
FoxPro WorkGroup Extensions Help

MAPI Library
Schedule+ Library

Differences Between FoxPro and C
Distributing MAPI/SPLUS Applications
FoxPro Environment Considerations
Return Values for MAPI/SPLUS Functions

Schedule+ Library

Message Function Description
FMVersion Returns the version of the FoxMAPI library.
SPReadMeet Reads a meeting message.
SPSendMeet Sends a meeting message.
Calendar Function Description
SPBegin Begins a calendar session and provides a session handle.
SPDelete Deletes an item on a user's schedule.
SPEnd Ends a calendar session.
SPFindNext Returns the ID and type of the next (or first) item matching specified

criteria.
SPFreeBusy Returns merged free/busy information for a list of users.
SPReadAppt Reads an appointment on a user's schedule.
SPReadTask Reads an existing task on a user's schedule.
SPUserInfo Returns information about a user.
SPSaveAppt Creates a new appointment or modifies an existing one.
SPSaveTask Creates a new task or modifies an existing one.
Cursor Description
SPlusAppt Specifies information associated with a calendar appointment.
SPlusAssoc Specifies an item (such as an alarm) associated with an appointment

or task.
SPlusAttd Specifies a meeting attendee's identity and confirmation status.
SPlusMesg Contains message information for meeting messages.
SPlusRest Specifies an enumeration restriction passed to the SPFindNext

function.
SPlusTask Specifies information associated with a calendar task.
SPlusUser Specifies information about a user.

MAPI Library

Function Description
FMVersion Returns the version of the FoxMAPI library.
MPAddress Addresses a mail message.
MPCursor Creates a MAPI Cursor.
MPDelete Deletes a mail message.
MPDetails Displays a recipient details dialog box.
MPFindNext Returns the ID of the next (or first) mail message of a specified type.
MPLogoff Ends a session with the messaging system.
MPLogon Begins a session with the messaging system.
MPReadMail Reads a mail message.
MPResolve Displays a dialog box to resolve an ambiguous recipient name.
MPSaveMail Saves a mail message.
MPSendDocs Sends a standard mail message using a dialog box.
MPSendMail Sends a mail message, allowing greater flexibility than MPSendDocs in

message generation.
Cursor Description
MapiFile Contains file attachment information.
MapiMesg Contains message information.
MapiRecip Contains recipient information.

Overview

FoxMAPI
The simple messaging application program interface is a subset of the powerful function
group known as MAPI, a set of messaging functions that help you create mail-enabled
applications. With simple MAPI functions, you can easily add messaging to any Windows
application. Some MAPI functions include a user interface (a dialog box), but you can also
call MAPI functions without generating a user interface.
The FoxPro MAPI interface consists of a library (FOXMAPI.FLL). FOXMAPI.FLL is a FoxPro
specific version of the Visual Basic MAPI library altered to accommodate FoxPro data
structures.
FoxSPLUS
The Schedule+ Libraries allow you to develop applications that manipulate appointments
and tasks on users calendars, and exchange meeting messages between Schedule+ users.
Portions of Schedule+ Libraries draw upon MAPI functions. As with MAPI, C language
versions of the Schedule+ Libraries functions are available.
The Schedule+ Libraries function set is divided into two categories: meeting message
functions and calendar functions.
Meeting message functions allow your application to send the following five kinds of
messages:

· A meeting request requests or reschedules a meeting.
· A positive meeting response indicates that an attendee plans to attend a meeting.
· A negative meeting response indicates that an attendee wont attend a meeting.
· A tentative meeting response indicates that an attendee might attend a meeting.
· A meeting cancellation message rescinds meeting requests.

Calendar functions allow you to develop applications that manipulate appointments and
tasks on users schedules. With these applications, users can perform some or all of these
operations:

· Create new appointments or tasks or modify existing ones.
· Delete appointments or tasks.
· List all appointments on a per-day basis, and list all tasks or all active tasks.
· Read information about a specific appointment or task.

Schedule+ Libraries also allow users of your application to determine if other users are free
or busy at specific times and identify other users and their assistants.
In this version, Schedule+ Libraries do not fully handle the manipulation of recurring
appointments or recurring tasks. However, you can use SPFindNext to list recurring
appointments and recurring tasks, and you can use SPDelete to delete recurring
appointments and recurring tasks.
Scenarios
To gain an understanding of what you can do with MAPI, consider these example scenarios:
Scenario 1 -- Sending a Bulk Mailing
Scenario 2 -- Sending Files in a Mail Message
Scenario 3 -- Creating FoxPro Applications that Read, Write, and Process Mail Messages

Sending a Bulk Mailing
You may want to send a mail message to a list of recipients. The actual content of the mail
message could be a variety of things, such as a simple text message that is the same for
all the recipients. Or it might be the contents of a Memo field that is merged with the name
of each recipient to provide a custom mail message. You could even include documents,
spreadsheets, bitmaps, and other files in your messages.
In the sample program, BULK.APP, a mail message is sent to a list of recipients where the
list of recipients is stored in a FoxPro table. The content of each message is a simple text
message and a table of data. The table of data is different for each recipient based on the
data for that recipient in the table.

Sending Files in a Mail Message
You may want to send a message that contains files that the recipients can then save to
their own machines to work with. This is known as "attaching" files in your mail message.
For FoxPro developers, this feature might be useful when multiple developers are working
on the same project and need to have the latest files for that project. Typically, each
developer will have a local copy of the project and all its files. Each developer is responsible
for working on a distinct set of files. When a developer makes changes, the new files need
to be sent to the rest of the team.
The sample program, ATTACH.APP, uses FoxPro tables to store the names of the
developers on the project and the names of the files each developer is responsible for. A
developer can run this sample code and then choose from a pick list of their files. FoxPro
will attach these files and send them in a mail message to the other developers. The
recipients can then "unattach" these files and rebuild their project.

Creating FoxPro Applications that Read, Write, and Process Mail
Messages
You can write powerful FoxPro applications that send, receive, and process mail messages.
These applications will use the Microsoft Mail backbone to deliver and store the mail
messages but your FoxPro application would send and receive the messages in such a way
that no other application (including the Microsoft Mail client) would be able to see those
messages.

Differences Between FoxPro and C
The FoxMAPI interface library is very similar to the C MAPI interface. The function names
have been changed slightly to conform with the Fox 10 character limit on FLL functions.
Table 1 shows the mapping of the FoxMAPI function names to their C counterparts. The
main variation from the C interface is the use of Fox cursors to simulate structured types in
the FoxPro interface. The rest of the MAPI and SPLUS structures are mapped to FoxPro
cursors as described in tables 2 through 10.
Table 1    FoxMAPI Function Names
Table 2    FoxMAPI MapiMesg Cursor Definition
Table 3    FoxMAPI MapiRecip Cursor Definition
Table 4    FoxMAPI MapiFile Cursor Definition
Table 5    FoxMAPI SPlusAppt Cursor Definition
Table 6    FoxMAPI SPlusAssoc Cursor Definition
Table 7    FoxMAPI SPlusAttd Cursor Definition
Table 8    FoxMAPI SPlusRest Cursor Definition
Table 9    FoxMAPI SPlusMesg Cursor Definition
Table 10    FoxMAPI SPlusTask Cursor Definition
Table 11    FoxMAPI SPlusUser Cursor Definition
Cursors are passed to the FoxMAPI interface by alias name, i.e. by character string. The
FoxMAPI functions will create an empty cursor if it does not already exist. Besides cursors,
FoxMAPI deals with three other data types - numeric, character pointers, and array of   
character pointers. Numerics are passed as FoxPro numbers, character pointers are passed
as FoxPro strings, and an array of character pointers are passed as an array of FoxPro
strings.

Table 1 - FoxMAPI Function Names

C MAPI Name FoxMAPI Name
MAPILogon MPLogon
MAPILogoff MPLogoff
MAPIFindNext MPFindNext
MAPIReadMail MPReadMail
MAPISaveMail MPSaveMail
MAPIDeleteMail MPDelete
MAPISendMail MPSendMail
MAPISendDocument MPSendDocs
MAPIAddress MPAddress
MAPIResolveName    MPResolve
MAPIDetails MPDetails
SPLUSBeginSession SPBegin
SPLUSEndSession SPEnd
SPLUSReadMeeting SPReadMeet
SPLUSSendMeeting SPSendMeet
SPLUSFindNext SPFindNext
SPLUSDeleteItem SPDelete
SPLUSReadAppt SPReadAppt
SPLUSReadTask SPReadTask
SPLUSReadUserInfo SPUserInfo
SPLUSSaveAppt SPSaveAppt
SPLUSSaveTask SPSaveTask
SPLUSReadFreeBus SPFreeBusy

Table 2 - FoxMAPI MapiMesg Cursor Definition

C Name FoxMAPI Name Type
Reserved Reserved N(10,0)
Subject Subject C(254)
NoteText NoteText M
MessageType MessagType C(254)
DateReceived DateRecved C(16)
ConversationID ConvertnID C(254)
Flags Flags N(10,0)
RecipCount RecipCount N(10,0)
FileCount FileCount N(10,0)

Table 3 - FoxMAPI MapiRecip Cursor Definition

C Name FoxMAPI Name Type
Reserved Reserved N(10,0)
RecipClass RecipClass N(10,0)
Name Name C(254)
Address Address C(254)
EIDSize EIDSize N(10,0)
EntryID EntryID M

Table 4 - FoxMAPI MapiFile Cursor Definition

C Name FoxMAPI Name Type
Reserved Reserved N(10,0)
Flags Flags N(10,0)
Position Position N(10,0)
PathName PathName C(254)
FileName FileName C(254)
FileType FileType C(254)

Table 5 - FoxMAPI SPlusAppt Cursor Definition

C Name FoxMAPI Name Type
Reserved Reserved N(10,0)
ItemType ItemType C(254)
Flags Flags N(10,0)
AssocCount AssocCount N(10,0)
OrganizerItemID OrgItemID C(254)
AttendeeCount AttendCnt N(10,0)
Text Text M
Body Body M
Recurrence Recurrence C(254)
DateStart DateStart C(16)
DateEnd DateEnd C(16)

Table 6 - FoxMAPI SPlusAssoc Cursor Definition

C Name FoxMAPI Name Type
Reserved Reserved N(10,0)
ItemType ItemType C(254)
Flags Flags N(10,0)
ItemID ItemID C(254)
Position Position N(10,0)
Data Data C(254)

Table 7 - FoxMAPI SPlusAttd Cursor Definition

C Name FoxMAPI Name Type
Reserved Reserved N(10,0)
UserType UserType C(254)
Status Status N(10,0)

Table 8 - FoxMAPI SPlusMesg Cursor Definition

C Name FoxMAPI Name Type
Reserved Reserved N(10,0)
Subject Subject C(254)
NoteText NoteText M
MessageType MessagType C(254)
DateReceived DateRecved C(16)
ConversationID ConvertnID C(254)
Flags Flags N(10,0)
RecipCount RecipCount N(10,0)
FileCount FileCount N(10,0)
SentForCount SentForCnt N(10,0)

Table 9 - FoxMAPI SPlusRest Cursor Definition

C Name FoxMAPI Name Type
Reserved Reserved N(10,0)
ItemType ItemType C(254)
RestrictionType RestType C(254)
RestrictionData RestData C(254)

Table 10 - FoxMAPI SPlusTask Cursor Definition

C Name FoxMAPI Name Type
Reserved Reserved N(10,0)
ItemType ItemType C(254)
Flags Flags N(10,0)
AssocCount AssocCount N(10,0)
OrganizerItemID OrgItemID C(254)
AttendeeCount AttendCnt N(10,0)
Text Text M
Body Body M
Recurrence Recurrence C(254)
DateDue DateDue C(16)
DurationActive DuratActiv    C(6)
ProjectName ProjctName C(254)
Priority Priority C(1)

Table 11 - FoxMAPI SPlusUser Cursor Definition

C Name FoxMAPI Name Type
Reserved Reserved N(10,0)
UserType UserType C(254)
Flags Flags N(10,0)
StartTime StartTime C(254)
EndTime EndTime C(254)
TimeZone TimeZone C(254)
Data Data C(254)

Distributing MAPI/SPLUS Applications
The only difficulty in distributing applications that use MAPI.DLL, SPLUS.DLL, or
MEFLIB.DLL is getting the setup program for your application to install these libraries in
each users' \windows\system directory.
The WorkGroup Extensions for FoxPro come with a file called REQUIRED.DBF. This is a new
version of a file that the Setup Wizard uses to install a series of required DLLs into each
users' system directory.
To install the library files to each user's \windows\system directory, follow these steps:

1 Copy the three files MAPI.DL_, SPLUS.DL_, MEFLIB.DL_ (found in the libs directory of
the WorkGroup Extension files) into the directory where you installed the FoxPro
Distribution Kit for Windows (the default is c:\foxprow\dksetup).

2 Copy the file REQUIRED.DBF (found in the libs directory of the WorkGroup Extension
files) into the directory where the Setup Wizard was installed (the default is c:\foxprow\
wizard). Note that you will be copying over the older REQUIRED.DBF.

3 Launch FoxPro for Windows.
4 Open the project called setup.pjx found in the directory where the Setup Wizard was

installed (the default is c:\foxprow\wizard).
5 Rebuild the app called setup.app that, by default, is placed in the c:\foxprow directory.
6 Close setup.pjx and quit FoxPro for Windows.
Now everytime you build a setup program using the Setup Wizard, the three library files will
be copied to your users' windows\system directory. Note that if a user has a later version of
any of these files, the older version will not be installed, ensuring that the most up to date
version of these DLLs is always on the users' machines.
It is a good idea to create a backup copy of the original REQUIRED.DBF before copying over
it with the version that comes with WorkGroup Extensions. By creating a backup copy, you
can swap in whichever REQUIRED.DBF you want and rebuild the Setup Wizard depending
on whether or not you want to install these DLLs on your user's machines. You can also get
the original REQUIRED.DBF by reinstalling the Distribution Kit.
Finally, when you receive a newer version of any of these three DLLs, you will want to edit
that DLL's record in REQUIRED.DBF, updating the FILSIZE, EXPNDSIZE, FDATE, and VERSION
fields. When you are finished, rebuild the Setup Wizard.

FMVersion
Returns the version of the current FoxMAPI library.

Parameters
None.

Returns
Version of the library as a string.

MapiFile

Cursor MapiFile
Reserved as Numeric
Flags as Numeric
Position as Numeric
PathName as String
FileName as String
FileType as String

End Cursor

Description
The MapiFile type contains information about a file attachment. Simple MAPI supports the
following kinds of attachments:

Data files
Embedded OLE objects
Static OLE objects

The Flags field determines the kind of attachment. Object linking and embedding (OLE)
object files are file representations of OLE object streams. You can re-create an OLE object
from the file by calling the OleLoadFromStream function with an OLESTREAM object that
reads the file contents. (See the Microsoft Windows SDK documentation for details.) If an
OLE file attachment is included in an outbound message, the OLE object stream should be
written directly to the file used as the attachment.

Fi
el
d

Description Type

Re
se
rv
ed

Reserved for
future use.
This field
must be 0.

N(10,0)

Fl
ag
s

A bitmask of
flags.
Unused flags
are reserved
and must be
0. The
following
flags are
defined in
MAPILIB.PRG
:
#define
MP_OLE    1
#define
MP_OLE_STA
TIC    2
Set MP_OLE
if the
attachment
is an OLE
object. Also

N(10,0)

set
MP_OLE_STA
TIC if the
attachment
is a static
OLE object
rather than
an
embedded
OLE object

Po
sit
io
n

An integer
describing
where the
attachment
should be
placed in the
message
body.
Attachments
replace the
character
found at a
certain
position in
the message
body; in
other words,
attachments
replace the
MapiMesg
type field
NoteText[Pos
ition].
Applications
cannot place
two
attachments
in the same
location
within a
message,
and
attachments
cannot be
placed
beyond the
end of the
message
body.

N(10,0)

Pa
th
Na
m
e

The full path
name of the
attached
file. The file
should be

C(254)

closed
before this
call is made.

Fil
eN
a
m
e

The filename
seen by the
recipient.
This name
can differ
from the
filename in
PathName if
temporary
files are
being used.
If FileName
is empty,
the filename
from
PathName is
used. If the
attachment
is an OLE
object,
FileName
contains the
class name
of the
object; for
example,
Microsoft
Excel
Worksheet."

C(254)

Fil
eT
yp
e

A reserved
descriptor
that
describes to
the recipient
the type of
the attached
file. An
empty string
indicates an
unknown or
operating
system-
determined
file type.
With this
release, you
must use ""
for this
parameter.

C(254)

Comments

MPReadMail does not return an attachment with Position equal to -1 unless you set the
MP_BODY_AS_FILE flag.
With Microsoft Mail version 3.0b, if you send an attachment with Position equal to -1, the
attachment is placed at the beginning of the message, with a space character on either
side of the attachment.
See Also
MapiMesg
MPReadMail
MapiRecip

MapiMesg

Cursor MapiMesg
Reserved as Numeric
Subject as String
NoteText as String
MessageType as String
DateReceived as String
ConversationID as String
Flags as Numeric
Originator as Numeric
RecipCount as Numeric
FileCount as Numeric

End Cursor

Description
The MapiMesg type contains information about a message.

Fiel
d

Description Type

Rese
rved

Reserved for future
use. This field must
be 0.

N(10,0)

Subj
ect

The subject text,
limited to 256
characters or less.
(Messages saved
using MPSaveMail
are not limited to
256 characters.)   
An empty string
indicates no
subject text.

C(254)

Note
Text

A string containing
text in the
message. An
empty string
indicates no text.
For inbound
messages, each
paragraph is
terminated with a
carriage return-line
feed pair (0x0d0a).
For outbound
messages,
paragraphs can be
delimited with a
carriage return, a
line feed, or a
carriage return-line
feed pair (0x0d,
0x0a, or 0x0d0a).

M

Mess
ageT
ype

A message type
string used by
applications other
than interpersonal
electronic mail. An
empty string
indicates an
interpersonal
message (IPM)
type.

C(254)

Date
Rece
ived

A string indicating
the date a
message is
received. The
format is
YYYY/MM/DD
HH:MM; hours are
measured on a 24-
hour clock.

C(16)

Conv
ersat
ionID

A string indicating
the conversation
thread ID to which
this message
belongs.

C(254)

Flag
s

A bitmask of flags.
Unused flags are
reserved. Unused
flags must be 0 for
outbound
messages and are
ignored for
inbound messages.
The following flags
are defined in
MAPILIB.PRG:
#define
MP_UNREAD    1
#define
MP_RECEIPT_REQU
ESTED    2
#define MP_SENT   
4

N(10,0)

Origi
nato
r

A MapiFile type
that describes the
message
originator.

N(10,0)

Reci
pCou
nt

A count of the
recipient descriptor
types pointed to by
Recips. A value of

N(10,0)

0 indicates that no
recipients are
included.

FileC
ount

A count of the file
attachment
descriptor types
pointed to by Files.
A value of 0
indicates that no
file attachments
are included.

N(10,0)

Comments
Microsoft Mail supports message types (the MessageType parameter) that begin with IPM or
IPC. Messages of type IPM (interpersonal mail) are visible in the Inbox when delivered.
Messages of type IPC (interprocess communication) are not displayed in the Inbox when
delivered. For more information about message types, see the programmer's reference that
accompanies this product.
See Also
MapiFile
MapiRecip

MapiRecip

Cursor MapiRecip
Reserved as Numeric
RecipClass as Numeric
Name as String
Address as String
EIDSize as Numeric
EntryID as String

End Cursor

Description
The MapiRecip type contains information about a message originator or recipient.

Field Description Type
Reser
ved

Reserved for future
use. This field must
be 0.

N(10,0)

Recip
Class

Classifies the
recipient of the
message.
(Messages can be
sorted by recipient
class.) This field
can also contain
information about
the originator of an
inbound message.

N(10,0)

Name The name of the
recipient that is
displayed by the
messaging system.

C(254)

Addr
ess

Provider-specific
message delivery
data. This can be
used by the
message system to
identify recipients
who are not in an
address list (one-off
addresses).

C(254)

EIDSi
ze

The size (in bytes)
of the opaque
binary data in
EntryID.

N(10,0)

EntryI
D

A binary string used
by the messaging
system to
efficiently specify
the recipient. Unlike
the Address field,
this data is opaque

M

and is not printable.
The messaging
system returns
valid EntryIDs for
recipients or
originators included
in the address list.

See Also
MapiFile
MapiMesg

MPAddress

MPAddress(
Session as Numeric,
UIParam as Numeric,
Caption as String,
EditFields as Numeric,
Label as String,
RecipCount as Reference to a Numeric,
Recipients() as MapiRecip,
Flags as Numeric,
Reserved as Numeric) as Numeric

Description
With this function, users can create or modify a set of address list entries using a standard
address list dialog box. The dialog box cannot be suppressed, but function parameters
allow the caller to set characteristics of the dialog box.
The call is made with an initial, and possibly empty, set of recipients. The address list
dialog box shows the contents of the recipient set; users can choose new entries to add to
the set. The final set of recipients is returned to the caller in RecipCount and Recipients,
destroying their initial values.
Parameter Description
Session An opaque session handle whose value represents a session with the

messaging system. The session handle is returned by MPLogon and
invalidated by MPLogoff. If the value is 0, the messaging system
initiates a session from a system default session (if one exists) or
presents a sign-in dialog box. In all cases, the messaging system returns
to its state before the call.

UIParam The parent window handle for the dialog box. A value of 0 specifies that
any dialog box displayed is application modal.

Caption The caption of the address list dialog box. If this parameter is an empty
string, the default value "Address Book" is used.

EditFields The number of edit controls that should be present in the address list.
The values 0 to 4 are valid. If EditFields is 0, only address-list browsing is
allowed. EditFields values of 1 to 3 control the number of edit controls
present. Entries selected for the different controls are differentiated by
the RecipClass field in the returned recipient type. If EditFields is 4, each
recipient class supported by the underlying messaging system has an
edit control.
If the number of recipient classes in Recips is greater than the value of
EditFields, the number of classes in Recips is used instead of EditFields. If
EditFields is 1 and more than one kind of entry exists in Recips, Labels is
ignored.

Label A string used as an edit control label in the address list dialog box. This
argument is ignored and should be an empty string except when
EditFields is 1.
If you want a default control label "To:", Label should be an empty string.

RecipCount The number of entries in Recipients. If RecipCount is 0, Recipients is
ignored.

Recipients() The initial array of recipient entries to be used to populate edit controls in
the address list dialog box. Recipient entries need not be grouped by
recipient class. If the value of the greatest recipient class present is
greater than the EditFields parameter, EditFields and Label are ignored.
This array is redimensioned as necessary to accommodate the entries
made by the user in the address list dialog box.

Flags A bitmask of flags. Unspecified flags should always be set to 0.
Undocumented flags are reserved. The following flags are defined in
MAPILIB.PRG:
#define MP_LOGON_UI 1
' Display logon UI
#define MP_NEW_SESSION 2
' Don't get default if available
Set MP_LOGON_UI if the function should display a sign-in dialog box (if
required). When this flag is not set, the function does not display a dialog
box and returns an error if the user is not signed in. If the session passed
in Session is not 0, this flag is ignored.
Set MP_NEW_SESSION if you want to establish a session other than the
current one. For instance, if a mail client is already running, another MAPI
electronic-mail client can piggyback on the session created by the mail
client application. Do not set this flag if you want the default session (if it
still exists). If the session passed in Session is not 0, this flag is ignored.

Reserved Reserved for future use. This parameter must be 0.

Return Value Meaning
MP_E_FAILURE One or more unspecified errors occurred while

addressing the mail. No list of entries was returned.
MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed. No list of

entries was returned.
MP_E_INV_EDITFIELDS The value of EditFields was outside the range of 0 to 4.

No list of entries was returned.
MP_E_INV_MESSAGE An invalid message ID was used for the MessageID

parameter. No list of entries was returned.
MP_E_INV_RECIPS One or more of the recipients in the address list were not

valid. No list of entries was returned.
MP_E_INV_SESSION An invalid session handle was used for the Session

parameter. No list of entries was returned.
MP_E_LOGIN_FAILURE There was no default sign-in, and the user failed to sign

in successfully when the sign-in dialog box was
displayed. No list of entries was returned.

MP_E_NOT_SUPPORTED The operation was not supported by the underlying
messaging system.

MP_USER_ABORT The user canceled the process. No list of entries was
returned.

SUCCESS_SUCCESS The function returned successfully.
See Also
MPLogoff
MPLogon

MPDelete

MPDelete(
Session as Numeric,
UIParam as Numeric,
MessageID as String,
Flags as Numeric,
Reserved as Numeric) as Numeric

Description
This function deletes a message from the message store. Before calling MPDelete, use
MPFindNext to verify that the message to be deleted is the one you want deleted.
Parameter Description
Session An opaque session handle whose value represents a session with the

messaging system. The session handle is returned by MPLogon and
invalidated by MPLogoff. If the value is 0, the messaging system
establishes a session from a system default session (if one exists) or
presents a sign-in dialog box. In all cases, the messaging system returns
to its state before the call.

UIParam The parent window handle for the dialog box. A value of 0 specifies that
any dialog box displayed is application modal.

MessageID The messaging system's string identifier for the message being deleted.
The string identifier is returned by MPFindNext or MPSaveMail.
Applications should assume that this identifier is invalid after MPDelete
returns successfully.

Flags A bitmask of flags. All flags are reserved and should be set to 0.
Reserved Reserved for future use. This parameter must be 0.

Return Value Meaning
MP_E_FAILURE One or more unspecified errors occurred while deleting

the mail. No mail was deleted.
MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed. No mail was

deleted.
MP_E_INV_MESSAGE An invalid message ID was used for the MessageID

parameter. No mail was deleted.
MP_E_INV_SESSION An invalid session handle was used for the Session

parameter. No mail was deleted.
MP_USER_ABORT The user canceled the process. No mail was deleted.
SUCCESS_SUCCESS The function returned successfully.
See Also
MPFindNext
MPLogoff
MPLogon
MPSaveMail

MPDetails

MPDetails(
Session as Numeric,
UIParam as Numeric,
Recipient as MapiRecip,
Flags as Numeric,
Reserved as Numeric) as Numeric

Description
This function presents a dialog box that provides the details of a given address list entry.
The dialog box cannot be suppressed. At the option of the caller, the entry can be either
modifiable or fixed. The call works only for names that have resolved either as the
recipients of read mail, resolved entries returned by MPAddress, or entries returned by
MPResolve.
The directory the entry belongs to determines the amount of information presented in the
details dialog box. It contains at least the display name and address of the recipient.
An entry is resolved if the EIDSize field of the MapiRecip type is nonzero.
Parameter Description
Session An opaque session handle whose value represents a session with the

messaging system. Session handles are returned by MPLogon and
invalidated by MPLogoff. If the value is 0, the messaging system sets up
a session from a system default session (if one exists) or presents a sign-
in dialog box. In all cases, the messaging system returns to its state
before the call.

UIParam The parent window handle for the dialog box. A value of 0 specifies that
any dialog box displayed is application modal.

Recipient A recipient descriptor containing the entry whose details are to be
displayed. All fields of the MapiRecip type except EIDSize and EntryID
are ignored. If the field EIDSize is zero, MP_E_AMB_RECIP is returned.

Flags A bitmask of flags. Unspecified flags should always be set to 0.
Undocumented flags are reserved. The following flags are defined in
MAPILIB.PRG:
#define MP_LOGON_UI 1
' Display logon UI
#define MP_NEW_SESSION 2
' Don't get default if available
#define MP_AB_NOMODIFY 1024
' Don't modify PAB entries
Set MP_LOGON_UI if the function should display a sign-in dialog box (if
required). When this flag is not set, the function does not display a dialog
box and returns an error if the user is not signed in.
Set MP_NEW_SESSION if you want to establish a session other than the
current one. For instance, if a mail client is already running, another MAPI
electronic-mail client can piggyback on the session created by the mail
client application. Do not set this flag if you want the default session (if it
still exists). If the session passed in Session is not 0, this flag is ignored.
Set MP_AB_NOMODIFY if the details of the entry should not be modifiable
even if the entry belongs to the personal address book.

Reserved Reserved for future use. This parameter must be 0.

Return Value Meaning
MP_E_AMB_RECIP The EIDSize field of the Recipient parameter was zero.

No dialog box was displayed.
MP_E_BAD_RECIPTYPE One or more recipients were unknown. No dialog box

was displayed.
MP_E_FAILURE One or more unspecified errors occurred while matching

the message type. The call failed before message type
matching could take place.

MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed. No dialog box
was displayed.

MP_E_LOGIN_FAILURE There was no default sign-in, and the user failed to sign
in successfully when the sign-in dialog box was
displayed. No dialog box was displayed.

MP_E_NOT_SUPPORTED The operation was not supported by the underlying
messaging system.

MP_USER_ABORT The user canceled the process. No dialog box was
displayed.

SUCCESS_SUCCESS The function returned successfully.
See Also
MPAddress
MPLogoff
MPLogon
MapiRecip
MPResolve

MPFindNext

MPFindNext(
Session as Numeric,
UIParam as Numeric,
MessageType as String,
SeedMessageID as Numeric,
Flags as Numeric,
Reserved as Numeric,
MessageID as Reference to a String) as Numeric

Description
This function allows an application to enumerate messages of a given type. It returns
message identifiers that can be used in subsequent MAPI function calls to retrieve and
delete messages. MPFindNext is designed to process incoming mail, not manage received
mail. MPFindNext looks for messages in the folder in which new messages of the specified
type are delivered. MPFindNext calls can be made only in the context of a valid MAPI
session established with MPLogon.
When provided with an empty SeedMessageID, MPFindNext returns the ID of the first
message specified with MessageType. When provided a non-empty SeedMessageID,
MPFindNext returns the next matching message of the type specified with MessageType.
Repeated calls to MPFindNext ultimately result in a return of MP_E_NO_MESSAGES, which
means that the enumeration of the matching message types is complete.
Message identifiers are not guaranteed to remain valid, because other applications can
move or delete messages. Applications must be able to handle failed calls to MPFindNext,
MPDelete, and MPReadMail for invalid message IDs. The ordering of messages is
system-specific. Message ID strings must be dynamic strings.
Message type matching is done against message class strings. All message types whose
names match (up to the length specified in the MessageType parameter) are returned. If
the MessageType parameter begins with the letters IPM, matching is performed in the
Inbox. Otherwise, matching is performed in the hidden application mail folder. If the
message type is an empty string, all messages in the Inbox are included in the list.
Parameter Description
Session An opaque session handle whose value represents a session with the

messaging system. Session handles are returned by MPLogon and
invalidated by MPLogoff. If the value is 0, MPFindNext returns
MP_E_INV_SESSION. In all cases, the messaging system returns to its
state before the call.

UIParam The parent window handle for the dialog box. A value of 0 specifies that
any dialog box displayed is application modal.

MessageType A pointer to a string that is the message type. To specify an interpersonal
mail message use an empty string, "".

SeedMessageID A string that is the message identifier seed for the request. If the
identifier is an empty string, the first message matching the type
specified in the MessageType parameter is returned. Message IDs are
system-specific and opaque. Message IDs may be invalidated at any time
if another application moves or deletes a message.

Flags A bitmask of flags. Unspecified flags should always be set to 0.
Undocumented flags are reserved. The following flags are defined in

MAPILIB.PRG:
#define MP_UNREAD_ONLY 32
' Only unread messages
#define MP_NEW_SESSION 2
' Don't get default if available
#define MP_GUARANTEE_FIFO 256
' Guarantee FIFO MPFindNext
Set MP_UNREAD_ONLY if the function should enumerate only unread
messages. When this flag is not set, all messages of the given type are
returned.
Set MP_NEW_SESSION if you want to establish a session other than the
current one. For instance, if a mail client is already running, another MAPI
electronic-mail client can piggyback on the session created by the mail
client application. Do not set this flag if you want the default session (if it
still exists). If the session passed in Session is not 0, this flag is ignored.
Set MP_GUARANTEE_FIFO if you want the message IDs returned in the
order the messages were received. MPFindNext calls may take longer if
this flag is set.

Reserved Reserved for future use. This parameter must be 0.
MessageID A variable-length string that is the message identifier. Message IDs are

system-specific, nonprintable, and opaque. Message ID strings must be
dynamic strings. Message IDs may be invalidated at any time if another
application deletes or moves a message.

Return Value Meaning
MP_E_FAILURE One or more unspecified errors occurred while matching

the message type. The call failed before message type
matching could take place.

MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed. No mail was
found.

MP_E_INV_MESSAGE An invalid message ID was used for the SeedMessageID
parameter. No mail was found.

MP_E_INV_SESSION An invalid session handle was used for the Session
parameter. No mail was found.

MP_E_NO_MESSAGES The MPFindNext function could not find a matching
message.

MP_USER_ABORT The user canceled the process. No mail was found.
SUCCESS_SUCCESS The function returned successfully.
See Also
MPDelete
MPLogoff
MPLogon
MPReadMail

MPLogoff

MPLogoff(
Session as Numeric,
UIParam as Numeric,
Flags as Numeric,
Reserved as Numeric) as Numeric

Description
This function ends a session with the messaging system.
Parameter Description
Session An opaque session handle whose value represents a session with the

messaging system. Session handles are returned by MPLogon and
invalidated by MPLogoff.

UIParam The parent window handle for the dialog box. A value of 0 specifies that
any dialog box displayed is application modal.

Flags Reserved for future use. This parameter must be 0.
Reserved Reserved for future use. This parameter must be 0.

Return Value Meaning
MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed. The session

was not terminated.
MP_E_INV_SESSION An invalid session handle was used for the Session

parameter. The session was not terminated.
SUCCESS_SUCCESS The function returned successfully.
See Also
MPLogon

MPLogon

MPLogon(
UIParam ByVal as Numeric,
User as String,
Password as String,
Flags as Numeric,
Reserved as Numeric,
Session as Reference to a Numeric) as Numeric

Description
The MPLogon function begins a session with the messaging system. You can sign in to the
messaging system in two ways using simple MAPI mail calls:
n Implicitly sign in.

Any MAPI function call made outside of an established MAPI session generates a sign-in
dialog box, which can be suppressed by the calling application. In this case, when the call
returns, the session is terminated and the messaging system returns to its state before
the call was made. For example, a user signed off from the messaging system before the
call would also be signed off after the call completed.

n Explicitly sign in using the MPLogon function (and sign off using MPLogoff).
If you want to maintain a session over a number of simple MAPI calls, you can use the
MPLogon function to provide a session handle to the messaging system. This session
handle can be used in subsequent MAPI calls to explicitly provide user credentials to the
messaging system. A flag is available to display a sign-in dialog box if the credentials
presented fail to validate the session. You can pass an empty password, although it may
not validate the mail session.

Parameter Description
UIParam The parent window handle for the dialog box. A value of 0 specifies that

any dialog box displayed is application modal.
User A client account-name string, limited to 256 characters or less. An empty

string indicates that a sign-in dialog box with an empty name field should
be generated (if the appropriate flag is set).

Password A credential string, limited to 256 characters or less. An empty string
indicates that a sign-in dialog box with an empty password field should be
generated (if the appropriate flag is set) or that the messaging system
does not expect password credentials.

Flags A bitmask of flags. Unspecified flags should always be set to 0.
Undocumented flags are reserved. The following flags are defined in
MAPILIB.PRG:
#define MP_LOGON_UI 1
' Display logon dialog box
#define MP_NEW_SESSION 2
' Get default if available
#define MP_FORCE_DOWNLOAD 4096
' Force message download from server
Set MP_LOGON_UI if the function should display a dialog box to prompt
for name and password (if required). When this flag is not set, the
MPLogon function does not display a sign-in dialog box and returns an
error if the user is not signed in.

Set MP_NEW_SESSION if you want to establish a session other than the
current one. For instance, if a mail client is already running, another MAPI
electronic-mail client can piggyback on the session created by the mail
client application. Do not set this flag if you want the default session (if it
still exists).
Set MP_FORCE_DOWNLOAD to force a download of all new messages from
the mail server to a user's Inbox during the sign-in process. Use this flag
so an application can deal with the user's complete set of messages
when it signs in. When this flag is set, a progress indicator is displayed,
and is automatically removed when the process is complete. Use of this
flag may increase processing time.

Reserved Reserved for future use. This parameter must be 0.
Session An opaque session handle whose value is set by the messaging system

when the MPLogon call is successful. The session handle can then be
used in subsequent MAPI calls.

Return Value Meaning
MP_E_FAILURE One or more unspecified errors occurred during sign-in.

No session handle was returned.
MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed. No session

handle was returned.
MP_E_LOGIN_FAILURE There was no default sign-in, and the user failed to sign

in successfully when the sign-in dialog box was
displayed. No session handle was returned.

MP_E_TM_SESSIONS The user had too many sessions open at once. No
session handle was returned.

MP_USER_ABORT The user canceled the process. No session handle was
returned.

SUCCESS_SUCCESS The function returned successfully.
See Also
MPLogoff

MPReadMail

MPReadMail(
Session as Numeric,
UIParam as Numeric,
MessageID as String,
Flags as Numeric,
Reserved as Numeric,
Message as MapiMesg,
Originator as MapiRecip,
Recips() as MapiRecip,
Files() as MapiFile) as Numeric

Description
This function reads a mail message. Before calling MPReadMail, use MPFindNext to
verify that the message to be read is the one desired.
The call returns one message, breaking the message content into the same parameters
and types used in the MPSendMail function. MPReadMail fills a block of memory with the
MapiMesg type containing message elements. File attachments are saved to temporary
files, and the names are returned to the caller in the message type. Recipients,
attachments, and contents are copied from the message before the function returns to the
caller, so later changes to the files do not affect the contents of the message.
A flag is provided to specify that only envelope information is to be returned from the call.
Another flag (in the MapiMesg type) specifies whether the message is marked as sent or
unsent.
All strings are null-terminated and must be specified in the current character set or code
page of the calling program's operating system process. In Microsoft Windows, the
character set is ANSI.
The originator, recipients, and file attachments are written into the appropriate parameters
of the FoxPro call. Recips and Files should be dynamically allocated arrays of their
respective types.
Parameter Description
Session An opaque session handle whose value represents a session with the

messaging system. If the value is 0, MPReadMail returns
MP_E_INV_SESSION.

UIParam The parent window handle for the dialog box. A value of 0 specifies that
any dialog box displayed is application modal.

MessageID A variable-length string that is the message identifier of the message to
be read. Message IDs are system-specific, nonprintable, and opaque.
Message IDs can be obtained from the MPFindNext and MPSaveMail
functions.

Flags A bitmask of flags. Unspecified flags should always be set to 0.
Undocumented flags are reserved. The following flags are defined in
MAPILIB.PRG:

#define MP_ENVELOPE_ONLY 64
' Only header information
#define MP_SUPPRESS_ATTACH 2048
' Header and body, no files
#define MP_BODY_AS_FILE 512
'Save body as first attachment
#define MP_PEEK 128
' Don't mark message as read
Set MP_ENVELOPE_ONLY if you don't want the function to copy
attachments to temporary files or return the note text. All other message
information (except for temporary filenames) is returned. Setting this flag
usually reduces the processing time required for the function.
Set MP_SUPPRESS_ATTACH if you don't want MPReadMail to copy
attachments but just to return note text. If MP_ONLY_ENVELOPE is set,
this flag is ignored. The flag should reduce the time required by the
MPReadMail function.
Set MP_BODY_AS_FILE if you want the function to write the message body
to a temporary file and add it to the attachment list as the first
attachment, instead of returning a pointer to the message body (the
default behavior). The Position parameter of a body attachment is -1.
Set MP_PEEK if you don't want MPReadMail to mark the message as
read. Any unsuccessful return leaves the message unread.

Reserved Reserved for future use. This parameter must be 0.
Message A type set by MPReadMail to a message containing the message

contents.
Originator The originator of the message.
Recips () An array of recipients. This array is redimensioned as necessary to

accommodate the number of recipients chosen by the user.
Files () An array of attachment files written when the message is read. When

MPReadMail is called, all message attachments are written to
temporary files. It is the caller's responsibility to delete these files when
they are no longer needed. When MP_ENVELOPE_ONLY or
MP_SUPPRESS_ATTACH is set, no temporary files are written and no
temporary names are filled into the file attachment descriptors. This
array is re-dimensioned as necessary to accommodate the number of
files attached by the user.

Return Value Meaning
MP_E_ATT_
WRITE_FAILURE An attachment could not be written to a temporary file.

Check directory permissions.
MP_E_DISK_FULL The disk was full.
MP_E_FAILURE One or more unspecified errors occurred while reading

the mail. No mail was read.
MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed. No mail was

read.
MP_E_INV_MESSAGE The message ID was invalid. The message ID may have

been deleted or changed by another process.
MP_E_INV_SESSION An invalid session handle was used for the Session

parameter. No mail was read.

MP_E_NOT_SUPPORTED The operation was not supported by the underlying
messaging system.

MP_E_TM_FILES Too many file attachments were contained in the
message. No mail was read.

MP_E_TM_RECIPIENTS There were too many recipients of the message. No mail
was read.

SUCCESS_SUCCESS The function returned successfully.
See Also
MPFindNext
MPLogon
MapiMesg
MPSaveMail
MPSendMail

MPResolve

MPResolve(
Session as Numeric,
UIParam as Numeric,
UserName as String,
Flags as Numeric,
Reserved as Numeric,
Recipient as MapiRecip) as Numeric

Description
This function resolves a mail recipient's name (as entered by a user) to an unambiguous
address list entry, optionally prompting the user to choose between ambiguous entries if
necessary. A recipient descriptor is allocated and returned containing fully resolved
information about the entry.
Parameter Description
Session An opaque session handle whose value represents a session with the

messaging system. The session handle is returned by MPLogon and
invalidated by MPLogoff. If the value is 0, the messaging system
initiates a session from a system default session (if one exists) or
presents a sign-in dialog box. In all cases, the messaging system returns
to its state before the call.

UIParam The parent window handle for the dialog box. A value of 0 specifies that
any dialog box displayed is application modal.

UserName A string containing the name to be resolved.
Flags A bitmask of flags. Unspecified flags should always be set to 0.

Undocumented flags are reserved. The following flags are defined in
MAPILIB.PRG:
#define MP_LOGON_UI 1
' Display logon UI
#define MP_NEW_SESSION 2
' Don't get default if available
#define MP_DIALOG 8
' Prompt to resolve ambig. names
#define MP_AB_NOMODIFY 1024
' User can't modify PAB entries
Set MP_LOGON_UI if the function should display a sign-in dialog box (if
required). When this flag is not set, the function does not display a dialog
box and returns an error if the user is not signed in.
Set MP_NEW_SESSION if you want to establish a session other than the
current one. For instance, if a mail client is already running, another MAPI
electronic-mail client can piggyback on the session created by the mail
client application. Do not set this flag if you want the default session (if it
still exists). If the session passed in Session is not 0, this flag is ignored.
Set MP_DIALOG if MPResolve should attempt to resolve names by
displaying a name resolution dialog box to the user. If this flag is not set,
resolutions which do not result in a single name will return
MP_E_AMB_RECIP.
Set MP_AB_NOMODIFY if the details of the entry should not be modifiable

even if the entry belongs to the personal address book. (Part of the
resolution dialog box could involve displaying details about the various
entries that match the UserName parameter. Set this flag if these details
should not be modifiable.) This flag is ignored if MP_DIALOG is not set.

Reserved Reserved for future use. This parameter must be 0.
Recipient A recipient type set by MPResolve if the resolution results in a single

match. The type contains the recipient information of the resolved name.
The descriptor can then be used in calls to MPSendMail, MPSaveMail,
and MPAddress.

Return Value Meaning
MP_E_AMB_RECIP One or more recipients was specified ambiguously, or

the EIDSize parameter was 0. The name was not
resolved.

MP_E_FAILURE One or more unspecified errors occurred while
addressing the mail. The name was not resolved.

MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed. The name
was not resolved.

MP_E_LOGIN_FAILURE There was no default sign-in, and the user failed to sign
in successfully when the sign-in dialog box was
displayed. The name was not resolved.

MP_E_NO_RECIP No name was specified in the UserName parameter.
MP_E_NOT_SUPPORTED The operation was not supported by the underlying

messaging system.
MP_USER_ABORT The user canceled the process. The name was not

resolved.
SUCCESS_SUCCESS The function returned successfully.
See Also
MPAddress
MPLogoff
MPLogon
MPSaveMail
MPSendMail

MPSaveMail

MPSaveMail(
Session as Numeric,
UIParam as Numeric,
Message as MapiMesg,
Recips as MapiRecip,
Files as MapiFile,
Flags as Numeric,
Reserved ByVal as Numeric,
MessageID as Reference to a String) as Numeric

Description
This function saves a message, optionally replacing an existing message. Before calling
MPSaveMail, use MPFindNext to verify that the message to be saved is the correct one.
MessageID must be a variable-length string. The elements of the message identified by the
MessageID parameter are replaced by the elements in the Message parameter. If the
MessageID parameter is empty, a new message is created. The new message ID is returned
in the MessageID parameter on completion of the call. All replaced messages are saved in
their appropriate folders. New messages are saved in the folder appropriate for incoming
messages of that class.
The FoxPro MPSaveMail function takes the recipients and file attachments from the Recips
and Files parameters, which should each be the first element of dynamically allocated
arrays of their respective types. These arrays are not re-dimensioned and are not affected
by assignment side-effects.
Parameter Description
Session An opaque session handle whose value represents a session with the

messaging system. Session handles are returned by MPLogon and
invalidated by MPLogoff. If the value is 0 and MessageID is an empty
string, the messaging system establishes a session from a system default
session (if one exists) or presents a sign-in dialog box. Otherwise, calls
with Session equal to 0 return MP_E_INV_SESSION.

UIParam The parent window handle for the dialog box. A value of 0 specifies that
any dialog box displayed is application modal.

Message A pointer to the MapiMesg type containing the contents of the message
to be saved. The MP_SENT flag is ignored.

Recips The first element in an array of recipients. When RecipCount is 0, this
parameter is ignored.
The recipient string can include either the recipient's name or the
recipient's name-address pair. If just a name is specified, the name is
resolved to an address using implementation-defined address book
search rules. If an address is also specified, a search for the name is not
performed. The address is in an implementation-defined format and is
assumed to have been obtained from the implementation some other
way. When the address is specified, the name is used for display to the
user and the address is used for delivery.
When EntryID is used, no search is performed and the display-name and
address are ignored. (A name and address are associated with the
EntryID within the messaging system.) EntryIDs are returned by the

MPReadMail function.
Files The first element in an array of attachment files written when the

message is read. The number of attachments per message may be
limited in some systems. If the limit is exceeded, the error
MP_E_TM_FILES is returned. When FileCount is 0, this parameter is
ignored.
Attachment files are read and attached to the message before the call
returns. Do not attempt to display attachments outside the range of the
message body.

Flags A bitmask of flags. Unspecified flags should always be set to 0.
Undocumented flags are reserved. The following flags are defined in
MAPILIB.PRG:
#define MP_LOGON_UI 1
* Display logon UI
#define MP_NEW_SESSION 2
* Don't get default if available
Set MP_LOGON_UI if the function should display a sign-in dialog box (if
required). When you do not set this flag, the function does not display a
dialog box and returns an error if the user is not signed in.
Set MP_NEW_SESSION if you want to establish a session other than the
current one if supported by the messaging system. For instance, if a mail
client is already running, another MAPI electronic-mail client can
piggyback on the session created by the mail client application. Do not
set this flag if you want the default session (if it still exists).

Reserved Reserved for future use. This parameter must be 0.
MessageID The variable-length string identifier for this message. It is returned by the

MPFindNext function or a previous call to MPSaveMail. If a new
message is to be created, this parameter should point to an empty string.
Message ID strings must be dynamic strings.

Return Value Meaning
MP_E_DISK_FULL The disk was full.
MP_E_FAILURE One or more unspecified errors occurred while saving the

mail. No mail was saved.
MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed. No mail was

saved.
MP_E_INV_MESSAGE An invalid message ID was used for the MessageID

parameter. No mail was saved.
MP_E_INV_SESSION An invalid session handle was used for the Session

parameter. No mail was saved.
MP_E_LOGIN_FAILURE There was no default sign-in, and the user failed to sign

in successfully when the sign-in dialog box was
displayed. No mail was saved.

MP_E_NOT_SUPPORTED The operation was not supported by the underlying
messaging system.

MP_USER_ABORT The user canceled the process. No mail was saved.
SUCCESS_SUCCESS The function returned successfully.
See Also
MPFindNext

MPLogoff
MPLogon

MPSendDocs

MPSendDocs(
UIParam as Numeric,
DelimChar as String,
FilePaths as String,
FileNames as String,
Reserved as Numeric) as Numeric

Description
The MPSendDocs function sends a standard mail message. Calling the function displays a
Send Note dialog box, which prompts the user to send a mail message with data file
attachments. Attachments can include the active document or all the currently open
documents in the Windows-based application that called MPSendDocs. The function is
used primarily for calls from a macro or scripting language, often found in applications such
as spreadsheet or word-processing programs.
The user's default sign-in identification is used when sending the mail. If there is no default
identification when this function is called, a standard sign-in dialog box appears. After the
user provides a mailbox name and password, the Send Note dialog box appears.
The user's default messaging options are used as the default dialog box values. The
function caller is responsible for deleting temporary files created when using this function.
Parameter Description
UIParam The parent window handle for the dialog box. A value of 0 specifies that

the Send Note dialog box is application modal.
DelimChar A string containing the character used to delimit the names in the

FilePaths and FileNames parameters. This character should not be used
in filenames on your operating system.

FilePaths A string containing the list of full paths (including drive letters) for the
attached files. The list is formed by concatenating correctly formed file
paths separated by the character specified in the DelimChar parameter.
An example for a Windows or MS-DOS system is:
C:\TMP\TEMP1.DOC;C:\TMP\TEMP2.DOC
The files specified in this parameter are added to the message as file
attachments.
If this parameter contains an empty string, the Send Note dialog box is
displayed with no attached files.

FileNames A string containing the list of the original filenames (in 8.3 format) as
they should be displayed in the message. When multiple names are
specified, the list is formed by concatenating the filenames separated by
the character specified in the DelimChar parameter. An example for a
Windows or MS-DOS system is:
MEMO.DOC;EXPENSES.DOC
Note that the icon displayed for a file is based on the filename extension
supplied in this parameter. For example, a filename with an .XLS
extension is displayed with a Microsoft Excel icon. The messaging system
also relies on the file extension when opening and saving a file. If an
attached file has no extension, append the default extension for your
application's document type.

Reserved Reserved for future use. This parameter must be 0.

Return Value Meaning
MP_E_ATT_OPEN_FAILURE One or more files in the FilePaths parameter could not be

located. No mail was sent.
MP_E_DISK_FULL The disk was full.
MP_E_FAILURE One or more unspecified errors occurred while sending

the mail. It is not known if the mail was sent.
MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed.
MP_E_LOGIN_FAILURE There was no default sign in, and the user failed to sign

in successfully when the sign-in dialog box was
displayed. No mail was sent.

MP_USER_ABORT The user canceled the process (from the Send Note
dialog box). No mail was sent.

SUCCESS_SUCCESS The mail was successfully sent. The caller is responsible
for deleting any temporary files referenced in the
FilePaths parameter.

MPSendMail

MPSendMail(
Session as Numeric,
UIParam as Numeric,
Message as MapiMesg,
Recips as MapiRecip,
Files as MapiFile,
Flags as Numeric,
Reserved as Numeric) as Numeric

Description
This function sends a standard mail message. If you choose, it can prompt for user input
with a dialog box or proceed without any user interaction.
You can optionally provide a list of recipient names, subject text, file attachments, or
message text when you call MPSendMail. If you do not supply the required message
elements, the function can prompt the user for them. If you provide recipient names, file
attachments, or message text, the function can send the files or note without prompting
users. If the optional parameters are specified and a dialog box is requested by use of the
MP_DIALOG flag, the parameters provide the initial values for the dialog box.
File attachments are copied to the message before the function returns; therefore, later
changes to the files do not affect the contents of the message. The files must be closed
when they are copied.
The FoxPro MPSendMail function takes the recipients and file attachments from the
appropriate parameters to the call. Recips and Files should each be the first element of
dynamically allocated arrays of their respective types. These arrays are not redimensioned
and are not affected by assignment side-effects.
All strings are to be specified in the current character set or code page of the calling
program's operating system process. In Microsoft Windows and MS-DOS environments, the
character set is ANSI. In OS/2 environments, the code page is CP-850.
Parameter Description
Session An opaque session handle whose value represents a session with the

messaging system. If the value is 0, the messaging system sets up a
session either from a system default session (if one exists) or presents a
sign-in dialog box. In all cases, the messaging system returns to its state
before the call.

UIParam The parent window handle for the dialog box. A value of 0 specifies that
any dialog box displayed is application modal.

Message Subject
An empty string indicates no subject text. Some implementations may
truncate subject lines that are too long or contain carriage returns, line
feeds, or other control characters.
Note Text
An empty string indicates no text. Each paragraph should be terminated
with either a carriage return (0x0d), a line feed (0x0a), or a carriage
return-line feed pair (0x0d0a). The implementation wraps lines as
appropriate. Implementations may place limits on the size of the text. A
return of MP_E_TEXT_TOO_LARGE is generated if this limit is exceeded.

Message Type
A pointer to a string that is the message type. This field is for use by
applications other than interpersonal mail (electronic forms, game
message transmittal, and so on). For an interpersonal mail message,
specify an empty string for this field.

Recips The first element of an array of recipients. When RecipCount is zero, this
parameter is ignored.
The recipient string can include either the recipient's name or the
recipient's name-address pair. If just a name is specified, the name is
resolved to an address using implementation-defined address book
search rules. If an address is also specified, a search for the name is not
performed. The address is in an implementation-defined format and is
assumed to have been obtained from the implementation in some other
way. When the address is specified, the name is used for display to the
user and the address is used for delivery.
When EntryID is used, no search is performed and the displayed name
and address are ignored. (A name and address are associated with
EntryID within the messaging system.) EntryIDs are returned by the
MPReadMail function.

Files The first element of an array of attachment files written when the
message is read. The number of attachments per message may be
limited in some systems. If the limit is exceeded, the error
MP_E_TM_FILES is returned. When FileCount is 0, this parameter is
ignored.
Attachment files are read and attached to the message before the call
returns. Do not attempt to display attachments outside the range of the
message body.

Flags A bitmask of flags. Unspecified flags should always be set to 0.
Undocumented flags are reserved. The following flags are defined in
MAPILIB.PRG:
#define MP_LOGON_UI 1
' Display logon UI
#define MP_NEW_SESSION 2
' Don't get default if available
#define MP_DIALOG 8
' Display a send note UI
Set MP_LOGON_UI if the function should display a dialog box to prompt
for sign in (if required). When this flag is not set, the function does not
display a dialog box and returns an error if the user is not signed in.
Set MP_NEW_SESSION if you want to establish a session other than a
current session. For instance, if a mail client is already running, another
MAPI electronic-mail client can piggyback on the session created by the
mail client application. Do not set this flag if you want the default session
(if it still exists). If the session passed in Session is not 0, this flag is
ignored.
Set MP_DIALOG if the function should display a dialog box to prompt for
recipients and other sending options. When this flag is not set, the
function does not display a dialog box, but at least one recipient must be
specified.

Reserved Reserved for future use. This parameter must be 0.

Return Value Meaning
MP_E_AMB_RECIP A recipient matched more than one of the recipient

descriptor types, and MP_DIALOG was not set. No mail
was sent.

MP_E_ATT_
NOT_FOUND The specified attachment was not found. No mail was

sent.
MP_E_BAD_RECIPTYPE The type of a recipient was not MP_TO, MP_CC, or

MP_BCC. No mail was sent.
MP_E_DISK_FULL The disk was full. No mail was sent.
MP_E_FAILURE One or more unspecified errors occurred while sending

the mail. No mail was sent.
MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed. No mail was

sent.
MP_E_INV_SESSION An invalid session handle was used for the Session

parameter. No mail was sent.
MP_E_LOGIN_FAILURE There was no default sign-in, and the user failed to sign

in successfully when the sign-in dialog box was
displayed. No mail was sent.

MP_E_TEXT_TOO_LARGE The text in the message was too large to be sent. No
mail was sent.

MP_E_TM_FILES There were too many file attachments. No mail was sent.
MP_E_TM_RECIPIENTS There were too many message recipients specified. No

mail was sent.
MP_E_TM_SESSIONS The user had too many sessions open at once. No mail

was sent.
MP_E_UNKNOWN_RECIPIENT The recipient did not appear in the address list. No mail

was sent.
MP_USER_ABORT The user canceled the process from the send dialog box.

No mail was sent.
SUCCESS_SUCCESS The function returned successfully.
See Also
MPReadMail

MPCursor

MPCursor(
MPCursor as String,
AliasName as String) as Numeric,

Description
In some cases it is necessary to create cursors before calling one of the FoxMAPI functions.
The MPCursor function is used to create the MAPI cursors as desired. The function can take
either one or two parameters. The first parameter is the name of the FoxMAPI cursor to
create, where these names correspond to those given in the tables above. The second
parameter is the alias name used for refer to the cursor. If the alias name is omitted then
the name of the FoxMAPI cursor is used. i.e. in the first example below an instance of the
SPlusRest cursor is created with an alias name of SPlusRest:
=MPCursor("SPlusRest", "SPlusRestriction")
In the second example, an instance of the MapiRecip cursor is created with an alias name
of MapiRecip:
=MPCursor("MapiRecip")
NOTE: If an alias of the same name is already open in a workarea, the MPCursor function
will simply leave that table intact as it exists. You will need to check for this before making
a call to MPCursor, especially if you want an empty cursor.
Parameter Description
MPCursor The name of the FoxMAPI cursor to create, where these names

correspond to one of the following (MapiMesg, MapiRecip,MapiFile).
AliasName The alias name used to refer to the cursor. If the alias name is omitted

then the name of the FoxMAPI cursor is used.

Return Value Meaning
SUCCESS_SUCCESS The function returned successfully.

SPlusAppt

Cursor SPlusAppt
Reserved As Numeric
ItemType As String
Flags As Numeric
AssocCount As Numeric
OrgItemID As String
AttendCnt As Numeric
Text As String
Body As String
Recurrence as String
DateStart As String
DateEnd As String

Description
Schedule+ Libraries allow four kinds of appointments:

SimpleAppt stores a unique event on a user's calendar.
RecurApptInstance stores an exception to a recurring event on a user's calendar.
OrganizedMeeting stores a meeting on a meeting organizer's calendar.
BookedMeeting stores a meeting on an attendee's calendar.

The SPlusAppt type specifies the kind of appointment and specifics related to that
appointment.

Field Description Type
Reserved Reserved for

future use.
This field
must be 0.

N(10,0)

ItemType A string
identifying
the
appointment
type. This
field must be
one of the
following
strings:
SimpleAppt
,
RecurApptI
nstance,
Organized
Meeting, or
BookedMee
ting.

C(254)

Flags A bitmask of
flags.
Unused flags
are
reserved.
The

N(10,0)

following
flags are
supported
and defined
in
MAPILIB.PRG
:
#define
SP_PRIVATE   
1
#define
SP_TENTATIV
E    4

AssocCoun
t

The number
of items
associated
with this
appointment
. In this
release, the
only kind of
associated
item allowed
is an alarm,
and only one
alarm is
allowed.
Therefore,
this value
can be only
0 or 1.
However, to
be
compatible
with future
releases,
your code
should allow
for more
than one
associated
item.

N(10,0)

OrgItemID A string
specifying
the
Schedule+
ID for the
referenced
message on
the
organizers
schedule.
This field is
ignored if

C(254)

ItemType is
not
Organized
Meeting or
BookedMee
ting.

AttendCnt Number of
attendees
for a
meeting.
This field
must be 0 if
ItemType is
not
Organized
Meeting.
This field
must not be
0 if it is
Organized
Meeting.

N(10,0)

Text The text
field of the
appointment
. An empty
string
indicates no
text.

M

Body Reserved for
future use.
This field
must be an
empty
string.

M

Recurrenc
e

Reserved for
future use.
This field
must be an
empty
string.

C(254)

DateStart A string
indicating
the start
date and
time of the
meeting.
The format
is
YYYY/MM/DD
HH:MM;
hours are
measured on
a 24-hour

C(16)

clock. The
year must
be in the
range 1920-
2019.

DateEnd A string
indicating
the end date
and time of
the meeting.
The format
is
YYYY/MM/DD
HH:MM;
hours are
measured on
a 24-hour
clock. The
year must
be in the
range 1920-
2019. The
end date
must be
later than
the start
date, and
the elapsed
time cannot
exceed 31
days.

C(16)

See Also
SPReadAppt
SPSaveAppt

SPlusAssoc
Cursor SPlusAssoc

Reserved As Numeric
ItemType As String
Flags As Numeric
ItemID As String
Position As Numeric
Data As String

Description
In this release, alarms are the only type of associated items allowed.

Field Description Type
Reserved Reserved for

future use.
This field
must be 0.

N(10,0)

ItemType In this
release, this
field must be
Alarm.

C(254)

Flags Reserved for
future use.
This field
must be 0.

N(10,0)

ItemID A pointer to
a Schedule+
internal ID
for this item.
If you are
creating a
new
associated
item with
SPSaveApp
t or
SPSaveTas
k, pass in an
empty, zero-
terminated,
caller-
allocated
string long
enough to
accommodat
e at least 64
characters.

C(254)

Position Reserved for
future use.
This field
must be 0.

N(10,0)

Data A string C(254)

providing
data specific
to the item
type. For
items of
type Alarm,
this string
indicates the
date and
time when
the alarm
should ring.
The format
is
YYYY/MM/DD
HH:MM;
hours are
measured on
a 24-hour
clock. The
year must
be in the
range 1920-
2019.

SPlusAttd
Cursor SPlusAttd

Reserved As Numeric
UserType As String
Status As Numeric

Field Description Type
Reserved Reserved for

future use.
This field
must be 0.

N(10,0)

UserType A string
specifying
the user
type. For this
release, the
two
supported
types are
Individual
and
Unspecifie
d
Resource.

C(254)

Status Specifies the
current
confirmation
status of the

N(10,0)

attendee.
This field
must be one
of the
following:
#define
SP_NO_REQ
UEST_SENT   
0
#define
SP_NO_RESP
ONSE    1
#define
SP_POSITIVE
_RESPONSE   
2
#define
SP_NEGATIV
E_RESPONSE
3
#define
SP_AMBIGUO
US_RESPON
SE    4

FoxPro Environment Considerations

Where to Install DLL and FLL Files
The three DLLs, MAPI.DLL, SPLUS.DLL, and EFORM.DLL must be installed in your windows\
system directory since they are loaded and called by native Windows functions. The
FOXMAPI.FLL library, on the other hand, can reside anywhere the user can access it through
the FoxPro SET LIBRARY TO command.
Additional FoxPro Files
Included with the FoxPro MAPI libraries are two FoxPro generic programs (MAPILIB.PRG and
MAPIERR.PRG) which can be used to handle all calls to the libraries. The MAPILIB.PRG file
can and should be modified as needed to support specific applications. In its present form,
it is only intended to provide routines for some of the most common uses of MAPI. All calls
in the FOXMAPI.FLL library have return values. These return values/error codes are
contained in the MAPIERR.PRG file as identified as #DEFINES.
FoxPro Cursors
Many of the MAPI calls create and/or make use of FoxPro cursors (temporary DBFs). There
are three specific ones. The MailMesg cursor contains information about a specific mail
message. There is only one record created in the cursor. The MailFile cursor contains a list
of all of the attachments (i.e., files/ole objects) associated with a particular message. The
MapiRecips cursor has a record for each recipient of the specific message. NOTE: a
MapiOrig cursor with the same structure as the MapiRecips cursor is also created with a
single record of the message originator. Be aware of the 1-Many relations associated with
the above cursors. You can use the MPCursor call to create a cursor for any of these 3
cursor types.

The cursors can be used like ordinary DBFs for most database operations such as INDEX,
ZAP, APPEND BLANK, INSERT, etc. NOTE: the field lengths of many character fields are the
maximum permissible length of 254. This is done primarily to accommodate data received
from the mail messages. If you are only using MAPI to send messages, you can create you
own cursors containing the same field names, but with shorter field lengths. The functions
will still work the same.
Other Considerations
There are several issues the programmer should be aware of with the MPReadMail function.
If you are making subsequent calls to this function, you must check the MapiMesg.Filecount
field to see if it is zero. If the value is zero, the MapiFile cursor would be unaffected and
could contain data from the previous MPReadMail call. Another consideration is that file
attachments are created in your Windows temp directory. You will need to properly
handle/dispose of them because each subsequent MPReadMail call to the same message
will result in a duplicate file being created in this directory.
You can create Mail messages which are not detected by the MS Mail client. These are
known as IPC messages and can be created using the MessageID field in the MapiMesg
cursor. IPM type messages, which are the default type, are the only ones detected by the
MS Mail client. NOTE: The IPC string should be unique (ie IPC.MYAPP).
You do not need to call the MPLogon function to start a mail session prior to making FoxPro
MAPI calls. By including a Session value of zero and a Flag bitmask value of 1
(MP_LOGON_UI), the logon dialog will become available. Be aware, however, that you will
be automatically logged out of Mail after this call is made should you decide to take this
approach. If you are running a program involving many MAPI calls, then it is best to use the
MPLogon call and save the Session handle for use with subsequent MAPI calls.
The cursors created from a MPReadMail call do not contain a common field which could be
used to relate the databases. If you decide that you want to log incoming messages into a
database along with their origin, recipient, and file attachment information, you will need to
create new databases which have a unique key field. The MapiMesg cursor does contain a
unique message ID field, however, the other cursors have no reference to this.
The RecipClass field in the MapiRecips cursor refer to the class of the recipient.

0 - Originator; 1 - To; 2 - CC; 3 - BCC
A quick way to give the user functionality to send a message is by using the    following
command:

retVal=MPSendDocs(0,";","","",0)
The MPSendDocs function always presents an MS Mail SendNote dialog since you cannot
provide information regarding the recipients. If you want to programmatically control who
receives the message, use the MPSendMail function. It is much more powerful.
See Also
MAPI Library
Schedule+ Library

SPlusMesg

Cursor SPlusMesg
Reserved As Numeric
Subject As String
NoteText As String
MessageType As String
DateReceived As String
ConversationID As String
Flags As Numeric
RecipCount As Numeric
FileCount As Numeric
SentForCount As Numeric

Description
The SPlusMesg type contains information about a Schedule+ meeting request. The initial
portion of this type is the same as the MapiMesg type.

Field Description Type
Reserved Reserved for

future use.
This field
must be 0.

N(10,0)

Subject A subject
text field
string,
limited to
256
characters
or less. An
empty string
indicates no
subject text.

C(254)

NoteText A string
containing
text in the
message. An
empty string
indicates no
text. For
inbound
messages,
each
paragraph is
terminated
with a
carriage
returnline
feed pair
(0x0d0a).
For
outbound
messages,

M

paragraphs
can be
delimited
with a
carriage
return, a line
feed, or a
carriage
returnline
feed pair
(0x0d, 0x0a,
or 0x0d0a).

MessageTy
pe

Must be one
of the
following
strings:
"IPM.Microso
ft
Schedule.Mt
gReq"
"IPM.Microso
ft
Schedule.Mt
gRespP"
"IPM.Microso
ft
Schedule.Mt
gRespN"
"IPM.Microso
ft
Schedule.Mt
gRespA"
"IPM.Microso
ft
Schedule.Mt
gCncl"
The strings
represent a
meeting
request, a
positive
meeting
response, a
negative
meeting
response, a
tentative
meeting
response,
and a
meeting
cancellation,
respectively.

C(254)

DateRecei A string C(16)

ved indicating
the date a
message is
received.
The format
is
YYYY/MM/DD
HH:MM;
hours are
measured on
a 24-hour
clock.

Conversati
onID

A string
indicating
the
conversation
thread ID to
which this
message
belongs.

C(254)

Flags A bitmask of
flags.
Unused flags
are
reserved.
Unused flags
must be 0
for outbound
messages
and are
ignored for
inbound
messages.
The
following
flags are
defined in
MAPILIB.
PRG:
#define
MP_UNREAD
ONLY    1
#define
MP_SENT    4
The flag
MP_RETURN_
RECEIPT_RE
QUESTED is
not
supported in
this release.
An
additional
flag defined

N(10,0)

in
MAPILIB.PRG
is also
supported:
#define
SP_RESPONS
E_REQUESTE
D    65536
This flag is
ignored for
outgoing
responses
and
cancellations
.

RecipCoun
t

A count of
the recipient
descriptor
types
pointed to
by Recips. A
value of 0
indicates
that no
recipients
are included.

N(10,0)

FileCount Meeting
messages
cannot have
file
attachments
in this
release. This
field must be
0 when
using
SPSendMe
et. Note that
it will be 1
when Flags
in
SPReadMe
et is set to
MP_BODY_AS
_FILE.

N(10,0)

SentForCo
unt

A count of
the recipient
descriptor
types
pointed to
by SentFor.
A value of 0
indicates no

N(10,0)

recipient
descriptor
types. This
value must
be 0 for
outgoing
meeting
requests and
cancellations
. This value
must be 1
for outgoing
meeting
responses.

See Also
MapiMesg
SPReadMeet
SPSendMeet

SPlusRest

Cursor SPlusRest
Reserved As Numeric
ItemType As String
RestType As String
RestData As String

Description
Depending on the item type (task or appointment), SPlusRest fetches only appointments
for a specified day, only tasks for a specified day, or all tasks.

Field Description Type
Reserved Reserved for

future use.
This field
must be 0.

N(10,0)

ItemType This field
must be
either Appt
or Task.

C(254)

RestType If the item
type is
Appt,
RestType
must be
Day. If the
item type is
Task,
RestType
must be
either All or
Active.

C(254)

RestData For
restrictions
on
appointment
s, this
parameter is
a string
indicating
the day of
the
appointment
. The format
is
YYYY/MM/DD
. The year
must be in
the range
1920-2019.
An empty

C(254)

string
specifies the
current day.
For
restrictions
on tasks,
this
parameter is
a string
indicating
the date of
the task. The
format is
YYYY/MM/DD
HH:MM;
hours are
measured on
a 24-hour
clock. The
year must
be in the
range 1920-
2019. An
empty string
specifies the
current date
and time.

See Also
SPReadAppt
SPReadTask

SPlusTask
Cursor SPlusTask

Reserved As Numeric
ItemType As String
Flags As Numeric
AssocCount As Numeric
OrgItemID As String
AttendCnt As Numeric
Text As String
Body As String
Recurrence As String
DateDue As String
DuratActiv As String
ProjctName As String
Priority As String

Field Description Type
Reserved Reserved for

future use.
This field
must be 0.

N(10,0)

ItemType Identifies the
item type.
This field
must be
SimpleTask
or
RecurTaskI
nstance.

C(254)

Flags A bitmask of
flags.
Unused flags
are
reserved.
The
following
flags are
defined in
MAPILIB.PRG
:
#define
SP_PRIVATE   
1
#define
SP_PRV_PROJ
ECT    2

N(10,0)

AssocCoun
t

The number
of items
associated
with this
appointment
. In this

N(10,0)

release, the
only kind of
associated
item allowed
is an alarm,
and only one
alarm is
allowed.
Therefore,
this value
can be only
0 or 1.
However, to
be
compatible
with future
releases,
your code
should allow
for more
than one
associated
item.

OrgItemID Reserved for
future use.

C(254)

AttendCnt Reserved for
future use.

N(10,0)

Text The text
field for the
task. An
empty string
indicates no
text.

M

Body Reserved for
future use.
This field
must be an
empty
string.

M

Recurrenc
e

Reserved for
future use.
This field
must be an
empty
string.

C(254)

DateDue A string
indicating
the due date
for the task.
The format
is
YYYY/MM/DD

C(16)

HH:MM;
hours are
measured on
a 24-hour
clock. The
year must
be in the
range 1920-
2019. If the
task doesnt
have a due
date, this
string should
be an empty
string.

DuratActiv A string
indicating
how soon a
task is active
before the
due date.
This string is
ignored if
the task has
no due date.
The duration
can be
specified as
a number of
days, weeks,
months, or
years. The
format is
NNNN U,
where NNNN
is the
number of
units, and U
is either D
for days, W
for weeks, or
M for
months.

C(6)

ProjctNam
e

A string
indicating
the name of
the parent
project for a
task. An
empty string
indicates
that there is
no parent
project. The

C(254)

flag
SP_PRV_PROJ
ECT
indicates
whether the
parent
project is
private or
not.

Priority A string
indicating
the priority
of a task.
The priority
value should
be one
character,
either a digit
from 1 - 9 or
an
uppercase
letter from A
- Z. An
empty string
indicates a
default
value.

C(1)

SPlusUser
Cursor SPlusUser

Reserved As Numeric
UserType As String
Flags As Numeric
StartTime As String
EndTime As String
TimeZone As String
Data As String

Field Description Type
Reserved Reserved for

future use.
This field
should be
ignored.

N(10,0)

UserType A string
specifying
the user
type. For this
release, the
two
supported
types are
Individual

C(254)

and
Unspecifie
d
Resource.

Flags A bitmask of
flags.
Unused flags
are
reserved.
The
following
flag is
defined in
MAPILIB.PRG
:
#define
SP_BOSS_W
ANTS_COPY   
1

N(10,0)

StartTime Indicates the
start of
working
hours for the
logged in
user. The
format is
HH:MM,
where MM
must be
either 00 or
30.

C(254)

EndTime Indicates the
end of
working
hours for the
logged in
user. The
format is
HH:MM,
where MM
must be
either 00 or
30. The end
time value
must be
later than
the start
time.

C(254)

TimeZone Reserved for
future use.
This field
should be
ignored for

C(254)

this release.
Data Reserved for

future use.
This field
should be
ignored for
this release.

C(254)

SPReadMeet

SPReadMeet(
Session As Numeric,
UIParam As Numeric,
MessageID As String,
Flags As Numeric,
Reserved As Numeric,
Message As SPlusMesg,
Originator As MapiRecip,
Recips() As MapiRecip,
Files() As MapiFile,
SentFor() As MapiRecip,
Appt As SPlusAppt,
Assoc() As SPlusAssoc,
Attendees() As SPlusAttd

 UserType As String
) as Numeric

Description
Before calling this function, use MAPILogon to establish a valid MAPI session, and then use
MAPIFindNext, specifying one of the message types listed in the description of the
MessageType field of SPlusMesg, before calling SPReadMeet.
The call returns one message, filling the SPlusMesg data type with the elements of the
message. Recipients and contents are copied from the message before the function returns
to the caller, so later changes do not affect the contents of this message.
When the message is a meeting request or meeting cancellation, the SentFor field provides
a list of users for which the request is intended. Your application must then act on the
meeting request or cancellation for each of these users.
All strings are null-terminated and must be specified in the ANSI character set.
Parameter Description
Session An opaque session handle whose value represents a session with the

messaging system. If the value is 0, SPReadMeet returns the error
MP_E_INV_SESSION.

UIParam The parent window handle for the dialog box (of type HWND) cast to a
NUMERIC.

MessageID A caller-allocated string that is the message identifier of the message to
be read. Message IDs can be obtained from the MAPIFindNext and
SPLUSSaveMeeting functions.

Flags A bitmask of flags. Unspecified flags should always be set to 0.
Undocumented flags are reserved. The following flags are defined in

MAPILIB.PRG:
#define MP_ENVELOPE_ONLY    64
' Only header information
#define MP_SUPPRESS_ATTACH    2048
' Header and body, no files
#define MP_BODY_AS_FILE    512
' Save body as first attachment
#define MP_PEEK    128
' Don't mark message as read
When MP_ENVELOPE_ONLY is set, the function does not copy file
attachments to temporary files or return the note text. All other message
information (except for temporary file names) is returned. Setting this
flag usually reduces the processing time required for the function.
When MP_SUPPRESS_ATTACH is set, SPReadMeet does not copy file
attachments, but returns message text. This flag is ignored if
MP_ENVELOPE_ONLY is set. The flag should reduce the time required by
the SPReadMeet function.
When MP_BODY_AS_FILE is set, SPReadMeet writes the message body
to a temporary file and adds it to the attachment list as the first
attachment, instead of returning a pointer to the message body (the
default behavior). When MP_PEEK is set, SPReadMeet does not mark the
message as read. Any unsuccessful return leaves the message unread.

Reserved Reserved for future use. This parameter must be 0.
Message A message type containing the message contents. When SPReadMeet is

called with MP_BODY_AS_FILE set, you should delete these files when
they are no longer needed.

Originator A MapiRecip recipient descriptor type that describes the originator of
the meeting request.

Recips () A dynamic    array of recipient descriptor types. Only recipients of type
MP_TO are supported in this release.

Files () If Flags is set to MP_BODY_AS_FILE, then a struct of type MapiRecip is
returned, otherwise it is set to empty string.

SentFor () A dynamic array of    recipient descriptor types. On an incoming meeting
request or cancellation, this parameter gives a list of users (recipient
descriptors of type MP_TO) for which the request is intended. Your
application must act on the meeting request or cancellation for each of
these users. A meeting response should identify the user that the sender
is responding to.

Appt An SPlusAppt type with a BookedMeeting ItemType. In this release,
the fields of the appointment type are set as follows. (These are subject
to change in later releases.)
Flags
This field will be set to 0.
Creator
This field will be set to a recipient descriptor with all fields equal to 0 or
empty strings (as appropriate).
AssocCount
This field will be set to 0.
Organizer
This field will be set to the identity of the meeting organizer.
OrgItemID
This field is set depending on the sender, and may be an empty string. If
this field does not point to an actual item ID, it indicates that the sender

is not a Schedule+ user.
AttendCnt
This field will be set to 0.
Text
This field will be set the same as the message subject text.
Body and Recurrence
These fields will be set to an empty string.
DateStart, DateEnd
These fields will be set appropriately.

Assoc () This field will be ignored.
Attendees () This field will be ignored.
UserType A string specifying the user type. For this release, the two supported

types are Individual and Unspecified Resource.
Return Value Meaning
MP_E_ATT_WRITE_FAILURE The message body could not be written to a

temporary file (when MP_BODY_AS_FILE is used).
Check directory permissions.

MP_E_DISK_FULL The disk was full.
MP_E_FAILURE Unspecified error(s) occurred while reading the

message. No message was read.
MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed. No

message was read.
MP_E_INV_MESSAGE The message ID was invalid. The message ID may

have been deleted or changed by another
process.

MP_E_INV_SESSION An invalid session handle was used for the
Session parameter. No message was read.

MP_E_NOT_SUPPORTED The operation was not supported by the
underlying messaging system.

MP_E_TM_RECIPIENTS There were too many recipients of the message.
No message was read.

SUCCESS_SUCCESS The function returned successfully.
See Also
MapiRecip
SPlusAppt

SPSendMeet

SPSendMeet(
Session As Numeric,
UIParam As Numeric,
Message As SPlusMesg,
Recips() As MapiRecip,
Files() As MapiFile,
SentFor() As MapiRecip,
Appt As SPlusAppt,
Assoc() As SPlusAssoc,
Attendees() As SPlusAttd,
UserType As String
Flags As Numeric
Reserved As Numeric

) as Numeric

Description
You provide a list of recipient names, subject text, message text, and meeting information
when you call SPSendMeet. Unlike MPSendMail, if you do not supply the required
message elements, the function fails instead of prompting the user for the missing
elements.
All strings are null-terminated and must be specified in the ANSI character set.
Parameter Description
Session An opaque session handle whose value represents a session with the

messaging system. If the value is 0, a session is established from a
system default session (if one exists) or with a sign-in dialog box. In all
cases, this function returns with the sign-in state unchanged.

UIParam The parent window handle for the dialog box (of type HWND) cast to a
NUMERIC.

Message An SPlusMesg type containing the contents of the message to be sent.
Set the following fields for successful message delivery:
SPlusMesg.MessageType
SPlusMesg.RecipCount
Meeting responses (only) should set the following fields:
SPlusMesg.SentForCount = 1
SPlusMesg.SentFor
All other fields are optional. Unused fields should be 0 or empty strings.
The following fields are ignored and should be 0 or empty strings:
SPlusMesg.DateReceived
SPlusMesg.Originator
SPlusMesg.Flags
SPlusMesg.FileCount
SPlusMesg.File
Subject
An empty string indicates no subject text. Some implementations may
truncate subject lines that are too long or contain carriage returns, line
feeds, or other control characters.
NoteText

An empty string indicates no text. Each paragraph must be terminated
with either a carriage return (0x0d), a line feed (0x0a), or a carriage
return-line feed pair (0x0d0a). Different implementations can wrap lines
and place limits on the size of the text, as appropriate. If the limit is
exceeded, a return of MP_E_TEXT_TOO_LARGE is generated.
MessageType   
This field must be one of the following strings:
"IPM.Microsoft Schedule.MtgReq"
"IPM.Microsoft Schedule.MtgRespP"
"IPM.Microsoft Schedule.MtgRespN"
"IPM.Microsoft Schedule.MtgRespA"
"IPM.Microsoft Schedule.MtgCncl"

These strings represent a meeting request, a positive meeting response,
a negative meeting response, a tentative meeting response, and a
meeting cancellation, respectively.
FileCount
Attachments are not supported by this release. The count of files should
be 0.

Recips () An array of recipient descriptor types.
Recipients (Recips)
The recipient descriptor can include either the recipients name or the
recipients name-address pair. If only a name is specified, the name is
resolved to an address using implementation defined address-book
search rules. If an address is also specified, a search for the name is not
performed. The address is in an implementation defined format and is
assumed to have been obtained from the implementation some other
way. When the address is specified, the name is displayed to the user and
the address is used for delivery.
When EntryID is specified, no search is performed and the displayed and
address are ignored. (A name and address are associated with EntryID in
the messaging system.) EntryIDs are returned by the SPReadMeet
function.

Files () Meeting messages cannot have file attachments in this release.
SentFor () For a meeting request this field is ignored. For a meeting response this

field identifies the user that the sender is responding to.
Appt An SPlusAppt type containing information about the meeting.

For meeting responses, the appointment type should be the same as the
one received with the original meeting request.
For meeting requests and cancellations, the appointment type must be
OrganizedMeeting and must be initialized properly.

Assoc () An array of associated item descriptors. In this release, the only type of
associated items allowed are alarms.

Attendees () An array of attendee descriptors specifying the meetings attendees and
their confirmation status.

UserType A string specifying the user type. For this release, the two supported
types are Individual and Unspecified Resource.

Flags Reserved for future use. This parameter must be 0.
Reserved () Reserved for future use. This parameter must be 0.
Return Value Meaning
MP_E_AMB_RECIP A recipient matched more than one of the

recipient descriptor types.
MP_E_BAD_RECIPTYPE The type of a recipient was not MP_TO, MP_CC,

or MP_BCC.
MP_E_DISK_FULL The disk was full.
MP_E_FAILURE Unspecified error(s) occurred while sending the

message. No message was sent.
MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed. No

message was sent.
MP_E_INV_SESSION An invalid session handle was used for the

Session parameter. No message was sent.
MP_E_LOGIN_FAILURE There was no default sign-in, and the user failed

to sign in successfully when the sign-in dialog box
was displayed. No message was sent.

MP_E_TEXT_TOO_LARGE The text in the message was too large to be sent.
No message was sent.

MP_E_TM_FILES A file attachment was specified. No message was
sent.

MP_E_TM_RECIPIENTS There were too many message recipients
specified. No message was sent.

MP_E_TM_SESSIONS The user had too many sessions open at once. No
message was sent.

MP_E_UNKNOWN_RECIPIENT The recipient did not appear in the address list.
No message was sent.

MP_USER_ABORT The user canceled the process. No message was
sent.

SP_E_TIME The DateStart or DateEnd field of the SPlusAppt
type was not specified properly.

SP_E_INV_SENT_FOR The SentFor parameter was not specified
properly.

SP_E_TYPE An invalid item type was supplied in the
SPlusAppt type.

SP_E_ASSOC There was an error in the way the associated
items were specified.

SP_E_ORGANIZER The Organizer field of the SPlusAppt type was
not specified properly.

SP_E_ORG_ID The OrgItemID field of the SPlusAppt type was
not specified properly.

SP_E_ATTENDEES The associated appointment does not have
attendees.

SP_E_FLAGS The Flags field of the SPlusAppt type was not
specified properly.

SUCCESS_SUCCESS The function returned successfully.
See Also
MPSendMail
SPlusAppt
SPlusMesg
SPReadMeet

SPBegin

SPBegin(
MapiSession As Numeric
UIParam As Numeric
Flags As Numeric
Reserved As Numeric
SPlusSession As Reference to a Numeric

) as Numeric

Description
SPBegin returns a session handle necessary for other Schedule+ Libraries calls. To make a
series of Schedule+ Libraries calls, you should begin a Schedule+ Libraries session with
SPBegin, make the necessary calls, and then terminate the Schedule+ Libraries session
with SPEnd.
Parameter Description
MapiSession An opaque session handle whose value represents an existing session

with the messaging system. Session handles are returned by MPLogon
and invalidated by MPLogoff. If the value is 0, a session is established
from a system default session (if one exists) or with a sign-in dialog box.

UIParam The parent window handle for the dialog box (of type HWND) cast to a
NUMERIC.

Flags Reserved for future use. This parameter must be 0.
Reserved Reserved for future use. This parameter must be 0.
SPlusSession An opaque session handle whose value is set by Schedule+ when the

SPBegin call is successful. The session handle can then be used in
subsequent Schedule+ Libraries calls.

Return Value Meaning
MP_E_FAILURE Unspecified error(s) occurred while attempting

this call. No session handle was returned.
MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed. No

session handle was returned.
MP_E_LOGIN_FAILURE There was no default sign-in, and the user failed

to sign in successfully when the sign-in dialog box
was displayed. No session handle was returned.

MP_E_TM_SESSIONS The user had too many sessions open at once. No
session handle was returned.

MP_USER_ABORT The user canceled the process. No session handle
was returned.

MP_E_NOT_SUPPORTED The Flags or Reserved parameter was not set
correctly. No session handle was returned.

SP_E_NOT_INSTALLED Schedule+ was not installed.
SP_E_NO_SCHEDULE No schedule file was found for the user. The user

should stop and restart Schedule+.
SUCCESS_SUCCESS The function returned successfully.

See Also
SPEnd

SPDelete

SPDelete(
SPlusSession As Numeric
UIParam As Numeric
SPlusUser As MapiRecip
ItemID As String
Flags As Numeric
Reserved As Numeric

) as Numeric

Parameter Description
SPlusSession An opaque session handle whose value represents a session with the

scheduling system. Session handles are returned by SPBegin and
invalidated by SPEnd. If the value is 0, a session is established from a
system default session (if one exists) or with a sign-in dialog box.
Otherwise, calls with SPlusSession equal to 0 return MP_E_INV_SESSION.

UIParam The parent window handle for the dialog box (of type HWND) cast to a
NUMERIC.

SPlusUser A recipient descriptor specifying the user. The Name and Address field
must be completed. A descriptor with all fields equal to 0 or empty
strings (as appropriate) indicates that you want to delete the item from
the schedule of the currently signed-in user.

ItemID The string identifier for the item to be deleted. This identifier is invalid
after SPDelete returns successfully.

Flags A bitmask of flags. All flags are reserved and should be set to 0.
Reserved Reserved for future use. This parameter must be 0.
Return Value Meaning
MP_E_DISK_FULL The disk was full. No changes were made.
MP_E_FAILURE Unspecified error(s) occurred while saving the

mail. Nothing was deleted.
MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed. No

changes were made.
MP_E_INV_SESSION An invalid session handle was used for

SPlusSession parameter. No changes were made.
MP_E_LOGIN_FAILURE There was no default sign-in, and the user failed

to sign in successfully when the sign-in dialog box
was displayed. No changes were made.

MP_USER_ABORT The user canceled the process. No changes were
made.

MP_E_NOT_SUPPORTED The Flags or Reserved parameter was not set
correctly. No changes were made.

SP_E_USER The recipient descriptor was incomplete or
specified incorrectly. No changes were made.

SP_E_NO_SCHEDULE No schedule was located for the user. No changes
were made.

SP_E_ITEM The item ID was invalid. The item ID may have
been deleted by another process. No changes
were made.

SP_E_NOT_INSTALLED Schedule+ was not installed.
SP_E_NO_PRIVILEGE The caller did not have a privilege level of Create

or greater for the users schedule.
SUCCESS_SUCCESS The function returned successfully.

SPEnd

SPEnd(
SPlusSession As Numeric
UIParam As Numeric
Flags As Numeric
Reserved As Numeric

) as Numeric

Description
Ending unnecessary sessions helps avoid the MP_E_TM_SESSIONS error with other
Schedule+ Libraries function calls.
Parameter Description
SPlusSession An opaque session handle whose value represents a session with the

scheduling system. Session handles are returned by SPBegin and
invalidated by SPEnd.

UIParam The parent window handle for the dialog box (of type HWND) cast to a
NUMERIC.

Flags Reserved for future use. This parameter must be 0.
Reserved Reserved for future use. This parameter must be 0.
Return Value Meaning
MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed. The

session was not terminated.
MP_E_INV_SESSION An invalid session handle was used for the

SPlusSession parameter. The session was not
terminated.

MP_E_NOT_SUPPORTED The Flags or Reserved parameter was not set
correctly. The session was not terminated.

SUCCESS_SUCCESS The function returned successfully.
See Also
SPBegin

SPFindNext

SPFindNext(
SPlusSession As Numeric
UIParam As Numeric
SPlusUser As MapiRecip
Restriction As SPlusRest
SeedItemID As String
Flags As Numeric
Reserved As Numeric
ItemID As Reference to a String

) as Numeric

Description
This function allows an application to enumerate appointments and tasks. Successive calls
to this function can read all appointments on a specified day of a users schedule, or all of
the users tasks.
When provided with an empty string in SeedItemID, SPFindNext returns the ID and type of
the first item on the schedule of SPlusUser subject to the value of Restriction. When
provided with a non-empty SeedItemID, SPFindNext returns the next matching item.
Repeated calls to SPFindNext ultimately result in a return of SP_E_NO_ITEMS, which
means that the enumeration of the matching items is complete.
Item identifiers are not guaranteed to remain valid, because other applications could delete
items between calls. Applications must be able to handle failed calls to SPFindNext,
SPDelete, SPReadAppt, and SPReadTask for invalid item IDs. The ordering of items is
system-specific. Item ID strings must be allocated by the caller and must be at least 64
characters long.
SPFindNext handles item enumeration in the following way:

For recurring, single appointment types, or tasks SPFindNext returns the next
appointment as qualified by the Restriction parameter.
Parameter Description
SPlusSession An opaque session handle whose value represents a session with the

scheduling system. Session handles are returned by SPBegin and
invalidated by SPEnd. If the value is 0, this function returns
MP_E_INV_SESSION.

UIParam The parent window handle for the dialog box (of type HWND) cast to a
NUMERIC.

SPlusUser A recipient descriptor specifying the user. The Name and Address fields
must be completed. A descriptor with all fields 0 or empty strings (as
appropriate) indicates that you want to read information for the currently
signed-in user.

Restriction A restriction descriptor that indicates the type of item to read.
SeedItemID A string that is the item identifier seed for the request. If the identifier is

an empty string, the first item matching the restriction is returned. Item
IDs are system-specific and opaque. Item IDs might be invalidated at any
time if another application deletes an item. A valid SeedItemID can be
obtained by using SPFindNext.

Flags A bitmask of flags. All flags are reserved and should be set to 0.

Reserved Reserved for future use. This parameter must be 0.
ItemID A caller-allocated string that is the item identifier. Item identifiers are

system specific, may be non printable, and are opaque. Item ID strings
must be able to accommodate at least 64 characters. Item IDs might be
invalidated at any time if another application deletes an item.

Return Value Meaning
MP_E_FAILURE Unspecified error(s) occurred while reading the

item. No item ID was returned.
MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed. No

item ID was returned.
MP_E_INV_SESSION An invalid session handle was used for

SPlusSession parameter. No item ID was returned.
MP_E_NOT_SUPPORTED The Flags or Reserved parameter was not set

correctly. No item ID was returned.
SP_E_USER The recipient descriptor was incomplete or

specified incorrectly. No item ID was returned.
SP_E_NO_SCHEDULE No schedule was located for the user. No item ID

was returned.
SP_E_RESTRICTION The restriction was specified incorrectly. No data

was returned.
SP_E_ITEM The item ID was invalid. The item ID may have

been deleted by another process. No item ID was
returned.

SP_E_TIME The Restriction parameter was not specified
properly. The format expected was YYY/MM/DD.

SP_E_ADDRESS_FORMAT The recipient descriptor was incomplete or
specified incorrectly. No information was
returned.

SP_E_NO_ITEMS There were no remaining items that matched the
restriction.

SP_E_NOT_INSTALLED Schedule+ was not installed.
SP_E_NO_PRIVILEGE The caller did not have a privilege level of    Read

or greater for the users schedule.
SUCCESS_SUCCESS The function returned successfully.
See Also
SPBegin
SPDelete
SPEnd
SPReadAppt
SPReadTask

SPReadAppt

SPReadAppt(
SPlusSession As Numeric
UIParam As Numeric
SPlusUser As MapiRecip
ItemID As String
Flags As Numeric
Reserved As Numeric
Appt As SPlusAppt
Assoc() As SPlusAssoc
Attendees() As SPlusAttd
UserType As String

) as Numeric

Description
This function reads an appointment from a users schedule when provided with the
appointment ID.
Parameter Description
SPlusSession An opaque session handle whose value represents a session with the

scheduling system. Session handles are returned by SPBegin and
invalidated by SPEnd. If the value is 0, a session is established from a
system default session (if one exists) or with a sign-in dialog box.
Otherwise, calls with SPlusSession equal to 0 return MP_E_INV_SESSION.

UIParam The parent window handle for the dialog box (of type HWND) cast to a
NUMERIC.

SPlusUser A recipient descriptor that specifies the user. The Name and Address
fields must be completed. An empty string specifies the currently signed-
in user.

ItemID The string identifier of the item.
Flags A bitmask of flags. All unused flags are reserved and should be set to 0.   

The following flag is defined in MAPILIB.PRG:
#define SP_SUPPRESS_RECIPIENTS 4096
When this flag is present, no attendees are read into the appointment
type and the AttendCnt field of SPlusAppt is set to 0 even if attendees
have been invited to the appointment.

Reserved Reserved for future use. This parameter must be 0.
Appt An appointment type containing the item contents.
Assoc () An array of associated item descriptors. In this release, only alarms are

allowed.
Attendees () A dynamic array of attendee descriptors specifying the meetings

attendees and their confirmation status.
UserType A string specifying the user type. For this release, the two supported

types are Individual and Unspecified Resource.
Return Value Meaning
MP_E_DISK_FULL The disk was full. The item was not read.
MP_E_FAILURE Unspecified error(s) occurred while reading the

message. The item was not read.
MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed. The

item was not read.
MP_E_INV_SESSION An invalid session handle was used for the

SPlusSession parameter. The item was not read.
MP_E_NOT_SUPPORTED The Flags or Reserved parameter was not set

correctly. The item was not read.
SP_E_USER The recipient descriptor was incomplete or

specified incorrectly. The item was not read.
SP_E_NO_SCHEDULE No schedule was located for the user. The item

was not read.
SP_E_NO_PRIVILEGE The caller did not have a privilege level of Read

or greater for the users schedule. The item was
not read.

SP_E_ITEM The item ID was invalid. The item ID may have
been deleted by another process. The ID may
have been the wrong type (for example, an ID for
a task). The item was not read.

SUCCESS_SUCCESS The function returned successfully.
See Also
SPBegin
SPEnd
SPlusAppt

SPFreeBusy

SPFreeBusy(
SPlusSession As Numeric
UIParam As Numeric
UserCount As Numeric
Users() as MapiRecip
Month As String
Flags As Numeric
Reserved As Numeric
HaveInfo As Reference to a String
FreeBusy() As String

) as Numeric

Description
This function determines commonly held free time periods (in half-hour intervals) for a
group of users. Free or busy information for each of the users is fetched and then merged
to determine periods when none of the specified users is busy.
Parameter Description
SPlusSession An opaque session handle whose value represents a session with the

scheduling system. Session handles are returned by SPBegin and
invalidated by SPEnd. If the value is 0, a session is established from a
system default session (if one exists) or with a sign-in dialog box.
Otherwise, calls with SPlusSession equal to 0 return MP_E_INV_SESSION.

UIParam The parent window handle for the dialog box (of type HWND) cast to a
NUMERIC.

UserCount The number of users information is being retrieved for. A value of 0
specifies the retrieval of free/busy information for the currently signed-in
user.

Users () An array of UserCount recipient descriptors specifying users. A descriptor
with all fields 0 or empty strings (as appropriate) indicates the currently
signed-in user. Otherwise, the Name and Address fields must be
completed. This parameter must be NULL if UserCount is 0.

Month A string specifying the month that information is retrieved for. The format
is YYYY/M for months 1 through 9 or YYYY/MM for months 10 through 12.
The year must be in the range 19202019.

Flags A bitmask of flags. All flags are reserved and should be set to 0.
Reserved Reserved for future use. This parameter must be 0.
HaveInfo A string of length UserCount characters. After a successful call to this

function, the first character is set to Y (yes) or N (no) to indicate whether
free/busy information for the first user was retrieved. Each subsequent
character is set in the same way for each remaining user.

FreeBusy () An array of 31 strings. Each string contains 48 characters. Each
successful call to this function fills the strings with free/busy information
for each day of the month. The first string contains data for the first day
of the month, the second string contains data for the second day of the
month, and so on. In each string, the function inserts F (free) in the first
character of the string if none of the specified users are busy from
midnight to 12:30 A.M., and B (busy) otherwise. The second character in

the string is set to F or B for the period from 12:30 A.M. to 1:00 A.M., and
so on, working around the clock in half-hour intervals.

Return Value Meaning
MP_E_FAILURE Unspecified error(s) occurred while performing

this operation. No data was returned.
MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed. No

data was returned.
MP_E_INV_SESSION An invalid session handle was used for the

SPlusSession parameter. No data was returned.
MP_E_LOGIN_FAILURE There was no default sign-in, and the user failed

to sign in successfully when the sign-in dialog box
was displayed. No data was returned.

MP_USER_ABORT The user canceled the sign-in. No data was
returned.

MP_E_NOT_SUPPORTED The Flags or Reserved parameter was not set
correctly. No data was returned.

SP_E_USER A recipient descriptor specified in the Users array
was incomplete. No data was returned.

SP_E_MONTH The month was specified incorrectly. No data was
returned.

SP_E_NOT_INSTALLED Schedule+ was not installed.
SUCCESS_SUCCESS The function returned successfully.
See Also
SPBegin
SPEnd

SPReadTask

SPReadTask(
SPlusSession As Numeric
UIParam As Numeric
SPlusUser As MapiRecip
ItemID As String
Flags As Numeric
Reserved As Numeric
Task As SPlusTask
Assoc() As SPlusAssoc
Attendees() As SPlusAttd
UserType As String

) as Numeric

Parameter Description
SPlusSession An opaque session handle whose value represents a session with the

scheduling system. Session handles are returned by SPBegin and
invalidated by SPEnd. If the value is 0, a session is established from a
system default session (if one exists) or with a sign-in dialog box.
Otherwise, calls with SPlusSession equal to 0 return MP_E_INV_SESSION.

UIParam The parent window handle for the dialog box (of type HWND) cast to a
NUMERIC.

SPlusUser A recipient descriptor specifying the user. The Name and Address fields
must be completed. A descriptor with all fields equal to 0 or empty
strings (as appropriate) specifies the currently signed-in user.

ItemID The string identifier of the item.
Flags A bitmask of flags. All flags are reserved and should be set to 0.
Reserved Reserved for future use. This parameter must be 0.
Task A SPlusTask type containing the item contents.
Assoc () An array of associated item descriptors. In this release, only alarms are

allowed.
Attendees () Reserved for future use.
UserType A string specifying the user type. For this release, the two supported

types are Individual and Unspecified Resource.
Return Value Meaning
MP_E_DISK_FULL The disk was full. The item was not read.
MP_E_FAILURE Unspecified error(s) occurred while reading the

message. The item was not read.
MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed. The

item was not read.
MP_E_INV_SESSION An invalid session handle was used for the

SPlusSession parameter. No item was read.
MP_E_NOT_SUPPORTED The Flags or Reserved parameter was not set

correctly. The item was not read.
SP_E_USER The recipient descriptor was incomplete or

specified incorrectly. The item was not read.
SP_E_NO_SCHEDULE No schedule was located for the user. The item

was not read.
SP_E_NO_PRIVILEGE The caller didnt have a privilege level of Read or

greater for the users schedule.
SP_E_ITEM The item ID was invalid. The item ID may have

been deleted by another process. The ID may
have been the wrong type (for example, an ID for
an appointment). The item was not read.

SUCCESS_SUCCESS The function returned successfully.
See Also
SPBegin
SPEnd
SPlusTask

SPUserInfo

SPUserInfo(
SPlusSession As Numeric
UIParam As Numeric
SPlusUser As MapiRecip
Flags As Numeric
Reserved As Numeric
UserInfo As SPlusUser

) as Numeric

Description
This function determines the identity of the users assistant, whether the user is a resource,
whether copies of meeting requests should go to the user as well as the users assistant.
The working hours for the logged in user are also returned.
Parameter Description
SPlusSession An opaque session handle whose value represents a session with the

scheduling system. Session handles are returned by SPBegin and
invalidated by SPEnd. If the value is 0, a session is established from a
system default session (if one exists) or with a sign-in dialog box.
Otherwise, calls with SPlusSession equal to 0 return MP_E_INV_SESSION.

UIParam The parent window handle for the dialog box (of type HWND) cast to a
NUMERIC.

SPlusUser A recipient descriptor specifying the user. The Name and Address fields
must be completed. A descriptor with all fields equal to 0 or empty
strings (as appropriate) specifies the currently signed-in user.

Flags A bitmask of flags. All flags are reserved and should be set to 0.
Reserved Reserved for future use. This parameter must be 0.
UserInfo An SPUserInfo type containing information about the user.
Return Value Meaning
MP_E_FAILURE Unspecified error(s) occurred while retrieving the

information. No information was returned.
MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed. No

information was returned.
MP_E_INV_SESSION An invalid session handle was used for the

SPlusSession parameter. No information was
returned.

MP_E_LOGIN_FAILURE There was no default sign-in, and the user failed
to sign in successfully when the sign-in dialog box
was displayed. No information was returned.

MP_USER_ABORT The user canceled the process. No information
was returned.

MP_E_NOT_SUPPORTED The Flags or Reserved parameter was not set
correctly. No information was returned.

SP_E_ADDRESS_FORMAT The recipient descriptor was incomplete or
specified incorrectly. No information was
returned.

SP_E_NO_SCHEDULE No schedule information was located for the user.
Default information for the user was returned.

SP_E_NOT_INSTALLED Schedule+ was not installed.
SP_E_NOT_ONLINE The user was offline when this function was

called.
SUCCESS_SUCCESS The function returned successfully.
See Also
SPBegin
SPEnd

SPSaveAppt

SPSaveAppt(
SPlusSession As Numeric
UIParam As Numeric
SPlusUser As MapiRecip
Appt As SPlusAppt
Assoc() As SPlusAssoc
Attendees() As SPlusAttd
UserType As String
Flags As Numeric
Reserved As Numeric
ItemID As Reference to a String

) as Numeric

Description
If an appointment with the string ItemID exists, SPSaveAppt will modify the elements of
Appt struct according to Flags.
If the string ItemID is empty, a new appointment is created with the fields specified by the
Appt parameter. The new appointments ID is returned in the ItemID parameter on
completion of the call
Parameter Description
SPlusSession An opaque session handle whose value represents a session with the

scheduling system. Session handles are returned by SPBegin and
invalidated by SPEnd. If the value is 0, a session is established from a
system default session (if one exists) or with a sign-in dialog box.
Otherwise, calls with SPlusSession equal to 0 return MP_E_INV_SESSION.

UIParam The parent window handle for the dialog box (of type HWND) cast to a
NUMERIC.

SPlusUser A recipient descriptor that specifies the user. The Name and Address
fields must be completed. A descriptor with all fields equal to 0 or empty
strings (as appropriate) specifies the currently signed-in user.

Appt A SPlusAppt type.
ItemType
This field must be SimpleAppt, OrganizedMeeting, or
BookedMeeting. The item type of an existing appointment cannot be
modified.

Assoc () An array of associated item descriptors. In this release, only alarms are
allowed.
If an alarm is specified for the appointment, its ring time must be later
than the current time. Otherwise this function returns
SP_E_ALARM_RING_IN_PAST.

Attendees () An array of attendee descriptors specifying the meetings attendees and
their confirmation status.

UserType A string specifying the user type. For this release, the two supported
types are Individual and Unspecified Resource.

Flags A bitmask of flags. You should always set unspecified flags to 0.
Undocumented flags are reserved. This function supports the same flags
as MPSaveMail.

The following additional flags defined in SPLUS.BAS or WRKGROUP.MDB
are also supported:
#define SP_DEFAULT_ALARM    4096
#define SP_MOD_FLAGS    65536
#define SP_MOD_ASSOC    131072
#define SP_MOD_ATTENDEES    262144
#define SP_MOD_TEXT    524288
#define SP_MOD_TIMES    4194304

SP_DEFAULT_ALARM sets the default alarm for an appointment to the
users Schedule+ preference. The flag overrides any settings in the
associated items array. If the alarm on an existing appointment is being
modified, this flag removes the old alarm and sets it to the default.
SP_MOD_FLAGS, SP_MOD_ASSOC_ITEMS, SP_MOD_ATTENDEES,
SP_MOD_TEXT, and SP_MOD_TIMES may be used only when modifying an
existing appointment. In this case, the set flags indicate which fields
should be modified. Note that some fields of the appointment in
SPlusAppt cannot be modified (ItemType, Creator, Organizer, and
OrgItemID).

Reserved Reserved for future use. This parameter must be 0.
ItemID A string identifier for this item. An empty string specifies a new

appointment. Item ID strings must be allocated by the caller and must be
able to hold at least 64 characters.

Return Value Meaning
MP_E_DISK_FULL The disk was full.
MP_E_FAILURE Unspecified error(s) occurred while saving the

item.
MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed.
MP_E_INV_SESSION An invalid session handle was used for the

SPlusSession parameter. No changes were saved.
MP_E_LOGIN_FAILURE There was no default sign-in, and the user failed

to sign in successfully when the sign-in dialog box
was displayed. No changes were saved.

MP_USER_ABORT The user canceled the process. No changes were
saved.

MP_E_NOT_SUPPORTED The Flags or Reserved parameter was not set
correctly. No changes were saved.

SP_E_NOT_INSTALLED This function could not be performed because
Schedule+ was not installed.

SP_E_USER The recipient descriptor was incomplete or
specified incorrectly. No changes were saved.

SP_E_ADDRESS_FORMAT The recipient descriptor was incomplete or
specified incorrectly. No information was
returned.

SP_E_NO_SCHEDULE No schedule was located for the user. No changes
were saved.

SP_E_NO_PRIVILEGE The caller did not have privilege level of Create
or greater for the users schedule.

SP_E_ITEM The item ID was invalid. The item ID may have
been deleted by another process. No changes

were saved.
SP_E_TYPE An invalid item type was supplied in the

SPlusAppt type.
SP_E_FLAGS An invalid flag was supplied in the SPlusAppt

type.
SP_E_ASSOC There was an error in the way the associated

items were specified.
SP_E_ALARM_RING_IN_PAST An alarm was specified whose ring time has

passed. No changes were saved.
SP_E_ORGANIZER The Organizer field of the SPlusAppt type was

not specified properly.
SP_E_ORG_ID The OrgItemID field of the SPlusAppt type was

not specified properly.
SP_E_ATTENDEES The attendees were not specified correctly. No

changes were saved.
SP_E_TIME The DateStart or DateEnd field of the SPlusAppt

type was not specified properly.
SUCCESS_SUCCESS The function returned successfully.
See Also
MPSaveMail
SPBegin
SPEnd
SPlusAppt

SPSaveTask

SPSaveTask(
SPlusSession As Numeric
UIParam As Numeric
SPlusUser As MapiRecip
Task As SPlusTask
Assoc() As SPlusAssoc
Attendees() As SPlusAttd
UserType As String
Flags As Numeric
Reserved As Numeric
ItemID As Reference to a String

) as Numeric

Description
If a task with the ItemID exists, the fields of the task are replaced by the elements of the
Task parameter.
If the string ItemID is empty, a new task is created with the fields specified by the Task
parameter. The new tasks ID is returned in the ItemID parameter on completion of the call.
Parameter Description
SPlusSession An opaque session handle whose value represents a session with the

scheduling system. Session handles are returned by SPBegin and
invalidated by SPEnd. If the value is 0, a session is established from a
system default session (if one exists) or with a sign-in dialog box.
Otherwise, calls with SPlusSession equal to 0 return MP_E_INV_SESSION.

UIParam The parent window handle for the dialog box (of type HWND) cast to a
NUMERIC.

SPlusUser A recipient descriptor specifying the user. The Name and Address fields
must be completed. A descriptor with all fields 0 or empty strings (as
appropriate) specifies the currently signed-in user.

Task An SPlusTask type containing the task contents.
ItemType
This field must be SimpleTask. The item type of an existing task cannot
be modified.

Assoc () An array of associated item descriptors. In this release, only alarms are
allowed.
If an alarm is specified for the task, its ring time must be later than the
current time. Otherwise this function returns SP_E_ALARM_RING_IN_PAST.

Attendees () Reserved for future use.
UserType A string specifying the user type. For this release, the two supported

types are Individual and Unspecified Resource.
Flags A bitmask of flags. You should always set unspecified flags to 0.

Undocumented flags are reserved. This function supports the same flags
as MPSaveMail.
The following additional flags defined in MAPILIB.PRG are also supported:
#define SP_DEFAULT_ALARM    4096
#define SP_MOD_FLAGS    65536
#define SP_MOD_ASSOC    131072

#define SP_MOD_TEXT    524288
#define SP_MOD_TIMES    4194304
#define SP_MOD_PROJECT_NAME    8388608
#define SP_MOD_PRIORITY    16777216

SP_DEFAULT_ALARM specifies the users default alarm setting. This flag
overrides any setting in the associated items array of SPlusAssoc. If the
alarm on an existing task is being modified, this flag removes the old
alarm and sets it to the default.
SP_MOD_FLAGS, SP_MOD_ASSOC_ITEMS, SP_MOD_TEXT, SP_MOD_TIMES,
SP_MOD_PROJECT, and SP_MOD_PRIORITY may be used only when
modifying an existing task. In this case, the set flags indicate which fields
should be modified. Note that some fields of the task cannot be modified
(for example, the ItemType and Creator fields of SPlusTask).

Reserved Reserved for future use. This parameter must be 0.
ItemID A string identifier for this item. An empty string specifies a new task. Item

ID strings must be allocated by the caller and must be able to hold at
least 64 characters.

Return Value Meaning
MP_E_DISK_FULL The disk was full.
MP_E_FAILURE Unspecified error(s) occurred while saving the

item.
MP_E_INSUFFICIENT_MEMORY There was insufficient memory to proceed.
MP_E_INV_SESSION An invalid session handle was used for the

SPlusSession parameter. No changes were saved.
MP_E_LOGIN_FAILURE There was no default sign-in, and the user failed

to sign in successfully when the sign-in dialog box
was displayed. No changes were saved.

MP_USER_ABORT The user canceled the process. No changes were
saved.

MP_E_NOT_SUPPORTED The Flags or Reserved parameter was not set
correctly. No changes were saved.

SP_E_NOT_INSTALLED This function could not be performed because
Schedule+ was not installed.

SP_E_USER The recipient descriptor was incomplete or
specified incorrectly. No changes were saved.

SP_E_NO_SCHEDULE No schedule was located for the user. No changes
were saved.

SP_E_NO_PRIVILEGE The caller did not have privilege level of Create
or greater for the users schedule.

SP_E_ITEM The item ID was invalid. The item ID may have
been deleted by another process. No changes
were saved.

SP_E_TYPE An invalid item type was supplied in the
SPlusTask type.

SP_E_FLAGS An invalid flag was supplied in the SPlusTask
type.

SP_E_ASSOC There was an error in the way the associated
items were specified.

SP_E_ALARM_RING_IN_PAST An alarm was specified whose ring time is in the

past. No changes were saved.
SP_E_TIME The DateStart or DateEnd field in SPlusTask was

not specified properly.
SP_E_PRIORITY The Priority field of the SPlusTask type was

specified incorrectly.
SUCCESS_SUCCESS The function returned successfully.
See Also
MPSaveMail
SPBegin
SPEnd
SPlusAssoc
SPlusTask

Return Values for MAPI/SPLUS Functions
#define SUCCESS_SUCCESS 0
#define MP_USER_ABORT 1
#define MP_E_FAILURE 2
#define MP_E_LOGIN_FAILURE 3
#define MP_E_DISK_FULL 4
#define MP_E_INSUFFICIENT_MEMORY 5
#define MP_E_ACCESS_DENIED 6
#define MP_E_TM_SESSIONS 8
#define MP_E_TM_FILES 9
#define MP_E_TM_RECIPIENTS 10
#define MP_E_ATT_NOT_FOUND 11
#define MP_E_ATT_OPEN_FAILURE 12
#define MP_E_ATT_WRITE_FAILURE 13
#define MP_E_UNKNOWN_RECIPIENT 14
#define MP_E_BAD_RECIPTYPE 15
#define MP_E_NO_MESSAGES 16
#define MP_E_INV_MESSAGE 17
#define MP_E_TEXT_TOO_LARGE 18
#define MP_E_INV_SESSION 19
#define MP_E_TYPE_NOT_SUPPORTED 20
#define MP_E_AMB_RECIPIENT 21
#define MP_E_MSG_IN_USE 22
#define MP_E_NETWORK_FAILURE 23
#define MP_E_INV_EDITFIELDS 24
#define MP_E_INV_RECIPS 25
#define MP_E_NOT_SUPPORTED 26
#define SP_NO_REQUEST_SENT 0
#define SP_NO_RESPONSE 1
#define SP_POSITIVE_RESPONSE 2
#define SP_NEGATIVE_RESPONSE 3
#define SP_AMBIGUOUS_RESPONSE 4
#define SP_RESPONSE_REQUESTED 65536
#define SP_PRIVATE 1
#define SP_TENTATIVE 4
#define SP_PRV_PROJECT 2
#define SP_BOSS_WANTS_COPY 1
#define SP_DEFAULT_ALARM 4096
#define SP_MOD_FLAGS 65536
#define SP_MOD_ASSOC 131072
#define SP_MOD_ATTENDEES 262144

#define SP_MOD_TEXT 524288
#define SP_MOD_TIMES 4194304
#define SP_MOD_PROJECT_NAME 8388608
#define SP_MOD_PRIORITY 16777216
#define SP_MOD_ALL 33488896
#define SP_SUPPRESS_RECIPIENTS 4096
#define SP_E_INV_SENT_FOR 10000
#define SP_E_NOT_INSTALLED 10005
#define SP_E_NO_ITEMS 10010
#define SP_E_NO_SCHEDULE 10015
#define SP_E_NO_PRIVILEGE 10020
#define SP_E_ADDRESS_FORMAT 10025
#define SP_E_USER 10030
#define SP_E_ITEM 10035
#define SP_E_TYPE 10040
#define SP_E_FLAGS 10045
#define SP_E_ASSOC 10050
#define SP_E_ORGANIZER 10055
#define SP_E_ORG_ID 10060
#define SP_E_ATTENDEES 10065
#define SP_E_TIME 10070
#define SP_E_PRIORITY 10075
#define SP_E_MONTH 10080
#define SP_E_RESTRICTION 10085
#define SP_E_ALARM_RING_IN_PAST 10090
#define SP_E_NOT_ONLINE 10095
#define SUCCESS_NO_SCHEDULE 10100

Help Instructions
The following information is here to help you quickly find what you need in Help. For more
information about Help, choose How to Use Help from the Help menu.

The pointer becomes a hand when it is over a region that
contains more information (a pop-up topic) or a jump to
another topic. Click the mouse in this region to jump to
the topic or to view the pop-up topic.

To jump to another topic, choose this highlighted text.
To display a pop-up topic containing art, a definition, a
note, or further information about this topic, choose this
highlighted text. To clear a pop-up topic, click anywhere or
press ESCAPE.
To return to the last screen of information, click the Back
button, or press B.
To see a list of the function's return values, choose the
Return Values button. This button is present only when the
current topic has a Return Values section.
To see a list of topics related to the current topic, choose
the See Also button. This button is present only when the
current topic has a See Also section.
To display an example appropriate to the topic, choose the
Example button. This button is present only when the
current topic has an example.

Microsoft Support Services
FOXMAPI.FLL is a "layer" on top of MAPI.DLL and SPLUS.DLL. This layer provides cursors to
replace the C-style structures that the actual DLLs expose. Apart from this mapping of C
data types to FoxPro data types, there is almost no extra code in FOXMAPI.FLL. Thus when
calls to FOXMAPI behave unexpectedly it is likely a problem with calling MAPI.DLL (or
SPLUS.DLL). Because of this, support for FOXMAPI.FLL is provided as part of general MAPI
and SPLUS support.
More information on the MAPI and SPLUS interfaces can be found on CompuServe on the
MSWRKGR forum. Section 15 is entitled MS Schedule+, Section 16 is entitled MS Eforms,
and Section 17 is entitled MAPI.
Note that detailed support will NOT be available in foxforum. While they may be able to
answer basic questions, more complex MAPI and SPLUS functionality questions should be
directed first to the MSWRKGRP section. Note that because FOXMAPI.FLL uses the same
function calls, structures, flags, etc. as the original MAPI and SPLUS dynamic link libraries,   
you should read the documentation for those DLLs and work out how to write the
corresponding code in FoxPro.
Microsoft TDD/TT (Text Telephone) Support
Microsoft Product Support Services is available for the deaf and hard-of-hearing. Using a
special TDD/TT modem, dial (206) 635-4948. Call between 6:00 A.M. and 6:00 P.M. Pacific
time, Monday through Friday.

CompuServe
The Microsoft Connection on CompuServe provides online technical information for
Microsoft products. With The Microsoft Connection, you can exchange messages with
Microsoft support engineers    and experienced Microsoft users, and you can download
software such as drivers, patches, tools, and add-ons, provided by Microsoft and
CompuServe members at no charge.
By using The Microsoft Connection, you can access the Microsoft Developer Services area.
You are encouraged to use this area to speak directly to Microsoft about developer-related
issues. The Microsoft Developer Services area offers the following advantages:

Developer Forums. These forums cover information about Windows, languages, tools,
and utilities from a developer's perspective. For example, the Windows SDK Forum provides
information about programming for Windows. The section leads for these forums are from
Microsoft Product Support and can help answer your questions about the Windows
application programming interface (API).

Confidential Technical Service Requests. Microsoft offers private (fee-based per
incident) technical support to help solve your more complex development problems. For
more details, see the Microsoft Developer Services area.

Developer Knowledge Base. This up-to-date reference tool, compiled by Microsoft
Product Support, contains developer-specific technical information about Microsoft products.

Software Library. You can search this collection of text and graphics files, sample
code, and utilities by keyword, and download the files for local use.

To connect to The Microsoft Connection, type GO MICROSOFT at the CompuServe "!"
prompt. For information about establishing a CompuServe account, call (800) 848-8199,
8:00 A.M. to 10:00 P.M. eastern standard time. Ask for operator 230 and receive a $15
connect-time usage credit.

