
The SETL2 Programming Language A Gentle Introduction

Index

1 An Introductory Example ... 1
2 Assignment Statements & Expressions involving integers, reals, and strings ... 2
3 Booleans, atoms, and procedure types .. 5
4 Errors & Omega .. 5
5 Tuples ... 5
6 Sets .. 8
7 Maps ... 9
8 Aggregate types .. 11
9 Conditional Statements ... 12

9.1 If Statements ... 12
9.2 If expressions .. 12
9.3 Case Statement .. 12
9.4 Case expressions ... 13
9.5 Boolean Values & Operators .. 13

10 Loops .. 15
10.1 Control loops .. 15
10.2 Loop expressions .. 16
10.3 Set & Tuple Formers .. 17
10.4 Quantified Tests .. 17
10.5 Compound Operators .. 18

11 Input/Output .. 18
11.1 I/O Procedures .. 19
11.2 Openning files ... 19
11.3 Command line ... 20
11.4 Format ... 20

12 Assert statement .. 21
13 Stop Statement .. 21
14 Null Statement .. 21
15 Program Form ... 22

15.1 Use section .. 22
15.2 Constant, variable, and selector declarations ... 22
15.3 Procedure Definitions ... 23

16 Packages ... 24
17 Using the interpreter ... 25

Page 26

The SETL2 Programming Language A Gentle Introduction

declarations
procedure declarations
end pckgname;
package body pckgname;
use section
hidden declarations
procedure definitions
end pckgname;

The package is split into two parts: the package specification and the package body. Within the specification part,
the declarations may contain var and const declarations. These variables will be accessible in any program, or sub-
procedure, that imports the package. The procedure declarations contain the procedure lines of the definitions that
are given in the body of the package, and these procedures will then be accessible to any program that imports the
package. Note that the package specification, which is the visible portion of the package, is terminated with an end
statement. Within the body of the package, a use section may be invoked to import packages in a nested fashion;
hidden declarations contain var and const declarations for variables that will be visible within the package body but
not in programs that import the package, and procedure definitions contain the actual procedures, as described
before. Other procedures may also be defined within the package body, in addition to those declared in the pro-
cedure definitions part, but these procedures will be visible only within the package.

Package specifications and package bodies may be compiled separately, and packages can thereby recursively
call one another.

17. Using the interpreter

SETL2 may be obtained by anonymous ftp to cs.nyu.edu under the directory pub/setl2. There are interpreters
for SUNs, VAXes, PC’s running MS-DOS, Macintoshes, and other platforms.

When using SETL2, you must first create a library using the command:

stll −c setl2.lib

Other names may be given for libraries, but this name is the most common. SETL2 modules (programs or pack-
ages) may then be compiled using:

stlc file

where the file gives the file name containing the program or package. The compiled units will be stored in the
library file setl2.lib under the working directory. Other libraries may be used, but have to be named by command-
line options.

To execute a program that has been successfully compiled, the command

stlx prog_name

is given, where prog_name is the name of the program from the program statement (and not the name of the file
containing the source file for the program). The compiled program in the library setl2.lib is then interpretted and
executed. Again, other libraries may be used; see the manual pages or instructions for the stll, stlc, and stlx com-
mands.

Page 25

The SETL2 Programming Language A Gentle Introduction

Within the body of the procedure, the return statement is used to return control to the caller, and provide a
returned value. The format is:

return expression;
return; -- means return om;

If no return statement is executed, the procedure returns after executing the final statement in the procedure block,
the returned result being om.

Procedures may be called either as a statement (in which case the returned value is ignored), or as a function
in an expression, in which case the returned value is the value of the function call:

prname(10,120,30); -- call as a statement
a := b + prname(1,2,3); -- call as a function

Multiple values can conveniently be returned from a procedure by using tuple formers and tuple assignment:

[x,y,z] := prname(2,3);
...
procedure prname(arg1,arg2);
...
return [10,20,a+b];
...
end prname;

Procedures in SETL2 may be called recursively (i.e. they may call themselves directly or indirectly). All identifiers
which are local to the procedure are saved recursively to avoid confusion between values at different recursion lev-
els:

procedure factorial(arg);
if arg=1 then

return 1;
else

return arg * factorial(arg−1);
end if;

end factorial;

Procedures declared in the manner given above allow only call by value. The following extended form of
procedure definition allows one or more arguments to be specified as value receiving:

procedure name (type arg, type arg, type arg, ...);

where type is one of the following:

rd The argument is read only. This is the default value obtained if type is omitted, and causes the argument to be
passed by value in the manner already described. Within the body of the procedure the parameter name is
treated as a variable, but modifications to the value of such variables do not affect the arguments in the call.

rw The argument is read/write. The value of the argument will be passed as the initial value of the parameter.
The parameter identifier is treated as a variable in the body of the procedure, and may be reassigned a new
value. On return from the procedure, whatever final value is in this variable at the point when the return
statement is executed is transmitted back as the new value of the calling argument (which must have the
proper syntax for an assignment left hand side).

wr The argument is write only. On entry to the function, the initial value of the corresponding parameter is set to
om. The parameter is treated as a variable and assigned to the calling argument on return in the same manner
as described for a read/write parameter.

We recall that a procedure name may be used as the value of a procedure variable providing all of the param-
eters to the procedure are of type rd.

16. Packages

As noted before, a use statement may import a package of declarations and procedure definitions into a pro-
gram unit. A package is compiled separately, and so is contained in a separate file (or files). The form of a pack-
age, which is similar to a program unit, is:

package pckgname;

Page 24

The SETL2 Programming Language A Gentle Introduction

const name:=value,name:=value, ... ;
var name,name,...;
sel name(1), name(2), ... ;

The const statement defines identifiers to be associated with specified constant values, and initializes those values.
Such constant identifiers cannot appear on the left side of assignments. The right hand sides in const declarations
may be denotations, previously declared constant names, or sets or tuples of constant values. The var statement
merely names a list of variables which are assigned an initial om value as usual, and will be visible in all nested pro-
cedures. Optionally, the var declarations can also give initial values for the variables, as in:

var name1:=falue1,name2:=value2,...;

The initialization of the variables simply replaces executable assignments that would otherwise come before all
other executable statements.

All variables and constants declared in the global declarations section may be accessed by any part of the pro-
gram, including any nested procedures, until hidden by a declaration of an object with the same name. Variables
that are hidden by nested declarations can still be accessed using a ‘‘dot-construct,’’ as in:

procedure a();
var x1;
body
procedure b(); -- Nested subprocedure

var x1; -- Hides x1 defined in procedure a
body...;
t1 := a.x1; -- Accesses x1 from procedure a
t2 := x1 -- Accesses x1 from procedure b
rest...;

end b;
end a;

Note that the declaration of x1 in b hides the x1 variable that has been declared in a, but that the x1 of a is still
accessible by the notation ‘a.x1’.

Any identifiers which are referenced in the program block, but which are not included in the global declara-
tions are private to the program block and may not be accessed by procedure definitions at deeper levels, unless
passed via parameters. A similar statement is true for identifiers at any level of nesting within a procedure.

Finally, selector declarations, using sel, come after the other declarations, but before the executable state-
ments of the program body, and denote names for elements of aggregate types, as described in Section 8. Selectors
are accessed using a ‘‘dot-notation,’’ and are active at all nested levels below the level of declaration. Note that the
dot-notation for selectors uses an identifier declared as a selector after the dot, whereas the dot notation for access of
hidden objects uses an identifier declared as a variable or constant after the dot.

15.3. Procedure Definitions

The form of a procedure definition, as noted above, is basically the same as the form of a program, but
without the use section. Procedure definitions must follow the executable statements in the unit, (i.e., come after the
body of the program or parent procedure), and are bracketed by procedure and end statements, as in:

procedure prname(arg1,arg2,...);
...
end prname;

The list of parameters arg1, arg2,... are identifiers which are assigned the argument values when the procedure is
called. These names are strictly local to the procedure, and must be different from the names of any declared
identifiers in the parent program or procedure. Within the procedure definition (i.e., prname in the example), these
names act as ordinary identifiers that have been declared as var’s with values initialized by the call to the procedure.
It is permissible to reassign new values to these identifiers in the body of the procedure, but such assignments do not
affect the parameters in the call since the call is a call by value. If there are no arguments, then the parentheses sur-
rounding the argument list may be omitted, or a null list may be retained.

The declaration section, if it is present, contains var, const, and statements in the same format as that used in
the program declaration section. The initialization of local variables to om, whether declared by var (without ini-
tialization) or implicitly declared, occurs on each entry to the procedure.

Page 23

The SETL2 Programming Language A Gentle Introduction

when 2,4,7 => print(i+1);
when 0,6,9 => null; -- do nothing in these cases
otherwise => print("no good");
end case;

15. Program Form

SETL2 is a block-structured language. Thus the main program can contain procedures, which in turn can
contain procedures, which in turn can contain nested procedures, etc. Variables and objects at one level are local to
the unit in which they appear, and are visible in nested lower levels only if:

(1) The variables have been passed as procedure parameters; or

(2) The variables or objects are declared as var’s or const’s or in procedure definitions, and have not been hid-
den by subsequent declarations at lower levels.

Accordingly, each level contains the program or procedure name, the declarations, the main body, and the
subprocedures. Within any program or procedure, the code may make use of objects declared within that unit
including procedures, objects that are implicitly declared (not all variables must be declared), objects that are
declared in higher levels including procedures that are defined in higher levels, (providing the names of the objects
in higher levels are not hidden by objects with the same name in intervening levels), procedures imported from use
packages, and builtin procedures.

A complete program in SETL2 has the form:

program name;
(use section)
(constant, variable and selector declarations)
...
(main program block)
...
(procedure definitions)
...
end name;

The form of a procedure, such as a procedure in the procedure definitions section, is similar:

procedure name(param1,param2,...);
...
(constant, variable and selector declarations)
...
(main procedure block)
...
(subprocedure definitions)
...
end name;

15.1. Use section

A package is a collection of variables, constants, selectors, and procedures which may be compiled separately
and imported into programs and other packages, and has a similar structure to a program unit, as discussed in Sec-
tion 16 below. A program unit may make use of objects in a package, just as though the objects (variables, con-
stants, selectors, and procedures) were defined within the program, by means of the use declaration:

use package_name;

A use statement may contain multiple package names, separated by commas:

use package_name1, package_2, package_3;

15.2. Constant, variable, and selector declarations

Constants and variables may be declared in order to be visible in procedures nested in levels below. Together
with selector declarations, the declarations take the form:

Page 22

The SETL2 Programming Language A Gentle Introduction

Real values are converted either in fixed point format or exponent notation, depending on the range. The number of
digits is chosen to be appropriate to the accuracy with which real values are stored.

String

The handling of strings depends on whether they appear directly in the print list, or as elements of tuples or maps. If
they appear in the print list, they are printed literally, without surrounding quotes, and without any special treatment
of internal quotes. Strings which appear as elements of tuples or sets are treated in a different manner. If the string
values are of the form of identifiers (starting with a letter and containing only letters, digits and the underline), then
the value is printed literally. All other string values appearing as elements of sets or tuples are printed with sur-
rounding quotes, and any internal quotes are printed as two successive quotes.

Boolean

The boolean values true and false are printed as TRUE and FALSE respectively.

Om (undefined)

An undefined value is printed as ‘<om>’.

Tuples

Tuple values are output as a series of values separated by single blanks and surrounded by tuple brackets [], or, in
implementations which do not have these characters, simple parentheses. The values within the tuple are converted
individually, strings being output with surrounding quotes unless they have the form of identifiers.

Sets

Sets are output in the same manner as tuples except that the list of values is surrounded by set brackets { }.

From this description, it can be seen that the format used is essentially exactly compatible with the input for-
mat accepted by read with the exception that strings appearing directly in the print list are printed without quotes.
This discrepancy allows the convenient output of titling information as in:

print("Value of", a, " +", b, " =", a+b);

Each new call to print causes a new line to be started. Blanks are inserted to separate consecutive values, and if the
value to be printed does not fit one a single line, line returns are inserted in an attempt to make the output as read-
able as possible. Calling print with a null argument list generates a blank line:

print(); -- Print blank line

12. Assert statement

The assert statement has the form:

assert test;

where test is any expression that evaluates to a boolean value. Depending on a command-line option at run-time,
the assert statement may cause the program to stop if the test does not evaluate to true.

13. Stop Statement

The stop statement:

stop;

may be executed at any point in the program and causes immediate termination of execution. Execution termination
can also result simply from executing the last statement of the main program block.

14. Null Statement

The null statement:

null;

has no effect and thus acts as a no-operation statement. It is sometimes useful in connection with conditional state-
ments in the case where no actions are to be performed under some conditions, for example in:

case i
when 1,3,5 => print(i);

Page 21

The SETL2 Programming Language A Gentle Introduction

reread from the file.

11.3. Command line

Data can be obtained from the command line by using the reserved word command_line, which is a tuple all of
whose elements are strings obtained from parameters that follow the program name on the SETL2 execution line.
Thus command_line(1) is a string giving the first parameter, command_line(2) is the second string, etc. Command
line parameters frequently make use of the unstr function:

v1 := unstr(command_line(1));

Then when the execution line ‘stlx program 1.0’ is given (see Section 17), the value of v1 will be set to the real
value 1.0.

11.4. Format

The data that is read or written by I/O procedures other than binary I/O procedures will be formatted, using simple
and natural formatting conventions. For example, the read procedure is used to read values from data lines from the
standard input source in stream mode:

read(lhs1,lhs2,...);

This procedure call reads successive values separated by blanks, commas, tabs, or newlines. Data values are
entered in the following form:

g Integers are entered as strings of digits preceded by an optional sign.

g Reals are entered in the same format as real denotations except that an optional preceding sign is permitted.

g Strings can be entered in the same format as string constants in SETL, including the surrounding quotes. Newlines
must be entered in the form ‘\n’, and double quotes may be entered as ‘ In addition, strings which have the form of
SETL identifiers (i.e. start with a letter and contain only letters, digits and the underline character, and are not
reserved words) may be entered without surrounding quote marks.

g ‘‘Om’’ or ‘‘om’’ in the input stream causes the corresponding value to be set to undefined (om).

g The values true and false are entered as TRUE and FALSE (or true and false, either upper or lower case may be
used).

g Set values are input using { } brackets. The list of values in the set are in the format described in this section, and
may be separated either by blanks or by commas.

g Tuple values are input in a similar manner using [] brackets.

The arguments used in the call to read are any valid assignment left hand sides, and the effect of the read call
is to input the appropriate number of items from successive input lines (as required) and make the assignments in
sequence. If an end-of-file is read, the remaining variables are set to om. The boolean function eof() may be used
as a test following a read call. This test succeeds if the last read attempted to read past the end of file, and fails if
the end of file was not encountered.

The get function may be used to read input lines one line at a time as strings. This allows string data to be
entered without surrounding quote marks, and the program determines the required format of the input. Thus

get(s1,s2);

will cause the next two input lines to be read from the standard input file and assigned as string values respectively
to s1 and s2. Eof is set as described above to indicate whether or not the call attempted to read past the end of file,
although the strings for the lines not read will be empty strings, rather than being set to om.

Printed output is generated with the print function, which gives a list of items to be printed in stream mode:

print(expression,expression, ... expression);

Each expression is evaluated and printed in a manner appropriate to its datatype as follows:

Integer

The integer value is converted to a string of decimal digits of appropriate length with no leading zeroes (except in
the case of zero itself). A preceding minus sign is used if the value is negative (but positive values do not generate a
plus sign).

Real

Page 20

The SETL2 Programming Language A Gentle Introduction

11.1. I/O Procedures

There are three distinct types of input/output in SETL2: text, binary, and string. In addition, text I/O can util-
ize procedures which assume that I/O takes place using the standard input and standard output.

Text Input/Output
Text input/output is intended for direct input of human prepared input, and output of human readable printout.
This type of input/output is oriented to transmission of individual values in string form. Most values will be
written out in a form that they can be read back in; however, atoms and procedures can not be read back in,
and the string representations for atoms and procedures will only identify the type of the variable and a unique
number associated with the variable. Further, the associated number need not be consistent from one execu-
tion of the program to the next. The available procedures for text I/O are:

print(v1,v2, ...); -- For printing values to the standard output
read(v1,v2, ...); -- For reading values from the standard input
get(v1,v2, ...); -- For reading lines from the standard input as strings
printa(handle,v1,v2, ...); -- For printing values to a file -

-- handle must have been openned for text-out.
reada(handle,v1,v2, ...); -- For reading values from a file -

-- handle must have been openned for text-in
geta(handle,v1,v2, ...); -- For reading lines from a file as strings -

-- handle must have been openned for text-in
eof() -- Returns true if an eof has just been read.

Binary Input/Output
Binary input/output deals with SETL2 values of any type and transmits then in a special efficient internal
form. Binary output is only used to output values which are to be read into either the same SETL2 program,
or some other SETL2 program, using binary input statements. However, atoms and procedure types that are
written out to a binary file will only have meaning within that execution of the program — another program or
another execution of the same program might assign a different representation to these variables. There are
only two procedures:

putb(handle,v1,v2, ...); -- For writing values in binary form to a file
getb(handle,v1,v2, ...); -- For reading values in binary form from a file

In both cases, the variable handle must be associated with a file, and be openned for binary I/O (see ‘‘Open-
ning files’’ below).

String Input/Output
String input/output reads and writes values to internally represented strings. An input operation obtains a
record as a string, and an output operation outputs a string as a single record. Record input/output is espe-
cially useful for communication with programs written in languages other than SETL2, and is also used to
read directly prepared input if such input is more naturally treated as strings, rather than as individual items as
in the text case. That is, text I/O might be used to read lines of text, converting them into strings, and then
string operations and string I/O can be used to extract values. There are about two and a half procedures:

reads(str, v1,v2, ...) -- Reads values from string str
unstr(str) -- Returns value of string str
str := str(v); -- Converts a single value into a string

Reads reads multiple values from a string, whereas unstr assumes that the string is a single object. The pro-
cedure str produces the string that would be printed by print if it were used to print a single value to the stan-
dard output. There is also a char function to convert an integer into a single-character string, using the ascii
conversion code.

11.2. Openning files

File I/O, as described above, requires that a file be openned. There are two procedures, open and close. The
are described by:

handle := open(filename,mode); -- Opens file filename
close(handle); -- Closes file associated with handle

In both cases, the handle is a variable of type atom that becomes associated with the file as a result of the open pro-
cedure. The variable mode is a string from among the following choices: "text-in", "text-out", "binary-in", and
"binary-out". Note that a file openned for output must be closed and reopenned for input before values can be

Page 19

The SETL2 Programming Language A Gentle Introduction

In the case of the forall test, the loop is terminated as soon as the test fails, leaving the iteration variables set
to the values which caused the failure. If the test succeeds for all loops, then the iteration variables are set to om
and the forall succeeds.

The following are some examples of the use of these quantified tests:

s := {1,2,10,20};
t := [1,2,10,20];

if exists x in s | x > 3
then ... -- will be executed with x = 20 or 10
else ... -- will not be executed

end;

if exists x in t | x > 3
then ... -- will be executed with x = 10
else ... -- will not be executed

end;

if forall x in a | x < 30
then ... -- will be executed with x = om
else ... -- will not be executed

end;

if exists x in t | x > 30
then ... -- will not be executed
else ... -- will be executed with x = om

end;

if forall x in t | x < 10
then ... -- will not be executed
else ... -- will be executed with x = 10

end;

10.5. Compound Operators

Another specialized form of loop in SETL2 is the compound operator. A compound operator can be formed
from any binary operator by appending a slash / to the name of the operator. Such a compound operator can be used
in one of two expression forms:

bop/ exprs
expre bop/ exprs

The effect is to apply the binary operator bop to the sequence of element values e1,e2... in exprs, which must be a
set or tuple, as follows:

bop/ exprs means e1 bop e2 bop e3 ...
expre bop/ exprs means expre bop e1 bop e2 ...

If the compound operator form is used with a null set or null tuple, then the result is expre in the second form and
om in the first form where expre is omitted. Thus expre typically functions as an identity element in the second
form. The following examples show how the compound operator forms can be used:

+/t -- sum of values in tuple
0+/t -- same, but 0 rather than om for []
*/ [a in s | 3 in a]
" "+/t -- builds string from tuple of characters

11. Input/Output

Page 18

The SETL2 Programming Language A Gentle Introduction

statement1; ... ;
exit expression;
statements; ... ;
end loop;

The exit statement will most likely contained in a conditional branch in the loop, since it is not likely to be executed
on every iteration. The value of x will become the value of expression upon execution of the exit statement. As a
shorthand, alternate forms of the exit statement are:

exit when test;
exit expression when test;

which are respectively the same as:

if test then exit;
if test then exit expression;

If an exit statement is never executed within a loop, then the value of the loop expression is om.

A loop expression may also be used with while loops and until loops: wherever an exit statement is valid.
Note especially that the value of the bound variable (s in the above example) is undefined upon exiting from the
loop. Only the expression evaluated in the exit statement is carried from the loop.

10.3. Set & Tuple Formers

So far, we have formed sets by enumerating the elements. The set former is a special form of a loop which
computes a set value with an iteration. The form is:

{expression : iterator}

The iterator has exactly the same form as a loop iterator, and can include a conditional test. The effect is to iterate
the calculation of the expression, and build a set from the values. The most frequently used form involves a set or
numeric iterator as shown by the following examples:

{n : n in {1..100}} -- integers from 1 to 100
{[x**2,x] : x in {1..5} -- square root map
{a : a in y | a>5} -- elements > 5

The following abbreviation is permitted, allowing expression to be elided where it corresponds exactly to the loop
variable of an iterator provided that the iterator contains a ‘|’ (conditional) clause:

{a in expr | c} -- {a : a in expr | c}
{a in [x,y..z] | c} -- {a : a in [x,y..z] | c}

If two or more iterations produce the same value in a set former, then only one copy of the value is placed in
the set. If the iterator terminates after zero iterations, i.e. expression is never calculated, then the result is a null set.
An attempt to place om into a set is ignored.

Tuple formers are identical in form, but written with tuple brackets, rather than set brackets. For a tuple
former, the successive values, which may include duplicated values, are placed into the tuple in sequence:

[0 : i in [1..100]] -- tuple of length 100, all 0
[x in s | x < 0] -- tuple of negative elements of s

10.4. Quantified Tests

Two special forms, called quantified tests, can be used in contexts requiring a test, or to generate one of the
two values TRUE or FALSE in other contexts:

exists iterator | test
forall iterator | test

The exists test executes an implied loop specified by the iterator, which has the same form as a loop iterator without
a conditional test (which instead is required as the quanifier test). On each loop, the test after the ‘|’ is evaluated. If
the test succeeds, then the loop is immediately terminated, leaving the loop variable set to the value which caused
the test to succeed, and the exists test itself succeeds. If the specified test fails for all iterations of the loop, then the
loop is terminated, setting the iteration variable to om, and the exists test fails.

Page 17

The SETL2 Programming Language A Gentle Introduction

for y=f{x} loop ...

is allowed, and iterates through all domain elements of f, successively setting the domain element to x, and binding
to y the set of all corresponding range elements paired with x.

Iterations through a sequence of integers (similar to the do or for loops of other languages) may be con-
veniently specified using the special form of tuple constructor for constructing tuples of integers:

for i in [1..100] loop
(statements executed 100 times with i=1,2...)

end loop;

An interesting possibility in SETL2 is to use a set former for such loops:

loop for i in {1..100} do
(statements executed 100 times)

end loop;

This loop has a similar effect to the one using a tuple former except that there is no implication as to the order in
which the 100 possible values of i are selected. Good SETL2 style suggests using the set former except in cases
where the order is significant, thus avoiding unnecessary overspecification.

The iterator may include a test, which selects only certain values meeting some condition to participate in the
iteration:

for x in s | x > 5 loop ...
for i in [1,2..10] | f(i) > 0 loop ...

The ‘|’ (vertical bar) symbol is read ‘‘such that.’’ The effect is to skip any values not meeting the test. For exam-
ple, the following loop executes 5 times with even values of i:

for i in {1,2..10} | even(i) loop end loop; The bound variables can be any valid left hand side, and in
the case of tuples, can contain dashes, as in [x,-,y].

Three other loop forms which can be written are:

while test loop -- loop while test succeeds
...

end loop;

until test loop -- loop until test fails
...

end loop;

loop -- indefinite loop
...

end loop;

The first of these forms, the while loop, iterates the body of the loop until the specified condition is FALSE. The
test is performed at the start of the loop, so that it is possible to skip the loop execution entirely if the test condition
is FALSE on initial entry to the loop.

The second form, the until loop, iterates the body of the loop until the specified condition is TRUE. The test is per-
formed at the end of the loop, so the body of the loop is executed at least once, even if the condition is TRUE the
first time.

The third form is an indefinite loop. The loop will continue to execute until it is terminated by executing a stop or
exit statement.

10.2. Loop expressions

The exit statement may optionally contain an expression:

exit expression;

In this way, an entire loop may be used as a single expression, whose value is determined by the expression as
evaluated when the exit statement is executed:

x := for s in set loop

Page 16

The SETL2 Programming Language A Gentle Introduction

The operator not yields TRUE if its operand is FALSE and FALSE if its operand is TRUE.

If an expression other than a test constructed with a test operator appears in a test context, then the value must
be either TRUE (in which case the test succeeds) or FALSE (in which case the test fails). Any other value used in a
test context causes an error.

10. Loops

10.1. Control loops

A loop is used where a block of statements is to be executed repeatedly until some specified condition is met,
or for some specified number of times. One form of a loop in SETL2 is:

for iterator loop
block

end loop;

This construction causes the block of statements to be executed repeatedly under control of the iterator. Within the
body of the loop, any statements can be used, as well as two special statements:

continue;
exit;

Execution of the continue statement causes the rest of the statements in the body of the loop to be skipped, and exe-
cution continues with the next iteration (if there is one). Execution of the exit statement causes the current (inner-
most) loop to terminate.

The iterator has one of several forms. Three forms are:

x in set
x in tuple
x in string

In these forms, set, tuple, and string are expressions which yield values of type set, tuple, and string respecively, and
x is the iteration variable, which is set to successive values from the set or tuple, or successive single-character
strings in the third case. In the case of a tuple, the number of iterations is equal to the index of the last defined ele-
ment, and the element values are selected in sequence. In the set case, the number of iterations is equal to the
number of elements in the set and the order in which the elements are taken is arbitrary (in the same sense that from
yields an arbitrary element). In all cases, the bound variable (x in our examples) is local to the loop, and the set,
tuple, or string is evaluated on entry to the loop, and subsequent changes to the object does not affect the number of
iterations nor their values.

for x in s loop
print(x); -- prints elements of s

end loop;

for x in [1,10,50] loop
...

end loop x;

The iteration variable x can actually be any valid assignment left hand side. In the case of the set iterator, this pro-
vides a convenient notation for iterating through a map:

for [number,root] in sqrt loop ...

If the set is null, then the loop body is not executed at all, and control skips immediately past the end.

An alternative iterator form is available, and can also be used for iterating through a map, illustrated by

for root=sqrt(number) loop ...

This is identical to the for loop above. However, this form can also be used to iterate through a tuple or string,
assigning both the index and the element, as in

for y=t(i) loop -- iterate through tuple t, assigning i and y
for c=s(i) loop -- iterate through string s, assigning i and character c

Note that a character is a string that has length 1. For multivalued maps, the construct

Page 15

The SETL2 Programming Language A Gentle Introduction

incs Left operand includes right as a subset (‘>= is equivalent)

Boolean Procedures

even(i) Operand is even
odd(i) Operand is odd
ishinteger(v) Operand is integer type
ishreal(v) Operand is real type
ishtuple(v) Operand is tuple type
ishset(v) Operand is set type
ishmap(v) Operand is map (set of pairs)
ishstring(v) Operand is string
ishatom(v) Operand is atom
ishboolean(v) Operand is boolean
ishprocedure(v) Operand is procedure

The equality and inequality comparisons may be used to compare values of any type for exact identity, including
testing for equality with om. Two tuples are equal if each pair of elements in corresponding positions are equal.
Two sets are equal if they have the same number of elements, and every element of the left operand is contained in
the right operand.

The remaining comparisons apply only to numeric values, strings, and sets. In the string case, the ordering is
like a telephone directory (e.g. "ab" is less than "aba"). The order among characters in the set depends on the imple-
mentation.

The membership tests in and notin can be used when the right argument is a tuple or set, and test for exact
equality between the left operand and one of the elements of the right operand. They are also defined when both
operands are strings, in which case they test whether the left side is a substring of the right side.

The operators incs and subset can only be used if both operands are sets, and can instead be denoted by <=
and >= respectively. The operators are inverses of one another, i.e. a subset b is equivalent to b incs a. Likewise, <
and > used with set operands test for proper subset and proper superset.

The operators odd and even can only be applied to an integer operand and test for divisibility by two.

The ishtype operators test to see if the operand is of the specified type. Note that even though there is no type
map in SETL2 (all maps are sets), the ishmap operator is available, and tests whether the operand has the form of a
map (i.e. is a set all of whose elements are pairs).

Test operators are not restricted to appearing in a context where a test is expected. If they are used in other
situations (e.g. as the right hand side of an assignment), then one of two special values is yielded:

true if the test succeeds
false if the test fails

These values are of type boolean and are distinct from any other values. The following operators may be applied to
boolean values:

Binary Boolean Operators

and Logical and of two boolean values
or Logical inclusive or

Unary Boolean Operators

not Logical negation
type Yields the string "BOOLEAN"

The operator and yields TRUE if both its operands are TRUE and FALSE otherwise. Or yields TRUE if either or
both of its operands are TRUE and FALSE otherwise. And does not evaluate its right operand if the left operand is
FALSE and similarly or does not evaluate its right operand if the left operand is TRUE. This means that a com-
pound test of the following type is legal in SETL2:

if a = 0 or b / a > 3 then ...

since the division definitely will not be performed if the divisor a is zero.

Page 14

The SETL2 Programming Language A Gentle Introduction

end case;

This statement causes at most one of the specified blocks (sequences of statements) to be executed. The block
which is executed is one whose corresponding test succeeds. The otherwise block, if present, is executed if all the
tests fail. If more than one test succeeds, then only one of the blocks is executed, the choice of which block to exe-
cute being made in an arbitrary manner (in the same sense that the arb operator selects an arbitrary element from a
set).

A very common use of the case statement involves tests of the form t=x where t is a quantity to be tested, and
the various values of x are attached to statements which are to be executed if t has the specified value. A special
abbreviated form of the case statement is available for this purpose, which has the form:

case expression
when expr1 => block1
when expr2 => block2
.
.
otherwise => blocke
end case;

In this case, the expression is evaluated, and then compared with each of the other expressions. The block whose
associated expression matches expression is then executed. If no value matches then the otherwise block is exe-
cuted. Each expression in a when-clause can be replaced with a comma-separated list of expressions, as in:

case expression
when expr11,expr12,... => block1
when expr21,expr22,... => block2
.
.
otherwise => blocke
end case;

In this case, the expression matches if any one of the comma-separated list of expressions matches.

In either of the case forms, the otherwise and its associated block may be omitted. If none of the branches of
a else with no else block match, then execution continues with the next statement without executing any of the
blocks.

9.4. Case expressions

There is also a case expression, which is the same as a case statement, except that the blocks are replaced by
expressions, one expression per block. Note that the statements in a block must all be terminated with semicolons,
whereas expressions are not terminated by semicolons. In a case expression, exactly one of the expressions is
evaluated, according to which block would otherwise be executed. The value of the case expression is the same as
this expression.

9.5. Boolean Values & Operators

The tests used in if and case statements and other similar constructions are usually constructed using one of
the test operators. The following list indicates the condition under which the test performed by the operator
succeeds:

Binary Test Operators

= Types and values match
/= Types or values do not match
> Left operand greater than right
>= Left operand greater than or equal to right
< Left operand less than right
<= Left operand less than or equal to right
in Left operand is an element or sbstring of right
notin Left operand is not an element or sbstring of right
subset Left operand is a subset of right (‘<=’ is equivalent)

Page 13

The SETL2 Programming Language A Gentle Introduction

x.func := abs -- Initializes func component to the absolute value proc
x.q with:= −5; -- Appends an element to the q component of x
s := x.func(x.q(x.int)) -- Applies the procedure in the func component of

-- x to the component of x’s tuple in position x.int

Selectors can also be used to extract elements from strings, and also to specify values for procedures. That is,
if the selector declaration sel first(1) is given, then func.first stands for func(1), where func is a procedure with an
integer parameter.

9. Conditional Statements

Conditional statements allow the flow of control to be modified by the use of tests. The if statement is used
for sequential conditional control flow, while the case statement should be used when the order of conditions
doesn’t matter.

9.1. If Statements

The if statement allows one of two paths of control to be selected on the basis of a test:

if test then
statement; statement;
...
statement;

elseif testx then
statement; statement;
...

else
statement;
...
statement;

end if;

The test either succeeds or fails. If it succeeds, then the sequence of statements after the then (called a block) is
executed. If the test fails, and if there is a following elseif block, then the test for the next block is evaluated, and if
true, then that block is executed, as if the elseif were a nested if statement. If the test is false, then succeeding elseif
tests are evaluated. At most one block of statements is executed — as soon as a test evaluates true, and the
corresponding block is executed, execution passes to the end if statement. The block following the else is executed
if no other block is executed. Note that since every statement is terminated by a semicolon in SETL2, there must be
a semicolon following the last statement of each block. Since the entire if construction is also considered to be a
statement, it is also terminated by a semicolon.

The else and its following block are optional and may be omitted. If they are omitted and the test fails, then control
passes out of the if which then has no effect.

9.2. If expressions

The blocks of statements in an if statement may be replaced by an expression — one expression per block.
The expression is not terminated by a semicolon, and is evaluated if the test for the corresponding part of the if
statement holds true. The result is an if-expression, whose value is the value of the expression that is evaluated.
Thus

if a > 0 then 1 elseif a < 0 then −1 else 0 end if
is an expression which evaluates to 1, −1, or 0, according to whether a is positive, negative, or neither.

9.3. Case Statement

Another form of conditional branch is provided by the case statement, which has as one possible form:

case
when test1 => block1
when test2 => block2
.
.
otherwise => blocke

Page 12

The SETL2 Programming Language A Gentle Introduction

shorthand provides one method for creating multidimensional arrays. For example,

c := {[[0,0],"a"],[[0,1],"b"],[[1,0],"c"],[[1,1],"d"]];
x := c(0,1); -- x = "b"

This is more attractive and more general than tuples of tuples, which is an alternative:

a := [["a","b"], ["c","d"]]; -- Now indexing begins at 1
x := a(1)(2); -- x = "b"

Combining maps and atoms provides a way of dealing with pointers and dynamic data structures. For exam-
ple, a package dealing with binary trees might use the representation T = [root, left, right, data] to represent a binary
tree. To initialize a tree, we execute

procedure make_null_tree(rw T);
T := [newat(),{ },{ },{ }]; -- [root,left,right,data]
return T(1); -- Returns root of empty tree T

end make_null_tree;

To insert data into a node x in a tree, we would simply write

data(x) := datum;

where data is the data-map in the tree (T(4)), and to create a left child of a node x in a tree T, we would execute

procedure make_left_child(rw T, x); -- returns atom at the new left child
T(2)(x) := newat(); -- T(2) is the map "left"
return T(2)(x);
end make_left_child;

Similarly, make_right_child and other procedures could be provided in a package for dealing with binary trees. We
should also note that the use of selectors (next section) can be useful in dealing with tree structures of the form indi-
cated here. We also note that the pair of maps left(x) and right(x) could be combined into a single map children(x)
which returns a tuple [a,b] giving the nodes for the left and right child respectively. This latter representation sug-
gests a method for generalization to ordinary trees. Also, the use of selectors (described below) can make the refer-
ences to components of the tree structure, such as T(2), less cryptic.

8. Aggregate types

We have discussed the following datatypes, and operations on those types:

Integers Procedures
Reals Atoms
Strings Tuples
Booleans Sets

In addition, we’ve seen that a map is a special kind of set. What if we want another kind of type, such as an aggre-
gate type which contains, say, a tuple, an integer, and a real? In many languages, new types can be built out of
primitive types using a ‘‘record’’ structure. In SETL2, there is no need for a special syntax. Instead, aggregate
types can be embedded in a tuple. Thus a tuple might contain three objects, as in [tup, i, f]. In this example, the
first object, tup, is a tuple, the second object is an integer, and the third object is a procedure. Of course, it is up to
the programmer to keep straight what type of object is stored where, since there is little type checking that takes
place during execution. To help the programmer somewhat, there is a facility called selectors available for extract-
ing elements from tuples.

A selector is a declaration (that occurs before an executible statements) that gives names to components of
tuples. For example, a selector declaration might appear as:

sel q(1), int(2), func(3);

Thereafter, the notation x.q, x.int, and x.func stands for x(1), x(2), and x(3) respectively. Providing x is a tuple, then
x.q extracts the first element of the tuple, which in our example, is supposed to be of type tuple. This construct
allows the programmer to forget that the tuple component, which he has named q, always occurs in the first position.
Note that the notation can be used on both the left and right hand sides of assignments.

x.q := []; -- Initializes q component to []
x.int := 1; -- Initializes int component to 1

Page 11

The SETL2 Programming Language A Gentle Introduction

sqroot(1) := 1;
sqroot(4) := 2;
sqroot(9) := 3;
sqroot(16) := 4;
sqroot(25) := 5;

Reference to a non-existent element of a map (e.g. sqroot(19) in the example given) yields om.

Maps are a general associative device, and represent one of the fundamental data structuring devices in
SETL2. For example, a structure represented as a one dimensional vector in FORTRAN is probably better treated
as a map from integers in SETL2. Actually it is usually possible to represent data in a more direct way than integer
indexing. For example, given a class of students, and associated test scores, rather than use two vectors based on
integer indices, one containing the names and the other containing the scores, it is more convenient to represent this
data as a single map from student names onto integer scores.

It is permissible to have duplicate elements in the domain, i.e. more than one pair with the same first element
value. However, if the above notation is used to try to access the corresponding range element, om is the result,
since there are multiple possibilities. However, if we use set brackets { } instead of parentheses to access the ele-
ments, the result of such a reference is to yield the set of all range values corresponding to the given domain value:

a := {[1,2], [1,3], [2,4], [5,5], [2,7], [2,8]};
c := a(1); -- c = om
d := a{1}; -- d = {2,3}
e := a{5}; -- e = {7}
f := a(5); -- f = 5
g := a{7}; -- g = { }

In general, a(x) references the range element paired with a domain element x, and om if there is more than one such
range element, whereas a{x} returns the set of all range elements that are paired with domain element x, which will
be empty if x is not in the domain of a. The reference to the set of range elements is called a multi-valued reference.
This form can also be used on the left side of an assignment:

a := {[1,0], [1,2], [1,5], [2,5], [2,7]};
a{1} := {5,7}; -- a = {[1,5], [1,7], [2,5], [2,7]}

Since maps are just a special case of sets, all the operators which apply to sets (such as + for set union) can also be
applied to maps. In addition the following special operators are provided for operating on maps:

Binary Map Operators

lessf Removes pairs for one domain value

Unary Map Operators

domain Yields domain of a map
range Yields range of a map

Domain and range return the set of values of the first element or second element respectively of all pairs. The
binary operator lessf creates a new map in which all pairs starting with a particular value are removed, and is most
often used in its assigning form. All three operators cause an error if they are applied to a set which is not a map,
i.e. a set which contains at least one element which is not a pair. The effect of lessf can also be obtained by an
explicit assignment as shown in the following examples:

a := {[1,2], [1,3], [2,2], [2,4], [3,6], [3,7]};
b := domain a; -- b = {1,2,3}
c := range a; -- c = {2,3,4,6,7}
a lessf:= 1; -- removes [1,2] and [1,3]
a(2) := om; -- removes [2,2] and [2,4]
a{3} := { }; -- removes [3,6] and [3,7]

A special syntax is permitted when the domain elements of a map are all themselves tuples. For example, if a
map takes elements of R3 into R, then the map is a set of tuples, with each tuple having form [[x,y,z], r]. In gen-
eral, the notation map(x,y,z) is a shorthand for map([x,y,z]), and map{x,y,z} is a shorthand for map{[x,y,z]}. This

Page 10

The SETL2 Programming Language A Gentle Introduction

s less:= 0; -- s = {6,2,8}

Arb selects an element from the set in a non-deterministic manner. In other words, there is no way to predict which
element will be selected. It may even be the case that a different value will be selected in different runs of the pro-
gram, even if no changes are made to the program or data. Arb is thus used precisely in those cases where it does
not matter which element is picked. The operator from picks an arbitrary element from its right operand in a similar
manner, but also assigns the set with this element removed as the new value of the right operand, the picked value
being assigned to the left operand. Both arb and from yield om if applied to a null set, and in the case of from, the
set value is unchanged.

a := {1,5};
b := arb a; -- b = 1 or 5
c from a; -- c = 1 (or 5!)

-- a = {5} (or {1})
d from a; -- d = 1 (if c was 5)

-- d = 5 (if c was 1)
-- a = { }

e from a; -- e = om, a = { }

The null set is the set which contains no elements. It is written as { }, i.e. a set with zero elements listed. The #
operator applied to the null set yields zero. A typical technique is to build a set value by first assigning { } to a vari-
able, and then using with:= to add the desired elements to the set.

The unary operator pow s constructs the power set of s, which will contain 2#s elements. This operation
should be used only for very small sets s; otherwise, execution time will be long and memory requirements large.
The operator npow is used in conjunction with an integer argument and a set argument; s npow n (or n npow s)
results in the set of all subsets of s that contain exactly n elements. Notice that arb and pow are operators, and not
procedures, so that the syntax pow s and pow(s) both give the power set of s.

As with tuples, an abbreviated form is permitted for constructing sets of integers:

{1..10} means {1,2,3,4,5,6,7,8,9,10}
{3,5..11} means {3,5,7,9,11}

The general form of this construction is exactly the same as that used in the tuple case:

{first,next .. last}

As with tuples, the second expression indicates the direction and step size, although backwards sequences are not
usually used in the set case, since the order of the elements is not meaningful in a set:

{1,2..10} same set as {10,9..1}

7. Maps

A map in SETL2 is a set all of whose elements are tuples of length 2 (called pairs). For example, the follow-
ing assigns a map value to the identifier sqroot:

sqroot := {[1,1], [4,2], [9,3], [16,4]};

If a set has this special form, its values may be accessed using map notation:

x := sqroot(9); -- x = 3

The actual meaning of such a map reference is to search the set for the pair whose first element matches the given
domain value (9 in this case), and then the second element of this pair is yielded as the range value. Map reference
notation can also be used on the left side of an assignment, the effect is to modify the value of the map appropri-
ately:

sqroot(25) := 5; -- adds the pair [25,5] to sqroot

The exact meaning of this assignment is to compute a new map value by first removing all pairs starting with the
given domain value (there were none to remove in the above example), and then to add the specified pair. However,
sqroot must either already be a map, or must be initialized as an empty set { }. Often maps are constructed by a
sequence of assignment statements. For example, the map sqroot could have been constructed by the sequence:

sqroot := { };

Page 9

The SETL2 Programming Language A Gentle Introduction

q := [];
q with:= 5; -- q = [5]
q with:= 7; -- q = [5,7]
e fromb q; -- e = 5, q = [7]
e fromb q; -- e = 7, q = []
e fromb q; -- e = om, q = [] (queue empty)

In a similar manner, the operators with:= and frome used in conjunction allow a tuple to be used as a stack, with:=
being the push and frome being the pop:

s := [];
s with:= 5; -- s = [5]
s with:= 7 -- s = [5,7]
e frome s; -- e = 7, s = [5]
e frome s; -- e = 5, s = []
e frome s; -- e = om, s = [] (stack empty)

6. Sets

Finally we get to the main datatype in SETL. A set is like a tuple, except that it is unordered, and a given
value can appear only once (i.e. an attempt to place a value into a set more than once is ignored). Set values are
written using a similar notation to tuples, except that the set brackets are used: { and }.

s := {1,2,"abc"};
t := {2,1,"abc"};
u := {2,1,"abc",2}; -- s = t = u

The following set of operators can be applied to set operands:

Binary Set Operators

+ Set union
− Set difference
* Set intersection
with Add one element to a set
less Remove an element from a set
from Remove an element and assign remainder
mod Symmetric difference (exclusive or) of sets
npow Set of subsets with fixed number of elements

Unary Set Operator

Number of elements as integer
arb Select arbitrary element
pow Power set of a set (set of all subsets)

The operators + * and − applied to sets perform standard set operations of union, intersection and difference as
shown by the following examples:

a := {1,2,3,4};
b := {3,4,5,6};
c := a + b; -- c = {1,2,3,4,5,6}
c := a * b; -- c = {3,4}
c := a − b; -- c = {1,2}

The operator mod forms the symmetric difference, so that s mod t is the same as the set (s − t) + (t − s). The
operators with and less add or remove an element from a set and are most often used in their assigning forms. With
has no effect if the element is already present, and less has no effect if the element is not present:

s := {5,2,8};
a := s with 7; -- s = {5,2,8}, a = {5,2,7,8}
s with:= 6; -- s = {5,6,2,8}
s with:= 5; -- s = {5,6,2,8}
s less:= 5; -- s = {6,2,8}

Page 8

The SETL2 Programming Language A Gentle Introduction

A special notation is available for constructing tuples whose values consist of regular sequences of integers as
shown by the following examples:

[1..10] same as [1,2,3,4,5,6,7,8,9,10]
[1,3..12] same as [1,3,5,7,9,11]
[2..1] same as []
[9,8..1] same as [9,8,7,6,5,4,3,2,1]
[9,7..1] same as [9,7,5,3,1]

The general form of this abbreviation is:

[first,next .. last]

The expression first gives the first value generated in the sequence. The expression next implies both the direction
of the sequence (ascending or descending) and the step between successive elements. The expression last gives the
limit value (either the maximum for an ascending sequence, or the minimum for a descending sequence). The next
expression, together with its preceding comma, may be omitted for ascending sequences with a step of 1. As we
shall see in a later section, tuples of this type play an important role in constructing loops.

Tuples may appear on the left side of an assignment statement, providing that the right hand side is a tuple
value. The effect is to perform a sequence of assignments:

[a,b,c] := s; -- a = s(1), b = s(2), c = s(3)
[d,−,f] := s; -- d = s(1), f = s(3)
[e,f] := [2,4]; -- e = 2, f = 4
[a,b] := [b,a]; -- interchange a and b

All the components in the tuple on the left side must be valid assignment left sides, or, as shown in the second
example above, a minus sign may be used to indicate that the corresponding assignment is to be skipped.

One important point is that SETL2 treats tuples as values when it comes to assignments. Consider the follow-
ing sections of code:

abc := 12;
cde := abc;
abc := abc + 2; -- cde still = 12

abc := [1,2,3];
cde := abc;
abc(2) := 0; -- cde still = [1,2,3]

In SETL2 the two sequences have similar effects. If you expected cde to change in the second sequence, then study
it carefully. If not, then you have the correct idea already.

The operator with adds a single element at the end of a tuple and is most often used in its assigning form as
shown in the following examples:

a := [1,5,10];
b := a with 6; -- a = [1,5,10], b = [1,5,10,6]
a with:= 7; -- a = [1,5,10,7]

The binary operator fromb removes the first element of a tuple (i.e. the element at the beginning of the tuple) and
assigns it to the left operand. The right operand, which contained the original tuple operand is reassigned to contain
the remainder of the tuple after removing this element. fromb is most often used on its own as a statement form, but
it can also be used within an expression, in which case it yields the first element as its value (as well as performing
the two assignments). The binary operator frome is similar except that it removes the element from the end of the
tuple. If fromb or frome is applied to a null tuple value, then om is obtained and the tuple value is unchanged:

a := [11,26,37,17];
b fromb a; -- b = 11, a = [26,37,17]
c fromb a; -- c = 26, a = [37,17]
d fromb a; -- d = 17, a = [37]
e fromb a; -- e = 37, a = []
f fromb a; -- f = om, a = []

The operators with:= and fromb used in conjunction allow a tuple to be used as a queue, with:= being the queue
operation and fromb the dequeue operation:

Page 7

The SETL2 Programming Language A Gentle Introduction

t := [1, 9, "abc", [1, 5]];

As shown, the tuple can contain any values, even other tuple values, and may be of arbitrary length.

Individual elements of a tuple can be extracted by subscripting, and subscripting on the left side of an assign-
ment allows a specified element to be modified:

t := [1,9,"abc","def"];
x := t(3); -- x = "abc"
t(4) := 0; -- t = [1,9,"abc",0]

Note that ordinary parentheses are used for subscripting, not tuple brackets. If a non-existent element (e.g. t(7) in
the above case) is selected, then om is obtained as a result. It is perfectly valid to assign a value to a non-existent
element, and may result in increasing the length of the tuple:

t := [1,9,"abc",0];
t(5) := 5; -- t = [1,9,"abc",0,5]

If such an assignment creates "holes" in a tuple, the missing element values are set to undefined (i.e. to contain om).
There is no maximum size of a tuple, although the available memory will limit the size in practice. It is possible to
undefine a previously defined element by assigning om to it. This will either create a "hole" in the tuple value, or it
will decrease the length of the tuple in the case where the last element is undefined in this manner.

The following operators are used in conjunction with tuples:

Binary Tuple Operators

+ Tuple concatenation
t*i
i*t

Concatenates i copies (integer i) of the tuple t.

with Appends an element to a tuple
frome Extracts an element from the end of a tuple
fromb Extracts an element from the beginning of a tuple

Unary Tuple Operator

Index of highest defined element

The concatenation operator + joins two tuples end to end to yield a new tuple as shown by the following example:

a := [1,2,3];
b := [6,7];
c := a + b; -- c = [1,2,3,6,7]

The cardinality operator # gives the index of the highest defined element. This will be equal to the number of
defined elements in the case where the tuple contains no "holes". Use of the * operator requires that one of the
operands is an integer, in which case a new tuple is formed with repititions of the original tuple. The with, frome,
and fromb operators are discussed later on.

Subtuples can be extracted using a notation similar to that used in extracting a substring:

a := [1,2,3,4,5,6,7,8,9];
b := a(6..8); -- b = [6,7,8]
c := a(7..); -- c = [7,8,9]
d := a(8..11); -- d = [8,9]

These subtuple operations extend to use on the left side of assignments in the same manner as for substring assign-
ments:

t := [1,2,3,4,5,6];
t(2..5) := [7,10]; -- t = [1,7,10,6]
t(3..) := []; -- t = [1,7]

The nonstandard convention allowing negative indices also extends to tuples, so that t(−1) is the final element, and
t(−3..) extracts a subtuple of the final three elements. The null tuple (which contains no elements) is written as [],
i.e. a tuple with no elements. If the # operator is applied to a null tuple value, the result is zero. A typical technique
is to create tuple values by first assigning [] to a variable, then executing a series of assignments which define the
required element values, such as with the assignment operator with:=.

Page 6

The SETL2 Programming Language A Gentle Introduction

As a special nonstandard convention, slices with negative indices are also allowed, and extract elements from
the end of the string, so that abc(−1) is the last element, and abc(−3..) denotes the last three elements.

3. Booleans, atoms, and procedure types

We have seen examples of integers, reals, and string data types. There are three other simple types: booleans,
atoms and procedures. A boolean is a variable which has only two values, either true or false. Many tests and buil-
tin procedures return boolean variables, and expressions can be formed using standard boolean operators, which we
will discuss in Section 9.5. The literals true and false are valid boolean objects.

An atom is a type which is created only using the newat procedure:

v := newat();

Atoms are typically used as domain elements for maps (see Section 7), and cannot be combined in arithmetic
expressions.

Finally, any procedure, all of whose formal parameters are read-only (type rd), can be used as the value of a
procedure variable, and can be assigned to variables, passed as parameters, used as elements in sets, maps, and
tuples, and can also be executed. For example, the following bit of code assigns the builtin procedure cos to the
variable x, and then uses x to call the function on the real value 1.0:

x := cos;
c := x(1.0);

Procedure variables may also take on values representing user-defined procedures. A procedure may be defined
using a procedure definition, or by means of the lambda construction, illustrated by:

x := lambda(y);
pi := 3.1415926536;
y := 2.0*pi*y/360.; return cos(y);

end lamda;
c := x(90.0); -- c = 0.0

Procedure definitions are discussed in Section 15.3.

4. Errors & Omega

Improper operations, such as applying the / operator to string operands, normally causes termination of the
program with an appropriate error message.

In addition to this class of errors, there is a special undefined state called om (for omega). Identifiers which
have not been set to any particular value are in this undefined state, and may be thought of as containing the value
om, although strictly speaking, om is not a value (but rather the absence of any value).

If an identifier contains a value (other than om), it may be reset to an undefined state by an assignment of the
form:

a := om; -- a is now undefined

Any attempt to perform an operation on the undefined value causes an error, with two exceptions. The equality
operator may be used to test whether a given value is undefined or not, as in

if x = om then ...

and the special operator ? may be used in conjunction with om:

x := expr1 ? expr2;

which evaluates expr1, and assigns its value to x, unless expr1 evaluates to om, in which case x is assigned to the
evaluation of expression expr2.

5. Tuples

A tuple is an ordered sequence of zero or more values. Tuples in SETL2 are similar to one dimensional vec-
tors in other programming languages, but are more flexible.

A tuple may be created using the tuple brackets [and]. The following example assigns a four element tuple
to the variable associated with identifier t:

Page 5

The SETL2 Programming Language A Gentle Introduction

Integer Procedures

even(i) Test for even
odd(i) Test for odd
char(i) Character corresponding to ascii code
float(i) Converts string to real
type(i) Gives string "INTEGER"

Procedures for real variables

ceil(r) Ceiling
floor(r) Floor
fix(r) Truncates to corresponding integer
type(r) Gives string "REAL"
log,exp,cos Various mathematical functions
sin,tan,acos,asin,atan Other mathematical functions
atan2(r,s) Operator on 2 reals to give arc tangent

Overloaded procedures

abs(v) Absolute value, or character conversion
print(v) Print to standard out
str(v) String equivalent of the value
is_type(v) Boolean test on type of value

The str procedure yields a string representation of any SETL2 data type, as would be produced by a print state-
ment. Whenever abs has an argument that is a one-character string, then the result is the corresponding integer
value of that character.

Ceil takes to a real argument to give the smallest integer which is not less than the operand, and floor gives
the largest integer which is not greater than the operand. Fix converts a real to a corresponding integer value by
dropping the fractional part, if any.

a := ceil(3.7); -- a = 4
a := ceil(−3.7); -- a = −3
a := floor(3.7); -- a = 3
a := floor(−3.7); -- a = −4
a := fix(3.7); -- a = 3
a := fix(−3.7); -- a = −3

Strings may be sliced to extract substrings. The format is:

string(a..b)

The expressions a and b are integers which select the starting and ending character in the substring. For example:

abc := "the quick brown fox";
cde := abc(5..8); -- cde = "quic"

The following default slices are allowed:

abc(5) -- same as abc(5..5)
cde := abc(5); -- cde = "q"
abc(5..) -- means 5 to end of string
cde := abc(5..); -- cde = "quick brown fox"

These substring notations can also be used on the left side of an assignment statement. Note from the following
examples that such assignments can shorten or lengthen strings:

abc := "hello";
abc(3..4) := "xyz"; -- abc = "hexyzo"
abc(4..) := "m"; -- abc = "hexm"

Page 4

The SETL2 Programming Language A Gentle Introduction

/ Integer division, integer result
** Integer exponentiation
mod Integer remainder
max Integer maximum
min Integer minimum

Binary Real Operators

+ Real addition
− Real subtraction
* Real multiplication
/ Real division
** Real exponentiation
min Real minimum
max Real maximum

Binary String Operators

+ String concatenation

The meaning of an operator depends on the datatypes of the operands. For example, + means either integer addi-
tion, real addition, or string concatenation, depending on the operands. Arithmetic operators must be applied to
either real or integer operands. If an operation is to be performed on one integer and one real value (for example,
addition), then the float or fix procedure (or any of a number of other procedures) must be used as described later.
An exception to this rule occurs with exponentiation, which allows a real value to be raised to a non-negative
integer value. We thus have:

a := 3 + 4.0; -- INVALID!
b := float(3) + 4.0; -- b = 7.0
c := 3 + fix(4.0); -- c = 7

Some operators and other tokens in SETL2 are written in bold letters in this document. This means that they
are keywords, and are written in bold letters to distinguish them from identifiers. Any such names are reserved
words, in the sense that they may not be used as identifier names. A complete list of reserved words is given in The
SETL2 Programming Language. When the program is actually entered, the compiler ignores cases, so that both
reserved words and identifier names may be entered in upper case or lower case or even in a mixture of cases.

The string concatenation operator (+) joins two strings together:

a := "abc";
b := "cd";
c := a + b; -- c now contains "abccd"

A special set of operators, called assigning operators, not only yield a value, but also store the value into the
left operand, which must be appropriate for this purpose (e.g. an identifier). There is one such operator correspond-
ing to each binary operator. The name of an assigning operator is formed by appending the characters := to the
usual operator name. For example, +:= is the addition (or concatenation) assigning operator which may be used as
shown in the following example:

a := 3; -- a = 3
a +:= 4; -- a = 7
b := a +:= 1; -- a = 8, b = 8

As indicated by the last line above, assigning operators can be used within an expression, as well as standing alone
in a statement. Actually, the assignment operator itself is a special case of an assigning operator, and may also be
used within an expression:

a := 3 + b := 5 + 2; -- a = 10, b = 7

There are really only two unary arithmetic operators (+ and −), and the # unary operator (which returns the length
of a string), although there are many arithmetic functions and other built-in procedures. Here are some of them,
categorized by the type of the arguments. Thorughout the table, i stands for any integer or integer expression, r
stands for a real, and v can be any of several different types.

Page 3

The SETL2 Programming Language A Gentle Introduction

p := p + 1; -- move to next test value
end loop;

end printprimes;

This is not a particularly efficient program, and it is not even the easiest way of approaching the problem in SETL2,
but it deliberately only uses a small set of simple features. The -- acts as a comment delimiter, the compiler
ignores all text on a line which follows a double dash.

Now that we have seen one small program, we can study the features of the language in more detail.

2. Assignment Statements & Expressions involving integers, reals, and strings

As in most programming languages, a fundamental notion in SETL2 is that of assignment. The form of an
assignment statement in SETL2 is:

identifier := expression;

Statements are free form and may be entered anywhere on a line, or split over line boundaries (except that a single
token, such as an identifier, cannot be split over a line boundary). As indicated in the above example, every state-
ment is terminated by a semicolon. Blanks may be used freely to separate tokens, and at least one blank or a line
return must separate tokens in the case where one token ends with an alphanumeric (letter or digit), and the next one
begins with an alphanumeric.

In the assignment statement, the identifier name begins with a letter, and contains letters, digits or a special
break character (an underline character ‘_’), and is no longer than 256 characters. The case of letters is not
significant. Unlike some other languages, a given identifier is not associated with a particular datatype. Instead, the
type of the value in a variable associated with the identifier is determined by the last value assigned:

abc := 4; -- abc now contains an integer
abc := 4.5; -- abc now contains a real

The above lines contain comments which are introduced by the -- characters. All text following -- on a line is
ignored. Another way of putting this is that the -- acts as an end of line signal to the compiler. Lines beginning
with a -- are entirely ignored (except for being listed).

The datatypes we shall consider initially are integer, real and string types. Integer values are of unlimited
range (actually limited only by the available memory). Real values have some range and precision defined by the
implementation, and strings are arbitrary length sequences of characters (like most other languages, SETL2 does not
exactly define the set of available characters, which depends on the implementation).

Corresponding to these three datatypes are constant denotations or literal values, which may be used wherever the
corresponding value is required. The following are examples of valid constants:

123 -- integer
134134145767671 -- integer
3.1415926535 -- real
0.45E+13 -- real
"abc" -- string
"123" -- string
"end quote\"" -- string

The last example shows how a double quote can be included in a string by escaping the quote mark. The null string
which contains no characters is written as "". Other special characters within srings are the double backslash ‘\\’,
which stands for a single backslash, ‘\0’, which is a zero byte (null), ‘\n’ and ‘\t’ for newline and tab respectively,
and ‘\xdd’ for a two-digit hexadecimal coded character.

Expressions are built up from constants, identifiers and operators, using parentheses for grouping in the usual
manner. The following list shows the most commonly used binary operators, which compute a result from two
operand values, expressed in infix form (i.e., such as in i + j or i min j):

Binary Integer Operators

+ Integer addition
− Integer subtraction
* Integer multiplication

Page 2

AN INTRODUCTION TO THE SETL2 PROGRAMMING LANGUAGE

Modified from ‘‘The SETL Programming Language,’’ by
Robert B. K. Dewar

 1979 All rights reserved

Modification prepared by
Robert Hummel

INTRODUCTION

SETL (for SET Language) is a high level general purpose language which allows a large variety of program-
ming problems to be solved in an efficient manner with a minimum amount of effort.

This extract from a book1 describes a portion of the SETL2 language. The reader is assumed to be familiar
with some programming language and to have a basic knowledge of the principles of algorithmic programming, but
no advanced knowledge of programming languages is assumed. A mathematical background at the college algebra
level is sufficient. In particular, no prior knowledge of set theory is required, although the constructions of SETL do
frequently resemble those notations commonly used by mathematicians using set theory.

Recently, SETL has been revised by Kirk Snyder, at NYU, in consultation with Professors Jack Schwartz and
Ed Schonberg, and a new interpreter is available. There are sufficient changes that the new language is called
SETL2. This document, which began as an excerpt from Chapter I of the book, has been revised, and describes a
portion of the SETL2 language. This portion is sufficient to do plenty of interesting things.

The SETL book discusses various aspects of the language in detail, but is dependent on the syntax of the ori-
ginal SETL interpreter. There are several technical reports, written by Kirk Snyder, giving a terse but more com-
plete discription of the SETL2 language.

ELEMENTS OF THE SETL2 LANGUAGE

This chapter gives an informal survey of most of the features of the SETL2 language.

1. An Introductory Example

The following is a small example of a complete SETL2 program. It is presented to give some perspective to
the presentation which follows. It is not necessary to understand all the details of this program at this stage.

program printprimes;

-- This program prints out a list of prime numbers which includes all primes
-- less than a parameter value which is specified as input data.

read(n); -- read input parameter
primes := { }; -- set of primes output so far
p := 2; -- initial value to test

-- Loop to test successive values

while p < n loop -- loop as long as p less than n
if not (exists t in primes | p mod t = 0) then

print(p); -- no divisors, it’s a prime
primes with:= p; -- add it to set of primes

end if;
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 Programming with Sets: An Introduction to the SETL Programming Language, by R.B.K. Dewar, E. Dubinsky, E. Schonberg, and J.T.
Schwartz, published by Springer-Verlag, 1986.

