
1

Agreement

TryAPL2 Copyright 1991 IBM Corporation - all rights reserved

You may not enhance or modify this offering except for providing APL2 func-

tions, variables, and operators to be used for promotion, demonstration, or edu-

cation. TryAPL2 may not be used for commercial computing. You may not

package TryAPL2 with another software product sold commercially. You may

not use TryAPL2 with another software product sold commercially and designed

for its use. You may not modify TryAPL2 to overcome restrictions. You may

include TryAPL2 in a publication or book available commercially so long as the

price of the publication or book does not include a fee for TryAPL2 beyond the

cost of media and duplication. You may copy and distribute TryAPL2 files in

their entirety. IBM's rights extend to all copies so made. Disk copies should be

labeled with the information on the sample disk labels in the back of this docu-

ment. You may charge a fee only to cover the cost of duplication, media, and

distribution.

This offering is not covered by any warranty expressed or implied.

2

Contents

Agreement 2

TryAPL2 5

Objective of the package 5

What do you need to run this package? 5

What files are supplied with TryAPL2? 5

Performance of the package 6

What is APL2? 6

The APL2 character set 7

Installing TryAPL2 7

Printing the TryAPL2 documentation 8

Getting in and out and around TryAPL2 9

APL2 Workspaces 10

System Commands 11

The APL2 Language 13

APL2 data 13

APL2 functions 13

APL2 scalar functions 17

APL2 mixed functions 18

More mixed functions 20

APL2 operators 22

APL2 errors 24

Defining and editing your own programs 25

Defined operators 27

A summary of APL2 functions and operators 27

Scalar functions 28

Mixed functions 29

Operators 29

APL2 for the High School Math Classroom 31

Why use a programming language in a mathematics classroom? 31

Why use APL2? 31

Discovering/Teaching the Basics 32

Lesson: Discovering APL2 -- Working With Arithmetic 32

Lesson: Discovering APL2 -- Working With Vectors 33

Lesson: Discovering APL2 -- Working With Arrays 34

Lesson: Discovering APL2 -- Working With Comparisons 34

Lesson: Discovering APL2 -- Working With Operators 35

Supplied Workspaces 37

The DISPLAY workspace 37

The PRINT workspace 37

The KEYS workspace 38

The CALENDAR workspace 38

The TRYDOC workspace 40

The GRAPHS workspace 41

The STATS workspace 42

The SEARCH workspace 46

The OR workspace 47

The IE workspace 49

Contents 3

The IDIOMS workspace 53

Appendix A. Discovering APL2 -- Working With Arithmetic 55

Appendix B. Discovering APL2 -- Working With Vectors 57

Appendix C. Discovering APL2 -- Working With Arrays 59

Appendix D. Discovering APL2 -- Working With Comparisons 61

Appendix E. Discovering APL2 -- Working With Functions and Data 63

Appendix F. APL Expressions for Some Mathematical Algorithms 65

Appendix G. References/Support 67

National codepages 67

Support Information for Teachers 67

APL2 Interfaces 69

Differences from the full APL2 product 69

APL2 Publications you can purchase 69

APL2 Publications from IBM for free 70

Key stickers 71

Keytops 71

How to order the full product 72

Acknowledgements 72

Change History 72

Keyboard templates 73

Diskette labels 74

4

TryAPL2

Objective of the package

TryAPL2 is a vehicle for demonstrating and teaching the APL2 language. The package pre-

sents examples of APL2 solutions to problems in data processing, system design, mathematical

programming, artificial intelligence, business, finance, and education. For the mathematics

classroom, TryAPL2 provides an interactive learning environment for developing problem

solving skills by exploring and discovering mathematical principles and algorithms.

The software included in this package is not a stand alone demo program. Rather, it is

designed to be used as an introduction to APL2 programming and a vehicle to provide com-

putational support for the teaching of other subjects. The package supports the full APL2

language, but it does not support the full APL2 environment. The differences between

TryAPL and APL2 are listed in Appendix G.

What do you need to run this package?

TryAPL2 is designed to run on any IBM personal computer or Personal System/2 with the

DOS operating system. Running on an IBM 4860 PCjr requires connecting a 4.7K resistor

between Vcc (pin 40) and the test pin (23) of the 8088. You must have at least 512K of

memory and a CGA, EGA, or VGA display for support of the APL2 character set. More

memory may be required if you run resident programs. In particular, a monochrome screen is

not supported. An IBM Personal Computer Math Coprocessor (80x87) is not required but is

used if installed. TryAPL2 may not run on some PC clones and compatibles especially if the

80x87 is being emulated.

What files are supplied with TryAPL2?

TryAPL2 is distributed with the following files:

æ READ.ME - installation instructions

æ CONTRACT - agreement as shown in front of this document

æ TRYAPL2A.EXE - self-extracting PKZIP file for the system

æ TRYAPL2B.EXE - self-extracting PKZIP file for the workspaces

æ TRYAPL2C.EXE - self-extracting PKZIP file for online documentation

æ TRYAPL2D.EXE - self-extracting PKZIP file for printable documentation

TRYAPL2A when executed produces the following files which will fit on a 360K disk:

æ CONTRACT.A - agreement as shown in front of this document

æ APL2EGA.CPI - EGA VGA codepage information file

æ APL2LCD.CPI - IBM PC Convertible codepage information file

æ APL2FONT.COM - program for APL2 characters on the screen

æ TRYA.EXE - the executable TryAPL2 program

æ TRYAPL2.BAT - a batch file to run TryAPL2

æ TRYAPL2N.BAT - a batch file to run TryAPL2 with alternate font

æ TRYDOC.TRY - online documentation programs

TRYAPL2B when executed produces the following files which will fit on a 360K disk:

TryAPL2 5

æ CALENDAR.TRY - date computation programs

æ DISPLAY.TRY - workspace for showing array structure

æ GRAPHS.TRY - graphics examples

æ IDIOMS.TRY - an APL2 idiom search program

æ IE.TRY - expert system inferencing engine

æ KEYS.TRY - keyboard set and display workspace

æ OR.TRY - operations research network functions

æ PRINT.TRY - printer support functions

æ SEARCH.TRY - AI game playing programs

æ STATS.TRY - statistics functions

TRYAPL2C when executed produces the following files which will fit on a 360K disk:

æ TRYDOC.211 - online documentation file

æ APL2VIO.DCP - APL2 characters for DOS full screen in OS/2

TRYAPL2D when executed produces the following files:

æ TRYAPL2D.HPC - LaserJet version of documentation

æ TRYTEMPL.HPC - LaserJet version of keyboard templates

PKZIP is a trademark of PKWARE, Inc., 7545 N. Port Washington Rd., Glendale, WI

53217, and is used with their permission under the IBM/PKWARE Corporate Contract EQD

340.

Performance of the package

TryAPL2 simulates the environment of the complete APL2/PC product. Therefore, the per-

formance of the purchased product can be significantly better than the performance of

TryAPL2. This is, in particular, true for system commands like)LOAD and)SAVE and for

the program editor. Use of an IBM Personal Computer Math Coprocessor (80x87) is recom-

mended for best performance.

What is APL2?

APL2 is different from most other languages in that it uses symbols to denote its operations

rather than words. This, together with the fundamental use of array data, makes APL2 a pow-

erful, concise, dynamic tool for problem solving.

APL has these distinguishing features:

æ APL2 has a few simple rules so you can learn to write correct expressions immediately.

æ APL2 deals with whole collections of data (arrays) at once.

æ APL2 has a rich set of functions that can apply to whole arrays at one time without

writing a]program.ı

æ APL2 has operators that can modify functions, creating whole families of related functions

in a uniform manner.

Everything you learn by using TryAPL2 can be used with any IBM APL2 implementation.

Thus, when you learn how to use TryAPL2, you're learning much of what you need to make

effective use of APL2/PC on the PS/2 as well as APL2 on the IBM S/370 S/390 and the IBM

RISC System 6000.

6

The APL2 character set

APL2 is easiest to use when the APL2 symbols are inscribed on the keytops of your com-

puter. In case they are not, templates for the keyboards that you can cut out and attach to

your keyboard are supplied in the companion document TRYTEMPL. You can also)LOAD

KEYS after you are in TryAPL2 to cause a display of an APL2 keyboard and rearrange the

keyboard for non-US configurations. Notice that, when you are using APL2, the primary

alphabet is uppercase. Pressing an alphabetic key will give you an uppercase character. A

lowercase letter is entered by pressing]altı and an alphabetic key. Pressing]shiftı and an

alphabetic key gives you the APL2 special symbol inscribed on the upper part of the keytop.

For the non-alphabetic keys, pressing the key gives you the character inscribed on the lower

left part of the keytop. Pressing]shiftı and a non-alphabetic key gives you the character

inscribed on the upper part of the keytop. Pressing]altı and a non-alphabetic key gives you

the character inscribed on the lower right part of the keytop. On many terminals, the]altı

characters are inscribed on the front face of the key rather than on the top.

If the APL2 characters do not appear on your screen, try pressing alt-F8 to switch into

graphics mode.

To see APL2 characters when running in a DOS full screen window in OS/2, your

CONFIG.SYS should contain the following line:

DEVINFO=SCR.BGA,C:\TRYAPL2\APL2VIO.DCP

Adjust the path information if you have not installed TryAPL2 in the directory TRYAPL2.

Installing TryAPL2

Before using TryAPL2, make a backup copy of the distribution diskette. If your computer has

a fixed disk, you may want to copy the distribution disk to your fixed disk. (Modify these

instructions to meet your own needs.):

To install TryAPL2 to a hard disk:

- create a directory on the hard disk. For example:

md tryapl2

- make your new directory the current directory. For example:

cd tryapl2

- insert the TryAPL2 disk in drive A and execute the following:

copy a:contract

copy a:read.me

a:tryapl2a

a:tryapl2b

a:tryapl2c

- if you want to restore the LaserJet formatted documentation

(on disk 2 of the 5.25" set), insert the TryAPL2 disk

in drive A and execute the following:

a:tryapl2d

TryAPL2 7

To install TryAPL2 on a floppy disk:

- make the floppy drive the current drive. For example:

b:

- insert the TryAPL2 disk in drive A and execute the following:

a:tryapl2a

a:tryapl2b

a:tryapl2c

NOTE: If you install to 360K disks, you must change disks between

the above steps.

NOTE: The files from tryapl2d are documentation for printing

on HP LaserJet printers, are very large, and are not required

for execution.

NOTE: Do not mark any files with the readonly attribute.

To run TryAPL2 from a hard disk:

- Make active the directory containing TryAPL2 and enter the following:

tryapl2

To run Tryapl2 from a floppy disk,

- insert the first or only TryAPL2 disk that you created into drive A

and execute the following:

tryapl2

NOTE: You can run from a single 360K disk using the files on

tryapl2a. You will need to change the disk to tryapl2b

after TryAPL2 is running to access workspaces other

than TRYDOC. To run TRYDOC,)LOAD with disk 1 inserted

then switch to disk 3 before selecting a topic for viewing.

Printing the TryAPL2 documentation

Two documentation files are provided in TRYAPL2D.EXE. You can print on LaserJet type

printers. They are:

æ TRYAPL2D.HPC - printable form of the information in the TRYDOC workspace

æ TRYTEMPL.HPC - keyboard templates with APL2 characters for some popular key-

boards

These files are very large when uncompressed but you can send them to a printer directly

without decompressing them. To print the documentation on printer LPT1, use:

tryapl2d tryapl2d.hpc -pb1

tryapl2d trytempl.hpc -pb1

If you get a "not ready" error during this printout, either use the MODE LPT1:80,6,P

command (for DOS 3.3) or the MODE LPT1 RETRIES=B command (for DOS 4 or DOS

5), and start the print again.

8

Getting in and out and around TryAPL2

Set your default drive to the drive that contains TryAPL2:

c:

If you have installed TryAPL2 on your hard disk, switch to the proper directory:

cd \tryapl2

Begin execution by typing:

tryapl2

(If you are using a national codepage, begin execution by typing]tryapl2n.ı See section on

national codepages.)

After a moment for initialization, you will find yourself in a simple full screen APL2 applica-

tion that lets you view the online documentation. You may scroll through the topics using the

]Page Upı and]Page Downı keys. Pressing the space bar on any topic selects it and pressing

enter shows you the contents of the selected topics. If '[MORE]' is displayed on the

bottom line of the screen, the topic is larger than one screen and scrolling is required to see

everything. Press]Escı to exit this workspace. You may reenter the documentation work-

space again by entering:

)LOAD TRYDOC

When you exit from TRYDOC, you are in the APL2 session manager in an active workspace

area denoted by CLEAR WS . What you type and the responses are recorded in a log file

that is retained across sessions. The cursor keys and the]Page Upı and]Page Downı keys

may be used to scroll forward and backwards in the log. If you position the cursor on a line

and press enter, that line becomes the first line on the screen.

Try some of the examples that follow to see if TryAPL2 is working properly on your system.

Things you type are normally indented six spaces from the left margin. Responses from

TryAPL2 are normally against the left margin. For example type the first of the following

lines and press enter:

+/10 20 30
60

If you make a mistake, an error is reported. In the full APL2 product you would need to type

a right arrow to clear the error. TryAPL2, however, automatically clears the error and displays

the right arrow as though you had typed it:

2+
SYNTAX ERROR

2+

^
¸

You may correct an error by moving the cursor up and typing on top of any line on the

screen. When you press enter, the altered line is copied to next available line on the screen

and re-executed. If you modify more than one line, they are copied one at a time from top to

bottom and re-executed.

You can move to another workspace and make it the active workspace by using the system

command)LOAD. Try this by loading the supplied workspace CALENDAR:

TryAPL2 9

)LOAD CALENDAR
SAVED 1989-08-01 07:41:59 CALENDAR

The save date you see may be different from the one shown here and there will be some

descriptive information given.

The CALENDAR workspace contains a program called JD which converts a Gregorian date

to a Julian day number. For example, here is the Julian day number for August 1, 1989:

JD 1989 8 1
2447740

Julian day numbers are useful for doing date arithmetic. For example, if you want to know

how many days between Bastille day and the opening of the Woodstock rock concert, you

enter:

(JD 1969 8 17)-JD 1789 7 14
65777

Find out how many days you've been alive by putting today's date on the left and your birth

date on the right in the above expression.

If you ever start a program and want to stop it before it finishes, press the break key.

Now throw away your active copy of the CALENDAR workspace by entering the following:

)CLEAR

The copy of the CALENDAR workspace on your disk is not affected by this operation.

When you are finished using TryAPL2, you leave by entering:

)OFF

You'll be prompted to press]Enterı one more time before TryAPL2 returns to DOS.

APL2 Workspaces

The unit of APL2 memory is the workspace. Everything you do is remembered in a work-

space. Normally when you begin an APL2 session, you are in an unnamed active workspace

called CLEAR WS. This means that there is no memory of any variables or programs. You

can use system commands to work with collections of APL2 programs and data provided in

saved workspaces that you have created or are provided with TryAPL2. To see what work-

spaces are available, use the)LIB command:

)LIB
CALENDAR DISPLAY GRAPHS IDIOMS IE KEYS OR
PRINT SEARCH STATS TRYDOC

Note that the)LIB command does not list the workspace CLEANSPACE which is the first

saved APL workspace and is included for historical reasons only. You'll learn about these

workspaces in the chapter on Supplied Workspaces.

10

System Commands

To get in and around and out of the workspaces you use system commands -- lines that start

with the])ı symbol. You have already used the)LOAD command to activate the saved

CALENDAR workspace and the)CLEAR command to throw away a workspace. Other

useful system commands are shown by example next. First, activate the OR workspace so

some programs and data are available:

)LOAD OR
SAVED 1989-07-21 8.02.01

The date and time that the workspace was saved is given. The date you see may be different.

To see what is in this workspace, use the)NMS command:

)NMS
ARCS.3 DESCRIBE.2 PATHSFROM.3 SETUP.3 SPM.2 VALUE.3

A name with a .2 after it is the name of a variable. To see its value, enter its name:

SPM
0 9 14 0 0 0 0
0 0 6 7 11 0 0
0 0 0 2 0 19 0
0 0 0 0 16 8 0
0 0 0 0 0 0 20
0 0 0 0 12 0 11
0 0 0 0 0 0 0

A name with a .3 after it is the name of a user-defined function. A name with a .4 after it is

the name of a user-defined operator. In the OR workspace there are three user-defined func-

tions and no user-defined operators. You will see how to display both of these in the chapter

on APL2 language in the defining and editing section.

To see just a listing of the variables in your workspace use the)VARS command:

)VARS
DESCRIBE SPM

Similar commands,)FNS and)OPS, display individual lists of the functions and operators.

To get rid of an object in the active workspace use the)ERASE command:

)ERASE SPM

You can give a name to the active workspace (or change its name) using the)WSID

command (Workspace Identification):

)WSID MYWS

WAS CLEAR WS

If you have defined some programs and data that you want to save, use the)SAVE

command:

)SAVE
SAVED 1989-08-23 9.12.01 MYWS

This places a copy of the objects in the active workspace into a file. If the workspace has not

been given a name, you may include the name with the command:

TryAPL2 11

)SAVE MYWS
SAVED 1989-08-23 9.12.01

The)COPY command selects objects from a saved workspace and adds them to the objects

in the active workspace. For example, the following command gets the SPM variable from the

OR workspace and puts it into the active workspace:

)COPY OR SPM
SAVED 1989-07-21 8.02.01

You get rid of a saved workspace using the)DROP command:

)DROP MYWS
1989-08-23 9.12.01

12

The APL2 Language

The following language summary introduces the main ideas of APL2 programming. It is not

expected that you can learn to program in APL2 given only this information. It is intended to

cover the main ideas so you can begin to discover and explore what the language can do for

you. Such a short summary can give you only a limited appreciation of the power of APL2.

Complete information is available with the documentation that comes with the full product

and from other books referenced in this document. You can also learn more by trying the

lessons in the appendix and by studying the APL2 programs in the example workspaces sup-

plied with TryAPL2.

APL2 data

APL2 supports two types of data - numbers and characters. A number is entered as in the

following examples:

1234 an integer

1.4 a fractional number

ý45 a negative number

1.2E11 a number in scientific notation

The language makes no distinction between integer, floating-point, or logical data. The lan-

guage does distinguish between the symbols for negative (ý) and subtraction (-).

A character is entered between single quotes:

'W'

On output, quotes on character data are not displayed.

APL2 is best at computing on collections of data called arrays. The simplest type of array

consists of a single number or a single character and is called a simple scalar.

An array can be a list in which case it is called a vector. For example, here is a vector of

numbers of length 3, a vector of characters of length 4, and a mixed vector of length 5:

10 2.1 0
'F' 'A' 'T' 'E'
10 'A' 2.1 'E' 0

When a vector contains only items that are single characters (simple scalars), it may be written

more compactly. The following are the same character vector:

'F' 'A' 'T' 'E'
'FATE'

More varied collections of data are produced by various APL2 functions.

APL2 functions

APL2 primitive operations are represented by symbols. Operations on data are called func-

tions. A function may take one argument on the right (a monadic function) or an argument

on the left and on the right (a dyadic function). A system-supplied function is called a primi-

tive function and is represented by a symbol, a user-supplied function is represented by a word.

The APL2 Language 13

Here is an example of the reciprocal (monadic ö) primitive function:

ö 2 4 .01
0.5 0.25 100

Here is an example of the multiply (dyadic õ) primitive function:

100 õ .05 .06 .09
5 6 9

Here is an example of a user-defined function:

ROOT 16 100 2
4 10 1.414213562

Here is an example of the interval (monadic ì) primitive function:

ì10
1 2 3 4 5 6 7 8 9 10

Notice that in the first three examples the arguments are vectors of length 3 and that APL2

can operate on all elements of the vector at once. This can be a powerful tool as you will see

later.

A single function (symbol or word) can have two meanings ... monadic and dyadic. Here is an

example of a subtraction (dyadic -) function and a negation (monadic -) function:

2 - 8
6

-5 7 ý2
ý5 ý7 2

Functions are often used in combination with other functions. Here is an example of a user-

defined function combined with the power function and the multiplication function combined

with the addition function:

(4*2) + ROOT(3*2)
19

1.05 õ 10 + 20
31.5

This last combination brings up an interesting feature of APL2. This evaluation is different

from normal arithmetic where you multiply before you add regardless of the order of the func-

tions in the expression. APL2 has over 80 functions and remembering which function is exe-

cuted before another would be nearly impossible. Therefore, APL2 has an easy rule: Execute

functions from right to left. This means that all functions have equal precedence. Parentheses

can be used to group data and functions to control the order of execution.

Functions are also provided to rearrange data. Here are examples of the reshape (dyadic) func-

tion:

8æ'FATE'
FATEFATE

3æ0
0 0 0

3 2æ 7 11
7 11
7 11
7 11

The last example shows that arrays need not be linear. A two-dimensional array is called a

matrix. Higher dimensional arrays are also allowed. Here is an example of a three-

dimensional array:

14

2 3 4æ ì24
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

Notice that this array displays as a two-dimensional array separated by a blank line. Although

it is necessary to display them this way, it is easier to think of them as behind one another like

pages in a book.

In arrays of two dimensions or more, the rightmost axis is called columns , the second from the

rightmost axis is called rows , and the third from the right is usually called planes. In arrays

higher than three, the other axes are not normally given names but are sometimes called

hyperplanes .

An array is given a name by using a left arrow. Here is an example of a simple scalar array, a

vector array, and a two-dimensional array being given the names SS, V, and DD respectively:

SS½'K'
SS

K
V½ 2 4 6
V

2 4 6
DD½2 3æì6
DD

1 2 3
4 5 6

A name which has an array as its value is called a variable. Notice that mentioning the name

of a variable elicits its value.

Names must begin with an alphabetic symbol or one of the special symbols ¶ or ÷. Other

symbols in a name may be these characters or the digits 0 to 9. APL2 implementations

normally support two alphabets (uppercase and lowercase or uppercase and uppercase under-

scored). In this document, uppercase and lowercase characters are used in names. TryAPL2

only permits names of seventeen characters or shorter to be saved in a workspace. The full

product has no such restriction.

The shape (monadic æ) function, when applied to a vector, tells you how many items are in

the array. Here are examples:

æ'FATE'
4

æ10 20 30
3

The shape function, when applied to a higher dimensional array, tells you how long each of

the axes are; that is, how many rows, columns, etc. It returns a integer vector as shown by

this example:

æDD
2 3

The shape of the shape of an array, says you how many numbers are used to describe the

shape. This is, by definition, the rank of an array. Here are some examples:

The APL2 Language 15

ææ'FATE'
1

ææ10 20 30
1

ææDD
2

Thus, DD has shape 2 3 and rank 2.

APL2 has special names for arrays that have rank 0, 1, and 2:

æ Rank 0 - scalar

æ Rank 1 - vector

æ Rank 2 - matrix

All the arrays you've seen so far have had as items single numbers and single characters. In

APL2 an item of an array can be any arbitrary array. Here is a three-item vector whose first

item is a scalar, second item is a vector, and third item is a matrix:

N½3 'ABC' (2 3æì6)
æN

3

An array where at least one item is other than a single number or a single character is called a

nested array.

When a nested array is displayed, APL2 uses blanks to indicate structure:

N
3 ABC 1 2 3

4 5 6

An unambiguous presentation of the structure of a nested array is produced by the DISPLAY

function from the DISPLAY workspace:

)COPY DISPLAY DISPLAY
SAVED 1989-07-21 8.02.01

DISPLAY N
.¸----------------.
| .¸--. .¸----. |
| 3 |ABC| Ç1 2 3| |
| '---' |4 5 6| |
| '~----' |
'î----------------'

The depth function tells you how far into the array you need to go to find the deepest simple

scalar:

ÏN
2

Depth is easy to compute using the output of the DISPLAY function. Count the number of

boxes you enter when drawing a line from outside the display to each number or character in

the display. The largest number you count matches the depth of the array.

Arrays of depth 0 and 1 are called simple arrays. Arrays of depth 2 or more are called nested

arrays.

16

APL2 scalar functions

The scalar functions are those defined on single numbers or characters that extend to array

arguments in a uniform way. They include functions for simple arithmetic, logarithms, trigo-

nometry, and logic. You have already seen a few examples in the previous section. The

]Summary of APL2 Functions and Operatorsı gives a complete list of the primitive scalar

functions.

The monadic scalar functions return a result that has the same structure as the argument. Here

are examples with the functions negate, reciprocal, and floor:

-2 3æì6
ý1 ý2 ý3
ý4 ý5 ý6

ö1 2 10
1 0.5 0.1

¾ 2.3 45 ý2.3
2 45 ý3

The dyadic scalar functions apply between corresponding items one from each argument:

10 20 30+1 2 3
11 22 33

This is the same as:

(10+1)(20+2)(30+3)
11 22 33

If one argument is a scalar, it is paired with each item of the other argument:

10 20 30-1
9 19 29

When applied to nested arrays, these rules are applied recursively:

(2 3) 4 (5 6 7)+10 20 (30 40 50)
12 13 24 35 46 57

This is the same as:

(2 3+10)(4+20)(5 6 7+30 40 50)
12 13 24 35 46 57

The monadic circular function produces products of pi:

ê1 1.57079 2
3.141592654 4.934782324 6.283185307

APL2 primitives assume that angles are expressed in radians. Since a circle has two pi radians

or 360 degrees, the following expression converts degrees to radians. Here is one degree

expressed as radians:

ê2ö360
0.01745329252

The dyadic circular function provides a set of mathematical functions including trigonometric,

hyperbolic, and arc functions. Here are examples of sine, cosine, and tangent of various

angles:

The APL2 Language 17

1ê30 45 90õê2ö360
0.5 0.7071067812 1

2ê30 45 90õê2ö360
0.8660254038 0.7071067812 2.832769449Eý16

3ê30 45 õê2ö360
0.5773502692 1

Logical operations are defined in APL2 using the numbers 1 and 0 as the logical values true

and false. The and function produces true only when both its arguments are true. Here are all

four possible combinations of true and false with the function and:

0 0 1 1 ^ 0 1 0 1
0 0 0 1

Here are examples of or, nor, and not equal (also called exclusive or):

0 0 1 1 ë 0 1 0 1
0 1 1 1

0 0 1 1 ç 0 1 0 1
1 0 0 0

0 0 1 1 ô 0 1 0 1
0 1 1 0

APL2 mixed functions

Primitive functions that are not scalar functions are called mixed functions. You've already

seen shape, reshape, and depth. The]Summary of APL2 Functions and Operatorsı gives a

complete list of the primitive mixed functions.

Enclose adds levels of nesting to an array. Here are examples of enclose turning a matrix into a

scalar:

A½ 2 3æì6
âA

1 2 3
4 5 6

æâA The shape of a scalar is an empty vector

(an empty vector prints as a blank line)

ææâA A scalar is a rank-zero array

0
ÏâA

2

The DISPLAY of a nested scalar consists of a box with no arrows because a scalar has no

shape (more precisely, a scalar has empty shape). Inside the box is the display of the item of

the scalar:

DISPLAYâA½2 3æì6
.---------.
| .¸----. |
| Ç1 2 3| |
| |4 5 6| |
| '~----' |
'î--------'

Here is an example of enclose along an axis used to turn a matrix into a vector of its rows:

18

â[2]A
1 2 3 4 5 6

æâ[2]A
2

Disclose (ã) is the inverse of enclose.

Index is a function that selects cross-sectional subsets of an array. There are two ways to

denote the function; with the squad function symbol Ó and with special non-functional syntax

using a matched pair of square brackets. Here are examples of selecting specified rows (1, 3,

and 5) and columns (4 and 5) from a matrix using each of these denotations:

A½8 8æì64
A[1 3 5;4 5]

4 5
20 21
36 37

(1 3 5) (4 5)Ó A
4 5

20 21
36 37

Brackets are an older and more familiar notation. Squad index is a function without special

syntax and so can be used with operators.

A rank-N array is indexed with N index arrays when using brackets and with an N-item vector

when using squad. A scalar may be used in place of a one-item vector. Here are examples of

selection from a vector:

A½'ABCDEFGHIJ'
A[4]

D
4ÓA

D
A[3 1 4 4 5]

CADDE
(â3 1 4 4 5)ÓA

CADDE

Notice the use of enclose in the last example. Since a vector is a rank-one array, it must be

indexed with a length-one array. Since a scalar can be used in place of a length-one array,

enclose can be used to produce the scalar index. The vector 3 1 4 4 5 would be suitable

to select one item from a rank-five array.

You can use index to replace items:

A½'ABCDEFGHIJ'
A[4 6]½'XZ'
A

ABCXEZGHIJ

This operation is called a selective assignment. Notice that nothing is printed in response to

any assignment operation. The result returned by an assignment is the array on the right, not

the array in which the replacement occurred. Even though it doesn't print, it can be used in

further computations:

A½'ABCDEFGHIJ'
4æA[4 6]½'XZ'

XZXZ

There are many other functions that select subsets of arrays. Take and drop select by speci-

fying the number of items to be kept or discarded from an array:

The APL2 Language 19

3Æ'ABCDEFG'
ABC

3Ç'ABCDEFG'
DEFG

A negative number causes the operation to be applied to the right side of the array:

ý3Æ'ABCDEFG'
EFG

ý3Ç'ABCDEFG'
ABCD

On a higher-rank array, you may specify on the left one number per dimension:

3 ý2Æ8 8æì64
7 8

15 16
23 24

You may also specify application along an axis if you want to select all of one axis but only

part of another:

3Æ[1]8 8æì64
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

Replicate (also called Compress) uses a left operand to say how many copies to make of the

corresponding item from the right:

1 0 1 0 1/ì5
1 3 5

æ1 0 1 0 1/ì5
3

2 1 2 1 2/ì5
1 1 2 3 3 4 5 5

More mixed functions

First selects the first item of an array:

Æ10 20 30
10

Æ(2 3)(4 5)(6 7)
2 3

æÆ(2 3)(4 5)(6 7)
2

Notice the distinction between first and take:

DISPLAY Æ(2 3)(4 5)(6 7)
.¸--.
|2 3|
'~--'

DISPLAY 1Æ(2 3)(4 5)(6 7)
.¸------.
| .¸--. |
| |2 3| |
| '~--' |
'î------'

Take with a left argument of 1 selects a 1-item vector that contains the first item of the right

argument. First selects the first item which can be any arbitrary shape.

20

First and drop are the APL2 equivalents of CAR and CDR in LISP.

Pick selects an item at an arbitrary depth in an array. The length of the left argument deter-

mines at what depth the selection occurs. Here are examples of pick applied to a depth-three

array:

A½((2 3)(4 5))('ABCD' 'EFGH')
(ì0)ãA ä empty PICK selects all

2 3 4 5 ABCD EFGH
1ãA

2 3 4 5
1 2ãA

4 5
1 2 1ãA

4

Notice that an empty pick selects the entire array and that an argument of length N selects a

simple scalar from an array of depth N.

Catenate joins the values of two arrays:

A½2 3 4
B½'ABCD'
A,B

2 3 4 ABCD
æA,B

7

Given two rank-two arrays having the same number of rows, catenate joins the columns:

A½2 3æì6
B½ 2 4æ10 20 30 40 1 2 3 4
A,B

1 2 3 10 20 30 40
4 5 6 1 2 3 4

æA,B
2 7

You can join on the rows by specifying the first axis:

A½2 3æì6
C½3 3æ'ABCDEFGHI'
A,[1]C

1 2 3
4 5 6
A B C
D E F
G H I

Match returns 1 or 0 depending on whether its two arguments are the same in value and struc-

ture or are different:

2 3 4 Ï 2 3
0

2 3 4 Ï 1+1 2 3
1

(2 3)(4 5) Ï (2 3)(6 7)
0

Matrix inverse computes the algebraic inverse of a matrix:

The APL2 Language 21

I½3 3æ14 ý140 168 ý40 640 ý840 27 ý540 756
I

14 ý140 168
ý40 640 ý840
27 ý540 756

�I
0.3333333333 0.1666666667 0.1111111111
0.08333333333 0.06666666667 0.05555555556
0.04761904762 0.04166666667 0.03703703704

The inverse of a matrix has the property that when combined with the original matrix by an

algebraic inner product (described later) an identity matrix is produced:

(�I)+.õ I
1 0 0
0 1 0
0 0 1

Because of numerical approximations, the answer you see may not be a perfect identity matrix.

Matrix divide may be used to find a solution to a set of simultaneous linear equations such as

these:

These equations are satisfied when X is 1, Y is 2, and Z is 0. Here is the computation of these

roots where SE is the matrix of coefficients:

SE
1 1 1
4 2 1
9 3 1

3 8 15�SE
1 2 ý4.439807896Eý16

APL2 operators

APL2 makes a distinction between functions and operators. Functions are operations that

apply to data and produce new data. Operators are operations that apply to functions and

produce new functions.

Reduction (/) applies to a dyadic function and produces a related monadic function. For

example, reduction applied to the addition function produces the summation function:

+/10 30 20
60

Reduction can be applied to any dyadic function including programs that you write yourself.

Here are examples with the functions maximum and catenate:

22

©/10 30 20
30

,/2 3æ10 30 20 40 50 60
10 30 20 40 50 60

DISPLAY ,/2 3æ 10 30 20 40 50 60
.¸----------------------.
| .¸-------. .¸-------. |
| |10 30 20| |40 50 60| |
| '~-------' '~-------' |
'î----------------------'

N-wise reduction is like reduction except that a set of reductions are performed on overlapping

sections of the right argument. A number on the left says how many items participate in each

reduction. Here is an example of a pairwise difference:

2-/10 20 30 50 70
ý10 ý10 ý20 ý20

A negative number on the left causes each vector to be reversed before it is reduced. Here is a

pairwise difference that in mathematics is called a first difference:

ý2-/10 20 30 50 70
10 10 20 20

Scan (\) is like a set of reductions:

+\10 30 20
10 40 60

is like

(+/10)(+/10 30)(+/10 30 20)
10 40 60

Scan can be applied to any dyadic function including programs that you write yourself.

Each applied to a monadic function applies the function to each item of its argument:

æþ(2 3)(4 5 6)(2 3æì6)
2 3 2 3

is like

(æ2 3)(æ4 5 6)(æ2 3æì6)
2 3 2 3

Each applied to a dyadic function applies the function between corresponding items one from

each argument:

(2 3)(4 5)Ïþ(2 3)(6 7)
1 0

is like

(2 3Ï2 3)(4 5Ï6 7)
1 0

If one argument is a scalar, then it is paired with each item from the other argument:

2æþ5 6 7
5 5 6 6 7 7

Each may be applied to any function including programs you write yourself.

Outer product (ø.) produces a function that applies between all combinations of items, one

from each argument:

The APL2 Language 23

10 30 20 ø.+ 1 2
11 12
31 32
21 22

æ10 30 20 ø.+ 1 2
3 2

The]jotı (ø) symbol is just a place-holder and is not a function.]Jotı is only used in outer

product. Notice that the result shape is derived by adjoining the shapes of the arguments. The

words]all combinationsı in a problem can often be translated to]outer product.ı Outer

product can be applied to any dyadic function including one you write yourself. Here's outer

product applied to catenate:

10 30 20 ø., 1 2
10 1 10 2
30 1 30 2
20 1 20 2

This result is a 3 by 2 matrix of pairs.

Inner product combines reduction and outer product in one operation:

D½ 2 3æì6
E½ 3 4æì12
D+.õE

38 44 50 56
83 98 113 128

æD+.õE
2 4

Rows from the left argument are multiplied by columns from the right argument in all combi-

nations and the resulting vectors are reduced with plus. Inner product with functions addition

and multiplication is the APL2 notation for the algebraic inner product. Any dyadic function

may be substituted for + and õ including programs that you write yourself.

APL2 errors

If you make a mistake, APL2 will produce an error message and show you the line that con-

tained the error. A caret (^) shows you how far APL2 got in its right to left scan. Some

APL2 implementations show a second caret to the right to show which operation failed.

APL2 error messages are very brief. However, they are also few so figuring out what caused an

error is usually not difficult. When an error occurs in the middle of an expression, keep in

mind that everything to the right of the caret has been looked at by APL2 and executed if

possible. Also remember that TryAPL2 automatically clears errors with a right arrow. This

keeps the workspace clean but can make debugging more difficult.

Here are some expressions that contain errors:

æ RANK ERROR - argument ranks are incorrect. For example, dyadic scalar functions

must have arguments of the same rank unless one of them is a scalar:

(2 3æì6)+(2 3 4æì12)
RANK ERROR

(2 3æì6)+(2 3 4æì12)

^

æ LENGTH ERROR - argument shapes are incorrect. For example, dyadic scalar functions

must have arguments that have the same lengths unless one of them is a scalar:

24

2 3+4 5 6
LENGTH ERROR

2 3+4 5 6

^

æ DOMAIN ERROR - argument values are not appropriate for the function or the result

cannot be represented:

2 3+'A'
DOMAIN ERROR

2 3+'A'

^

æ SYNTAX ERROR - APL2 could not figure out what the expression means:

2+
SYNTAX ERROR

2+

^

æ INDEX ERROR - an index did not select an item from an array:

A½ 2 3 4
A[6]

INDEX ERROR
A[6]

^

Defining and editing your own programs

You can write programs that act like data, functions, or operators. Such programs are called

defined. Your programs have the same properties as primitive data, functions, or operators.

They may be monadic or dyadic, participate in APL2 expressions, and functions may be

applied with operators (primitive or defined).

Real APL2 systems contain full-function full-screen editors and allow use of standard system

editors. All APL systems have a simple line editor called the]delı editor because of the

symbol used to invoke it. TryAPL2 contains only a subset of this editor. A few basic func-

tions of the]delı editor are shown here. See the documentation that comes with the full

APL2 product for complete details. Even though the]delı editor is very simple, the session

manager gives it many of the features of a full screen editor. A good way to use the editor on

an existing function is to display a set of lines on the screen and use the session manager to

make whatever changes are needed. You enter the editor for a new program by typing a]delı

(·) followed by the header of the program. Here is an example:

·Z½F C;Y
[1]

The header gives all the information about how the program can be called and what result it

returns. In this example, the name of the function is F. It can be called with one argument

on the right so it is monadic. Inside the program, this argument will be referred to by the

name C. Inside the program, a variable named Z will be produced and this value is to

become the result of the program. Y is a name that is used inside the program for some

temporary purpose which has no meaning outside the program. Such a name is called a local

name. Except for the name of the function itself, all names in the header are local names.

They have meaning only inside the program and do not conflict with other objects that have

the same name outside the program.

The APL2 Language 25

You enter the APL2 statements which make up the program one at a time as the editor

prompts you for new lines:

·Z½F C;Y
[1] Z½32+1.8õC
[2]

You get out of the editor by typing]delı at the end of a line:

·Z½F C;Y
[1] Z½32+1.8õC
[2] ·

You run the program by entering its name and giving it an argument:

F 0 20 37 100
32 68 98.6 212

Note that the argument to F is the four item vector 0 20 37 100. In some languages,

this would be treated as four parameters. In APL2, it is a single array passed as argument to

the function F.

The result returned by F is available for further computation. Notice that the functions are

evaluated from right to left:

459.72+F 0 20 37 100 ä absolute temperatures
491.72 527.72 558.32 671.72

Once you have entered the editor for the first time and defined the header, you get into it again

by just using the name of the program not the whole header:

·F
[2]

The editor prompts you for a new line. You enter more lines at the end of the program by

typing them after the line number prompts.

You can see the definition of the program by entering a quad (�) between square brackets

after a line number prompt:

·F
[2] [�]
[0] Z½F C;Y
[1] Z½32+1.8õC
[2]

You add a line between two existing lines by using a fractional line number. Here a comment

is added at the front of the program:

·F
[2] [�]
[0] Z½F C;Y
[1] Z½32+1.8õC
[2] [.1] ä FAHRENHEIT FROM CELSIUS
[0.2] ä A SECOND COMMENT
[0.3]

You delete a line by entering in square brackets a]deltaı followed by the line number:

26

·F
[2] [�]
[0] Z½F C;Y
[1] Z½32+1.8õC
[2] [.1] ä FAHRENHEIT FROM CELSIUS
[0.2] ä A SECOND COMMENT
[0.3] [¶.2]
[0.3]

You exit the editor by entering a]delı (·) after a line number prompt or at the end of an

added line.

·F
[2] [�]
[0] Z½F C;Y
[1] Z½32+1.8õC
[2] [.1] ä FAHRENHEIT FROM CELSIUS
[0.2] ä A SECOND COMMENT
[0.3] [¶.2]
[0.3] ·

When you exit the program by entering the closing]del,ı the program is renumbered starting

from zero:

·F[�]
[0] Z½F C;Y
[1] ä FAHRENHEIT FROM CELSIUS
[2] Z½32+1.8õC
[3]

If the function is small, it is convenient to simply display it all and then type on top of the

function to make a set of changes. When you press enter, any line altered is processed one at

a time from top to bottom. If the function is larger, you may request that only a portion of it

be displayed by giving a range of line numbers. For example, if you were in a large function on

line 10 and wanted to see lines 50 through 60, you would enter:

[10] [�50-60]

This was an example of a defined monadic function. The header for a defined dyadic function

will have a name on the left of the function name as well as on the right. The header for

defined data (also called niladic defined function or defined sequence) has neither a left nor a

right argument named.

Defined operators

A defined operator is a program which can be given functions as parameters as well as data.

The header for a defined operator contains a parenthesized list of two or three names in place

of the function name. The name of the operator is the second name in parentheses. The

other names in parentheses are the names of the operands to the operator which can be either

functions or data. See the SEARCH workspace for an example of a defined operator.

A summary of APL2 functions and operators

This section contains summaries of the different types of primitive operations. Most of them

are not discussed in this document. Please refer to the documentation that comes with pur-

chased APL2 systems or other books for more information.

The APL2 Language 27

Scalar functions

Monadic Dyadic

Conjugate + Add

Negative - Subtract

Direction õ Multiply

Reciprocal ö Divide

Magnitude | Residue

Floor ¾ Minimum

Ceiling © Maximum

Exponential * Power

Natural log µ Logarithm

Pi times ê Circular

Factorial Ì Binomial

Not ~ (not scalar)

Roll ? (not scalar)

^ And

ë Or

å Nand

ç Nor

< Less

ó Not greater

= Equal

ò Not less

> Greater

ô Not equal

The dyadic Circular function is really a set of monadic functions where an integer left argu-

ment is used to select a particular monadic function. The following table documents the left

arguments:

Negative left Positive left

(1-R*2)*.5 0 (1-R*2)*.5

Arc sine R 1 Sine R

Arc cosine R 2 Cosine R

Arc tangent R 3 Tangent R

(ý1+R*2)*.5 4 (1+R*2)*.5

Inverse hyperbolic sine R 5 Hyperbolic sine R

Inverse hyperbolic cosine R 6 Hyperbolic cosine R

Inverse hyperbolic tangent R 7 Hyperbolic tangent R

-(ý1-R*2)*.5 8 (ý1-R*2)*.5

R 9 Real R

+R (conjugate) 10 |R
0J1õR 11 Imaginary R

*0J1õR 12 Phase R

Note that functions 8 through 12 are not available in TryAPL2 or 16 bit APL2/PC. 32 bit

APL2/PC, APL2/6000, and APL2 for S/370 S/390 all include complex arithmetic.

28

Mixed functions

Monadic Dyadic

Shape æ Reshape

Ravel , Catenate

Reverse è Rotate

Transpose í Transpose

Enclose â Partition

Disclose ã Pick

Ç Drop

First Æ Take

(not mixed) ~ Without

Interval ì Index of

Enlist î Member

Grade up û Grade up

Grade down ü Grade down

(not mixed) ? Deal

Ñ Find

Ó Index

� Encode

� Decode

Matrix inverse � Matrix divide

Depth Ï Match

Execute ¯

Format ® Format

Additionally the symbol é represents the functions reverse and rotate along the first axis.

Operators

Monadic Dyadic

Each þ
Reduce/Replicate /

Scan/Expand \

. Array product

Additionally the symbol ð represents the operator reduce/replicate along the first axis and the

symbol ñ represents the operator scan/expand along the first axis.

The APL2 Language 29

30

APL2 for the High School Math Classroom

This section discusses the use of APL2 in the classroom.

Why use a programming language in a mathematics

classroom?

Computers have become available to the mathematics classroom. It may be one computer for

the whole department to share, or it may be one to two computers in a few to many class-

rooms, or it may be the availability of a mathematics lab. In any case, computers have

become a tool as important to the mathematics classroom as pencil, paper, and the calculator.

This has led to a multitude of software packages that instruct, remediate, calculate, graph, etc.

These packages are mostly mechanical; that is, students learn by practicing. It is the program-

ming languages that allow students to do original thinking. Programming entices students to

create their own algorithms and solve problems by using their visual skills to define the

problem and using their analytical skills to break down problems into smaller and smaller

parts.

Programming languages teach students how to think. Mathematics comes alive as students

create their own algorithms to solve problems rather than just calculate the answers.

Why use APL2?

APL2 is one of the few languages that integrates analytical and visual skills. It becomes more

than a language. It becomes a way of thinking.

APL2 uses a problem-solving strategy that centers on discovering patterns in a problem and

then operating on these patterns to transform them. A learning environment is created that

encourages the student to discover the functions of APL2 and then explore mathematical algo-

rithms and problems. APL2 is truly subservient to mathematics, giving immediate support to

the student because:

æ APL2 is a precise and concise notation for the recording of ideas.

æ APL2 uses common mathematical symbols.

APL2 uses the]õı symbol for multiplication and the]öı symbol for division instead of

the (*) or (/) symbols common in most languages.

æ APL2 requires no background in computer science to get started and do something signif-

icant.

æ APL2 has very few rules to memorize.

Unlike other programming languages which evaluate the functions of an expression in a

particular order, APL2 simply evaluates expressions right to left. This is the same

naturally intuitive rule that the English language uses. That is to say that although the

message is scanned from left to right the meaning is not clear until the last word is seen.

An APL2 statement is scanned from left to right, but the result depends on evaluating

everything to the right. This also follows what is inferred in the generalized mathematical

notation for the evaluation of functions. For example, in the expression, f(g(�)), the
evaluation of the function, f, depends on the evaluation of the function g. This statement

APL2 for the High School Math Classroom 31

seems to be processed from right to left. It is this philosophy, and the fact that APL2 has

so many functions to keep in some syntactic order, that makes this rule simple, and most

importantly, leaves no room for misunderstanding.

æ APL2 has a powerful interactive component where the real thinking can take place.

This allows the student the freedom to]guess and checkı.

æ APL2 allows algorithms to be written in a fraction of the number of statements that are

required in other languages.

Discovering/Teaching the Basics

Working with APL2 means discovery (there are over 80 system-defined functions available to

explore). Whether this discovery takes place in an arithmetic class, a mathematics A class, or a

college prep class, few explanations are needed for the student to learn APL2. The teacher

becomes the facilitator of learning.

There are five discovery lessons offered in later sections of this document. They can be taught

as a unit (40-50 minutes per lesson) in either five consecutive days or in individual enrichment

days over a one- to two-month time frame. The lesson plans for each follow and include:

æ Lesson goals and objectives.

æ A suggested pre-lecture to explain mechanics and/or rules.

æ A suggested post-lecture to summarize/confirm discoveries.

At the end of the five discoveries, the students will have learned 31 primitive functions and

eight derived functions. They will be ready to seriously explore many mathematical algorithms

such as:

æ Rounding

æ Averaging

æ Even numbers

æ Odd numbers

æ Multiplication tables

æ Factors of a number (including the number)

æ Factors of a number (excluding the number)

Suggested solutions to these algorithms can be found under "APL Expressions for Some

Mathematical Algorithms." Some information on what a variable is and how to)LOAD and

)SAVE their work will get them started on the road to discovery in mathematics.

Lesson: Discovering APL2 -- Working With Arithmetic

This lesson can be found in Appendix A.

The goal of this lesson is to introduce APL2 and show how APL2 handles data and performs

operations.

The objectives of this lesson are:

1. The student will be able to find and use the APL2 character set.

32

2. The student will be able to distinguish between a single scalar number and a vector.

3. The student will be able to find the pattern of applying functions to conforming vectors.

4. The student will be able to observe the solution to given examples and describe in his/her

own words what the APL2 function does.

The pre-lecture should include the following:

æ How to use the keyboard template -- finding the APL2 characters.

Inclusion of the distinction between]differenceı (-), which is a function and]negativeı

(ý), which is an attribute.

æ A short discussion of the definitions.

In a lower-level class this might include the teacher role playing a function machine and

the students role playing left and right arguments. The students could guess what function

the teacher is.

æ A short discussion of the data representation and structure.

The idea of]conformingı vectors should be carefully explained during this discussion.

The fact that the functions in this discovery all require arguments with the same number

of items is important to point out to the students. A few examples that apply vectors of

various lengths would help.

Students should be encouraged to work together on the exercise and should be reminded to

take care filling in both the solution and the results so they will have it all for reference later.

A post-lecture should be done before the students leave if possible. If not, it should be part of

the pre-lecture of the next lesson. It should include the following:

æ A means to]checkı their results.

This could be done by viewing a key or by reading/researching the chapter on APL2 Lan-

guage taken from this document.

æ A class and/or group discussion of their results.

æ A question and answer period.

Lesson: Discovering APL2 -- Working With Vectors

This lesson can be found in Appendix B.

The goal of this lesson is to explain the fundamental array structure of APL2 and explore

several operations that manipulate vectors.

The objectives of this lesson are:

1. The student will be able to distinguish between a numeric vector and a character vector

(string).

2. The student will be able to use functions that produce results that do not conform to the

original arguments.

3. The student will be able to select various items from a vector.

4. The student will be able to observe the solution to given examples and describe in his/her

own words what the APL2 function does.

APL2 for the High School Math Classroom 33

The pre-lecture should include the following:

æ A short discussion of what character data is and how it is represented.

æ A short discussion of non-scalar functions; that is, how the solution and the arguments are

NOT conforming.

The post-lecture should include the following information:

æ A means to]checkı their results.

æ A class and/or group discussion of their results.

æ A discussion of the importance of these functions in the real world; that is, in data proc-

essing.

æ A question and answer period.

Lesson: Discovering APL2 -- Working With Arrays

This lesson can be found in Appendix C.

The goal of this lesson is to apply functions to two-dimensional arrays.

The objectives of this lesson are:

1. The student will be able to distinguish between a vector (one-dimensional array) and a

matrix (two-dimensional array)

2. The student will be able to use functions that manipulate vectors into matrix arrange-

ments.

3. The student will be able to perform addition, subtraction, multiplication, and division with

a scalar and a matrix.

4. The student will be able to observe the solution to given examples and describe in his/her

own words what the APL2 function does.

The pre-lecture should include the following:

æ A short discussion of what an array is and what some of the characteristics are.

The post-lecture should include the following information:

æ A means to]checkı their results.

æ A class and/or group discussion of their results.

æ A discussion of the importance of 2-dimensional arrays in their studies in mathematics;
how matrices are used in algebra.

æ A question and answer period.

Lesson: Discovering APL2 -- Working With Comparisons

This lesson can be found in Appendix D.

The goal of this lesson is to introduce operations for comparing data using Boolean data and

functions.

The objectives of this lesson are:

34

1. The student will be able to equate a numeric]1ı with a value of true and a numeric]0ı

with a value of false.

2. The student will be able to distinguish between a vector of numeric or character data and a

vector of Boolean data.

3. The student will be able to distinguish between the four possible combinations of true and

false.

4. The student will be able to find the solutions to various Boolean functions and realize no

two functions give the same result vectors.

5. The student will be able to observe the solution to given examples and describe in his/her

own words what the APL2 function does.

The pre-lecture should include the following:

æ A short discussion of Boolean data and functions.

æ A few examples of some logic statements using one or more of the Boolean functions.

The post-lecture should include the following information:

æ A means to]checkı their results.

æ A class and/or group discussion of their results.

æ A discussion of the importance of Boolean logic and functions as related to the architec-

ture of the hardware/software of a computer.

æ A question and answer period.

Lesson: Discovering APL2 -- Working With Operators

This lesson can be found in Appendix E.

The goal of this lesson is to introduce the use of operators to control functions, creating new

families of functions.

The objectives of this lesson are:

1. The student will be able to distinguish between application of a function itself and applica-

tion of a function used with an operator.

2. The student will be able to use an operator to find all combinations of a function applied

to data.

3. The student will be able to observe the solution to given examples and describe in his/her

own words what the APL2 function does.

The pre-lecture should include the following:

æ A short discussion of the definitions.

æ A discussion of deriving new functions by combining them with operators.

æ A discussion of the right to left rule of APL2.

This should be carefully planned because it is a significant rule of APL2 that will affect all

their discoveries after this lesson. A suggested example: -/ 1 2 3 4 5 (Have

groups of students brainstorm how to combine these numbers to get the solution 3).

The post-lecture should include the following information:

APL2 for the High School Math Classroom 35

æ A means to]checkı their results.

æ A class and/or group discussion of their results.

A discussion of the outer product and how it produces tables (arrays) of information. An

extension of this would look at the power of the inner product operator.

æ A question and answer period.

36

Supplied Workspaces

TryAPL2 comes with twelve workspaces. DISPLAY, PRINT, KEYS, CALENDAR,

TRYDOC, GRAPHS, CLEANSPACE, STATS, SEARCH, OR, IDIOMS, and IE. The

workspaces are supplied as examples and you are encouraged to look at them and modify

them. Keep the original diskette unmodified so you can make copies for your friends. To

understand the examples given,you may need to refer to]The APL2 Language.ı

The DISPLAY workspace

The DISPLAY workspace contains the single function DISPLAY which may be used to

show the structure of arrays. If you are not familiar with APL2 data structures, refer to the

section]APL2 data.ı The function always returns a simple character array as result. For

example, a vector is data organized along one direction. The DISPLAY of a vector shows a

box with an arrow on the top edge to indicate data arranged along one axis:

DISPLAY 5 6 7
.¸----.
|5 6 7|
'~----'

A nested array is shown as a box with the DISPLAY of the items of the array inside:

DISPLAY (2 3 4)(2 3æì4) 'ABC'
.¸----------------------.
| .¸----. .¸----. .¸--. |
| |2 3 4| Ç1 2 3| |ABC| |
| '~----' |4 1 2| '---' |
| '~----' |
'î----------------------'

Notice that the second item of the above vector is a matrix. A matrix is data arranged along

two axes and is shown by a box with two arrows. Here is an example of each (þ) applied to

the DISPLAY function:

DISPLAYþ(2 3 4)(2 3æì4) 'ABC'
.¸----. .¸----. .¸--.
|2 3 4| Ç1 2 3| |ABC|
'~----' |4 1 2| '---'

'~----'

The PRINT workspace

The print workspace contains functions to print APL2 objects on an appropriate printer. To

print the value of a variable A, enter:

PRINT A

To print the definition of a program F, enter:

PRINT NUMBER �CR 'F'

If you want to use the PRINT function with a GRAFTRAX printer, add the following line in

the PRINT function between lines 15 and 16:

[15.1] SH½5

Supplied Workspaces 37

Here are other values you can assign to SH that may be of interest:

æ SH½4 This sets up the PRINT function for use with the IBM 5182 Color Printer.

æ SH½6 This sets up the PRINT function for use with the IBM 3852-2 Color Jetprinter.

æ SH½7 By default, APL characters are turned into graphics characters so they will display

on a wider variety of printers. If your printer has an APL font (for example, the IBM

5202 Quietwriter III with the]Courier Italic APL 12ı electric font) setting the value 7 will

turn off this automatic translation and give you higher quality printing.

The KEYS workspace

The KEYS workspace contains functions that split the screen in to halves horizontally and

displays an APL2 keyboard on the top half. You may continue to use your APL2 session on

the bottom half.

When the workspace is loaded, it automatically executes the expression SHOWKEYS

'US101'. If that does not match your keyboard, you may also use SHOWKEYS with

arguments of 'US102' 'FR102' 'GR102' 'PC' 'AT'. If you want to remove

the display of the keyboard at any time, copy and execute the NOKEYS function:

)COPY KEYS NOKEYS
NOKEYS

You may define non-US keyboards and messages with the following two functions. Valid

arguments are: 'ENGLISH', 'FRANCAIS', 'DEUTSCH', 'ITALIANO'

SETKEYS 'FRANCAIS' ä Ch�ng� k�ybo�rd �rr�ng���n�
SETMSG 'DEUTSCH' ä Ch�ng� �����g��

Because TryAPL2 is a simulation, some messages will come out in English even when another

language is selected.

The KEYS functions were donated by Gary Logan, IBM Boulder and Bernard Landaud, IBM

France.

The CALENDAR workspace

The CALENDAR workspace contains functions of general use for dealing with the Gregorian

calendar. A Gregorian date is represented by a three-item vector - year, month, and day. The

JD function converts a Gregorian date to a Julian day number. For example, here is the Julian

day number for August 1, 1989:

JD 1989 8 1
2447740

Todays date can be selected from the APL2 time stamp variable �TS

�TS
1989 8 1 6 45 15 237

JD 3Æ�TS
2447740

The ¶D function packages subtraction of Gregorian dates into a single function:

38

1969 8 17 ¶D 1789 7 14
65777

Subtraction is only one of many functions that you might want to apply between dates. You

would probably not want to multiply and divide dates but it is common to want to compare

them. Simple comparison of dates will not work. Suppose you have two variables containing

dates:

D1½1989 9 1
D2½1989 8 15

To find out if the first date occurs after the second date, you might enter this:

D1>D2
0 1 0

Apparently, the answer is no, yes, and no. In fact, you want to do this computation on Julian

day numbers:

(JD D1)>JD D2
1

You could write a function like ¶D to package up this comparison. But there are many com-

parisons: greater than, greater or equal, etc. Rather than write a whole set of functions that are

the same except for the function name and a single operation inside, you can write a defined

operator which will apply any operation to dates. JDO is such an operator:

D1 -JDO D2
16

D1 >JDO D2
1

D1 <JDO D2
0

It still doesn't make sense to multiply and divide dates but if you want to see what happens,

you can do it:

1989 9 1 õJDO 1989 8 15
5.991541256E12

1989 9 1 öJDO 1989 8 15
1.000006945

GD is the inverse of JD. Given a Julian day number, it returns the Gregorian date:

GD 2447740
1989 8 1

The WDNAME function tells you the day of the week for a given Gregorian date. To find out

on what day Christmas fell in 1988 enter:

WDNAME 1988 12 25
Sund�y

Today is:

WDNAME 3Æ�TS
Tu��d�y

(If you get a different answer, try again on Tuesday.)

The function WEEKDAY does the same thing as WDNAME except the day of the week is

returned as an integer 0 through 6 representing Sunday through Saturday:

WEEKDAY 1988 12 25
0

Supplied Workspaces 39

0 means Sunday.

WDNAME and WEEKDAY are only accurate after October 15, 1582.

Some accounting calendars are based on the day of the year. The function DOY given a

Gregorian date, returns the day of the year:

DOY 1989 8 1
1989 213

YOD is the inverse of DOY:

YOD 1989 213
1989 8 1

MONTHOF produces a calendar of the month containing the day given as argument:

MONTHOF 1989 8 1
1989 Aug

S M T W T F S
1 2 3 4 5

6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

IDAY and LDAY select a date for the day of the week given as left argument. The right

argument determines the month in which the selection occurs. IDAY selects the first date

for that day in the month. LDAY selects the last day for that day in the month. Here are

expressions that determine the dates of the first and last Sunday in August 1989:

0 IDAY 1989 8 1
1989 8 6

0 LDAY 1989 8 1
1989 8 27

Here's the computation of the second Tuesday in August 1989:

GD 7+JD 2 IDAY 1989 8 1
1989 8 8

The calendar functions were donated by Dick Conner, IBM World Trade.

The TRYDOC workspace

The TRYDOC workspace implements a full screen interface into online documentation for

TryAPL2. You use the cursor keys or the]Page Upı and]Page Downı to locate a section

you want to read. Use the space bar to select the sections you want to read. Use enter to

view the selected sections. If [MORE] is displayed on the bottom line, then the section is

larger than the screen and you can scroll. While documentation is displayed, pressing F2

opens a line for APL2 execution. The result of whatever you execute is displayed in the lower

right corner of the screen to avoid covering up the documentation. Pressing enter again to

clear out one expression and get ready for another. F3 returns you to the documentation

screen.

When you run TryAPL2 from a single 360K 5.25" disk, there is not room for the documenta-

tion. In this case, each selection will report "NOT FOUND".

40

The documentation functions were donated by Gary Logan, IBM Boulder.

The GRAPHS workspace

The GRAPHS workspace contains a few functions that exercise the graphics processor AP207.

It is discussed here by example only. To get started, execute the function SETUP:

SETUP

This will divide your screen in half horizontally giving you your APL2 session on the bottom

half and a graphics field on the top half. The graphics fiels is 100 units high and 250 units

wide. You can restore normal execution mode at any time by executing the SETDOWN func-

tion:

SETDOWN

Assuming you have just executed SETUP, you may now execute graphics commands by

assigning them to the variable A. For example, here is a command to draw a circle:

A½'ARC' (65 65 10 10 0 360)
A

0

The 0 returned from AP207 means the operation worked. The command means to draw an

arc whose center is at 65 65, whose x and y radius is 10 10 and from 0 degrees to 360 degrees.

You can play with these values to produce other circles and elipses.

The BEGAREA and ENDAREA commands surround calls where you want closed figures

filled. CIRCLE is a function that draws one circle. Each time it is called, it changes the

color to be used. If ever it chooses the same color as the background, you won't be able to

see the circle. Here is how you would execute the CIRCLE function and have the circles

filled:

A½'BEGAREA' ''
A

0
10 CIRCLEþ (5+5õì50),þ(55+35õ1ê.4õì50)
A½'ENDAREA' ''
A

0

Notice that the last circle doesn't get filled until you issue ENDAREA. The expression on the

right of the call to CIRCLE computes a vector of two-item vectors to be used for the center

of circles. The Y axis of the pair depends on 1ê which is the mathematical sine function.

Other calls you can make are these:

æ A½'CLEAR' 'BLUE' - clear the window to given color

æ A½'MOVE' (50 50) - move to indicated point

æ A½'DRAW' (60 60) - draw a line to this position.

You can also give an n,2 matrix of points and there are other options.

æ A½'WRITE' 'HELLO' - write characters

Other calls can be used to define window attributes, colors, fonts, and images. These are dis-

cussed in the documentation that comes with the APL2 products.

Supplied Workspaces 41

The STATS workspace

This workspace contains a collection of basic statistical algorithms which fall into 4 families:

1. Univariate statistics

2. Random number generators

3. Multi-variate statistics

4. Distribution functions

In addition to their statistical role, many functions are written in a style which exploits the

special features of APL2. Studying these functions will show you the value of APL2 as a

language for statistical algorithms. Most of the functions are one line long. You can use them

to play with data and you can modify them to play with the algorithms. The reader is

assumed to be familiar with statistical concepts.

Family 1 : Univariate statistics

The functions in this family operate on a collection of numbers and produce a number which,

in some sense, is a measure of the collection. Perhaps the most familiar measure of a set of

numbers is its arithmetic average or mean. Here is a collection of numbers and the computa-

tion of their mean:

TRY1
18.728 22.996 21.562 11.481 12.312 22.434 15.318 15.554 22.806

(+/TRY1)öæTRY1
18.132

The STATS workspace contains a function MEAN which uses a slight variation of this com-

putation:

MEAN TRY1
18.132

To observe the set of statistical functions provided, issue the]umbrellaı function ALL for a

collection:

ALL TRY1
MEAN 18.132
SDEVN 4.5937
VARIANCE 21.102
SKEWNESS ý0.26474
KURTOSIS 1.4937
MAX 22.996
MIN 11.481
RANGE 11.515
MEDIAN 18.728
75 PCTILE 22.434
25 PCTILE 15.318
SEMI_IQD 7.1162

The examples in this section show answers to five digits precision. APL2 systems normally

show answers to ten digits precision and perform calculations to even higher precision.

Each of the statistics above can be computed by itself. For example:

42

RANGE TRY1
11.515

75 PCTILE TRY1
22.434

A function MODE is also available. If a collection of data is multi-modal, the result of MODE

is a vector; if there are no repeated values an empty vector is returned.

Moments about the origin are given by the function MOM:

2 MOM TRY1
347.53

The functions VARIANCE and SDEVN have (n-1) as divisor; if divisor n is wanted, the func-

tion MEANMOM standing for]moment about the meanı may be used:

2 MEANMOM TRY1
18.757

Family 2 : Random number generators.

This family provides a facility for constructing simulated data, and can conveniently be used

for testing and applying the Family 1 functions. The function RAND contains a set of

expressions for generating either vectors of random numbers or sample frequency distribution

vectors from populations with given underlying probability distributions. The left argument of

RAND is the number of random variables, the right argument is a character string, the first

character of which is the first letter of one of the distributions listed below, followed by a space

and then the parameters of the distribution separated by further spaces. For example, 50

random Normal variables coming from a population with mean 20 and standard deviation 3

are given by:

50 RAND 'N'20 3

The available distributions are

æ Boolean - argument is a number between 0 and 1, representing the proportion of 1s in the

boolean vector result.

æ Cumulative - argument is a discrete cumulative probability distribution, e.g. .1 .3 .9 1, and

result is a sample cumulative frequency distribution.

æ Exponential - argument is the mean.

æ Frequency - input is a discrete probability distribution, e.g. .1 .2 .6 .1, result is a sample

frequency distribution.

æ Lognormal - argument is true mean and standard deviation.

æ Normal - argument is mean and standard deviation.

æ Sample - argument is discrete probability distribution; e.g. .1 .2 .6 .1, and result is a vector

of 1s, 2s, 3s and 4s appropriately distributed.

æ Uniform - argument is lower and upper limits of range.

æ Weibull - argument is scale parameter followed by shape parameter which must be >0.

The mean is the scale parameter multiplied by the gamma function of 1+1ö(shape parm).

Supplied Workspaces 43

Family 3 : Multivariate analysis.

The functions in this family provide linear regression, correlation, and principal components

analysis. Chi-squared for vectors and for contingency tables is also included. There are two

possible data structures for this family:

1. A matrix, rows of which correspond to observations and columns to variables.

2. A pair of vectors, one as left argument, the other as right.

For multiple regression, the leading column is taken to represent the dependent variable. If

regression not through the origin is required, a column of 1s must be added, most conveniently

at the right-hand end. There is an umbrella function REGRESS which carries out multi-

variate linear regression, and gives a summary output report. By using global variables b�,
�� and ��� in REGRESS, you can retain the regression coefficients, residuals and estimates

for later use:

TRY3
4 1 10
5 2 20
5 3 10
7 4 30
6.5 5 20
6.5 6 20
8 7 30

REGRESS TRY3,1
R�gn. �o�ff(�). 0.38095 0.083333 2.8095
S��n. �rror(�) 0.058321 0.01543 0.24915

Error v�ri�n�� 0.053571
Co�ff of d���r�in��ion 0.98137

ANALYSIS OF VARIANCE :
R�gr���ion 11.286 2 5.6429 105.33
R��idu�l 0.21429 4 0.053571
TOTAL 11.5 6 1.9167

BS, ES and EVAR are also available as separate functions.

SEFIT and SEPRED give the standard errors of fit and prediction respectively. The left

argument in each case is a vector of independent variable values at the point for which the

standard errors are required. If regression is not through the origin this vector must include a

one in the appropriate position. With the TRY3 data above, the regression estimate and

standard errors for the value vector (4,20) of the independent variables are:

4 20 1+.õ�½b�
0.38095 0.083333 2.8095
6

4 20 1 SEFIT TRY3 ,1
0.087482

4 20 1 SEPRED TRY3 ,1
0.24744

The special case of fitting a polynomial of given degree is given by POLYFIT. Only the first

two columns of the right argument (i.e. one independent variable) are used. The result is the

power coefficients in descending order. The result of fitting a cubic to the first three columns

of TRY3 is:

44

3 POLYFIT TRY3
0.027778 ý0.3631 1.9663 2.2857

The functions COVM and CORM provide covariance and correlation matrices respectively. For

COVM the divisor is n. Edit line one if a divisor (n-1) is required.

CORM TRY3
1 0.91951 0.88465
0.91951 1 0.66144
0.88465 0.66144 1

The correlation coefficient of two vectors as left and right arguments is given by CORCOEF:

TRY3[�1]CORCOEF TRY3[�2]
0.91951

If the numbers are regarded as a contingency table, the chi-squared value is given by the func-

tion CHISQ:

CHISQ TRY3
4.9067

The function CHISQ can also be used to deal with the special case of two vectors where the

left argument is a set of]observedı values, and the right argument is the corresponding

]expectedı values:

14 8 9 7 12 10 CHISQ 6æ10
3.4

Family 4 : Standard distributions

This family of functions provides a computerized set of normal, t, chi-squared and F tables.

Each of these tables can be used in two ways, either to give the percentile as a value of the

corresponding statistic, or vice versa. There are two umbrella functions PCT and INT to deal

with these two cases. The left argument of PCT is the percentile, and of INT the value of the

statistic. The right argument is a character string, the first character of which is N, T, C, or F

to identify the distribution, then, following a space, the distribution parameters in the case of

T, C and F. For the F distribution the order of parameters is degrees-of-freedom numerator

followed by degrees-of-freedom denominator. For example:

95 PCT'N'
1.6452

95 PCT'C 8'
15.491

95 PCT'F 8 9'
3.2306

2 INT'N'
0.97725

3.23 INT'F 8 9'
0.95002

The functions NPDF, TPDF, CPDF, FPDF and GPDF return numerical values of the

appropriate probability density functions (G = Gamma). The left argument (if any) is the

parameter(s), and the right argument is a vector of x values:

NPDF ý3+ì5
0.053991 0.24197 0.39894 0.24197 0.053991

2 TPDF ý3+ì5
0.068041 0.19245 0.35355 0.19245 0.068041

2 CPDF ì5
0.30327 0.18394 0.11157 0.067668 0.041042

Supplied Workspaces 45

With the exception of NINT the INT, functions use numerical integration applied to the

probability density functions, and call two general purpose numerical integration functions

called SIMPSON and ADAPTINT (standing for adaptive integration). These can be used

quite generally. The integral of tan(x) from 0 to 1 radian can be obtained using six Simpson

intervals, and then to an accuracy of five decimal places by:

0 1 6 SIMPSON '3êX'
0.61582

0 1 .000001 ADAPTINT '3êX'
0.61563

The statistics functions are adapted from ones donated by Norman Thomson, IBM U.K.

The SEARCH workspace

The SEARCH workspace contains some simple programs which play a single-person game.

These programs are examples of defined operators because they take other programs as oper-

ands.

The programs SEARCH1 and SEARCH2 are designed to play any one-person game. You

give them a start position, the desired end position, and a program that, given one position,

can generate a set of next positions. The program MOVECOLOR generates moves for a simple

colored-tile game. Suppose you have five slots in a row and you have two white tiles and two

black tiles arranged in the following pattern:

BEGIN

WW_BB

The idea of the game is to move a tile into the blank space until the following pattern is

reached:

END
BBWW_

(BEGIN and END are just five-item character vectors.)

Here is how you find the solution using SEARCH1:

BEGIN (MOVECOLOR SEARCH1) END

WW_BB _WWBB BWW_B B_WWB BBWW_

SEARCH1 generates all possible moves from each intermediate position until the end position

is found. The result is the set of positions leading to the end.

SEARCH2 is similar except that you pass it an additional function that estimates how close to

the end you are. Given a set of next positions to try, SEARCH2 will try the one that is

closest to the end first. SEARCH2 is in general much more efficient. The program ESTC

is the estimator for the color game:

BEGIN (MOVECOLOR SEARCH2 ESTC) END

WW_BB _WWBB BWW_B B_WWB BBWW_

This solution is the same one discovered by SEARCH1 but that is not always true.

If you want to play some other game, you define arrays representing an initial and an ending

position, define a MOVE function and an EST function for it. If you study the functions in

this workspace, you may be able to write programs that solve the 15s puzzle. This puzzle is a

4 by 4 square with 15 tiles. You try to get to an end arrangement by sliding tiles into the

46

blank space. NOTE: for a given starting position, only half of the arrangements can be

reached.

The search examples in this section are adapted from]APL2 at a Glanceı by Brown, Pakin,

and Polivka, Copyright 1988 Prentice-Hall Inc., ISBN 0-13-038670-7, IBM number

SC26-4676, used with permission.

The OR workspace

The OR workspace contains functions that implement some basic algorithms of Operations

Research. The functions perform operations on a directed network represented as a matrix.

The functions in this workspace make use of nested arrays and recursion with each. If you

understand these functions, you understand the basic concepts and philosophy of APL2 pro-

gramming.

Suppose you have a network of six nodes connected by arcs as follows:

æ from 1 to 2 with a value of 9

æ from 1 to 3 with a value of 14

æ from 2 to 3 with a value of 6

æ from 2 to 4 with a value of 7

æ from 2 to 5 with a value of 11

æ from 3 to 4 with a value of 2

æ from 3 to 6 with a value of 19

æ from 4 to 5 with a value of 16

æ from 4 to 6 with a value of 8

æ from 5 to 7 with a value of 20

æ from 6 to 5 with a value of 12

æ from 6 to 7 with a value of 11

If the nodes were cities and the network a map, the values could be distances. This network

can be pictured like this:

The network may be represented by a matrix where rows represent source nodes and columns

represent sink nodes. For example, the variable SPM below contains a 6 in row 2 column 3

because the directed arc from node 2 to node 3 is labeled with a 6:

SPM
0 9 14 0 0 0 0
0 0 6 7 11 0 0
0 0 0 2 0 19 0
0 0 0 0 16 8 0
0 0 0 0 0 0 20
0 0 0 0 12 0 11
0 0 0 0 0 0 0

Supplied Workspaces 47

Note that in the matrix representation of the network, the sink node is represented by a row

that is all zero because it is the node for which there is no next node. In order to keep the

functions simple, a function SETUP is used to define some variables that describe the

problem. Entering:

SETUP SPM

establishes the following global variables that define the problem:

NODES - the list of node numbers

SIZE - the number of nodes

NETWORK - a copy of the network matrix

CM - a connection matrix (network matrix with 1 on each arc)

The function PATHSFROM N uses the global variables and computes all paths from the

given node N to the sink node (number 7 in this example):

PATHSFROM 4
4 5 7 4 6 5 7 4 6 7

Since this network starts from node 1, you compute all paths as follows:

æPATH½PATHSFROM 1
14

Fourteen different paths are discovered. Here is the first path:

ÆPATH
1 2 3 4 5 7

Here is the third path:

3ãPATH
1 2 3 4 6 7

The function ARCS computes the value on each arc of a path. If there are N nodes in a path,

there will be N-1 arcs:

ARCS ÆPATH
9 6 2 16 20

You can compute the arcs of all paths by using the each operator:

A½ARCSþPATH

The value of a path is the sum of its arc values. Here is the value of the first path:

+/ARCS ÆPATH
53

The VALUE function combines the summation and the ARCS function:

VALUE ÆPATH
53

The value of each path is easily computed:

+/þARCSþPATH
53 57 36 66 45 52 56 35 40 52 56 35 65 44

VALUEþPATH
53 57 36 66 45 52 56 35 40 52 56 35 65 44

The minimum of the sums is the shortest path through the network and the maximum of the

sums is the maximum-length path through the network which is called the critical path in a

PERT network:

48

V½VALUEþPATH
¾/V

35
©/V

66

The following exhibits the paths which are shortest:

(V=¾/V)/PATH
1 2 4 6 7 1 3 4 6 7

If the network contains a loop, the programs will not terminate. You stop a program that is

running by pressing the break key (or sometimes the Esc key, Attn key, or Ctrl-Break). It

would be instructive for you to modify PATHSFROM so it remembers which nodes it has

visited and avoids loops. This is not straightforward.

The network examples in this section are adapted from the paper]APL2 and Basic Algo-

rithms of OR,ı Norman Thomson, Proceedings of SEAS AM 1989, Amsterdam.

The IE workspace

The IE workspace contains an inferencing engine for a production rule based expert system.

An inference engine is just a fancy name for a program that applies rules in an organized

fashion. When an inferencing program applies rules to the known facts to produce new facts,

the program is doing forward chaining. When an inferencing program applies rules to a

desired conclusion in an attempt to prove that it is true, the program is doing backward

chaining. The programs supplied in this workspace are designed to do forward chaining on

rules like those in the following example.

Here are six production rules for animals:

1. If eyes face forward, teeth are sharp, it has claws, and it is class mammal, then it is a

carnivore.

2. If eyes face forward, it has claws, and it is class bird, then it is a carnivore sometimes.

3. If phylum is chordata, birth is live, blood is warm, and skin is pliant, then class is

mammal.

4. If phylum is chordata, birth is eggs, blood is warm and skin is feathers, then class is bird.

5. If skeleton is endo then phylum is chordata.

6. If skeleton is endo then cartilag.

In these rules, names such as]eyesı and]phylumı are treated as variables that could take

different values. For example, in the first rule, the variable]eyesı has the value]forward.ı

This can be represented in APL2 by a two-item vector as follows:

'EYES' 'FORWARD'

Once you decide that FORWARD is the representation of the value]face forward,ı you must

consistently use the same representation every place that the value is used. The programs do

not know what the values mean.

The IF part of the first rule has four variables with values and can be represented by a four-

item vector of pairs:

('EYES' 'FORWARD')('TEETH' 'SHARP')('CLAWS' 'HAS')('CLASS' 'MAMMAL')

Supplied Workspaces 49

This same structure is used for the representation of the IF parts of each of the six rules. The

last two rules have only one IF part and so they must be represented by a one-item vector of

pairs.

In the simple example above, each THEN part consists of a single variable and a single value.

In general, there could be more than one variable value pair so the THEN parts must also be

represented as a vector of pairs. In this example, the THEN parts would each be a one-item

vector of pairs. A rule can be represented as a two-item vector where the first item is the IF

part and the second item is the THEN part. The full set of rules could be represented as a

six-item vector of IF-THEN pairs but in this workspace they are represented as a six by 2

matrix. Here is the DISPLAY of the rules for the animal example:

There are two main functions in this workspace: IECOMPILE which analyzes the rule matrix

and extracts information into global variables to be used for inferencing; and IEFORWARD1
which uses the information in the global variables to do forward chaining inferencing until no

rules can be applied.

IECOMPILE

The most visible result of executing the IECOMPILE function is to prompt you for the

values of variables used in the rules. If a value for a variable is known, respond with the value.

If a value is not known, just press enter. Here is the execution of IECOMPILE for the

animal example assuming that the values of the variables]carnivoreı and]phylumı are not

known:

50

IECOMPILE RANIMAL
GIVE VALUES FOR VARIABLES

EYES
FORWARD

TEETH
SHARP

CLAWS
HAS

CLASS
BIRD

CARNIVORE

PHYLUM

BIRTH
LIVE

BLOOD

WARM

SKIN
PLIANT

SKELETON
ENDO

CARTILAG
NO

The program records the values of variables in the global variable VARVAL which in this

case is an 11 by 2 matrix:

æVARVAL
11 2

VARVAL
EYES FORWARD
TEETH SHARP
CLAWS HAS
CLASS BIRD
CARNIVORE
PHYLUM
BIRTH LIVE
BLOOD WARM
SKIN PLIANT
SKELETON ENDO
CARTILAG NO

The inferencing process will fill in the unknown values if it is possible, by applying the rules.

In addition to the values of variables, IECOMPILE builds the following globals:

æ NRULE - the number of rules.

æ IFPARTS - a vector of any variable value pair that occurs in an IF part of a rule.

Supplied Workspaces 51

æ VARIABLES - a vector of the variables that are mentioned in rules.

æ VAR_IF - a matrix of variable names versus IF parts - contains a 1 if a variable exists in

the IF part.

æ IF_RULE - a matrix that records which IF parts occur in which rules.

æ VAR_RULE - a matrix that records which variables occur in which rules.

IEFORWARD1

IEFORWARD1 does forward chaining inferencing by applying rules until no more rules can

be applied. It does this by first identifying rules that have all true IF parts. It applies all these

rules on the first iteration. On subsequent iterations, the function deletes from the set of rules

with true IF parts any rule that has not had a change of a variable value. Here is the execution

of IEFORWARD1 showing that, after three iterations of applying rules, there are no more

rules that can be applied:

IEFORWARD1
FIRE RULES 2 5 6
FIRE RULES 3
FIRE RULES 1

END OF INFERENCING

As a result of the inferencing, values have been given to variables that did not have values. In

this example, all variables now have a value:

VARVAL
EYES FORWARD
TEETH SHARP
CLAWS HAS
CLASS MAMMAL
CARNIVORE TRUE
PHYLUM CHOR
BIRTH LIVE
BLOOD WARM
SKIN PLIANT
SKELETON ENDO
CARTILAG YES

These functions represent a very simple inferencing technique. More sophisticated techniques

can be used to reduce the actual amount of computing done. The papers referenced below

contain discussions of various criteria for choosing the rules to be applied.

The inferencing examples in this section are based on the papers:

]A Boolean Array Based Algorithm in APL for Forward Chaining in Rule Based Production

Expert Systems,ı Fordyce, K. and Sullivan, G. 1987, APL Quote Quad, APL87 Conference

Proceedings, Vol. 16, No. 3.

]BABIE: Boolean Array Based Inference Engines,ı Fordyce, K., and Sullivan, G. 1988, Pro-

ceedings of the 1987 APL Techniques in Expert Systems Conference, Syracuse University.

52

The IDIOMS workspace

An APL2 idiom is a short expression that does some interesting function. The symbolic nature

of APL2 lets you recognize common expressions easily. Here is an example of the idiom that

counts the number of leading blanks in a character string:

+/^\STRING=' '

The idioms workspace is a full screen application that lets you search for idioms. Load the

workspace and execute the main function IDIOMS. Follow the directions to see what is

available. One interesting thing to try is to press PF6 to get a listing of the group headings for

idioms. PF7 and PF8 can be used to scroll. This is a large workspace and can get WS FULL

if there is not enough space (e.g. TSRs running or less than 640K memory).

The IDIOMS workspace was donated by Stan Cason, IBM Endicott.

Supplied Workspaces 53

54

Appendix A. Discovering APL2 -- Working With Arithmetic

This discovery exercise shows you how to do arithmetic functions that perform calculations on numbers.

When you are finished you will have a little of your very own reference manual.

Here are some definitions that might be helpful as you do the tables.

argument data which is input to the function.

scalar A single number or a single character.

vector A list of single numbers (separated by a space) or single characters (called a character
string).

function operation that applies to data and produces new data.

scalar function function that applies independently to each simple scalar in a uniform way.

monadic function function applied to only a right argument.

dyadic function function applied to both left and right arguments.

Here is some information about the tables in general:

æ The first column gives you the name of the function, the syntax for the function using L for the left

argument and R for right argument.

æ The second column is for the result; that is, what the function does (fill in using your own words).

æ The third column gives a sample problem (fill in the solution).

Here is some information about the representation and structure of data in the tables:

æ The left and right arguments are numeric scalars or vectors.

æ The arguments conform (have the same number of items).

æ The results conform to the arguments.

æ The function applies between corresponding items of conforming vectors.

The first table shows you functions that perform simple calculations. The first entry is done for you as an

example.

Function and

Syntax

Result Example

ADD

L+R

Sum of L and R 1 2 3 + 4 5 6

5 7 9

DIVIDE

LöR

8 ö 0.4

MULTIPLY

LõR

13 õ 34

Appendix A. Discovering APL2 -- Working With Arithmetic 55

This second table looks at functions that do not actually do calculations but rather compare numbers, giving

numeric results.

Function and

Syntax

Result Example

NEGATIVE

-R

- ý5 1

POWER

L*R

2 * 4

RECIPROCAL

öR

ö 5

RESIDUE

L|R

8 | 9 15 24 32 44

SUBTRACT

L-R

ý3 - 6

Function and

Syntax

Result Example

CEILING

©R

© 3.4 ý.3 ý3.4

FLOOR

¾R

¾ 3.4 ý.3 ý3.4

MAGNITUDE

|R

|6 ý5 ý4

MAXIMUM

L©R

4 © 1

MINIMUM

L¾R

6 ¾ 1

56

Appendix B. Discovering APL2 -- Working With Vectors

This discovery exercise shows you how to measure, create, manipulate, and select particular items from data

arguments.

Here is some information about the tables in general:

æ The first column gives you the name of the function and the syntax for that function.

æ The second column is for the result; that is, what the function does (fill in using your own words).

æ The third column gives a sample problem (fill in the solution).

Here is some information about the representation and structure of the data in the tables:

æ The data used are both numeric and character.

You should understand the following about character data:

1. A simple character is a symbol surrounded by quotes.

2. A list of characters (a vector) may be represented as a series of single characters (example: 'A'

'B' 'C') or as a character string (example: 'ABC').

3. A blank space is a character when written inside quotes (example: ' ').

æ The arguments and the results do not conform (which makes them non-scalar functions).

This first table shows how to measure, create, and manipulate data.

This next table will show you how to select certain items from a vector.

Function and

Syntax

Result Example

SHAPE

æR

æ 1 2 3 4 5

SHAPE

æR

same as above æ 'LEMONS'

INTERVAL

ìR

ì6

CATENATE

L,R

'HI','HO',' ','HI'

Appendix B. Discovering APL2 -- Working With Vectors 57

Function and

Syntax

Result Example

DROP

LÇR

for a positive integer scalar L,... 2 Ç 'LEMONS'

DROP

LÇR

for a negative integer scalar L,... ý2 Ç 'LEMONS'

TAKE

LÆR

for a positive integer scalar L,... 2 Æ 'LEMONS'

TAKE

LÆR

for a negative integer scalar L,... ý2 Æ 'LEMONS'

PICK

LãR

for an integer scalar for L,... 3 ã 'LEMONS'

FIRST

ÆR

Æ'LEMONS'

58

Appendix C. Discovering APL2 -- Working With Array�

This discovery exercise shows you how to create, measure, manipulate, and perform some simple arithmetic

calculations using matrices as arguments. The functions used should be familiar to you as you saw them in

the previous discoveries.

Here is a definition that might be helpful as you do this exercise:

array rectangular collection of zero or more items arranged along zero or more axes

(directions). Each item in the array is single number, character, or another array.

matrix an array with two dimensions.

Here is some information about the tables in general:

æ The first column gives you the name of the function and the syntax for that function.

æ The second column is for the result; that is, what the function does (fill in using your own words).

æ The third column gives a sample problem (fill in the solution).

Here is some information about the representation and structure of the data in this first table:

æ The arguments are numeric and character scalars, vectors, or matrices.

You should understand the following about matrices:

1. Every row has the same number of items.

2. Every column has the same number of items.

æ The arguments and the results do not conform (which makes them non-scalar functions).

This first table shows how to measure, create, and manipulate data.

Function and

Syntax

Result Example

SHAPE

æR

æ(2 3 æ 'ABCDEF')

RESHAPE

LæR

2 3 æ 1 2 3

RESHAPE

LæR

same as above 2 3 æ 'ABCDEF'

RESHAPE

LæR

same as above 3 4 æ ì12

Appendi	 C. Discovering APL2 -- Working With Arrays 59

Here is some information about the representation and structure of the data in this next table:

1. The right argument used is a simple scalar number.

2. The left argument used is a matrix.

3. The result is a matrix of the same shape as the original matrix.

This next table will show you a few arithmetic operations using matrices.

Function and

Syntax

Result Example

CATENATE

L,R

12 , 2 3 æ ì6

Function and

Syntax

Result Example

ADD

L+R

(2 3 æ ì6) + 10

SUBTRACT

L-R

(2 3 æ ì6) - 10

MULTIPLY

LõR

(2 3 æ ì6) õ 10

DIVIDE

LöR

(2 3 æ ì6) ö 10

60

pp��
�� �� �����������
��� �� W������ W��� C��pa������

This discovery exercise shows you how to do various comparisons with relational functions and Boolean

functions. When you are finished you will have a little more of your very own reference manual.

Here is a definition that might be helpful as you do the first table:

Boolean vector a vector of 1s (TRUE) and 0s (FALSE).

Here is some information about the tables in general:

æ The first column gives you the name of the function and the syntax for that function.

æ The second column is for the result; that is, what the function does (fill in using your own words).

æ The third column gives a sample problem (fill in the solution).

Here is some information about the data representation and structure in the first table:

æ The arguments are conforming numeric vectors.

æ The results are Boolean vectors conforming to the arguments.

This first table deals with relational functions.

Function and

Syntax

Result Example

EQUAL

L=R

20 30 40 = 40 30 20

GREATER THAN

L>R

20 30 40 > 40 30 20

GREATER
THAN
OR EQUAL
TO

LòR

20 30 40 ò 40 30 20

LESS THAN

L<R

20 30 40 < 40 30 20

LESS THAN
OR EQUAL
TO

LóR

20 30 40 ó 40 30 20

NOT EQUAL

LôR

20 30 40 ô 40 30 20

Appendi	 D. Discovering APL2 -- Working With Comparisons 61

This second table deals with Boolean Functions. Here is a definition that might be helpful:

Boolean function a scalar function which takes Boolean arguments and returns Boolean results.

Here is some information about the data representation and structure:

æ The arguments are Boolean vectors.

The functions (scalar) apply between conforming vectors giving all four possible combinations:

™ 0 with 0 (FALSE-FALSE)

™ 0 with 1 (FALSE-TRUE)

™ 1 with 0 (TRUE-FALSE)

™ 1 with 1 (TRUE-TRUE)

æ The results are conforming Boolean vectors (of the same length as the arguments).

Function and

Syntax

Result Example

AND

L^R

0 0 1 1 ^ 0 1 0 1

OR

LëR

0 0 1 1 ë 0 1 0 1

NAND

LåR

0 0 1 1 å 0 1 0 1

NOR

LçR

0 0 1 1 ç 0 1 0 1

NOT

~R

~1 0

62

pp��
�� E� �����������
��� �� W������ W��� Fu������� a�

�a�a

This discovery exercise will show you how to control functions with operators. These operators create

whole families of new functions. When you are finished you will have a little more of your very own refer-

ence manual.

Here are some definitions that might be helpful as you do the first table:

operator operation that applies to functions and/or data and produces a new function as its result

(called a derived function).

operand data or a function given to an operator as input.

derived function function formed by the application of an operator to its operand(s).

Here is some information about the table(s) in general:

æ The first column gives you the name of the operator and the syntax using LO for the left operand and

RO for the right operand.

æ The second column is for the result; that is, what the derived function does (fill in using your own

words).

æ The third column gives a sample problem with an operator and a selected operand (fill in the solution).

Here is some information about the derived functions used in the first table:

æ The operator used is the slash (/) symbol.

æ Different system-defined functions are applied with numeric vectors.

æ The results are numeric scalars.

As you try to describe the results in this first table, remember the right-to-left rule of APL2.

Operator and
Syntax

Result Example

REDUCE

LO/ R

.

Using the addition function as an operand,... +/ 1 2 3 4 5

REDUCE

LO/ R

Using the subtraction function as an operand,... -/ 1 2 3 4 5

REDUCE

LO/ R

Using the multiplication function as an operand,... õ/ 1 2 3 4 5

REDUCE

LO/ R

Using the division function as an operand,... ö/ 1 2 3 4 5

Appendi	 E. Discovering APL2 -- Working With Functions and Data 63

Here is some information about the derived functions in this second table:

æ The operator used is �rray roduct (.).

æ Both the left and the right operand are applied. The right operand is a function. The left operand is

replaced by the]jotı (ø) symbol which is a place holder.

æ Both the left and right arguments are applied. They are numeric vectors.

æ The results are matrices.

Operator and
Syntax

Result Example

OUTER PRODUCT

L ø.RO R

10 20 30 ø.+ ì5

OUTER PRODUCT

L ø.RO R

10 20 30 ø.- ì5

OUTER PRODUCT

L ø.RO R

10 20 30 ø.õ ì5

OUTER PRODUCT

L ø.RO R

10 20 30 ø.ö ì5

64

pp��
�� F�
�� E�p�������� f�� S��� Ma����a���al

l��������

This section contains some short APL2 expressions that do useful things.

Round Number(s) N to D decimal places

(10*-D)õ!.5+Nõ10*D

N: numeric scalar, vector, or array

D: integer (if negative, N is rounded to nearest 10*-D)

Average of a vector V

(+/V)öæV

V: numeric vector

The first N even integers

2õìN

N: positive integer

The first N odd integers

ý1+2õìN

N: positive integer

Multiplication table of size M

(ìM)ø.õìM

M: positive integer

Factors of a number N (including N itself)

(0=(ìN)|N)/ìN

N: integer

Factors of a number N (excluding N)

(0=(ì!.5õN)|N)/ì!.5õN

N: integer (Note that this expression uses the fact that no factor of N can exceed Nö2.

The expressions in this section are adapted from the book]APL Programs for the Mathematics Classroom"
by Norman D. Thomson, copyright 1989, Springer-Verlag, ISBN 0-387-97002-9

#ppendi	 F. #$% E	p&essions fo& Some Mathematical #lgo&ithms 65

66

pp��
�� G� R�f�������/Supp���

This section discusses national codepages, tells you how to build a TryAPL2 workspace from an APL2/PC

workspace, and gives you sources of documentation.

National codepages

If you are using a national codepage, you should enter TryAPL2 with the command:

tryapl2n

You may need to customize tryapl2n.bat. The bat file contains remarks saying how you might want to

change it.

Your CONFIG.SYS and AUTOEXEC.BAT will normally already be modified to allow this support. Here

are examples of modifications that work in Germany with an EGA:

CONFIG.SYS

install=c:\dos\nlsfunc.exe c:\dos\country.sys
country = 049,437,\dos\country.sys

AUTOEXEC.BAT

mode con cp prep=((437) c:\dos\ega.cpi)
mode con cp select=437

keyb gr,437,\dos\keyboard.sys

Support Information for Teachers

You may make copies of the TryAPL2 disk and give them to students. You must supply all the files, not a

subset. You may add workspaces to TryAPL2 to provide additional demonstrations of APL programming

style or in support of use of TryAPL2 for classroom teaching. If you use the purchased APL2/PC product

to prepare a workspace for use with TryAPL2, use the TRYS'VE program reproduced below. A TryAPL2

workspace is an AP211 file with a file extension of]TRY." Write variables to the file by prefixing a V to the

name of the variable. Write defined functions by writing the �CR with an F prefixed to the name of the

function. Write defined operators by writing the �CR with an O prefixed to the name of the operator. See

the documentation that comes with APL2/PC for details on AP211. Here is a sample function to write all

objects in a workspace to a AP211 file:

#ppendi	 G. Refe&ences/Suppo&t 67

·TRYS'VE ÷FN�÷211�÷T�÷*IST�÷RC�÷V'*�÷TS
[1] ä WRITE Try'P*2 W+RKSP'CE
[2] ÷TS½�TS
[3] ÷*IST½((â[2]�N* 2 3 4)~þ' ')~'TRYS'VE' 'TRY*+'/'
[4] ÷*IST½('÷'ôÆþ÷*IST)/÷*IST½÷*IST,â'�*X'
[5] ÷T½211 �SV+ '÷211'
[6] ÷T½1 �SVC '÷211'
[7] ÷*0:÷211½'CRE'TE '(÷FN,'.TRY')512
[8] ¸(0ôÆ÷RC½÷211)/÷ER1
[9] ÷211½'USE '(÷FN,'.TRY')
[10] ¸(0ôÆ÷RC½÷211)/÷ER2
[11] ÷*1:¸(0=æ÷*IST)/÷EN/
[12] ¸(2 3 4=�NCÆ÷*IST)/÷V'R ÷F ÷+P
[13] ÷NXT:÷*IST½1Ç÷*IST
[14] ¸÷*1
[15] ÷V'R:÷211½'SET'('V',Æ÷*IST)(¯Æ÷*IST)
[16] ¸(0ôÆ÷RC½÷211)/÷ER3
[17] ¸÷NXT
[18] ÷F:÷211½'SET'('F',Æ÷*IST)(�CRÆ÷*IST)
[19] ¸(0ôÆ÷RC½÷211)/÷ER3
[20] ¸÷NXT
[21] ÷+P:÷211½'SET'('+',Æ÷*IST)(�CRÆ÷*IST)
[22] ¸(0ôæ÷RC½÷211)/÷ER3
[23] ¸÷NXT
[24] ÷EN/:÷211½'SET' '?÷TS' �TS
[25] ÷211½'RE*E'SE'
[26] ¸(0ôÆ÷RC½÷211)/'ø'
[27] ¸0
[28] ÷ER1:÷211½'/R+P'(÷FN,'.TRY')
[29] ÷211½'RE*E'SE'(÷FN,'.TRY')
[30] ¸÷*0
[31] ÷ER2:'USE F'I*E/ ' ÷RC
[32] ¸0
[33] ÷ER3:'SET F'I*E/' ÷RC(Æ÷*IST)

Here is a sample function that will read a TryAPL2 211 file into an APL2/PC workspace:

·TRY*+'/ ÷FN�÷211�÷T�÷*IST�÷RC�÷V'*
[1] ä RE'/ Try'P*2 W+RKSP'CE
[2] ÷T½211 �SV+ '÷211'
[3] ÷211½'USE'(÷FN,'.TRY')
[4] ¸(0ôÆ÷RC½÷211)/÷ER1
[5] ÷211½'*IST' 'N'MES'
[6] ÷*IST½÷211
[7] ÷*1:¸('VF+?'=Æ÷*IST)/÷V'R ÷F+ ÷F+ ÷NXT
[8] 'I**EG'* +BJECT'(÷*IST[�I+�])
[9] ÷NXT:÷*IST½1Ç[�I+]÷*IST
[10] ¸(0=Ææ÷*IST)Ç÷*1
[11] ¸0
[12] ÷V'R:÷211½'GET'(÷*IST[1�]~' ')
[13] (÷RC ÷V'*)½÷211
[14] ¯(1Ç÷*IST[�I+�]),'½÷V'*'
[15] ¸÷NXT
[16] ÷F+:÷211½'GET'(÷*IST[1�]~' ')
[17] (÷RC ÷V'*)½÷211
[18] ÷T½�FX ÷V'*
[19] ¸÷NXT
[20] ÷ER1:'USE F'I*E/ ' ÷RC

68

APL2 Interfaces

APL2 systems come with sophisticated interfaces to graphics, databases, dialog managers, networks, files,

and programs written in other languages. Most of these interfaces are not supplied with TryAPL2.

Differences from the full APL2 product

TryAPL2 is the full APL2 language provided by the purchased product. Some parts of the environment are

simulated and as such may exhibit slightly different behavior from the purchased product.

0 Errors do not cause suspension. When an error occurs, TryAPL2 generates a right arrow ¸ to clear the

stack. In the purchased product, errors cause suspension of programs at the point of the error. This

allows you to investigate the cause of an error, fix it, and continue execution from where you left off.

0 The del-editor is simulated and is not the same as the purchased product in every respect.

0 You cannot edit a line of a function wider than the screen.

0 S¶ is not supported because suspension is not allowed.

0 The display from)+FF is different.

0 The display from)*IB contains less information and is formatted differently. Library numbers are not

supported.

0)S'VE and)+UT both write AP211 files rather than APL2 workspaces (.APL files1 and transfer files

(.ATF files1.

0 Names can be up to 17 characters in length. Longer names will cause a failure on)S'VE and)+UT.

0)*+'/,)IN, and)C+PY read AP211 files rather than access APL2 workspaces.

0)+UT does not accept a name list.

0)PC+PY and)PIN are not supported.

0)NMS etc. do not accept specification of ranges.

0 Many auxiliary processors are not provided.

0 ú is not supported.

0 Locked functions cannot be saved or loaded.

0 �*C contains extraneous line numbers.

0 Complex arithmetic is not supported.

0 The 32-bit interpreter that allows use of memories larger than 640K is not supported.

0)*+'/ of a workspace that doesn't exist leaves a clear workspace.

APL2 Publications you can purchase

0 APL2 at a Glance, Brown, Pakin, and Polivka, Prentice-Hall, Englewood Cliffs, New Jersey, ISBN
0-13-038670-7, 1988, IBM number SC26-4676.

0 APL2 Programming: Language Reference, Version 2, SH21-1061, IBM Corporation.

0 APL2 Programming: Language Reference, Version 1, SH20-9227, IBM Corporation.

#ppendi3 G4 Refe&ences/Suppo&t 69

0 APL2 - ein erster Einblick, Brown, Pakin, and Polivka, Springer Verlag, Berlin, New York, ISBN

3-540-51611-5, 1989, translated by Heinz-Albert Badior.

0 APL Programs for the Mathematics Classroom, Norman D. Thomson, Springer Verlag, Berlin, New

York, ISBN 0-387-97002-9, 1989

APL2 Publications from IBM for free

There is no charge for these reports and you may make additional copies without permission so long as the

entire report is copied without modification. They may be ordered from:

APL Products

IBM Santa Teresa, Dept. M46/D12T

P.O. Box 49023

San Jose, Calif. 95161-9023

The following Technical Reports may be ordered from other IBM locations:

Table 14 $ublications fo& f&ee f&om IBM Santa Te&esa

Number Title Author

TR 03.247 The Principles of APL2 J.A. Brown

TR 03.265 Graphics Applications Using Complex Numbers in
APL2

J.A. Brown
H. P. Crowder

TR 03.266 Migrating Applications to APL2 M.T. Wheatley

TR 03.267 APL2: Exploiting DB2 and SQL/DS J.A. Brown
H. P. Crowder

TR 03.274 Multi-User SQL Applications in APL2 J.A. Brown

TR 03.281 Algorithms for Artificial Intelligence in APL2 J.A. Brown
E. Eusebi

L. Groner

J. Cook

TR 03.286 The APL2 Name Association Facility: Understanding
the APL-FORTRAN Connection

H.P. Crowder

TR 03.288 Interactive Programming in a Multifaceted Environment H.P. Crowder

D. Dunbar

ACM 554891 APL2 and SQL: A Tutorial Nancy Wheeler

TR 01.A845 APL2 Phrases Stan Cason

70

Key stickers

Keyboard Decals are available from your IBM representative as order number SC33-0604-0.

Keytops

Keytops are available from your IBM representative as follows:

Manufacturing Mechanicsburg

Description Part Number Form Number

-------------------------------- ------------- -------------

APL2 Keycaps, US/UK 1395624 SX80-0270

APL2 Keycaps, German upgrade 1397152 SX23-0452

APL2 Keycaps, French upgrade 1397153 SX23-0453

APL2 Keycaps, Italian upgrade 1397154 SX23-0454

Part Number 1395624 is needed to complete each of the other sets; Part Numbers 1397152 through 1397154

are supplemental to the US/UK set.

These keycaps may be used on the following keyboards:

IBM PS/2 (except as noted)

IBM RISC System/6000

They are NOT suitable for the following keyboards:

* IBM PS/1

* IBM PS/2 Model P70

* IBM PS/2 Model P75

They will physically fit on a PS/2 Model 25 with the "space-saving keyboard," but they lack some of the

markings of that original keyboard.

Table 74 $ublications fo& f&ee f&om othe& IBM locations

Number Title Author

RC 11025 A computer Gallery of Mathematical Physics - a Course

Outline

G.J. Chaitin
IBM Yorktown Heights

Route 134

Yorktown Heights, NY

TR 21.1078 APL2 Version 1 Release 3 Primitive Function Perform-

ance on the IBM 3090 Vector Facility
M. Van Der Meulen

M. Morreale

IBM Kingston

Neighborhood Road

Kingston, NY 12401

TR 21.1292 Primitive Function performance of APL2 Version 1

Release 3 (with SPE PL344091 on the IBM 3090/S

Vector Facility

M. Van Der Meulen

M. Morreale

IBM Kingston

Neighborhood Road

Kingston, NY 12401

#ppendi3 G4 Refe&ences/Suppo&t 71

How to order the full product

In North America, the PC or PS/2 product is ordered by calling the toll free number 1 (8001 IBM-CALL

and asking for RPQ# RJ0411. You can also call IBM DIRECT at the toll-free number (8001 IBM-2468

and asking for part number 6242936. Alternatively, contact your IBM representative and ask for 5799-PGG.

The product costs 500 US Dollars and volume discounts are available. On an 80386 or 80486 machine,

workspaces up to 15 megabytes are supported. An 80387 is required with an 80386 to use large workspaces.

Be sure to send in your registration card.

In Europe, the product is ordered by contacting your authorized PC or PS/2 dealer and asking for product

number 5604-260 or part number 38F1753.

APL2/6000 may be ordered by contacting your IBM representative and asking for program number

5765-012.

APL2/370 Version 2 may be ordered by contacting your IBM representative and asking for program number

5688-228. APL2 Application Environment is a run time version of APL2/370 on which APL2 applications

can be run but not developed. It may be ordered from your IBM representative by asking for program

number 5688-229.

Acknowledgements

I'd like to thank the many people who contributed suggestions, content, and support. These include Doug

Aiton, Manuel Alfonseca, Albert Badior, Tom Bundros, Stan Cason, Dick Conner, Paul Conrad, Coke

Costello, Rich Cunningham, Barry Dorfman, Dick Dunbar, Ted Edwards, Ken Fordyce, Lyle Gayne,

Jacques Gourdon, Alan Graham, Deen Hamid, Brent Hawks, Jim Henry, Tom Jacobs, Evan Jennings,
Curtis Jones, Erik Kane, Mike Kingston, Bernard Landaud, Dieter Lattermann, Guido Leeten, David

Liebtag, Gary Logan, Jon McGrew, John McPherson, Mike Van Der Meulen, John Mizel, Peggy Millar,

Mario Morreale, Dick Oates, Tom O'Brien, Bruce Pabst, Howard Richmond, Paula Schineller, David Selby,

Dick Stitt, Norm Thomson, Ray Trimble, Karl Vincena, Mike Wheatley, Nancy Wheeler, Dave White, and

Ron Wilks.

Jim Brown

APL2 Products and Service

August 1991

Change History

0 Version 1.00 - August, 1989

0 Version 1.01 - September, 1989. New]del" editor, EN/ variable in SE'RCH workspace, corrected

I/I+MS workspace.

0 Version 1.02 - October, 1989. Fixed time stamp on *+'/ and S'VE, fixed]min" and]max" in

ST'TS workspace. New I/I+MS workspace. �*X supported and used in supplied workspaces.

0 Version 1.03 - November, 1989. More reliable checking for presence of a math coprocessor.

0 Version 1.04 - February, 1990. National codepage support.

0 Version 1.05 - October, 1990. High School Mathematics Class sections added, ST'TS workspace and

documentation simplified.

72

0 Version 2.00 - October, 1991. Documentation on the disk, AP207 added, AP206 deleted, GRAPHS,

KEYS, TRYDOC, CLEANSPACE workspaces.

Keyboard templates

Keyboard templates are supplied in the companion document TRYTEMPL.HPC. The file is formatted to

print on LaserJet printers.

#ppendi3 G4 Refe&ences/Suppo&t 73

Diskette labels

If you make copies of the TryAPL2 diskettes, please paste these labels onto your copies. Cut out the rectan-

gular area bounded by the inside corners of the small squares. The small boxes in the corners are not part of

the label.

IBML TryAPL2

System

Version 2.00 + Copyright International Business Machines Corporation 1991

All Rights Reserved.

Duplication permitted subject to TryAPL2 agreement.

IBML TryAPL2

Documents

Version 2.00 + Copyright International Business Machines Corporation 1991

All Rights Reserved.

Duplication permitted subject to TryAPL2 agreement.

Write enable ”

Write protect ”

TryAPL2

TryAPL2

Version 2.00

+ Copyright International

Business Machines Corporation

1991 - All Rights Reserved. IBML
Duplication permitted subject to

TryAPL2 agreement.

74

.

+++

'

'. '

