
t
The special symbol t is a constant whose value is itself and represents the value true.
However anything non- nil is considered to be true. Generally functions that return values
that are to be interpreted as true or false return t for true.

nil
The special symbol nil is a constant whose value is itself. It represents two things -

* The value false. Anything non-nil is considered to be true by functions that accept true
or false values as input.

* The empty list.

Special Symbols
nil
t

pi
pi has the value 3.14159265358979..., i.e. the length of the circumference of a circle with
diameter 1.
For the purpose of executing trigonometric functions sin cos arctan , all angles are measured
in radians, where pi radians = 180 degrees.

Constants
pi

Lists
A list is an ordered sequence of zero or more items.

Written representation
A list is written as follows - round left bracket, the written representations of the items in
order separated by whitespace followed by a round right bracket. Whitespace between the
brackets and the first and last items is optional.

Internal representation
A non-empty list is represented internally by the cons of its first element and the list of the
rest of the elements. An empty list is represented by the symbol nil.

Functions that construct lists
cons list

Functions that act on lists
car cdr append mapcar dolist
Examples:

(a b c)
(2)
()

Characters
A character is a single ASCII character. It is represented by #\ followed by itself. Characters
are the constituents of strings.

Functions relating to characters
char-code code-char char

Keywords
A keyword is a special sort of symbol.
They are specified by a colon ":" appearing before their print-name.
Unlike other symbols they are self-evaluating, i.e. they are not bound to a variable.
They are used among other things for specifying keyword arguments in function argument
lists.

Symbols
A symbol is a name for something. It is represented by a string containing only symbol
constituent characters, provided that they don't represent a valid number. This string is
called the print name of the symbol.
Symbols have various properties. They have a function value, which is normally set by defun
and is retrieved when a list with that symbol as first element is evaluated. They have a
property list which is set and accessed using the function get.
A symbol has a package which may be one of three in Apteryx Lisp - the "current" package,
the keyword package or no package.
In any given package there is only one symbol with a given name.
Symbols in the current package are read in and written out using just their names. Keyword
symbols are specified by the prefix ":" and symbols with no package have the prefix "#:".
Symbols with a package are called interned, symbols without a package are uninterned.
Uninterned symbols aren't uniquely named because they don't belong to a package.

Functions that construct symbols
gensym make-symbol
Examples:

fred
:tom
+

Strings
A string is a sequence of characters. Its input and output representation is the sequence of
characters enclosed in two double quotes. The character backslash is used as a quoting
character i.e. a backslash followed by a character represents that character. So \" represents
a double quote in a string and \\ represents a backslash. The maximum length of a string is
65516 characters.

Functions that construct strings
make-string

Functions that act on strings
char length
Examples:

"Hello world"
""

Conses
A cons is a pair of objects. The most common use of conses is in forming lists. A cons can be
explicitly constructed using the function cons. Its components can be accessed using car
and cdr.
Example:

(3 . 4)

Integers
Integers are 32-bit signed integers i.e. any number from -2^32 to 2^32-1. Their output
format is normal decimal format. Input format can be in hex binary or octal using prefixes
#x, #b and #o respectively. For example 26 = #b11010 = #o32 = #x1a.

Functions relating to integers
+ - * / rem 1+ 1-
Examples:

2
9999
-34

Floating point numbers
Floating point numbers are approximate representations of real numbers. They are
represented internally by a mantissa and exponent. Real numbers are accurate to about 11
decimal places with a decimal exponent in the range -38 to 38.
The written representation is a decimal number consisting of an optional sign followed by
optional digits followed by a decimal point followed by optionally more digits followed
optionally by an exponent which consists of the letter e followed by a integer. There must be
at least one digit before or after the decimal point (a single dot is part of the syntax of
dotted lists).
If arithmetic functions take arguments that are a mixture of floating point numbers and
integers, the results are always floating point.
The function float converts a number to a floating point number.
Examples:

3.45
2.3e15
-9.876e-1

Structures
Structures are objects belonging to a type defined by the user using defstruct. A structure
consists of a finite number of named fields, each field having a value which is a lisp object.
Structures are created, accessed and changed using the functions defined by defstruct.
Example:

#S(person name "Fred Jones" age 32 hair-colour red)

Arrays
An array is a sequence of N lisp objects, each object being accessable by an index in the
range 0 to N-1.
The written representation is the same as for a list, but preceded by a hash character.

Functions that construct arrays
vector make-array
Example:

#(a b c d)

Builtin functions
A builtin function is one that is predefined by Apteryx Lisp.
Example:

<Builtin: cons>

Special forms
A special form is the function value of one of let, let*, case, while, function etc. They are not
functions because they do not evaluate all their arguments before being evaluated, and they
are not defined as macros.
Example:

<Special form: while>

Builtin macros
A builtin macro is one that is predefined by Apteryx Lisp.
Example:

<Macro: <Builtin: setf>>

Closures
A closure is the result of applying function to a lambda expression, to produce an object that
represents a function. defun also produces a closure.
A closure consists of the function argument list, the expressions that make up the body of
the function and any lexical variable bindings in force at the time that the closure was
created.
Example:

<closure: (x) : #E((* x x))>

Macro
A macro represents a user-defined macro defined using defmacro. It is effectively a closure
that is applied to the unevaluated arguments of the macro call to produce the result that is
evaluated in the lexical scope of the macro call.

Windows constants
A windows constant is an object that represents an integer that is given a particular
meaning by Microsoft Windows (TM) in certain circumstances.
The windows constant contains both the integer and the nature of the circumstance in which
it is to be used, generally as a certain argument to a certain function or group of functions.
The windows constants are the global variable values of symbols whose names are those of
the constants (as given in the Microsoft Windows (TM) API).
Example:

#<constant: show_window sw_maximize>

Windows
A window represents a program-created window on-screen which contains associated data
and a re-paint procedure. Create a window using the function make-window.

Colours
A colour represents a colour in RGB format, i.e. a number from 0 to 255 to describe the
intensity of each of red, green and blue.
Colours are created using the function rgb.
Example:

#<Color: 0 0 255>

Points
A point represents a point on the screen or in a window, with x and y coordinates in pixels.
Points are created using the function point and their components are accessed using the
functions point-x and point-y. The x and y coordinates must be in the range -32768 to
+32767, i.e. signed 16 bit integers.
Example:

#<Point: 20 40>

Extents
An extent represents the size of a rectangle on the screen or in a window, i.e. the width and
height in pixels. Extents are created using the function extent and their components are
accessed using the functions extent-x and extent-y. The x and y components must be in the
range -32768 to +32767, i.e. signed 16 bit integers.
Example:

#<Extent: 100 200>

Rectangles
A rectangle represents the size and position of a rectangle on the screen or in a window. A
rectangle is created using the function rect.
Example:

#<Rect: top-left:(0, 0), bottom-right:(100, 200)>

Brushes
A brush is a drawing tool used to color things in - it has colour and hatch type. Brushes are
created using the functions create-hatch-brush and create-solid-brush.

Pens
A pen is a drawing tool used to draw lines or curves - it has colour and thickness. Pens are
created by the function create-pen.

Fonts
A font is a graphic representation of the ANSI character set used to draw letters. Fonts are
created by the function create-font.

Streams
A stream represents a file opened for input or output. Create a stream using the function
open.

Whitespace
Whitespace refers to the following characters - space, newline, carriage return, page break.
Whitespace is used to separate items in written representations of lisp objects.

Symbol constituents
Characters that can be used to make up a symbol name. They are - letters a-z, A-Z, digits 0-
9 and the characters +-^_*&@.[]%/<>=

Types
Arrays
Brushes
Builtin functions
Builtin macros
Characters
Closures
Colours
Conses
Extents
Floating point numbers
Fonts
Integers
Keywords
Lists
Macro
Pens
Points
Rectangles
Special forms
Streams
Strings
Structures
Symbols
Windows
Windows constants

Syntax
Symbol constituents
Whitespace

Palettes
A device context has associated with it a palette of that device context. If a colour that is not
on the palette is used for drawing graphics on the device context then either the nearest
available colour or a mixture of available colours will be used to approximate the requested
colour.

Device context
A device context is something that graphics commands operate on.Apteryx Lisp uses a
concept of a current device context. The control structure with-dc creates a device context
for the specified window, and all graphics commands executed inside that control structure
will cause graphics to be drawn in that window. When with-dc is finished, then that created
device context ceases to exist, and whatever was the previous current device context
becomes the current device context again.
There is an initial null device context which simply ignores any graphics commands.

A current device context is also automatically created when part of a window needs to be
repainted and its painter function is called.

As well as commands that draw on a device context there are others that create drawing
tools such as a font, brush or pen, which can be selected using with-select, and others that
change characteristics of the current device context.
All commands that operate on the current device context are listed underGraphics functions.

Garbage collection
When any sort of data is created in lisp, memory must be allocated to store that data. When
that data is no longer accessible by any means, that memory can be recycled. Periodically, a
garbage collection process occurs where lost memory is reclaimed.Apteryx Lisp uses a copy
and compact scheme to do garbage collection. When garbage collection occurs an icon of a
garbage bag with the letter G on it is displayed.

Functions
A function is something that takes some number of arguments as input values and returns a
value. This is a standard mathematical concept independent of any particular computer
programming language.

In Lisp a function may also have some side effects, i.e. cause something to occur in addition
to just returning a value. In cases where a function was applied primarily for its side-effects
and the value returned was unimportant, such a function would be called a procedure in
other programming languages.

Functions arise from two sources - they are provided by Apteryx Lisp or they are created
using a lambda expression.

They can be specified in basically two ways - by referring to them by name, or by taking the
function value of a lambda expression. Functions that are referred to by name are either
built-in functions or they have been defined using defun.

Lambda expressions
A lambda expression is a description of a function in terms of its argument list and its body.
For example -
(lambda (x y) (print x) (+ x y))

The keyword lambda indicates that this is a lambda expression. The (x y) is the argument
list, in this case two positional arguments called x and y, and the other two elements (print
x) and (+ x y) are the body of the lambda expression, which are evaluated when a function
derived from the lambda expression is applied to some arguments.

Use the function special form to create a closure of the lambda expression, which may then
be passed as an argument to functions such as apply funcall mapcar    etc.

Argument lists
The argument list is a specification of what arguments may be passed to a function or macro
and how they will be interpreted when passed.
Such a list is given in a defun or defmacro after the name of the function or macro, and also
when specifying a lambda expression.
An argument list is given as a list, with the elements specifying the arguments in the list.

First come the positional arguments which are specified by a symbol which is the name of
the local variable whose value will be the value of the positional argument passed when the
function (or macro) being defined is called. When the function is applied to a list of
arguments, if the argument list has n positional arguments then there must be at least n
arguments given and these will be bound in order to the variables named as positional
arguments in the argument list.

For example - (defun my-fun (x y z) (* x y z)), the arguments x, y and z are all positional
arguments. When calling my-fun, e.g (my-fun 3 4 5) the local variable x will bound to 3, y to
4 and z to 5, so that the value returned will be (* 3 4 5) = 60.
Other types of arguments in an argument list are specified by preceding them with special
argument list keywords. These keywords are not actually keyword symbols as such, but
symbols with names starting with "&".

Optional arguments - these come after the keyword &optional, and are specified as a symbol
being the variable name, or a two or three element list containing the variable name, default
value expression and (optionally) the "suppliedp" variable name.
When the function is passed arguments, any after the positional arguments are first treated
as optional arguments in the order given. If no value is given for an optional argument then
the default value expression is used to calculate its value, and if there is no default value
expression then nil is the value. The suppliedp variable, if given in the argument list, is
bound to t or nil, according to whether an actual value was given to the optional argument.

For example - (defun my-fun (x &optional y (z (+ 5 6)) (q nil q-supplied))), the argument x is
positional and y, z and q are optional arguments. If the function is called with (my-fun 3 4),
then x will have the value 3, y the value 4, z the value 11, q the value nil and q-supplied the
value nil.

Keyword arguments are given after the &key argument list keyword. They are similiar to
optional arguments in that they may be given or not, and they can have a default value
expression and suppliedp variable. However their presence or absence is specified by
preceding their value with a keyword. When specifying the variable name, either a name can
be given, in which case the keyword is the keyword symbol with the same print name, or a
list of 2 elements can be given, consisting of the keyword and its variable name. If the
keyword and variable name are given as a two element list, then this must be a 1, 2 or 3
element list (containing optional default value expression and suppliedp variable) to avoid
ambiguity.
For example - (defun my-fun (x &key y (z (+ 5 6)) ((:q queue) nil q-supplied))) Here x is
positional, y, z and queue are keyword arguments. A function call might be (my-fun 39 :q
'jim :z 13), in which case the values supplied would be x = 39, queue = jim, z = 13 and y =
nil. Note that keyword arguments can be given in any order.
A single argument may be specified after a &rest keyword. This is the variable that will be

bound to the list of all arguments passed after the positional and optional arguments. If both
&key and &rest are used, all the arguments after the positional and optional arguments have
to be in the form of keyword-value pair. If the the &allow-other-key argument list keyword is
given, then keywords other than those specified may be passed as arguments.
For example - (defun my-list (&rest x) x). When called as (my-list 3 4 (+ 2 5)) the result
returned will be (3 4 7).

Variables
A variable is a place that holds a value, and is usually associated with a symbol which is the
name of that variable. The variable is said to be bound to the symbol. There are two types of
variables - special or dynamic or global variables and lexical or static or local variables.

Lexical variables are ones that are bound by some syntactical construct and may only be
referred to within that construct. Examples of constructs that create lexical variables are let
let* do do* defun defmacro , and also lambda expressions.
The evaluation rule for symbols is that they evaluate to the innermost lexical variable bound
to that symbol, or if there is none, to the special variable for that symbol. When one variable
binding takes precedence over a second, the first is said to shadow the second. The same
shadowing rules apply to variable references in setq and setf.
However, the functions set and symbol-value always refer to the special variable for a
symbol.
Lexical variables are always given a value when they are created, but an attempt to
reference a global variable that has not previously had a value assigned to it using setq or
setf will result in a undefined variable error.

A new lexical variable is created every time that the construct that defines it is executed.
The binding of the variable to its name finishes when the construct is executed, but the
variable itself may live on. This is mainly relevant when a closure is created using function
on a lambda expression within the construct, the lambda expression evaluates a lexical
variable defined by the construct, and the resulting closure is passed out of the construct.
For example - (defun make-adder (x) #'(lambda (y) (+ x y))). The lexical variable in question
is x. The result of say (make-adder 3) will be a function which accepts a single argument and
adds 3 to it.

Lexical scope
Lexical scope is when the interpretation of a name depends on where it is lexically, i.e. what
syntactical construct it occurs in. An alternative is dynamic scope, where the interpretation
of a name changes with time.

Function value
The function value is the interpretation of either a symbol or a lambda expression as a
function. One of the properties of a symbol is its function value, this may be set using defun,
defmacro or using setf and symbol-function. If the function value is a macro (defined by
defmacro or predefined), or a special form then it is not therefore a function as such.
The function value of a lambda expression is the "closure" formed by binding lexical variable
references in the lambda expression to the variables that are bound to those references at
the time the closure is made (using function).

Special form
The function value of a symbol that has its own special rules for evaluation (see evaluation).

Argument
A value that is passed as input to a function. A function is said to be applied to its
arguments. (see evaluation).

Evaluation
Two things happen when a Lisp program is executed - evaluation and application.

When Lisp:Eval is called, the selected expression is evaluated. This means that the rules of
evaluation are used to decide how to evaluate the expression and return a result.

The rule of application depends on the type of the data described by the expression. Most
data types in lisp are self-evaluating, this means that the result of evaluating the expression
is to return the same expression as the result, and nothing else happens.
The two data types that aren't self-evaluating are lists and non-keyword symbols.

A non-keyword symbol is evaluated by determining which variable it is bound to, and
returning the value of the variable.

If the symbol is in the lexical scope of a local variable declaration, as in let let* do do*    or as
an argument in a function definition, then the variable in the innermost scope that the
symbol is in is the one whose value is returned.
If no local variable is associated with the symbol, then the global variable associated with
that symbol is the one used. The global variable may not have been set to a value, in which
case an error occurs.

A symbol may be defined as a constant using defconstant, in which case the value of that
constant will be returned, and in fact such a symbol may not be bound to a local variable. t
and nil are predefined to be constants with values equal to themselves (so they are
effectively self-evaluating).

How a non-empty list is evaluated depends on the first member of the list. First the function
value of the first member is determined. This will be either a function, macro or special form.

Generally this first member will be a symbol, and its function value is a function if it has
been defined using defun, a macro if it has been defined using defmacro. There are also
predefined functions, macro's and special forms.
The members of the list after the first member (and there can be any number of them from
zero upwards) are called the arguments.
If the function value of the first member is a function, then the arguments are themselves
first evaluated, and then the function value of the first member is applied to the evaluated
arguments.

If the function value of the first member is a macro, then the function associated with that
macro is applied to the unevaluated arguments of the list, and the result is evaluated in the
original lexical scope of the list.
If the function value of the first member is a special form, then that form has its own
particular rules for evaluation which can be looked up in the help for that special form.
Special forms include case cond catch dotimes dolist while progn prog1 prog2 if when unless
let let* unwind-protect defsetf defconstant setq psetq quote backquote and or defstruct
with-struct function defun defmacro with-continuous-gc with-dc with-select .

These are all the forms that are not defined as functions or macros in Apteryx Lisp. However
in official Common Lisp terminology a special form is one of a special set of basic forms from
which all other non-function forms could in principle be defined as macros.

Application
A function is said to be applied to its arguments. Most application occurs when a list whose
first member's function value is a function isevaluated.

Errors
An error occurs whenever you ask Apteryx Lisp to do something that doesn't make sense.

There are two basic kinds of error - syntax errors, where it tries to read a lisp expression that
is not syntactically correct, and evaluation errors when an error occurs evaluating an
expression.
The response to a syntax error in a editor window is to display a message box with a short
message about the error, and in most cases to move to the position in the buffer where the
error occurs. This position is the position where the lisp parser decides it can no longer make
any sense of what it is reading. If a syntax error occurs during evaluation of read or load,
then the position of the error will be shown by showing the line, line number and name of file
where the error occurred. In such a case, the error will also be an evaluation error.
An evaluation error occurs when either an attempt is made to evaluate an invalid
expression, or an attempt to apply a function to its arguments fails. A message box appears
with a short message about the error, possibly with a description of the object that caused
the error, followed by a stack dump.
A stack dump is a display of all the things that Apteryx Lisp was currently doing when the
error occurred. Stack dumps are output to the output window. Each line of a stack dump is
one of an evaluation, a compilation or an application. An evaluation is shown simply as the
expression being evaluated. An application is shown as the function being applied followed
by a list of its arguments enclosed in brackets and separated by commas. A compilation is
shown using the word "compiling" followed by the expression being compiled. By perusing
the stack dump you will often be able to determine the cause of an error.

When you define your own functions you may wish them to fail under some circumstances.
The function error can be used to signal an error.

Compilation
Compilation is a process where Lisp expressions are first converted to a form that can be
more efficiently evaluated before they are evaluated. Automatic compilation is turned on by
setting the special variable *auto-compile* to a non-nil value (e.g. t) and off again by setting
it to nil.
When compilation is on, if the the-compiler function has been setf-ed to a function value,
then any expression being evaluated is compiled using that function before being evaluated.
If (the-compiler) has the value nil, then expressions are compiled by expanding all the macro
calls.
Loading the file "compile.lsc" defines a value for (the-compiler) which compiles expressions
into compiled pseudo-code objects, similiar in concept to p-code for Pascal. The compiled
code objects should run faster than purely interpreted code, and also be less likely to run out
of execution stack. The function compile-and-load is also defined in the file "compile.lsc",
and it can be used to compile whole files of Lisp expressions. The combination of compiling
and loading is done to make the process completely transparent. For example, functions in a
file may be defined to be used in macro definitions which in turn occur in later function
definitions. Simply compiling all expressions without evaluating them would lead to
undefined function errors in such a case. "compile.lsp" is the source file for "compile.lsc". Be
warned that alteration of "compile.lsc" could result in crashing Apteryx Lisp (due to the
attempted execution of invalid code objects).

Generally it is appropriate to set *auto-compile* to t before loading defuns, defmacros and
other definitions that have been debugged and are going to be used heavily.

For compilation to work properly, any macros used in an expression must be defined before
the expression is evaluated. If a defun calls a macro, and you redefine the macro (by
evaluating its defmacro) then if *auto-compile* was on when you evaluated the defun you
will have to re-evaluate the defun to get the benefit of the redefined macro. Compilation is
therefore probably inappropriate for code that is in a state of development.
WARNING: Apteryx Lisp doesn't currently support packages, and since the compiler is
written in Lisp, there is a possibility of user code conflicting with the compiler code. To avoid
this, all functions and symbols that are local to the compiler start with an underscore
character. So avoid using symbol names starting with underscores in your own code.

Important concepts
Application
Argument
Argument lists
Compilation
Device context
Errors
Evaluation
Function value
Functions
Garbage collection
Lambda expressions
Lexical scope
Palettes
Special form
Variables

Editor overview
Apteryx Lisp consists of a multi-document file editor tightly integrated into the lisp system.

There are lisp-aware editor commands for auto-indentation, expression selection and
navigation and expression evaluation.

Output from evaluation goes to the special Output Window.
There are some lisp commands for manipulating the editor.

Configuration file
The configuration file is the file that is specified as the parameter for Apteryx Lisp when it is
started up. If no parameter is given it defaults to "apteryx.lcf" (in the current directory).
It stores the names of the files that are being edited in a given session and the size of the
main window when not maximized.
It also stores the cursor color.

The configuration is actually stored as lisp commands that are executed when Apteryx Lisp
starts up.

If problems occur starting up, it may be that the configuration file has been corrupted, in
which case you can delete it before trying to restart Apteryx Lisp.

Color Scheme
The color scheme of Apteryx Lisp is largely inherited from the Windows system color
scheme, which can be set by the user in the Control Panel.
One minor exception is the color of the text cursor. This defaults to red. It can be changed by
using the functions set-cursor-color and rgb. The cursor color gets stored as part of the
configuration file, so only needs to be changed once.

File Windows
File windows are created using the File:New or File:Open commands.

Output Window
The output window is the window labeled LispOutput which is always present, and which
appears near the bottom of the the Apteryx Lisp window when the editor windows are
Window:Cascaded.

Output to the output window comes from printing to *standard-output*, showing results of
evaluations, error messages and stack dumps.

Expressions in the output window cannot be evaluated - if you wish to evaluate one, copy
and paste it into a file window first.

Auto-indentation
Apteryx Lisp provides commands that allow you to automatically indent lisp expressions.
This means that when a lisp expression is multi-line, the number of spaces at the beginning
of each line depends on how deeply nested the expression is at that point.

The rule used is fairly simple - indent 2 spaces for each level of nesting.
The commands that auto-indent are Special:Indent Line, Special:New Indented Line and
Lisp:Indent. Normally you would use the keyboard shortcuts for these which are tab, Ctrl-
Enter and F5 respectively.

Generally, use Ctrl-Enter instead of Return when starting a new line, use tab to correct
indentation of the current line (e.g. you forgot to use Ctrl-Enter instead of Return) and use F5
to correct the indentation of a whole top-level expression.
The parser actually requires that lines that are not the beginning of a top-level expression be
indented. This requirement prevents the parser going all the way to the bottom of a file
when a right bracket has been omitted.

Parsing lisp expressions
Lisp expressions are read in from a file or file window by the parser, which parses them, i.e.
recognises the components of an expression.
Parsing occurs when an expression is evaluated, when the functions read and load are
called, and when the various lisp-aware editor commands are executed, such as select
expression, find expression forward or backwards and the auto-indentation commands.

The parser attempts to read in a correct lisp expression. However if something is read in that
cannot be interpreted as a valid lisp expression, then a syntax error will occur. An error will
generally be reported by a message box, with further information written to the output
window. When the parser is reading a file window the cursor will be sitting in front of the first
un-interpretable character.
When the expression being parsed is not to be evaluated, the parser doesn't need to
construct the object being parsed and is less fussy about what it accepts, for example it
doesn't check the components of a structure expression against the structure definition.

Top-level expressions
A top-level expression is a lisp expression which is not contained in any other expression. In
general a file of lisp commands consists of a sequence of top-level expressions.
The various commands that operate on lisp expressions, e.g. Lisp:Eval, Lisp:Select Expr and
Lisp:Indent all operate on a top-level expression that either contains or precedes the text
cursor in a file window, unless there is a current selection, in which case the command acts
on whatever has been selected.
Special:Find Expr Bwd also has to find a top-level expression, even though in general it picks
out the sub-expression that precedes the cursor. Bracket flashing also involves first finding
the beginning of a top-level expression, so that typing a right bracket can result in a syntax
error.
The beginning of a top-level expression is found using the assumption that any line without
leading spaces is the beginning of a top-level expression. Then the parser reads forward
until it finds a top-level expression that the cursor is in or which is the last top-level
expression that comes before the cursor.
Note that this does not require that the top-level expression in question start at the
beginning of a line, but if it doesn't, then a syntax error in a previous top-level expression
can cause the command to abort with that syntax error.

Bracket flashing
When you type a right bracket in a file window, Apteryx Lisp determines if the bracket is the
end of a lisp expression, and if it is, it "flashes" the whole expression thus terminated.
What this means is that it selects the whole expression while the ")" key is held down, and
unselects it when it is released. If the beginning of the expression is not visible in the file
window, then the window will temporarily scroll to show you the beginning of the selected
expression while the bracket key is held down.
It is possible that a syntax error will be detected when trying to find the expression that the
bracket terminates. When this happens a message box for the error appears, but the cursor
remains after the bracket just typed. To find the position of the error, select Lisp:Select Expr
(F2).

Editing
Auto-indentation
Bracket flashing
Color Scheme
Configuration file
Editor overview
File Windows
Output Window
Parsing lisp expressions
Top-level expressions

Menu Commands
File

New
Open
Save
Save As
Save All
Printer Setup
Exit

Edit
Undo
Redo
Cut
Paste
Copy
Duplicate
Select All
Show Undos

Search
Find
Find Next
Find and Replace
Browse
Browse Headings

Special
Indent Line
New Indented Line
Find Expr Fwd
Find Expr Bwd
File Statistics
Tabs to Spaces
Save Config

Lisp
Eval
Load Buffer
Load Rest
Select Expr
Indent

Window
Tile
Cascade
Tile with Output
Arrange Icons

Help
Index
Help on Help
About Apteryx Lisp
About Registration

File:New    (menu option)
Create a new file window called (Untitled) which is not associated with a file until you do a
File:Save As command.

File:Open    (menu option)
Brings up a "File Open" dialog box. To select a file click on a file name in the list box or enter
the filename in the filename field. To open the selected file, double click on its name in the
list box or hit the OK button or press Enter.

A new file window will be created for the specified file.
However if the file is already opened, a message to that effect will come up and its existing
window will be brought to the front.
This means that Apteryx Lisp doesn't allow you to open two editing windows for the same
file.

File:Save    (menu option)
Save changes made to the file in the current editing window.

This option is greyed if no changes have been made since the last save.
If the current file window is (Untitled) (i.e. has been created using File:New) then a "Save As"
dialog box will come up and you must supply the name of the file that you want the window
contents saved to.

File:Save As    (menu option)
Brings up a "Save As" dialog box to specify a new file name for the file that the current
editor window is to be saved to.

File:Save All    (menu option)
Save all editor windows that have had changes made since the last save.

File:Printer Setup    (menu option)
Setup default printer for all printing operations

File:Exit    (menu option)
Exit from Apteryx Lisp. If there are editor windows that have unsaved changes, then you will
be prompted as to whether you want to save those changes before exiting, or if you want to
cancel the exit command.

Edit:Undo    (menu option)
Undo last editing operation on current file window. Undo's can be repeated and mixed with
Edit:Redo provided that no other editing operation intervenes.

Edit:Redo    (menu option)
Undo previous Edit:Undo operation.

Edit:Cut    (menu option)
Delete selected text from current window, and put it into the Windows clipboard.

Edit:Paste    (menu option)
Insert contents of Windows clipboard at current cursor position in the current editing
window, replacing the currently selected text if any.

Edit:Copy    (menu option)
Copy the selected text into the Windows clipboard (without deleting it).

Edit:Duplicate    (menu option)
Duplicate the currently selected text by copying it into the Windows clipboard and then
copying it into current editing window.

Edit:Select All    (menu option)
Select the whole of the current editing window.

Edit:Show Undos    (menu option)
Output into the output window the list of past editing operations stored in the undo stack of
the current file window.

Search:Find    (menu option)
Bring up a dialog which lets you perform an incremental search in the current editing
window. The search starts as you type characters into the search string field. You can choose
case-sensitive or case-insensitive. Choose OK to move to the search string found, or choose
Cancel to return to your original position. Choose Next to find the next copy of the string
currently being searched for and choose To Top to go to the top of the file.

Search:Find Next    (menu option)
Bring up search dialog searching for the last string searched for using Search:Find.

Search:Find and Replace    (menu option)
Bring up a search and replace dialog box. It works similiarly to the plain search dialog
brought up by Search:Find but adds a field for entering replacement text, and a Replace and
Find Next button. The button replaces any currently found text with the text in the
Replacement Text field, and then looks for the next match to the Search Text if any.

Search:Browse    (menu option)
Bring up a BROWSER dialog. It shows in a list box all lines in the current file window starting
with either "(" or ";;;". Lines starting with ;;; represent headings and the rest represent the
beginnings of top-level expressions.

Click on a line in the list box to move to the corresponding line in the file window. Choose OK
to return to the file window or Cancel to go back to your original position in the file window.
Set the Headings Only check box to see only the lines starting with ;;;.
The general idea is that you should create one line comments starting with ;;; at the
beginning of major sections of your source code file. You can then use Browse with and
without Headings Only checked to quickly navigate around a source file.

Search:Browse Headings    (menu option)
As for Search:Browse but with the Headings Only option set.

Special:Indent Line    (menu option)
Indent the current line according to the auto-indentation scheme.

Special:New Indented Line    (menu option)
Start a new line which is indented according to the auto-indentation scheme.

Special:Find Expr Fwd    (menu option)
Find and select the expression after the current cursor or selection position. Failure to find a
syntactically valid expression will result in an error message.

Special:Find Expr Bwd    (menu option)
Find and select the expression before the current cursor or selection position. Failure to find
a syntactically valid expression will result in an error message. Parsing starts from the top of
an assumed top-level expression.

Special:File Statistics    (menu option)
Display statistics on size of current file window.

Special:Tabs to Spaces    (menu option)
Convert all tab characters (which Apteryx Lisp does not show properly) to equivalent spaces,
assuming the usual tab-stops every 8 characters.

Special:Save Config    (menu option)
Save the current configuration file, which contains a list of files being edited and the current
un-maximised size of the main window.

Lisp:Eval    (menu option)
If there is no selection then first find a top-level expression surrounding or before the current
cursor position (as in Lisp:Select Expr).
Read in the found or selected expression and evaluate it, showing the results in the output
window.

Lisp:Load Buffer    (menu option)
Read in and evaluate all top-level expressions in the current file window.

Lisp:Load Rest    (menu option)
Read in and evaluate all top-level expressions in the current file window, starting at the
current cursor position.

Lisp:Select Expr    (menu option)
Find a top-level expression that starts before the current cursor position (and which may
finish before or after the current cursor position).
The assumption is made that a line starting with (, #, ' or ` is a top-level expression.

Lisp:Indent    (menu option)
If there is a selection indent it according to the auto-indentation scheme, or else find a top-
level expression that starts before the current cursor expression and indent that.

Window:Tile    (menu option)
Tile the file windows and the output window.

Window:Cascade    (menu option)
Cascade the file windows with the output window at the bottom.

Window:Tile with Output    (menu option)
Put all file windows in top 70% of screen and LispOutput window in bottom 30% of screen,
with current file window (if any) on top.

Window:Arrange Icons    (menu option)
Arrange icons in a neat row.

Help:Index    (menu option)
Get help on Apteryx Lisp.

Help:Help on Help    (menu option)
Get help on Microsoft Windows (TM) help.

Help:About Apteryx Lisp    (menu option)
Show credits and copyright notice for Apteryx Lisp.

Help:About Registration    (menu option)
Bring up a read only window with information about registering as a user of Apteryx Lisp.

do      (&rest VARIABLE-DECLARATION) (TEST &optional RESULT) &rest EXPRS

A general looping macro.

Local variables are created from the VARIABLE-DECLARATIONS just as in let and the scope of
the resultant variable bindings is the rest of the do expression. However each variable
declaration can include a third element (in addition to the variable name and initial value)
which is the update value for the variable and is assigned to that variable each time around
the loop. The update expressions are calculated in parallel so that any references to other
variables in an update expression always refer to the old value of those variables.

TEST-RESULT consists of a list containing a test expression and an optional result expression
(whose default value if not supplied is nil). The test expression is evaluated at the start of
each loop (after variable initialisation or update) and if the test evaluates to nil i.e. false,
then the loop terminates otherwise execution continues.

Each time the TEST expression is non-nil i.e. true, the EXPRs are evaluated in order, and
then the update expressions (if any) are evaluated and assigned to their respective
variables.
When the TEST expression evaluates to nil and the loop terminates, the RESULT expression
is evaluated to give the result to be returned from do.

do*      (&rest VARIABLE-DECLARATION) (TEST &optional RESULT) &rest EXPRS

A general looping macro.

Local variables are created from the VARIABLE-DECLARATIONS just as in let* and the scope
of the resultant variable bindings is the rest of the do* expression. However each variable
declaration can include a third element (in addition to the variable name and initial value)
which is the update value for the variable and is assigned to that variable each time around
the loop. The update expressions are calculated sequentially so that any references to other
variables in an update expression refer to the new values of preceding variables and the old
values of following variables.
TEST-RESULT consists of a list containing a test expression and an optional result expression
(whose default value if not supplied is nil). The test expression is evaluated at the start of
each loop (after variable initialisation or update) and if the test evaluates to nil i.e. false,
then the loop terminates otherwise execution continues.
Each time the TEST expression is non-nil i.e. true, the EXPRs are evaluated in order, and
then the update expressions (if any) are evaluated and assigned to their respective
variables.

When the TEST expression evaluates to nil and the loop terminates, the RESULT expression
is evaluated to give the result to be returned from do*.

Looping macros
do
do*

constant-value      CONSTANT

Returns the integer value of the windows constant CONSTANT.

Example:
(constant-value sw_maximize)
 => 3

show_window constants
How to display a new window
sw_Hide Hide the window
sw_Maximize Show the window full screen
sw_Minimize Show the window as an icon
sw_Normal Show as an active normal window

message_box_default constants
Which button in a message box is the default button
mb_DefButton1 First button is the default
mb_DefButton2 Second button is the default
mb_DefButton3 Third button is the default

message_box_icon constants
Which icon to show in a message box
mb_IconExclamation An exclamation mark
mb_IconInformation An i for information
mb_IconQuestion A question mark
mb_IconHand A hand signalling stop
mb_IconStop A hand signalling stop

message_box_mode constants
Message box mode
mb_ApplModal Stop parent window until message box is answered
mb_SystemModalStop Windows until message box is answered
mb_TaskModal Stop program until message box is answered

message_box_type constants
Type of message box
mb_AbortRetryIgnore Has Abort (default), Retry and Ignore buttons
mb_Ok Has OK button
mb_OkCancel Has OK (default) and Cancel buttons
mb_RetryCancel Has Retry (default) and Cancel buttons
mb_YesNo Has Yes (default) and No buttons
mb_YesNoCancel Has Yes (default), No and Cancel buttons

command_id constants
Which message box button the user chose
id_Abort The Abort button
id_Cancel The Cancel button
id_Ignore The Ignore button
id_No The No button
id_Ok The OK button
id_Retry The Retry button
id_Yes The Yes button

hatch_style constants
Hatch style (for a brush)
hs_BDiagonal Backwards leaning diagonal lines
hs_Cross Horizontal and vertical lines
hs_DiagCross Diagonal crossing lines
hs_FDiagonal Forwards leaning diagonal lines
hs_Horizontal Horizontal lines
hs_Vertical Vertical lines

stock_brush constants
Stock (i.e. pre-supplied) brushes
Black_Brush Black brush
DkGray_Brush Dark gray brush
Gray_Brush Gray brush
Null_Brush Brush that paints nothing
LtGray_Brush Light gray brush
White_Brush White brush

stock_pen constants
Stock (i.e. pre-supplied) pens
Black_Pen Black pen (one pixel thick)
Null_Pen Pen that draws nothing
White_Pen White pen (one pixel thick)

stock_font constants
Stock (i.e. pre-supplied) fonts
ANSI_Fixed_Font ANSI fixed width font
ANSI_Var_Font ANSI variable width font
Device_Default_Font Default font for graphics device
System_Fixed_FontOld system font
System_Font Windows 3 system font

stock_palette constants
Stock (i.e. pre-supplied) palettes
Default_Palette Default colour palette

system_color constants
Colours used by Windows itself in various situations
color_ActiveBorderColour of border of active window
color_ActiveCaption Colour of caption of active window
color_AppWorkSpace Colour of application work space
color_Background Colour of background
color_BtnFace Colour of button face
color_BtnShadow Colour of button shadow
color_BtnText Colour of button text
color_CaptionText Colour of window caption text
color_GrayText Colour of grayed text
color_Highlight Colour of highlighted text
color_HighlightText Colour of highlighted text
color_InactiveBorder Colour of border of inactive window
color_InactiveCaption Colour of caption of inactive window
color_Menu Colour of menu
color_MenuText Colour of menu text
color_Scrollbar Colour of scroll bar
color_Window Colour of window
color_WindowFrame Colour of window frame
color_WindowText Colour of window text

pen_style constants
Pen style
ps_Solid Solid line
ps_Dash Dashed line
ps_Dot Dotted line
ps_DashDot Dash and dot line
ps_DashDotDot Dash and dot dot line
ps_Null No line
ps_InsideFrame Pen used to draw inside of a frame

binary_raster_op constants
Binary raster operation type for adding new color to existing when drawing painting etc.
r2_Black black
r2_CopyPen new color
r2_MaskNotPen existing color ANDed with NOT of new
r2_MaskPen existing color ANDed with new
r2_MaskPenNot not of existing color ORed with new
r2_MergeNotPen existing color ORed with NOT of new
r2_MergePen existing color ORed with new
r2_MergePenNot existing color ORed with NOT of new
r2_Nop existing color (i.e. draw nothing)
r2_Not NOT of existing color
r2_NotCopyPen NOT of new color
r2_NotMaskPen NOT of existing color ANDed with new
r2_NotMergePen NOT of existing color ORed with new
r2_NotXorPen NOT of existing color XORed with new
r2_White white
r2_XorPen existing color XORed with new (this is self-erasing)

Windows constants - values
binary_raster_op constants
command_id constants
hatch_style constants
message_box_default constants
message_box_icon constants
message_box_mode constants
message_box_type constants
pen_style constants
show_window constants
stock_brush constants
stock_font constants
stock_palette constants
stock_pen constants
system_color constants

Windows constant functions
constant-value

data-size      OBJECT

Return size of data associated with object.

Examples:
(data-size 34)
 => 4
(data-size '(jim fred))
 => 8
(data-size #(0 1 2 3 4 5 6 7 8 9))
 => 44

type-of      OBJECT

Returns a symbol describing the type of OBJECT

Examples:
(type-of 2)
 => integer
(type-of 'fred)
 => symbol

Type functions
data-size
type-of

set-trace      FLAG

Use (set-trace t) to set tracing on, and (set-trace nil) to turn it off.

If tracing is on, then every expression being evaluated and its result is printed to the output
window.

baktrace     

Prints out a dump of current state of stack to output window.

Debugging
baktrace
set-trace

length      SEQUENCE

Returns as an integer the length of an array, string or list.

Examples:
(length '(a b c))
 => 3
(length "Hello")
 => 5
(length #(a b))
 => 2

Sequence functions
length

version     

Returns string giving version number of Apteryx Lisp.

Example:
(version)
 => "1.04"

message-box      MESSAGE :caption CAPTION :type TYPE :default DEFAULT :icon
ICON

Puts up a task modal message box showing message.

Default style has just an OK button.
Task modal means that nothing else can be done to Apteryx Lisp until the message box is
replied to.
CAPTION is the caption that is displayed on the top of the window.

TYPE is one of the message box type windows constant.s mb_AbortRetry, mb_Ignore, mb_Ok
(default), mb_OkCancel, mb_RetryCancel, mb_YesNo, mb_YesNoCancel. It determines which
buttons appear on the message box for the user to select.
DEFAULT is one of the message box default windows constant.s mb_DefButton1 (default),
mb_DefButton2, mb_DefButton3. It determines which button on the message box is the
default button.

ICON is one of the message box icon windows constant.s mb_IconAsterisk,
mb_IconExclamation,    mb_IconHand, mb_IconInformation, mb_IconQuestion, mb_IconStop.
It determines which icon if any appears on the message box.
Returns one of the symbols id_abort, id_cancel, id_ignore, id_no, id_ok, id_retry or id_yes
depending on which button was clicked.

pascalize      SYMBOL

Convert a symbol into one that only contains alphabetic letters, digits, underscores and
which doesn't start with a digit, while retaining uniqueness.

Examples:
(pascalize 'myfunction)
 => myfunction
(pascalize '1+)
 => __1__plus_
(pascalize 'my-function)
 => my_function
(pascalize 'my_function)
 => my___function
(pascalize 'let*)
 => let__star_

Miscellaneous
message-box
pascalize
version

+      &rest NUMBERS

Returns the sum of NUMBERS. If all the NUMBERS are integers the result is an integer
otherwise it is a floating number.

Examples:
(+ 0 1 2 3 4 5 6 7 8 9 10)
 => 55
(+)
 => 0
(+ 3.1 42)
 => 45.1

*      &rest NUMBERS

Returns the product of NUMBERS. If all the NUMBERS are integers the result is an integer
otherwise it is a floating number.

Examples:
(* 1.5 2.0)
 => 3.0
(* 3 4)
 => 12

rem      INTEGER1 INTEGER2

Returns the remainder of INTEGER1 divided by INTEGER2. The result has the same sign as
INTEGER1.

Examples:
(rem 52 10)
 => 2
(rem 52 -10)
 => 2
(rem -52 10)
 => -2
(rem -52 -10)
 => -2

mod      INTEGER1 INTEGER2

Returns the INTEGER1 modulo INTEGER2. The result has the same sign as INTEGER2.

Examples:
(mod 52 10)
 => 2
(mod 52 -10)
 => -8
(mod -52 10)
 => 8
(mod -52 -10)
 => -2

/      NUMBER1 &optional NUMBER2

Returns NUMBER1 divided by NUMBER2. If both numbers are integers the result is an
integer, rounded down towards zero, otherwise the answer is a floating number.
If only NUMBER1 is given, it returns the reciprocal of NUMBER1.

Examples:
(/ 34.0 3.0)
 => 11.3333333333333
(/ 34 3)
 => 11
(/ 34.0 3)
 => 11.3333333333333
(/ 3.0)
 => 3.33333333333333e-1

-      NUMBER1 &optional NUMBER2

Returns NUMBER1 minus by NUMBER2. If both numbers are integers the result is an integer
otherwise the answer is a floating number.
If only NUMBER1 is given it returns -NUMBER1.

Examples:
(- 45)
 => -45
(- 45 32)
 => 13

max      NUMBER1 &rest NUMBERS

Returns the max of NUMBER1 and NUMBERS. If all the NUMBERS are integers the result is an
integer otherwise a floating number is returned.

Examples:
(max 1 2 3 4 5)
 => 5
(max 1 2 3.0 4 5)
 => 5.0

min      NUMBER1 &rest NUMBERS

Returns the min of NUMBER1 and NUMBERS. If all the NUMBERS are integers the result is an
integer otherwise a floating number is returned.

Examples:
(min 1 2 3 4 5)
 => 1
(min 1 2 3.0 4 5)
 => 1.0

1-      INTEGER

Returns INTEGER minus one.

Example:
(1- 45)
 => 44

1+      INTEGER

Returns INTEGER plus one.

Example:
(1+ 45)
 => 46

Arithmetic
*
+
-
/
1+
1-
max
min
mod
rem

sin      ANGLE

return sine of ANGLE (given in radians).

Example:
(sin (/ pi 6))
 => 5.0e-1

cos      ANGLE

return cosine of ANGLE (given in radians).

Example:
(cos (/ pi 6))
 => 8.66025403784439e-1

arctan      TAN

return arctan of TAN in radians

Example:
(* (arctan 1.0) 4)
 => 3.14159265358979

exp      EXPONENT

return e (2.718281828459...) to the power of EXPONENT. Opposite of ln.

Examples:
(exp 1.0)
 => 2.71828182845905
(exp (ln 2.9))
 => 2.9

sqrt      X

return square root of X.

Examples:
(sqrt 2)
 => 1.4142135623731
(sqrt 1024)
 => 32.0

ln      X

return the natural log of X (to base e = 2.718281828459...). Opposite of exp.

Examples:
(/ (ln 1000) (ln 10))
 => 3.0
(ln (exp 2.9))
 => 2.9

round      X

return floating point number X rounded to the nearest integer.

Examples:
(round 2.3)
 => 2
(round -2.5)
 => -2
(round 1.9)
 => 2

trunc      X

return floating point number X truncated zero-wards to    an integer.

Examples:
(trunc 2.3)
 => 2
(trunc -2.5)
 => -2
(trunc 1.9)
 => 1

float      NUMBER

Convert an integer or floating number to a floating number.

Examples:
(float 2)
 => 2.0
(float 3.5)
 => 3.5

Math functions
arctan
cos
exp
float
ln
round
sin
sqrt
trunc

prin1-length      OBJECT &optional MAX-LENGTH

Returns number of characters printed out if OBJECT was printed using prin1 or prin1-to-
string, with a maximum of MAX-LENGTH (with default 32767). The maximum prevents an
infinite loop if the OBJECT contains circular pointers.

Examples:
(prin1-length "Hello")
 => 7
(prin1-length '(+ 2 34))
 => 8

prin1-to-string      OBJECT

Returns the string of characters if OBJECT was printed out byprin1.

Example:
(prin1-to-string '(a b (23 4)))
 => "(a b (23 4))"

Printing to strings
prin1-length
prin1-to-string

case      KEY-EXPR &rest CASE-CLAUSES

Use case to select one of a group of actions or values based on the value of an expression

The KEY-EXPR is evaluated. Each of the CASE-CLAUSEs is of the form (key | [([key] ...)]
[expr] ...). The first CASE-CLAUSE such that the value of KEY-EXPR is eql to the KEY or one of
the KEYs in the list at the head of the clause has its EXPR's evaluated in order. If the KEY at
the head of a clause is the symbol t then this counts as being eql to the value of KEY-EXPR.
(The KEYs are not evaluated.) The value returned is the last value returned by executing an
expr from the clause list evaluated if any, otherwise nil.

Examples:
(case (+ 1 1) (1 (+ 2 3)) (2 (+ 3 4)) (t 'fred))
 => 7
(case (+ 1 2) (1 (+ 2 3)) (2 (+ 3 4)) (t 'fred))
 => fred

cond      &rest COND-CLAUSES

Use cond to select one of a group of actions or values based on satisfying a condition

Each of the COND-CLAUSEs is of the form (condition [expr] ...). The first COND-CLAUSE such
that CONDITION evaluates to true has its EXPRs evaluated in order. The value returned is the
last value returned by executing an EXPR from the clause list evaluated if any, otherwise the
value returned by the CONDITION of the successful COND-CLAUSE.

Example:
(cond ((= 1 2) 'a) ((= 1 1) 'b) ((= 2 2) 'c))
 => b

throw      TAG EXPR

Use throw to perform an exit with dynamic scope to a corresponding catch.

TAG and EXPR are both evaluated. If there is a catch currently executing with the same TAG,
then the execution of expressions in the catch is aborted, and the catch returns the value of
EXPR. If no catch with the same TAG is executing, then an error is signaled. TAGs are
compared using eq.

Example:
(catch 'jim (throw 'jim 34) 36)
 => 34

catch      TAG &rest EXPR

Use catch to trap a dynamic exit initiated by a corresponding throw.

Catch evaluates the TAG and then evaluates the EXPRs in turn. If a throw with the same TAG
occurs during this evaluation then the value returned is the value passed by the throw,
otherwise it is the value of the last EXPR evaluated.

Examples:
(catch 'jim (throw 'jim 34) 36)
 => 34
(catch 'jim 36)
 => 36

dotimes      (COUNTER LIMIT &optional RESULT) &rest EXPR

Use dotimes to perform a fixed series of actions a certain number of times.

A local variable called COUNTER is created and its value starts at 0, incrementing by 1 each
iteration until reaching LIMIT - 1 on the last iteration. For each iteration the EXPRs are
evaluated in order. The returned value is the evaluation of RESULT after the last iteration, if
RESULT is supplied, otherwise nil.

Example:
(let ((a ())) (dotimes (i 3 a) (setq a (cons i a))))
 => (2 1 0)

dolist      (ELEMENT LIST &optional RESULT) &rest EXPR

Use dolist to iterate over the elements of a list.

A local variable called ELEMENT is created and its value is set to each element of LIST in
turn. For each iteration the EXPRs are evaluated in order. The returned value is the
evaluation of RESULT after the last iteration, if RESULT is supplied, otherwise nil.

Example:
(let ((a 0)) (dolist (x '(1 20 300) a) (setq a (+ x a))))
 => 321

while      TEST &rest EXPR

Use while to iterate while a certain condition holds true.

TEST is evaluated at the beginning of each iteration. If it evaluates to nil the iteration
terminates, otherwise each of the EXPRs is evaluated in turn. The value returned is the result
from the last EXPR evaluated if any, otherwise nil.

Example:
(let ((a 0)) (while (< a 10) (setq a (+ a 3))) a)
 => 12

progn      &rest EXPR

Use progn to group a series of expressions together.

Each of the EXPRs is evaluated in order. The value returned is the value returned from the
last EXPR if any, otherwise nil.

Example:
(progn (setq a 23) (setq a (+ a 100)) (+ a a))
 => 246

prog1      EXPR1 &rest EXPR

Use prog1 to evaluate a series of expressions, returning the result of the 1st one.

EXPR1 is evaluated, and its value becomes the return value of the prog1, then the other
EXPRs are evaluated in order.

Example:
(prog1 (setq a 23) (setq a (+ a 100)) (+ a a))
 => 23

prog2      EXPR1 EXPR2 &rest EXPR

Use prog2 to evaluate a series of expressions in order, and return the result of the 2nd one.

EXPR1 is evaluated, followed by EXPR2, whose return value becomes the return value of the
prog2, followed by the other EXPRs in order. Typically EXPR1 is some sort of startup code,
and the EXPRs are some sort of cleanup code.

Example:
(prog2 (setq a 23) (setq a (+ a 100)) (+ a a))
 => 123

if      CONDITION EXPR1 &optional EXPR2

Use if to make a choice based on a condition being true or false.

CONDITION is evaluated. If the value returned is non-nil then EXPR1 is evaluated and its
value returned, otherwise if EXPR2 is given then it is evaluated and its value returned,
otherwise nil is returned.

Examples:
(if (= 1 1) 'fred 'jim)
 => fred
(if (= 1 2) 'fred 'jim)
 => jim

when      TEST &rest EXPRS

Use when to evaluate a series of expressions if a certain condition holds true.

TEST is evaluated. If its return value is nil then the when returns nil, otherwise each EXPR is
evaluated in turn and the value of the last one if any is the return value, otherwise nil is
returned.

Examples:
(when (= 1 1) (setq a 100) (+ a 25))
 => 125
(when (= 1 2) (setq a 100) (+ a 25))
 => ()

unless      TEST &rest EXPRS

Use unless to evaluate a series of expressions if a certain condition doesn't hold true.

TEST is evaluated. If its return value is nil then each EXPR is evaluated in turn and the value
of the last one if any is the return value, otherwise nil is returned.

Examples:
(unless (= 1 1) (setq a 100) (+ a 25))
 => ()
(unless (= 1 2) (setq a 100) (+ a 25))
 => 125

let      (&rest VARIABLE-DECLARATION) &rest EXPR

Use let to define a series of local lexical variables, where the initialisation expressions of the
variables are not in the scope of any of them.
Each variable-declaration is of the form variable or (variable) or (variable initialisation-
expression). If the initialisation expression is not provided it defaults to nil. The initialisation
expression of each variable is evaluated outside of the scope of the let, i.e. no initialisation
expression can make reference to any of the variables in the same let. Each local variable is
then created and given the value returned from its initialisation expression. The EXPRs are
then evaluated in order with these variables defined.
Any variable (local or global) with the same name as one of the let variables that exists
before the let is 'shadowed' during the let, i.e. the most newly defined variable takes
precedence. But the existing variables continue to exist, and can be referred to again once
the let has terminated.

Example:
(let ((a 10)) (setq a (* a a)) (+ a (let ((a 9)) a)))
 => 109

let*      (&rest VARIABLE-DECLARATION) &rest EXPR

Use let* to define a series of local lexical variables, where the initialisation expressions of the
variables can refer to preceding variables in the let*.
Each variable-declaration is of the form variable or (variable) or (variable initialisation-
expression). If the initialisation expression is not provided it defaults to nil. For each variable
the initialisation expression is evaluated and then the variable is created with that initial
value. This means that the initialisation expression for each variable can refer to variables
already defined in the same let*, but not the variable currently being initialised or ones yet
to com. The EXPRs are then evaluated in order with these variables defined.
Any variable (local or global) with the same name as one of the let* variables that exists
before the let* is 'shadowed' during the let*, i.e. the most newly defined variable takes
precedence. But the existing variables continue to exist, and can be referred to again once
the let* has terminated.

Example:
(let* ((a 100) (b (+ a 2))) (* a b))
 => 10200

unwind-protect      EXPR &rest CLEANUP-EXPR

Use unwind-protect to guarantee evaluation of cleanup code.

EXPR is evaluated, and then the CLEANUP-EXPRs are evaluated. If a non-returning exit
occurs during evaluation of EXPR, the CLEANUP-EXPRs are still evaluated before completion
of the exit. A non-returning exit could be caused by a throw or a signaled error. If a non-
returning exit occurs during evaluation of the CLEANUP-EXPRs then the original exit will be
abandoned.
If no non-returning exit occurs then the result of evaluating EXPR is returned.

Control structures
case
catch
cond
dolist
dotimes
if
let
let*
prog1
prog2
progn
throw
unless
unwind-protect
when
while

setf      PLACE VALUE

Use setf to set the value of a generalised variable.

The PLACE argument is an expression that is a macro or function call that extracts data from
some position. Setf effectively inserts a new VALUE into PLACE. This is done using a setf
method which must be defined for any function or macro that setf is used with. Setf methods
are predefined for the following functions - aref background-color caar cadr car cdar cddr cdr
char cursor-pos double-click-time first fourth gc-limit get nth pixel profile-string rest second
symbol-function symbol-value system-color text-color third viewport-extent viewport-origin
window-data window-extent window-origin window-painter window-text . PLACE can also be
the name of a variable, in which case the value of that variable is set to VALUE (as by setq).

defsetf can be used to define setf methods for any function or macro.
Setf works as a macro, creating a new expression to be evaluated whose head is the name
or value of the setf method, and whose arguments are the arguments to PLACE followed by
VALUE.

Setf returns VALUE.

Example:
(let ((x '(c b))) (setf (car x) 'c) x)
 => (c b)

defsetf      PLACE FUN

Use defsetf to define a setf method for an arbitrary function or macro.

It defines the setf method for PLACE to be FUN, i.e. when the place for setf is an expression
starting with PLACE, use FUN on the same arguments with the setf value added to the end to
set a new value for PLACE. The return value for setf is the new value put into the given
place, and it is the responsibility of FUN to return this value (the reason for this being that
often a setf method ends up by itself calling setf, so requiring the setf method to return the
value avoids setf itself doing the same work repeatedly).

Setf functions
defsetf
setf

make-array      SIZE &key INITIAL-ELEMENT

Return an array containing SIZE elements which are initially all INITIAL-ELEMENT (default
value nil).

Example:
(make-array 3 :initial-element 'trevor)
 => #(trevor trevor trevor)

aref      ARRAY INDEX

Return member number INDEX of ARRAY. For an array of size n, the index goes from 0 to n-1.

Can be used with setf.

Example:
(aref #(a b c d e) 3)
 => d

vector      &rest ELEMENTS

Returns a one-dimensional array whose members are ELEMENTS.

Example:
(vector 2 3 5 7)
 => #(2 3 5 7)

Array functions
aref
make-array
vector

char      STRING POSITION

Retrieves character from POSITION in STRING. Positions in the string start from 0.

Can be used with setf to set the value of a character in a string.

Example:
(char "Hello" 1)
 => #\e

string-downcase      STRING

Returns a string the same as STRING except that upper case characters are converted to
lower case.

Example:
(string-downcase "AbCdEf")
 => "abcdef"

string-upcase      STRING

Returns a string the same as STRING except that lower case characters are converted to
upper case.

Example:
(string-upcase "AbCdEf")
 => "ABCDEF"

strcat      &rest STRING

Returns a single string which is the concatenation of all the STRINGs.

Example:
(strcat "Goo" "d morn" "ing")
 => "Good morning"

make-string      LENGTH &key INITIAL-ELEMENT

Make a string of LENGTH characters long with each character = INITIAL-ELEMENT (defaults
to blank).

Examples:
(make-string 12 :initial-element #\Z)
 => "ZZZZZZZZZZZZ"
(make-string 12)
 => "                        "

string      OBJECT

Coerce OBJECT, which must be a character, symbol or string to an equivalent string - the
name of a symbol, or a one letter string containing the character, or the same string
respectively.

Examples:
(string "trevor")
 => "trevor"
(string 'trevor)
 => "trevor"
(string #\k)
 => "k"

string<      STRING1 STRING2

Compare STRING1 and STRING2 using normal alphabetical order.Return t (i.e. true) if
STRING1 is less than STRING2 otherwise nil (i.e. false).
Comparison is case-sensitive.

Examples:
(string< "abc" "abde")
 => t
(string< "abde" "abc")
 => ()
(string< "abc" "ABC")
 => ()
(string< "ABC" "abc")
 => t
(string< "abc" "abc")
 => ()
(string< "abc" "ABDE")
 => ()
(string< "ABDE" "abc")
 => t

string<=      STRING1 STRING2

Compare STRING1 and STRING2 using normal alphabetical order.Return t (i.e. true) if
STRING1 is less than or equal to STRING2 otherwise nil (i.e. false).
Comparison is case-sensitive.

Examples:
(string<= "abc" "abde")
 => t
(string<= "abde" "abc")
 => ()
(string<= "abc" "ABC")
 => ()
(string<= "ABC" "abc")
 => t
(string<= "abc" "abc")
 => t
(string<= "abc" "ABDE")
 => ()
(string<= "ABDE" "abc")
 => t

string=      STRING1 STRING2

Compare STRING1 and STRING2 using normal alphabetical order.Return t (i.e. true) if
STRING1 is equal to STRING2 otherwise nil (i.e. false).
Comparison is case-sensitive.

Examples:
(string= "abc" "abde")
 => ()
(string= "abde" "abc")
 => ()
(string= "abc" "ABC")
 => ()
(string= "ABC" "abc")
 => ()
(string= "abc" "abc")
 => t
(string= "abc" "ABDE")
 => ()
(string= "ABDE" "abc")
 => ()

string/=      STRING1 STRING2

Compare STRING1 and STRING2 using normal alphabetical order.Return t (i.e. true) if
STRING1 is not equal to STRING2 otherwise nil (i.e. false).
Comparison is case-sensitive.

Examples:
(string/= "abc" "abde")
 => t
(string/= "abde" "abc")
 => t
(string/= "abc" "ABC")
 => t
(string/= "ABC" "abc")
 => t
(string/= "abc" "abc")
 => ()
(string/= "abc" "ABDE")
 => t
(string/= "ABDE" "abc")
 => t

string>=      STRING1 STRING2

Compare STRING1 and STRING2 using normal alphabetical order.Return t (i.e. true) if
STRING1 is greater than or equal to STRING2 otherwise nil (i.e. false).
Comparison is case-sensitive.

Examples:
(string>= "abc" "abde")
 => ()
(string>= "abde" "abc")
 => t
(string>= "abc" "ABC")
 => t
(string>= "ABC" "abc")
 => ()
(string>= "abc" "abc")
 => t
(string>= "abc" "ABDE")
 => t
(string>= "ABDE" "abc")
 => ()

string>      STRING1 STRING2

Compare STRING1 and STRING2 using normal alphabetical order.Return t (i.e. true) if
STRING1 is greater than STRING2 otherwise nil (i.e. false).
Comparison is case-sensitive.

Examples:
(string> "abc" "abde")
 => ()
(string> "abde" "abc")
 => t
(string> "abc" "ABC")
 => t
(string> "ABC" "abc")
 => ()
(string> "abc" "abc")
 => ()
(string> "abc" "ABDE")
 => t
(string> "ABDE" "abc")
 => ()

string-lessp      STRING1 STRING2

Compare STRING1 and STRING2 using normal alphabetical order.Return t (i.e. true) if
STRING1 is less than STRING2 otherwise nil (i.e. false).
Comparison is case-insensitive.

Examples:
(string-lessp "abc" "abde")
 => t
(string-lessp "abde" "abc")
 => ()
(string-lessp "abc" "ABC")
 => ()
(string-lessp "ABC" "abc")
 => ()
(string-lessp "abc" "abc")
 => ()
(string-lessp "abc" "ABDE")
 => t
(string-lessp "ABDE" "abc")
 => ()

string-not-greaterp      STRING1 STRING2

Compare STRING1 and STRING2 using normal alphabetical order.Return t (i.e. true) if
STRING1 is less than or equal to STRING2 otherwise nil (i.e. false).
Comparison is case-insensitive.

Examples:
(string-not-greaterp "abc" "abde")
 => t
(string-not-greaterp "abde" "abc")
 => ()
(string-not-greaterp "abc" "ABC")
 => t
(string-not-greaterp "ABC" "abc")
 => t
(string-not-greaterp "abc" "abc")
 => t
(string-not-greaterp "abc" "ABDE")
 => t
(string-not-greaterp "ABDE" "abc")
 => ()

string-equalp      STRING1 STRING2

Compare STRING1 and STRING2 using normal alphabetical order.Return t (i.e. true) if
STRING1 is equal to STRING2 otherwise nil (i.e. false).
Comparison is case-insensitive.

Examples:
(string-equalp "abc" "abde")
 => ()
(string-equalp "abde" "abc")
 => ()
(string-equalp "abc" "ABC")
 => t
(string-equalp "ABC" "abc")
 => t
(string-equalp "abc" "abc")
 => t
(string-equalp "abc" "ABDE")
 => ()
(string-equalp "ABDE" "abc")
 => ()

string-not-equalp      STRING1 STRING2

Compare STRING1 and STRING2 using normal alphabetical order.Return t (i.e. true) if
STRING1 is not equal to STRING2 otherwise nil (i.e. false).
Comparison is case-insensitive.

Examples:
(string-not-equalp "abc" "abde")
 => t
(string-not-equalp "abde" "abc")
 => t
(string-not-equalp "abc" "ABC")
 => ()
(string-not-equalp "ABC" "abc")
 => ()
(string-not-equalp "abc" "abc")
 => ()
(string-not-equalp "abc" "ABDE")
 => t
(string-not-equalp "ABDE" "abc")
 => t

string-not-lessp      STRING1 STRING2

Compare STRING1 and STRING2 using normal alphabetical order.Return t (i.e. true) if
STRING1 is greater than or equal to STRING2 otherwise nil (i.e. false).
Comparison is case-insensitive.

Examples:
(string-not-lessp "abc" "abde")
 => ()
(string-not-lessp "abde" "abc")
 => t
(string-not-lessp "abc" "ABC")
 => t
(string-not-lessp "ABC" "abc")
 => t
(string-not-lessp "abc" "abc")
 => t
(string-not-lessp "abc" "ABDE")
 => ()
(string-not-lessp "ABDE" "abc")
 => t

string-greaterp      STRING1 STRING2

Compare STRING1 and STRING2 using normal alphabetical order.Return t (i.e. true) if
STRING1 is greater than STRING2 otherwise nil (i.e. false).
Comparison is case-insensitive.

Examples:
(string-greaterp "abc" "abde")
 => ()
(string-greaterp "abde" "abc")
 => t
(string-greaterp "abc" "ABC")
 => ()
(string-greaterp "ABC" "abc")
 => ()
(string-greaterp "abc" "abc")
 => ()
(string-greaterp "abc" "ABDE")
 => ()
(string-greaterp "ABDE" "abc")
 => t

String functions
char
make-string
strcat
string
string-downcase
string-equalp
string-greaterp
string-lessp
string-not-equalp
string-not-greaterp
string-not-lessp
string-upcase
string/=
string<
string<=
string=
string>
string>=

intern      STRING

Create an interned symbol whose print name is STRING.

Examples:
(intern "jim")
 => jim
(eql (intern "jim") (intern "jim"))
 => t

make-symbol      STRING

Create an un-interned symbol whose print name is STRING.

Examples:
(make-symbol "jim")
 => #:jim
(eql (make-symbol "jim") (make-symbol "jim"))
 => ()

symbol-name      SYMBOL

Return print-name of SYMBOL.

Examples:
(symbol-name 'jim)
 => "jim"
(symbol-name '#:jim)
 => "jim"
(symbol-name :jim)
 => "jim"

gensym      OPTIONAL STRING

Create an uninterned symbol with a unique name - its name is STRING (default value "g"
with a counter appended to the end. The counter increments by 1 each time gensym is
called.

Useful in macro definitions where you need to generate a guaranteed unique local variable
name.

Examples:
(gensym)
 => #:g1314
(gensym)
 => #:g1315
(let ((sym (gensym))) (eql sym (intern (symbol-name sym))))
 => ()

defconstant      SYMBOL EXPR

Define a constant called SYMBOL (unevaluated) and assign it the value returned from
evaluating EXPR. A constant is a global variable whose value cannot be changed.

Example:
(defconstant e (exp 1))
 => e

set      SYMBOL EXPR

A function that sets the global value of the variable SYMBOL to EXPR. Contrast with setq
which does not evaluate the name of its variable and can refer to lexical variables.

Example:
(- (let ((a 300)) (set 'a 10) a) a)
 => 290

setq      SYMBOL EXPR

Set the value of the variable SYMBOL (unevaluated) to EXPR (evaluated). Refers to the
innermost defined lexical variable whose scope the setq lies in, otherwise to the global
variable of that name. May take a series of arguments, treated as pairs of SYMBOL and
EXPR, each pair being setq-ed in order.
Returns the last value set.

Examples:
(let ((a 20)) (setq a 30) a)
 => 30
(progn (setq a 20) (symbol-value 'a))
 => 20

psetq      SYMBOL EXPR ...

Same as setq but if more than one SYMBOL-EXPR pair is given, all the EXPRs are evaluated
first, and then assigned to the variables, so that any reference to a SYMBOL in an EXPR
always refers to the value of the variable SYMBOL before starting the psetq.

Returns the last value set.

Example:
(let ((a 10) (b 20)) (psetq a b b a) (list a b))
 => (20 10)

symbol-value      SYMBOL

Retrieve global value of the variable SYMBOL.

Can be used with setf.

Example:
(progn (setq a 25) (let ((a 3)) (symbol-value 'a)))
 => 25

symbol-function      SYMBOL

Return the function value of SYMBOL.

Can be used with setf.

Example:
(symbol-function 'car)
 => <Builtin: car>

get      SYMBOL1 SYMBOL2

Return the value of the SYMBOL2 property in SYMBOL1's property list, or nil if SYMBOL2
doesn't have a value in SYMBOL1's property list.
Can be used with setf.

Example:
(progn (setf (get 'jim 'age) 32) (get 'jim 'age))
 => 32

remprop      SYMBOL1 SYMBOL2

Remove SYMBOL2 and its property from SYMBOL1's property list.

Examples:
(setf (get 'a 'b) 'c)
 => c
(get 'a 'b)
 => c
(remprop 'a 'b)
 => ()
(get 'a 'b)
 => ()

symbol-plist      SYMBOL

Return value SYMBOLS's property list - consisting of a list of alternating property names and
values.

Examples:
(setf (get 'jim 'age) 32)
 => 32
(symbol-plist 'jim)
 => (age 32)

boundp      SYMBOL

Return t (i.e. true) if the global value of the variable SYMBOL has a value otherwise nil (i.e.
false).

Examples:
(boundp (gensym))
 => ()
(setq a 45)
 => 45
(boundp 'a)
 => t

fboundp      SYMBOL

Return t (i.e. true) if the function value of SYMBOL is defined otherwise nil (i.e. false).

Examples:
(fboundp (gensym))
 => ()
(fboundp 'car)
 => t

makunbound      SYMBOL

Make the global value of the variable SYMBOL undefined.

Examples:
(setq a 32)
 => 32
(makunbound 'a)
 => a
(boundp 'a)
 => ()

fmakunbound      SYMBOL

Make the function value of SYMBOL undefined.

Examples:
(defun a ())
 => a
(fboundp 'a)
 => t
(fmakunbound 'a)
 => a
(fboundp 'a)
 => ()

Symbol and variable functions
boundp
defconstant
fboundp
fmakunbound
gensym
get
intern
make-symbol
makunbound
psetq
remprop
set
setq
symbol-function
symbol-name
symbol-plist
symbol-value

cons      OBJECT1 OBJECT2

Return a cons whose car is OBJECT1 and cdr is OBJECT2. If OBJECT2 is a list, this will be the
list consisting of the elements of OBJECT2 with OBJECT1 added on to the front.

Examples:
(cons 2 3)
 => (2 . 3)
(cons 2 '(3 4))
 => (2 3 4)
(cons 2 ())
 => (2)
(cons 2 '(3 . 4))
 => (2 3 . 4)

car      CONS

Return the car of the cons CONS. If CONS is a list then this is the first element of the list.
Identical to first.
Can be used with setf.

Examples:
(car '(2 3))
 => 2
(car '(2 . 3))
 => 2

first      LIST

Return the first element of LIST. Identical to car.

Can be used with setf.

Example:
(first '(2 3))
 => 2

cdr      CONS

Return the cdr of the cons CONS. If CONS is a list then this is the sublist consisting of CONS
minus its first element. Identical to first.
Can be used with setf.

Examples:
(cdr '(2))
 => ()
(cdr '(2 3 4))
 => (3 4)
(cdr '(2 . 3))
 => 3

rest      LIST

Return the a list consisting of the elements of LIST minus the first one. Identical to cdr.

Can be used with setf.

Examples:
(rest '(2 3 4))
 => (3 4)
(rest '(2))
 => ()

rplaca      CONS OBJECT

Replace the car of CONS with OBJECT, returning the changed CONS.

Example:
(rplaca '(c b) 'c)
 => (c b)

rplacd      CONS OBJECT

Replace the cdr of CONS with OBJECT, returning the changed CONS.

Example:
(rplacd '(a . c) 'c)
 => (a . c)

list      &rest OBJECT

Return a list whose elements are the OBJECTs in the order provided.

Examples:
(list 'a 'b)
 => (a b)
(list '(a) '(b) '(c))
 => ((a) (b) (c))
(list)
 => ()

append      &rest LIST

Return a new list which is the concatenation of all the LISTs. Returned list shares structure
with the last LIST, which doesn't have to be a true (non-dotted) list.

Examples:
(append '(a b) '(c) '(d e) '() '(f g h))
 => (a b c d e f g h)
(append)
 => ()
(append '(a b) '(c . d))
 => (a b c . d)

reverse      LIST

Return a list whose elements are the elements of LIST in reverse order.

Example:
(reverse '(a b c d e))
 => (e d c b a)

member      OBJECT LIST

If OBJECT belongs to LIST, return the list consisting of OBJECT and all the elements that
follow the first occurrence of OBJECT in LIST, otherwise return nil. Effectively a predicate,
since if OBJECT is in LIST the result is non-nil. If a non-nil list is returned, this list shares
structure with LIST.

Examples:
(member 'c '(a b c d e))
 => (c d e)
(member 'f '(a b c d e))
 => ()
(member "jim" '("tom" "jim"))
 => ()

remove      OBJECT LIST

Return a new list consisting of those elements in LIST not eql to OBJECT.

Examples:
(remove 'a '(a b c a d e))
 => (b c d e)
(remove 'f '(a b c d e))
 => (a b c d e)

last      LIST

Return the last element of LIST.

Example:
(last '(u v w x y z))
 => z

nth      N LIST

Return the (N+1)th element of LIST.

Can be used with setf.

Example:
(nth 4 '(a b c d e f))
 => e

nthcdr      N LIST

Return the list consisting of the (N+1)th element of LIST and all those that follow. Returned
list shares structure with LIST.

Example:
(nthcdr 4 '(a b c d e f))
 => (e f)

nconc      &rest LIST

Returns the list which is the concatenation of all the LISTs, formed by destructively modifying
the LISTs.

Examples:
(nconc '(a b c d e) '(d e))
 => (a b c d e)
(let ((a '(a b c d))) (nconc a '(c d)) a)
 => (a b c d)

delete      OBJECT LIST

Return the list consisting of those elements of LIST not eql to OBJECT, formed by
destructively modifying LIST.

Examples:
(delete 'a '(a b c d e))
 => (b c d e)
(let ((list '(a b c))) (delete 'a list) list)
 => (a b c)

second      LIST

Return 2nd element of LIST.

Can be used with setf.

Example:
(second '(one two three four))
 => two

third      LIST

Return 3rd element of LIST.

Can be used with setf.

Example:
(third '(one two three four))
 => three

fourth      LIST

Return 4th element of LIST.

Can be used with setf.

Example:
(fourth '(one two three four))
 => four

caar      CONS

(caarx) = (car (car x))

cadr      CONS

(cadrx) = (car (cdr x))

cdar      CONS

(cdarx) = (cdr (car x))

cddr      CONS

(cddrx) = (cdr (cdr x))

caaar      CONS

(caaarx) = (car (car (car x)))

caadr      CONS

(caadrx) = (car (car (cdr x)))

cadar      CONS

(cadarx) = (car (cdr (car x)))

caddr      CONS

(caddrx) = (car (cdr (cdr x)))

cdaar      CONS

(cdaarx) = (cdr (car (car x)))

cdadr      CONS

(cdadrx) = (cdr (car (cdr x)))

cddar      CONS

(cddarx) = (cdr (cdr (car x)))

cdddr      CONS

(cdddrx) = (cdr (cdr (cdr x)))

caaaar      CONS

(caaaarx) = (car (car (car (car x))))

caaadr      CONS

(caaadrx) = (car (car (car (cdr x))))

caadar      CONS

(caadarx) = (car (car (cdr (car x))))

caaddr      CONS

(caaddrx) = (car (car (cdr (cdr x))))

cadaar      CONS

(cadaarx) = (car (cdr (car (car x))))

cadadr      CONS

(cadadrx) = (car (cdr (car (cdr x))))

caddar      CONS

(caddarx) = (car (cdr (cdr (car x))))

cadddr      CONS

(cadddrx) = (car (cdr (cdr (cdr x))))

cdaaar      CONS

(cdaaarx) = (cdr (car (car (car x))))

cdaadr      CONS

(cdaadrx) = (cdr (car (car (cdr x))))

cdadar      CONS

(cdadarx) = (cdr (car (cdr (car x))))

cdaddr      CONS

(cdaddrx) = (cdr (car (cdr (cdr x))))

cddaar      CONS

(cddaarx) = (cdr (cdr (car (car x))))

cddadr      CONS

(cddadrx) = (cdr (cdr (car (cdr x))))

cdddar      CONS

(cdddarx) = (cdr (cdr (cdr (car x))))

cddddr      CONS

(cddddrx) = (cdr (cdr (cdr (cdr x))))

assoc      OBJECT ALIST

Return the first element of ALIST (if any) such that the car of the element is eql to OBJECT,
otherwise return nil.

Examples:
(assoc '1 '((0 zero) (1 one) (2 two)))
 => (1 one)
(assoc '3 '((0 zero) (1 one) (2 two)))
 => ()

sublis      ALIST OBJECT

Recursively substitute any occurrence of the car of an element in ALIST in OBJECT with the
cdr of the same element. eql is used to judge equality of elements in ALIST and OBJECT.
sublis looks deep into nested lists but not into arrays or structures.

Example:
(sublis '((cat . dog) (the . a)) '((the cat) sat (on (the mat))))
 => ((a dog) sat (on (a mat)))

subst      NEW-OBJECT OLD-OBJECT OBJECT

Recursively substitute any occurrence of OLD-OBJECT in OBJECT with NEW-OBJECT. eql is
used to judge equality of OLD-OBJECT and elements in OBJECT. subst looks deep into nested
lists but not into arrays or structures.

Example:
(subst 'new 'old '(old (jim (old old))))
 => (new (jim (new new)))

mapcar      FUN LIST1 &rest LIST

Apply FUN to each element of LIST1 and the corresponding elements of the LISTs , returning
the results in a list.
It follows that the number of LISTs including LIST1 must be an acceptable number of
arguments to FUN. An error occurs if any of the LISTs is shorter than LIST1.

Example:
(mapcar #'list '(a b c) '(1 2 3))
 => ((a 1) (b 2) (c 3))

mapc      FUN LIST1 &rest LIST

Apply FUN to each element of LIST1 and the corresponding elements of the LISTs , returning
LIST1.
It follows that the number of LISTs including LIST1 must be an acceptable number of
arguments to FUN. An error occurs if any of the LISTs is shorter than LIST1.

maplist      FUN LIST1 &rest LIST

Apply FUN to each sublist of LIST1 (starting with LIST1, then its cdr, and its cdr etc., up to
but not including nil) and each corresponding sublist of the LISTs , returning the results in a
list.

It follows that the number of LISTs including LIST1 must be an acceptable number of
arguments to FUN. An error occurs if any of the LISTs is shorter than LIST1.

Example:
(maplist #'list '(a b c) '(1 2 3))
 => (((a b c) (1 2 3)) ((b c) (2 3)) ((c) (3)))

mapl      FUN LIST1 &rest LIST

Apply FUN to each sublist of LIST1 (starting with LIST1, then its cdr, and its cdr etc., up to
but not including nil) and each corresponding sublist of the LISTs , returning LIST1.
It follows that the number of LISTs including LIST1 must be an acceptable number of
arguments to FUN. An error occurs if any of the LISTs is shorter than LIST1.

List and cons functions
append
assoc
caaaar
caaadr
caaar
caadar
caaddr
caadr
caar
cadaar
cadadr
cadar
caddar
cadddr
caddr
cadr
car
cdaaar
cdaadr
cdaar
cdadar
cdaddr
cdadr
cdar
cddaar
cddadr
cddar
cdddar
cddddr
cdddr
cddr
cdr
cons
delete
first
fourth
last
list
mapc
mapcar
mapl
maplist
member
nconc
nth
nthcdr
remove
rest
reverse
rplaca
rplacd
second

sublis
subst
third

eq      OBJECT1 OBJECT2

Return t (i.e. true) if object1 is the same object as object2 otherwise nil (i.e. false).Note that
the only type of object guaranteed to be eq if they have the same written representation is
symbols.

Examples:
(eq 'a 'a)
 => t
(eq "a" "a")
 => ()
(eq 34 34)
 => ()
(eq 'a 'b)
 => ()
(let ((a "jim")) (eq a a))
 => t

eql      OBJECT1 OBJECT2

Return t (i.e. true) if object1 is the same object as object2, or both objects are numbers with
equal values otherwise nil (i.e. false).

Examples:
(eql 'a 'a)
 => t
(eql "a" "a")
 => ()
(eql 34 34)
 => t
(eql 'a 'b)
 => ()
(let ((a "jim")) (eql a a))
 => t

equal      OBJECT1 OBJECT2

Return t (i.e. true) if object1 and object2 are the same object, or they are integers, floats or
strings with the same values, or they are conses (or lists) whose members are equal.
otherwise nil (i.e. false).Note that this implies that arrays and structs are not compared for
equality of members.

Examples:
(equal 34 34)
 => t
(equal "jim" "fred")
 => ()
(equal '(1 2 3) '(1 2 3))
 => t
(equal '(1 2 #(3 4)) '(1 2 #(3 4)))
 => ()
(equal '(one two) '(one two))
 => t

Equality
eq
eql
equal

eval      EXPRESSION

Evaluate EXPRESSION. Since eval is a function it effectively evaluates it's argument twice.

Examples:
(eval '(+ 2 3))
 => 5
(eval (cons '* '(3 4)))
 => 12

quote      EXPRESSION

Returns ARG unevaluated. Particularly useful when you want to specify a constant symbol or
list as an argument to a function. 'expr is an abbreviation for (quote expr), and the lisp
system always uses this abbreviation when printing out quoted expressions

Examples:
'jim
 => jim
(list 'jim 'fred)
 => (jim fred)
(first ''tom)
 => quote
''jim
 => 'jim

backquote      TEMPLATE

TEMPLATE is not evaluated, except for certain sub-expressions. The sub-expressions are
evaluated "in-place". A two element list whose first element is the symbol comma returns
the evaluation of the second element. A two element list whose first element is the symbol
comma-at returns the evaluation of the second element and this result is "spliced" into the
list that the comma-at list is a member of.

backquote is useful when you want to return an expression that is mainly constant except
for a few sub-expressions, and commonly is used in macro definitions using defmacro.

backquote is evaluated recursively. This means that if a backquoted expression appears
inside TEMPLATE, any comma or comma-at expressions immediately inside the backquoted
expression are not evaluated, but any comma or comma-at expressions inside those
expressions are evaluated. In general, evaluation is delayed until the number of comma or
comma-at's is equal to the number of backquotes. This feature can be useful for writing
macros that write macros.

The symbols backquote, comma and comma-at all have bracketless abbreviations as with
quote. These are

`x = (backquote x)
,x = (comma x)

,@ = (comma-at x)

Examples:
`(1 2 ,(+ 1 2))
 => (1 2 3)
`(`(a ,(+ 1 ,(+ 1 2))))
 => (`(a ,(+ 1 3)))
`(a b ,@(list 'c 'd) e)
 => (a b c d e)

comma      X

comma is not a function or form, but it has a special interpretation when used with
backquote.

comma-at      X

comma-at is not a function or form, but it has a special interpretation when used with
backquote.

funcall      FUN &rest ARGS

Call the function FUN with arguments ARGS.

Examples:
(funcall #'+ 2 3)
 => 5
(funcall #'(lambda (x y) (+ x y)) 3 4)
 => 7

apply      FUNCTION ARGS

Call the function FUN with argument list ARGS.

Examples:
(apply #'+ '(2 3))
 => 5
(apply #'(lambda (x y) (+ x y)) (list 3 4))
 => 7

load      FILE :print PRINT :verbose VERBOSE

Read each top-level lisp expression in FILE and evaluate each one as its read. If PRINT is t
then print out the result from each expression. If VERBOSE is t then print a message at the
beginning saying that the file is being loaded. Returns t if loading occurs successfully.

Evaluation functions
apply
backquote
comma
comma-at
eval
funcall
load
quote

>      NUMBER1 NUMBER2

Return t (i.e. true) if NUMBER1 is greater than NUMBER2 otherwise nil (i.e. false).

Examples:
(> 2 3)
 => ()
(> 3 2)
 => t
(> 4.5 4.5)
 => ()

<      NUMBER1 NUMBER2

Return t (i.e. true) if NUMBER1 is less than NUMBER2 otherwise nil (i.e. false).

Examples:
(< 2 3)
 => t
(< 3 2)
 => ()
(< 4.5 4.5)
 => ()

>=      NUMBER1 NUMBER2

Return t (i.e. true) if NUMBER1 is greater than or equal to NUMBER2 otherwise nil (i.e. false).

Examples:
(>= 2 3)
 => ()
(>= 3 2)
 => t
(>= 4.5 4.5)
 => t

<=      NUMBER1 NUMBER2

Return t (i.e. true) if NUMBER1 is less than or equal to NUMBER2 otherwise nil (i.e. false).

Examples:
(<= 2 3)
 => t
(<= 3 2)
 => ()
(<= 4.5 4.5)
 => t

=      NUMBER1 NUMBER2

Return t (i.e. true) if NUMBER1 is equal to NUMBER2 otherwise nil (i.e. false).

Examples:
(= 2 3)
 => ()
(= 3 2)
 => ()
(= 4.5 4.5)
 => t

/=      NUMBER1 NUMBER2

Return t (i.e. true) if NUMBER1 is not to equal to NUMBER2 otherwise nil (i.e. false).

Examples:
(/= 2 3)
 => t
(/= 3 2)
 => t
(/= 4.5 4.5)
 => ()

Comparing numbers
/=
<
<=
=
>
>=

logior      &rest INTEGERS

Returns the bitwise or of the arguments.

Example:
(logior 1 3 7)
 => 7

logand      &rest INTEGERS

Returns the bitwise and of the arguments.

Example:
(logand 1 3 7)
 => 1

logxor      &rest INTEGERS

Returns the bitwise xor of the arguments.

Example:
(logxor 1 3 7)
 => 5

lognot      INTEGER

Returns bitwise complement of INTEGER.

Examples:
(lognot 32)
 => -33
(lognot -1)
 => 0

Bitwise operations
logand
logior
lognot
logxor

not      OBJECT

Return t (i.e. true) if OBJECT is not nil otherwise nil (i.e. false).Effectively returns logical
negation of OBJECT, since nil is regarded as false and anything else as true.

Examples:
(not (< 3 2))
 => t
(not t)
 => ()
(not ())
 => t

and      &rest EXPRS

EXPRS are not automatically evaluated. Rather, they are evaluated in order until one of them
returns nil, or all the EXPRS have been evaluated. Returns result of last EXPR actually
evaluated, or t if there are zero exprs. Effectively a logical OR of exprs with short-circuit
evaluation, because nil is regarded as false and anything else as true.

Examples:
(and t t t)
 => t
(and t () t)
 => ()
(and (< 2 3) (< 3 4))
 => t

or      &rest EXPRS

EXPRS are not automatically evaluated. Rather, they are evaluated in order until one of them
returns non-nil, or all the EXPRS have been evaluated. Returns result of last EXPR actually
evaluated, or nil if there are zero exprs. Effectively a logical OR of exprs with short-circuit
evaluation, because nil is regarded as false and anything else as true.

Examples:
(or t t t)
 => t
(or t () t)
 => t
(or (> 2 3) (< 3 4))
 => t
(or (> 2 3) (> 3 4))
 => ()

Logical functions
and
not
or

consp      OBJECT

Return t (i.e. true) if OBJECT is a cons otherwise nil (i.e. false).

Examples:
(consp 34)
 => ()
(consp ())
 => ()
(consp '(a b))
 => t
(consp '(a . b))
 => t

symbolp      OBJECT

Return t (i.e. true) if OBJECT is a symbol otherwise nil (i.e. false).

Examples:
(symbolp 34)
 => ()
(symbolp 'jim)
 => t
(symbolp '(a b))
 => ()

keywordp      OBJECT

Return t (i.e. true) if OBJECT is a keyword symbol, i.e. one that starts with a colon otherwise
nil (i.e. false).

Examples:
(keywordp 34)
 => ()
(keywordp 'jim)
 => ()
(keywordp ':jim)
 => t

constantp      OBJECT

Return t (i.e. true) if OBJECT evaluates to a constant value, i.e. it is either self-evaluating or it
is a variable with a constant value. otherwise nil (i.e. false).

Examples:
(constantp 34)
 => t
(constantp '(car x))
 => ()
(constantp :jim)
 => t
(constantp 'ps_solid)
 => t

null      OBJECT

Return t (i.e. true) if OBJECT is nil. otherwise nil (i.e. false).

Examples:
(null 3)
 => ()
(null ())
 => t

integerp      OBJECT

Return t (i.e. true) if OBJECT is an integer otherwise nil (i.e. false).

Examples:
(integerp 3)
 => t
(integerp 4.2)
 => ()
(integerp 'jim)
 => ()

stringp      OBJECT

Return t (i.e. true) if OBJECT is a string otherwise nil (i.e. false).

Examples:
(stringp 3)
 => ()
(stringp 45)
 => ()
(stringp "45")
 => t

characterp      OBJECT

Return t (i.e. true) if OBJECT is a character otherwise nil (i.e. false).

Examples:
(characterp 45)
 => ()
(characterp 'jim)
 => ()
(characterp (char "jim" 2))
 => t

arrayp      OBJECT

Return t (i.e. true) if OBJECT is an array otherwise nil (i.e. false).

Examples:
(arrayp 45)
 => ()
(arrayp '(a b))
 => ()
(arrayp #(a b))
 => t

structure-p      OBJECT

Return t (i.e. true) if OBJECT is a structure otherwise nil (i.e. false).

Examples:
(structure-p 45)
 => ()
(structure-p 'jim)
 => ()
(structure-p (char "jim" 2))
 => ()

numberp      OBJECT

Return t (i.e. true) if OBJECT is an integer or floating point number. otherwise nil (i.e. false).

Examples:
(numberp 34)
 => t
(numberp 34.6)
 => t
(numberp '(3 4))
 => ()

zerop      INTEGER

Return t (i.e. true) if INTEGER equals zero otherwise nil (i.e. false).

Examples:
(zerop 0)
 => t
(zerop 1)
 => ()
(zerop -34)
 => ()

evenp      INTEGER

Return t (i.e. true) if INTEGER is even otherwise nil (i.e. false).

Examples:
(evenp 0)
 => t
(evenp 1)
 => ()
(evenp 2)
 => t

oddp      INTEGER

Return t (i.e. true) if INTEGER is odd otherwise nil (i.e. false).

Examples:
(oddp 0)
 => ()
(oddp 1)
 => t
(oddp 2)
 => ()

plusp      NUMBER

Return t (i.e. true) if NUMBER is greater than zero otherwise nil (i.e. false).

Examples:
(plusp 0)
 => ()
(plusp 3)
 => t
(plusp -5.6)
 => ()

minusp      NUMBER

Return t (i.e. true) if NUMBER is less than zero otherwise nil (i.e. false).

Examples:
(minusp 0)
 => ()
(minusp 3)
 => ()
(minusp -5.6)
 => t

atom      OBJECT

Return t (i.e. true) if OBJECT is a number, symbol or character otherwise nil (i.e. false).

Examples:
(atom 3)
 => t
(atom 'jim)
 => t
(atom 4.5)
 => t
(atom '(a b))
 => ()
(atom #(a b c))
 => ()

listp      OBJECT

Return t (i.e. true) if OBJECT is a cons or nil otherwise nil (i.e. false).Note - does not test
whether a cons is a true list or a dotted list.

Examples:
(listp 3)
 => ()
(listp '(4))
 => t
(listp ())
 => t
(listp '(a b c))
 => t

true-listp      OBJECT

Return t (i.e. true) if OBJECT is a true list i.e. repeatedly taking the cdr of OBJECT until a non-
cons is found ends up with nil. otherwise nil (i.e. false).

Examples:
(true-listp 3)
 => ()
(true-listp ())
 => t
(true-listp '(3 4))
 => t
(true-listp '(3 4 . 5))
 => ()

Predicates
arrayp
atom
characterp
consp
constantp
evenp
integerp
keywordp
listp
minusp
null
numberp
oddp
plusp
stringp
structure-p
symbolp
true-listp
zerop

code-char      NUMBER

Returns character with ASCII code NUMBER.

Examples:
(code-char 65)
 => #\A
(code-char 99)
 => #\c

char-code      CHARACTER

Returns the ASCII code of CHARACTER.

Examples:
(char-code #\A)
 => 65
(char-code #\c)
 => 99

ASCII code
char-code
code-char

cascade-main-window     

Cascade editor windows. Returns nil

move-main-window      RECTANGLE

Reposition main editing window to position indicated by RECTANGLE.

show-main-window      SHOW-WINDOW-CONST

Show main editor window according to SHOW-WINDOW-CONST which must be a show
window style windows constant.. Returns nil.

open-file      FILENAME

Open a new editor window for file FILENAME, unless FILENAME is already open, in which case
bring its window to the front. Returns nil

set-cursor-color      COLOR

Use to change color of editor cursor.

Editor commands
cascade-main-window
move-main-window
open-file
set-cursor-color
show-main-window

function      EXPR

EXPR is unevaluated. EXPR can be symbol that is the name of the function or it can be a
lambda expression. If EXPR is a symbol it returns the function value of that symbol. If it is a
lambda expression it forms the closure of that expression. A "bracketless" abbreviation for
function is #' i.e. #'name is equivalent to (function name), and the lisp system uses this
abbreviation when writing out function expressions.

Examples:
#'car
 => <Builtin: car>
#'(lambda (x) (* x x))
 => <closure: (x) : #E((* x x))>

defun      NAME LAMBDA-LIST &rest STATEMENTS

Creates a function closure with argument list LAMBDA-LIST and body STATEMENTS, and
makes it the function value of the symbol NAME.
Effectively defines a new function called NAME which when called with arguments, binds
those arguments to the arguments named in LAMBDA-LIST, executes STATEMENTS and then
returns the value returned by the last of the STATEMENTS, or nil if there weren't any.

Examples:
(defun square (x) (* x x))
 => square
(square 12)
 => 144

macro-of-function      FUNCTION

Make a macro out of FUNCTION.

Example:
(macro-of-function #'(lambda (x) `(cons ,x ,x)))
 => <Macro: <closure: (x) : #E(`(cons ,x ,x))>>

defmacro      NAME ARG-LIST &rest STATEMENTS

Defines a new macro called NAME, that takes arguments given in ARG-LIST. When a list is
evaluated where NAME is the first element, the rest of the elements in the list, without being
evaluated first, are bound to the arguments specified in ARG-LIST, the STATEMENTS are
executed, and then the result returned from the last of the STATEMENTS is evaluated in the
lexical scope of the macro call.

Note the use of backquote in the example.

Examples:
(defmacro sum-pair (x) `(+ ,(first x) ,(second x)))
 => sum-pair
(sum-pair (2 3))
 => 5

Functions and Macros
defmacro
defun
function
macro-of-function

error      MESSAGE &optional DATA

Signal an error, with MESSAGE and relevant DATA.

Error functions
error

gc     

Performs garbage collection. Note that garbage collection is performed automatically and
does not normally need to be explicitly requested.

gc-limit     

Number of memory blocks (64k segments) used that triggers garbage collection. Can be
used with setf. Minimum value 4, default = 16.
16 blocks = 1 megabyte of memory. This is the amount of memory used by Lisp objects, and
does not include memory used by the editor or directly by the Lisp system.
Windows Enhanced mode allows the use of virtual memory which is disk storage pretending
to be physical RAM. Long before Windows fails to allocate memory, physical RAM will be
used up and Apteryx Lisp will be thrashing the hard disk. To avoid this, set a value for gc-
limit that reflects available RAM, or the amount of RAM you wish to devote to Apteryx Lisp.

with-continuous-gc      &rest STATEMENTS

Execute STATEMENTS in order, performing a garbage collection at every point where the
need to do garbage collection is normally checked. This function is purely an aid to
debugging transient crashes of Apteryx Lisp that might be caused by bugs in the garbage
collector that arise in certain situations.

Garbage Collection
gc
gc-limit
with-continuous-gc

open      NAME &key :direction DIRECTION

Opens file called NAME for input or output depending on direction which has to take one of
the values :input or :output, with the default being :input. Returns the opened file handle.

close      FILE

Closes file FILE. Returns nil.

eofp      &optional INPUT-FILE

Return t (i.e. true) if INPUT-FILE has reached end of file otherwise nil (i.e. false). Default value
of INPUT-FILE is *standard-input*

read      &optional INPUT-FILE

Reads an lisp object in from INPUT-FILE and returns it. Default value of INPUT-FILE is
standard-input

read-line      &optional INPUT-FILE

Reads a line in from INPUT-FILE and returns it as a string (without the end-of-line character).
Default value of INPUT-FILE is *standard-input*

terpri      &optional OUTPUT-FILE

Write an end-of-line character out to OUTPUT-FILE. Returns nil. Default value of OUTPUT-FILE
is *standard-output*.

write-byte      NUMBER &optional OUTPUT-FILE

Writes byte NUMBER out to OUTPUT-FILE. Using princ and code-char will not have the desired
effect because writing out the end-of-line character (= ASCII 10) results in writing out
characters 13 and 10, because that is how MS-DOS represents an end of line. Returns nil.
Default value of OUTPUT-FILE is *standard-output*.

print      OBJECT &optional OUTPUT-FILE

Prints standard representation of OBJECT followed by an end-of-line to OUTPUT-FILE. Returns
OBJECT. Default value of OUTPUT-FILE is *standard-output*.

prin1      OBJECT &optional OUTPUT-FILE

Prints standard representation of OBJECT to OUTPUT-FILE. Returns OBJECT. Default value of
OUTPUT-FILE is *standard-output*.

princ      OBJECT &optional OUTPUT-FILE

Prints standard representation of OBJECT to OUTPUT-FILE, unless OBJECT is a character or
string, in which case just the character or characters of the string are printed out. Returns
OBJECT. Default value of OUTPUT-FILE is *standard-output*.

format      OUTPUT-FILE FORMAT-STRING &rest OBJECTS

Prints OBJECTS formatted as directed by FORMAT-STRING to OUTPUT-FILE. FORMAT-STRING is
a string. Character sequences in FORMAT-STRING starting with ~ are interpreted as special
commands, other characters are printed out as is. The ~ command sequences are -

~% : print end-of-line
~~ : print character ~

~A : print next object using princ
~S : print next object using prin1

If t is specified for OUTPUT-FILE, then *standard-output* is used.
format returns nil.

File input and output
close
eofp
format
open
prin1
princ
print
read
read-line
terpri
write-byte

struct-fields      (STRUCT-NAME)

Return the list of field names for STRUCTURE-NAME.

Examples:
(defstruct address number street suburb city country)
 => address
(struct-fields 'address)
 => (number street suburb city country)

struct-ref      STRUCT INDEX

Return field number INDEX of STRUCT. For a structure of size n, the index goes from 0 to n-1.

Can be used with setf.

Examples:
(defstruct word letters part-of-speech)
 => word
(struct-ref (make-word :letters "box" :part-of-speech 'noun) 1)
 => noun

defstruct      STRUCT-NAME &rest FIELD-NAMES

defstruct is a special form - its arguments are not evaluated. All the arguments must be
symbols.
It defines a new struct type of type STRUCT-NAME and returns STRUCT-NAME.

A struct is a data object consisting of a fixed number of components, that are referred to by
the FIELD-NAMES. When the a struct type is defined using defstruct, a number of functions
associated with the struct type are defined. These are a constructor function, accessor
functions for the fields and a predicate function used to check if an object is of that struct
type.
The names of these functions are derived from STRUCT-NAME and the FIELD-NAME. For
example, defining a struct using

Example:
(defstruct person age sex)
 => person
defines a struct type called person with fields age and sex.
The constructor function would be called make-person. It would take keyworded

arguments where the keywords had the same print-names as the field names.
Examples:
(progn (setq me (make-person :age 30 :sex 'male)))
 => #S(person age 30 sex male)
me
 => #S(person age 30 sex male)
The above example might represent a male person aged 30.
The accessor functions for the struct type person will be person-age and person-sex, and

these can be used with setf. Fields of a struct can also be referred to with the help of with-
struct.

Examples:
(person-age me)
 => 30
(setf (person-sex me) 'female)
 => female
(person-sex me)
 => female
The predicate will be called person-p. It returns t if its argument is a struct of type person,

otherwise nil.
Examples:
(person-p me)

 => t
(person-p 'you)
 => ()

with-struct      (STRUCT-TYPE EXPR) &rest STATEMENTS

Special form used to access the fields of a struct. EXPR must evaluate to a struct of type
STRUCT-TYPE. All the STATEMENTS in the scope of the with-struct can refer to the fields of
the struct resulting from EXPR using lexical variables whose names are the names of the
fields of STRUCT-TYPE.

Example:
(with-struct (person me) (setf age 29) (list age sex))
 => (29 female)
This example follows on from the examples for defstruct.

Structure functions
defstruct
struct-fields
struct-ref
with-struct

macroexpand-1      EXPRESSION

If EXPRESSION is a macro call, return the result of expanding the macro, otherwise return
EXPRESSION unchanged.

Examples:
(defmacro call-self (arg &rest args) `(,arg ',arg ,@args))
 => call-self
(macroexpand-1 '(call-self jim 3))
 => (jim 'jim 3)

macroexpand      EXPRESSION

Repeatedly expand EXPRESSION as a macro, until a result is returned that is not a macro.

Examples:
(defmacro tom (arg) `(jim ,arg))
 => tom
(defmacro jim (arg) `(fred ,arg))
 => jim
(macroexpand '(tom 34))
 => (fred 34)

full-macroexpand      EXPRESSION

Repeatedly expand EXPRESSION as a macro call and all macro calls within it until it is
completely expanded.It is a consequence of the rules of evaluation of lisp, that if all macro
calls in an expression are for macros already defined, and eval does not appear in the
expression, then all macro calls in the expression can be pre-expanded, and the expanded
form of the expression will return the same result when evaluated as the original expression.

If the function eval is called in the expression, this will not invalidate the macro expansion,
but the argument to eval will not have its macro calls expanded because its value cannot be
known until run-time.

Examples:
(defmacro jimmy (arg) `(tomas ,arg))
 => jimmy
(defmacro tomas (arg) `(fred ,arg))
 => tomas
(full-macroexpand '(jim (tomas 34)))
 => (fred (fred 34))
(full-macroexpand '(dotimes (i (jimmy 4)) (+ 1 (tomas 2))))
 => (dotimes (i (fred 4)) (+ 1 (fred 2)))

Macro expansion
full-macroexpand
macroexpand
macroexpand-1

array-to-code      ARRAY

Converts ARRAY into equivalent compiled code object. Array elements come in pairs - the
first of a pair is the symbol naming the opcode, and the second is the argument to the
opcode.

the-compiler     

If the variable *auto-compile* is set to non-nil, then the value of (the-compiler) is used to
compile all expressions before evaluation. The initial value is nil, and if equal to nil
expressions are compiled using the full-macroexpand function.

Loading the file "compile.lsc" defines a suitable value for (the-compiler) which compiles
expressions into compiled code objects.

Can be used with setf.

compile-and-load      SOURCE-FILE COMPILED-FILE

Loads SOURCE-FILE by compiling and then evaluating expressions, while writing compiled
expressions out to COMPILED-FILE. Loading COMPILED-FILE using load should then have
equivalent effect to loading SOURCE-FILE. Typically SOURCE-FILE has a .lsp extension, and
COMPILED-FILE is a file of the same name but with a .lsc extension.
This function is only defined if the "compile.lsc" file has been loaded.

Compilation functions
array-to-code
compile-and-load
the-compiler

point      X Y

Construct a point with coordinates X and Y. Each coordinate must be a 16 bit signed integer
i.e. in the range -32768 to 32767.

Example:
(point -32 45)
 => #<Point: -32 45>

point-x      POINT

Return the x coordinate of the point POINT.

Example:
(point-x (point 32 43))
 => 32

point-y      POINT

Return the y coordinate of the point POINT.

Example:
(point-y (point 32 43))
 => 43

Point functions
point
point-x
point-y

extent      X Y

Return an extent with width and height X and Y. X and Y must be 16-bit signed integers, i.e.
in the range -32768 to 32767.

Example:
(extent 34 56)
 => #<Extent: 34 56>

extent-x      EXTENT

Return the x component (i.e. the width) of the extent EXTENT.

Example:
(extent-x (extent 34 56))
 => 34

extent-y      EXTENT

Return the y component (i.e. the width) of the extent EXTENT.

Example:
(extent-y (extent 34 56))
 => 56

text-extent      STRING

Return the extent of STRING, if it were to be output in the current device context.

Extent functions
extent
extent-x
extent-y
text-extent

rect      POINT1 POINT2

Return the rectangle with opposite corners POINT1 and POINT2.

Example:
(rect (point 0 0) (point 32 45))
 => #<Rect: top-left:(0, 0), bottom-right:(32, 45)>

rect-top      RECTANGLE

Return the Y coordinate of the top side of RECTANGLE.

Example:
(rect-top (rect (point 0 15) (point 100 200)))
 => 15

rect-left      RECTANGLE

Return the X coordinate of the left-hand side of RECTANGLE.

Example:
(rect-left (rect (point 0 15) (point 100 200)))
 => 0

rect-bottom      RECTANGLE

Return the Y coordinate of the bottom side of RECTANGLE.

Example:
(rect-bottom (rect (point 0 15) (point 100 200)))
 => 200

rect-right      RECTANGLE

Return the X coordinate of the right-hand side of RECTANGLE.

Example:
(rect-right (rect (point 0 15) (point 100 200)))
 => 100

rect-width      RECTANGLE

Return the width of RECTANGLE.

Example:
(rect-width (rect (point 0 15) (point 100 200)))
 => 100

rect-height      RECTANGLE

Return the height of RECTANGLE.

Example:
(rect-height (rect (point 0 15) (point 100 200)))
 => 185

copy-rect      RECTANGLE

Return a copy of RECTANGLE, i.e. equal to but not eq to RECTANGLE.

Example:
(copy-rect (rect (point 0 0) (point 10 10)))
 => #<Rect: top-left:(0, 0), bottom-right:(10, 10)>

intersect-rect      RECTANGLE1 RECTANGLE2

Return the rectangle which is the intersection of RECTANGLE1 and RECTANGLE2.

Example:
(intersect-rect (rect (point 0 0) (point 20 30)) (rect (point 10 10) (point 40 50)))
 => #<Rect: top-left:(10, 10), bottom-right:(20, 30)>

is-rect-empty      RECTANGLE

Return t (i.e. true) if RECTANGLE is empty. otherwise nil (i.e. false).

Examples:
(is-rect-empty (rect (point 0 0) (point 10 10)))
 => ()
(is-rect-empty (rect (point 0 0) (point 0 10)))
 => t

point-in-rect      POINT RECTANGLE

Return t (i.e. true) if POINT is in RECTANGLE otherwise nil (i.e. false).

Examples:
(point-in-rect (point 10 10) (rect (point 0 0) (point 20 20)))
 => t
(point-in-rect (point 30 30) (rect (point 0 0) (point 20 20)))
 => ()

Rectangle functions
copy-rect
intersect-rect
is-rect-empty
point-in-rect
rect
rect-bottom
rect-height
rect-left
rect-right
rect-top
rect-width

rgb      RED-INTENSITY GREEN-INTENSITY BLUE-INTENSITY

Return a color with the specified intensities. Each intensity must be a number from 0 to 255
(i.e. an unsigned byte).

Example:
(rgb 0 128 255)
 => #<Color: 0 128 255>

red-component      COLOR

Return the red component of COLOR as a number from 0 to 255.

Examples:
(red-component white)
 => 255
(red-component yellow)
 => 255

green-component      COLOR

Return the green component of COLOR as a number from 0 to 255.

Examples:
(green-component white)
 => 255
(green-component yellow)
 => 255

blue-component      COLOR

Return the blue component of COLOR as a number from 0 to 255.

Examples:
(blue-component white)
 => 255
(blue-component yellow)
 => 0

background-color     

Return the current background-color of the current device context.

Can be used with setf.

nearest-color      COLOR

Return the nearest color to COLOR that is available in the current palette of the current
device context.

text-color     

Return the current color for text output using textout for the current device context.

Can be used with setf.

system-color      COLOR-TYPE

Return specified system color. COLOR-TYPE must be a system colour windows constant..

Can be used with setf.

Color functions
background-color
blue-component
green-component
nearest-color
red-component
rgb
system-color
text-color

client-to-screen      WINDOW POINT

Convert POINT with x and y coordinates given relative to the origin (top left hand corner) of
the WINDOW's client area to a point with x and y coordinates given relative the the top left
hand corner of the screen.

screen-to-client      WINDOW POINT

Convert POINT with x and y coordinates given relative to the origin (top left hand corner) of
the screen to a point with x and y coordinates given relative the the top left hand corner of
the WINDOW's client area.

Conversion functions
client-to-screen
screen-to-client

exit-windows     

Exit Microsoft Windows (TM) (without asking running applications if its OK to exit, so this
function is a bit dangerous).

Exiting windows
exit-windows

create-solid-brush      COLOR

Return a solid brush of the specified COLOR.

Example:
(create-solid-brush green)
 => #<Brush: solid, #<Color: 0 255 0>>

create-hatch-brush      HATCH-STYLE COLOR

Return a hatched brush of the specified HATCH-STYLE, which must be a brush hatch style
windows constant., and of the specified COLOR.

Example:
(create-hatch-brush hs_vertical red)
 => #<Brush: hatched, #<Color: 255 0 0>>

Brush functions
create-hatch-brush
create-solid-brush

create-pen      STYLE THICKNESS COLOR

Return a pen of the specified STYLE, which must be a pen style windows constant., and of
the specified THICKNESS and COLOR.

Example:
(create-pen ps_solid 5 red)
 => #<Pen: solid, thickness: (5, 5), #<Color: 255 0 0>>

Pen functions
create-pen

create-font      NAME HEIGHT

Create a font of the given name and height

Example:
(create-font "Times" 12)
 => #<Font: "Times", 12>

Font functions
create-font

with-dc      WINDOW &rest EXPRESSIONS

A control structure. Evaluate WINDOW, and set the current device context to be a device
context for that window. Evaluate each EXPRESSION in turn and return the value of the last
one. Finally, reset the current device context to be the device context that it was previously.

with-select      (&rest DRAWING-OBJECTS) &rest EXPRESSIONS

A control structure. Evaluate each DRAWING-OBJECT, and select it into the current device
context. Then evaluate each EXPRESSION, and finally un-select the selected drawing
objects, replacing them with the originally selected objects. A drawing object can be a pen, a
brush, or a font. Returns the result of the last EXPRESSION.

with-selected-objects      DRAWING-OBJECTS &rest EXPRESSIONS

A control structure. Evaluate DRAWING-OBJECTs to get a list of drawing objects, and select it
into the current device context. Then evaluate each EXPRESSION, and finally un-select the
selected drawing objects, replacing them with the originally selected objects. A drawing
object can be a pen, a brush, or a font. Returns the result of the last EXPRESSION.

print-window      WINDOW

Print out contents of window on currently selected printer

draw-rect      RECTANGLE

Draw RECTANGLE in the current device context with the currently selected pen and
brush.Return t (i.e. true) if it was drawn successfully otherwise nil (i.e. false).

draw-arc      RECTANGLE START-POINT END-POINT

Draw an arc of the ellipse bounded by RECTANGLE in the current device context starting at
START-POINT and ending at END-POINT, with the currently selected pen. The start and end
points do not have to be on the actual ellipse - the actual points will be on the lines joining
the specified points and the centre of the ellipse.Return t (i.e. true) if it was drawn
successfully otherwise nil (i.e. false).

draw-focus-rect      RECTANGLE

Draw a focus-style RECTANGLE in the current device context using XOR (which is self-
reversing). Returns t.

draw-ellipse      RECTANGLE

Draw an ellipse whose sides are bounded by RECTANGLE in the current device context with
the currently selected pen and brush.Return t (i.e. true) if it was drawn successfully
otherwise nil (i.e. false).

clip-box     

Return the smallest rectangle that bounds the clipping boundary of the current device
context.

current-position     

Return the point that is the current position in the current device context(as used bymove-to
and line-to.

dc-origin     

Return the current origin of the current device context.

pixel      POINT

Return the color of POINT in the current device context.

Can be used with setf.

viewport-origin     

Return the origin of the viewport of the current device context.

Can be used with setf.

viewport-extent     

Return the extent of the viewport of the current device context.

Can be used with setf.

window-origin     

Return origin of window in viewport of the current device context.

Can be used with setf.

window-extent     

Return extent of window in viewport of the current device context.

Can be used with setf.

line-to      POINT

Draw a line from current position in the current device context to POINT.Return t (i.e. true) if
it was drawn successfully otherwise nil (i.e. false).

move-to      POINT

Move current position in the current device context to POINT (without drawing
anything.Return t (i.e. true) if it was drawn successfully otherwise nil (i.e. false).

draw-pie      RECTANGLE START-POINT END-POINT

Draw a pie section of the ellipse bounded by RECTANGLE in the current device context
starting and ending at the lines from the origin of the ellipse    to START-POINT and END-
POINT, with the currently selected pen.Return t (i.e. true) if it was drawn successfully
otherwise nil (i.e. false).

textout      STRING POINT

Output STRING to the current device context starting at POINT, using the currently selected
font and current text color.Return t (i.e. true) if it was drawn successfully otherwise nil (i.e.
false).

flood-fill      POINT COLOR

"Color in" the area in the current device context bounded by COLOR, that POINT is in,    using
the currently selected brush.Return t (i.e. true) if it was drawn successfully otherwise nil (i.e.
false).

draw-frame-rect      RECTANGLE BRUSH

Draw a line around RECTANGLE using BRUSH in the current device context.Return t (i.e. true)
if it was drawn successfully otherwise nil (i.e. false).

set-raster-op      BINARY-RASTER-OP

Set the binary raster operation windows constant. that defines how new colors are combined
with existing colors in drawing operations on the current device context.

repaint      WINDOW

Mark WINDOW to be repainted (using its repaint function). Returns nil

invert-rect      RECTANGLE

Invert the colors of RECTANGLE in the current device context. Returns nil

Graphics functions
clip-box
current-position
dc-origin
draw-arc
draw-ellipse
draw-focus-rect
draw-frame-rect
draw-pie
draw-rect
flood-fill
invert-rect
line-to
move-to
pixel
print-window
repaint
set-raster-op
textout
viewport-extent
viewport-origin
window-extent
window-origin
with-dc
with-select
with-selected-objects

make-window      CAPTION-STRING &key DATA RECT PAINTER

Make a window.    CAPTION-STRING is the caption that goes on the title bar. DATA is the
window data, (accessed using window-data), RECT is the rectangle that defines the window's
initial size and PAINTER is the function that repaints the window (accessible using window-
painter and taking as arguments the window and the rectangle that needs repainting).
Returns handle to the window.

close-window      WINDOW

Close WINDOW. Returns handle to closed window.

window-data      WINDOW

Data associated with window. Typically this would be data that the window displayed.

Can be used with setf.

window-painter      WINDOW

The function that is called when WINDOW needs repainting, for example when part of the
window that was hidden is revealed. The function must take two arguments - WINDOW and
the rectangle being repainted. Typically the function would repaint the area specified by the
rectangle, although over-painting is OK, e.g. the painter function can ignore the rectangle all
together and just repaint the whole window. The function does not need to call with-dc as
the repainting automatically sets the current device context to be a device context for
WINDOW for the duration of the execution of the repaint function.

Can be used with setf.

client-rect      WINDOW

Return the client rectangle of WINDOW, i.e. that part of the window excluding the title bar,
menu bar and scroll bars that may be drawn on.

window-text      WINDOW

The caption on the window.

Can be used with setf.

window-rect      WINDOW

The rectangle that specifies the position of WINDOW on the screen.

is-iconic      WINDOW

Return t (i.e. true) if WINDOW is iconic otherwise nil (i.e. false).

is-window-enabled      WINDOW

Return t (i.e. true) if WINDOW is enabled otherwise nil (i.e. false).

is-window-visible      WINDOW

Return t (i.e. true) if WINDOW is visible otherwise nil (i.e. false).

is-zoomed      WINDOW

Return t (i.e. true) if WINDOW is zoomed (i.e. maximized) otherwise nil (i.e. false).

move-window      WINDOW RECTANGLE REPAINT

Move WINDOW to position on screen specified by RECTANGLE and repaint if REPAINT is non-
nil. Returns nil.

bring-window-to-top      WINDOW

Bring WINDOW to top of other windows. Returns nil.

open-icon      WINDOW

Open up iconized WINDOW.Return t (i.e. true) if WINDOW was successfully restored.
otherwise nil (i.e. false).

point-visible      POINT

Return t (i.e. true) if POINT is visible in the current device context otherwise nil (i.e. false).

rect-visible      RECTANGLE

Return t (i.e. true) if any part of RECTANGLE is visible in the current device context otherwise
nil (i.e. false).

Window functions
bring-window-to-top
client-rect
close-window
is-iconic
is-window-enabled
is-window-visible
is-zoomed
make-window
move-window
open-icon
point-visible
rect-visible
window-data
window-painter
window-rect
window-text

current-time     

Returns the elapsed time since the system was rebooted in milliseconds.

double-click-time     

The double-click threshold in milliseconds, i.e. the maximum time between two mouse clicks
that will be considered a double-click (applies to whole of Microsoft Windows (TM)).
Can be used with setf.

Time functions
current-time
double-click-time

cursor-pos     

The position of the cursor in screen coordinates.

Can be used with setf.

Cursor functions
cursor-pos

run-program      COMMAND :show STYLE

Execute COMMAND (given as a string). Command is the name of either a Windows or Dos
executable or batch file, possibly followed by some parameters. If the directory of the
executable or batch file is not given it will be looked for in the directories specified in the
PATH environment variable.
STYLE is a show window style windows constant., and determines how the window for the
command is initially shown.
The command is executed asynchronously, i.e. control is returned to the caller as soon as
the command has been started. It is not possible to wait for execution of the command to
finish.

The return value is an integer giving information about success or otherwise of the attempt
to execute the command.

set-current-directory      DIRECTORY

Sets current DOS directory to DIRECTORY. Don't forget that to write a backslash in a string
you have to write it twice.

current-directory      &optional DRIVE

Returns current DOS directory. DRIVE is the drive number, 0=current,1=A,2=B etc, and
defaults to the current drive.

Example:
(current-directory 3)
 => "C:\\LISP"

mem     

Prints to the output window a report on memory usage,    in particular the number of blocks
(64k segments) used by Lisp objects. This does not count fixed overhead or editor buffers.

sp     

Returns value of stack pointer.

dos-environment     

Returns the DOS environment string.

free-heap-space     

Returns the amount of free memory in bytes.

keyboard-code-page     

Returns the number of the current keyboard code page.

profile-int      APPLICATION-NAME KEY-STRING DEFAULT

Retrieves an integer value from the WIN.INI file by APPLICATION-NAME, KEY-STRING and
DEFAULT if not found.

profile-string      APPLICATION-NAME KEY-STRING DEFAULT

Retrieves a string value from the WIN.INI file by APPLICATION-NAME, KEY-STRING and
DEFAULT if not found.
Can be used with setf.

When used with setf, the DEFAULT argument must be omitted.

windows-directory     

Returns Windows directory pathname.

system-directory     

Returns Windows system subdirectory pathname.

tick-count     

Returns time since system started in milliseconds.

lo-word      INTEGER

Returns low 16 bits of 32 bit INTEGER.

Example:
(lo-word 65539)
 => 3

hi-word      INTEGER

Returns high 16 bits of 32 bit INTEGER.

Example:
(hi-word 65539)
 => 1

make-long      LOW HIGH

Returns 32 bit integer from two 16 bit integers LOW and HIGH.

Example:
(make-long 3 1)
 => 65539

System functions
current-directory
dos-environment
free-heap-space
hi-word
keyboard-code-page
lo-word
make-long
mem
profile-int
profile-string
run-program
set-current-directory
sp
system-directory
tick-count
windows-directory

swap-mouse-buttons     

Swap left and right mouse buttons.

restore-mouse-buttons     

Restore left and right mouse buttons to original setting.

Mouse functions
restore-mouse-buttons
swap-mouse-buttons

beep     

Beep.

Sound functions
beep

Builtin functions and macros
Arithmetic
Array functions
ASCII code
Bitwise operations
Brush functions
Color functions
Comparing numbers
Compilation functions
Control structures
Conversion functions
Cursor functions
Debugging
Editor commands
Equality
Error functions
Evaluation functions
Exiting windows
Extent functions
File input and output
Font functions
Functions and Macros
Garbage Collection
Graphics functions
List and cons functions
Logical functions
Looping macros
Macro expansion
Math functions
Miscellaneous
Mouse functions
Pen functions
Point functions
Predicates
Printing to strings
Rectangle functions
Sequence functions
Setf functions
Sound functions
String functions
Structure functions
Symbol and variable functions
System functions
Time functions
Type functions
Window functions
Windows constant functions

Index
Builtin functions and macros
Constants
Editing
Important concepts
Menu Commands
Special Symbols
Syntax
Types
Windows constants - values

