

Paradox Engine Configuration Utility not included with Visual Basic
(Readme)

In the Crystal Reports for Visual Basic Help file, the topic "Paradox Engine Configuration Utility" refers
to a file named PXENGCFG.EXE, which is used to configure the Paradox engine for a network. This
file is not included with Visual Basic because the Microsoft Jet database engine handles all
connections to Paradox data.

For more information To use the Jet database engine for connecting to Paradox data, see
"Working With Paradox Data," in Guide to Data Access.

ActiveX Controls that Disappear on HTML Pages (Readme)

Using HTML tools to insert certain ActiveX controls may cause the control not to appear when the
HTML page is viewed in a browser. Controls for which this problem occurs include the MSChart and
ImageList controls. Tools that create this problem include ActiveX Control Pad.

To remedy this, check the VBSscript generated by the tool, and delete the Data attribute from the
Object tag.

To insert an MSChart Control using ActiveX Control Pad
1 Start ActiveX Control Pad..
2 On the Edit menu, click Insert ActiveX Control.
3 In the Insert ActiveX Control dialog box, double-click Microsoft Chart Control.
4 Close the ActiveX Control Editor.

When you close the editor, you will notice a large amount of text has been added to the HTML.
Scroll up through the text until you find the beginning of the Object tag, which will resemble the text
below:
<OBJECT ID="MSChart1" WIDTH=100 HEIGHT=51
 CLASSID="CLSID:31291E80-728C-11CF-93D5-0020AF99504A"
 DATA="DATA:application/x-
oleobject;BASE64,gB4pMYxyzxGT1QAgr5lQSiFDNBIIAAAAVgoAACsFAAC9ZAYFAQAAAAAA
//// ...

5 To make the MSChart control display properly, you must delete all of the text for the Data attribute.
When you do this, the HTML will resemble the code below:
<OBJECT ID="MSChart1" WIDTH=100 HEIGHT=51
 CLASSID="CLSID:31291E80-728C-11CF-93D5-0020AF99504A"
</OBJECT>

Design time properties must be set at run time
Unfortunately, deleting the Data attribute also means you cannot set any design-time properties for
the control, because the design-time properties have also been deleted. This means you must set all
properties at run time. For controls such as the ImageList control, this means you cannot load
pictures into the control at design time. Instead, you must use VBScript to load the pictures.
Moreover, the LoadPicture function (needed to load graphics into the ImageList control) is not
available in VBScript. To load pictures into the ImageList control, you must instead create your own
control that exposes a public method. That method should then invoke the LoadPicture function.

GetSelectedText Method Replaced by GetSelection Method
(Readme)

The GetSelectedText method mentioned in the topic "Manipulating the IDE with Add-ins," in the
Component Tools Guide, has been replaced by the GetSelection Method.

In the following sentence, found under the "Code Panel" heading, substitute "GetSelectedText" with
"GetSelection":

"You can use the GetSelectedText method to copy selected code into the Windows clipboard."

Upgrade ActiveX Controls Automatically from Project Properties
Dialog (Readme)

The Upgrade ActiveX Controls option on the General Tab of the Project Properties dialog box is not
adequately documented. In brief, the option allows you to specify if the project will upgrade controls
automatically if new versions are available. If the option is checked (the default), ActiveX controls will
be automatically updated if newer versions are present. If the option is unchecked, whenever the
project is loaded, a dialog box will prompt you to upgrade the controls.

Connect Event (Winsock Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmevtConnectEventWinsockC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"rmevtConnectEventWinsockX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rmevtConnectEventWinsockA;vbobjWinsockControl"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rmevtConnectEventWinsockS"}

Occurs when a Connect operation is completed.

Syntax
object.Connect()

The object placeholder represents an object expression that evaluates to a Winsock control.

Remarks
Use the Connect event to confirm when a connection has been made succesfully.

Enterprise Sample Applications in Entpris, not Clisvr directory
(Readme)

The Enterprise sample apps, shown in the list below, are found in the Entpris directory, instead of the
clisvr directory, as stated in the sample.hlp.

Sample application name
ape
callback
hello
intrface
passthru
poolmgr

Click Event (SSTab Control) Example has Syntax Error (Readme)

The example for the SSTab control's Click event has an error in the SaveSetting statement. The
parentheses should be omitted. The correct syntax is shown below.
Private Sub sstbPrefs_Click(PreviousTab As Integer)

Dim ThisSetting As String
Select Case PreviousTab

Case 0
If optLoanLen(0) = True Then

ThisSetting = "Months"
Else

ThisSetting = "Years"
End If
SaveSetting "LoanSheet", "LoanLength", _

"Period", ThisSetting
Case 1

Dim X As Integer
For X = 0 To 3

If optPctsShown(X) = True Then
SaveSetting "LoanSheet", _
"InterestRate", _
"Precision", optPctsShown(X).Tag
Exit For

End If
Next X

End Select
End Sub

MSComm Control Example Error (Readme)

The MSComm Control example has an error in the line demonstrating the Output and InBufferCount
properties. The code in question is:

MSComm1.Output = "AT" + Chr$(13)
' Wait for data to come back to the serial port.

Do
DoEvents

Loop Until MSComm1.InBufferCount >= 2
' Read the "OK" response data in the serial port.
Instring = MSComm1.Input
' Close the serial port.
MSComm1.PortOpen = False

Although this can be replaced by the code below,
MSComm1.Output = "AT" + Chr$(13)
' Wait for data to come back to the serial port.

Do
DoEvents

Loop Until MSComm1.InBufferCount >= 7 ' changed
' value

' Read the "OK" response data in the serial port.
Instring = MSComm1.Input
' Close the serial port.
MSComm1.PortOpen = False

a better change would be as follows:
MSComm1.Output = "ATV1Q0" & Chr$(13) ' Ensure that
' the modem respond with "OK".
' Wait for data to come back to the serial port.
Do

DoEvents
Buffer$ = Buffer$ & MSComm1.Input
Loop Until InStr(Buffer$, "OK" & vbCRLF)
' Read the "OK" response data in the serial port.
' Close the serial port.
MSComm1.PortOpen = False

BookSaleClient Sample: Sales Model button not depressed
(Readme)

When the BookSaleClient sample application starts, none of the buttons in the Sales Model section is
depressed. By default, however, the first Sales Model button is used when the Execute button is
clicked. You can, of course, click any of the Sales Model buttons at any time to change the chart type.

GetChunk Method, StateChanged Example Needs DoEvents
(Readme)

The code example for the Internet Transfer Control's GetChunk method requires DoEvents
statements inserted at the appropriate places. The corrected code is shown below:
Private Sub Inet1_StateChanged(ByVal State As Integer)

' Retrieve server response using the GetChunk
' method when State = 12. This example assumes the
' data is text.

Select Case State
' ... Other cases not shown.

Case icResponseReceived ' 12
Dim vtData As Variant ' Data variable.
Dim strData As String: strData = ""
Dim bDone As Boolean: bDone = False

' Get first chunk.
vtData = Inet1.GetChunk(1024, icString)
DoEvents

Do While Not bDone

strData = strData & vtData
' Get next chunk.
vtData = Inet1.GetChunk(1024, icString)
DoEvents

If Len(vtData) = 0 Then
bDone = True

End If
Loop

txtData.Text = strData
End Select

End Sub

MSChart: Values for Updated Events (Readme)

The following events for the MSChart control have an updateFlags argument that is not entirely
documented:

AxisLabelUpdated event
AxisTitleUpdate event
AxisUpdated event
ChartUpdated event
DataUpdated event
FootnoteUpdated event
LegendUpdated event
PlotUpdated event
PointLabelUpdated event
SeriesUpdated event
TitleUpdated event

Each of these events notifies the control when an aspect of the chart has been updated.
Consequently, the updateFlags argument specifies how much of the chart has been changed, from no
change, to repositioning the major parts of the chart.

The constants for the updateFlags argument will not work. Instead, use the values listed in the table
below.

Constant Value
VtChNoDisplay 0
VtChDisplayPlot 1
VtChLayoutPlot 2
VtChDisplayLegend 4
VtChLayoutLegend 8
VtChLayoutSeries 16
VtChPositionSection 32

Component Manager Not Included in VB5 (ReadMe)
The Programmer's Guide and the Guide to Building Client/Server Applications with Visual Basic both
refer to the Component Manager. The Component Manager is not included in this version of Visual
Basic.

Chapter Title Changed in 'Guide to Data Access Objects' (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscWrongCrossRefInDach01csfC"}

The correct title of Chapter 8 in the Guide to Data Access Objects is "Creating Multiuser Applications".
This chapter title is listed incorrectly in the first topic of Chapter 1, Guide to Data Access Objects.

Feedback Web Page URL(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscURLForVBFeedbackWebPageC"}

The correct location of the Visual Basic feedback web page is
www.microsoft.com/support/feedback/mswish.htm. The URL is incorrectly listed in the topic "Visual
Basic Online Links" in Chapter 1 of the Programmer's Guide.

SourceColumn Property is Read/Write at Run Time (Readme)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"rdproSourceColumnSourceTable;rmmscSourceColumnPropertyIsReadWriteAtRunTimeC"}

The SourceColumn Property of the rdoColumn Object is read/write at run time. The help topic
"SourceColumn Property (Remote Data)" incorrectly says it is read-only at run time.

Equi-Joins Example Code in 'Guide to Data Access Objects'
(Readme)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscEquiJoinsExampleCodeInGuideToDataAccessObjectsC"}

Below is a corrected version of example code which appears in chapter 5, "Writing SQL Queries",
under the heading "Inner Joins".

 Dim MyQRY As QueryDef
 MyQRY.SQL = "SELECT DISTINCTROW Sum([Unit Price] * " _
 & "[Quantity]) AS [Sales], [First Name] & chr(32) & " _
 & "[Last Name] AS Name FROM Employees " _
 & "INNER JOIN (Orders INNER JOIN [Order Details] " _
 & "ON Orders.[Order ID] = [Order Details].[Order ID]) " _
 & "ON Employees.[Employee ID] = Orders.[Employee ID] " _
 & "GROUP BY [First Name] & chr(32) & [Last Name];"

Control Class (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmobjControlClassReadMeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"rmobjControlClassReadMeX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rmobjControlClassReadMeP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"rmobjControlClassReadMeM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"rmobjControlClassReadMeE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rmobjControlClassReadMeS"}

Visual Basic provides the Control class as a generic variable type for controls. When you declare a
variable As Control, you can assign it a reference to any control. You cannot create an instance of
the Control class.

Note Accessing properties and methods of a control is faster if you use a variable declared with the
same type as the control (for example, As TreeView or As CommandButton), because Visual Basic
can use early binding. Visual Basic must use late binding to access properties and methods of a
control assigned to a variable declared As Control.

MaskColor Property (UserControl Object) (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmproNoHelpTopicForMaskColorPropertyOfUserControlC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"rmproNoHelpTopicForMaskColorPropertyOfUserControlX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"rmproNoHelpTopicForMaskColorPropertyOfUserControlA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rmproNoHelpTopicForMaskColorPropertyOfUserControlS"}

Returns or sets the color that determines the transparent region of the bitmap assigned to the
MaskPicture property of a UserControl object whose BackStyle property is set to 0 (Transparent).

Syntax
object.MaskColor [= color]
The MaskColor property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
color A value or constant that determines the color to be

used as a mask, as described in Settings.

Settings
Visual Basic uses the Microsoft Windows operating environment red-green-blue (RGB) color scheme.
The settings for color are:

Setting Description
RGB colors Colors specified by using the Color palette or by

using the RGB or QBColor functions in code.

Remarks
When a bitmap is assigned to the MaskPicture property of a UserControl whose BackStyle
property is set to 0 (Transparent), the control becomes transparent wherever it is covered by areas of
the bitmap that match the MaskColor property.

Mouse events that occur over the transparent areas are received by the container or by controls that
would otherwise be covered by the UserControl.
If there is no bitmap assigned to the MaskPicture property, or if the BackStyle property of the
UserControl is not set to 0 (Transparent), then setting the MaskColor property has no effect.

For further details, see the MaskPicture property of the UserControl object.

Note Although MaskColor accepts the system color constants listed in the Visual Basic (VB) object
library in the Object Browser, as described in Help for the BackColor and ForeColor properties, this
is only useful if the MaskPicture bitmap contains a system color.

MaskPicture Property (UserControl Object) (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmproNoHelpTopicForMaskPicturePropertyOfUserControlC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"rmproNoHelpTopicForMaskPicturePropertyOfUserControlX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"rmproNoHelpTopicForMaskPicturePropertyOfUserControlA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rmproNoHelpTopicForMaskPicturePropertyOfUserControlS"}

Returns or sets the bitmap that, combined with the MaskColor property, determines the transparent
and visible regions of a UserControl object whose BackStyle property is set to 0 (Transparent).

Syntax
object.MaskPicture [= picture]
The MaskPicture property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
picture A graphic image of one of the types described in

Settings.

Settings
The settings for picture are:

Setting Description
Nothing (Default) No picture. At design time, highlight the

property value and press the Delete key; "(None)"
will appear in the Properties window. At run time,
assign the return value of the LoadPicture function
with no filename, or use the Set statement to assign
the value Nothing to the property.

(Bitmap, DIB, GIF,
or JPEG)

Specifies an image-type bitmap. At design time, you
can use the Properties window to enter a string
expression specifying a file containing a graphic. At
run time, you can set this property using a Picture
object, using another object's Picture property, or
using the LoadPicture function on an image-type
bitmap file.

Important This feature is supported only for image-type bitmaps, such as GIF, JPEG, and DIB. It is
not supported for Windows metafiles, icons, or cursors.

Remarks
When a bitmap is assigned to the MaskPicture property of a UserControl whose BackStyle
property is set to 0 (Transparent), the control becomes transparent wherever it is covered by areas of
the bitmap that match the MaskColor property.

Mouse events that occur over the transparent areas are received by the container or by controls that
would otherwise be covered by the UserControl.
The non-transparent parts of the MaskPicture bitmap are painted with the color specified by the
UserControl's BackColor property. These areas, which need not be contiguous, define the clipping
region for drawing on the UserControl. That is, any drawing that is done on the surface of the
UserControl is clipped to the non-transparent parts of the MaskPicture bitmap.

Important The bitmap assigned to the MaskPicture property is only used to define the transparent
region and clipping region for the UserControl. The bitmap is never displayed. To display a bitmap on
top of the clipping region defined by MaskPicture and MaskColor, you can assign the bitmap to the

Picture property of the UserControl, or draw it on the UserControl using PaintPicture in the
UserControl's Paint event.

You can create an animated clipping region for your control by drawing on a hidden PictureBox, and
transferring the resulting image to the MaskPicture property of the UserControl.
Note When you set the MaskPicture property at design time, the graphic is saved and loaded with
the .ctl and .ctx files that define the UserControl. If you make the project into a control component
(.ocx file), the file contains the image. When you load a graphic at run time, by contrast, the graphic
isn't saved with the component.

For more information, see "Giving Your Control a Transparent Background," in "Building ActiveX
Controls" in Creating ActiveX Components in Books Online.

ParentControlsType Property (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmproNoHelpTopicForParentControlsTypePropertyOfParentControlsC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"rmproNoHelpTopicForParentControlsTypePropertyOfParentControlsX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"rmproNoHelpTopicForParentControlsTypePropertyOfParentControlsA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"rmproNoHelpTopicForParentControlsTypePropertyOfParentControlsS"}

Returns or sets a value that determines whether the ParentControls collection contains references to
controls incorporating the container's Extender object, or to controls without the Extender.

Syntax
object.ParentControlsType [= type]

The ParentControlsType property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
type An integer or named constant that indicates what the

ParentControls collection will return.

Settings
The settings for type are as follows:

Constant Value Description
vbExtender 0 (Default) The ParentControls collection will

return the control and extender.
vbNoExtender 1 The ParentControls collection will return the

control itself, without the extender.

Remarks
The ParentControls collection allows you to access the other controls on a container where your
control has been sited. The default is for the references to these controls to include the Extender
object properties and methods provided by the container.

Some containers, such as Internet Explorer, provide an extender object that cannot be used by Visual
Basic. In such a container, Visual Basic will raise an error when you attempt to access the objects in
ParentControls using the default settings.

You can access the controls on an HTML page in Internet Explorer by setting ParentControlsType to
vbNoExtender, so that ParentControls will contain references to the controls themselves, without
the extender properties and methods.

Because the property can be set at run time, you can switch back and forth between vbExtender and
vbNoExtender depending on what container your control is sited on. If necessary, you can alternate
between the settings in containers that support both.

Parent Property (UserControl Object) (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmproNoHelpTopicForUserControlParentC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"rmproNoHelpTopicForUserControlParentX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"rmproNoHelpTopicForUserControlParentA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rmproNoHelpTopicForUserControlParentS"}

Returns a reference to the container object on which the control is sited. Not available at design time
and read-only at run time.

Syntax
object.Parent
The Parent property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.

Remarks
The Parent property returns a reference to the container object even when the UserControl's
AmbientProperties object does not provide a Parent property. You can use the Parent property of
the UserControl object to access the container's object model.

By testing TypeName(Parent), you can determine what container your control is sited on.

· Excel returns the workbook.
· Word returns the document.
· Powerpoint returns the presentation.
· VB4/VB5 returns the form.
· Internet Explorer returns an object whose Script property returns the IOmWindow object.

For example, in Internet Explorer, the following code will change the background color of the HTML
page on which your control is located:
Parent.Script.get_document.bgColor = "Blue"
More information on the Internet Explorer Scripting Object Model can be found on Microsoft’s Web
site.

Important Always use late binding for calls to the Internet Explorer Scripting Object Model. Using
early binding will almost certainly cause compatibility problems in the future, while late binding will
always work. In other containers, you can use early binding.

Current Public/Instancing property values are not valid in this type
of project (Readme)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmsgCurrentPublicinstancingPropertyValuesAreNotValidC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rmmsgCurrentPublicinstancingPropertyValuesAreNotValidS"}

This error occurs when you add a file to an existing project, and that project type doesn't support the
setting of the Instancing or Public property of the module the file contains.

For example, you will get this error if you take a class module whose Instancing property is set to
MultiUse from an ActiveX Exe project, and add it to a Standard Exe project. This is because Standard
Exe projects only support the value Private for the Instancing property.

Similarly, this error will occur if you add a UserControl whose Public property is True to a Standard
Exe project, because controls in Standard Exe projects can only be private.

You don't need to take any action as a result of this error, because Visual Basic automatically resets
the Instancing or Public property to a value supported by the project type.

Deleting a property with Control Interface Wizard doesn't update
PropertyPage (Readme)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"rmmscDeletingPropertyWithControlInterfaceWizardDoesntUpdatePropertyPageC"}

The ActiveX Control Interface Wizard can be used to add and delete properties in existing ActiveX
controls. If a control has a property page that displays a particular property, and you use the wizard to
remove the property declaration from the control, the PropertyPage object will not be updated to
reflect this.

As a result, the next time the property page is run, an error will occur. To avoid this error, you must
manually remove all references to the deleted property from the PropertyPage object that used to
display it.

Description of interfaces that can be used with Implements
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscDescriptionOfInterfacesThatCanBeUsedWithImplementsC"}

When you create interfaces for use with the Implements statement, you can use Visual Basic or any
tool that creates type libraries, such as the MkTypLib utility or the Microsoft Interface Definition
Language (MIDL) compiler.

Most classes created in Visual Basic define interfaces that work with Implements. When you create
an interface by defining a class in Visual Basic, simply make sure that none of the properties or
methods have underscores in their names.

Interfaces created with tools other than Visual Basic must follow certain restrictions in order to work
with Implements. The following list includes most of these restrictions.

· Interface methods cannot have underscores in their names.
· Only [in] and [in,out] params are allowed — [out] only params are not allowed, and [lcid]

parameters are not allowed.
· Method return types must be HRESULT, in order for errors to be propagated. You will not see the

HRESULT in Visual Basic, as it is translated into an exception (raised error). To create a method
that will have a return type when used in Visual Basic code, you must use [out, retval] on the final
parameter.

· Only Automation data types may be used:
VB MIDL
Integer short
Long long
Single float
Double double
Byte unsigned char
Boolean boolean or VARIANT_BOOL
String BSTR
Variant VARIANT
Date DATE
Currency CURRENCY or CY
Object IDispatch *
IUnknown IUnknown

· SAFEARRAY parameters containing any of the simple data types from the list above are allowed.
· Enum parameters are allowed.
· Dispinterface interface pointers are allowed as parameters.
· Dual interface pointers are allowed as parameters.
· CoClass parameters are allowed.
· If you're creating a type library in order to make a system interface usable with Implements, you

must not use the [oleautomation] or [dual] attributes. Type libraries must be registered before you
can add them to the Visual Basic References dialog box, and registering a type library with the
[oleautomation] attribute will overwrite information required to remote the system interface. THIS
WILL CAUSE OTHER APPLICATIONS ON THE SYSTEM TO FAIL. The [dual] attribute must not
be used because it implies [oleautomation].
Note It may be useful to specify [oleautomation] while creating the typelib, in order to enforce
correct types, but the type library must be built without the attribute before you reference it through
the Visual Basic References dialog box.

· Unsigned long and unsigned short parameters are not included in the data type table, and are not
allowed.

· User-defined data types (structures) are not allowed as parameters.
· Interfaces must be based on IUnknown or IDispatch. The full vtable (after IUnknown/IDispatch)

must be described in a single interface.
· Restricted vtable entries are ignored and do not prevent the Implements statement from working.
· Most pointers cannot be passed as [in] parameters. (For example, as a remoting optimization, a C+

+ interface can declare a parameter as [in] VARIANT* pVar. This will not work with Implements.) An
[in] parameter can be a BSTR, a pointer to an interface (for example, IDispatch*), or a
SAFEARRAY pointer (SAFEARRAYs are always passed as pointers). An [in,out] parameter can be
a pointer to an Automation type, or a double pointer to an interface (for example, IDispatch**).
(Note that 'ByVal As String' in Visual Basic maps to [in] BSTR. You cannot use [in] BSTR* with
Visual Basic.)

· Implements does not work with dispinterfaces.

For more information, see "Polymorphism," in "Programming with Objects" in the Visual Basic
Programmer’s Guide, and also "Providing Polymorphism by Implementing Interfaces," in “General
Principles of Component Design” in Creating ActiveX Components in the Component Tools Guide.
These topics can be found in Books Online.

Errata: Conditional Compilation Code Example (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscErrataConditionalCompilationCodeExampleC"}

In "Using Conditional Compilation," in "More About Programming" in the Visual Basic Programmer's
Guide, the example code is incorrect. The first #Else should be a #ElseIf:
#If conFrenchVersion Then

' <code specific to the French language version>.
#ElseIf conGermanVersion then

' <code specific to the German language version>.
#Else

' <code specific to other versions>.
#End If

Error: 'Item' could not be loaded (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmsgErrorItemCouldNotBeLoadedC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rmmsgErrorItemCouldNotBeLoadedS"}

In addition to other causes, this error occurs when you attempt to add a file containing an existing
Form, MDIForm, UserControl, PropertyPage, or UserDocument to a project in which you have
selected the Unattended Execution option (accessed from the General tab of the Project Properties
dialog box).

A project marked for unattended execution cannot support any form of user interaction, so the module
types it can contain are severely restricted.

For more information, see "Scalability and Multithreading," in "Building Code Components" in Creating
ActiveX Components in Books Online.

Instancing property default varies depending on project type
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscInstancingPropertyDefaultIsMultiUseForActiveXExeDLLProjectsC"}

Online Help states that the default value of the Instancing property is Private. This is only true for
class modules in Standard Exe projects.

When you insert a new class module into an ActiveX Exe project or an ActiveX DLL project, the
default value of the Instancing property is MultiUse. When you insert a new class module into an
ActiveX Control project, the default value of the Instancing property is PublicNotCreatable.

Modal dialog or message box blocks events when debugging
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscModalDialogOrMessageBoxBlocksEventsWhenDebuggingC"}

The development environment cannot raise events while a modal form or message box is displayed,
because of potential conflicts in the debugger. Therefore, events are suppressed until the modal form
or message box is dismissed.

Important Suppression of events only happens in the development environment. Once a project is
compiled, events will be raised even when a modal form or message box is displayed.

Example scenarios in which this can occur:

· A form with a Timer control on it is running in the development environment. Selecting Options
from the Tools menu will open the Options dialog box, which is modal. Until the dialog is dismissed,
the Timer control's Timer event will not be raised.

· An instance of a UserControl with a Timer control on it is placed on a form at design time. (The
timer may be used to make the control appear animated; this effect can occur even in design
mode, because controls can execute code at design time.) Selecting Add Class Module from the
Project menu will open the Add Class Module dialog, which is modal. The Timer control's Timer
event will be suppressed until the dialog is dismissed.

· A UserDocument contains a Timer control, and a command button that displays a message box. If
the UserDocument is being debugged using Internet Explorer, pressing the button to display the
message box will cause the Timer control's Timer event to be suppressed until the message box is
dismissed.

Projects compiled to Native Code still require MSVBVM50.DLL
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscProjectsCompiledToNativeCodeStillRequireMSVBVM50DLLC"}

All projects created with Visual Basic use the services of the run-time DLL (MSVBVM50.DLL). Among
the services provided by this DLL are startup and shutdown code for your application, functionality for
forms and intrinsic controls, and run-time functions like Format and CLng.

Compiling a project with the Native Code option means that the code you write will be fully compiled
to the native instructions of the processor chip, instead of being compiled to p-code. This will greatly
speed up loops and mathematical calculations, and may somewhat speed up calls to the services
provided by MSVBVM50.DLL. However, it does not eliminate the need for the DLL.

Require License Key only applies to ActiveX Control projects
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmdlgRequireLicenseKeyDisabledOnGeneralTabReadMeC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rmdlgRequireLicenseKeyDisabledOnGeneralTabReadMeS"}

Help for the General Tab on the Project Properties dialog box states that the Require License Key
option "Enables licensing for a project that produces ActiveX Components (automation servers, user
controls, and ActiveX controls."

This is incorrect. Licensing is only supported for ActiveX Control projects (that is, projects that compile
to .ocx files). Therefore the option is disabled for all other project types.

The VBIDE can't provide multiple instances of a SingleUse class
(Readme)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"rmmsgTheVisualBasicDevelopementEnvironmentCantProvideMultipleInstancesC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rmmsgTheVisualBasicDevelopementEnvironmentCantProvideMultipleInstancesS"}

The error occurs under the following conditions:

· A project that is running in the development environment contains a class whose Instancing
property is set to SingleUse.

· A client project has previously created an instance of this SingleUse class.
· A client (it may be the same client, or another client) attempts to create a second instance of the

SingleUse class.

The error occurs because a SingleUse object can only be created once per instance of the
component that provides it. (That is, once an ActiveX Exe project is compiled, creating multiple
instances of its SingleUse class will run multiple instances of the Exe component.) However, when the
project is in the development environment, it is not possible to start a second instance of the project.

This is a restriction on debugging projects that provide SingleUse classes.

Note The error will occur even if the first client has released its instance of the SingleUse class.
This is because a compiled Exe cannot provide a second instance of a SingleUse class, even after
the first has been released.

For more information, see "Scalability Through Multiple Processes: SingleUse Objects," in "Building
Code Components" in Creating ActiveX Components in the Component Tools Guide in Books Online.

Version 'item3' of 'item1' is not registered. The control will be...
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmsgVersion20OfitemIsNotRegisteredTheControlWillBeUpgradedC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"rmmsgVersion20OfitemIsNotRegisteredTheControlWillBeUpgradedS"}

In addition to other causes, this message may occur from time to time when you are authoring
ActiveX controls with Visual Basic. The message is harmless, requires no action on your part, and
can be avoided as described below.

The message appears under the following circumstances:

· You compile your ActiveX control project to an .ocx file.
· You create a test project in another copy of Visual Basic and use the Controls tab of the

Components dialog box (accessed from the Project menu) to select the .ocx file, which then
appears in the Toolbar.

· You place an instance of a control on a form, and then save the test project.
· At some later date, you recompile the .ocx file.
· When you open the test project, the message will appear during project load.

The message occurs when using the default Version Compatibility setting (Project Compatibility, on
the Components tab of the Project Properties dialog box). The Project Compatibility setting causes
the type library version number of a control component (.ocx file) to be incremented each time you
compile it. This is to allow easy upgrades of released controls.

Normally, when a new release of an .ocx file is installed on a developer's computer, it does not
replace the old version (usually because the file names are different). When the developer opens an
existing project that used the old version of the control, Visual Basic asks whether the control
instances in the project should be upgraded to the new version.

In this case, there is no old version of the .ocx file, so Visual Basic automatically upgrades the
controls, and provides a message informing you of this.

Note The type library version number is not in any way associated with the file version number you
set using the Make tab of the Project Properties dialog box. The numbers displayed in this message
are the decimal equivalents of the hexadecimal type library version numbers stored in the Windows
Registry.

The message requires no action on your part in this scenario, because Visual Basic automatically
incorporates the new type library version number into the test project.

You can avoid the message in several ways:

· Instead of compiling your .ocx file and testing it with a separate copy of Visual Basic, you can
include both the ActiveX control project and the Standard Exe test project in a project group, and
run them in the same copy of the development environment. This is described in "Creating an
ActiveX Control," in Creating ActiveX Components in the Component Tools Guide in Books Online.

· Use the Component tab of the Project Properties dialog box to select Binary Compatibility with an
earlier version of your .ocx file. The drawback to this is that if you later make a version incompatible
change to your control (such as removing a property), you will get Version Compatibility warning
messages when you compile.
Note If you're creating a new versions of an existing control, and you intend to make
incompatible changes in the interface, this may not be your best option; Project Compatibility is
better in that case, because it preserves the ability of developer's to upgrade the controls in their
projects to your new version. You should change the file name, however, so that the new .ocx file
doesn't overwrite the old.

For more information on type library versions and the Version Compatibility feature, see "Version
Compatibility" in “Debugging, Testing, and Deploying Components” in Creating ActiveX Components

in the Component Tools Guide in Books Online.

A property or method call included a reference to a private object.
(Readme)

You included a reference to a private object as an argument or return value in a property or method
call.

Private objects should never be passed outside a project. The following, all of which are prohibited,
are possible causes for the error:

· A client invoked a property or method of an out-of-process component and attempted to pass a
reference to a private object as one of the arguments. A client invoked a property or method of an
out-of-process component and the component attempted to return a reference to a private object,
or to assign such a reference to a ByRef argument.

· An out-of-process component has invoked a call-back method on its client and attempted to pass a
reference to a private object

· An out-of-process component attempted to pass a reference to a private object as an argument of
an event it was raising.

· A client attempted to assign a private object reference to a ByRef argument of an event it was
handling.

Notes Although Visual Basic prevents you from passing references to private objects across
processes, there are some cases in which Visual Basic can't detect this error and thus can't prevent it.
Private objects are not designed to be used outside your project. If you pass them to a client, you may
jeopardize program stability and cause incompatibility with future versions of Visual Basic. If you need
to pass a private class of your own to a client, set the Instancing property to a value other than
Private.

The error will always appear in the client, even if it is the fault of the server code.

For additional information, select the item in question and press F1.

Application not found. Looking for object with CLSID: |1. (Readme)

Visual Basic could not find the application you are trying to use. This is a system error. If this problem
persists, re-install Visual Basic or the affected application, and try again.

Application was launched but it didn't register a class factory.
(Readme)

The application was opened but a class factory was not registered. This is a system error. If this
problem persists, re-install Visual Basic or the affected application, and try again.

Class is not registered. Looking for object with CLSID: |1. (Readme)

The class was not registered. This is a system error. If this problem persists, re-install Visual Basic
and try again.

Class not found. (Readme)

Visual Basic could not find the class that you specified. This is a system error. If this problem persists,
re-install Visual Basic or the affected application, and try again.

Class object cannot be determined. Looking for object CLSID: |1.
(Readme)

Visual Basic could not find the class object you indicated. This is a system error. If this problem
persists, re-install Visual Basic or the affected application, and try again.

DLL for class not found. Looking for object with CLSID: |1.
(Readme)

Visual Basic could not find the DLL for the class that you specified. This is a system error. If this
problem persists, re-install Visual Basic or the affected application, and try again.

Error in the DLL. Looking for object with CLSID: |1. (Readme)

You have received a system error. If this problem persists, re-install Visual Basic or the affected
application, and try again.

Interface not registered. Looking for object with CLSID: |1.
(Readme)

The interface was not registered. This is a system error. If this problem persists, re-install Visual Basic
or the affected application, and try again.

Invalid class string. Looking for object with ProgID. (Readme)

The class string you are trying to use is invalid. This is a system error. If this problem persists, re-
install Visual Basic or the affected application, and try again.

Object is not registered. Looking for object with CLSID: |1.
(Readme)

The object you are trying to use is not registered. This is a system error. If this problem persists, re-
install Visual Basic or the affected application, and try again.

Unexpected error. (Readme)

You have received a system error. If this problem persists, re-install Visual Basic or the affected
application, and try again.

Using the Comment Block and Uncomment Block Commands
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"rmcmdUsingCommentUncommentCommandsC;vbcmdCommandBars;vbcmdCommentBlock;vbcmdEditCommandBar"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"rmcmdUsingCommentUncommentCommandsS"}

The Comment Block and Uncomment Block commands can be found on the Edit toolbar. Use
these commands to make a multiple lines of code into a comment block or to remove the comment
characters from a block of code:

1. Add the Edit toolbar either by choosing the Toolbars command on the Edit menu and then
choosing Edit; or by placing your cursor on the toolbar, clicking the right mouse button, and then
choosing Edit.

1. Open a code module and highlight the code you want to use to create a comment block or the
code from which you want to remove comment characters.

1. Click the Comment Block or Uncomment Block button on the Edit toolbar.

Either the code will be moved into a block and the comment characters added or it will be separated
into individual pieces of code and the comment characters removed from it.

Wrong OS or OS version for application. (Readme)

You are using an incompatible operating system or the wrong version of the operating system. Install
a compatible operating system and try again.

Controls Collection (Readme)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbcolControlsCollectionC;vbobjControlsC;vbproBooksOnlineJumpTopic;vbproControlsPropertyS"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbcolControlsCollectionX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbcolControlsCollectionP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbcolControlsCollectionM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbcolControlsCollectionE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcolControlsCollectionS"}

A collection whose elements represent the controls on a container. The Controls collection has a
Count property which specifies the number of controls in the collection, and an Item method which
returns a member of the collection.

Syntax
object.Controls.Count
object.Controls(index)
The Controls collection syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
Index An integer with a range from 0 to Controls.Count

- 1.
Note If the container is a Visual Basic module, such as a Form or UserControl, you don't have to
supply the object expression when writing code within the module. If the container is a compiled
ActiveX control, such as the ToolBar control, you must always supply the object expression.

Remarks
The Controls collection enumerates loaded controls on a container. For example, you might use it to
change the BackColor property of all the Label controls on a container.

You can use the TypeOf keyword with the If statement, or the TypeName function, to determine the
type of a control in the Controls collection.

Note The Controls collection is not a member of the Visual Basic Collection class. It has a smaller
set of properties and methods than a Collection object, and you cannot create instances of it.

Error Constants (ComCtl32) (Readme)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstErrorConstantsComctl232ocxC;vbproBooksOnlineJumpTopic"}

Constant Value Description
cc2InvalidProcedureCall 5 Invalid procedure call
cc2BadFileNameOrNumber &H34 Bad file name or number
cc2FileNotFound &H35 File not found
cc2InvalidPropertyValue &H17C Invalid property value
cc2SetNotSupportedAtRuntime &H17E Property cannot be set at run time
cc2SetNotSupported &H17F Property is read-only
cc2InvalidObjectUse &H1A9 Invalid object use
cc2WrongClipboardFormat &H1CD Specified format doesn't match

format of data
cc2DataObjectLocked &H2A0 DataObject formats list may not

be cleared or expanded outside
of the OLEStartDrag event

cc2ExpectedAnArgument &H2A1 Expected at least one argument.
cc2RecursiveOleDrag &H2A2 Illegal recursive invocation of

OLE drag and drop
cc2FormatNotByteArray &H2A3 Non-intrinsic OLE drag and drop

formats used with SetData
require Byte array data. GetData
may return more bytes than were
given to SetData.

cc2DataNotSetForFormat &H2A4 Requested data was not supplied
to the DataObject during the
OLESetData event.

cc2InconsistentObject &H8BA6 Internal state of the control has
become corrupted

cc2ErrorDuringSet &H8BA7 Unable to set property
cc2ErrorOpeningVideo &H8BA8 Unable to open AVI file
cc2ErrorPlayingVideo &H8BA9 Unable to play AVI file
cc2NoValidBuddyCtl &H8BAA BuddyControl property must be

set first
cc2VideoNotOpen &H8BAB Must open AVI file first
cc2AutoBuddyNotSet &H8BAC AutoBuddy not set, no potential

buddy controls found
cc2ErrorStoppingVideo &H8BAD Error trying to stop playing AVI file
cc2ErrorClosingVideo &H8BAE Error closing open AVI file
cc2CantStopAutoPlay &H8BAF Stop method does not effect

AutoPlay property
cc2BuddyNotASibling &H8BB0 BuddyControl must be a separate

control within the same container
cc2NoUpDownAsBuddy &H8BB1 An UpDown control cannot be

buddied with another UpDown
control

LeftCol Property (Readme)

{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproLeftColPropertyActiveXControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLeftColPropertyActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproLeftColPropertyActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproLeftColPropertyActiveXControlsS"}

Returns or sets an integer representing the leftmost visible column of a DBGrid control. this property
is read-only at design time.

Syntax
object.LeftCol [= value]

The LeftCol property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A numeric expression indicating the leftmost visible

column. The default value is 0.

OLEDrop Constants (ComCtl32) (Readme)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstOLEDropConstantscomctl232ocxC;vbproBooksOnlineJumpTopic"}

Constant Value Description
cc2OLEDropEffectNone 0 No OLE drag/drop operation has

taken place/would take place.
cc2OLEDropEffectCopy 1 A mask to indicate that a copy has

taken place/would take place.
cc2OLEDropEffectMove 2 A mask to indicate that a move has

take place/would take place.
cc2OLEDropEffectScroll -2147483648

(&H80000000)
A mask to indicate that the drop
target window has scrolled/would
scroll.

OLEDropEffect Constants (ComCtl32) (Readme)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstOLEDropEffectConstantscomctl232ocxC;vbproBooksOnlineJumpTopic"}

Constant Value Description
cc2OLEDropManual 1 Accepts an OLE drag/drop under

programmatic control only.
cc2OLEDropNone 0 Accepts no OLE drag/drop

operations.

VBComponents Property (Readme)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproVBComponentsPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproVBComponentsPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vaobjVBProject;vbproVBComponentsPropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproVBComponentsPropertyS"}

Returns a collection of the components contained in a project.

Syntax
object.VBComponents
The VBComponents property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.

Remarks
Use the VBComponents collection to access, add, or remove components in a project. A component
can be a form, module, or class. The VBComponents collection is a standard collection that can be
used in a For Each block.

You can use the Parent property to return the project the VBComponents collection is in.

In Visual Basic for Applications, you can use Import method to add a component to a project from a
file.

VBNewProjects Collection (Readme)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcolVBNewProjectsCollectionC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbcolVBNewProjectsCollectionX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbcolVBNewProjectsCollectionP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbcolVBNewProjectsCollectionM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbcolVBNewProjectsCollectionE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcolVBNewProjectsCollectionS"}

Represents all of the new projects in the development environment.

Syntax
VBNewProjects

Remarks
Use the VBNewProjects collection to access specific projects in an instance of the development
environment. VBNewProjects is a standard collection that you can iterate through using a For Each
block.

Cannot delete multiple rows (DBGrid Control) (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjDBGrid"}

This error results from pressing the delete key when the SelBookmarks collection contains more than
1 bookmark.

Caption text is too long (DBGrid Control) (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjDBGrid"}

This error occurs when the caption property or columns heading property is set with text over 255
characters in length.

Column not found (DBGrid Control) (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjDBGrid"}

This error occurs when accessing the columns collection using an invalid column name.

Control not properly initialized (DBGrid Control) (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjDBGrid"}

This error occurs during normal program execution if the grid’s hwnd or ICursor has been destroyed.

Data access error (DBGrid Control) (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjDBGrid"}

This is a general ICursor error. It occurs when accessing the data source if the data source has not
provided additional information via the ISupportErrorInfo and IErrorInfo interfaces.

Invalid bookmark (DBGrid Control) (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjDBGrid"}

This error results from setting a grid property or collection that requires a bookmark when the
bookmark is invalid.

Invalid column index (DBGrid Control) (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjDBGrid"}

This error results from setting a grid property or collection that requires a column index when the
specified index is invalid.

Invalid row number (DBGrid Control) (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjDBGrid"}

This error results from accessing the row property when the row is outside of the visible range of
rows.

Invalid selected row bookmark index (DBGrid Control) (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjDBGrid"}

An invalid index was specified for the SelBookmarks collection.

Invalid setting for @0 Property (DBGrid Control) (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjDBGrid"}

An attempt was made to set a property to a value that is not valid for that property. Check the data
type and range of the value.

No current record (DBGrid Control) (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjDBGrid"}

Setting the grid’s bookmark property and the grid can not move to the bookmark (ICusor move fails);
or setting the editactive property and the grid can not move to a row (ICursor move fails).

Null (DBGrid Control) (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjDBGrid"}

The "(null)" entry is used as the error text for some items that do not have an associated help context
value for browser info. This will not normally appear as an actual error message.

Operation is invalid within the event, @0 (DBGrid Control)
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjDBGrid"}

This error occurs when an illegal operation is attempted on the data control within the grid’s
notification events; for example, trying to refresh the data control in the AfterUpdate event.

Property is not available in this context (DBGrid Control) (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjDBGrid"}

This error results from attempting to access a property that is available only within the context of the
grid's Error event. For example, the ErrorText property is only readable from inside grid_Error().

Scroll arguments out of range (DBGrid Control) (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjDBGrid"}

This error results from setting the scroll property when the column index is out of range.

Using the WithEvents keyword (Readme)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"rmhowUsingWithEventsKeywordC;vastmDim;vastmEvent;vastmPrivate;vastmPublic;vastmRaiseEvent"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"rmhowUsingWithEventsKeywordX;vastmEventX;vastmRaiseEventX"}

The WithEvents keyword is explained as part of certain declarative statements (Dim, Public, and
Private). However, in order to use the statement, you need to understand the following two
statements as well:

Event statement

RaiseEvent statement

Coercion of Byte and String types (Readme)
In many previous versions of basic, strings were used to hold what were really arrays of byte data.
Visual Basic now has a Byte data type, so this is unnecessary. Such strings can be assigned to
resizable arrays of bytes. An array of bytes can similarly be assigned to a variable-length string. Be
aware that coercion between types requires creation of temporary variables and arrays that may
affect performance. Also, on Unicode platforms (all 32-bit operating systems), the same string
contains twice as many bytes as on non-Unicode (16-bit operating systems) platforms.

CreateToolWindow Method (Readme)
 {ewc HLP95EN.DLL,DYNALINK,"Applies To":"rmmthCreateToolWindowMethodA;vaobjWindow"}

Creates a new Tool window containing the indicated DocObject.

Syntax
object.CreateToolWindow(AddInInst, ProgId, Caption, GuidPosition, DocObj) As Window

The CreateToolWindow method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an object

in the Applies To list.
AddInInst Required. Addin representing an addin in the development

environment.
ProgId Required. String representing the progID of the ActiveX

document object.
Caption Required. String containing the window caption
GuidPosition Required. String containing a unique identifier for the

window.
DocObj Required. Object representing an ActiveX document

object. This object will be set in the call to this function.

Remarks
Member of VBIDE.Windows.

DesignerID Property (Readme)
 {ewc HLP95EN.DLL,DYNALINK,"Applies To":"rmproDesignerIDPropertyA;vaobjVBComponent"}

Read-only property that indicates the type of designer represented by the VBComponent object.

Remarks
Member of VBComponent.

FileName Method (Readme)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmthFileNameMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"rmmthFileNameMethodA;vaobjVBProject"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rmmthFileNameMethodS"}

Returns a String containing the fully qualified path to the group project file.

Syntax
object.FileName() As String

Remarks
Member of VBProject.

InsertFile Method (Readme)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmthInsertFileMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"rmmthInsertFileMethodA;vaobjVBComponent"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rmmthInsertFileMethodS"}

Inserts code from a file into the code module.

Syntax
object.InsertFile(FileName As String)
The FileName argument is a string representing the file containing the code to insert into the code
module.

Remarks
Member of VBComponent.

LinkedWindows Property (Readme)
The LinkedWindows property is an accessor property (i.e., a property that returns an object of the
same type as the property name).

Properties Property (Readme)
The Properties property is an accessor property (i.e., a property that returns an object of the same
type as the property name).

References Property (Readme)
The References property is an accessor property (i.e., a property that returns an object of the same
type as the property name).

Executing VBA Addin Model Examples (Readme)
Use the following steps to execute example code for the VBA Addin model:

1. Start Visual Basic and choose Addin as the project type in the New Project dialog.
2. In the Project Explorer double click on the Connect class module to view its code.
3. Use Find from the Edit menu to search for OnConnection. This should place the cursor in the

IDTExtensibility_OnConnection procedure.
4. There is a comment 3 or 4 lines into the procedure suggesting the following statement is a good

place to put a breakpoint for testing code. Place a breakpoint on the suggested line.
5. Place your cursor in the Immediate window, type AddToIni, then press Enter to execute that

procedure. (AddToIni is a procedure in the module Addin.Bas.)
6. Press F5 to put the Addin in Run mode.
7. Start another instance of Visual Basic. Choose the default (Standard Exe) from the initial dialog.

Then choose Add-In Manager from the Add-Ins menu.
8. Check My Addin-In on the list of Available Add-Ins. Press OK in the Add-In Manager dialog. The

IDTExtensibility_OnConnection is called in your first instance of Visual Basic execution is
suspended at the breakpoint set in step 4.

9. Use Step Into from the debug menu to execute the line:
Debug.Print VBInst.FullName

10. You can now use VBInst as the object for the example code. Simply replace the dummy object
Application.VBE with the Visual Basic object VBInst before executing the example lines in the
Immediate window. For example, you can modify the example

Print Application.VBE.VBProjects(1).VBComponents.Count
to read as follows:

Print VBInst.VBProjects(1).VBComponents.Count
When you press Enter on the latter line in the Immediate window the number of VB components is
printed on the next line.

Errors in callback procedures (Readme)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmhowErrorsInCallbackProceduresC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"rmhowErrorsInCallbackProceduresA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rmhowErrorsInCallbackProceduresS"}

A callback procedure is a procedure within your program that Windows can call at certain times. You
enable Windows to call this procedure by passing a reference to the procedure as an argument in an
API call that is preceded by the AddressOf operator. Since the caller of a callback is not within your
program, it is important that an error in the callback procedure not be propagated back to the caller.
You can accomplish this by place the On Error Resume Next statement at the beginning of the
callback procedure.

Reserved Property and Method names (Readme)

The following names cannot be used as property or method names because they belong to the
underlying IUnknown and IDispatch interfaces: QueryInterface, AddRef, Release,
GetTypeInfoCount, GetTypeInfo, GetIDsOfNames, Invoke. Using these names causes a
compilation error.

Clarification for DateAdd function (Readme)

The format of the return value for DateAdd is determined by the Control Panel settings, not by the
format that is passed in the date argument.

Additional VBA (Language) Error messages (Readme)

The following error messages appear in some VBA helpfiles, but may be missing from others:

Cannot handle events for the object specified
Events for this object could not be handled.

Unexpected compiler error
This error occurs when a completely unanticipated error occurs during compilation.

Invalid use of base class name
You cannot use the name of a base class by itself. This error has the following causes and solutions:

· You tried to use the name of a base class by itself without making clear that you were trying to
access the base class' default member.
Place the base-class name within parentheses to indicate you want to access the default member.

· You used the base-class name in an expression but the member you were trying to access was
ambiguously specified.
Use a disambiguator (for example, an exclamation point) between the base-class name and the
member you are interested in.

· You used the base-class name in a Set statement as though it contained a reference to the class.
Use the base-class name to retrieve a reference for example, using GetObject.

Invalid Event Name
Event procedure names are constructed by joining the object name to the event name with an
underscore. This error has the following causes and solutions:

· You used an underscore as part of the event name.
Remove the underscore from the event name.

Event Not Found
An event specified in a RaiseEvent statement must correspond to a defined event. This error has the
following causes and solutions:

· You specified a name in a RaiseEvent statement, but the event definition cannot be found.
Make sure the event name is spelled correctly.

For additional information, select the item in question and press F1.

Search string must be specified
You have to enter a string when searching in the object browser. This error has the following causes
and solutions:

· You initiated a search in the Object Browser, but didn't specify text to search for.
Enter a search string.

Cannot display specified name because it is hidden
Some names exist in a type library, but are marked as hidden. This error has the following causes and
solutions:

· You specified a name that is in the type library, but it is marked as hidden.
You cannot normally view hidden type library members. Choose Show Hidden Members on the
object browser context menu to make hidden members visible. You can then view the member
information.

Cannot jump to specified type because it is in the specified library, which is
not currently referenced
This error has the following causes and solutions:

· You tried to specify a type in a library that isn't reference within the project.
Set a reference to the type library through the References dialog.

Invalid inside Enum
Not all types are valid within an enumeration definition. This error has the following causes and
solutions:

· You tried to specify a string or some other invalid type as the value of an Enum member.
The constant expression used to specify an Enum member must evaluate to type Long or another
Enum type.

This component doesn't support the set of events (Error 459)
Not every component supports client sinking of events. This error has the following cause and
solution:

· You tried to use a WithEvents variable with a component that can't work as an event source for
the specified set of events. For example, you may be sinking events of an object, then create
another object that Implements the first object. Although you might think you could sink the events
from the implemented object, that isn't automatically the case. Implements only implements an
interface for methods and properties.
You can't sink events for a component that doesn't source events.

ClassName Property (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproClassNamePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproClassNamePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbobjvbcontrol;vbproClassNamePropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproClassNamePropertyS"}

Returns the class name of a control.

Syntax
object.ClassName
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

ContainedVBControls Property (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproContainedVBControlsPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproContainedVBControlsPropertyX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbcolcontainedvbcontrolscollection;vbproContainedVBControlsPropertyA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproContainedVBControlsPropertyS"}

Returns the collection of contained controls associated with a component.

Syntax
object.ContainedVBControls
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

VBControls Property (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcolVBControlsCollection;vbproVBControlsPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproVBControlsPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproVBControlsPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproVBControlsPropertyS"}

Returns a collection containing all controls on a form.

Syntax
object.VBControls
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

rdoColumns Property (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproRdoColumnsPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproRdoColumnsPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproRdoColumnsPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproRdoColumnsPropertyS"}

Contains stored rdoColumn objects.

Syntax
object.rdoColumns
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

rdoConnections Property (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproRdoConnectionsPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproRdoConnectionsPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproRdoConnectionsPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproRdoConnectionsPropertyS"}

Contains all open rdoConnection objects opened in an rdoEnvironment object.

Syntax
object.rdoConnections
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

rdoEnvironments Property (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproRdoEnvironmentsPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproRdoEnvironmentsPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproRdoEnvironmentsPropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproRdoEnvironmentsPropertyS"}

Contains all active rdoEnvironment objects of the rdoEngine object.

Syntax
object.rdoEnvironments
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

rdoErrors Property (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproRdoErrorsPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproRdoErrorsPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproRdoErrorsPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproRdoErrorsPropertyS"}

Contains all stored rdoError objects.

Syntax
object.rdoErrors
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

rdoParameters Property (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproRdoParametersPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproRdoParametersPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproRdoParametersPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproRdoParametersPropertyS"}

Contains all rdoParameters objects of an rdoQuery.

Syntax
object.rdoParameters
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

rdoQueries Property (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproRdoQueriesPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproRdoQueriesPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproRdoQueriesPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproRdoQueriesPropertyS"}

Contains all rdoQuery objects of an rdoQuery.

Syntax
object.rdoQueries
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

rdoResultSets Property (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproRdoResultsSetsPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproRdoResultsSetsPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproRdoResultsSetsPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproRdoResultsSetsPropertyS"}

Contains all open rdoResultSet objects in an rdoConnection.

Syntax
object.rdoResultSet
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

rdoTables Property (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproRdoTablesPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproRdoTablesPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproRdoTablesPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproRdoTablesPropertyS"}

Contains all rdoTable objects in a database.

Syntax
object.rdoTables
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Changes to sample code in AddToAddInToolbar Method (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmscChangesToSampleCodeInAddToAddInToolbarMethodC;vbmthaddtoaddintoolbarmethod"}

There is a comma missing from the AddToAddInToolbar line. It should instead be:

x.AddToAddInToolbar ("C:\VB5\MyAdd.DLL", _
"MyAddIn.Connect", "MyAddIn Title", True, True)

Changes to sample code in Design Considerations for Add-Ins
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmscChangesToSampleCodeInDesignConsiderationsForAddInsC"}

The complete path to access the TabOrder sample application is: \Vb\Samples\CompTool\
AddIns\TabOrder.vbp.

The complete path to access the Guidgen tool is: \Tools\Idgen\Guidgen.exe.

Changes to sample code in Manipulating Code with Add-Ins
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vaobjCodeModule;vbmscChangesToSampleCodeInManipulatingCodeWithAddInsC"}

For the included code samples, assume that the code line Public vbi As VBIDE.VBE is in the
General Declarations section of the code.

Changes to sample code in Manipulating the IDE with Add-Ins
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscChangesToSampleCodeInManipulatingIDEWithAddInsC"}

The LoadPicture statement is missing from the Clipboard.SetData line in the code sample. It
should instead be:
Clipboard.SetData LoadPicture("C:\windows\circles.bmp")

Correction in Creating a Basic Add-In (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscCorrectionInCreatingBasicAddInC"}

Step #4 of "Creating a Basic Add-In" erroneously states that the Instancing property of the add-in's
Class module should be set to InSameProcess. It should instead be set to 5 - MultiUse.

Changes to LinkedWindows Collection (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaobjLinkedWindows;vbcolChangesToLinkedWindowsCollectionReadmeC"}

In the last sentence of the section on the LinkedWindows collection, "...have a ContainedWindows
collection" should be changed to "...have a LinkedWindows collection".

UpdateCriteria constants erroroneously listed in OpenResultset
LockType "methods" list (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"rdmthOpenResultset;rmmscUpdateCriteriaListedInOpenResultsetLockTypemethodsListreadmeC"}

When you use the RDO OpenResultset method and position the cursor over the LockType
argument, and then use the right mouse button to select "List Properties and Methods", the LockType
constants are listed, but two UpdateCriteria constants are erroneously listed as well
(rdCriteriaAllCols and rdCriteriaKey).

No rows updated or deleted (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgNoRowsUpdatedOrDeletedC"}

You get the error message "No rows updated or deleted" when using relative move methods (such as
MovePrevious, MoveNext, and so on) with a dynamic cursor resultset.

This can occur when you use a dynamic cursor if another user has deleted rows just above or below
your current rowset window (that is, the rows you have cached on your client). When you move
toward the deleted rows, some of the rows in your current window will come back again since you are
asking for the previous or next rowset size of rows. When you're near the end or beginning of a
resultset, you can get data overlap since there's not enough rows to get a unique new set.

Setting a lower rowset size can help solve this problem. It degrades performance, but if performance
is a concern, you're better off not using a dynamic cursor in the first place, since they're not the
speediest performers when moving compared to other cursors.

Because of this, and because of the problem with error messages when data has been deleted, it is
recommended that you avoid using dynamic cursors unless you need them and know what you're
doing. A keyset or static cursor is much easier to deal with than a dynamic cursor, and a client-side
batch static is probably the best for most client/server development.

RDC Validate event help topic says that Actions can be changed
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscRDCValidateEventHelpTopicSaysThatActionsCanBeChangedC"}

The help topic for the RDC (Remote Data Control) Validate event states: "You can change the
various Move methods and the AddNew method, which can be freely exchanged (any Move into
AddNew, any Move into any other Move, or AddNew into any Move). Attempting to change AddNew
or one of the Moves into any of the other actions is either ignored or produces a trappable error."

This is not possible. Changing the action to anything else results in the action being halted (the same
as if you set it to rdActionCancel).

Copy Method (Extensibility) (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthCopyMethodExtensibilityC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthCopyMethodExtensibilityX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbcolselectedvbcontrols;vbmthCopyMethodExtensibilityA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthCopyMethodExtensibilityS"}

Copies the selected controls on the form to the Clipboard.

Syntax
object.Copy
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Cut Method (Extensibility) (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthCutMethodExtensibilityC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthCutMethodExtensibilityX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbcolselectedvbcontrols;vbmthCutMethodExtensibilityA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthCutMethodExtensibilityS"}

Deletes the selected controls from the form.

Syntax
object.Cut
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

AddIn Constants (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstAddInsConstantsC;vbidxVisualBasicConstants"}

Connect Mode
Constant Value Description
vbext_cm_AfterStartup 0 Specifies the add-in's

connection mode.
vbext_cm_Startup 1 Add-in is connected on IDE

startup.
vbext_cm_External 2 Add-in is connected externally

from Visual Basic.

Disconnect Mode
Constant Value Description
vbext_dm_HostShutdown 0 Add-in is disconnected when

the host shuts down.
vbext_dm_UserClosed 1 Add-in is disconnected by the

user.

Codepane View
Constant Value Description
vbext_cv_ProcedureView 0 Displays the code pane in

Procedure view.
vbext_cv_FullModuleView 1 Displays the code pane in Full-

module view.

Component Types
Constant Value Description
vbext_ct_StdModule 1 The component is a standard

module.
vbext_ct_ClassModule 2 The component is a class

module.
vbext_ct_MSForm 3 The component is a form.
vbext_ct_ResFile 4 The component is a resource

file.
vbext_ct_VBForm 5 The component is a Visual

Basic form.
vbext_ct_VBMDIForm 6 The component is an MDI form.
vbext_ct_PropPage 7 The component is a property

page.
vbext_ct_UserControl 8 The component is a

UserControl object.
vbext_ct_DocObject 9 The component is a User

document.
vbext_ct_RelatedDocument 10 The component is a

RelatedDocument object.
vbext_ct_ActiveXDesigner 11 The component is a base class.

Control Type
Constant Value Description
vbext_ct_Light 1 Light-weight control.
vbext_ct_Standard 2 Standard control.
vbext_ct_Container 3 Container control.

File Types
Constant Value Description
vbext_ft_Form 0 The file is of type Form.
vbext_ft_Module 1 The file is of type Module.
vbext_ft_Class 2 The file is of type Class.
vbext_ft_Project 3 The file is of type Project.
vbext_ft_Exe 4 The file is of type .exe.
vbext_ft_Frx 5 The file is of type .frx.
vbext_ft_Res 6 The file is of type resource.
vbext_ft_UserControl 7 The file is of type UserControl.
vbext_ft_PropertyPage 8 The file is of type PropertyPage.
vbext_ft_DocObject 9 The file is of type DocObject.
vbext_ft_Binary 10 The file is of type Binary.
vbext_ft_GroupProject 11 The file is of type GroupProject.
vbext_ft_Designers 12 The file is of type Designer.

Member Type
Constant Value Description
vbext_mt_Method 1 Member is of type Method.
vbext_mt_Property 2 Member is of type Property.
vbext_mt_Variable 3 Member is of type Variable.
vbext_mt_Event 4 Member is of type Event.
vbext_mt_Const 5 Member is of type Constant.

Procedure Type
Constant Value Description
vbext_pk_Proc 0 Specifies all procedures other

than property procedures.
vbext_pk_Let 1 Specifies a procedure that

assigns a value to a property.
vbext_pk_Set 2 Specifies a procedure that sets

a reference to an object.
vbext_pk_Get 3 Specifies a procedure that

returns the value of a property.

Project Start Mode
Constant Value Description
vbext_psm_StandAlone 0 Startup mode is stand alone.

vbext_psm_OleServer 1 Startup mode is ActiveX
component.

Project Type
Constant Value Description
vbext_pt_StandardExe 0 Project is a standard .exe

project.
vbext_pt_ActiveXExe 1 Project is an ActiveX .exe

project.
vbext_pt_ActiveXDll 2 Project is an ActiveX DLL

project.
vbext_pt_ActiveXControl 3 Project is an ActiveX control

project.

Run (VBA) Mode
Constant Value Description
vbext_vm_Run 0 The project is in run mode.
vbext_vm_Break 1 The project is in break mode.
vbext_vm_Design 2 The project is in design mode.

Reference Type
Constant Value Description
vbext_rk_TypeLib 0 Represents a reference to a

type library.
vbext_rk_Project 1 Represents a reference to a

project.

Scope
Constant Value Description
vbext_Private 1 Member has private scope.
vbext_Public 2 Member has public scope.
vbext_Friend 3 Member has friend scope.

Startup Object
Constant Value Description
vbext_so_SubMain 0 Returns a variant containing the

startup component for the
project.

vbext_rk_Project 1 Returns a variant containing the
startup component for the
project.

Display Mode
Constant Value Description
vbext_dm_SDI 0 The display mode is single

document interface.
vbext_dm_MDI 1 The display mode is multiple

document interface.

Window State
Constant Value Description
vbext_ws_Normal 0 Normal window state.
vbext_ws_Minimize 1 Window is minimized to an icon.
vbext_ws_Maximize 2 Window is maximized (enlarged

to its maximum state).

Window Types
Constant Value Description
vbext_wt_CodeWindow 0 The window is a code

window.
vbext_wt_Designer 1 The window is a designer

window.
vbext_wt_Browser 2 The window is a Browser

window
vbext_wt_Watch 3 The window is a watch

window.
vbext_wt_Locals 4 The window is a locals

window.
vbext_wt_Immediate 5 The window is an Immediate

window.
vbext_wt_ProjectWindow 6 The window is a Project

window.
vbext_wt_PropertyWindow 7 The window is a Property

window.
vbext_wt_Find 8 The window is a Search

window.
vbext_wt_FindReplace 9 The window is a Find and

Replace window.
vbext_wt_Toolbox 10 The window is a Toolbox

window.
vbext_wt_LinkedWindowFrame 11 The window is a linked

window frame.
vbext_wt_MainWindow 12 The window is a main

window.
vbext_wt_Preview 13 The window is a preview

window.
vbext_wt_ColorPalette 14 The window is a color palette

window.
vbext_wt_ToolWindow 15 The window is a Tool window.

Menu Shortcuts
Constant Value Description
vbextMenuShortcutCtrlA 1 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlB 2 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlC 3 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlD 4 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlE 5 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlF 6 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlG 7 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlH 8 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlI 9 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlJ 10 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlK 11 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlL 12 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlM 13 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlN 14 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlO 15 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlP 16 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlQ 17 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlR 18 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlS 19 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlT 20 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlU 21 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlV 22 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlW 23 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlX 24 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlY 25 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlZ 26 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlF1 39 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlF2 40 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlF3 41 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlF4 42 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlF5 43 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlF6 44 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlF7 45 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlF8 46 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlF9 47 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlF10 48 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlF11 49 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlF12 50 User-defined shortcut

keystroke.
vbextMenuShortcutShiftF1 51 User-defined shortcut

keystroke.
vbextMenuShortcutShiftF2 52 User-defined shortcut

keystroke.
vbextMenuShortcutShiftF3 53 User-defined shortcut

keystroke.
vbextMenuShortcutShiftF4 54 User-defined shortcut

keystroke.
vbextMenuShortcutShiftF5 55 User-defined shortcut

keystroke.
vbextMenuShortcutShiftF6 56 User-defined shortcut

keystroke.
vbextMenuShortcutShiftF7 57 User-defined shortcut

keystroke.
vbextMenuShortcutShiftF8 58 User-defined shortcut

keystroke.
vbextMenuShortcutShiftF9 59 User-defined shortcut

keystroke.
vbextMenuShortcutShiftF10 60 User-defined shortcut

keystroke.
vbextMenuShortcutShiftF11 61 User-defined shortcut

keystroke.
vbextMenuShortcutShiftF12 62 User-defined shortcut

keystroke.
vbextMenuShortcutShiftDel 78 User-defined shortcut

keystroke.
vbextMenuShortcutShiftIns 76 User-defined shortcut

keystroke.
vbextMenuShortcutDel 77 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlIns 75 User-defined shortcut

keystroke.
vbextMenuShortcutAltBksp 79 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlShiftF1 51 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlShiftF2 52 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlShiftF3 53 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlShiftF4 54 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlShiftF5 55 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlShiftF6 56 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlShiftF7 57 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlShiftF8 58 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlShiftF9 59 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlShiftF10 60 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlShiftF11 61 User-defined shortcut

keystroke.
vbextMenuShortcutCtrlShiftF12 62 User-defined shortcut

keystroke.

Source Code Control
Constant Value Description
vbextSCCStatusNotControlled 0 File is not under source code

control.
vbextSCCStatusControlled 1 File is under source code

control.
vbextSCCStatusCheckedOut 2 File is checked out to the

current user.
vbextSCCStatusOutOther 4 File is checked out to another

user.
vbextSCCStatusOutOfDate 32 File is not the most recent.
vbextSCCStatusShared 512 File is shared between

projects.

Avoid overlapping of dynamic cursors (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"daobjDynamicTypeRecordset;rmmscAvoidingOverlappingOfDynamicCurorsReadMeC"}

If you use a dynamic cursor, and another user has deleted rows just above or below your current
rowset window (that is, the rows you have cached on your client), you can get data error messages.
This occurs because when you move toward the deleted rows, some of the rows in your current
window will come back again, since you are asking for the previous or next rowset size of rows. When
you're near the end or beginning of a resultset, you can get data overlap since there's not enough
rows to get a unique new set.

Setting a lower rowset size can help solve this problem. It degrades performance, but if performance
is a concern, you're better off not using a dynamic cursor in the first place, since they're not the
speediest performers when moving compared to other cursors.

Because of this, and because of the problem with error messages when data has been deleted, it is
recommended that you avoid using dynamic cursors unless you need them and know what you're
doing. A keyset or static cursor is much easier to deal with than a dynamic cursor, and a client-side
batch static is probably the best for most client/server development.

Bug with Testing Procedures with the Immediate Window topic
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscBugWithTestingProceduresWithImmediateWindowTopicC"}

In Chapter 13 of the Programmer’s Guide in the topic “Testing Procedures with the Immediate
Window” the documentation incorrectly states: “If Option Explicit is in effect… any variables you enter
in the Immediate window must already be declared within the current scope.” The Option Explicit
statement has no effect on variables entered in the Immediate window. Note however that any
variables entered in the Immediate window that have not been previously declared as a specific type
will be treated as Variants.

Compile error in Form Unload sample code (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscCompileErrorInSampleAppC"}

In Chapter 6 of the Programmer’s Guide in the topic “More About Forms” the sample code is incorrect
and will cause a compile error if copied into a project.

The incorrect code is:
Private Sub Form_Unload()

Dim i As Integer
'Loop through the forms collection and unload
'each form.
For i = 0 To Forms.Count - 1

Unload Forms(i)
Next

End Sub
In this example, the “Cancel as Integer” parameter is missing from the Form_Unload declaration; also
the forms must be unloaded in reverse order to avoid a “subscript out of range” error.

The correct code is:
Private Sub Form_Unload (Cancel As Integer)

Dim i As Integer
'Loop through the forms collection and unload
'each form.
For i = Forms.Count - 1 To 0 Step -1

Unload Forms(i)
Next

End Sub

Missing Documentation: ValueTips and Bookmarks (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscMissingValueTipsC"}

The documentation fails to mention two new features in VB5: ValueTips in the Immediate window, and
Bookmarks in the Code Editor.

ValueTips are similar to ToolTips except that they display the current value when the mouse is held
over a variable or object property in the Code Window in Break mode. The display of ValueTips is
limited to variables and objects that are currently in scope.

ValueTips are also available in the Immediate window in Break mode. Unlike the Code Editor, the
Immediate window will display values for object properties regardless of scope if a fully qualified
object name is provided. For example, a ValueTip would always be displayed for Form1.Text1.Width,
but not for Text1.Width unless Text1 was currently in scope.

Bookmarks are a new feature of the Code Editor that can be used to mark lines of code so that you
can easily return to them later. Commands to toggle bookmarks on or off as well as to navigate
existing bookmarks are available from the Edit, Bookmarks menu item, or from the Edit toolbar

Printing Books Online (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscVB5BugPrintingBooksOnlineC"}

You can print topics from Books Online by using Print on the File menu (to print individual topics) or
by adding topics to the Notebook (to print multiple topics). Topics printed using the notebook do not
include the topic titles.

An easier way to print multiple topics (including their titles) is to use the Word Viewer and Word
documents provided in the Tools directory on the Visual Basic CD-ROM.

Palette Property - Additional Information (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscPalettePropertyAdditionalInformationReadMeC"}

The Palette Property topic in online Help states “You can use a .dib, .gif, or .pal file to set the palette
as well as .bmp files.” This is incorrect. Only .dib. .gif, and .bmp files can be assigned to the Palette
property. Assigning a .pal file will cause a run-time error 481: “Invalid picture”.

Using Relative Palette Colors (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"rmmscUsingRelativePaletteColorsA"}

When designing for 256 color displays, some colors may appear dithered. This can make text and
other graphic elements difficult to read. By specifying a relative palette color, Visual Basic will display
the closest undithered approximation of a specified color on 256 color displays while still displaying
the exact color at higher color depths.

To force Visual Basic to use the closest solid, rather than dithered, color for a given property, put a 2
in the high order byte of the color property. For example, to force a form’s background to be a solid
light orange you could use the following code:
Private Function PaletteRGB(RGB As Long) As Long

PaletteRGB = &H02000000 Or RGB
End Function
If you set this at design time:
Form1.BackColor = &H00C0E0FF& ‘dithered light orange
And add the following to the Form_Click event:
Private Sub Form_Click()

Form1.BackColor = PaletteRGB(Form1.BackColor)
End Sub
At run-time when the form is clicked the backcolor will change to a solid, rather than dithered, shade.
It is now using the closest color out of the halftone palette. This effect may not be visible on systems
running at a color depth greater than 256 colors.

Programming with Objects - Error in Code Sample (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"rmmscProgramminigWithObjectErrorInCodeSampleReadMeA"}

In the topic “Putting Property Procedures to Work for You” in “Programming with Objects” there is an
error in the code example demonstrating that the arguments of paired property procedures must
match.

It states:

The Property Get declaration must use arguments with the same name and data type as the
arguments in the Property Let Procedure.
Public Property Let Things(ByVal X As Integer…
The “Let” in this line of code should be replaced with “Get”.

Setting Combo Box Styles at Run Time (ReadMe)
Combo Box styles are read-only and can only be set at design time. Chapter 7 of the Programmer’s
Guide incorrectly states that Combo Box styles can be set at both design and run time. If you attempt
to set the style of a Combo Box at run time, you will receive an error message.

Setup Wizard Looking for "User" or "Kernel" (ReadMe)

If you create an application that includes conditional compilation (for example, "#If Win 16 Then") and
16 bit declares, the Setup Wizard will query you with "Locate KERNEL" or "Locate USER." This
occurs when you use the following declaration:
Declare Function GetVersion16 Lib "Kernel" Alias "GetVersion" () As Long
To avoid this situation, change the declaration from "Kernel" to "Kernel.dll." This results in the line
below:
Declare Function GetVersion16 Lib "Kernel.dll" Alias "GetVersion" () As
Long

Hide Method Fails When Repeated in Modal Forms (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscHideMethodFailsWhenRepeatedInModalFormsC;vbmthHide"}

When closing a modal form that has been opened from another modal form, the following code
worked in previous versions of Visual Basic:
Me.Hide
Me.Hide ' This will now cause an error.
In Visual Basic 5.0 this code will now fail on the second "Me.Hide." You can substitute "Me.Hide" with
"Me.Visible = False," as shown below:
Me.Visible = False
Me.Visible = False ' No error raised.

Application Performance Explorer Limited to 32 Profiles (Readme)

The built version of the Application Performance Explorer (APE) has a limit of approximately 32
profiles when running in Windows 95. The limitation is due to an apparent .INI file size limit in
Windows 95. The profiles are stored in an .INI file that can be specified with the Set Profile Collection
command under the File menu. You can determine how many profiles are contained in the present
collection by clicking the Profile combo box. The dropdown list contains all profiles in the present
collection.

To avoid losing data, when the collection nears 32, begin a new Profiles Collection.

To create a new Profiles Collection
1 On the File menu, click Set Profile Collection.
2 In the dialog box named Choose Profile Collection, click the File name box and type in the name of

a new Profile Collection.
3 Click Save.

Internet Transfer Control: Set URL Before Password and
UserName (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"rmmscInternetTransferControlSetURLBeforePasswordUserNameC;vbobjInternetControl"}

When using the Internet Transfer control, set the URL property before you set the Password and
UserName properties. Currently, if you set the URL property last, the UserName and Password
properties will be set to "". This code will work:
Inet1.URL = "FTP://ftp.myCompany.com"
Inet1.Password = "I(3Lei#4"
Inet1.UserName = "Jonne Smythe"
Text1.Text = Inet1.OpenURL
The code below, however, will fail:
Inet1.Password = "I(3Lei#4"
Inet1.UserName = "Jonne Smythe"
Inet1.URL = "FTP://ftp.myCompany.com" ' PassWord and

' Username wiped out.
Text1.Text = Inet1.OpenURL

Don't Share a Property Page Between Projects if a UserControl Is
on It (ReadMe)

Although it is possible to place a UserControl on a property page, and to share that property page
between projects (within the same Project group), you will not be able to update the control on the
property page. For this reason, you should avoid sharing a property page that has a UserControl
object on it. The specific scenario where this happens is shown below:

To share a Property Page with a UserControl on it
1 On the File menu, click New Project.
2 Double-click the ActiveX Control icon.
3 On the Project menu, click Add Property Page.
4 Double-click the Property Page icon to add it to the project.
5 Repeat steps 2-4 to add a second control project and property page to the project group.
6 On the File menu, click Save Project Group. When prompted to overwrite the control project and

property page, click OK.
7 Close all of the designers in the project group except for Project2's PropertyPage1 designer.
8 On the Toolbox, double-click UserControl1 to add it to the PropertyPage.

If you attempt to close the property page designer, you will get an error. Further efforts to modify the
UserControl object will also fail.

ListView Tooltips Cause ZOrder Problems When Used in Addins
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"rmmscListViewToolTipsCauseZOrderProblemsWhenUsedInAddinsC;vbobjListView"}

When using the ListView control as part of an Addin, some problems with zorder may be caused by
Tooltips. The following conditions must all be true in order to manifest these problems:

· The ListView control is used in an Addin.
· The ListView control's View property is set to Large Icons.
· The Tooltip is long enough to wrap.

When these problems occur, they can only be remedied by shutting down Visual Basic.

Access95 Won't Run After Uninstalling VB4 (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscAccess95WontRunAfterUninstallingVB4C"}

If you uninstall Visual Basic version 4 after installing Access 95, Access will no longer work. This
problem will not occur with Visual Basic version 5. To get Access running again, re-register the old
version of DAO (DAO3032.DLL).

Use REGSVR32.EXE to re-register DAO. REGSVR32.EXE is usually found in the \tools\
regutils folder, and DAO3032.DLL is usually in the \program files\common files\microsoft
shared\dao folder.    The command line to re-register DAO is:
cd "c:\program files\common files\microsoft shared\dao"
regsvr32 dao3032.dll

Microsoft Repository Installation (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscMicrosoftRepositoryInstallationReadmeC"}

To install Microsoft Repository 1.0, during the Visual Basic Enterprise Edition installation, you must
choose "Custom" installation, and check the box for Microsoft Repository. By default, this box is
unchecked.

Microsoft Repository requires that the Data Access component is also installed. By default, the box
for the Data Access component is checked. However, if you uncheck this box and install Microsoft
Repository without the Data Access component, you will encounter this error message when you start
Visual Basic 5.0:

"An error occurred while opening the Microsoft Repository database. Specified driver could not be
loaded due to system error 126 (Microsoft Access Driver (*.MDB)). Microsoft Repository Add-in for
Visual Basic is shutting down."

To correct this problem, install the Data Access component.

Obsolete Files from Visual Basic Beta (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscObsoleteFilesFromVisualBasicBetaReadmeC"}

If you install this version of Visual Basic 5.0 over a previous installation of a Visual Basic 5.0 beta
release, there are a few Microsoft Repository files that are obsolete and can be deleted to save
space.

Starting from the directory to which you install Visual Basic 5.0, look for and delete these files:

REPOSTRY\README.WRI
REPOSTRY\BIN\BROWSER.EXE

In your Windows system directory, look for and delete these files:

REPAUTO.CNT
REPAUTO.HLP
REPCOM.CNT
REPCOM.HLP

Repository API Changes (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscRepositoryAPIChangesReadmeC"}

· TXN_QUERY_TIMEOUT is a new type of option that can be set and retrieved via the SetOption
and GetOption methods of the IRepositoryTransaction interface. The value for this option
specifies the number of seconds that an outstanding query is allowed to execute before it is
canceled. The default value for the option is 120 seconds.

· TXN_DBMS_READONLY is a new type of option that can be retrieved via the GetOption method
of the IRepositoryTransaction interface. The value for this option specifies whether or not you can
make changes to the currently open repository database. If the value of the option is zero, you
can make changes to the database. If the value is nonzero, you cannot make changes to the
database.

· The maximum length of an annotational property is 220 characters, not 255 characters. The
constant PROPVALSIZE determines this limit.

· The Interface method of the IRepositoryItem interface is used to obtain an interface pointer to an
alternate interface that an Automation object exposes. This method will accept one of three
different types of input parameter to specify the interface whose pointer is to be retrieved: the
object identifier of the interface definition object (a repository object identifier), the interface
identifier for the interface (a GUID), or the name of the interface (a character string).

· A new method (ExecuteQuery) has been added to the IRepositoryODBC interface. The
ExecuteQuery method has this signature:
HRESULT ExecuteQuery(BSTR QueryString, IObjectCol **ppICol)
QueryString is a character string that contains an SQL query (or the name of a stored procedure)
that is to be executed against the open repository database. The selected columns that are
returned by the SQL query must consist of either the internal identifier column (IntID), or the
internal identifier column and the type identifier column (TypeID). The results of the query are
returned as an object collection, and an IObjectCol interface pointer is returned to the caller via the
*ppICol output parameter.

· The get_Item method of the IObjectCol interface does not support retrieving objects by name.
The get_Item method of the ITargetObjectCol and IRelationshipCol interfaces supports retrieving
objects by name, but only when the object collection is a naming collection. The name is not
required to be unique.

· The name assigned to a project via the naming relationship of the Contents collection of the
IMpoProjectItemContainer interface is adorned to ensure that the name is unique among the
collection of all Visual Basic projects in the collection. The adornment follows these rules:
· If the project file is a network file, then the UNC name for the file is used as the name.
· If the project file is a local file, then the string [computerName]filename is used as the name.
· If the project is unsaved, then the string [computerName]~processId~projectName is used as

the name.
The FileName property of the IMpoProjectItem interface contains the unadorned file name for a
project.

· The IReposProperties interface is a dependent interface that is used to access the collection of
repository properties that are attached to any interface that inherits from IRepositoryDispatch. As
a dependent interface, it is only accessible by obtaining an interface pointer via the get_Properties
method of the IRepositoryDispatch interface. A new method (get_Type) is supported on the
IReposProperties interface. The get_Type method has this signature:
HRESULT get_Type(VARIANT *psTypeID)

The get_Type method retrieves the type of the interface that derives its base behavior from
IRepositoryDispatch; that is, it returns the object identifier for the interface definition object to which
the derived interface conforms.

Repository Browser (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscRepositoryBrowserReadmeC"}

A basic browser is supplied with Microsoft Repository that enables you to browse the contents of a
repository database. It is named REPBROWS.EXE, and can be found in the REPOSTRY\BIN
directory immediately underneath the directory to which you install Visual Basic 5.0.
REPBROWS.EXE accepts four optional command line input arguments. They are:

Access=filename;
DSN=dataSourceName;
UID=userID;
PWD=password;

Fill in the appropriate values for the italicized items. The semicolon is required on the end of each
argument.

Repository Database Restrictions (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscRepositoryDatabaseRestrictionsReadmeC"}

Microsoft Repository 1.0 can use either Jet or SQL Server to manage the repository database.
These restrictions apply:

· If SQL Server is used, the version must be 6.5 or later.
If Jet is used, care must be taken to avoid large amounts of data being accessed within the scope of a
single transaction. The Jet engine uses an in-memory cache to speed up query processing. This
cache continues to grow inside of a transaction until a Commit or Abort is performed. If your
repository application is accessing a large amount of data within a single transaction (which might be
done to isolate the view of the retrieved data from uncommitted changes of other processes), the
cache can grow to the point where it consumes enough memory to cause the application to fail. To
avoid this situation, periodically Commit your transaction, even if it is a read-only transaction.

Setup Fails On NT 4.0 With FastFind Installed (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscSetupFailsOnNT40WithFastFindInstalledReadmeC"}

When installing Visual Basic on a machine running Windows NT 4.0 and the FastFind feature of
Microsoft Office 97, setup may be unable to register Msjet35.dll. This will cause setup to fail.
Temporarily disabling or removing FastFind may allow setup to succeed.

ShowTips Property is Read-Only (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscShowTipsPropertyIsReadOnlyReadMeC;vbproTooltipsS"}

The correct syntax for this property is

object.ShowTips
Syntax in the Help topic incorrectly indicates the value can be set at run-time.

Remove MV141KN.OCX From Your System Before Installing
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscRemoveMV141KNOCXFromYourSystemBeforeInstallingReadMeC"}

If you were a beta user of VB5, remove MV141KN.OCX from your system before installing the
released product.

Can't Pass a QueryDef Object Name to an OpenRecordset Method
Using ODBCDirect (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"rmmscCantPassQueryDefObjectNameToOpenRecordsetMethodUsingODBCDirectReadMeC"}

When you use ODBCDirect, you cannot open a Recordset object from a QueryDef method object
name. Instead, you should perform the OpenRecordset method directly from the QueryDef object.
This is because QueryDef objects in ODBCDirect are not permanent objects as they are in a
Microsoft Jet database.

Can't read BatchCollisionCount property through Recordset
properties collection (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"rmmscCantReadBatchCollisionCountPropertyThroughRecordsetPropertiesCollectionReadMeC"}

The Properties collection of a recordset lists a property named "BatchCollisionsCount". The property
is actually named "BatchCollisionCount". If you try to read that property through the Properties
collection, you will get an error "Property not found". The only way to read this property is directly, i.e.
MyRS.BatchCollisionCount.

dbFailOnError No Longer Rolls Back a Transaction (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscDbFailOnErrorNoLongerRollsBackTransactionReadMeC"}

In previous releases of Data Access Objects (DAO), if you executed SQL statements, they were
internally treated as transactions. If you executed a statement with the dbFailOnError flag on and the
query failed, the operation was rolled back. For performance reasons, an SQL statement is no longer
treated as a transaction. Therefore, if an SQL query fails in Microsoft Access, an incomplete operation
may occur. If you think an error may occur, you should explicitly use the statement within a
transaction by using the BeginTrans method and the CommitTrans method. However, note that
explicit transactions may slow query performance.

ODBCDirect: GetRows Error 40035 (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscODBCDirectGetRowsError40035ReadMeC"}

You should not use the GetRows method with long value fields. If you use the GetRows method on an
ODBCDirect Recordset object containing long value fields (Memo or Long Binary), you will get an
error variant stored in the array wherever the long value field should have been. If you read the array
data value, it will be Error 40035 and the data type will be Variant.

RegisterDatabase truncates server to 31 characters (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscRegisterDatabaseTruncatesServerTo31CharactersReadMeC"}

When calling RegisterDatabase, the server parameter will be truncated to 31 characters if it exceeds
that length. The workaround is to rename the server in the registry key to a shorter value.

Using DAO Version 3.5 in Older OLE Automation Host Applications
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscUsingDAOVersion35InOlderOLEAutomationHostApplicationsReadMeC"}

Data Access Objects (DAO) version 3.5 is designed to work with Visual Basic for Applications version
5.0. Although DAO 3.5 will appear in Office 95 or Visual Basic version 4.0 or earlier reference lists,
you can't use DAO 3.5 in either Microsoft Office 95 or Visual Basic version 4.0 or earlier.

Repository Multithreading Restrictions (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscRepositoryMultithreadingRestrictionsReadMeC"}

When programming a multithreaded repository application, take care to synchronize repository
database commit operations between your application threads. Specifically, you must synchronize the
use of these C++ methods:

· IRelationshipCol::Count
· IClassDef::ObjectInstances
· IInterfaceDef::ObjectInstances
· IRepositoryODBC::ExecuteQuery

If You Used Microsoft Repository from the Visual Basic Beta
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscIfYouUsedMicrosoftRepositoryFromVisualBasicBetaReadMeC"}

· If you install this version of Visual Basic 5.0 over a previous installation of a Visual Basic 5.0 beta
release, there are a few Microsoft Repository files that are obsolete and can be deleted to save
space.
Starting from the directory to which you install Visual Basic 5.0, look for and delete these files:
REPOSTRY\README.WRI
REPOSTRY\BIN\BROWSER.EXE

· In your Windows system directory, look for and delete these files:
REPAUTO.CNT
REPAUTO.HLP
REPCOM.CNT
REPCOM.HLP

· The beta format of the repository database is no longer valid. If you used the beta version of
Microsoft Repository, you must delete your old repository database. In the MSAPPS\REPOSTRY
directory underneath your Windows directory, look for and delete this file:
REPOSTRY.MDB

If you delete this file before you install the release version of Visual Basic 5.0 and you choose to
install Microsoft Repository, the installation process will recreate this file. If you delete this file after
installation and you chose to install Microsoft Repository, the first time that you start Visual Basic 5.0
the file will be recreated. In this case, you may notice that Visual Basic takes a little longer to start.

Assigning Resultset to RDC Doesn't Update Bound Controls
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"rdproResultset;rmmscAssigningResultsetToRemoteDataControlDoesNotUpdateControlsReadMeC"}

When you bind a control to the resultset of a RemoteData Control (RDC), the resultset doesn't
automatically display in the control. To illustrate this:

1 Start Visual Basic and open a Standard EXE project.
2 Reference the RDC.
3 Place an RDC on the form.
4 Place a TextBox control on the form.
5 Set the following TextBox properties:

 DataSource: MSRDC1
 DataField: au_lname

6 Place a CommandButton control on the form and add the following code to its Click event:
 Dim cn As New rdoConnection
 cn.Connect = _
 "dsn=pinkpearl;database=rdobugs;uid=rdo;pwd="
 cn.EstablishConnection
 Set MSRDC1.Resultset = cn.OpenResultset("select * _
 from authors]")

7 Run the project (F5).
8 Click the CommandButton.

Notice that the bound control does not populate with data. You must issue the command
MSRDC1.Refresh for the bound control to populate. The refresh causes the server to send the entire
resultset again, which can take a long time in some situations.

Workaround:
To work around this problem, set any bound control's datafield after setting the resultset in code. For
example, after the line
Set MSRDC1.Resultset = cn.OpenResultset("select * _
 from authors]")
you would add
Text1.DataField = "au_lname"
which forces the binding manager to set and update the bindings, which populates the bound control
with data.

Can't Assign Resultset to RemoteData Control (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"rdidxRemoteDataObjectModel;rmmscCantAssignResultsetToRemoteDataControlC"}

When you attempt to assign a forward-only resultset to a RemoteData Control (RDC), you get an
"invalid object" error. To illustrate this situation:

1 Start Visual Basic.
2 Place a RemoteData Control on Form1.
3 Add a reference to RDO through the References command in the Project menu.
4 Add the following code to the Form_Load event:

Dim x as new rdoConnection
Dim y as rdoQuery
x.Connect = "DSN=Union;UID=rdo;PWD="
x.EstablishConnection
Set y = x.CreateQuery("Query1", "SELECT * FROM _

 authors")
x.Query1

 ' invalid object error occurs on next line
Set MSRDC1.Resultset = x.LastQueryResults

5 Press F5.

The reason this error occurs is that it uses a forward-only resultset which cannot be assigned to the
RDC. In order to assign a resultset to an RDC, it must be either keyset or static. For example:
Dim x As New rdoConnection
Dim y As rdoQuery
x.Connect = "DSN=Union;database=rdobugs;UID=rdo;PWD="
x.EstablishConnection
Set y = x.CreateQuery("Query1", "SELECT * FROM _
 authors")
y.CursorType = rdOpenKeyset
y.LockType = rdConcurRowVer
x.Query1
Set MSRDC1.Resultset = x.LastQueryResults

GPF When Toggling Folders if UserDocument Object and
Designers are Present (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscGPFWhenTogglingFoldersIfUserDocDesignersArePresentC"}

If you create an ActiveX EXE project and insert a UserDocument object and then an ActiveX
designer, and then toggle the folders in the Project window from one state to another, the reference to
the UserDocument disappears from the Project window.

In many cases, this can lead to a General Protection Fault (GPF), because Visual Basic searches
through the Project window in order to save project items. If you toggle the folders and then attempt to
save your project or shut down Visual Basic, and a project item that Visual Basic expects to be
present in the project window disappears from the window—such as a UserDocument object—you
will receive a GPF.

IStudio/ActiveX ScriptPad Can't Change Fonts Using VB-created
Font Property (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscIStudioActiveXScriptPadHasProblemSavingFontsC"}

If you create a Font property in Visual Basic, then attempt to use it to change a font using ScriptPad
or IStudio, the font is not changed. To illustrate the problem:

1 Start Visual Basic and create a new ActiveX Control project.
2 Use the Control Interface wizard to create a Font property. (Map it to UserControl.Font).
3 Add On Error Resume Next to the WriteProperties event.
4 Make sure that the ProcID for the Font property is set to "Font".
5 Build the ActiveX control.
6 Start ScriptPad or IStudio.
7 Place the control on the HTML page.
8 Change the font shown in the property sheet.
9 Close the designer.

Notice that the font is not changed.

This problem occurs because the WriteProperties event:
Call PropBag.WriteProperty("Font", UserControl.Font, _
 Ambient.Font)
never writes any font information because the Font object is equivalent to Ambient.Font, as
demonstrated by the following code:
MsgBox IIF(Font IS Ambient.Font, "The Font object is _
 identical to Ambient.Font", "Different Objects")
The following code illustrates the problem:
'MappingInfo=UserControl,UserControl,-1,Font
Public Property Get Font() As Font
 Set Font = UserControl.Font
End Property
Public Property Set Font(ByVal New_Font As Font)
 Set UserControl.Font = New_Font
 PropertyChanged "Font"
End Property
'Initialize Properties for User Control
Private Sub UserControl_InitProperties()
 Set Font = Ambient.Font
End Sub
'Load property values from storage
Private Sub UserControl_ReadProperties(PropBag As _
 PropertyBag)
 Set Font = PropBag.ReadProperty("Font", _
 Ambient.Font)
End Sub
'Write property values to storage
Private Sub UserControl_WriteProperties(PropBag As _
 PropertyBag)
 Call PropBag.WriteProperty("Font", Font, _
 Ambient.Font)
End Sub

UserControl_InitProperties sets the font to be the ambient font. When you set the property in
the ActiveX control pad property sheet, it doesn't create a new Font object and set it (like the property
browser does). Instead, it inserts new values into the existing Font object. This means that the
property Set/Let isn't called when the property is changed; instead only Get is called.

Workaround:
To work around this problem, change the code in UserControl_InitProperties from:

Set Font = Ambient.Font
to:
Set Font.Name = Ambient.Font.Name
Set Font.Size = Ambient.Font.Size
(etc.)

PropertyPage Object Does Not Support Activate and Deactivate
Events (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscPropertyPagesActivateDeActivateEventsCantOccurReadMeC"}

The Activate and Deactivate events erroneously include the PropertyPage object in their Applies To
lists.

Visual Basic 5.0 Bidirectional Features (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscVisualBasic50BidirectionalFeaturesC;vbprolefttoright"}

Visual Basic is bidirectional (also known as "BiDi")-enabled, but there is no mention of this on the
product packaging or in any other printed documentation. Online documentation is contained in a
separate help file included only with 32-bit bidirectional platforms.

"Bidirectional" is a generic term used to describe software products that support Arabic and other
languages which are written right-to-left. More specifically, bidirectional refers to the product ability to
manipulate and display text for both left-to-right and right-to-left languages. For example, displaying a
sentence containing words written in both English and Arabic requires bidirectional capability.

Microsoft Visual Basic 5.0 includes standard features to create and run Windows applications with full
bidirectional language functionality. However, these features are operational only when Microsoft
Visual Basic 5.0 is installed in a bidirectional 32-bit Microsoft Windows environment, such as Arabic
Microsoft Windows 95. Other bidirectional 32-bit Microsoft Windows environments are available as
well.

The RightToLeft property has been added to forms, controls, and other Visual Basic objects to
provide an easy mechanism for creating objects with bidirectional characteristics. Although
RightToLeft is a part of every Microsoft Visual Basic 5.0 installation, it is operational only when
Microsoft Visual Basic 5.0 is installed in a bidirectional 32-bit Microsoft Windows environment.

Bidirectional Features online help describes all Microsoft Visual Basic 5.0 bidirectional features. When
Microsoft Visual Basic 5.0 is installed in a bidirectional 32-bit Microsoft Windows environment, choose
the Bidirectional Features item on the Help menu to access Bidirectional Features online help.
Otherwise, locate and double-click the file Bhelp32.hlp.

For compatibility with Microsoft Visual Basic 4.0, two versions of the 32-bit Grid control (Grid32.ocx)
are included with Microsoft Visual Basic 5.0 but not installed. Both are located in the \Tools folder of
the product media. The standard and bidirectional versions are located in the \Controls and \Controls\
Bidi subfolders, respectively.

VB5 Doesn't Update RDO Reference After Converting RDC
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"rmmscVB5DoesntUpdateRDOReferenceAfterConvertingMSRDCControlReadMeC"}

If you convert a Visual Basic 4.0 project using an earlier version of Remote Data Objects (RDO),
Visual Basic does not automatically switch the reference from the old version of RDO to the new
version of RDO. To fix this, click References in the Project menu, deselect the old version of RDO and
then select the new version of RDO.

Bound Image Control Doesn't Display Picture if RDC Uses Batch
Cursors (Readme)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"rmmscBoundImageControlDoesntDisplayPictureIfRDCUsesBatchCursorsReadmeC"}

If you have an Image control bound to an image-containing field in a RemoteData Control (RDC),
and the RDC uses batch cursors (CursorDriver = rdUseClientBatch), the Image control doesn't
display the image.

To correct this problem, set the RDC's Options property to 128 (rdFetchLongColumns).

Upgrading VB Enterprise Edition Deletes Autmgr32.exe (ReadMe)
Removing the Enterprise edition of Visual Basic 4.0 after upgrading to the Enterprise edition of Visual
Basic 5.0 deletes the Automation Manager. To avoid or fix this problem, either remove Visual Basic
4.0 prior to upgrading to VB 5.0, or reinstall Automation Manager from the Visual Basic 5.0 setup after
Visual Basic 4.0 has been removed.

By default Visual Basic 5.0 is installed into the following directory: \Program Files\DevStudio\VB.
Since this is a change from Visual Basic 4.0, which installed in its own directory (C:\VB in Windows
NT 3.51 or C:\Program Files\Microsoft Visual Basic in Windows 95 and Windows NT 4.0), installing
Visual Basic 5.0 does not automatically upgrade Visual Basic 4.0. You can run the two programs
simultaneously.

In the Visual Basic 4.0 setup Automation Manager is not installed as a shared component. Therefore,
it is removed when you remove Visual Basic 4.0. To reinstall the Automation Manager in Visual Basic
5.0, select Add/Remove Programs from the Control Panel, select Visual Basic 5.0 Enterprise Edition
from the list of programs installed on your system, click the Add/Remove button, and then the
Reinstall button.

Unload Me Statement in ListBox Control ItemCheck Event Causes
GPF (ReadMe)
Attempting to unload a form using Unload Me in the ListBox control's ItemCheck event causes a
GPF. For example:
Private Sub Form_Load()

 Dim i%
 For i = 0 To 20
 List1.AddItem i
 Next i
End Sub

Private Sub List1_ItemCheck(Item As Integer)
 Unload Me
End Sub

This sample also produces a GPF if the spacebar is pressed, or if you attempt to select an item in the
list box using a command button.

The recommended procedure for unloading a form is to add the Unload statement to the Click event
in a CommandButton or Menu control.

CommonDialog Control Constant cdlHelpContents May Be
Obsolete (ReadMe)
Help files created in newer versions of the Windows Help Compiler may not support accessing
Contents topics with the CommonDialog control constant cdlHelpContents. For example, attempting
to access a help file Contents topic as in the example below may not produce the desired results:
Private Sub cmdHelpContents_Click()
 dlgCommon.HelpFile = "help\vb5.hlp"
 dlgCommon.HelpCommand = cdlHelpContents
 dlgCommon.ShowHelp
End Sub

Help files created with newer versions of the Windows Help Compiler use .cnt files to display the
Contents topic in the Help viewer application. This is a change from previous versions. Therefore, the
CommonDialog control constant cdlHelpContents no longer works.

The following information from the Platform SDK (formerly Win32 SDK) summarizes this change:

“In the past, applications have used HELP_CONTENTS and HELP_INDEX commands with the
WinHelp function to display the Contents topic and the keyword index of the help file. These
commands are no longer recommended. Use the HELP_FINDER command instead.”

Visual Basic 5.0 does not provide a CommonDialog control constant equivalent to the WinHelp
function HELP_FINDER command. To access the Contents topic in a help file, declare the WinHelp
command as a constant, as in this example:
Const HelpFinder = &h000B

For more information on using WinHelp commands, refer to the Platforms SDK.

"Permission denied" or "Unexpected error" when compiling OCX or
DLL (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscPermissionDeniedWithBinaryCompatibilityReadMeC"}

When compiling an ActiveX control or ActiveX DLL project with the Binary Compatibility option
selected, you may encounter thse errors if you:

· Compile the project to the same .ocx (or .dll) file you specified for Binary Compatibility, AND
· Compile the .ocx (or .dll) file more than once in the same Visual Basic session.

Note If the error log contains "LINK : fatal error LNK1104: cannot open file "<path>\<filename>"
after you receive "Unexpected error occurred in code generator or linker," you must close Visual
Basic and delete the file named in the message.

Explanation
In general, you should not compile a component to the same file you specified for Binary
Compatibility. Doing so will bulk up the file with extraneous interface information for these interim
builds, as discussed in "Version Compatibility" in Books Online.

Instead, use the following rule of thumb to determine which Version Compatibility option to use:

· If you're creating a brand new control (or code component), select Project Compatibility and specify
the file you normally build to.
Note Project Compatibility is the default for new projects.

· If you're creating a new version of a control (or code component) you have released to other
developers, and you want your new version to be compatible with applications compiled using the
earlier version, select Binary Compatibility and specify a reference copy of your released .ocx
(or .dll) file.
Important This should be a copy of the file you distributed to developers; DO NOT specify the
file you normally build the project to.

· If you're creating a new version of a control you have released to other developers, and you need
to make changes that will prevent the control from working with previously compiled applications,
select Project Compatibility and specify your normal build file.
Project Compatibility guarantees that copies of your control in existing projects can easily be
upgraded when you distribute the new version to developers (hence the name). It does not
guarantee that a new version of your control will be compatible with applications compiled using
earlier versions.
Important Be sure to change the filename of your .ocx when you author a version that does not
work with previously compiled applications. Standard practice is to include a version number in the
filename. If you're creating a new version of a code component, you should also change the
Project Name.

Version Compatibility options can be selected from the Component tab of the Project Properties
dialog box.

Note "Permission denied" can also occur if the compiled .ocx file is in use by a client program. You
must close all client programs — for example, Microsoft Internet Explorer or the Microsoft ActiveX
Control Pad — in order to release the .ocx file so that you can recompile it.

UserControl object doesn't support DDE (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscUserControlObjectDoesntSupportDDEDirectlyReadMeC"}

Controls authored with Visual Basic do not support Dynamic Data Exchange (DDE) to or from the
UserControl object or any of its constituent controls.

Note The constituent controls on your UserControl will display DDE-related properties, methods,
and events. However, if you attempt to set the LinkMode property, run-time error 369, "Operation not
valid in an ActiveX DLL," will occur.

More Information
The properties, methods, and events that allow a control to support DDE (such as the LinkMode
property, or the LinkOpen event) are not part of the control. They are added by the container's
Extender object, but only if the control's type library includes the necessary interfaces. These
interfaces are not included in the type library created when an ActiveX control project is compiled, so
the controls in the resulting .ocx file cannot support DDE.

Giving your control properties, methods, and events with the standard names will not enable DDE
support for your control, because these properties and methods must be supplied by the container. In
fact, if you supply events with the standard names (such as LinkOpen), Visual Basic will not allow you
to put an instance of your control on a form.

Changing UserControl property doesn't affect compiled applications
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"rmmscChangingControlToInvisibleAtRuntimeWontWorkInExistingHostsReadMeC"}

If you release a control authored with Visual Basic, and later decide to release an enhanced version
of this control, some compatibility issues will not be handled by the Version Compatibility feature.

For example, consider the following scenario:

· You release SuperDuperComm.ocx version 1.0, and distribute it to developers. The control is
visible at run time.

· Developers distribute applications compiled with SuperDuperComm.
· When you release version 2.0 of SuperDuperComm, you set the InvisibleAtRuntime property of

the UserControl object to True, in response to developer feedback. You use Binary Compatibility
(set using the Component tab of the Project Properties dialog box) to ensure that the new version
will work with applications compiled with version 1.0.

· The new SuperDuperComm is installed on machines that have applications compiled with version
1.0, but developers report that the control is still visible at run time.

The reason for this is that invisibility at run time is a service provided by the container (for example, a
Visual Basic form), and since version 1.0 of the control didn't ask for it, the compiled container doesn't
supply it.

Other properties of the UserControl object that depend on services supplied by the container include:

· ControlContainer
· CanGetFocus
· Alignable
· ForwardFocus
· DefaultCancel
· ToolboxBitmap
· Public

Changing these properties from one version of your control to the next will not affect the control's
behavior in compiled applications.

Related issues are discussed in "Versioning Issues for Controls," in Books Online.

Event arguments that use OLE data types are not recognized in
Access (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscColorPropertiesOfTypeOLECOLORAppearAsLongInAccessReadMeC"}

Microsoft Access does not recognize the standard OLE data types listed in the following table, and
will translate them as shown:

OLE data type Appears in Access as
OLE_TRISTATE Long
OLE_HANDLE Long
OLE_OPTEXCLUSIVE Boolean
OLE_COLOR 0

For example, suppose you declare the following event in a control authored using Visual Basic:
Event TestType(ByVal OT As OLE_TRISTATE, _

ByVal OO As OPT_EXCLUSIVE, ByVal OC As OLE_COLOR)
If the compiled control is used in Microsoft Access, the event procedure will appear as follows:
Private Sub MyControl1_TestType(ByVal OT As Long, _

ByVal OO As Boolean, ByVal OC As 0)

End Sub
For all types except OLE_COLOR, the data types used by Microsoft Access are the same size as the
standard data types. However, the code for OLE_COLOR will not compile. Thus, if you expect your
control to be used in Microsoft Access, do not use OLE_COLOR as a data type for event arguments.

UserControl containing User Forms Textbox may not work on a
UserForm (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"rmmscUserControlContainingUserFormsTextboxMayNotWorkOnUserFormReadMeC"}

The Microsoft User Forms used in Microsoft Office applications include a set of controls similar to the
intrinsic controls in Visual Basic. These controls can be used on Visual Basic forms, or placed on
UserControl or UserDocument designers.

Note If you use these controls in your application or .ocx, SetupWizard must include the support
DLL for Microsoft User Forms in your Setup program.

The following scenario is known to cause problems:

· Author a control in Visual Basic by placing a User Forms Textbox on a UserControl designer, and
then make an .ocx file.

· Place an instance of your new control on a User Form.
· When the form is run, it may not be possible to type in the User Forms Textbox.

Use of the User Forms Textbox control on a UserControl object is not recommended.

An object may terminate with a Friend method in the Call Tree
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscAnObjectMayTerminateWithFriendMethodInCallTreeReadMeC"}

When you call a property or method of an object, that procedure remains in the Call Tree (that is, on
the stack) until it returns. If all references to an object are released while one of its public properties or
methods is in the Call Tree, Visual Basic will not allow the object to terminate. The object's Terminate
event will only occur after it has no more public properties or methods in the Call Tree.

Visual Basic provides this protection for public members because if an object is allowed to terminate
while code is in the Call Tree, the memory used by the object will be freed, and a program fault will
occur when the member finally returns.

Properties and methods declared with the Friend keyword do not have this protection. In most cases
it is not necessary, because in ordinary programming scenarios with Friend members it is very
difficult to cause an object to terminate while it has code on the stack.

One scenario in which this may occur is when a Friend method is used to raise a public event, AND
the Friend method is called by an event outside Visual Basic, such as a system timer set up using the
AddressOf operator. In this case, the method must be changed from Friend to Public to avoid
potential program faults.

The XTimer class used in the Coffee sample application provides an example of this.

Manually editing VB_PredeclaredId attribute causes problems
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscManuallyEditingVB_PredeclaredIdAttributeCausesProblemsReadMeC"}

If you edit Visual Basic source files using a text or code editor other than Visual Basic, be careful not
to change settings of the attribute VB_PredeclaredId. In particular, changing this attribute may cause
serious problems with GlobalMultiUse and GlobalSingleUse classes.

In general, you should not edit attributes manually, as doing so may put the module into an internally
inconsistent state.

AmbientProperties.Font clones container's ambient font (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscAmbientPropertiesFontClonesContainersAmbientFontReadMeC"}

When you access the Font property of the AmbientProperties object, you do not get a reference to
the container's font. Rather, you get a copy (clone) of the font.

The reason for this is that AmbientProperties.Font is commonly used to initialize a control's font
whenever an instance of the control is added to a container. If a reference to the font itself were
supplied, then changing the control's font would change the container's font as well.

If for some reason your control requires a reference to the container's font, you can obtain it by
accessing the container through the Parent property of the UserControl object.

To use GlobalMultiUse objects internally, declare a global variable
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscToUseGlobalMultiUseObjectsInternallyDeclareGlobalVariableReadMeC"}

Setting the Instancing property of a class to GlobalMultiUse or GlobalSingleUse in an ActiveX Exe or
ActiveX DLL project adds the properties and methods of that class to the global name space of any
client project. That is, the properties and methods can be used as if they were global functions,
without explicitly creating an instance of the class.

The creation and use of such global objects is discussed in "Global Objects and Code Libraries," in
Books Online. This topic also discusses the limitations of global objects, in particular the following
limitation:

"The properties and methods of a global object only become part of the global name space when the
component is referenced from other projects. Within the project where you created the
GlobalMultiUse class module, objects created from the class are just ordinary objects."

That is, if you create project MyUtilities that contains a Utilities class with Instancing =
GlobalMultiUse, and give the class an InvertMatrix method, then from any client project (one in which
you've set a reference to MyUtilities) you can call InvertMatix without any qualification. However,
within the MyUtilities project you must create an object of type Utilities and use that object to call
InvertMatrix.

The recommended workaround (which is only hinted at in the topic noted above) is to declare a global
variable in a standard module, as follows:
Public Utilities As New Utilities
Thereafter, whenever you need to use InvertMatrix (or any other procedure supplied by the Utilities
class), you can qualify it with the class name:

Utilities.InvertMatrix aintMyLargeMatrix
The first time you use a method of the Utilities class in this fashion, an instance of the class is created
automatically, because the global variable is declared As New. Using the class name as the name of
the variable makes it clear which of the modules within your component is supplying the procedure.

Note You must declare this global variable in a standard module, not a class module, in order for
this technique to work.

Component that uses App.PrevInstance can cause problems
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscAPEComponentThatUsesAppPrevInstanceCanCauseProblemsReadMeC"}

A computer running Windows NT can support multiple desktops. When you're using a component
designed to work with distributed COM, this can result in the following scenario:

· A client program in a user desktop requests one of the objects the component provides. Because
the component is physically located on the same machine, the component is started in the user
desktop.

· Subsequently, a client program on another computer uses distributed COM to request one of the
objects the component provides. A second instance of the component is started, in a system
desktop.

There are now two instances of the component running on the same NT computer, in different
desktops.

This scenario is not a problem, unless the author of the component has placed a test for
App.PrevInstance in the startup code for the component, to prevent multiple copies of the
component from running on the same computer. In this case, the remote object creation will fail.

Don't change font on multiple controls with floating Properties
window (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"rmmscDontChangeFontOnMultipleControlsWithFloatingPropertiesWindowReadMeC"}

When using Visual Basic in Multiple Document Interface (MDI) mode, it is possible to display the
Properties window either docked to the main window (the default) or floating.

If the Properties window is floating, AND two or more controls are selected, AND you change the Font
property of the controls using the floating Properties window, a program fault will occur in Visual
Basic.

Don't change default member to Friend or Private (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscDontChangeDefaultMemberToFriendOrPrivateReadMeC"}

If you have used the Procedure Attributes dialog box to make a public property or method of a class
the default member for that class, do not edit the declaration for the member and change Public to
Friend or Private, without first removing the Default attribute. Doing so will cause serious problems in
your program.

If you find yourself in this situation, make the member Public again, and use the Procedure Attributes
dialog to remove the Default attribute. You can then change the declaration back to Friend or Private.

Help for DateSerial gives incorrect information on Year argument
(ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscHelpForDateSerialGivesIncorrectInformationOnYearArgumentReadMeC"}

Help for the DateSerial function incorrectly describes the way the year argument is interpreted. The
text should read as follows:

For the year argument, values between 0 and 29, inclusive, are interpreted as the years 2000–2029.
Values between 30 and 99, inclusive, are interpreted as the years 1930–1999. For all other year
arguments, use a four-digit year (for example, 1800).

If you're using Visual Basic 5.0 with Windows NT 4.0... (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscIfYoureUsingVisualBasic50WithWindowsNT40ReadMeC"}

Microsoft regularly provides updates to Windows NT, to supply customers with the latest corrections
to problems that have been reported. These Service Packs are referred to by the letters "SP" followed
by a number (for example, "SP1").

When you install Visual Basic 5.0 on a system running Windows NT 4.0, Visual Basic automatically
installs the OLE Automation support DLLs included in SP2. The entire SP2 update is included on the
distribution CD, and It is highly recommended that you apply it to your system.

Note If the application you're creating is to run on Windows NT 4.0, users should upgrade their
systems to SP2 before installing your application. This is particularly important if your application uses
distributed COM.

The following problems are known to occur with SP2, and are fixed in SP3. If you have applied SP2 to
your system, and you encounter any of these problems, you should obtain and apply SP3.

· OLE initialization can fail if an object is created on a second thread while the first thread is still
initializing OLE. This is most likely to occur when running multithreaded Exe components in
stressful conditions (such as multiprocessor machines).

· Calling a method of an object in a component running on another machine, using distributed COM,
fails if the method has more than 16 arguments, and at least one but not more than 15 of those
arguments are ByRef.

· OLEAUT32.DLL fails to self-register if StdFont and StdPicture are not correctly registered (RISC
only).

· Alignment fault when loading a metafile into a Picture object (RISC only).
· Problems displaying GIF and JPEG files in 16-color mode.
· Font facenames longer than 16 characters can overwrite data on the stack (RISC only).
· When a double-byte Font is copied after one or more properties have been changed, the cloned

Font may be in an inconsistent state. (A workaround is to read one property before copying the
Font.)

· Palette behavior is inconsistent with Visual Basic 4.0.
· A program fault can occur when using controls that display property pages (RISC only).
· Problems displaying double-byte fonts (for example, Japanese).
· When using distributed COM between a Windows NT system and a UNIX system, Variants will not

be passed correctly.

Note SP3 is not available on the VB5 CD. Information on its availability can be obtained from the
Microsoft Visual Basic Web Site. As with SP2, users should upgrade their systems to SP3 before
installing your application.

Some of the items in the list above also affect Visual Basic applications running on Windows 95. SP3
cannot be used to upgrade Windows 95. Microsoft is currently investigating distribution mechanisms
for operating systems other than Windows NT; information will be available on the Microsoft Visual
Basic Web Site.

MaskPicture property requires black and white bitmap in Windows
95 (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscMaskColorPropertyRequiresBlackWhiteBitmapInWindows95ReadMeC"}

When a multicolor bitmap is assigned to the MaskPicture property of a UserControl, and a color
other than white is assigned to the MaskColor property, the control will behave as if the MaskColor
property had been set to white.

This problem occurs when the control is used on systems running Windows 95. To correct the
problem, use a bitmap with two colors — white for all areas where the control is to be transparent,
and black for all areas where the control is to be opaque.

Note Set the MaskColor to white, so that transparency will also work correctly on systems running
Windows NT.

A color bitmap can be converted to a black-and-white bitmap by changing the pixels as follows: If a
pixel is the desired mask color, set it to white; if the pixel is any other color, set it to black.

Exe component hangs creating object from second Exe during
startup (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscActiveXExeComponentHangsIfInstalledOnWindows95ReadMeC"}

If the startup code for an out-of-process component (ActiveX Exe) attempts to create an object from a
second out-of-process component, before returning control to the client Exe, the component will hang.

This occurs only on systems running Windows 95.

The component will hang only if all three programs — the client and both components — are single-
threaded .exe files. You can avoid the problem by deferring creation of the object supplied by the
second component until a later time.

The problem can be also be fixed by upgrading the Windows 95 machine with the Distributed COM
support package for Windows 95.

StandardSize Property for Property Pages Doesn't Work As
Expected (Readme)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"rmmscStandardSizePropertyForPropertyPagesDoesntWorkAsExpectedReadmeC"}

The StandardSize property for property pages may not give the expected result when set to 1 - Small
or 2 - Large. This property only affects the size of the property page for the author’s display driver and
resolution. Unexpected results my occur on other displays.

It is suggested that you use the default StandardSize property value (1 - Custom) and treat a
property page as you would any other form.

PaintPicture Method: Opcode Argument Only Applies to Bitmaps
(Readme)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscPaintPictureMethodOpcodeArgumentOnlyAppliesToBitmapsReadmeC"}

Opcode, the last optional argument to the PaintPicture method, is used to pass a bitwise operation on
a bitmap. Placing a value in this argument when passing other image types will cause a “Invalid
procedure call or argument” error. This is by design. To avoid this error, leave the Opcode argument
blank for any image other than a bitmap.

Help Button Doesn't Show Up On Property Page (Readme)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscHelpButtonDoesntShowUpOnPropertyPageReadmeC"}

When working with a UserControl in the design environment, the Help button on the property page
may not show up the first time the property page is shown. To remedy the situation, open and then
close the designer for the UserControl. The next time the property page is accessed the Help button
will appear.

This is a known problem only in the design environment; Property pages for a compiled UserControl
do not exhibit this behavior.

Referencing a Private UserControl Before Form Load May Cause
Error (Readme)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"rmmscReferencingPrivateUserControlPriorToFormLoadCausesTypeMismatchErrorReadmeC"}

A “Type Mismatch” error may occur if you try to reference a UserControl before loading the
containing form. For example, the Set statement in the following code causes an error:
Sub Main()
 Dim a As UserControl1
 Set a = Form1.UserControl11
End Sub
To prevent this error, load the form before referencing the UserControl:
Sub Main()
 Dim a As UserControl1
 Form1.Show
 Set a = Form1.UserControl11
End Sub
This behavior only occurs with UserControls added to a project via the Add UserControl command
on the Project menu, and with the Public property set to False. Public UserControls added via the
References dialog do not cause the error.

Changing Case of Form or Module Names May Cause Load Error
(Readme)

Changing the case of the Name property value for a Form or other module without otherwise
changing the name itself can cause a “Conflicting names” error message the next time the project
containing the is loaded. For example, changing “Form1” to “form1” will cause the error; changing
“Form1” to “formX” will not.

The error is caused by the way module names are stored within the project file – the procedure for
changing names within the project file isn’t case sensitive, while the procedure for reading names on
project load is.

Control Creation Edition Installs Some Files as Read-only
(Readme)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rmmscControlCreationEditionInstallSomeFilesAsReadonlyReadmeC"}

Some of the documentation files included with the Control Creation Edition of Visual Basic are
installed with read-only attributes. This can cause a “Read-only” warning to be displayed when
attempting to uninstall Visual Basic.

To avoid the warnings, change the attributes of any read-only files in the Visual Basic directory before
uninstalling.

Hard-typed Objects Permitted as Optional Parameters (ReadMe)
The description of permitted types in optional arguments is incorrect. An argument specified as
Optional can have a specific object type. For example, the argument specification Optional MyArg
As Worksheet is valid as long as the object type is within scope of the declaration. The only type
prohibited is a user-defined type.

Method Incorrectly Called Property (ReadMe)

DesignerWindow is referred to as a property in its help topic title. It is actually a method. The
substantive information in the topic is correct.

Properties Incorrectly Called Methods (ReadMe)

The following Add-in elements are referred to as methods in their help topic titles. They are actually
properties: ProcBodyLine, ProcCountLines, ProcOfLine, ProcStartLine. The substantive
information in these topics is correct.

Missing Property Topics (RDO) (ReadMe)
{ewc HLP95EN.DLL,DYNALINK,"See Also":""}

The following RDO properties do not have Help topics:

rdoQueries Property

rdoResultSets Property

rdoTables Property

rdoConnections Property

rdoColumns Property

rdoParameters Property

rdoEnvironments Property

These properties are used to access collections of the corresponding RDO objects. For example,
the rdoQuery Object has an rdoParameters property. This property is simply the collection of
rdoParameter objects that apply to that query. Both the collections and the underlying objects for
these properties are fully documented in online Help.

Error in "Inserting a User Connection Object"
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjConnection"}

The fourth step in the procedure at the beginning of “Inserting a New User Connection Object,” in the
Guide to Building Client/Server Applications With Visual Basic is incorrect and should be ignored.
The correct procedure is completely described by the first three steps.

Status Property (RDO) Applies to Both Rows and Columns
(Readme)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdcstStatusPropertyRdoColumnObject"}

The text of the Help topic for the RDO Status property only mentions Rows, but the property applies
to both rows and columns.

