Personalized Interpretersfor Version 8 of Icon*

Ralph E. Griswold

TR 90-3a

January 1, 1990; last revised Feburary 13, 1990

Department of Computer Science
The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grant CCR-8713690.

Personalized Interpretersfor Version 8 of I con

1. Introduction

Despite the fact that the |con programming language has a large repertoire of functions and operations for string
and list manipulation, as well as for more conventional computations [1, 2], some users need to extend that reper-
toire. While many extensions can be written as procedures that build on the existing repertoire, there are some kinds
of extensions for which this approach is unacceptably inefficient, inconvenient, or simply impractical.

Icon itself iswritten C and its built-in functions are written as corresponding C functions. Thus, the natural way
to extend Icon’s computational repertoire isto add new C functionsto it.

The Icon system is organized so that this is comparatively easy to do. Adding new functions does not require
changes to the Icon grammar, since al functions have a common syntactic form. An entry must be made in an array
that identifies built-in functions and connects references to them to the code itself.

One method of adding new functions to Icon is to add the corresponding C functions to the Icon system itself
and to rebuild the entire system. If the extensions are not of general interest, it is inappropriate to include them in
the public version of Icon. On the other hand, Icon is a large and complicated system, and having many private ver-
sions may create serious problems of maintenance and disk usage. Furthermore, rebuilding the Icon system istime-
consuming. This approach may be impractical, for example, in a situation such as a class in which students imple-
ment their own versions of an extension.

To remedy these problems, a mechanism for building *‘ personalized interpreters’”’ isincluded in UNIX" imple-
mentations of Icon. This mechanism allows a user to add C functions and to build a corresponding interpreter
quickly, easily, and without the necessity to have a copy of the source code for the entire Icon system.

To construct a personalized interpreter, the user must perform a one-time set up that copies relevant source files
to adirectory specified by the user and builds the nucleus of a run-time system. Once thisis done, the user can add
and modify C functions and include them in the personalized run-time system with little effort.

The modifications that can be made to Icon via a personalized interpreter essentially are limited to the run-time
system: the addition of new functions, and modifications to existing functions, operations, and support routines.
There is no provision for changing the syntax of Icon or for incorporating new operators, keywords, and control
structures.

2. Building and Using a Per sonalized I nterpreter

2.1 Setting Up a Personalized Interpreter System

To set up a personalized interpreter, anew directory should be created solely for the use of the interpreter; other-
wise files may be accidentally destroyed by the set-up process. For the purpose of example, suppose this directory
is named myicon. The set-up consists of

mkdir myicon

cd myicon

icon_pi
Note that icon_pi must be run when in the area in which the personalized interpreter is to be built. The location of
icon_pi may vary from siteto site.

The shell script icon_pi constructs four subdirectories: h, common, std, and pi. The subdirectory h contains
header files that are needed in C routines. The subdirectory common contains files common to several components

HUNIX is atrademark of AT&T Bell Laboratories.

of Icon. The subdirectory std contains the machine-independent portions of the Icon system that are needed to
build a personalized interpreter. The subdirectory pi contains a Makefile for building a personalized interpreter and
also isthe place where source code for new C functions normally resides. Thus, work on the personalized interpreter
isdone in myicon/pi.

The Makefile that is constructed by icon_pi contains two definitions to facilitate building personalized inter-
preters:

OBJS alist of object modules that are to be added to or replaced in the run-time system. OBJS initidly is
empty.

LIB alist of library options that are used when the run-time system is built. LIB initially is empty, but the
math library isloaded as a normal part of building the run-time system.

See the listing of the generic version of this Makefile in the appendix of thisreport.

2.2 Building a Personalized Interpreter
Performing a
make pi
in myicon/pi creates two filesin myicon:
picont command processor
piconx run—-time system
Links to these files also are constructed in myicon/pi so that the new personalized interpreter can be tested in the
directory in which it is made.

The user of the personalized interpreter uses picont in the same fashion that the standard icont is used. (Note
that the accidental use of icont in place of picont may produce mysterious results.)

The relocation bits and symbolsin piconx can be removed by
make Stripx

in myicon/pi. This reduces the size of thisfile substantially but may interfere with debugging.

If amake is performed in myicon/pi before any run-time files are added or modified, the resulting personalized
interpreter isidentical to the standard one. Such a make can be performed to verify that the personalized interpreter
systemis performing properly.

2.3 Version Numbering

The Icon run-time system checks an identifying version number to be sure the output of picont corresponds to
piconx. The version number is the string defined for 1Version in myicon/h/version.h following the construction of
apersonalized interpreter as described in Section 2.1.

In order to assure that files produced by picont can only be run by the current versions of piconx, the value of
[Version should be changed whenever a change is made to a personalized interpreter. It is not important what the
definition of IVersion is, so long asit isashort string that is different from those for other versions of 1con.

2.4 Adding New Functions

To add new functions to the personalized interpreter, it is first necessary to provide the C code for them, adher-
ing to the conventions and data structures used throughout Icon [3,4]. The directory src/iconx in the Version 8
Icon hierarchy contains the source code for the standard functions, which can be used as models for new ones.

Suppose that a function setenv(s) isto be added to a personalized interpreter.
Four things need to be done to incorporate this function in the personalized interpreter:
1. Providethe code to the function (in, say, setenv.c).

2. Add aline consisting of
FncDef(setenv,1) # one argument

to myicon/h/fdefs.h. This adds the new function to the Icon function repertoire.

3. Add setenv.o to the definition of OBJS in myicon/pi/Makefile. This causes setenv.c to be compiled
and the resulting object file to be loaded with the run-time system when a make is performed.

4. Perform amake in myicon/pi to produce new versions of picont and piconx in myicon.
The function setenv() now can be used like any other built-in function.

More than one function can be included in a single source file. To incorporate these functions in a personalized
interpreter, an FncDef entry needs to be added for each function, but only the file need be added to the OBJS list.

2.5 Modifying the Existing Run-Time System

The use of personalized interpreters is not limited to the addition of new functions. Any module in the standard
run-time system can be modified as well.

To modify an existing portion of the Icon run-time system, copy the source code file from v8/src/iconx to
myicon/pi. (Source code for a few run-time routines is placed in myicon/std when a personalized interpreter is set
up. Check this directory first and use the file there, rather than making another copy in myicon/pi.) When a source-
code file in myicon/pi has been modified, place it in the OBJS list just like a new file and perform a make. Note
that an entire module must be replaced, even if a change is made to only one routine. Any module that is replaced
must contain al the global variables in the original module to prevent 1d(1) from also loading the original module.
There is no way to delete routines from the run-time system.

The directory myicon/h contains header files that are included in various source-code files. The file
myicon/h/rt.h contains declarations and definitions that are used throughout the run-time system. This is where
information about a new type would be placed.

Care must be taken when modifying header files so as not to make changes that would produce inconsistencies
between previously compiled components of the Icon run-time system and new ones.

References

1 R. E. Griswold and M. T. Griswold, The Icon Programming Language, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1983.

2. R. E. Griswold, Version 8 of Icon, The Univ. of Arizona Tech. Rep. 90-1, 1990.

R. E. Griswold and M. T. Griswold, The Implementation of the Icon Programming Language, Princeton
University Press, 1986.

4, R. E. Griswold, Supplementary Information for the Implementation of Version 8 of Icon, The Univ. of Arizona
Icon Project Document 1PD112, 1990.

Appendix — Makefile for Personalized Interpreters

Dir="pwd’

Sdir="pwd/../pi

HDRS= ..In/config.h ../h/define.h

RHDRS= .Istd/rproto.h ../h/rt.h $(HDRS)

ICHDRS= ..Istd/tproto.h ../std/general.h ../std/globals.h $(HDRS)
#

To add or replace object files, add their names to the OBJS list below.
For example, to add nfncs.o and iolib.o, use:

#

OBJS=nfncs.o iolib.o # this is a sample line
#

For each object file added to OBJS, add a dependency line to reflect files
that are depended on. In general, new functions depend on $(RHDRS).
For example, if nfncs.c contains new functions, use

#

nfncs.0:$(RHDRS)

#

Such additions to this Makefile should go at the end.

OBJS=

LIB=

ICOBJS= ../std/util.o ../std/tmain.o
RTOBJS= ../std/idata.o $(OBJS)

pi: picont piconx ../std/hdr.h

picont: .Istd/icontlib.a $(ICOBJS) $(RHDRS) ../h/paths.h
rm —f ../picont picont
$(CC) $(CFLAGS) -0 picont $(ICOBJS) ../std/icontlib.a
strip picont
In picont ../picont

..Istd/ixhdr.o: $(ICHDRS) ../h/header.h ../h/paths.h
cd ../std; $(CC) —c $(XCFLAGS) \
—Dlconx="\"$(Sdir)/piconx\"" ixhdr.c

.Istd/iconx.hdr: .Istd/ixhdr.o
$(CC) $(XLDFLAGS) ../std/ixhdr.o —o ../std/iconx.hdr
strip ../std/iconx.hdr

.Istd/hdr.h: $(ICHDRS) ../std/newhdr.c ../std/iconx.hdr
$(CC) $(XLDFLAGS) -0 newhdr ../std/newhdr.c
Jnewhdr <../std/iconx.hdr >../std/hdr.h
rm —f newhdr iconx.hdr

piconx:

../std/idata.o:

../std/util.o:

./std/tmain.o:

Stripx:

..Istd/rtlib.a $(RTOBJS)

rm —f ../piconx piconx

$(CC) $(LDFLAGS) -0 piconx $(RTOBJS) ../std/rtlib.a \
$(LIB) —-Im

In piconx ../piconx

$(RHDRS) ../n/fdefs.h ../h/odefs.h fdefs.h
cd ../std; $(CC) —c $(CFLAGS) idata.c

$(ICHDRS) ../std/link.h ../std/sizes.h ../std/trans.h \
.Istd/tree.h ../std/link.h ../h/fdefs.h fdefs.h
cd ../std; $(CC) —c $(CFLAGS) util.c

$(ICHDRS) ../h/paths.h ../h/fdefs.h fdefs.h
cd ../std; $(CC) —c —Dlconx="\"$(Dir)/../piconx\"" \
$(ICOBJS) $(CFLAGS) tmain.c

piconx picont
strip piconx picont

