
SQL Server Driver
For All Users
The following topics discuss the SQL Server driver and how to install it for use by an
application.
Overview
Hardware and Software Requirements
Setting Up the SQL Server Driver
Adding, Modifying, and Deleting SQL Server Data Sources
Connecting to a SQL Server Data Source
Troubleshooting

For Advanced Users
The following topics discuss how to use the SQL Server driver directly.
Connection Strings (Advanced)
SQL Statements (Advanced)
Data Types (Advanced)
Error Messages (Advanced)

For Programmers
The following topics discuss how to use the SQL Server driver programmatically. They are
intended for application programmers and require knowledge of the Open Database
Connectivity (ODBC) application programming interface (API).
SQLGetInfo Return Values (Programming)
ODBC API Functions (Programming)
Implementation Issues (Programming)

Overview
See Also

SQL Server is a multiuser relational database management system (DBMS) that runs on
local area networks.    Microsoft SQL Server runs on IBM PCs and compatibles, while Sybase
SQL Server runs on a variety of workstations and minicomputers.    Structured Query
Language (SQL) is used to access data in a SQL Server database.    Client workstations
communicate with SQL Server across a network such as Microsoft LAN Manager, Novell
NetWare, Banyan VINES, or a TCP/IP network.
The SQL Server driver enables applications to access data in Microsoft and Sybase SQL
Server databases through the Open Database Connectivity (ODBC) interface.
The application/driver architecture is:

Application
|

ODBC Driver Manager
(ODBC.DLL)

|
SQL Server Driver

(SQLSRVR.DLL)
|

Network Library
(DBNMP3.DLL, DBMSSPX3.DLL, and so on)

|
Network Software

(Microsoft LAN Manager, Novell NetWare, and so on)
|

SQL Server DBMS

See Also
For All Users

Adding, Modifying, and Deleting SQL Server Data Sources
Connecting to a SQL Server Data Source
Hardware and Software Requirements
Setting Up the SQL Server Driver

Hardware and Software Requirements
See Also

To access SQL Server data, you must have:
The SQL Server driver.
A SQL Server DBMS.
A network connecting the computers on which these reside.

The following paragraphs describe the hardware and software required by each of these
components.

SQL Server Driver
The SQL Server driver requires the following hardware:

An Industry Standard Architecture (ISA) computer, such as the IBM PC/AT or
compatible, or

A Micro Channel Architecture (MCA) computer, such as an IBM PS/2 or compatible, or
An Extended Industry Standard Architecture (EISA) computer with an 80286, 80386,

or 80486 microprocessor.
At least 2 megabytes of random-access memory (RAM); 4 MB of RAM are

recommended.
A hard disk drive and approximately 200 kilobytes of hard disk space for the SQL

Server driver and ODBC Driver Manager.
The SQL Server driver requires the following software:

MS-DOS version 3.3 or later
Microsoft Windows version 3.0 or later
ODBC Driver Manager version 1.0 or later (ODBC.DLL)

SQL Server
To access data in SQL Server with the SQL Server driver, you must have Microsoft SQL
Server version 1.11 or later or Sybase SQL Server version 4.0 or later.    The catalog stored
procedures must be installed on versions 4.2 and earlier of Microsoft SQL Server and all
versions of Sybase SQL Server.    For information about the hardware and software required
by SQL Server, see the Microsoft SQL Server Installation Guide.

Network Software
A network is required to connect the platforms on which SQL Server and the SQL Server
driver reside.    To connect to Microsoft SQL Server (running on OS/2), you can use Microsoft
LAN Manager (or a compatible network, such as IBM LAN Server or DEC Pathworks), Novell
NetWare, or Banyan VINES.    To connect to Sybase SQL Server (running on a variety of
platforms), you can use Novell or any TCP/IP network for which Sybase provides a Net-
Library DLL.    For information about the hardware and software required by each network,
see that network's documentation.
The SQL Server driver communicates with the network software through the SQL Server
Net-Library interface and requires a Net-Library dynamic-link library (DLL).    The following
table lists the network library DLLs that can be used with each network for Microsoft SQL
Server.

With this
network

Use one of
these DLLs

Shipped with
this package

Microsoft LAN
Manager and
compatibles, such
as IBM LAN Server
or DEC Pathworks

DBNMP3.DLL* SQL Server driver

Novell NetWare DBNMP3.DLL* SQL Server driver
DBMSSPX3.DLL Network

Integration Kit for
Novell NetWare

Banyan VINES DBNMP3.DLL* SQL Server driver

DBMSVIN3.DLL Network
Integration Kit for
Banyan VINES

* DBNMP3.DLL is also shipped with a number of Microsoft products, including SQL Server,
Microsoft Access, and Visual Basic.    Make sure that the SQL Server driver is using the
version of this DLL that was shipped with the SQL Server driver.

The following table lists the network library DLLs that can be used with each network for
Sybase SQL Server.

With this
network

Use one of
these DLLs

Shipped with
this package

Novell NetWare* Contact Sybase Contact Sybase
TCP/IP Networks Contact

Sybase**
Contact Sybase

* With Novell NetWare, you must use the NLM (Network Loadable Module) version of
Sybase SQL Server.

** Sybase provides network libraries for many but not all TCP/IP networks.

See Also
For All Users

Setting Up the SQL Server Driver

Setting Up the SQL Server Driver
See Also

To set up the SQL Server driver
1 If you have Microsoft SQL Server version 4.2 or earlier, or any Sybase version of SQL

Server, follow the instructions for installing the catalog stored procedures.
2 Add a data source for each copy of SQL Server in which you want to access data.

To set up a new version of the SQL Server driver
1 In the Main group in the Program Manager window, double-click the Control Panel icon.   

In the Control Panel window, double-click the ODBC icon.

Note      For Microsoft Windows version 3.0, start the ODBC Administrator by double-
clicking the Microsoft ODBC Administrator icon in the Microsoft ODBC group.
The Data Sources dialog box is displayed.

2 In the Data Sources dialog box, choose the Drivers button.
The Drivers dialog box is displayed.

3 In the Drivers dialog box, choose the Add button.
The Add Driver dialog box is displayed.

4 In the text box, type the name of the drive and directory containing the SQL Server
driver in the text box.    Or choose the Browse button to select a drive and directory
name.

5 In the Add Driver dialog box, choose the OK button.
The Install Drivers dialog box is displayed

6 In the Available ODBC Drivers list, select SQL Server.
7 Choose the OK button.

The SQL Server driver is installed.
To delete the SQL Server driver
1 In the Main group in the Program Manager window, double-click the Control Panel icon.   

In the Control Panel window, double-click the ODBC icon.

Note      For Windows version 3.0, start the ODBC Administrator by double-clicking the
Microsoft ODBC Administrator icon in the Microsoft ODBC group.
The Data Sources dialog box is displayed.

2 In the Data Sources dialog box, choose the Drivers button.
The Drivers dialog box is displayed.

3 In the Installed ODBC Drivers list, select SQL Server.
4 Choose the Delete button.

A message asks you to confirm that you want to remove the driver and all of the data
sources that use the driver.

5 Choose the Yes button.

See Also
For All Users

Adding, Modifying, and Deleting SQL Server Data Sources
Hardware and Software Requirements

data source (SQL Server)
A data source includes the data a user wants to access and the information needed to get
to that data.    For the SQL Server driver, a data source is a SQL Server database, the server
on which it resides, and the network used to access that server.

Installing the Catalog Stored Procedures
The SQL Server driver uses a set of system stored procedures, known as the catalog stored
procedures, to obtain information from the SQL Server system catalog.    With SQL Server
version 4.2a, the catalog stored procedures are installed automatically when you install or
upgrade SQL Server.    For earlier versions of Microsoft SQL Server and any Sybase version
of SQL Server, your system administrator must install these stored procedures unless they
have already been installed.

To install the catalog stored procedures
1 Insert the disk on which the SQL Server driver was shipped into drive A.
2 Run the INSTCAT.SQL batch file in the isql utility.

C:> ISQL /U sa /P sa-password /S server-name /i A:\INSTCAT.SQL
The arguments in this format are:

Argument Meaning
sa-password The system

administrator's
password.

server-name The name of the
server on which SQL
Server resides.

Note      To run isql, your computer must be installed as a client workstation for SQL
Server.

Note      The INSTCAT.SQL file will generate warning messages.    These can be ignored.
3 Exit isql.

1> quit

Note      The INSTCAT.SQL batch file will fail if there is not enough room in the master
database to store the catalog stored procedures or to log the changes to existing
procedures.    To create more room, your system administrator can dump the transaction log
or remove unused non-system stored procedures and tables from the master database.   
Your system administrator can also back up the master database and expand its size.    For
more information, see the SQL Server documentation.
The SQL Server driver uses some or all of the following catalog stored procedures.

This procedure Returns
sp_column_privileges Information about column

privileges for the specified
table or tables.

sp_columns Information about columns
for the specified table or
tables.

sp_databases A list of databases.
sp_datatype_info Information about the data

types.
sp_fkeys Information about logical

foreign keys.
sp_pkeys Information about primary

keys.
sp_server_info A list of attribute names

and matching values for the
server.

sp_special_columns Information for a single
table about columns in the
table that have special
attributes.

sp_sproc_columns Column information for a
stored procedure.

sp_statistics A list of indexes for a single
table.

sp_stored_procedures A list of stored procedures.
sp_table_privileges Information about table

privileges for the specified
table or tables.

sp_tables A list of objects that can be
queried.

If you have SQL Server version 4.2a, you can find additional information about the catalog
stored procedures in the Microsoft SQL Server Language Reference, the Microsoft SQL
Server Enhancements Guide, and the Microsoft SQL Server Installation Guide.

Adding, Modifying, and Deleting SQL Server Data Sources
See Also

Before you can access data with the SQL Server driver, you must add a data source for
each of your copies of SQL Server.    The SQL Server driver uses the information you enter
when you add the data source to access the data.    You can change or delete a data source
at any time.

To add a SQL Server data source
1 In the Main group in the Program Manager window, double-click the Control Panel icon.   

In the Control Panel window, double-click the ODBC icon.

Note      For Microsoft Windows version 3.0, start the ODBC Administrator by double-
clicking the Microsoft ODBC Administrator icon in the Microsoft ODBC group.

2 In the Data Sources dialog box, choose the Add button.
The Add Data Source dialog box is displayed.

3 In the Installed ODBC Drivers list, select SQL Server and choose the OK button.
The ODBC SQL Server Setup dialog box is displayed.

4 In the ODBC SQL Server Setup dialog box, set the option values as necessary and choose
the OK button.

To modify a SQL Server data source
1 In the Main group in the Program Manager window, double-click the Control Panel icon.   

In the Control Panel window, double-click the ODBC icon.

Note      For Windows version 3.0, start the ODBC Administrator by double-clicking the
Microsoft ODBC Administrator icon in the Microsoft ODBC group.

2 In the Data sources dialog box, select the data source from the Data Sources list and
choose the Setup button.
The ODBC SQL Server Setup dialog box is displayed.

3 In the ODBC SQL Server Setup dialog box, set the option values as necessary and choose
the OK button.

To delete a SQL Server data source
1 In the Main group in the Program Manager window, double-click the Control Panel icon.   

In the Control Panel window, double-click the ODBC icon.

Note      For Windows version 3.0, start the ODBC Administrator by double-clicking the
Microsoft ODBC Administrator icon in the Microsoft ODBC group.

2 In the Data Sources dialog box, select the data source you want to delete in the Data
Sources list.

3 Choose the Delete button, and then choose the Yes button to confirm the deletion.
You may be asked if you want to remove the data source name and its associated
information from the WIN.INI file.    Other applications that call SQL Server
programmatically may use this information to connect to SQL Server data sources.

4 Choose the Yes button if you are certain that no other applications use the information
about the data source; otherwise, choose the No button.

See Also
For All Users

Connecting to a SQL Server Data Source
Setting Up the SQL Server Driver

Connecting to a SQL Server Data Source
See Also

As part of the connection process, an application can prompt you for information.    If an
application prompts you for information about a SQL Server data source, do the following:

To connect to a SQL Server data source
1 In the Login ID box, type your login ID for SQL Server.
2 In the Password box, type your password for SQL Server.
3 Choose OK.
Although it is not required, you can enter additional connection information, such as the
database to access and the language for SQL Server to use.

To connect to an ODS gateway data source with additional information
1 Follow steps 1 and 2 above, and then choose the Options button.
2 Enter or select the name of the database you want to access in the Database box.
3 Enter or select the name of language for SQL Server to use in the Language box.    This

option is unavailable if you're using a version of SQL Server earlier than version 4.2.
4 Enter an application name if the displayed application name is incorrect.    The

application name is the name of the application that is calling the SQL Server driver.
5 Enter a workstation ID if the displayed workstation ID is incorrect.    Typically, this is the

network name of the computer on which the application resides.
6 Choose OK.

See Also
For All Users

Adding, Modifying, and Deleting SQL Server Data Sources
For Advanced Users

Connection Strings (Advanced)
For Programmers

SQLBrowseConnect Implementation (Programming)
SQLDriverConnect Implementation (Programming)

Troubleshooting
The following sections discuss how to solve problems you might encounter while using the
SQL Server driver.

Connections not available when using Novell NetWare
If you run out of connections to SQL Server while using the SQL server driver and Novell
NetWare, contact Microsoft Product Support Services and ask for Microsoft Technical Note
098-32655, Using Microsoft SQL Server on a Novell Network.    This explains how to tune
your network for SQL Server.

Procedures named "odbc#..." left in sysobjects table
The SQL Server driver creates a procedure when it prepares a statement for execution.   
Normally, the SQL Server driver deletes any procedures it created when it disconnects from
a data source.    However, if the connection between the driver and SQL Server terminates
abnormally, as in the case of a power failure, these procedures are left on SQL Server.
These procedures are named "odbc#<user><identifier>", where <user> is up to 15
characters of the user name and <identifier> is up to 10 digits that identify the prepared
SQL statement.    They are created on the sysobjects table in the current database.    Any
procedures abnormally left in this table by the SQL Server driver can be safely deleted by
your SQL Server administrator.

ODBC SQL Server Setup Dialog Box
The ODBC SQL Server Setup dialog box has the following options.

Data Source Name
A name by which you will identify the data source.    For example, "Personnel Data."

Description
A description of the data in the data source.    For example, "Hire date, salary history, and
current review of all employees."

Server
The name of the server on which SQL Server resides.    You can select a server from the list
or enter the server name.

Note      If you are configuring ODBC on a Novell NetWare or Banyan VINES network, and
you are using the DBNMP3.DLL network library, the ODBC Administrator warns you that the
network host you specified was not found on the network.    Confirm that you want to use
the network host that you specified and accept the default settings that ODBC Setup
supplies.

Network Address
An address that specifies the location of the SQL Server database management system
(DBMS) from which the driver will retrieve data.    For information on the network address,
click your network name.
Banyan VINES
Microsoft LAN Manager and Compatibles (for example, IBM LAN Server or DEC Pathworks)
Novell NetWare
TCP/IP Networks

Network Library
The name of the SQL Server Net-Library DLL that the SQL Server driver uses to
communicate with the network software.    For information on the network library to use,
click your network name.
Banyan VINES
Microsoft LAN Manager and Compatibles (for example, IBM LAN Server or DEC Pathworks)
Novell NetWare
TCP/IP Networks
To access the following fields, click the Options button.

Database Name
The name of the SQL Server database.

Language Name
The national language to be used by SQL Server.    This is used only by SQL Server versions
4.2 and later.

Translation
The description of the current translator is displayed.    To select a new translator, choose
the Select button and select a new translator from the list in the Select Translator dialog
box.

Convert OEM to ANSI Characters
If the SQL Server driver and SQL Server are using the same non-ANSI character set, select
the Convert OEM to ANSI Characters check box.
If the SQL Server driver and SQL Server are using different character sets, you must specify
a character set translator.

Network Address for Microsoft LAN Manager and Compatibles
The network address is the named pipe used to connect to SQL Server

Network Address for Novell NetWare
If you use the network library DBNMP3.DLL, the network address is the named pipe used to
connect to SQL Server.
If you use the network library DBMSSPX3.DLL, the network address is the name of the
database server as specified in the server parameter of the Network Manager running on
the server.

Network Address for Banyan VINES
If you use the network library DBNMP3.DLL, the network address is the named pipe used to
connect to SQL Server.
If you use the network library DBMSVIN3.DLL, the network address is the name of the
database server as specified in the server parameter of the Network Manager running on
the server.

Network Address for TCP/IP Networks
The network address uses the format
IP-address,socket-address
where IP-address is the IP address of the server and socket-address is the socket address of
the server.    For example, 11.1.8.166,2025.

Network Library for Microsoft LAN Manager and Compatibles
You must use the network library DBNMP3.DLL, which is shipped with the SQL Server driver. 
It is also shipped with a number of Microsoft products, including SQL Server, Microsoft
Access, and Visual Basic.    Make sure that the SQL Server driver is using the version of this
DLL that was shipped with the SQL Server driver.

Network Library for Novell NetWare
You can use the network library DBNMP3.DLL, which is shipped with the SQL Server driver.   
It is also shipped with a number of Microsoft products, including SQL Server, Microsoft
Access, and Visual Basic.    Make sure that the SQL Server driver is using the correct version
of this DLL.
You can also use the network library DBMSSPX3.DLL, which is shipped with the Network
Integration Kit for Novell NetWare.

Network Library for Banyan VINES
You can use the network library DBNMP3.DLL, which is shipped with the SQL Server driver.   
It is also shipped with a number of Microsoft products, including SQL Server, Microsoft
Access, and Visual Basic.    Make sure that the SQL Server driver is using the correct version
of this DLL.
You can also use the network library DBMSVIN3.DLL, which is shipped with the Network
Integration Kit for Banyan VINES.

Network Library for TCP/IP Networks
Contact Sybase to determine which network library you need to use with your TCP/IP
network.

Connection Strings (Advanced)
See Also

The connection string for the SQL Server driver uses the following keywords.    Some
keywords are optional.

Keyword Description
DSN The name of the

data source.
SERVER The name of the

computer on the
network on which
the data source
resides.

UID The user login ID.
PWD The user-specified

password.
APP The name of the

application calling
the SQL Server
driver (optional).

WSID The workstation ID. 
Typically, this is the
network name of
the computer on
which the
application resides
(optional).

DATABASE The name of the
SQL Server
database (optional).

LANGUAGE The national
language to be
used by SQL Server.
This is used only by
SQL Server versions
4.2 and later
(optional).

For example, to connect to the Human Resources data source on the server HRSRVR using
the login ID Smith and the password Sesame, you would use the following connection
string:
DSN=Human Resources;SERVER=HRSRVR;UID=Smith;PWD=Sesame
To specify the Payroll database on the same server, you would use the following connection
string:
DSN=Human Resources;SERVER=HRSRVR;UID=Smith;PWD=Sesame;DATABASE=Payroll

See Also
For All Users

Connecting to a SQL Server Data Source
For Programmers

SQLBrowseConnect Implementation
SQLDriverConnect Implementation

SQL Statements (Advanced)
See Also

The SQL Server driver fully supports the minimum SQL grammar.    In addition, it supports
almost all SQL statements in both the core and extended ODBC grammars.    In accordance
with the design of ODBC, the SQL Server driver will pass native SQL grammar to SQL
Server.
The following Help topics describe the SQL grammar implemented by the SQL Server driver.
For Advanced Users
Implementation of the ODBC SQL Grammar (Advanced)
Limitations to the ODBC SQL Grammar (Advanced)
Unsupported ODBC SQL Grammar (Advanced)
For Programmers
Limitations to the ODBC SQL Grammar (Programming)

See Also
For Advanced Users

Data Types (Advanced)
For Programmers

SQLGetInfo Return Values (Programming)

Implementation of the ODBC SQL Grammar (Advanced)
The only noteworthy part of the implementation of the ODBC SQL grammar is the
implementation of the CREATE TABLE and ALTER TABLE statements.
The SQL Server driver adds a NULL specification to each column definition in a CREATE
TABLE statement that does not specify whether the column is nullable (except for BIT
columns, which are not nullable).    It adds a NULL specification to each column definition in
an ALTER TABLE statement (except for BIT columns, which are not nullable).
It does this to resolve a difference in the SQL grammars defined by ODBC and SQL Server:

In the ODBC grammar, columns for which no nullability is defined are assumed to be
nullable.

In the SQL Server grammar, columns for which no nullability is defined are assumed
not to be nullable.

Limitations to the ODBC SQL Grammar (Advanced)
The SQL Server driver and SQL Server impose the following limitations on the ODBC SQL
grammar:

Limited SQL Description
Batched SQL
statements

Batched SQL statements
can't include CREATE VIEW
statements.

CURDATE scalar
function

Because the SQL Server
driver doesn't support the
SQL_DATE data type, the
CURDATE scalar function
returns a value of type
SQL_VARCHAR instead of
type SQL_DATE.

CURTIME scalar
function

Because the SQL Server
driver doesn't support the
SQL_TIME data type, the
CURTIME scalar function
returns a value of type
SQL_VARCHAR instead of
type SQL_TIME.

SIGN scalar
function

The SIGN function returns
a value of type SQL_FLOAT
if the argument of the
function is a real number.

Unsupported ODBC SQL Grammar (Advanced)
The SQL Server driver completely supports all SQL statements and clauses in both the core
and extended ODBC grammars except those listed below.

Statement
not
supported

Description

CREATE INDEX The ASC and DESC clauses
aren't supported.    If
present, they cause a
syntax error.

DELETE The WHERE CURRENT OF
cursor-name clause isn't
supported (positioned
delete statement).

DROP INDEX Instead of index-name,
table-name.index-name
must be used.

IEF None of the clauses in the
Integrity Enhancement
Facility (IEF) is supported.

MAX, MIN The DISTINCT keyword
isn't supported for these
set functions.

SELECT The FOR UPDATE OF clause
isn't supported (select-for-
update statement).

UPDATE The WHERE CURRENT OF
cursor-name clause isn't

supported (positioned
update statement).

Limitations to the ODBC SQL Grammar (Programming)
The SQL Server driver and SQL Server impose the following limitations on the ODBC SQL
grammar:

Limited SQL Description
Procedures With the SQL Server native

grammar, if a procedure is
invoked as the first
statement in a prepared
batch of statements, it
must be invoked with the
EXECUTE keyword.

SQL_DATA_AT_EXEC
Parameters

SQL_DATA_AT_EXEC
parameters that are used
to send more than 65,536
bytes of data for an
SQL_LONGVARCHAR or
SQL_LONGVARBINARY
column are subject to a
number of restrictions:

Procedure Invocation Limitations (Programming)
In the SQL grammar used by SQL Server, the EXECUTE keyword isn't needed if a statement
that executes a procedure is the first statement in a batch.    If such a statement is
prepared, the EXECUTE keyword must be present.    This is because the SQL Server driver
surrounds a statement it is preparing with other SQL statements.    Thus, the statement
being prepared is no longer the first in the batch.
This problem should be avoided for two reasons:

For maximum interoperability, procedures should be invoked using the ODBC
extension to SQL designed for this purpose.

With the SQL Server driver, there is no advantage to preparing a statement that
invokes a procedure (instead of executing it directly).    This is because the SQL Server driver
prepares a statement simply by placing it in a procedure and compiling that procedure.

SQL_DATA_AT_EXEC Parameter Limitations (Programming)
If an SQL_DATA_AT_EXEC parameter is used to send more than 65,536 bytes of data for an
SQL_LONGVARCHAR or SQL_LONGVARBINARY column, it is subject to the following
restrictions:

It can be used only as an insert-value in an INSERT statement and as an expression in
the SET clause of an UPDATE statement.

It cannot be used in a statement with SQL_DATA_AT_EXEC parameters that have a
data type other than SQL_LONGVARCHAR or SQL_LONGVARBINARY.    (It can be used in a
statement with non-SQL_DATA_AT_EXEC parameters of any data type.)

An INSERT statement containing such a parameter must contain a list of columns.   
(In all other cases, the list of columns is optional.)

If its value is NULL, the cbColDef argument in SQLSetParam and the cbValueMax
argument in SQLPutData must be SQL_NULL_DATA.

Data Types (Advanced)
See Also

The SQL Server driver maps SQL Server data types to ODBC SQL data types.    The following
table lists all SQL Server data types and shows the ODBC SQL data types they are mapped
to.

SQL Server
SQL data
type

ODBC SQL
data type

binary SQL_BINARY
bit SQL_BIT
char SQL_CHAR
datetime SQL_TIMESTAMP
float SQL_FLOAT
image SQL_LONGVARBINARY
int SQL_INTEGER
money SQL_DECIMAL
real SQL_REAL
smalldatetime SQL_TIMESTAMP
smallint SQL_SMALLINT
smallmoney SQL_DECIMAL
sysname SQL_VARCHAR
text SQL_LONGVARCHAR
timestamp* SQL_VARBINARY
tinyint SQL_TINYINT
varbinary SQL_VARBINARY
varchar SQL_VARCHAR

* The timestamp data type is converted to the SQL_VARBINARY data type because values
in timestamp columns are not datetime data, but varbinary(8) data, indicating the
sequence of SQL Server activity on the row.

Note      The SQL Server driver cannot convert SQL data of types SQL_CHAR, SQL_VARCHAR,
or SQL_LONGVARCHAR to C data of types SQL_C_DATE, SQL_C_TIME, or SQL_C_TIMESTAMP.   
It supports all other conversions in Appendix D of the Microsoft ODBC SDK Programmer's
Reference for the ODBC SQL data types listed earlier in this topic.
The following Help topics describe the data types implemented by the SQL Server driver.
For Advanced Users
Limitations to Data Types (Advanced)
For Programmers
Implementation of Data Types (Programming)
Limitations to Data Types (Programming)

See Also
For Advanced Users

SQL Statements (Advanced)

Limitations to Data Types (Advanced)
The SQL Server driver and SQL Server impose the following limitations on the data types.

Limited data type Description
Date literals Date literals, when stored

in an SQL_TIMESTAMP
column (SQL Server types
of datetime or
smalldatetime) have a
time value of
12:00:00.000am
(midnight).

money and
smallmoney

Only the integer parts of
the money and
smallmoney data types are
significant.    If the decimal
part of SQL money data is
truncated during data type
conversion, the SQL Server
driver returns a warning,
not an error.

SQL_BINARY If an SQL_BINARY column
is nullable, the data stored
in the data source isn't
padded with zeroes.   
When data from such a
column is retrieved, the
SQL Server driver pads it
with zeroes on the right.   
However, data created in
operations performed by
SQL Server, such as
concatenation, don't have
such padding.

SQL_CHAR
(truncation)

When data is inserted into
an SQL_CHAR column, SQL
Server truncates it on the
right without warning if it
is too long to fit into the
column.    The SQL Server
driver is thus unable to
provide a warning to the
application when character
data is truncated on the
right.

SQL_CHAR
(nullable)

If an SQL_CHAR column is
nullable, the data stored in
the data source isn't
padded with blanks.   
When data from such a
column is retrieved, the
SQL Server driver pads it
with blanks on the right.   
However, data created in
operations performed by
SQL Server, such as
concatenation, don't have
such padding.

Time literals Time literals, when stored
in an SQL_TIMESTAMP
column (SQL Server types
of datetime or
smalldatetime) have a
date value of January 1,
1900.

timestamp A timestamp column
cannot be updated, and
only a NULL value can be
inserted into a timestamp
column.    However,
because timestamp
columns are automatically
updated by SQL Server, a
NULL value is overwritten.

tinyint The SQL Server tinyint
data type is unsigned.    If
a tinyint column is bound
to a variable of type
SQL_C_TINYINT (the
default mapping), an
overflow error occurs when
data larger than 127 is
retrieved from the data
source or data less than 0
is sent to the data source. 
This occurs because the
SQL_C_TINYINT data type
is signed.

User-defined data
types

Because the SQL Server
driver adds NULL to a
column definition that
doesn't explicitly declare a
column's nullability, the
nullability stored in the
definition of a user-defined
data type is ignored.

Implementation of Data Types (Programming)
The SQL Server driver implements the ODBC SQL data types as follows.

Data type Description
SQL_CHAR The SQL Server driver adds NULL

to a column definition that doesn't
explicitly declare the column's
nullability.    SQL Server doesn't
support nullable SQL_CHAR
columns.    Therefore, SQL_CHAR
columns declared as NULL (by the
user or the SQL Server driver) are
created as type SQL_VARCHAR.
The SQL Server driver recognizes
these columns and returns the
correct data type and data type
name for them in
SQLColAttributes,
SQLColumns, and

SQLDescribeCol.    It also pads
data retrieved from these
columns.

tinyint The SQL Server tinyint data type is
unsigned.    If data is sent to a
tinyint column from a variable
with a SQL_C_TINYINT data type
(the default mapping), the SQL
Server driver treats the data as
unsigned data, even though
SQL_C_TINYINT is signed.    If data
is retrieved from a tinyint column
and placed in a variable with a
SQL_C_TINYINT data type, the
application must treat that
variable as unsigned, even though
SQL_C_TINYINT is signed.

Limitations to Data Types (Programming)
The SQL Server driver and SQL Server impose the following limitations on the data types.

Limited data type Description
LONG data types SQL_LONGVARBINARY data must

be passed to SQLPutData as raw
binary data, not as binary data
converted to character data.
Also, SQL_DATA_AT_EXEC
parameters are restricted for both
the SQL_LONGVARBINARY and
SQL_LONGVARCHAR data types.

User-defined data
types

Columns with a user-defined data
type that has a base type of char
and for which no nullability or
NULL was declared are created as
type varchar.
SQLColAttributes,
SQLColumns, and
SQLDescribeCol return
SQL_VARCHAR as the data type for
these columns.    Data retrieved
from these columns isn't padded.

User-Defined Data Types Limitations (Programming)
The SQL Server driver adds NULL to a column definition that doesn't explicitly declare the
column's nullability.    SQL Server doesn't support nullable char columns.    Therefore,
columns declared as NULL (by the user or by the SQL Server driver) that have a user-
defined data type with a base data type of char are created as type varchar.
Because of this, SQLColAttributes, SQLColumns, and SQLDescribeCol return the
declared user-defined data type name and an ODBC SQL data type of SQL_VARCHAR.    Also,
data returned from these columns isn't padded, as char data is.

Error Messages (Advanced)
When an error occurs, the SQL Server driver returns the native error number, the SQLSTATE
(an ODBC error code), and an error message.    The driver derives this information both from
errors detected by the driver and errors returned by SQL Server.

Native Error
For errors that occur in the data source, the SQL Server driver returns the native error
returned to it by SQL Server.    For errors detected by the driver or the Driver Manager, the
SQL Server driver returns a native error of zero.    For a list of native errors, see the error
column of the sysmessages system table in the master database in SQL Server.

SQLSTATE
For errors that occur in the data source, the SQL Server driver maps the returned native
error to the appropriate SQLSTATE.    If the error occurs in the data source and can't be
mapped, the SQL Server driver returns SQLSTATE 37000 (Syntax error or access violation).   
For errors that are detected by the driver or the Driver Manager, the SQL Server driver or
Driver Manager generates the appropriate SQLSTATE.

Error Message
For errors that occur in the data source, the SQL Server driver returns an error message
based on the message returned by SQL Server.    For errors that occur in the SQL Server
driver or the Driver Manager, the SQL Server driver returns an error message based on the
text associated with the SQLSTATE.    For a list of error messages that can be returned by
SQL Server, see the description column of the sysmessages system table in the master
database in SQL Server.
Error messages have the following format:
[vendor][ODBC-component][data-source]error-message
where the prefixes in brackets ([]) identify the source of the error.    The following table
shows the values of these prefixes returned by the SQL Server driver.

Note      When the error occurs in the data source, the [vendor] and [ODBC-component]
prefixes identify the vendor and name of the ODBC component that received the error from
the data source.

Error source Prefix Value
Driver Manager [vendor]

[ODBC-component]
[data-source]

[Microsoft]
[ODBC DLL]
N/A

SQL Server
driver

[vendor]
[ODBC-component]
[data-source]

[Microsoft]
[ODBC SQL Server
Driver]
N/A

SQL Server [vendor]
[ODBC-component]
[data-source]

[Microsoft]
[ODBC SQL Server
Driver]
[SQL Server]

SQLGetInfo Return Values (Programming)
The following table lists the C language #defines for the fInfoType argument and the
corresponding values returned by SQLGetInfo.    An application retrieves this information
by passing the listed C language #defines to SQLGetInfo in the fInfoType argument.

fInfoType value (#define) Returned value
SQL_ACCESSIBLE_TABLES Yes.
SQL_ACCESSIBLE_PROCEDURES Yes.
SQL_ACTIVE_CONNECTIONS Unknown.    (The actual

number of active connections
is determined by the number
of network connections
available on the client
computer and the number of
connections allowed by the
server DBMS.)

SQL_ACTIVE_STATEMENTS 1
SQL_CONCAT_NULL_BEHAVIOR Non-NULL
SQL_CONVERT_FUNCTIONS CONVERT
SQL_CONVERT_type, where type is
the SQL data type (such as CHAR)

See table below.

SQL_CURSOR_COMMIT_BEHAVIOR Closes cursors.
SQL_CURSOR_ROLLBACK_BEHAVIOR Closes cursors.
SQL_DBMS_NAME SQL Server
SQL_DBMS_VER 01.01.0000 or later
SQL_DEFAULT_TXN_ISOLATION Transaction 1 can read

committed changes made by
transaction 2
(SQL_TXN_READ_COMMITTED).

SQL_DRIVER_NAME SQLSRVR.DLL
SQL_DRIVER_VER 01.01.nnnn, where nnnn

specifies the build date.
SQL_EXPRESSIONS_IN_ORDERBY Yes.
SQL_FETCH_DIRECTION Next.
SQL_IDENTIFIER_CASE Depends on whether SQL

Server was installed as case-
sensitive or not case-sensitive.

SQL_IDENTIFIER_QUOTE_CHAR Not supported.
SQL_MAX_COLUMN_NAME_LEN 30
SQL_MAX_CURSOR_NAME_LEN 32
SQL_MAX_OWNER_NAME_LEN 30
SQL_MAX_PROCEDURE_NAME_LEN 36 (1 to 30 characters

followed by a semicolon [;}
and one to five digits)

SQL_MAX_QUALIFIER_NAME_LEN 30
SQL_MAX_TABLE_NAME_LEN 30
SQL_MULT_RESULT_SETS Yes.
SQL_MULTIPLE_ACTIVE_TXN Yes.
SQL_NUMERIC_FUNCTIONS ABS, ACOS, ASIN, ATAN,

ATAN2, CEILING, COS, COT,
EXP, FLOOR, LOG, MOD, PI,
RAND, SIGN, SIN, SQRT, TAN

SQL_ODBC_API_CONFORMANCE Level 1.
SQL_ODBC_SAG_CLI_CONFORMANCE Not SAG-compliant.
SQL_ODBC_SQL_CONFORMANCE Minimum
SQL_ODBC_SQL_OPT_IEF No.
SQL_OUTER_JOINS Yes.
SQL_OWNER_TERM owner
SQL_PROCEDURES Yes.
SQL_PROCEDURE_TERM stored procedure

SQL_QUALIFIER_NAME_SEPARATOR . (period)
SQL_QUALIFIER_TERM database
SQL_ROW_UPDATES No.
SQL_SCROLL_CONCURRENCY Read only.
SQL_SCROLL_OPTIONS Forward only.
SQL_SEARCH_PATTERN_ESCAPE \ (backslash)
SQL_STRING_FUNCTIONS ASCII, CHAR, CONCAT, INSERT,

LCASE, LEFT, LENGTH, LTRIM,
REPEAT, RIGHT, RTRIM,
SUBSTRING, UCASE

SQL_SYSTEM_FUNCTIONS DBNAME, IFNULL, USERNAME
SQL_TABLE_TERM table
SQL_TIMEDATE_FUNCTIONS NOW, CURDATE,

DAYOFMONTH, DAYOFWEEK,
DAYOFYEAR, MONTH,
QUARTER, WEEK, YEAR,
CURTIME, HOUR, MINUTE,
SECOND

SQL_TXN_CAPABLE Transactions can contain only
DML statements (SELECT,
INSERT, UPDATE, and DELETE).

SQL_TXN_ISOLATION_OPTION Transaction 1 can read
committed changes made by
transaction 2
(SQL_TXN_READ_COMMITTED).
Transactions serializable and
data affected by transaction 1
are not available to
transaction 2
(SQL_TXN_SERIALIZABLE).

The following table shows the conversions supported by SQL Server from one SQL data
type to another using the CONVERT scalar function.

ODBC API Functions (Programming)
See Also

The SQL Server driver supports all core and Level 1 functions and the following Level 2
functions:

SQLBrowseConnect
SQLColumnPrivilege
s
SQLDataSources
SQLForeignKeys
SQLMoreResults
SQLNativeSql
SQLNumParams

SQLProcedureColumns
SQLProcedures
SQLParamOptions
SQLPrimaryKeys
SQLSetScrollOptions
SQLTablePrivileges

In addition, the SQL Server driver supports translation DLLs.
The following Help topics describe the ODBC API functions implemented by the SQL Server
driver.
For Programmers
Implementation of ODBC API Functions (Programming)
Limitations to ODBC API Functions (Programming)

See Also
For Advanced Users

Error Messages (Advanced)
For Programmers

SQLGetInfo Return Values (Programming)

Implementation of ODBC API Functions (Programming)
The following table describes how the SQL Server driver implements specific functions.

Function Description
SQLBrowseConnect SQLBrowseConnect uses

three levels of keywords:
1 DSN
2 SERVER, UID, PWD, APP, and

WSID
3 LANGUAGE and DATABASE

SQLColAttributes ,
SQLDescribeCol ,
SQLNumResultCols

If any of these functions are
called after a SELECT statement
has been prepared and before it
has been executed, the SQL
Server driver forces SQL Server
to generate an empty result set
to obtain the necessary
information about the result set.

SQLColumns and
SQLStatistics

If the szTableQualifier argument
is an empty string (as opposed
to a NULL pointer), SQL Server
returns an error.

SQLConnect SQLConnect retrieves the
value of the LANGUAGE
keyword from the ODBC.INI file. 
If SQL Server is unable to use
the specified language, it uses
the default language for the
specified user ID, and
SQLConnect returns
SQL_SUCCESS_WITH_INFO.    If
SQL Server is unable to use the
default language for the
specified user ID, SQLConnect
returns SQL_ERROR.
SQLConnect ignores the value
of the DATABASE keyword.

SQLDriverConnect SQLDriverConnect uses the
DSN, SERVER, UID, PWD, APP,
WSID, DATABASE, and
LANGUAGE keywords.

SQLPrepare SQL Server doesn't directly
support the Prepare/Execute
model of ODBC.    To prepare an
SQL statement, the SQL Server
driver stores it as a procedure
and compiles it for later
execution.

SQLBrowseConnect Implementation (Programming)
SQLBrowseConnect uses three levels of connection information.    For each keyword in a
level, the following tables indicate whether a list of valid values is returned for the keyword
in the szConnStrOut argument and whether the keyword is optional; they also provide a
description of the keyword.

Level 1:

Keyword
User-
Friendly
Name

List
returned? Optional? Description

DSN N/A N/A No The name of the
data source as listed
in the ODBC.INI file.

Level 2:

Keyword
User-
Friendly
Name

List
returned? Optional? Description

SERVER Server Yes No The name of the
server on the
network on which
the data source
resides.

UID Login ID No No The user login ID.
PWD Password No Depends

on the
user.

The user-specified
password.

APP AppName No Yes The name of the
application
(AppName) calling
SQLBrowseConnec
t.

WSID WorkStation
ID

No Yes The workstation ID.   
Typically, this is the
network name of the
computer on which
the application
resides.

Level 3:

Keyword
User-
Friendly
Name

List
returned? Optional? Description

DATABAS
E

Database Yes Yes The name of the
SQL Server
database.

LANGUAG
E

Language Yes Yes The national
language to be used
by SQL Server.    This
is used only when
connecting to SQL
Server versions 4.2
and later.

SQLBrowseConnect ignores the values of the Language and Database keywords in the
ODBC.INI file.    If the language or database specified in the connection string passed to
SQLBrowseConnect is invalid, SQLBrowseConnect returns SQL_NEED_DATA and the
level 3 connection attributes.
SQLBrowseConnect doesn't check whether a user has access to all the databases it lists
with the DATABASE keyword.    If the user doesn't have access to the chosen database,
SQLBrowseConnect returns SQL_NEED_DATA and the level 3 connection attributes.

SQLColAttributes, SQLDescribeCol, and SQLNumResultCols
Implementation (Programming)
SQL Server returns information about a result set before it returns the data in the result set.
The SQL Server driver returns this information to an application through the
SQLColAttributes, SQLDescribeCol, and SQLNumResultCols functions.
If an application calls any of these functions after a SELECT statement has been prepared
and before it has been executed, the SQL Server driver submits the SELECT statement with
the clause WHERE 1=2.    This forces SQL Server to generate a result set without any rows,
but with the information about the result set.
To add the clause WHERE 1=2 to the SELECT statement, the SQL Server driver:
1 Checks if the statement is a batch of statements separated by semi-colons.    If it is, the

driver deletes all statements except the first.
2 Searches for a WHERE or ORDER BY clause.    If one is found, the driver replaces the

clause and all of the statement following the clause with WHERE 1=2.
3 Adds WHERE 1=2 to the end of the statement if no WHERE or ORDER BY clause is found.

Note      SQLColAttributes, SQLDescribeCol, and SQLNumResultCols cannot return
information about a result set generated by a procedure if that procedure has been
prepared but not executed.    If the SELECT statement is the first statement in a batched
statement and the SQL Server native grammar is used (no semi-colons between
statements), the results of these functions are unpredictable.

SQLDriverConnect Implementation (Programming)
See Also

The SQLDriverConnect connection string uses the following keywords:
Keyword Description
DSN The name of the

data source as
listed in the
ODBC.INI file.

SERVER The name of the
server on the
network on which
the data source
resides.

UID The user login ID.
PWD The user-specified

password.
APP The name of the

application calling
SQLDriverConnec
t (optional).

WSID The workstation ID. 
Typically, this is the
network name of
the computer on
which the
application resides
(optional).

DATABASE The name of the
SQL Server
database (optional).

LANGUAGE The national
language to be
used by SQL Server.
This is used only by
SQL Server versions
4.2 and later
(optional).

SQLDriverConnect uses keyword values from the dialog box (if one is displayed).    If a
keyword value isn't set in the dialog box, SQLDriverConnect uses the value from the
connection string.    If the value isn't set in the connection string, it uses the value from the
ODBC.INI file.
If the fDriverCompletion argument is SQL_DRIVER_NOPROMPT or
SQL_DRIVER_COMPLETE_REQUIRED, the language or database comes from the connection
string, and the language or database is invalid, SQLDriverConnect returns SQL_ERROR.
If the fDriverCompletion argument is SQL_DRIVER_NOPROMPT or
SQL_DRIVER_COMPLETE_REQUIRED, the language or database comes from the ODBC.INI
file, and the language or database is invalid, SQLDriverConnect uses the default
language or database for the specified user ID and returns SQL_SUCCESS_WITH_INFO.
If the fDriverCompletion argument is SQL_DRIVER_COMPLETE or SQL_DRIVER_PROMPT and
the language or database is invalid, SQLDriverConnect redisplays the dialog box.

See Also
For Advanced Users

Connection Strings (Advanced)
For Programmers

SQLBrowseConnect Implementation (Programming)

SQLPrepare Implementation (Programming)
SQL Server doesn't directly support the Prepare/Execute model of ODBC.    To implement
this model, the SQL Server driver performs two separate operations related to statement
preparation.
In the first operation, SQLPrepare submits the statement to SQL Server with the SET
NOEXEC or SET PARSEONLY option (depending on the statement type).    SQL Server checks
the syntax of the statement and returns any errors.
In the second operation, a stored procedure is created from the statement, since stored
procedures are an efficient way to execute a statement more than once.    The procedure is
named "odbc#<user><identifier>", where <user> is up to 15 characters of the user name
and <identifier> is up to 10 digits that identify the statement.    The procedure is created at
prepare time if all parameters have been set, or at execute time if all parameters were not
set at prepare time or if any parameter has been reset since the procedure was created.   
Because of this, SQLExecute can return any errors that SQLPrepare can return.
If a user can't create a stored procedure for any reason (such as lack of permission), the
SQL Server driver doesn't use a stored procedure but submits the SQL statement each time
SQLExecute is called.

Limitations to ODBC API Functions (Programming)
The following functions in the SQL Server driver don't meet the specifications in the
Microsoft ODBC SDK Programmer's Reference.

Function Description
Catalog functions In all the catalog functions

except SQLTables, the table
or procedure qualifier
argument must specify the
current database.

SQLColumnPrivileges,
SQLForeignKeys,
SQLPrimaryKeys,
SQLStatistics, and
SQLTablePrivileges

These functions cannot be
used in manual-commit
mode because they create
temporary tables and
CREATE TABLE statements
aren't allowed in
transactions.

SQLProcedureColumns SQLProcedureColumns
doesn't return columns in
any result sets created by a
procedure.

SQLPutData SQLPutData can only
accept data for an
SQL_LONGVARBINARY
column as raw binary data,
not as binary data converted
to character data.

SQLSetStmtOption Because SQL Server uses a
signed 32-bit integer, the
SQL_MAX_LENGTH and
SQL_MAX_ROWS options in
SQLSetStmtOption cannot
be set higher than 2 to the
31st power minus 1
(2,147,483,647).    If a larger
value is specified, this value
is used.

SQLSpecialColumns SQLSpecialColumns
returns columns that can
have a NULL value
regardless of the setting of
fNullable.

Implementation Issues (Programming)
The following implementation-specific issues might affect the use of the SQL Server driver.

Issue Description
Active hstmt definition An hstmt is defined as active if it has

results pending.
Arithmetic errors SQL Server returns a data value of 0 for

arithmetic errors and doesn't report the
error until after all data has been
retrieved.

DB-Library The SQL Server driver doesn't use DB-
Library and therefore doesn't behave
like DB-Library.

Manual-commit mode
transactions

In manual-commit mode, the SQL Server
driver initiates a transaction when there
is no current transaction and a Data
Manipulation Language statement is
pending.

Remote procedure calls The SQL Server driver uses the remote
procedure call (RPC) facility in SQL
Server to invoke prepared statements
(which are stored as procedures),
procedures called with the ODBC
procedure extension, and the stored
procedures used to implement the
catalog functions.

SET TEXTSIZE So that the driver will be able to retrieve
text and image data in parts of any size,
it issues a SET TEXTSIZE statement
when it connects to SQL Server.    This
SET TEXTSIZE statement specifies that
up to 2 gigabytes of data can be
returned with a SELECT statement.

Setup DLL The ODBC Administrator calls the
function ConfigDSN when users
configure data sources.    For the SQL
Server driver, this function is in the
driver DLL (SQLSRVR.DLL).

Serializable transactions The SQL Server driver implements the
SQL_TXN_SERIALIZABLE transaction
isolation level by adding the HOLDLOCK
keyword after each table name in a
SELECT statement.    For more
information, see SELECT in the Microsoft
SQL Server Language Reference.

Active hstmt Definition (Programming)
The SQL Server driver can have only one active hstmt; it returns this information through
SQLGetInfo with the SQL_ACTIVE_STATEMENTS option.    An hstmt is defined as active if it
has results pending.    In this context, results are any information returned by SQL Server,
such as a result set or a count of the rows affected by an UPDATE statement.

Note      An hstmt's activity isn't related to its state.    For example, if a SELECT statement is
executed and it doesn't return any rows, the statement isn't active, since no results are
pending.    However, before the statement can be reexecuted, the cursor associated with it
must be closed with SQLFreeStmt.

Arithmetic Errors (Programming)
If an arithmetic error such as divide-by-zero or a numeric overflow occurs while data is
being retrieved, SQL Server returns a data value of 0 for the column and doesn't report the
error until after all data has been retrieved.    Consequently, SQLFetch (for bound data) or
SQLGetData (for unbound data) return the error only when the last row of data is
retrieved.    It is not possible for the SQL Server driver or an application to determine how
many errors occurred or in which rows or columns they occurred.
For example, suppose that MyTable has a single column (IntCol), which is of type
SQL_INTEGER and is bound to a SQL_C_SHORT storage location and that there are four rows
of data: 0, 1, 2, and 3.    The statement
SELECT 1/IntCol FROM MyTable
causes a divide-by-zero error when SQL Server attempts to resolve the expression 1/IntCol
for the row containing the value 0.    SQL Server sets the value for the row in the result set
to 0 (because an arithmetic error occurred).    The driver doesn't detect the error when it
fetches that row; it detects the error after it has fetched the last (fourth) row of data in the
result set, since that is when the error is returned by SQL Server.    Consequently, the driver
returns SQL_SUCCESS the first three times SQLFetch is called and SQL_ERROR the fourth
time SQLFetch is called.
For more information, see SET ARITHABORT and SET ARITHIGNORE in the Microsoft SQL
Server Language Reference.

Manual-Commit Mode Transactions (Programming)
When the SQL Server driver is in manual-commit mode, it initiates a transaction with a
BEGIN TRANSACTION statement when:

An SQL statement is pending.
There is no current transaction.
The pending SQL statement isn't a Data Definition Language (DDL) statement.

To commit or roll back a transaction in manual-commit mode, the application must call
SQLTransact.    The SQL Server driver sends a COMMIT TRANSACTION statement to commit
a transaction; it sends a ROLLBACK TRANSACTION statement to roll back a transaction.
A DDL statement can be executed only in manual-commit mode under one of the following
circumstances:

After manual commit mode has been set and before a Data Manipulation Language
(DML) statement has been executed, or

After a transaction has been committed or rolled back and before a DML statement
has been executed.
For more information about manual-commit mode, see SQLSetConnectOption in the
Microsoft ODBC SDK Programmer's Reference.

Remote Procedure Calls (Programming)
With tabular data stream (TDS) version 4.0 or later, the SQL Server driver uses the remote
procedure call (RPC) facility in SQL Server to invoke procedures rather than pass
procedures to SQL Server in an SQL statement.    A procedure can be a prepared statement
(which is stored as a procedure), a procedure called with the ODBC procedure extension, or
a stored procedure that the SQL Server driver uses to implement a catalog function.    RPCs
have the following advantages over procedures passed in an SQL statement:

RPCs are faster than procedures passed in an SQL statement.
RPCs can have output parameters; procedures passed in an SQL statement cannot.   

(A procedure can return a return value in either case.)
To invoke a statement as an RPC, an application

1 Constructs an SQL statement.
2 Calls SQLSetParam for each parameter in the statement.
3 Prepares the statement with SQLPrepare.
4 Executes the statement with SQLExecute.

To invoke a procedure as an RPC, an application
1 Constructs an SQL statement that uses the ODBC procedure syntax.    The statement

uses parameter markers for each input, input/output, and output parameter and for the
procedure return value (if any).

2 Calls SQLSetParam for each input, input/output, and output parameter and for the
procedure return value (if any).    For output parameters, cbColDef must be set to 65,536
plus the precision of the parameter or return value.

3 Executes the statement with SQLExecDirect.

Note      If an application submits a procedure using the SQL Server syntax (as opposed to
the ODBC procedure extension), the SQL Server driver passes the procedure call to SQL
Server as an SQL statement.

API
Application programming interface.    A set of routines that an application, such as Microsoft
Access, uses to request and carry out lower-level services.

character set
A character set is a set of 256 letters, numbers, and symbols specific to a country or
language. Each character set is defined by a table called a code page. An OEM (Original
Equipment Manufacturer) character set is any character set except the ANSI character set.
The ANSI character set (code page 1007) is the character set used by Microsoft Windows.

conformance level
Some applications can use only drivers that support certain levels of functionality, or
conformance levels.    For example, an application might require that drivers be able to
prompt the user for the password for a data source.    This ability is part of the Level 1
conformance level for the application programming interface (API).
Every ODBC driver conforms to one of three API levels (Core, Level 1, or Level 2) and one of
three SQL grammar levels (Minimum, Core, or Extended).    Drivers may support some of
the functionality in levels above their stated level.
For detailed information about conformance levels, programmers should see the Microsoft
ODBC SDK Programmer's Reference.

data source
A data source includes the data a user wants to access and the information needed to get
to that data.    Examples of data sources are:

A SQL Server database, the server on which it resides, and the network used to
access that server.

A directory containing a set of dBASE files you want to access.

DBMS
Database management system.    The software used to organize, analyze, search for,
update, and retrieve data.

DDL
Data definition language.    Any SQL statement that can be used to define data objects and
their attributes.    Examples include CREATE TABLE, DROP VIEW, and GRANT statements.

DLL
Dynamic-link library.    A set of routines that one or more applications can use to perform
common tasks.    The ODBC drivers are DLLs.

DML
Data manipulation language.    Any SQL statement that can be used to manipulate data.   
Examples include UPDATE, INSERT, and DELETE statements.

ODBC
Open Database Connectivity.    A Driver Manager and a set of ODBC drivers that enable
applications to access data using SQL as a standard language.

ODBC Driver Manager
A dynamic-link library (DLL) that provides access to ODBC drivers.

ODBC driver
A dynamic-link library (DLL) that an ODBC-enabled application, such as Microsoft Excel, can
use to gain access to a particular data source.    Each database management system
(DBMS), such as Microsoft SQL Server, requires a different driver.

SQL
Structured Query Language.    A language used for retrieving, updating, and managing
data.

SQL statement
A command written in Structured Query Language (SQL); also known as a query.    An SQL
statement specifies an operation to perform, such as SELECT, DELETE, or CREATE TABLE;
the tables and columns on which to perform that operation; and any constraints to that
operation.

translation option
An option that specifies how a translator translates data.    For example, a translation option
might specify the character sets between which a translator translates character data.    It
might also provide a key for encryption and decryption.

translator
A dynamic-link library (DLL) that translates all data passing between an application, such
as Microsoft Access, and a data source.    The most common use of a translator is to
translate character data between different character sets.    A translator can also perform
tasks such as encryption and decryption or compression and expansion.

