
For Windows

Version 2.0

Z80 Assembler for Windows
__

_

Registration Information

This program is shareware, should you decide that you wish to use it for serious purposes - in
practice any project which results in code used on a Z80 or a simulator, then you must register it.
Registration costs £20.00 or $30.00, and should be made payable to "Robin Abbott" at the
following address:

37 Plantation Drive
Christchurch
Dorset

ENGLAND

BH23 5SG

Registration entitles you to a printed manual, technical support and an evaluation copy of
the next version of the program free of charge.

To obtain the evaluation copy of the remote symbolic monitor/debugger which links in with
debugging information produced by the debugger and which runs on a PC in conjunction
with a Z80 monitor send £5 or $10.00 to the same address.

__
2

Z80 Assembler for Windows
__

_

Contents

Registration Information 2
Introduction 4
Tutorial 4
Projects 6
Assembling & Linking 7
The Assembler 8
Output Files Produced 8
Source Code 8
Labels 9
Expressions 11
Assembler Pseudo ops/Directives 12
Illegal Opcodes 14
Command Reference 16
Appendix 1 - File Formats 20
Appendix 2 - Z80 Reference 23

__
3

Z80 Assembler for Windows
__

_

Introduction

This program is a fast assembler capable of assembling and linking files on a PC for a Z80
target and creating binary or intel hex format files suitable for programming an EPROM. Files
suitable for the remote debugger are also produced. The program maintains files in a project
which enables all files involved in the project to be tracked and assembled and linked.

This document is structured as a tutorial followed by reference material for the assembler and
linker, and the use of the windows environment. The file formats produced by the assembler
are covered in appendix 1.

Tutorial

This tutorial will enable you to see how the Z80 assembler operates to construct a very simple
project, this will multiply two unsigned numbers in the DE and HL registers.

To start with we shall open a new project which will contain two files, one consists of the
multiplication routine, and the other of a simple routine to call the multiplication routine. Click
on the Project|Open Project menu and enter the filename MULTIPLY. This will be the name of
our project. The screen will now display two windows, one titled Message and the other titled
Project. Click on the Project|Add Item menu and enter the filename MULTIPLY.ASS, now a
window will appear entitled MULTIPLY.ASS, enter the following code into the window:

;
; ROUTINE TO MULTIPLY THE HL AND DE REGISTERS
;
; RESULT IS RETURNED IN THE HL REGISTER
;

MULTHLDE: LD A,16 ; A REGISTER IS A LOOP
COUNTER

LD C,L
LD B,H ; STORE OPERAND IN BC
LD HL,0 ; HL HOLDS TOTAL

MULLOOP: BIT 0,E ; TEST IF ADD REQD
JR Z,NOADD
ADD HL,BC ; ADD IN THE RESULT

NOADD: SLA C ; BC=BC*2
RL B
RR D ; DE=DE/2
RR E
DEC A
JR NZ,MULLOOP ; LOOP 16 TIMES
RET

There is a button at the top of the edit window entitled Save, click on this button to save this
file.

__
4

Z80 Assembler for Windows
__

_

Now repeat the procedure to add another file to the project, call this file MUL_TEST.ASS and
enter the following code:

MULTEST: LD HL,7
LD DE,98
CALL MULTHLDE
RET

Save this file.

__
5

Z80 Assembler for Windows
__

_

Now to assemble and link the code click on the Compile|Make Project menu item. A dialog
box will appear which has a number of options. Click on the Intel Hex button to produce an Intel
Hex format output file, and enter "&4000" in the address box, then click on OK. The assembler
will now assemble each of the files in the project, and then link them to run at address
4000Hex (16384 decimal).

Click on File|Open and enter MULTIPLY.INX to load the binary file produced by the project.

Now select the MUL_TEST.ASS window and change the line LD DE,98 to LD DE,DE. Compile the
project again and this time an error will occur as LD DE,DE is an illegal opcode. The error will
appear on the message window. Double click on the error and the MUL_TEST.ASS window will
come up with the cursor on the line with the error which can now be corrected.

To produce a listing file click on the MULTIPLY.ASS window and click the Params button at the
top of the window. A dialog box will appear, click on the Produce list file check box and then
make the project again - this time you must use the Compile|Assemble/Link All menu
selection to make the project because the file hasn't changed, and the Compile|Make Project
menu only assembles file when they have changed.

Now open the file MULTIPLY.LST and a listing of the assembly will appear. A few lines are shown
below:

0006: MULTHLDE: LD A,16 ; A REGISTER IS A LOOP COUNTER
 0000: MULTHLDE: 3E 10
0007: LD C,L
 0002: : 4D
0008: LD B,H ; STORE OPERAND IN BC
 0003: : 44

Lines appear in pairs, the first line is the source code line number followed by the source code
line. Below it is the machine code address (in hex), followed by the label (if any), followed by
the bytes in hex which are assembled from the source line. Note in the example that the code
was assembled into object files which were then linked, so the address is the offset of the code
from the beginning of the file. Double Click on the close box at the top left of the MULTIPLY.LST
window to close this window.
Click on the MULTIPLY.ASS window and add the following lines at the top of the file:

ORG &4000
STARTC &4000
ENDC &40FF

This instructs the assembler (not the linker) to place the code at address 4000 Hex, and to save
the code in a binary file from address 4000 hex to address 40FF hex. Now click the button
labelled "Assemble" at the top of the window, and a dialog box will appear. Click on the Binary
option to save a binary file and then click OK. The file will be assembled. Open the list file as
before and this time the lines will show:

0009: MULTHLDE: LD A,16 ; A REGISTER IS A LOOP COUNTER

__
6

Z80 Assembler for Windows
__

_

 4000: MULTHLDE: 3E 10
0010: LD C,L
 4002: : 4D
0011: LD B,H ; STORE OPERAND IN BC
 4003: : 44

Note that the addresses are now correct in the list file because the file was directly assembled,
and no link phase was undertaken.

__
7

Z80 Assembler for Windows
__

_

Projects

A project is a collection of files which are to be assembled and linked into a complete machine
code image. A project file (with the extension .ZPJ) holds the list of all the files in the project
and the options associated with each file and the complete project. It also stores the positions
of file windows when they were last open, and also any other files that were open when the
project was last open.

To open a project the Project|Open Project menu option is used. An existing project may be
opened, or if it is desired to create a new project then the name of a project which doesn't exist
may be entered.

Items may be added or deleted from the project by using the Project|Add Item and Project|
Delete Item Whenever a file is part of a project then a window will be open for that file to be
edited, closing the window will delete the file from the project. Within the project window
double clicking on a file name will bring that file editing window to the fore to be edited
immediately.

Projects are saved automatically whenever a new project is opened, or whenever the
assembler is closed, if a project has not been named the user will be prompted for the name on
saving the project.

The project name is used for the output file name in linking, the individual file names are used
in assembling.

__
8

Z80 Assembler for Windows
__

_

Assembling and Linking

To assemble a single file - whether it is a member of the project or not, then the Compile|
Assemble file menu can be used, or the Assemble button at the top of each file editing
window can be clicked. A dialog box will appear to enable selection of Intel hex or binary output
and the file will be assembled when the OK button is clicked. An information window will open
to allow the progress of the assembly to be followed, and on failure the message window will
open with a list of errors. Double click on any error to bring up the relevant source file line.

The assembler is described more fully in the Assembler section below.

The linker links only files which are members of the project into the final output. There are two
ways of running the linker, Compile|Make Project - this option checks those files which have
changed this they were last assembled and only assembles these before running the linker, or
Compile|Assemble/Link All which assembles all files. Note that the Compile|Make Project
method does not check if include files have changed, so you must use the Compile|
Assemble/Link All option if include files have changed.

On linking a project the linker dialog box will appear, this allows the following options to be set:

Code Origin This is the address at which the first file in the link will be placed. Files may
also be placed at individual addresses in RAM - see below.

Start Code is saved over a limited range, the start address is the first byte that
will be saved.

End This is the last byte that will be saved.
Save As This allows the output to be saved in binary or Intel hex format. Code is

saved with a name which is the project file name with a .BIN or .INX
extension.

Insert JP This inserts a Z80 JP instruction (Hex C3) at the start address (Code Origin),
this allows files to be linked in any order, but can be executed from the
start address. Any address may be supplied as the destination of the jump.

Within the dialog box addresses may be entered as labels, values, or any valid assembler
expression. Files are actually linked in the order in which they were entered into the project. It
is bad practice to write code in files which then needs linking in specific order (for example if a
routine continues from one file into another you should always use a JP instruction at the end of
the first file, even if in practice it is only to the adjacent program byte on linking).

To place a file at a specific location the File Parameters box should be opened and the file
address typed in.

__
9

Z80 Assembler for Windows
__

_

Assembler
The Assembler takes standard ASCII files with a default extension of .ASS. It produces a number
of types of output files.

Output Files Produced

There are a number of file types produced from the assembler, although some of them will only
be produced if no errors are generated from the assembly.

The file types produced all have the same name as the source file, but have differently
generated extensions as follows:

.BIN This file contains the binary machine code
produced from the program if a single file has been assembled,
or if several files are linked together. It is a straight binary dump
of the code with no other information included.

.INX This is the Intel hex version of the machine
code produced by the program.

.DBG This is the debug information file which is
produced for the monitor. It is always produced and indicates
the start and finish of the code and includes data areas and
label values. This is an ASCII file which can be read and modified
by a word processor.

.LST This is the list file. It contains a list of errors
if present, compilation time, and for reference the code start
and end addresses. It will only be produced if the file
parameters have been set up to produce a list file, see Set File
Parameters option

.ZBJ This file is produced if the linker is used to
create a binary file from one or more input modules which can
be linked. This is a binary file whose contents can only be read
with the 'readobj' program.

.EQU This file is produced by the assembler or
linker and consists of every label in the program with an EQU
statement suitable for being Included into another assembly.

Source Code

Source Code is stored in the assembler file which is an ASCII text file and usually has the
extension .ASS.

The assembler uses standard Z80 mnemonics throughout with the exception of the instruction:

EX AF,AF'

which is written in the assembler without the inverted comma, so it becomes:

EX AF,AF

__
10

Z80 Assembler for Windows
__

_

The source code must be in capital letters (except for labels), and may contain any spaces,
tabs, or newlines required to make the text more legible.

Comments are introduced by a ';' character, and any information on the line following the ';' is
ignored. Comments may be on a line of their own, or may follow any source code on a line.

Example: The following is a short example of code designed to multiply the DE and HL registers
and return the 16 bit result in the HL register. Overflows are ignored.

__
11

Z80 Assembler for Windows
__

_

;
; ROUTINE TO MULTIPLY THE HL AND DE REGISTERS
;
; RESULT IS RETURNED IN THE HL REGISTER

STARTC &1800 ; Code Start Address
ENDC LASTB ; Code End Address
ORG &1800 ; Set The Origin

MULTHLDE: LD A,16 ; A REGISTER IS A LOOP
COUNTER

LD C,L
LD B,H ; STORE OPERAND IN BC
LD HL,0 ; HL HOLDS TOTAL

MULLOOP: BIT 0,E ; TEST IF ADD REQD
JR Z,NOADD
ADD HL,BC ; ADD IN THE RESULT

NOADD: SLA C ; BC=BC*2
RL B
RR D ; DE=DE/2
RR E
DEC A
JR NZ,MULLOOP ; LOOP 16 TIMES
RET

LASTB: EQU $

Labels

Labels may be up to 10 characters in length, and may contain any alphabetic or numeric
character, but must start with a letter. Labels are case insensitive.

Labels may be defined on a line in any of 2 ways, they may be defined with a '.' character
preceding the label or with a ':' character after the label. For example the following lines define
the label LOOP :

LOOP: LD BC,89

.LOOP LD BC,89

Labels may not contain the strings 'IX' or 'IY' anywhere within them, and must not be the same
as any of the following keywords:

'A','B','C','D','E','F','H','I','L','R'

'AF','BC','DE','HL','SP'

'M','NC','NZ','P','PE','PO','Z'

__
12

Z80 Assembler for Windows
__

_

The following are all examples of illegal labels

7UP - Starts with a number
PO - Reserved Keyword
LOOP 1 - Contains spaces
FIXUP - Contains the string 'IX'
TOTALRETURN - More than 10 characters

__
13

Z80 Assembler for Windows
__

_

The following are all examples of legal labels:

MULTLOOP
S7UP
DIVHLDE
LOOP_1
TOTALRETRN
SUBCOUNT

Notes for use of labels with the linker

When the linker is to be used there are 2 types of label.

The first is described as relocatable and is a program reference which may change as the
position of the module changes during the link.

The second type is described as an absolute label because it does not change during the link.
Absolute labels are set up with the EQU directive, and are normally used to set up constants or
to fix the position of machine code variables in RAM.

An expression may contain references to any number of absolute labels, but may contain only
one relocatable label. This is because relocatable labels change in value, and if more than one
were to be given in an expression then the object file would have to hold the complete
expression for evaluation during link.

A relocatable label may be part of an expression but only if it is used with a constant offset. For
example LOOP+9, LOOP-3+2, 3*2+LOOP-9, are all valid as they all evaluated to a constant
offset from the label LOOP. However LOOP*2 or LOOP/3 are invalid because the expression is
not an offset from LOOP.

The following are valid source code lines:

JP START+3 ; START may be relocatable or
absolute

LD A,(9+LX-LY) ; Provided that only one of LX or LY is a ; relocatable
label.

The same label may be defined in different modules, in this case the first defined label is taken
and the subsequent labels are ignored. This allows routines in modules to be bypassed by
rewriting the routine and calling it the same name in a module which is earlier in the linker list
of files. Whenever a duplicate label is found a warning will be issued.

Absolute labels may also be defined more than once, however:

a) a label must not be relocatable in one module but absolute in another.
b) an absolute label if defined in more than one module must have the same

absolute value in all modules in which it is defined.

__
14

Z80 Assembler for Windows
__

_

Expressions

An expression may be used anywhere in the source code that a number would be used. The
expression evaluator has no facilities for operator precedence or for bracketing expressions.

Numbers may be specified in binary, decimal, or hex, or as an ASCII character. The default for
the assembler is decimal.

Binary numbers are specified with a '%' character preceding the number.

Example: %100001 ; 33 in decimal

Decimal numbers are specified in normal decimal form. This is the default for the assembler.

Example: 33

Hex numbers are specified with an '&' character preceding the hex number which may have
characters A-F in addition to the normal numbers.

Example: &21 ; 33 in decimal

Characters may be specified so that the ASCII value of the character is returned. This is done
by surrounding the character with single quotes.

Example: '!' ; 33 in decimal

The current value of the PC may be specified by using the '$' character. It is not permissible
to use this if the file is being assembled for use with the linker, as the value of the PC will
change during the link process.

Anywhere in an expression that a number is used, a label may be used instead.

The operators are:

+ Addition
- Subtraction
* multiplication
/ division
> right shift
< left shift
& bitwise and
| bitwise or
^ bitwise xor
~ complement

Examples of valid expressions:

__
15

Z80 Assembler for Windows
__

_

1+2*3 ; value 6.
LOOP-3 ; value of label LOOP-3.
-1 ; value -1 decimal, FFFF in hex.
'A'+&10 ; value 81.
&10>2 ; value &04.
~8 ; value &FFF7

__
16

Z80 Assembler for Windows
__

_

Assembler Pseudo ops / Directives

There are a number of source code directives which affect the assembly or the output
produced, and which are not part of the standard Z80 instruction set. These are detailed below.

ENDC Defines code save end address when assembling a single file
EQU Inserts a single defined byte at a location.
INCLUDE Include another file in the assembly at this point
DEFB Inserts a single defined byte at a location.
DEFW Inserts a defined word at a location.
DEFM Inserts an ASCII message at a location.
DEFS Leaves space for a defined number of bytes.
ORG Defines the code origin.
STARTC Defines code save end address when assembling a single file

DEFB

This is used to insert bytes at the current point in the assembly. The DEFB directive is followed
by a list of one or more bytes which will be inserted.

Example: DEFB 0,1,'A',2,3,LOOP

This will insert the bytes 00,01,65,2,3, and the lower byte of the value of the label LOOP.

DEFW

This is used to insert words at the current point in the assembly. The DEFW directive is followed
by a list of one or more bytes which will be inserted in low byte-high byte format.

Example: DEFW &ED67,1,LOOP

This will insert the bytes &67,&ED,01,00, and the value of the label LOOP.

DEFS

This inserts a number of bytes at the current point in the assembly. The DEFS statement is
followed by the number of bytes to insert, and then optionally separated by a comma, the byte
to be inserted. If no byte is specified then the area is filled with byte 00.

Example: DEFS &200

This will insert 512 byte 0's at the current point in the assembly.

Example: DEFS 64,' '

This will insert 64 spaces.

__
17

Z80 Assembler for Windows
__

_

DEFM

This directive is used to insert a text message at the current position in the assembly. The
argument to the directive is an ASCII text string.

Example: DEFM "Syntax in Command !"

This will insert the bytes 'S','y','n','t','a','x',' ','i','n',' ','C','o','m','m','a','n','d',' ','!'.

ENDC

This defines the last byte of the binary file produced which is to be saved. If this command is
not specified then the last byte assembled is the last byte saved.

Example: ENDC 2047

This will ensure that all the object code from the first byte (specified by STARTC) to the byte at
address 2047 is saved in the binary file.

This directive is ignored if the -o option has been specified to produce an object file.

EQU

This has no effect on the assembly, but sets up a label to equal to a value. The label value is
absolute, that is it will not be modified by the linker. EQU is normally used to set up constants,
and to fix locations which the linker must not change such as RAM based machine code
variables.

Example: BUFHEAD EQU 2050

This sets the label BUFHEAD to the value 2050.

INCLUDE

This directive is used to bring in another source file at the current point in assembly. The source
file is assembled, and then the existing file continues from the first line after the INCLUDE
directive. INCLUDE files may be nested to a depth of 9, and the assembler will search for the
files not only in the current directory, but then in every path specified in the environment
variable INCLUDE. The main use for the directive is to provide header files which contain EQU
directives so that every module which is linked to make up a program may have a common
data area.

Example: INCLUDE "MONITOR.H"

This line includes the source file MONITOR.H which is supplied with the package, and which
defines all the labels required for the use of the monitor routines.

__
18

Z80 Assembler for Windows
__

_

ORG

This sets the value of the program counter so that assembly continues from a different
address. The value supplied should not be a forward reference, that is it should be numeric, or
should be set to the value of a label which has already been declared.

Example: ORG 2048

This sets assembly on following lines to start at address 2048.

This directive is ignored if the -o option has been specified to produce an object file.

STARTC

This sets the start address for the code to be saved in the binary file. The binary file consists of
code saved from the address specified in STARTC to the address specified in ENDC. If STARTC is
not specified then it is set to 0.

Example: STARTC &1000

This saves code in the binary file starting from address 4096.

This directive is ignored if the -o option has been specified to produce an object file.

"Illegal" Opcodes

The Z80 has a number of codes which are not described in the Zilog documentation. The
assembler supports some of the more useful of these codes. They are almost guaranteed to
operate correctly, it is rumoured that some very early versions of the Z80 had bugs which
prevented them operating and Zilog left them out of the documentation, the bugs were later
corrected. These codes were widely used in many games on home computers in the 1980's.

Index Half Registers

The unshifted opcodes which act on the H or the L registers- all those codes which do not start
with &CB or &ED -will operate on the upper or lower halves of the IX and IY registers if
preceded with a &DD or &FD code. The assembler supports these and the registers are referred
to as IXH, and IXL for the upper and lower halves of the IX register, and IYH and IYL for the IY
register. For example:

LD IXH,7 ; loads the top 8 bits of IX with the value 7
LD A,IYL ; loads A with the bottom 8 bits of IY

The codes act on the flags in the same way as instructions with H or L, in most cases adding 4
T-states and one byte to the instruction length.

Preceding the rotate, shift, bit, set and reset instructions (codes which start with &CB) with

__
19

Z80 Assembler for Windows
__

_

&DD or &FD create all sorts of interesting effects - some instructions cause other registers to
be shifted, some cause strange values to be loaded into other registers, in fact anything but
the IX and IY registers are affected ! For this reason the assembler will throw out instructions
which start with &CB such as RL IXH.

__
20

Z80 Assembler for Windows
__

_

SLL

The SLL instruction shifts it's operand left one place, replacing bit 0 with a 1, and the carry
becomes what was bit 7 of the operand. The instruction fills in the "missing" instruction from
&CB,&30 to &CB&37 and act in the same way as the other shifts e.g. SRL The assembler
supports the SLL instruction, for example:

LD B,6 ; B HAS THE VALUE &06 (BINARY 0000 0110)
SLL B ; B WILL NOW HAVE THE VALUE &0D (BINARY 0000 1101)

__
21

Z80 Assembler for Windows
__

_

Command Reference

Project Windows

Project windows are described fully above in the Projects Section

Edit Windows

Editing windows allow files to be edited.

Editing windows have a status and button bar along the top. The buttons are Save and Print
which act like the File|Save and File|Print menu options, the Assemble button which acts like
the Compile|Assemble File menu, and the Params button which acts like the Compile|Set
File Parameters menu. The status information shows the current line number and character
position of the cursor, and whether the file has been saved since it was last modified.

The edit window acts exactly like the standard Windows Notepad application and the key
presses are identical, however edit windows automatically indent code when the enter key is
pressed. There is one exception to this, pressing Ctrl and F1 together whilst the cursor is on a
Z80 opcode (e.g. INC, LD etc.) will bring up the help application with the topic which describes
that opcode's format and operands etc.

Menus

File

Open

This opens a file for editing using an editing window. The file is not part of the project and will
not be linked in with the project (unless, of course, it is included in another file with an INCLUDE
statement). However it may be assembled individually. The project file stores a list of files
which have been opened and they are reopened whenever the project is opened.

Save

This saves the file which is currently being edited (the window at the top).

Save As

This saves the file which is currently being edited (the window at the top), but allows the file
name to be changed.

Save All

This saves all files which are currently open, regardless of whether they are in the project or
not.

__
22

Z80 Assembler for Windows
__

_

Insert File

This prompts the user for a file name and inserts that file at the current cursor location in the
file which is currently being edited (the window at the top).

__
23

Z80 Assembler for Windows
__

_

Print

This prints the file which is currently being edited (the window at the top). The print out
includes the time and date and the file name at the top of the listing. During the print it may be
cancelled using the Print Cancel dialog box.

Print All

This prints all files which are currently open, regardless of whether they are in the project or
not. The print out includes the time and date and the file name at the top of the listing. During
the print it may be cancelled using the Print Cancel dialog box.

Printer Set Up

This brings up the printer set up box for the current default printer, which is the one used by
the assembler.

Exit

This closes the assembler, prompting the user to save any files which have been modified since
they were last saved.

Edit

Search

This allows the user to search for text in the file, and is equivalent to using Shift and the F3
keys.

Search Again

This repeats the last search to find the next occurrence of the text found using the Search
menu option. Note that each open file maintains it's own search text, so that search again will
not find text searched for in another file editing window.

Replace

This brings up a dialog box which allows the user to replace occurrences of text with new text.
The user may enter text to search for and text to replace it with, this latter box may be left
blank to delete text. If the query replace box is clicked then the user will be prompted on each
occurrence of the search text to confirm replacement. If the replace button is clicked only one
occurrence of the search text will be replaced, the Replace All button will replace all text until
the bottom of the file.

Replace Again

This repeats the last replace to find and substitute the next occurrence of the text found using
the Replace menu option. Note that each open file maintains it's own replace text, so that

__
24

Z80 Assembler for Windows
__

_

replace again will not find text searched for in another file editing window.

Cut

Removes selected text from the window.

__
25

Z80 Assembler for Windows
__

_

Copy

Copies selected text to the clipboard.

Paste

Inserts text from the clipboard at the current cursor position.

Undo

Undoes the last action on the window, if the last action was a replace all then this will only
undo the last replace action, not all of them.

Clear

This clears all text from the window.

Goto

Prompts the user for a row and column position and sends the cursor to that position, provided
that it is within the file.

Compile

Set File Parameters

This brings up the set file parameters dialog box which allows the user to enter:

Address The address of the file in the link. If this is
blank then the file will be linked in order with the other files
which are being linked. This address has no effect on a
standalone assembly, only on a link.

Produce List File This produces a list file (the same as the assembled file name
with a .LST extension) whenever the file is assembled either on
it's own or as part of a link.

Case Sensitive This specifies that the assembly is to be
case sensitive - in this case all opcodes and operands must be in
upper case, and it is best to leave this option unchecked.

Assemble File

This assembles the current file. See the Assembling and Linking section above for details.

Make Project

This makes the project, assembling only those files which have changed since the project was
last made, and linking all the object files. See the Assembling and Linking section for details.

__
26

Z80 Assembler for Windows
__

_

Assemble/Link All

This makes the project, all files in the project are assembled and linked regardless of whether
they have changed since the project was last made. This option should be used if include files
have changed.

__
27

Z80 Assembler for Windows
__

_

Project

Open Project

This option opens a project. If an existing project is named then this will be opened, if the
project does not exist then it will be created. Opening a project automatically saves and closes
the existing project.

Add Item

This will add a file to the project. It will be opened for editing, and the editing window for that
file will stay open with the project whilst the file is in the project. It is not possible to add a file
which is already open for editing, it must be closed first.

Delete Item

This option removes a file from a project so that it will no longer be assembled and linked with
the other files in the project.

Window

Tile

This causes all the windows on the assembler desktop to be resized so that they can all be
seen at the same time.

Cascade

This arranges all windows on the desktop so that they all lie on top of one another so that the
title bars of all windows are visible.

File List

The Window menu contains a list of all windows and any of them can be selected by clicking on
the window title under the list of files.

Help

Contents

This brings up the help application for the Z80 assembler with its contents list.

Look up Keyword

Whilst the cursor is on a Z80 opcode (e.g. INC, LD etc.) this will bring up the help application
with the topic which describes that opcode's format and operands etc.

About

__
28

Z80 Assembler for Windows
__

_

Displays copyright and version information.

__
29

Z80 Assembler for Windows
__

_

Appendix 1 - File Formats

Binary format (.BIN)

The binary format is an 8 bit binary file where each byte represents the equivalent assembled
byte in the order in which they were assembled and linked. It is possible to find the starting and
ending addresses of the file (which are defined in the STARTC and ENDC statements for an
assembly, or in the Linker dialog box for a make) in the debug file, see the debug file format
below.

Intel Hex format (.INX)

The intel hex format file contains all the bytes assembled in an ASCII format together with
address information. The file consists of a number of records in the form:

&3A || Byte Count || Address || Block Type|| Data bytes || Check Sum || CR || LF

There is no space between any of the items of the record, every byte is represented by a
two character ASCII sequence, e.g. 04 or A5, with the most significant part first.

&3A This is the ':' character which starts each
record.

Byte Count A single byte representing the number of data bytes in the
record. Note that Z80ASS limits to 16 bytes per record.

Address The address of any data bytes in this record.
Block Type The type of record, 00 means a data record containing data

bytes, 01 means the last record of the file.
Check Sum A check sum of all the bytes in this record.

The following file is the multiply example shown above. Note that the various parts of the
record are separated in the example with spaces to aid understanding, however in practice
there are no spaces in the file.

: 10 4000 00 3E104D44210000CB43280109CB21CB10 A9
: 10 4010 00 CB1ACB1B3D20F0C9FFFFFFFFFFFFFFFF C7
: 00 0000 01 FF

Debug file format (.DBG)

The debug file is produced as the result of any link or assembly when there is a binary or intel
hex file produced. All addresses in the file are in 2 byte form in ASCII representation, MSB first.
The file is intended for use as a reference, or for the remote debugger.

__
30

Z80 Assembler for Windows
__

_

1) Addresses The first two addresses in the file are the
code start and end addresses as saved in the BIN or INX file.

2) Filename Following the addresses is the file name
(without extension) of the project or .ASS file which produced
this code.

3) Labels Following the file name is an alphabetical list
of labels and their addresses, one label and address per line, a
space separating the label and it's address. The last label is
followed by a '.' character on a line of its own.

4) DEFB This area consists of a list of start and end
addresses for areas of DEFB bytes. Each area has a line of it's
own, the start address precedes the end address, The last area
is followed by a '.' character on a line of its own.

5) DEFM Same format as DEFB for DEFM areas.
6) DEFW Same format as DEFB for DEFW areas.
7) DEFS Same format as DEFB for DEFS areas.

The following shows an example of a debug file as produced by the assembler/linker.

0000 07FF

;Filename:
C:\ASS\REMONZ80.

; *** Symbol Table
AJUMP 0919
BREAKJP 049E
BUFNOTEMP 031E
CHK 091B
COMA 0405
COMB 0408
COMC 0413
COMD 042F
COPYMES 022B
CRDY 01E9
DIGLOOP 02A7
ESC 001B
FDADD 04DC
INTHAND 0038
INTJP 0905
JUMPTAB 03E0
LT10D 02BA
MAGFAIL 00FC
MAGIC 0917
MONSTART 0076
NMIJP 0913
PUTWAIT 01AB
PUTWORD 02F8

__
31

Z80 Assembler for Windows
__

_

RES10JP 0909
RES18JP 090B
RES20JP 090D
RES28JP 090F
RES30JP 0911
RES38JP 0905
RES66JP 0913
RES8JP 0907
SAVSP 0932
TEMP 09AE
UARTFLAGS 0904
XOFFTX 0002
.

__
32

Z80 Assembler for Windows
__

_

; *** DEFB areas
0265 0265
03E0 03E0
03E3 03E3
03E6 03E6
03E9 03E9
03EC 03EC
03EF 03EF
03F2 03F2
03F5 03F5
03F8 03F8
03FB 03FB
03FE 03FE
0401 0401
.

; *** DEFM areas
022B 0248
0249 0264
.

; *** DEFW areas
0369 036A
036B 036C
.

; *** DEFS areas
0005 0007
.

; Remaining details TBI by monitor
.
.
.
.
.
.
.
.
.
.
.
.
.

__
33

Z80 Assembler for Windows
__

_

__
34

Z80 Assembler for Windows
__

_

Appendix 2 - Z80 Reference

Z80 Registers

The Z80 has the following Registers:

8 Bit Registers

MAIN ALTERNATE

A A' Accumulator (8 bits)
F F' Flags Register
B C B' C' General Purpose and Counter
D E D' E' General Purpose
H L H' L' General Purpose, Addressing
I Interrupt Vector - See Interrupts
R Refresh Counter

16 bit registers

IX Index Register (offset, indirect addressing)
IY Index Register (offset, indirect addressing)
SP Stack Pointer
PC Program Counter - Accessed through Jump, Call and Ret instructions

Interrupt Flip Flops

IFF1 Interrupt Enable Flag, 1=Interrupts Enabled, 0=Interrupts Disabled
IFF2 Stores IFF1 during NMI service.
IMFa \
IMFb / Interrupt Mode Flip-Flops, 00=IM0, 01=IM1, 11=IM2.

Interrupt Modes

Non Maskable Interrupt

The Non-Maskable interrupt cannot be masked in software. On recognition of NMI low the CPU
executes a Call to location 0066H. On completion of the interrupt handler the CPU should
execute a RETN instruction to continue operation.

Maskable Interrupt

The maskable interrupt may be enabled or disabled by use of the DI and EI instructions. On
receipt of an interrupt the CPU takes action dependant on the current interrupt mode. The
interrupt mode is set up by the IM instructions to mode 0, 1, or 2.

Interrupt Mode 0

__
35

Z80 Assembler for Windows
__

_

In this mode the interrupting device places an instruction on the data bus. This is normally a
Restart Instruction which will intitiate a call to on of the Restart vectors in the first page of
memory.

__
36

Z80 Assembler for Windows
__

_

Interrupt Mode 1

In this mode, on receiving an interrupt, the processor jumps to location 0038H. The CPU should
execute a RETI (or EI - RET) instruction on completion of the interrupt routine.

Interrupt Mode 2

In this mode the interrupting device places an 8 bit vector on the bus. The CPU uses this as the
bottom byte of a two byte address where the upper byte is formed from the I register. The
contents of this address contain a 16 bit address which is the location of the interrupt routine.

Interrupt Enable/Disable Operation

There are two interrupt enable flags, IFF1 and IFF2. IFF1 represents the state of the Maskable
Interrupt. IFF2 holds IFF1 during a non-maskable interrupt service routine.

Action IFF1 IFF2 Comments

CPU Reset 0 0 Maskable interrupt disabled
DI execution 0 0 Maskable interrupt disabled
EI execution 1 1 Maskable interrupt enabled
LD A,I execution . . IFF2 >> Parity flag
LD A,R execution . . IFF2 >> Parity flag
Accept NMI 0 IFF1 Maskable Interrupt Disabled
RETN executed IFF2 . Completion of NMI service routine

Symbolic Notation used for assembler tables

Symbol Operation

S Flag
Z Flag
P/V Flag
H Flag
N Flag
H&N Flag
C Flag
| The flag is affected according to the result of the operation.
. The flag is unchanged by the operation.
0 The flag is reset by the operation.
1 The flag is set by the operation
X The flag is a "don't care"
V P/V flag affected according to the overflow result of the operation.
P P/V flag affected according to the parity result of the operation
r Any one of the CPU registers, A,B,C,D,E,H,L.
s Any 8 bit location for the addressing modes allowed for the instruction.
ss Any 16 bit location for the addressing modes allowed for the instruction.
ii Any of the index registers, IX or IY

__
37

Z80 Assembler for Windows
__

_

R Refresh counter.
n,N 8 bit value in the range 0-255
nn,NN 16 bit value in the range 0-65535. Lower byte is always written first.
(X) Contents of address expressed by X.
X Bit number b of the operand X.

__
38

Z80 Assembler for Windows
__

_

Flags are : 7 S Sign flag, set if the
MSB of the result is 1.
6 Z Zero flag, set if the
result is 0.
4 H Half carry flag, H=1 if
the result of the operation caused a carry into, or a borrow
from, bit 4 of the accumulator.
2 P Parity or Overflow flag,
Logical operations set this flag with the parity of the Result,
arithmetic operations set it with the overlflow of the result.
1 N Add/Subtract flag. N=1
if the previous operation was a subtract.
0 C Carry/Link flag, C=1 if
the operation produced a carry from the MSB of the
operand or result.

r,R Register - 000 - B
001 - C
010 - D
011 - E
100 - H
101 - L
111 - A

IFF Content of the Interrupt Flip Flop

dd Register Pair 00 - BC
01 - DE
10 - HL*
11 - SP

qq Register Pair 00 - BC
01 - DE
10 - HL*
11 - AF

* - If the instruction refers to an operation on IX or IY then the code 10 refers to that register, not to HL.

b - Bit Tested 000 - 0
001 - 1
010 - 2
011 - 3
100 - 4
101 - 5
110 - 6
111 - 7

CC - Condition 000 - NZ Non-Zero
001 - Z Zero

__
39

Z80 Assembler for Windows
__

_

010 - NC No Carry
011 - C Carry
100 - PO Parity Odd
101 - PE Parity Even
110 - P Sign Positive
111 - M Sign Negative

__
40

Z80 Assembler for Windows
__

_

P - Restart vector - 000 - Calls routine located at address 00H
001 - Calls routine located at address 08H
010 - Calls routine located at address 10H
011 - Calls routine located at address 18H
100 - Calls routine located at address 20H
101 - Calls routine located at address 28H
110 - Calls routine located at address 30H
111 - Calls routine located at address 38H

8 Bit Load Group

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

LD r,R r=R ..X.X... 01rrrRRR 1 1 4
LD r,N r=N ..X.X... 00rrr110 1 2 7

nnnnnnnn
LD r,(HL) r=(HL) ..X.X... 01rrr110 1 2 7
LD r,(IX+D) r=(IX+d) ..X.X... 11011101 DD 3 5 19

01rrr110
dddddddd

LD r,(IY+D) r=(IY+d) ..X.X... 11111101 FD 3 5 19
01rrr110
dddddddd

LD (HL),r (HL)=r ..X.X... 01110rrr 1 2 7
LD (IX+D),r (IX+d)=r ..X.X... 11011101 DD 3 5 19

01110rrr
dddddddd

LD (IY+D),r (IY+d)=r ..X.X... 11111101 FD 3 5 19
01110rrr
dddddddd

LD (HL),N (HL)=N ..X.X... 00110110 36 2 3 10
nnnnnnnn

LD (IX+D),N (IX+D)=N ..X.X... 11011101 DD 4 5 19
00110110 36
dddddddd
nnnnnnnn

LD (IY+D),N (IY+D)=N ..X.X... 11111101 FD 4 5 19
00110110 36
dddddddd
nnnnnnnn

See Symbolic Notation for a description of symbols used in the table.

__
41

Z80 Assembler for Windows
__

_

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

LD A,(BC) A=(BC) ..X.X... 00001010 0A 1 2 7
LD A,(DE) A=(DE) ..X.X... 00011010 1A 1 2 7
LD A,(NN) A=(NN) ..X.X... 00111010 3A 3 4 13

nnnnnnnn
nnnnnnnn

LD (BC),A (BC)=A ..X.X... 00000010 02 1 2 7
LD (DE),A (DE)=A ..X.X... 00010010 12 1 2 7
LD (NN),A (NN)=A ..X.X... 00110010 32 3 4 13

nnnnnnnn
nnnnnnnn

LD A,I A=I ||X0XI0. 11101101 ED 2 2 9
01010111 57

LD A,R A=R ||X0XI0. 11101101 ED 2 2 9
01011111 5F

LD I,A I=A ..X.X... 11101101 ED 2 2 9
01000111 47

LD R,A R=A ..X.X... 11101101 ED 2 2 9
01001111 4F

See Symbolic Notation for a description of symbols used in the table.

16 Bit Load Group

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

LD dd,NN dd=NN ..X.X... 00dd0001 3 3 10
nnnnnnnn
nnnnnnnn

LD IX,NN IX=NN ..X.X... 11011101 DD 4 4 14
00100001 21
nnnnnnnn
nnnnnnnn

LD IY,NN IY=NN ..X.X... 11111101 FD 4 4 14
00100001 21
nnnnnnnn
nnnnnnnn

See Symbolic Notation for a description of symbols used in the table.

__
42

Z80 Assembler for Windows
__

_

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

LD HL,(NN) L=(NN) ..X.X... 00101010 2A 3 5 16
H=(NN+1) nnnnnnnn

nnnnnnnn
LD IX,(NN) IXL=(NN) ..X.X... 11011101 DD 4 6 20

IXH=(NN+1) 00101010 2A
nnnnnnnn
nnnnnnnn

LD IY,(NN) IYL=(NN) ..X.X... 11111101 FD 4 6 20
IXH=(NN+1) 00101010 2A

nnnnnnnn
nnnnnnnn

LD dd,(NN) ddL=(NN) ..X.X... 11101101 ED 4 6 20
ddH=(NN+1) 01dd1011

nnnnnnnn
nnnnnnnn

See Symbolic Notation for a description of symbols used in the table.

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

LD (NN),HL (NN)=L ..X.X... 00100010 22 3 5 16
(NN+1)=H nnnnnnnn

nnnnnnnn
LD (NN),IX (NN)=IXL ..X.X... 11011101 DD 4 6 20

(NN+1)=IXH 00100010 22
nnnnnnnn
nnnnnnnn

LD (NN),IY (NN)=IYL ..X.X... 11111101 FD 4 6 20
(NN+1)=IYH 00100010 22

nnnnnnnn
nnnnnnnn

LD (NN),dd (NN)=ddL ..X.X... 11101101 ED 4 6 20
(NN+1)=ddH 01dd0011

nnnnnnnn
nnnnnnnn

See Symbolic Notation for a description of symbols used in the table.

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

LD SP,HL SP=HL ..X.X... 11111001 F9 1 1 6
__

43

Z80 Assembler for Windows
__

_

LD SP,IX SP=IX ..X.X... 11011101 DD 2 2 10
11111001 F9

LD SP,IY SP=IY ..X.X... 11111101 FD 2 2 10
11111001 F9

See Symbolic Notation for a description of symbols used in the table.

__
44

Z80 Assembler for Windows
__

_

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

PUSH qq STACK=qq ..X.X... 11qq0101 1 3 11
PUSH IX STACK=IX ..X.X... 11011101 DD 2 4 15

11100101 E5
PUSH IY STACK=IY ..X.X... 11111101 FD 2 4 15

11100101 E5
POP qq qq=STACK ..X.X... 11qq0001 1 3 10
POP IX IX=STACK ..X.X... 11011101 DD 2 4 14

11100001 E1
POP IY IY=STACK ..X.X... 11111101 FD 2 4 14

11100001 E1
See Symbolic Notation for a description of symbols used in the table.

Exchange, Block Transfer, Block Search Group

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

EX DE,HL DE<>HL ..X.X... 11101011 EB 1 1 4
EX AF,AF'* AF<>AF' ..X.X... 00001000 08 1 1 8
EXX dd<>dd' ..X.X... 11011001 D9 1 1 4
EX (SP),HL STACK<>HL ..X.X... 11100011 E3 1 5 19
EX (SP),IX STACK<>IX ..X.X... 11011101 DD 2 6 23

11100011 E3
EX (SP),IY STACK<>IY ..X.X... 11111101 FD 2 6 23

11100011 E3
* Note, this assembler uses EX AF,AF not EX AF,AF' for this mnemonic.

See Symbolic Notation for a description of symbols used in the table.

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

LDI (DE)=(HL) ..X0X|0. 11101101 ED 2 4 16 PV=0 if
DE=DE+1 10100000 A0 BC=0
HL=HL+1
BC=BC-1

LDIR (DE)=(HL) ..X0X00. 11101101 ED 2 5 21 If BC<>0
DE=DE+1 10110000 B0 2 4 16 If BC=0
HL=HL+1
BC=BC-1
Repeat until BC IS 0

LDD (DE)=(HL) ..X0X|0. 11101101 2 4 16 PV=0 if

__
45

Z80 Assembler for Windows
__

_

DE=DE-1 10101000 A8 BC=0
HL=HL-1
BC=BC-1

LDDR (DE)=(HL) ..X0X00. 11101101 ED 2 5 21 If BC<>0
DE=DE+1 10110000 B8 2 4 16 If BC=0
HL=HL+1
BC=BC-1
Repeat until BC IS 0

See Symbolic Notation for a description of symbols used in the table.

__
46

Z80 Assembler for Windows
__

_

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

CPI A-(HL) ||x|x||. 11101101 ED 2 4 16 PV=BC<>0
HL-HL+1 10100001 A1 Z=A-(HL)

CPIR A-(HL) ||x|x||. 11101101 ED 2 5 21 IF BC=0
HL=HL+1 10100001 A1 2 4 16 IF BC=0
BC=BC-1 or A=(HL)

CPD A-(HL) ||x|x||. 11101101 ED 2 4 16 PV=BC<>0
HL-HL-1 10101001 A9 Z=A-(HL)

CPDR A-(HL) ||x|x||. 11101101 ED 2 5 21 IF BC=0
HL=HL-1 10111001 B9 2 4 16 IF BC=0
BC=BC-1 or A=(HL)

See Symbolic Notation for a description of symbols used in the table.

8 Bit Arithmetic and Logical Group

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

ADD A,r A=A+r ||x|xV0| 10000rrr 1 1 4
ADD A,N A=A+N ||x|xV0| 11000110 2 2 7

nnnnnnnn
ADD A,(HL) A=A+(HL) ||x|xV0| 10000110 1 2 7
ADD A,(IX+D) A=A+ ||x|xV0| 11011101 DD 3 5 19

 (IX+D) 10000110
dddddddd

ADD A,(IY+D) A=A+ ||x|xV0| 11111101 FD 3 5 19
 (IY+D) 10000110

dddddddd

See Symbolic Notation for a description of symbols used in the table.

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

ADC A,S A=A+C+S ||x|xV0| 001
SUB S A=A-S ||X|Xv1| 010
SBC A,S A=A-C+S ||x|xV1| 011
AND S A=A&S ||X|XP00 100
OR S A=A|S ||X|XP00 110
XOR S A=A^S ||X|XP00 101
CP S A-S ||X|XV1| 111

__
47

Z80 Assembler for Windows
__

_

S is any of r,n,(HL),(IX+D),(IY+D) as shown for ADD instruction. The indicated bits replace the 000 in the
ADD instruction.

See Symbolic Notation for a description of symbols used in the table.

__
48

Z80 Assembler for Windows
__

_

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

INC r r=r+1 ||X|XV0. 00rrr100 1 1 4
INC (HL) (HL)++ ||X|XV0. 00110100 1 3 11
INC (IX+D) (IX+D)++ ||X|XV0. 11011101 DD 3 6 23

00110100
INC (IY+D) (IY+D)++ ||X|XV0. 11111101 FD 3 6 23

00110100
DEC MM MM=M-1

MM is any of r,(HL),(IX+D),(IY+D) as shown for INC instruction. DEC same format and replace
100 with 101 in opcode.

++ means the operand increases by 1.

See Symbolic Notation for a description of symbols used in the table.

General Purpose Arithmetic and CPU Control Groups

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

DAA A=BCD ||X|XP.| 00100111 27 1 1 4
CPL A=~A ..X|X.|. 00101111 2F 1 1 4 One's comp.
NEG A=0-A ||X|XV1| 11101101 ED 2 2 8 Negative

01000100 44
CCF C=~C ..XXX.0| 00111111 3F 1 1 4 Complement C
SCF C=1 ..X0X.01 00110111 37 1 1 4 Set C to 1
NOP NO OP ..X.X... 00000000 00 1 1 4 No Operation
HALT HALT CPU ..X.X... 01110110 76 1 1 4 Wait for INT
DI IFF=0 ..X.X... 11110011 F3 1 1 4 Disable Int
EI IFF=1 ..X.X... 11111101 FB 1 1 4 Enable Int
IM 0 Set IM 0 ..X.X... 11101101 ED 2 2 8

01000110 46
IM 1 Set IM 1 ..X.X... 11101101 ED 2 2 8

01010110 56
IM 2 Set IM 2 ..X.X... 11101101 ED 2 2 8

01011110 5E

See Symbolic Notation for a description of symbols used in the table.

__
49

Z80 Assembler for Windows
__

_

16 Bit Arithmetic Group

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

ADD HL,SS HL=HL+SS..XXX.0| 00ss1001 1 3 11
ADC HL,SS HL=HL+SS||XXXV0| 11101101 ED 2 4 15

 +C 01ss1010
SBC HL,SS HL=HL-SS ||XXXV1| 11101101 ED 2 4 15

 -C 01ss0010
ADD IX,SS IX=IX+SS ..XXX.0| 11011101 DD 2 4 15

 +C 01ss1001
ADD IY,SS IY=IY+SS ..XXX.0| 11111101 FD 2 4 15

 +C 01ss1001
INC SS SS=SS+1 ..X.X... 00ss0011 1 1 6
INC IX IX=IX+1 ..X.X... 11011101 DD 2 2 10

00100011 23
INC IY IY=IY+1 ..X.X... 11111101 FD 2 2 10

00100011 23
DEC SS SS=SS-1 ..X.X... 00ss1011 1 1 6
DEC IX IX=IX-1 ..X.X... 11011101 DD 2 2 10

00101011 2B
DEC IY IY=IY-1 ..X.X... 11111101 FD 2 2 10

00101011 2B

See Symbolic Notation for a description of symbols used in the table.

__
50

Z80 Assembler for Windows
__

_

Rotate and Shift Group

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

RLCA Shift ..X0X.0| 00000111 07 1 1 4
RLA Shift ..X0X.0| 00010111 17 1 1 4
RRCA Shift ..X0X.0| 00001111 0F 1 1 4
RRA Shift ..X0X.0| 00011111 1F 1 1 4
RLC r Shift ||X0XP0| 11001011 CB 2 2 8

00000rrr
RLC (HL) Shift ||X0XP0| 11001011 CB 2 4 15

00000110
RLC (IX+D) Shift ||X0XP0| 11011101 DD 4 6 23

11001011 CB
dddddddd
00000110

RLC (IY+D) Shift ||X0XP0| 11111101 FD 4 6 23
11001011 CB
dddddddd
00000110

RL m Shift ||X0XP0| 010
RRC m Shift ||X0XP0| 001
RR m Shift ||X0XP0| 011
SLA m Shift ||X0XP0| 100
SRA m Shift ||X0XP0| 101
SRL m Shift ||X0XP0| 111
RLD Shift ||X0XP0. 11101101 ED 2 5 18

01101111 6F
RRD Shift ||X0XP0. 11101101 ED 2 5 18

01100111 67

m is any of r,(HL),(IX+D),(IY+D) as shown for RLC Instruction. Use same format and replace 000 with codes
shown in opcode.

See Symbolic Notation for a description of symbols used in the table.

__
51

Z80 Assembler for Windows
__

_

Shift and Rotate Operations

The following diagrams show how the various shift functions affect their operands. All shifts
operate on an 8 bit operand, except RRD and RLD which shift data in 4 bit chunks between the
Accumulator and the contents of the address pointed to by HL.

RLCA CY<<76543210 A Register
 >------^

RLA CY<<76543210 A Register
>----------^

RRCA 76543210>>CY A Register
^------<

RRA 76543210>>CY A register
^----------<

RLC m CY<<76543210 Register
 >------^

RL m CY<<76543210 Register
>----------^

RRC m 76543210>>CY Register
^------<

RR m 76543210>>CY Register
^----------<

SLA m CY<<76543210<<0 Register

SRA m 76543210>>CY Register
^ Bit 7 remains at its current value

SRL m 0>>76543210>>CY Register

<---A---> <-(HL)-->
RLD 7654 3210 7654 3210 Rotate Left Digit (Acc. to (HL))

 ^----< ^----<
 >------------^

<---A---> <-(HL)-->
RRD 7654 3210 7654 3210 Rotate Right Digit (Acc. to (HL))

 >----^ >----^
 ^------------<

__
52

Z80 Assembler for Windows
__

_

Bit Set, Reset, and Test Group

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

BIT B,rR Z=~r X|X1XX0. 11001011 CB 2 2 8
01bbbrrr

BIT B,(HL) Z=~(HL)
X|X1XX0. 11001011 CB 2 3 12

01bbb110
BIT B,(IX+D) Z=~(IX+D)

X|X1XX0. 11011101 DD 4 5 20
11001011 CB
dddddddd
01bbb110

SET B,r r=1 ..X.X... 11001011 CB 2 2 8
11bbbrrr

SET B,(HL) (HL)=1 ..X.X... 11001011 CB 2 4 15
11bbb110

SET B,(IX+D) (IX+D)=1
..X.X... 11011101 DD 4 6 23

11001011 CB
dddddddd
11bbb110

SET B,(IY+D) (IY+D)=1
..X.X... 11111101 FD 4 6 23

11001011 CB
dddddddd
11bbb110

RES b,m m=0 ..X.X... 00

RES operates on the same operands as SET, note however that the 11 is replaced by a 00.

See Symbolic Notation for a description of symbols used in the table.

Jump Group

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

JP NN PC=NN ..X.X... 11000011 C3 3 3 10
nnnnnnnn
nnnnnnnn

JP cc,NN If CC true
then PC=NN

__
53

Z80 Assembler for Windows
__

_

..X.X... 11ccc010 3 3 10
nnnnnnnn
nnnnnnnn

See Symbolic Notation for a description of symbols used in the table.

__
54

Z80 Assembler for Windows
__

_

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

JR E PC=PC+E ..X.X... 00011000 18 2 3 12
ffffffff F=E-2

JR C,E If C=1 ..X.X... 00111000 38 2 2 7 No Jump
PC=PC+E ffffffff 2 3 12 If Jumped

JR NC,E If C=0 ..X.X... 00110000 30 2 2 7 No Jump
PC=PC+E ffffffff 2 3 12 If Jumped

JR Z,E If Z=1 ..X.X... 00101000 28 2 2 7 No Jump
PC=PC+E ffffffff 2 3 12 If Jumped

JR NZ,E If Z=0 ..X.X... 00100000 20 2 2 7 No Jump
PC=PC+E ffffffff 2 3 12 If Jumped

DJNZ E B=B-1 ..X.X... 00010000 10 2 2 8 If B=0
If B<>0 ffffffff 2 3 13 If B<>0
PC=PC+E

ffffffff=E-2;

See Symbolic Notation for a description of symbols used in the table.

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

JP (HL) PC=HL ..X.X... 11101001 E9 1 1 4
JP (IX) PC=IX ..X.X... 11011101 DD 2 2 8

11101001 E9
JP (IY) PC=IY ..X.X... 11111101 FD 2 2 8

11101001 E9

See Symbolic Notation for a description of symbols used in the table.

Call and Return Group

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

CALL NN STACK=PC ..X.X... 11001101 3 5 17
PC=NN nnnnnnnn

nnnnnnnn
CALL CC,NN If CC ..X.X... 11ccc100 3 3 10 CC false

STACK=PC nnnnnnnn 3 5 17 CC true
PC=NN nnnnnnnn

RET PC=STACK ..X.X... 11001001 C9 1 3 10
RET CC If CC ..X.X... 11ccc000 1 1 5 CC false

__
55

Z80 Assembler for Windows
__

_

PC=STACK 1 3 11 CC true
RETI* Return ..X.X... 11101101 ED 2 4 14

from 01001101 4D
interrupt

RETN* Return ..X.X... 11101101 ED 2 4 14
from 01000101 45 2 4 14
Non-Maskable
interrupt

RST P CALL P ..X.X... 11ppp111 1 3 11

See Interrupts for further details of actions on return from interrupt routines.

See Symbolic Notation for a description of symbols used in the table.

Input and Output Group

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

IN A,(N) A=(N) ..X.X... 11011011 DB 2 3 11 n->A0~7
nnnnnnnn A->A8~A15

IN r,(C) r=(C) ||X|XP0. 11101101 ED 2 3 12 C->A0~7
01rrr000 B->A8~15

INI* (HL)=(C) X|XXXX|X 11101101 ED 2 4 16 C->A0~7
B=B-1 10100010 A2 B->A8~15
HL=HL+1

INIR (HL)=(C) X|XXXX|X 11101101 ED 2 5 21 C->A0~7
B=B-1 10110010 B2 B<>0 B->A8~15
HL=HL+1 2 4 16
Repeat until B=0 B=0

IND* (HL)=(C) X|XXXX|X 11101101 ED 2 4 16 C->A0~7
B=B-1 10101010 AA B->A8~15
HL=HL-1

INDR (HL)=(C) X|XXXX|X 11101101 ED 2 5 21 C->A0~7
B=B-1 10111010 BA B<>0 B->A8~15
HL=HL-1 2 4 16
Repeat until B=0 B=0

* If the result of B-1 is zero the Z flag is set, otherwise it is reset

See Symbolic Notation for a description of symbols used in the table.

Mnemonic Action Opcode B M T

SZ-H-PNC 76543210

OUT A,(N) (N)=A ..X.X.|X 11010011 D3 2 3 11 n->A0~7

__
56

Z80 Assembler for Windows
__

_

nnnnnnnn A->A8~A15
OUT (C),R (C)=r ..X.X.|X 11101101 ED 2 3 12 C->A0~7

01rrr001 B->A8~15
OUTI* (C)=(HL) X|XXXX|X 11101101 ED 2 4 16 C->A0~7

B=B-1 10100011 A3 B->A8~15
HL=HL+1

OTIR (C)=(HL) X|XXXX|X 11101101 ED 2 5 21 C->A0~7
B=B-1 10110011 B3 B<>0 B->A8~15
HL=HL+1 2 4 16
Repeat until B=0 B=0

OUTD* (C)=(HL) X|XXXX|X 11101101 ED 2 4 16 C->A0~7
B=B-1 10110011 B3 B->A8~15
HL=HL-1

OTDR (C)=(HL) X|XXXX|X 11101101 ED 2 5 21 C->A0~7
B=B-1 10110011 BB B<>0 B->A8~15
HL=HL-1 2 4 16
Repeat until B=0 B=0

* If the result of B-1 is zero the Z flag is set, otherwise it is reset

See Symbolic Notation for a description of symbols used in the table.

__
57

