn't require MIDI.
2 = Product requires MIDI. {0}

CDROM
0 = CD-ROM not required.
1 = Requires at least a single-speed.
2 = Requires at least a double-speed.
3 = Requires at least a triple-speed.
4 = Requires at least a quad-speed. {0}

MemKB
memory = KB of free memory required by your application. {0}

PhysicalMem
memory = KB of physical memory required by your application. {0}

WinVer

winver = Windows version required.

3.0 = 300, 3.1 = 310, Win95 = 395, etc. {300}

CPU

Minimum CPU and clock speed (e.g., 66 for 66 mHz) required.
Ex: 386-40

 Pentium-90

Joystick
0 = Joystick not supported.
1 = Joystick supported but not required.
2 = Joystick required. {0}

SetupVer
setupver = Version of Sierra Setup for which this .INF file was designed. Must be of the form i.j.k.l (e.g.,
1.0.0.0). {1.0.0.0}

3.1.1.2 Identification

The Ident section contains application identification information.

[Ident]

Version= version

ProductID= product number
ReadMe= filename

Version

version = Product version. Must be an integer.

ProductID
product number = Product number. Must be an integer. This is used for electronic registration.

ReadMe
filename = Filename for readme file. Looks in the same location as Language.INF.

3.1.1.3 Archives

The Archives section contains a list of all archives (files containing compressed files to be installed) on
the distribution disks, along with the archive's size, the disk number on which the archive resides or
begins, and whether or not this archive should be installed by default. This information is used for two
purposes: to make it easy to locate files for installation, and to enable accurate disk space verification. If
files exist which Setup will not be installing itself (for example, Video for Windows files which will be
installed by Microsoft's Setup program), those files (or the compressed file(s) they are in, even if
compressed with a program other than the one provided by the Setup team) should be listed here. The
disk number for these archives that may be installed by other external programs should be set to 0. This
notifies Setup NOT to install this file. This is so Setup can correctly determine the amount of space all
desired files will require on the user's system. Note that the entries in this section do not follow the
standard Windows .INI format.

Subdirectories that contain uncompressed files are also specified here. The declaration of the
subdirectory is the same as a compressed file, but with a \. For example, if you had a subdirectory
called FOO that contained uncompressed files, the specification for the archive name would be FOO\.
By using the rules used for regular compressed archives, subdirectories can also be turned on or off
using flags.

Care should be taken with the installation flag. Setting an archive's flag to 1 will force all files in that
archive to be installed regardless of whether or not the file's installation flag is set to 1. However, setting
an archive's flag to 0 will not force all files in that archive to remain uninstalled. When an archive's flag is
0, only the member files which are set to 1 will be installed.

[Archives]

FILENAME.EXT, disk number, file size, flag

Examples:

[Archives]
STUFF.SOL, 1, 0, 0

[Archives]
FOO\, 1, 0, 1

Note: Use of the compression utility, PKCOMP.EXE, will generate a PKCOMP.INF file in the root directory
where the compression is performed. This file will contain the above-mentioned section of Archives which
can then be cut and pasted into the products' SIERRA.INF file.

FILENAME.EXT

FILENAME.EXT = Archive file name
disk number = Number of the disk on which this file resides. The first disk is #1. In the case of archives
which span multiple disks, this value must be the number of the disk on which the archive begins.

file size = Size of uncompressed archive in bytes. This value should be 0 for all archives which will be
uncompressed by Setup. This value should be non-zero for all archives which will be uncompressed by
an external program.

flag = 0 if some or all files in the archive should not be installed by default.
 1 if all files in the archive should be installed by default.

STUFF.SOL

STUFF.SOL on disk 1 is a Sierra archive and should not be installed by default.

FOO\
Subdirectory FOO is on disk 1. It should be installed by default.

3.1.1.4 Files

The Files section contains a list of all files which Setup might need to copy to the user's hard drive. Also
included with each file is the name of the archive that file resides in, the uncompressed size of that file,
and a flag representing whether or not the file should be installed by default. Setup uses the location of
the archive to determine which disk a file is on. If the file is uncompressed (and thus uses the
NOARCHIVE keyword), you must also specify the disk where Setup can find the file. A file must not
have the same name as an archive.

When NOARCHIVE is specified, Setup looks for that file in the *SOURCEDIR directory. When identifying
files that reside in a subdirectory, the subdirectory name must be indicated in the archive key name (with
the backslash). This directs Setup to look into that subdirectory for that file. The specified subdirectory
must be in the list of Archives (see Section 3.1.1.3).

A more advanced use of the Files section is to use FILENAME.EXE as the destination (path or
subdirectory included). This can be accomplished by using Special Values (see Section 3.1.1.7). Also
the archive key name can be specified as a path or subdirectory.

Note: The only time the disk key name is used is when specifying NOARCHIVE.

[Files]

FILENAME.EXE, archive, [disk,] size, flag, [groupId]

Example:
[Files]
FIRST.EXE, STUFF.ZIP, 143000, 1
README.TXT, NOARCHIVE, 2, 23143, 0
*SYSTEMDIR\MYFILE.DLL, SYSTEM\, 23143, 1

Note: Use of the compression utility, PKCOMP.EXE, will generate a PKCOMP.INF file in the root directory
where the compression is performed. This file will contain the above-mentioned section of Files which can
then be cut and pasted into the products' SIERRA.INF file. Non-archived files (files needing no
compression) can still take advantage of PKCOMP.EXE by providing a /X parameter. The /X parameter
bypasses all compression activity and only produces the PKCOMP.INF file. This feature saves installers
time by listing all non-archived files with their size.

FILENAME.EXE

FILENAME.EXE = file name
archive = Filename of the archive in which this file resides. For uncompressed (files which are not in an
archive) use the keyword NOARCHIVE.

disk = Number of the disk on which this file resides. This must only be used with an uncompressed
file using the NOARCHIVE keyword!
size = Size of uncompressed file, in bytes.

flag = 0 if file should not be installed by default, 1 if it should (Important: see note in Archives section
above).

groupId = Optional group identifier used to group files together for use with TOGGLEGROUPON
command.

FIRST.EXE
FIRST.EXE in STUFF.ZIP is 143,000 bytes long and should be installed.

README.TXT
README.TXT, an uncompressed 23,143 byte file on disk 2, shouldn't be installed by default.

*SYSTEMDIR
MYFILE.DLL, an uncompressed 23,143 byte DLL in SYSTEM\ should be installed by default and into the
system directory on the machine.

3.1.1.5 Dialogs

The Dialogs section contains pseudo-templates for custom dialog boxes. Execution of these dialogs is
controlled via the Script section. Entries in this section do not conform to the Windows .INI standard.

Setup allows the use of static text controls, check boxes, radio buttons, push buttons, and edit controls
within a dialog. Combo boxes, list boxes, and other controls are not currently supported. These
controls will be arranged automatically into a suitably pleasing configuration. Within a dialog definition,
controls should be listed in the order in which they should appear in the dialog, top to bottom, with push
buttons listed last. Grouped radio buttons must be listed consecutively. If you want more than one
group of radio buttons in the same dialog, each group must be separated in the definition by a control
which is not a radio button. Push buttons will always appear in the upper-right corner of the dialog box,
stacked top to bottom in the order in which they appear in the definition. To ensure the dialog's layout is
as pleasing as possible, push buttons must be listed last to allow them to be horizontally aligned properly.

You should make sure to have at least an OK or YES button in every dialog. If the OK button is pushed
(or the YES button, which is treated separately but usually results in similar actions), the user's selections
from the dialog are acted on. The NO button causes the dialog to end without altering Setup's behavior.
Important: No files or flags are ever set as a result of the NO button being pushed, regardless of
whether or not you specify them in the dialog definition. The NO button essentially causes Setup
to continue as if that dialog had never appeared in the first place. The CANCEL button aborts the
Setup process completely.

The installation team can associate a group of files or archives with a given control. If that control is
selected, the associated files/archives are toggled "on," meaning they will be installed to the user's
system. Additionally, a flag (see Script section) can be associated with a control. The flag will be set if
the control is selected.

No text is specified in dialog definitions. To allow for language independence, keynames are used
instead. The actual text represented by these keys is defined in a LANGUAGE.INF file (see Section
3.1.2).

[Dialogs]

BEGIN template, label

titlekey
type1, textkey1 [, (files1)[, flag1]]files1_flag1
or

type1, textkey1, edit1
type2, textkey2[, (files2)[, flag2]]
...

typeN, textkeyN[, (filesN) [, flagN]]

END

Example 1
Example 2

Note: If you are not toggling any files, but want to set a flag, specify a blank file list with () - left
parenthesis followed immediately by right parenthesis.

BEGIN
template = Integer ID # of Setup dialog template to use. Currently this is read but not used.
label = Dialog's name. Unseen by user, needed to invoke dialog in the Script section.

titlekey
titlekey = Keyname for text to appear in title bar.

type1, textkey1[, (files1)[, flag1]]

This first form is used for all controls other than Edit (6).
type1 = Type of the first control.

1: Static text.
2: Check box.
3: Radio button.
4: Single-selection list box (not currently supported).
5: Multi-selection list box (not currently supported).
6: Edit control (must use second form, without files).
10: OK button.
11: CANCEL button.
12: YES button.
13: NO button.
14: HELP button.

15: RETRY button.
textkey1 = Keyname for text to appear in control.

files1 = Comma-separated list of filenames representing which files and archives will be toggled on if this
control is selected. Filenames should be specified identically to their specifications in the Archives or
Files section.

flag1 = Flag to set if this control is selected. Flags MUST be of the form FLAGn, where n is a value from
0-9.

type1, textkey1, edit1
This second, shorter form is used for edit controls.

type1 = Type of the first control.
6: Edit control (in this case, without files).

textkey = The edit control's default value in this case.

edit1 = Used only for edit controls, specifies an identifier for that edit control. This is of the form EDITn
where n is a value from 0-4.

Dialogs - Example 1
BEGIN 1, Test1
TESTDIALOG
1, CHOOSETYPE
3, SMALL, (FOO.CMP, BAR.EXE, MYFILE.TXT)
3, MEDIUM, (FOO.CMP, BAR.EXE, MYFILE.TXT, MORE.CMP)
3, LARGE, (FOO.CMP, BAR.CMP, MORE.CMP, YETMORE.CMP), FLAG3
6, DEFAULT, EDIT0
10, OK
11, CANCEL
END

The above template creates a dialog called Test1. The title bar text will be whatever TESTDIALOG is
defined as in the appropriate LANGUAGE.INF (see Section 3.1.2). The first control is a static text
control. The next three controls are radio buttons causing the indicated files and archives to be toggled
on (and later installed) if the button is selected. If the third radio button is checked, FLAG3 is also set.
The fourth control is an edit control which begins with whatever DEFAULT is defined in LANGUAGE.INF
as its contents.

Dialogs - Example 2
BEGIN 1, MBox
VFW
1, PROMPT
12, YES, (VFW.ZIP), FLAG1
13, NO
11, CANCEL
END

The above example brings up a message box with YES NO CANCEL buttons. If YES is pushed,
VFW.ZIP is toggled on. Since this is a ZIP file, it won't be uncompressed by Setup. Toggling VFW.ZIP
on merely allows Setup to correctly determine the amount of space required on the user's system.
FLAG1 will probably be used later in the script to run an external program which will install the files
contained in VFW.ZIP.

3.1.1.6 Setup

The Setup section contains information needed by Setup or Presetup to run correctly. Both entries that
address the size of Setup and its Billboard files are mandatory. This ensures that Setup has enough
room on the users hard drive to run. Included in this section is AnimateDLL. This keyword specifies the
filename that will be used to perform animation during the copying process.

2.X Note
To make it easier to determine what has happened in a script gone wrong, a simple debugging facility has
been added. In addition, this section is used to retrieve information needed to update the Win95 registry
in conjunction with the DOWIN95REGISTRY command.

[Setup]

SetupSize= size

BillboardSize= size of billboards

AnimateDLL= filename.DLL

CanInstallDOS=No

Debug=True

RegProductKey= key

RegKey n = keyname

RegValue n = value

InstallType=UninstallOnly
SkipReplaceWarning=True

Example

SetupSize
size = Uncompressed size, in KB, of maximal set of files contained in SETUP.SOL which could get
installed to the user's system (_SETUP.EXE + SETUP32.EXE + MIDITEST.MID + the largest
SOL_XXX.DLL and SOL_XXX.HLP files).

BillboardSize
size of billboards = Size of uncompressed billboards, in KB.

AnimateDLL
filename = Name of the animation DLL used during the copying process.

CanInstallDOS
Specify this entry if you do not have a DOS version of the game available on the same media. This
prevents setup from recommending that the user install DOS version of the game if the users machine
fails to meet the minimum requirements set forth in the Requirements section.

Debug
Specify this entry if you want a dialog to show up as each command in your script is parsed. This is to
aid in debugging your script and should not be left in the shipping version. Note that clicking on the
cancel button in the dialog stops it from appearing again through the remainder of the script.

RegProductKey
key = The name under which all other registry items will be placed. The convention is that a key called
HKEY_LOCAL_MACHINE\\SOFTWARE\\SierraOnLine\\key will be written to the Win95 registry. Any other
entries placed under this key, and this is where the game should search for entries.

RegKeyn
n = Integer counting up from 0.

keyname = Name of the key that will be created under KEY_LOCAL_MACHINE\\SOFTWARE\\SierraOnLine\\
key (see above). To support pairs of Keys and Values that will be written into the Win95 registry by
setup.

RegValuen
n = Integer counting up from 0.

value = Value that will be entered for associated key HKEY_LOCAL_MACHINE\\SOFTWARE\\SierraOnLine\\
key (see above). To support pairs of Keys and Values that will be written into the Win95 registry by
setup. The special values *SIERRADIR, *DESTDIR, and *SOURCEDIR are currently supported here. If
the value evaluates to a numeric value, it will be written out as such. If not, it is written as a string.

InstallType
Specify this entry if you want setup to ignore the SIERRA.INF file when it is searching for installed
products to install or register. This will only be considered a product if uninstall is requested. This
feature was specifically created to support Sierras collection series and should be used with extreme
care.

SkipReplaceWarning
Set to True if you want setup to bypass the warning issued when a previous installation is found. Note
that installing a game over a previous installation could cause the loss of saved games, etc.

Setup - Example 1
2.X Note
Since registry support is new, an example is provided. Given the following entries:

[Setup]
RegProductKey=Thexder
RegKey0=InstallDir
RegValue0=*DESTDIR
RegKey1=String
RegValue1=XYZ
RegKey2=Numeric
RegValue2=777

and the presence of the DOWIN95REGISTRY command in the Script section, the following will be written
to the registry:

1) A key called HKEY_LOCAL_MACHINE\\SOFTWARE\\SierraOnLine\\Thexder
2) A key under 1) called InstallDir with a value like C:\SIERRA\THEXDER
3) A key under 1) called String with the value XYZ
4) A key under 1) called Numeric with the value 777

3.1.1.7 Script
The Script section (it must start with a capital S) is what drives Setup. Commands will be executed in the
order in which they appear in the script. When an action label is invoked, the corresponding action will
only be executed if that action has previously been toggled on by a dialog.

[Script]
:label

ADDTOINI file , section, key , value

ADDPROGMANGROUP titlekey

ADDPROGMANITEM [/F] [/D] [/R] command, titlekey [,[icon][,workdir]]

APPEND filename text

COLORS_NEQ num FLAGx

COPY

DATECHECK filepath date FLAGn

DIALOG label

DISKSPACE_LT num FLAGx

DOWIN95REGISTRY

END

EXIST fileSpec FLAGx

FLAG n command

GOTO scriptlabel

INSTALLDIRECTX

LANGUAGE_EQ lang FLAG n

NOTWINNT FLAG n

PHYSICALMEM_LT memK FLAG n

PICKDEST [scriptlabel]

REBOOTSYSTEM

REGISTER

RESETFLAGS

RESTARTWINDOWS

RUN [NOWAIT]

TESTMIDIEX FLAG n

TOGGLEGROUPON groupid

TOGGLEON (file1 [, file2, ... filen])

VERSIONCHECK filepath version FLAG n

WIN32CHECK version (file1, file2... file2), FLAG n

WINGPROFILE

WINDISKSPACE_LT num FLAG n

WRITE filename text

Special Values

Example

:label
label = Name of label preceded by a colon. Defines a script label. Other commands can refer to this
label to jump script execution to the label.

ADDTOINI file, section, key, value
file = Name of file to add to (see Special Values).

section = Name of section within INI file.

key = Name of key.

value = Value of key (see Special Values). Adds the given key and value to the given section of the
indicated .INI file. If key already exists in section, its value is set to value instead.

ADDPROGMANGROUP titlekey
titlekey = Keyname of group title. Creates a program group of the given title value if none already exists
with that name. This command must come before the first ADDPROGMANITEM command.

ADDPROGMANITEM [/F] [/D] [/R] command, titlekey [, [icon] [,workdir]]
/F = FORCE. Add item regardless of whether or not the path is valid.

/D = DELETE. Removes item at uninstall even if it is in SIERRA directory. Default is not to delete.

/R = RETAIN. Retain item at uninstall unconditionally.

command = Command to give the program item (see Special Values).

titlekey = Keyname of title to give program item.

icon = Icon name which may be an icon not embedded in the executable.

workdir = Working directory to be specified in the properties section of the program item. Creates a
program item with the given command and title in the program group created by a previous
ADDPROGMANGROUP command, provided the file and path specified in command exist. Must be
preceded by an ADDPROGMANGROUP command earlier in the script.

APPEND filename text
Appends the specified text to the filename. Special Values may be used in filename.

COLORS_NEQ num FLAGn
Tests whether user is running a display with num colors.
num = Number of colors to test for.
FLAGn = Flag to turn on if number of colors does not equal num.

COPY
Copies all "on" files to the user's system.

DATECHECK filepath date FLAGn
Checks date in specified file.
filepath = Path of file to check. May include Special Values.
date = Date threshold. Must be in the following format: MM/DD/YY.
FLAGn = Flag to turn on if filepath's date is less than date.

DIALOG label
label = Name of dialog box as defined in the Dialogs section. Invokes the named dialog.

DISKSPACE_LT num FLAGn
Tests that the destination drive has num free space available.
num = Amount of memory in K.
FLAGn = Flag to turn on if space on destination drive is less than num.

DOWIN95REGISTRY
WIN95 Only. Process the registry info under [Setup] in Sierra.INF (see Requirements section for details).

END
Terminate Setup. An End command must appear at the end of the script.

EXIST fileSpec FLAGn
Tests for a file matching fileSpec.
fileSpec = File specification, wildcards (*, ?) allowed.
FLAGn = Flag to turn on if fileSpec is found.

FLAGn command
n = 0-99

command = Any legal script command. If given flag was set by an earlier dialog, command is executed.

GOTO scriptlabel
scriptlabel = Name of label defined elsewhere in the script, without the colon. Script execution jumps to
scriptlabel. This will usually be used with a FLAG.

INSTALLDIRECTX
WIN95 Only. Runs the Game SDK for Win95 install program. Note: dsetup.dll, dsetup16.dll and the
DirectX folder must be on the source media. These are the contents of the Redist folder on the Game
SDK.

LANGUAGE_EQ lang FLAGn
Tests if the machine is running the lang specified.
lang = Language - one of [ENGLISH|FRENCH|GERMAN|SPANISH|ITALIAN].
FLAGn = Flag to turn on if lang is language on machine.

NOTWINNT FLAGn
FLAGn = Toggles the flag on if not running under WinNT or Win95.

PHYSICALMEM_LT memK FLAGn
Tests the physical memory available.
memK = Amount of memory to test for in K.
FLAGn = Flag to turn on if physical memory is < memK.

PICKDEST [scriptlabel]
scriptlabel = Name of label defined elsewhere in the script, without the colon. Asks user to select a
destination directory. If there isn't enough disk space on that drive, the script jumps to scriptlabel.
Important: If your script doesn't allow users to choose a subset of files to install before it calls PICKDEST,
scriptlabel should be a label appearing at the end of the script. Otherwise, an endless loop could result.
If your script uses a dialog to allow the user to choose a file subset, that dialog must always be invoked
before the PICKDEST command, and scriptlabel should be a label appearing before that dialog (see
example).

REBOOTSYSTEM
Reboot user's computer.

REGISTER
Calls up the on-line registration portion of setup.

RESETFLAGS
Resets all flags to 0.

RESTARTWINDOWS
Restart Windows.

RUN [NOWAIT] disk searchfile commandline
Conditionally executes the specified command line.

[NOWAIT] = Optional parameter that causes setup to continue executing without waiting for executed file.

disk = Disk number on which file is expected.

searchfile = File which much exist in order to run command.

commandline = Command line to execute. If searchfile is found, executes the given command,
suspending Setup until the launched application terminates. If searchfile is not found, prompts the user
to insert disk #disk. If disk is 0, commandline is executed without first looking for searchfile.

TESTMIDIEX FLAGn
FLAGn = Flag to set if the user has extended MIDI. Plays an extended MIDI file and asks user if he
heard it. If so, sets FLAGn. If not, plays a base MIDI file and asks user if he heard it. If not, tells user
what may be wrong.

TOGGLEGROUPON groupid
Toggles the file in groupid on.
groupid = ID specified as last param of file in [Files] section.

TOGGLEON (file1 [, file2, ...filen])
Toggles the listed files "on" for installation. Special Values should NOT be used in file names.

VERSIONCHECK filepath version FLAGn
filepath = Path of file to check. May include Special Values.

version = Version threshold. Must be in the following format: w.x.y.z (e.g., 1.0.3.4) as used in Microsoft
VERSIONINFO resources.

FLAGn = Flag to turn on if filepath's version is less than version.

WIN32CHECK version (file1, file2...filex), FLAGn
version = Version of Win32s to check for.
(file1, file2... filex) = List of files to toggle on if correct version - use () if none.
FLAGn = Flag to turn on if Win32s version is >= version.

WINGPROFILE
Run the WinG profile utility.

WINDISKSPACE_LT num FLAGn
Tests that the Windows drive has num free space available.
num = amount of memory in K.
FLAGn = Flag to turn on if space on destination drive is less than num.

WRITE filename text
Writes the specified text to the file. Special Values may be in filename.

Special Values
Special values have been defined which, when used in conjunction with file or value parameters of
ADDTOINI or the command parameter of ADDPROGMANITEM, are replaced with other values. These
replacements occur in place, leaving the rest of the command line untouched. All values begin with an
asterisk (*). These values are:

*DESTDIR

*SOURCEDIR

*SOURCEDRIVE

*CDROMDRIVE

*EDIT n

*SIERRADIR

*WINDOWSDIR

*SYSTEMDIR

*DESTDIR, *SOURCEDIR, *SIERRADIR, *WINDOWSDIR, and *SYSTEMDIR do not include trailing
backslashes. *SOURCEDRIVE and *CDROMDRIVE are a single character (the drive letter) without a
colon or backslash.

WARNING: Caution should be used when using *SIERRADIR and *DESTDIR. These parameters are
substituted on the fly so that if the destination is not yet determined, these values are NULL.

*DESTDIR
Full path of the directory to which the user is installing.

*SOURCEDIR
Full path of the directory from which the user is installing.

*SOURCEDRIVE
Drive letter from which the user is installing.

*CDROMDRIVE
Drive letter of the first CD-ROM drive on user's system.

*EDITn
n = 0-4 (text most recently entered in the corresponding edit control). Ex: *EDIT2.

*SIERRADIR
The Sierra directory (i.e., C:\SIERRA).

*WINDOWSDIR
Full path of the users Windows directory.

*SYSTEMDIR
Full path of the user's Windows system directory.

Script - Example
[Script]
:Start
DIALOG PickFiles
PICKDEST Start
COPY
FLAG0 VFWSETUP.EXE
ADDTOINI SIERRA.INI, Config, File, *DESTDIR\RESOURCE.CFG
END

The above script asks the user to pick a set of files to install, then gets the destination directory. If there
isn't enough space on the destination drive for all selected files, the user is returned to the PickFiles
dialog. Once a file set is chosen which fits on the destination drive, files are copied to the user's system.
If FLAG0 was turned on during the PickFiles dialog, VFWSETUP.EXE is executed. A line is added to the
Config section of the SIERRA.INI file. *DESTDIR is replaced with the actual destination path. If the
product installed to C:\SIERRA\FOO, the line would read "File=C:\SIERRA\FOO\RESOURCE.CFG".
Finally, the script ends.

3.1.1.8 Preview
Not implemented.

The Preview section in the SIERRA.INF file is used to install (if not already there) an icon to the Sierra
program group, and launch a CD-ROM catalog program being built by an outside vendor. This catalog
program will preview Sierra's products along with various marketing and sales information. The catalog
has not yet been delivered and we have no specs on it, so this section is currently unimplemented.

3.1.1.9 Billboards

The Billboards section in the SIERRA.INF is used to specify data that is displayed to the user when the
copying process is going on. Various information can be passed along to the user like "Have you filled out
your Warranty Registration card today?" or may provide the user with helpful tips for a successful
execution of the newly purchased product. The developer can also specify bitmaps that will be displayed
when the copy process is humming along. The bitmaps are read as "device independent bitmaps" (DIBs)
or just plain BMP files. The Setup program distinguishes between text files and bitmaps by identifying the
extension of the file. These files are located on the installation disk. If the install is from a floppy, the
billboard files are located on the first floppy disk compressed into BILLBRD.SOL. If the install is from a
CD-ROM drive, then the files are uncompressed and are in a BILLBRD subdirectory on the CD. There
will be one BILLBRD.SOL or BILLBRD subdirectory for every language included on the disk, and they will
be located in that language's subdirectory (see Section 3.1.2). The billboards are displayed according to
their corresponding percentage numbers.

[Billboards]
percentNum=filename.xxx

Example

Billboards - Example
An example of a typical install with billboards is as follows.

[Billboards]
0=WARRANTY.TXT
15=OUTPOST.BMP
25=WARRANTY.TXT
40=UPCOMING.TXT
75=PROMO.DIB
90=WARRANTY.TXT

This should allow the developer flexibility to show screen shots and text while the copying process is
running.

3.1.2 The LANGUAGE.INF File

To allow for greater language independence, all language-specific information for a script appears in a
separate file. This allows all languages to use identical scripts, but with different text, thus simplifying the
internationalization process. Each language provides its own LANGUAGE.INF file in a language-specific
subdirectory on the distribution disk. Supported subdirectories are ENGLISH, FRENCH, GERMAN,
SPANISH, and ITALIAN. These subdirectories also contain the billboards to be displayed when installing
with that language. The language used by Setup is determined by the user's sLanguage setting in the
Intl section of the WINDOWS.INI file. For a product consisting of two files (PRODUCT.EXE and
PRODDATA.DAT) shipping with English, French, and German versions on the same disk, the disk might
look like this:

SETUP.EXE
SETUP.SOL
SIERRA.INF
PRODUCT.EXE
PRODDATA.DAT
[ENGLISH]

LANGUAGE.INF
[BILLBRD]

MESSAGE.TXT
GRAPHIC.BMP

[FRENCH]
LANGUAGE.INF
[BILLBRD]

MESSAGE.TXT
GRAPHIC.BMP

[GERMAN]
LANGUAGE.INF
[BILLBRD]

MESSAGE.TXT
GRAPHIC.BMP

The LANGUAGE.INF file has two sections.

3.1.2.1 Identification

The [Ident] section of the LANGUAGE.INF contains language-specific identification information.

[Ident]

Title= application title

ShortTitle= short title

DirName= directory

Title
application title = Full title of the application (e.g., King's Quest VI: Heir Today, Gone Tomorrow).

ShortTitle
short title = Shorter version of the title. Can be the same as application title, but it's best to use a shorter
title if possible (e.g., King's Quest VI).

DirName
directory = Name to use for application's subdirectory (e.g., KQ6).

3.1.2.2 Strings

The Strings section contains definitions for all the string keys used in the SIERRA.INF file. These
definitions follow the format for .INI file string definitions:

[Strings]
Keyname = value

Example:
[Strings]
OK=OK
CANCEL=Cancel
PROMPT=Do you want to install Video for Windows?

Keyname
Keyname = Keyname used in SIERRA.INF file.
value = Text to display.

3.2 TEST - The System Test Results Dialog Box

Selecting this option brings up the System Test Results Dialog Box:

Options which don't apply to the current product (e.g., for products which don't use sound) will appear
with [not required]. Selecting a button engages the corresponding hardware test. As each test is
performed, the results are written to a SIERRA.INI file in the user's Windows directory. This information
will thus be available to Setup and other Sierra applications using the standard Windows PrivateProfile
interface. A context sensitive help button is available for each test which explains the test to the user and
may help them troubleshoot why they are not passing a test. Refer to the Requirements section for
details on setting the values used when performing these tests.

3.2.1 Display

Testing the display involves checking the user's color depth (number of colors) and resolution against the
minimums required by the product, as indicated in the SIERRA.INF file. Setup displays the detected
number of colors and resolution. If these are sufficient, Setup so informs the user and continues. If
these are insufficient, Setup informs the user of the minimum requirements, suggests how to fix the
problem, and returns to the System Test Results dialog.

2.X Note
A video speed test has been added that determines the speed of the video card in K pixels per second.

The user's SIERRA.INI file will receive the following information:

[Config]

ScreenWidth= screen width

ScreenHeight= screen height

Colors= number of colors

VideoSpeed= speed

ScreenWidth
screen width = Width of the users display, in pixels.

ScreenHeight
screen height = Height of the user's display, in pixels.

Colors
number of colors = Number of colors supported by the current display (2, 16, 256, 64K,
etc.).

VideoSpeed
speed = The tested speed of the video card, in K pixels/second.

3.2.2 Sound

Testing the sound card involves making sure the user can play .WAV and .MID files. Setup scans the
user's system for a device capable of playing .WAV files. If none is found, the user is informed and
Setup returns to the Test Hardware dialog. If a .WAV device is found, Setup plays a .WAV file and asks
the user if he heard it. If he answers NO, Setup suggests some possible causes (volume turned down,
speakers off or unplugged, etc.) and returns to the Test Hardware dialog. On success, the above
process is repeated for MIDI devices and a MIDI file.

After successful completion of the sound card tests, the user's SIERRA.INI file will contain the following
entries:

[Config]

SoundBitSupport=0 | 8 | 16 | -1

SoundChannels=1 | 2

MIDI=0 | -1 | Error code

If a sound test fails, the SIERRA.INI file will contain all information gained up through the failed test. If
the user's system didn't hang up, information from the failed test will also appear.

SoundBitSupport
0 = Sound card found.
8 = 8-bit support.
16 = 16-bit support.
-1 = No sound card found.

SoundChannels
1 = Mono.
2 = Stereo.

MIDI
0 = MIDI support.
-1 = No MIDI support.
Error code = MCI error value generated when Setup tried to play a MIDI file.

3.2.3 CDROM

The Setup program tests any/all CD-ROM drives located on the users system. The test determines the
data transfer rate of a users drive. Although testing a device driver in Windows via a timer can give
varying results, the Setup only determines if the drive is a single, double, triple, or quadruple speed drive.
It performs this test by accessing a CD in the drive and attempts to perform data transfer commands while
running a timer.

After successful completion of the CD-ROM tests, the user's SIERRA.INI file will contain the following
entries:

[Config]

CDROM= 1 | 2 | 3 | 4

CDROM
1 = Single speed drive.
2 = Double speed drive.
3 = Triple speed drive.
4 = Quadruple speed CD-ROM drive.

3.2.4 Memory

Testing memory involves checking the user's current amount of free memory to determine whether or not
there is enough to be able to run the program being installed. Setup tells the user how much free
memory it found and, if it's not enough, how much is needed and how the user might acquire the
additional memory. Setup reports both physical and free memory and the user must have enough of
both to pass the test. This means that if the user is running a lot of applications when he tries to install, he
may not be able to do so even though his system as a whole has enough memory to run the program at
another time.

The user's SIERRA.INI file will receive the following information:

[Config]

FreeMem= freeKB

PhysicalMem= freeK

FreeMem
freeKB = Amount of free memory on system, in KB.

PhysicalMem
freeK = Amount of physical memory on system, in KB.

3.2.5 Miscellaneous

This section tests whether the user is running the appropriate version of Windows and whether his CPU
meets the minimum recommended configuration in terms of CPU and clock speed.

The user's SIERRA.INI file will receive the following information:

[Config]
WinVer=395
CPU=Pentium-90 CPU

3.2.6 Joystick

Testing the joystick is a multi-step process. If any of the detection steps fail, the user is informed and
returned to the System Test Results dialog. First, Setup verifies that the joystick driver has been
installed, then it detects whether or not a joystick is currently connected to the system.

If a joystick is detected, the Joystick Test dialog will appear to allow the user to test his joystick. There is
an opportunity to test two joysticks; the user can choose a joystick and test it by pressing the appropriate
button. Currently Setup does not perform any calibration of the joystick. Calibration of the joystick will
most likely be different for various products. It will be up to the program to calibrate the joystick for its own
purposes.

The big square will be black with a white crosshair. The crosshair moves when the joystick moves.
Pressing a button on the joystick causes the corresponding dialog button to depress.

When the joystick test concludes, the SIERRA.INI file will receive the following info:

[Config]

Joystick= -1 | 0 | 1 | 2 | 3

Joystick
-1 = Drivers detected but no joystick found.
 0 = 0 joysticks detected.
 1 = Joystick 1 detected.
 2 = Joystick 2 detected.
 3 = Joysticks 1 & 2 detected.

3.2.7 Printer

No longer supported.

Testing the printer involves detecting whether or not a printer is connected to the user's system and if so,
what printer it is and to which port it is connected. The user is informed of Setup's findings and returned
to the System Test Results dialog.

The SIERRA.INI file receives the following information:

[Config]
Printer= printer name
PrinterPort= printer port

Printer
printer name = Name of printer.

PrinterPort
printer port = LPT1, LPT2, etc.

3.3 Register

Another intention of Setup is to encourage users to register their software product. The names,
addresses and profiles of our users are very important to our marketing and sales staff. By providing a
means for the user to input this information via the keyboard, we can anticipate an increased number of
registered owners of our products. The selection of the Register button will invoke a dialog that will allow
the user to input his name, address, and other valuable information as requested by marketing/customer
service departments. This information is then captured to a text file, register.txt. A Print button will be
provided on the registration form to allow the user to direct the data to a hardcopy output so the user may
be able to mail it in. An example of the registration form is shown below.

2.X Note
Modem registration is now supported. The user will be asked whether he chooses to register by modem
or by printing out the data captured and mailing it in. If by modem, setup will detect the modem and dial
up the Sierra BBS and upload the file with the information that was captured.

3.4 Read Me

This option executes the text processor WRITE to display the readme file. By default, looks to open a file
called README.TXT in the same location as the LANGUAGE.INF file being used by Setup. The name
of the file may be changed via a specification in the Ident section of the script. See Section 3.1.1.2
(Identification) for more details.

3.5 Uninstall

The Setup program will allow the user to uninstall a Sierra game on the users hard disk. This functionality
is provided so the user does not have to go into File Manager or DOS and extract the game manually.
When the user selects this option, a pop-up dialog will ask the user which of the Sierra products found on
the users system he would like to remove. Upon selection of a product and clicking OK, all files from that
Sierra directory will be deleted as well as the directory itself.

3.6 Support

The Support button brings up the Support page of the Setup help file. This page has links to pages
describing the various means of accessing Sierra tech support, lists of sound card manufacturers and
their phone numbers, lists of video card manufacturers and their phone numbers, and lists of other
manufacturers with their phone numbers. In this subtle way, we hope to encourage users to contact
people other than Sierra when the problem involves a hardware or software product not produced by
Sierra.

3.7 Exit

Clicking on this button exits the main menu and ends the execution of Setup.

3.8 About Icon

By clicking on the About Icon (Half Dome Icon) in the Main Menu, it can be determined which version of
Setup is being run. This information may be requested by the programmer responsible for setup to aid in
trouble shooting.

