
Elate® Tool Programming Guide (VP)

Page 1

Version 1.22

Elate® Tool Programming Guide (VP)

 Page 2

1. INTRODUCTION ...4

2. ASSEMBLING A PROGRAM OR TOOL ..5

2.1. THE STRUCTURE OF AN APPLICATION SOURCE FILE..6

2.2. THE INCLUDE FILE...6

2.3. THE PRIMARY TOOL ..6

2.3.1. Setting up a Tool ..6

2.3.2. Accessing the Command Line Input Parameters ...7

2.3.3. Tidying up before closing a tool..8

2.4. NON-PRIMARY TOOLS ..8

3. STRUCTURE OF THE VP PROCESSOR ..9

3.1. REGISTER FILES ...9

3.1.1. Integer Registers ..9

3.1.2. Pointer Registers..9

3.2. THE ENT DIRECTIVE ...9

4. VP INSTRUCTIONS..11

4.1. THE BASICS ..11

4.2. EXPRESSIONS ...12

4.3. QCALL, GO, GOS AND NCALL...13

4.3.1. qcall ..13

4.3.2. go & gos ...13

4.3.3. ncall ..14

4.4. LABELS OR TAGS ..14

4.5. STRUCTURES AND MEMORY ALLOCATION...14

4.5.1. Global Variables ...15

4.5.2. Local Variables ...15

4.5.3. Allocated memory blocks ...16

4.5.4. Bitmap structures ...16

4.6. PROGRAM CONTROL ...17

4.6.1. Loops..17

4.6.2. Conditional code...18

4.7. CODING MACROS ..19

4.8. DEFINES ...19

4.9. TRACING...20

5. USING MACROS...21

5.1. ERROR CHECKING MACROS..21

5.2. LINKED LIST MACROS...21

Elate® Tool Programming Guide (VP)

 Page 3

5.3. GENERAL PURPOSE MACROS ...23

6. USING LIBRARIES ...24

7. NATIVE PROCESSOR CODING ..25

7.1. CHANGES TO AN APPLICATION SOURCE FILE ..25

7.1.1. Changing the tool definition ..25

7.2. TOOL SELECTION, VP OR NATIVE...25

8. SPECIAL REGISTERS..27

8.1. SP - STACK POINTER..27

8.2. PP - PARAMETER POINTER ...27

8.3. LP - LINK POINTER (RETURN JUMP ADDRESS)..28

8.4. GP - GLOBAL POINTER..28

9. PLANNED CHANGES...29

9.1. TYPE CHECKING ...29

9.2. TYPES ..29

9.3. REGISTER NAMES ...29

9.4. RECORDS ...29

9.5. REGDEF..30

9.6. CASTS ..30

9.7. EXTENDED ENT-RET SYNTAX..30

9.8. OTHER BUILTIN FUNCTIONS...31

10. SOURCE CODE SYNTAX...32

10.1. INCLUDE FILES ..32

10.2. TOOLS ..32

10.3. SOURCE FILE END MARKER (OPTIONAL) ..32

10.4. CALLING MECHANISMS...32

10.5. STRUCTURES ..32

11. MORE EXAMPLE CODE ..33

Elate® Tool Programming Guide (VP)

Page 4

1. Introduction
Elate® is a truly portable operating system. The underlying model is of a Virtual Machine or Processor
to which all Elate programs are written. Its unique translation technology takes the Virtual Processor
byte code and translates it into the native code of the target processor. Normally, translation into
native code only takes place when loaded from store, (e.g. disk or network). The translator knows
which processor it is running on and can generate the appropriate code. Programs for Elate can
currently be written in the assembler language of this virtual processor (VP code), or in C, C++ or the
Java™ language.

Elate is designed so that all application programs are written as small sections of code called tools,
which are executable pieces of code. The whole of Elate, including the kernel and all its functions, is
programmed this way.

An application is a tree structure of a number of dependent tools, as shown in Figure 1.1.

Main
Tool

Non-
Primary

Tool

Non-
Primary

Tool

Non-
Primary

Tool

Non-
Primary

Tool

Non-
Primary

Tool

Non-
Primary

Tool

Leaf
Tool

Leaf
Tool

Figure 1-1
Tools are re-entrant and multi-threaded, being discarded only if they are no longer referenced and only
if the memory is required. This ensures that Elate is also extremely memory efficient.

Elate already comes with over 6,500 tools coded and ready for use. These tools are typically less than
1K in size. They include kernel functions, ANSI C Libraries and many others. All are available to the
development programmer on the development platform.

This document covers the main aspects of tool programming when writing in assembler, whether VP,
the language of the Virtual Processor, or native. Please refer to the relevant Elate manuals for
Programming in C, C++ and Java™, and the appropriate Native Code manual provided by the
processor manufacturer.

Elate® Tool Programming Guide (VP)

 Page 5

2. Assembling a Program or Tool
To run an application or to call a tool, it must have first been assembled. This section of the manual
covers how to assemble and run a ‘hello world’ program. The Elate Operating System comes with a
number of example programs, and these can be found in the directory demo/example/, as can the
source file of 'Hello World'.

All Elate source files must be suffixed with .asm to denote that they are source programs. When they
are assembled to .00 byte code files they are unbound and in template form until they are loaded.

To assemble the program 'hello.asm' type the following at the Elate command prompt while in the root
directory:

$asm -v demo/example/hello

In the above example command line, the verbose option has been used (-v) to provide additional
diagnostic information. It is recommended that developers new to intent and Elate use this option.
If there were no errors, the assembler will have created a separate file with the name hello, suffixed
with .00, containing VP byte codes. To run this program, type at the command prompt, in the root
directory :

$demo/example/hello

The words "Hello World" are printed to the screen.
Note that the full pathname is required. The suffix is optional for asm files, whereas no .00 suffix
should be specified when running a tool, as shown in the example above.

Below is the source code of 'hello.asm'. Every element required for programming a tool is in this
program and is explained in the rest of this manual.

.include 'tao'
tool 'demo/example/hello',VP,TF_MAIN,1024,0

ent - : -
printf "hello world\n"
ret

toolend
.end ; the end of source directive is entirely optional

It is instructive to look at the disassembly of this code. This can be achieved by:

$ dis demo/example/hello.00 | less

Note that the disassembly is piped to the utility less to allow scrolling of the output.

Elate® Tool Programming Guide (VP)

 Page 6

2.1. The structure of an Application Source File

An application source file consists of any include file(s), the primary or standalone executable tool and
any non-primary tools. Non-primary tools coded in the same source file are held separately when
assembled and they need not be located in the same directory as the primary tool. On assembly, the
tools will be suffixed with .00 for tools coded in VP.

2.2. The Include File
Include files define the equates (constants) and macros needed for an application program. An
include file's default extension is .inc. All system include files can be found in the default include file
location: lang/asm/include/.

tao.inc defines standard system items for VP programs and is the most commonly used, non-
application specific, include file.

To specify an include file the .include directive is used with the name of the include file placed directly
after it within inverted commas. The assembler automatically prefixes this location if no path name is
specified and suffixes .inc unless another extension or "." is specified.

.include 'tao'

Application specific include files may be absolute, that is prefixed with a "/". File names with no path
("tao") are sought in the system include directory /lang/asm/include/. File names with a path
("myinclude/foobar") are absolute (i.e. taken relative to the root directory) whether they have a leading
"/" or not.

.include '/demo/example/foobar'

Application specific include files may also be relative, in which case the assembler searches from the
current directory location. As a rule, the assembler should normally be run from the root directory. This
is not strictly necessary, but is merely suggested as a good practice.

.include 'myinclude/foobar'

2.3. The Primary Tool
As described in the introduction, all application programs consist of one or more tools. The primary or
main tool is the tool that is able to be started as a lightweight process and it is this process which
executes non-primary tools. The main tool itself becomes a lightweight process when it is spawned by
the following:

• qcall sys/kn/proc/create
• qcall sys/kn/proc/start

The primary tool defines the stack size and global variable space, secondary tools are simply
subroutines which are linked together dynamically at runtime.

2.3.1. Setting up a Tool
Tools are referenced by name; this is defined after any include files or defined global variables, but
before the ent directive and code for that tool. As well as defining the tool name, it is also necessary to
define the Assembler Language, the Tool Type, the Stack Size and the Global Variable Size. These
are all specified on the same line, separated only by commas.

The Tool Name using the tool macro

Elate® Tool Programming Guide (VP)

 Page 7

Positioned after the tool macro, which is placed within single quotes, is the name by which the tool is
to be referenced, <pathname>/<name>. It should be noted that tool names are case sensitive. If two
tools are given the same name, differing only by case, they are two distinct and different files.

The Assembler Language
Tools must define the assembler language in which they are written. This can either be VP code or
native (e.g. I386) and this must be defined for each tool.

The Tool Flags
Each application or program has one tool defined as the main or executable tool. This is indicated by
using TF_MAIN. Once the program has been assembled, the name of the main tool is then the
executable file.

The Stack Size
The stack size (in bytes) which is to be allocated. This is application dependent but a minimum of
8192 bytes is recommended. Should the stack size be insufficient it can be changed by the
programmer. Also, although 8192 bytes is the suggested initial stack size, Elate has some support
for dynamically extending the stack at run time if it turns out not to be big enough.

The Global Variable Size
The size of the global variables space (in bytes) which must be allocated for each instance of the
application. Zero is permitted The global variable space can be the size of a structure defined before
the tool macro.

Example uses of tool macro for primary tools:

tool 'demo/example/hello',VP,TF_MAIN,8192,0

tool 'demo/example/hello',VP,TF_MAIN,16384,16

tool 'demo/example/hello',VP,TF_MAIN,65536,GLOBALS_SIZE

The toolend macro
When all the code for the tool has been written (after the final ret in the code, and any data which may
follow it) the end of the region started by the tool macro must be closed by the toolend macro. As it is
possible to have more than one tool in a source file, the programmer has the option to make the end
of the file more explicit by the use of an .end directive to conclude the file. Note that this is entirely
optional as the assembler will finish processing on reaching the end of the source file.

ret
toolend
.end ; end of source directive - optional

2.3.2. Accessing the Command Line Input Parameters
In certain circumstances, it is necessary for a tool or program to access the command line input
parameters. This is achieved by the use of the tool lib/argcargv. This tool returns C-style argc and
argv parameters. It is standard practice for all primary tools to have a call to lib/argcargv, although not
always required.

The lib/argcargv API requires no inputs but outputs are a pointer to the block of argument pointers to
the parameters (argv), which are fragments of the original command line string, and an integer (argc)
which is the number of parameters in the argv block. Parameter 0 is always the name of the program.

qcall lib/argcargv,(-:p0 i0)

Elate® Tool Programming Guide (VP)

 Page 8

2.3.3. Tidying up before closing a tool
Once all the code for the tool has been written and before any data, it is advisable to carry out some
general housekeeping procedures. Elate provides a tool for this called lib/exit, which automatically
performs these tasks. This tool has the same functionality as the C language exit() function.

lib/exit automatically releases any allocated memory blocks, as well as automatically closing any files
opened with lib/fopen. The standard I/O buffers are flushed and the stdin, stdout, stderr channels are
also closed.

lib/exit takes an integer to return to the shell, which is typically zero to indicate success. There are no
outputs from lib/exit. Although it is not obligatory to make a qcall to lib/exit, it is strongly recommended
that a call be made before closing the tool with ret and the toolend macro.

In order to make a successful return status to the shell, i0 is cleared before the qcall to lib/exit.

clr i0
qcall lib/exit,(i0:-)

This can also be done more simply as :

qcall lib/exit,(0:-)

2.4. Non-primary tools
Non-primary tools, that is, tools that are called from other tools, can be coded in the same source file
as the primary tool. The parameters TF_MAIN, stack size and global variables are not defined. A tool
file will be created, suffixed with 00 because it is coded in VP code. In all other ways, coding of non-
primary tools is the same as a main or primary tool. Note the equated constant “tool 'foo', VP” is used
to denote a non-primary tool.

tool 'demo/example/hello2'

Elate® Tool Programming Guide (VP)

Page 9

3. Structure of the VP Processor

3.1. Register Files
VP code was specifically designed to liberate the programmer from the restrictions that a limited
number of registers can impose. Therefore, each tool or sub-routine has its own set of five register
files. Each register file contains a specific type of data as can be seen in Table 3.1 below.

The programmer specifies at the beginning of a tool or subroutine, by use of the ‘ent’ directive, the
total number of register inputs and outputs required by the piece of code being written. This is done
for every tool or subroutine, effectively making an infinite number of registers available to the
developer programmer.

• i0 integer 32 bit
• l0 long 64 bit
• f0 float 32 bit
• d0 double 64 bit
• p0 pointer 32 bit

Table 3-1

3.1.1. Integer Registers
Integer registers may contain integer, bytes, characters etc. and they start at i0. The default for
integer registers is 32 bits. All VP implementations support 32 bit integers. Elate assumes 32-bit
integer on all instructions unless qualified otherwise. (See Chapter 5.1
The basics)

There is also a special purpose register, si, the signature integer. When making an ncall to a method
of an object, this special integer register is used. However, it should never be used by the application
programmer (see the manual 'Object Based Programming with Elate' for more information on making
ncalls).

3.1.2. Pointer Registers
Pointer registers are nominally 32 bits, like integer registers. All VP implementations support 32 bit
pointers. In addition to the general purpose pointer registers there are also 4 special pointer file
registers. Special registers are used in any place where ordinary registers are used. Care must be
taken as other instructions may alter them (see Chapter 10). These special registers are tabled
below. Examples of the use of these registers are given later.

sp stack pointer
gp global pointer
lp link pointer
pp parameter pointer

3.2. The ent directive
The number of registers and the type required are specified at the beginning of a non-primary tool or
routine. All tools and routines must have an entry directive as their first instruction before any other
code. The standard entry point is ent.

Parameters are passed by any registers in each register file, with parameters appearing in low number
registers in the respective files. Register files are local to a routine and unless they are explicitly

Elate® Tool Programming Guide (VP)

 Page 10

passed to the called routine, they will not be visible in that routine and will be preserved when control is
returned to the caller.

Parameters passed in and out must be specified on the entry instruction. Primary tools with the
TF_MAIN bit set have an ent directive, which does not have any registers for input nor for output as
the routine is self contained. All other tools must specify exactly which registers are to be used. All
registers used must be contiguous starting from 0. The parameters are separated by a ‘:’ with the
inputs first and the outputs second.

A single '-' denotes no parameters, so a primary tool ent directive would be:

ent -:-

A non-primary tool ent directive might be:

ent p0 p1 i0 i1:i0

Local registers need not be specified, as this is taken care of automatically by the assembler. No
other instructions should be placed before the ent directive.

A further three entry directives are available and are only to be used in the special circumstances
outlined below:

entl leaf tools and subroutines only (ones that call no other tools or subroutines)
entih interrupt handlers only
entd defaultmethod in object programming only

Elate® Tool Programming Guide (VP)

 Page 11

4. VP Instructions

4.1. The basics
Instruction parameters can take three specific forms: constant, register or expression. Instructions are
encoded as a single byte followed by parameters. One of the most commonly used instructions is cpy,
which is used for both register and memory access as well as moving constants into registers or
memory.

The different qualifiers for instructions of this kind are shown in Table 4.1 (byte, 16 bit short etc). A
qualifier is only required in cases where a register other than 32 bit integers is required, and the
assembler is unable to automatically determine which form of register is required. It is also important
to ensure that data in memory is appropriately aligned. Note that this also applies to structures. The
correct alignment for each data type, with examples of how qualifiers are used, are in Table 4.2.

.b = byte

.s = 16 bit short

.i = 32 bit integer

.l = 64 bit long integer

.f = 32 bit float

.d = 64 bit double float

.p = 32 bit pointer

Table 4-1

cpy [p0],i0 alignment: 4 bytes
cpy.i [p0],i0 alignment: 4 bytes
cpy.b [p0],i0 alignment: 1 byte
cpy.s [p0],i0 alignment: 2 bytes
cpy.l [p0],l0 alignment: 8 bytes
cpy.f [p0],f0 alignment: 4 bytes
cpy.d [p0],d0 alignment: 8 bytes
cpy.p [p0],p2 alignment: 4 bytes

Table 4-2

To copy the contents of p0 into p1:

cpy.p p0,p1

To copy the contents in the memory address pointed to by p0 into i0:

cpy [p0],i0

To copy the contents of i0 to the contents of the memory location pointed to by p1:

cpy i0,[p1]

To copy 42 into i0:

cpy 42,i0

To copy 99 into the memory location pointed to by the pointer p0:

cpy 99,[p0]

Elate® Tool Programming Guide (VP)

 Page 12

There is also a non-aligned version of the cpy command. To see how this works examine the following
code, assuming p1 and p0 are integer aligned:

cpy [p0],[p1+1]

This statement would cause Elate to execute a hard-coded breakpoint when running the checking
translator version of the build under the control of ebug (and possibly a system crash when using the
non checking translator version of the build). This is because the destination is not integer aligned; it
may be the programmer actually wanted to do the following:

cpy [p0],[p1+4]

This code would run perfectly. If a non-aligned copy were actually required then the correct code
would be:

cpy.ni [p0],[p1+1]

Because there is a requirement that longs are long-aligned, and there is also a cpy.nl instruction to
manipulate unaligned longs. Both the cpy.ni and cpy.nl operators are likely to decrease efficiency.

4.2. Expressions
More complex operations are generated by expressions. Expressions may contain expressions within
themselves. Most VP operations are performed by expressions that are copied using the cpy
instruction to a destination register. By using an expression on the left, much more complicated
operations can be performed:

To add 6 to i1 and to place the answer in i3:

cpy (i1 add 6),i3

It is important to note once again that expressions themselves can have other expressions within
them. Therefore, to multiply i2 by 6 and then add to i1, placing the answer in i3, would be coded as
follows:

cpy (i1 add(i2 mul 6)),i3

The assembler allows for the following arithmetical symbols within expressions:

+ add
- subtract
* multiply
/ divide

The precedence of the operators in expressions is now as in the C language.

For more detailed information on expressions please refer to the VP reference documentation.

Macros are provided for some mathematical operations such as add:

add 6, i0

The above line generates the following code:

cpy (i0 add 6),i0

Elate® Tool Programming Guide (VP)

 Page 13

4.3. qcall, go, gos and ncall
qcall, go, gos and ncall are four ways of transferring execution to another section of code.

4.3.1. qcall
The qcall macro takes the name of a tool as a parameter, followed by the input and output registers.
The programmer specifies appropriate registers for each individual application or routine. Local
registers need not have been specified at the beginning of the tool.

qcall lib/argcargv,(-:p0 i0)

The tool is loaded and bound when the application referencing it is loaded. It will remain available in
local memory for at least as long as the referencing application is in memory. It will not be relocated in
memory whilst the caller is present.

Please note that toolnames are not filenames. Although the mapping from toolname to filename is
simple, in that the '/' is used as a directory seperator by the tool-loader, toolnames are simply long
names. This is very similar to the manner in which the Java language makes use of '.' as a separator,
which is converted to '/' for loading from disk). The effect of this is that toolnames are absolute within
the Elate filetree, and that tools cannot be moved around within the Elate filetree.

A qcall has the following features:

It may be non-virtual
This means that the tool was loaded and bound when the object referencing it was loaded. It will
remain available in local memory at least as long as the referencing object is in memory. It will not be
relocated in memory whilst the caller is present.
It may be virtual
This means that the required tool need not be in local memory at the time it is required. If the tool is
not available in local memory the tool is loaded and bound before it is available for use. On exit from
the tool its memory space may be deallocated by the kernel in order to free local memory space.
While the tool is referenced it will remain in memory, however it cannot be assumed that this will be
the case when the tool is no longer referenced.
It may be semi-virtual (VIRTUAL+FIXUP)
This means that, in the same way as a virtual tool, it is only loaded on the first call to it, and not when
the caller is loaded, but is then treated as non-virtual. i.e. it remains in memory until no longer
referenced by the calling tool.
It may be embeddable
This means that the entire body of the subtool is inserted in-line. Please note that embedding should
be used sparingly. It is normally used to qcall a tool where a native version exists that is simply a
single instruction. For more information about this command please see sys/tr/embed.html with the
Elate release.

e.g.

qcall demo/mytool,(p0:i0) ;normal == non virtual
qcall demo/mytool,(p0:i0),RF_VIRTUAL ;virtual
qcall demo/mytool,(p0:i0),RF_VIRTUAL+RF_FIXUP ;virtual+fixup
qcall demo/mytool,(p0:i0),RF_EMBED ;embed

4.3.2. go & gos
go transfers execution unconditionally to a label within the same ent block, so no register passing is
required.

go next_routine

Elate® Tool Programming Guide (VP)

 Page 14

gos transfers execution to a label placed just before the start of a different ent block. In this case, it
is necessary to specify the registers to be passed.

gos sub_procedure,(inputs:outputs)

4.3.3. ncall
This is used to call a named method of a class. The input and output registers must be specified.

ncall p0,drink,(p0:i0)

Please note that sometimes the return data from a tool, subroutine or ncall is not required. This can
be identified by using the zap operator '~' (tilde). This is an optimisation that tells Elate not to bother
returning parameters on this call, thereby increasing speed and saving stack space.
e.g.

qcall demo/example/mytool,(i0 : i~)

4.4. Labels or Tags
Labels in VP are special tags, which identify a location. Non-data tags are referenced by go and gos
instructions:

gos go_subprocedure

Data tags are referenced by cpy.

cpy [data_label], i0

Tags are specified with a trailing colon ':' Data tags are labels in the data section, which is introduced
with the .data directive data.

str_label: dc.b “some bytes”,0
.align ; makes sure of word align

data_label: dc.i 12,34,56

Note the use of the .align directive to ensure that data is correctly word aligned.

4.5. Structures and Memory Allocation
The VP assembler supports structures in order to simplify defining and accessing variables.
Structures can be used to define the format of:

• Global variables
• Local variables
• Allocated memory blocks

A structure definition does not reserve memory space anywhere but only defines the names, offsets
and size of a structure. When some memory of the given size is allocated, the fields can be referred
to by their names, rather than by offset.

There is a balance between having ‘packed’ structures and aligned integers (which may provide better
performance). When the structure has been ‘packed’ (without any padding to ensure integers are
integer aligned), cpy.ni and cpy.nl should be used (with consequent decreases in performance on
some target platforms).

Please note that, it is necessary to use nint32 (or other corresponding directive) to define an int32 at
an unaligned offset, as using int32 (or other corresponding directive) in cases where the next offset is

Elate® Tool Programming Guide (VP)

 Page 15

unaligned will generate an error. All of int16/int32/int64/float32/float64 have an "n" prefixed version. For
further information on this, please see 'The Elate Assembler Reference Manual' (app/asm/ref.html).

In the case of a mixed structure, any longs and doubles should precede integers and floats. These
should be grouped together, by decreasing size (anything that is 8 aligned going before anything that
is four aligned, and so on). This is because the start memory blocks, i.e. malloc, are initially long
aligned, and then proceed onwards.

4.5.1. Global Variables
A global structure is defined before the tool macro to allow the variables to be managed by the kernel.
We define the structure to begin at offset 0 (blank). The variables required are listed, specifying the
type and the name. size names the current structure offset.

structure
int32 NAMEANY1_A
int32 NAMEANY1_B
int32 NAMEANY1_C

size NAMEANY1_SIZE

In the tool definition the size of the structure would be NAMEANY1_SIZE.

tool ‘demo/example/hello’,VP,TF_MAIN,8192,NAMEANY1_SIZE

The named global variables can now be accessed by using gp, the globals pointer.

…
cpy 1,[gp+NAMEANY1_A]
cpy 2,[gp+NAMEANY1_B]
clr [gp+NAMEANY1_C]
…

4.5.2. Local Variables
The structure is defined inside the tool if it is a local structure. We define the structure to begin at
offset 0 (blank) and list the variables required specifying the type and the name. size names the
current structure offset.

structure
int32 NAMEANY2_A
int32 NAMEANY2_B
int32 NAMEANY2_C

size NAMEANY2_SIZE

The structure can then be allocated memory from the stack inside the tool :

allocstruct NAMEANY2_SIZE ; allocate NAMEANY2_SIZE bytes on stack

The structure is accessed by using the stack pointer, sp. However, if more than one structure is to be
allocated on the stack, you must preserve the stack pointer and use standard pointer registers instead.
To allocate a structure using a pointer register:

allocstruct NAMEANY2_SIZE,p0
allocstruct NAMEANYOTHER_SIZE,p1

To free space allocated on the stack by allocstruct use freestruct n, where n is the number of bytes to
free. Note that allocstruct/freestruct pairs must be matched and nested. The exception to this is at the
end of sub-routines, where it is possible to leave out the freestruct instruction – this is because ret
frees up any memory allocated on the stack. It is also possible to use library functions such as
lib/malloc and lib/free to allocate memory.

Elate® Tool Programming Guide (VP)

 Page 16

4.5.3. Allocated memory blocks
Memory blocks can be allocated using library functions such as lib/malloc or the underlying kernel
functions such as sys/kn/mem/allocdata.

By way of example, consider a simple buffer, declared as a global structure :

structure
pointer BUF_START
int32 BUF_SZ

size BUF

As the above structure is global, there is no need to specifically allocate memory for the structure. It is
necessary to allocate memory for the buffer itself and its size may well be decided at run time.
To specify the size of the buffer, for example 1k :

cpy 1024,[gp+BUF_SZ]

To allocate memory for the buffer :

cpy [gp+BUF_SZ],i0
qcall sys/kn/mem/allocdata,(i0 : p0 i0)

The returned pointer is then stored in the global variable for later use :

cpy.p p0,[gp+BUF_START]

When the buffer is no longer required, the memory can be deallocated thus :

cpy [gp+BUF_START],p0
qcall sys/kn/mem/free,(p0 : -)

Alternatively, the memory could have been allocated using lib/malloc :

qcall lib/malloc,(i0 : p0)

Freeing the memory block after calling lib/malloc is done by making a qcall to lib/free. However,
advantage can be made of the call to lib/exit at the end of the tool (see Chapter 3.2.3) and allowing
this to free the C library allocated memory blocks instead.

4.5.4. Bitmap structures

It is possible to create bit maps or bit field structures in VP. These make use of the dbitstart and dbit
assembler macros. dbitstart indicates the start of the structure and dbit defines the name of the actual
bit for ease of reference in the code. For example:

dbitstart ; mask,bit
dbit FLAG0,BFLAG0
dbit FLAG1,BFLAG1
dbit FLAG2,BFLAG2
dbit FLAG3,BFLAG3
dbit FLAG4,BFLAG4
dbit FLAG5,BFLAG5
dbit FLAG6,BFLAG6
dbit FLAG7,BFLAG7

In the above example the values associated with the mask names would be as follows:

Name Value

Elate® Tool Programming Guide (VP)

 Page 17

FLAG0 1
FLAG1 2
FLAG2 4
FLAG3 8
FLAG4 16
FLAG5 32
FLAG6 64
FLAG7 128

And for the bit names:

Name Value
BFLAG0 0
BFLAG1 1
BFLAG2 2
BFLAG3 3
BFLAG4 4
BFLAG5 5
BFLAG6 6
BFLAG7 7

This aids considerably when performing bitwise operations on data.

4.6. Program Control

4.6.1. Loops
There are several types of loop construct in VP. They are implemented as macros. In the following
notes the [.x] indicates the data type that is being tested e.g. .p for pointer. For integer .i is optional.

while – endwhile
while[.x] <condition is true>

:
endwhile

Note that a test occurs before entering the loop so the code inside the loop may or may not run.

for – next

for [<register>|<constant>,]<register>
:

next <register>

The for macro basically sets up a label at the start of the loop. If applicable it will also copy a constant
or the contents of another register into the counter register. Note that <register> can be integer or
long. The next macro will decrement the counter register contents and jump to the label set up by the
for macro, as long as the contents of the counter register is greater than zero.

repeat-until

repeat
:

until[.x] <condition>

Note that the body of the repeat loop is always entered at least once.

loop-endloop

loop

Elate® Tool Programming Guide (VP)

 Page 18

if i1=1
break;

endif
:
breakif i0 = 0

endloop

This forms an unconditional loop. To exit the loop you must use a break or breakif statement.

As well as the break statement it is also possible to control loop iteration through use of the continue
statement. This will cause the loop to jump to the next iteration of the loop, but does not necessarily
terminate the loop.

4.6.2. Conditional code
To support conditional code execution VP has the following constructs. As before [.x] is the data type
being tested and for integer this is optional.

if-elseif-else-endif

if[.x] <condition>
:

elseif[.x] <condition>
:

else
:

endif

switch-whencase-otherwise-case-endswitch

The basic syntax is :

switch
whencase <condition1>
whencase <condition2>
otherwise

:
break

case <condition1>
:
break

case <condition2>
:
break

endswitch

An example, switch.asm, is included in the /demo/example directory of the intent release.

bool macro

The bool macro provides a convenient way of performing a conditional jump.
The basic syntax is :

bool <condition>,label

For example :

bool i0=0,exit

Elate® Tool Programming Guide (VP)

 Page 19

4.7. Coding Macros
VP allows the programmer to develop a range of macros to enhance programming productivity.
The general format of a macro is :

.macro <macroname>
; body of macro

.endm

An example of a trivial macro is shown below :

.macro mymacro
.check %n = 3
clr %3
add 3,%1
add 3,%2
add %1,%3
add %2,%3

.endm

The macro could then be called from VP code in the following manner :

mymacro i0,i1,i2

In this case 3 would be added to i0 and i1. These two registers are then added together with the result
placed in i2.

Note the use of the .check directive. This checks the calls to the macro at assembly time and
validates the number of parameters passed. Should a call have an incorrect number of parameters, in
the above example, an assembler error message will be displayed.

4.8. Defines
It is possible to designate labels to registers using the defbegin-defend construct. This can make code
more readable in certain circumstances. The syntax is demonstrated by the following example :

defbegin 0
defp my_ptr
defi an_integer
defi a_byte
;
; code using the above register names
;

defend

In the above examples the label my_ptr is allocated to p0, an_integer is allocated to i0 and a_byte is
allocated to i1.

Code can then manipulate the defined labels as if they were registers e.g. cpy 2,an_integer. On the
defend the registers will correctly be deallocated and can then be used if required in the normal way.

It is also possible to have nested def blocks. Note the use of 0 after the defbegin. This indicates that
this is the outer def block, or top level. This can provide an extra safeguard in complex programs as if
the programmer tries to define another outer block, with defbegin 0, the assembler will give an error.

Nested blocks arise where you want to use some registers temporarily and would like the assembler to
deallocate the registers so that they can be used elsewhere in the program. The following example
illustrates this point :

defbegin 0
defi nVar1

Elate® Tool Programming Guide (VP)

 Page 20

defp pVar2
:
if nVar1=1

; I need some new registers just for this section of code
defbegin

defi nLoc1
defp pLoc2
; use these variables just in here
cpy –1,nLoc1
:

defend
; defend will make sure that
; the registers allocated to nLoc1 and
; pLoc2 are now made available
;for use in the rest of the program.

endif
:
:

defend

4.9. Tracing
To assist with debugging VP programs several tracing facilities are available.

Trace device
The trace device is used for troubleshooting application programs. It is typically used for displaying
debugging information and error messages. In order to write messages to the trace device, the
programmer can use the tracef macro, discussed below.

By default the trace device is the screen but can be redefined to be a file using the shell command
ftrace <filename>. For example, ftrace myfile.txt would cause trace output to go to the file myfile.txt
rather than the screen. In order to set the trace device back to the screen again simply type ftrace.

Tracef
This macro enables messages and data to be written to the trace device. The syntax is identical to
printf, for example VP source can contain a statement such as :

tracef “error code : %d\n”,err_code

With tracef the characters are printed directly to the trace device, without buffering. The tracef macro
has code that waits for an acknowledgement from the trace device, to say that the characters have
been printed by the trace device. Note that this behaviour is blocking in nature. This is unlike printf
where characters are printed to a buffer that is flushed only when the buffer is full or when the buffer is
flushed specifically by use of a library function. Note that printf is non-blocking in nature. printf is thus
not ideal for debug purposes as the next instruction after a printf may cause the program to crash,
however the characters that printf was to print may not yet have printed (flushed from buffer), making
tracing of execution with printf very difficult. Tracef was designed to circumvent this problem. Both
printf and tracef will work in a multi-processor environment where the trace device (for ftrace) or stdout
(for printf) are on a different processor to the one executing the trace statement.

ktrace.log
This is the trace device for the kernel developer. If you are developing low-level code and your system
should crash at any point, looking at ktrace.log, which can be found in the root directory, may provide
useful information.

Elate® Tool Programming Guide (VP)

 Page 21

5. Using macros
As seen earlier the VP programmer can develop macros to aid productivity as well as readability of
code. It has also been indicated that many of the programming structures, for instance, while endwhile
are in fact implemented as macros. There are also a large number of predefined macros to assist in
common programming tasks, for example :

• error handling
• linked list manipulation
• general purpose e.g. multi-byte to wide characters

5.1. Error checking macros
These include macros such as :

• boolerrno
• boolnoterrno
• breakiferrno
• iferrno
• errorf

The first four are examples of macros that test for errnos. These macros can be used in conjunction
with routines that return an errno (a value in the range -128 to -1) when some error condition has been
identified within that routine.

By way of example consider a function that configures a small text buffer. It will return a pointer to that
buffer assuming that memory could be allocated and internal initialisation could be completed. If the
routine is successful it returns a valid pointer, but if not it returns a value in the range –1 to –128 in the
register, say p0. The error checking code would be as follows :

:
qcall demo/example/makebuff,(i0:p0)
boolerrno p0,buff_fail
:

boolerrno checks the value in p0, and if it is in the range –1 to –128 it causes a jump to the label
buff_fail. As can be seen from the list above there are variations on this basic macro.

Another useful macro is errorf. This macro allows a formatted output of data along the lines of printf or
tracef. However, its output is to the file error.log, which is located in the root of the Elate directory
structure. It is useful for logging error codes and general post-mortem debugging.

iferrno i0
errorf “Error %d occured.\n”,i0

endif

5.2. Linked list macros
A common programming task is to manipulate a number of objects in a linked list data structure. Elate
has a number of macros already coded to reduce the effort required to handle linked lists.

These are given here :
• initlist -- initialises linked list
• addhead -- add node to head of list
• addtail -- add node to tail of list
• addnode -- addnode after node specified
• addnodeb -- add node before node specified

Elate® Tool Programming Guide (VP)

 Page 22

• succ -- get next node ptr
• succnode -- get next node ptr jump to label if at end of list
• pred -- get ptr to prev node
• prednode -- get ptr to prev node jump to label if at head
• remhead -- remove node at head of list jump to label if list empty
• remove -- remove specified node from list

In order to use these macros the programmer has to understand the data structures that they
manipulate. There are three main structures :

• List header -- defined in equs.inc
• List node -- defined in equs.inc
• User List node -- user defined

The list header is defined as :

structure
pointer LH_HEAD
pointer LH_TAIL
pointer LH_TAILPRED

size LH_SIZE

The list node is defined as :

structure
pointer LN_SUCC
pointer LN_PRED

size LN_SIZE

The user defined node is application specific but an example is :

structure
struct NDHDR,LN_SIZE ; name, size
int32 APPDATA

size ND_SIZE

Note that the basic list node structure has been embedded in the user node structure to permit list
manipulation.

Before using the list macros, it is necessary to allocate memory for the list head :

cpy LH_SIZE,i0
qcall lib/malloc,(i0:p0)
; insert NULL error checking code

We can then initialise the list with initlist p0. This provides us with an empty list. To add items we
allocate memory for the nodes to add and then use the appropriate macro, for example :

cpy ND_SIZE,i0
qcall lib/malloc,(i0:p1)
; insert NULL error checking code
cpy 1234,[p1+APPDATA]

At this point the node has been created and initialised. To add it to the list :

addhead p0,p1,p2

Elate® Tool Programming Guide (VP)

 Page 23

p0 points to the list, p1 points at the node to add and p2 is a scratch register (used by the macro
internally). The macros to remove nodes are used in a similar fashion.

To walk along the list the macros succ, succnode, pred, prednode are provided. To illustrate their use
consider succnode. This macro is given three parameters, a pointer register to receive the pointer to
the next node in the list, a pointer register that points to the current node and finally a label. The label
provides a useful exception handling facility as succnode causes execution to jump to this label should
the current node be at the tail of the list (in which case there is not a ‘next node’).
For example :

:
succnode p2,p1,tail_list
:

tail_list :
printf “There isn’t a next node – you are at the list end.\n”
go exit

The current node is in p1 and the next node comes back in p2. If p1 points to the current tail of the list
then a jump to tail_list occurs.

5.3. General purpose macros
These consist of macros to carry out such tasks as:

• conversion from multi-byte to wide characters e.g. mbtowc
• input/output e.g. fprintf

For further details, please refer to the ‘VP Reference Manual’.

Elate® Tool Programming Guide (VP)

 Page 24

6. Using Libraries
VP programmers have at their disposal a powerful array of built in library functions. Currently Elate has
a complete library of ANSI C functions, as well as a significant part of the POSIX specification. The
library functions are called using a qcall as described earlier in this manual.

These library functions are fully documented in the Elate build documentation. Note that this
documents ANSI and POSIX functions.

By way of example, the following code demonstrates the use of some POSIX directory functions.

:
cpy.p dirname,p0
qcall lib/opendir,(p0:p1)
if.p p1=NULL

printf “Failed to open %s\n”,dirname
go exit

endif
:
loop
qcall lib/readdir,(p1:p2)

if.p p2=NULL
printf “End of listing.\n”
break

endif
add DE_NAME,p2
printf “-- %s\n”,p2

endloop
:
qcall lib/closedir,(p1:i0)

Note that library functions are implemented as tools in VP and are thus called in the same way as user
defined tools. The library tools have been developed in VP for maximum portability and performance.

Elate® Tool Programming Guide (VP)

 Page 25

7. Native Processor Coding
The information in this section is not normally needed by programmers writing only for the Elate Virtual
Machine. It is intended for use by programmers writing device drivers, porting the kernel or writing
optimised native code sections.

7.1. Changes to an Application Source File
In order to be able to write a tool in native code a few simple changes are required.
The example below would be required for writing in i386:

.include 'tao'

7.1.1. Changing the tool definition
The language in which the tool is going to be written must be specified, after the tool macro and the
tool name, in place of VP.

tool 'demo/example/hello',i386

No further changes are required and the rest of the tool is coded in the language for the specific
processor.

When assembled, a tool file is created with a suffix suitable to the target processor. Table 7-1 lists the
processors currently available with their appropriate suffixes.

7.2. Tool Selection, VP or native
At load time Elate's unique technology, dynamic binding, searches the tree of tool dependencies.
Elate selects all the tools defined, only taking VP (00) tools if a tool with the same processor number
as the target processor is not available. It is therefore strongly recommended that an equivalent VP
tool is created for each native tool, to ensure portability. Please note that this section is subject to
rapid alterations.

• 00 VP
• 01 n/a
• 02 PSC-1000
• 03 i86 common
• 04 i386
• 05 SH-4
• 06 Thumb
• 07 n/a
• 08 arm6
• 09 Arm6f
• 10 SA110
• 11 R4000_L
• 12 R4000_B
• 13 I386f
• 14 I486
• 15 Pentium
• 16 PPC_B
• 17 SH3
• 18 n/a
• 19 PPC_L
• 20 n/a
• 21 R4100_L
• 22 R4100_B

Elate® Tool Programming Guide (VP)

 Page 26

• 23 PentMMX
• 24 Pent II
• 25 V850
• 26 CF52xx
• 27 V850e

Table 7-1
In the above table, n/a generally refers to a processor port that is commercially sensitive.

Elate® Tool Programming Guide (VP)

 Page 27

8. Special Registers

8.1. sp - stack pointer
The stack pointer points to the lowest address containing valid data. If the developer programmer
wishes to manipulate the stack directly, it should be noted that it is a downward growing stack. (See
Figure 8-1.) It is always aligned to a CPU-specific alignment and this alignment is automatically
preserved whenever it is adjusted.

Downward growing stack

Figure 8-1

8.2. pp - parameter pointer
The parameter pointer is a special read only register, which is set by routine entry code to the stack
pointer of the caller before the call occurred. It can be used for passing parameters via the stack.
Note that the standard parameter passing convention uses registers, not stack, in the vast majority of
cases. Usually this is not implemented as a physical register, rather it is a known offset from sp.
Therefore, pp equals the value of sp immediately before a go-sub.

. . .
structure
int32 param1
int32 param2
int32 param3
size ppdemo_size

allocstruct ppdemo_size, p0
cpy 1,[p0+param1]
cpy 2,[p0+param2]
cpy 3,[p0+param3]
gos ppdemo,(-:i0)
tracef "result = %d",i0
freestruct ppdemo_size

. . .
ppdemo:
ent -:i0
cpy [pp+param1],i1
cpy [pp+param2],i2
cpy [pp+param3],i0
add i1,i2
mul i2,i0
ret

Elate® Tool Programming Guide (VP)

 Page 28

8.3. lp - link pointer (return jump address)
The link pointer contains the return address which the routine should jump to after tidying up the stack
in a ret. This register may be read and written, however changing it to point elsewhere will cause ret to
return to a different location.

8.4. gp - global pointer
The global pointer (gp) points to an area of thread-wide memory. The size of the user definable area is
specified in the main tool. (See Chapter 4.5.1 Global Variables). As the global pointer is set up by the
kernel it should never be modified by any other code. This is because gp points to an area that
contains both the user data whose size is specified in the main tool, and some data the kernel needs
to maintain the thread

Elate® Tool Programming Guide (VP)

 Page 29

9. Planned Changes
Future releases of Elate are intended to use a new version of the assembler syntax. This improved
version allows the programmer to deal in abstract data types, in a similar fashion to C or Pascal. The
assembler keeps track of these types and enforces type-equivalence over assignment. Other
features, listed below, have been added to support the typing.

9.1. Type Checking
The major change to the assembler is the addition of strong typing. This is essentially the rigorous
enforcement of type rules with no exceptions. All types are known at assembly time. The advantage of
this is that strong typing catches more errors at assembly time than weak typing, resulting in fewer
run-time exceptions

Where an incorrect type is used an error will be thrown. Registers may be assigned names using
regdef. This command replaces the defines (defi, defp, etc.) previously used.

It should be noted that the new assembler syntax automatically generates the correct kind of load for
instructions such as cpy. When using the new assembler, it is therefore unnecessary to specify a
qualifier.

9.2. Types
The typedef instruction (borrowed from C) introduces user types to the assembled module. Here is an
example:

typedef int32 int

This is built into the system include files, so a new type int is available to all assembler programs. Now
we can define a new type:

typedef int typeone

This introduces a new type typeone based on int. Note, at this point we have no variables, registers or
other storage locations associated with typeone, just a type. If we define a new type, also based on int:

typedef int newtype

the new type will not be assignment-compatible with a variable of type typeone despite their being
defined on the same base type. This is different from C, and follows to the philosophy that naming a
new type implies some conceptual difference from other types.

9.3. Register Names
The regdef instruction lets the programmer tie a new (user-defined) type to a register. For example:

regdef typeone examplereg

Now examplereg is a register to which the programmer can assign a value of ‘typeone.’

9.4. Records
In future releases the structure syntax is to be replaced by a new record syntax. Records create a
separate namespace for their members. While the members of a structure are individual entities
within the assembler, a record and its members are tied together as a single conceptual unit.

record widgettype
int A

Elate® Tool Programming Guide (VP)

 Page 30

typeone value
short C

endrecord

The record above is an abstract entity, as was the ‘structure’..
Some attributes are allowed on the record definition, and on the definition of its individual members.
These are extends, unaligned, align, and a constant repeat count (in square brackets).

During use, a pointer register will generally be declared to point to a record of the appropriate type.
This is done using the regdef command:

9.5. Regdef

regdef widgettype [widget]

Which would reserve a VP pointer register to be used for accessing the above record. Note the use of
square brackets to denote a reference: this should be read widgettype is the type of [widget] (note,
again, the C connection). Somewhere, then, the programmer would assign an address to the register
before referencing the record’s members.

cpy widget_address, widget

or perhaps

qcall lib/malloc, (sizeof (widgettype) : widget)

(sizeof is an assembler function added for the strict typing)
These variables would then be accessed as below:

cpy 1, [widget.A]
cpy examplereg, [widget.value]

Note that with the new syntax the assembler would automatically substitute ‘cpy.s’ for ‘cpy’ when used
with the short variable C. There is therefore no need for the programmer to remember to add the
appropriate qualifier for to this kind of command.

9.6. Casts
Casts are a construct to specify that an expression's value should be converted to a different type.
These follow the C style. Two points worth noting are: they always succeed at the strict typing level,
and they never generate any type conversion code. If the resulting VP code attempts to copy an int to
a float, this would fail at the basic VP assembler level.

cpy (typeone)numnewtypes, examplereg

cpy (ftypeone)(i2f numnewteypes), fexamplereg

As can be seen in the second example, it is necessary to explicitly include any type conversions that
require some action at the VP level.

9.7. Extended ent-ret Syntax
The syntax for the ent-ret combination provided by Tao’s new assembler allows comma-separated
lists of arbitrary expressions, and type checking of returned arguments against those expected by the
ent line. It can also specify its input arguments in a manner similar to the regdef instruction, and these
arguments may then be used within the code. This prevents register input/output clashes, as there
are no identifiers associated with the output arguments.

Elate® Tool Programming Guide (VP)

 Page 31

When using the new syntax of ent, it is necessary to use the corresponding typed version of ret. The
arguments are type-checked against the output types specified on the ent line. It should be noted that
it is not possible to assume any evaluation order.

There is also a new directive entend which denotes the end of an ent block. This makes it easier for
the assembler to keep track of scopes, and introduces a marker for the programmer, whereas before
an ent block was terminated by the next ent directive or the end of the tool, etc.

A non-primary tool ent directive might therefore be:

ent (string a, char [b], int c, int d : int, string, char[])

Note the use of parentheses. The corresponding ret instruction is of the form:

ret (-1, a, b)

In the above example, a and b would have to be p0 and p1, because the parameter passing regime
demands it. The ret instruction would simply copy –1 into i0 and return.

ret (-1, (string)b, (char [])a)

This is casting the return types to stop the assembler objecting, and requires the swapping of p0 and
p1 before the ret instruction is issued. The assembler would automatically generate the code for this
swap.

9.8. Other Builtin Functions
To make the extended syntax more useable, the following assembler functions have been added:
sizeof, typeof, untype. Here are some examples:

qcall lib/malloc, (sizeof (widgettype) : widget)

.if sizeof (int) == 4 ;it always will!

.if typeof (%1) != 0 ;is %1 a variable of user-type

.if typeof (%1) == typeof (widgettype)

The result of typeof (Variable) is 0 for all base VP types (I,l,f,d,p) and a unique handle for all user
types.

cpy.s [untype (widget) + 2], nutsandbolts ;remove user typing

Elate® Tool Programming Guide (VP)

Page 32

10. Source Code Syntax
The following is the syntax of standard Elate VP commands, which should appear in all normal VP
source code files. This is an incomplete list.

10.1. Include Files
.include ‘<filename>’

10.2. Tools
Primary Tool
tool ‘<toolname>’,VP,TF_MAIN,<stacksize>,<globalssize>

ent - : -
…
ret

toolend

Non-primary Tool (assuming VP)
tool ‘<toolname>’

ent <inputs>:<outputs>
…
ret

toolend

10.3. Source File End Marker (optional)
.end

10.4. Calling Mechanisms
tool call (quick call)

qcall <toolname>,(inputs:outputs)[,VIRTUAL[+FIXUP]]

method call (named call)
ncall p0,<methodname>,(inputs:outputs)

10.5. Structures
Global Variables
structure
…
size <GLOBALSTRUCTURENAME>

Local Variables
structure
…
size <LOCALSTRUCTURENAME >

Elate® Tool Programming Guide (VP)

Page 33

11. More Example Code
Refer to *.asm in the demo/example directory of the Elate build.

© Tao Group Ltd or Tao Systems Ltd. 2000, 2001. All Rights Reserved.

Copyright in the software either belongs to Tao Group Ltd or Tao Systems Ltd. The software may not
be used, sold, licensed, transferred, copied or reproduced in whole or in part or in any manner or form
other than in accordance with the licence agreement provided with the software or otherwise without
the prior written consent of either Tao Group Ltd or Tao Systems Ltd.

No part of this publication may be reproduced in any material form (including photocopying or storing it
in any medium by electronic means and whether or not transiently or incidentally to some other use of
this publication) without the written permission of the copyright owner.

Elate®, intent® and the Tao logo are registered trademarks of Tao Group Ltd.
Digital Heaven™ is a trademark of Tao Group Ltd.
The rights of third party trademark owners are acknowledged.

