
Reference Manual for the Sysbuild Utility

Copyright © Tao Systems Limited Page 1
March, 01

Version 1.3

Reference Manual for the Sysbuild Utility

Copyright © Tao Systems Limited Page 2
March, 01

1. OVERVIEW ... 3

2. INVOKING SYSBUILD.. 4

2.1. COMMAND OPTIONS... 4

2.1.1. Sysbuild specific options .. 4

2.1.2. Sysgen options... 4

2.1.3. -m, -n and -s ... 5

3. CREATION OF APPLICATION SYSTEM CONFIGURATION FILES.................................. 7

3.1. THE SETUP STAGE .. 7

3.2. THE DEPENDS STAGE... 8

3.3. THE ROMTOOLS STAGE.. 8

3.4. THE RAMTOOLS STAGE .. 9

3.5. THE APPS STAGE... 9

4. CREATION OF PLATFORM SYSTEM CONFIGURATION FILES 10

4.1. PLATFORM SYSTEM CONFIGURATION FILE ... 10

4.1.1. The SETUP stage .. 10

4.1.2. The DEPENDS stage... 10

4.1.3. The MEMORY stage .. 11

4.2. DEVICES SYSTEM CONFIGURATION FILE .. 12

4.2.1. Platform specific device drivers.. 13

4.2.2. Elate generic devices ... 13

4.3. POST SYSBUILD SCRIPT ... 14

5. EXAMPLE CODE.. 15

5.1. EXAMPLE 1 ... 15

5.2. EXAMPLE 2 ... 17

5.3. EXAMPLE 3 ... 18

Reference Manual for the Sysbuild Utility

Copyright © Tao Systems Limited Page 3
March, 01

1. Overview

At its more primary level, the intent® environment is built upon concepts of stream-lining, efficiency
and compactness. The system is tailored to the needs of whatever application it is running, so as to
guarantee that only those tools and resources which are actually required by the application are
included. During run time, this policy is pursued through the use of dynamic binding, which can be
used to ensure that tools are only brought into memory when needed.

At design time, furthermore, intent uses a number of mechanisms to ensure that the system image
from which the application is to be run contains the minimum of tools which are needed to
successfully run the application.

For the creation of such system images, intent provides two image generation utilities, the System
Generation Utility (Sysgen), and sysbuild. This document is designed to facilitate the use of the
sysbuild utility. A detailed account of sysgen may be found in the Sysgen Reference Manual.

The sysbuild utility is given a configuration file, which contains details of tools and data files which are
required by the application, and information on how the program should be run. The sysbuild utility
then calls upon the underlying Sysgen functionality. All tools specified in the applications sysbuild file
are then loaded, translated, bound and written to an intent system image. This image file is a bootable
intent image which can be downloaded to the target hardware. It contains only tools specified in the
original application sysbuild file, and their dependent tools.

Reference Manual for the Sysbuild Utility

Copyright © Tao Systems Limited Page 4
March, 01

2. Invoking Sysbuild

Sysbuild may be invoked to create a bootable intent image by using the following command line:

sysbuild [options] <platform> <appsysfile>

Here <platform> signifies the platform for which the image is to be created, e.g. win32.

The parameter <appsysfile> specifies the application’s sysbuild file. This file describes the application
in terms of the tools and data files required, and contains details on how the program should be run.
(The format of such files is explored in greater depth in the section “Creation of an application system
configuration file” later in this document.) This parameter can be given as an absolute path to the file.
If no path is given, sysbuild will look for the file in the sys/platform and sys/platform/<platform>
directories. All application sysbuild files must have the extension .sys, but this does not need to be
specified on the command line.

Thus, for example, either of the following command lines can be used to invoke the sysbuild utility to
create a bootable system image for a win32 platform using specifications from an application sysbuild
file sys/platform/win32/filename.sys (where filename.sys is simply an example name):

sysbuild win32 sys/platform/win32/filename

or

sysbuild win32 filename

2.1. Command options
A range of command options are available. Some of these are specific to use with the sysbuild
command. Most, however, may also be used when invoking sysgen. All sysgen options are also
supported by sysbuild, although in the case of –m, -n and –s all three options are set as a default with
sysbuild. Sysbuild options may appear in any order on the command line, but must be specified
separately.

2.1.1. Sysbuild specific options

-debug
Sets options to produce an image for debugging purposes. This provides the same functionality
as the -nos and -DWANT_CHECKING_TRANSLATOR options (see below).

-DWANT_DEBUGFS
This option will give debug output for filesystem access. This can be very useful when building a
new application file to ensure all required tools and data files have been included.

-DWANT_APP_AUTOSTART
This option allows the user to specify that an example application will be started when the image
loads, rather than needing to be started from the AVE menu in the default fashion. All of the
example application sysbuild files support this option.

2.1.2. Sysgen options

The following options are all sysgen options, but are also supported by sysbuild. Sysgen options -n, -
m and -s are on by default.

The options to sysbuild must be specified individually (for example, "-m -n -s"). Options that take a
parameter, such as –f or -D, are treated in a different fashion. In such cases, the remainder of that

Reference Manual for the Sysbuild Utility

Copyright © Tao Systems Limited Page 5
March, 01

command line argument, if there is one, is taken to be the parameter to the option. If the remainder of
the argument is empty, then the next command line argument is used as the parameter to the option.

-b
Enables embedding (currently off by default - though this may change in future releases).

-c
Changes VIRTUAL+FIXUP qcalls into VIRTUAL qcalls.

-f <path>
This option allows multiple search paths to be specified. Each -f option specifies one additional
path to search. This option may be specified multiple times. Paths are searched in the order in
which they appear on the command line. If the -f option is not specified at all, the current
directory is used as the default. If the -f option is specified at all, then the current directory must
be explicitly specified using an -f option if it is one of the desired search paths.

-i
Includes tools which are referenced as virtual or virtual+fixup into the image.

-l
This option prints a list of the tools included in/excluded from the image.

-N
Changes VIRTUAL qcalls into normal qcalls. It should be noted that this modifies VP tools before
translation. The underlying sysgen functionality cannot modify the types of qcalls in native code.

-p
This option specifies that sysbuild should only parse input files, and should not produce any
output or perform any dependency searching. This can be useful for checking the syntax of
instruction files.

-q
This option enables quiet mode. In this mode, text is only printed if it is an error report.

-t
Generates a symbol file for the intent debugger. The symbol file is essentially a machine-
readable version of the MAP file generated by sysgen. It contains information about the tools,
atoms and NDAs in an image, and the memory layout of the target system. The symbol file also
contains debug information for tools containing it, allowing the symbol file to be used by the intent
debugger to provide source-level debugging facilities without the slow process of sending the
debug information across the host-target link. Further information concerning the symbol file can
be found in the document on Symbol File Structure in the file app/sysgen/symbol.html in the
build.

-v
This option enables verbose mode. In this mode, considerable diagnostic output should be
expected.

-D<name>[=<value>]
This defines the pre-processor variable specified by <name> to have the value specified by
<value>. If <value> is not specified, <name> is defined as a pre-processor variable with no value.

2.1.3. -m, -n and -s

The following options are passed through to sysgen.

-m
Generates a map file. This file contains a list of the components written to the output image file,
and their locations.

-n
Changes VIRTUAL+FIXUP qcalls into normal qcalls. This option acts to modify VP tools before
translation, and cannot be used to alter native tools.

-s
Strips resource names from tools where possible.

However, when used with the sysbuild command, -m, -n and –s are enabled by default. As a
consequence, the options –nom, -non and –nos are provided for use with sysbuild, to disable each of
these options.

Reference Manual for the Sysbuild Utility

Copyright © Tao Systems Limited Page 6
March, 01

-nom
Stops the generation of a map file (disables the –m option).

-non
Turns off the –n option.

-nos
Disables the –s option so that resource names are not stripped from tools. This has the same
result as the use of the –debug option.

Reference Manual for the Sysbuild Utility

Copyright © Tao Systems Limited Page 7
March, 01

3. Creation of application system configuration files

An application’s system configuration file contains details of tools and data files which are required by
the application, and information on how the program should be run. The sysbuild command calls upon
the sysgen program to create the required system image. It is the sysgen utility that is responsible for
parsing the application system configuration file. Further information on the command syntax can be
found in the ‘Syntactic Descriptions’ chapter in the Sysgen Reference Manual.

Application system configuration files for use with the sysbuild command all make use of the same
basic format. The file is divided into a sequence of five ‘stages,’ which are included at different points
in the image building process.

SETUP This stage is used to set up the configuration required for the specific application. If
it is a PJava application, for example, then it will need to define WANT_PJAVA so
that the PJava libraries are available.

DEPENDS This stage is used to set up any optional parts of the application's configuration
depending on the platform. This stage is not usually needed.

ROMTOOLS This stage contains a list of the tools that are required to run the application. This
will usually be divided into two lists, a list of executables and a list of data files.

RAMTOOLS This stage contains a list of tools that must be stored in the platform's Read Write
memory area. This section is also usually not needed.

APPS This stage contains the information required to start the application.

Each of these is described in more detail below.

3.1. The SETUP stage
The ‘setup’ stage is used to set up the configuration required for the specific application. It is always
enclosed by the following two lines:

#if $(BUILD_STAGE) == $(BUILD_STAGE_SETUP)
#endif // $(BUILD_STAGE) == $(BUILD_STAGE_SETUP)

The comment on the second line is optional, but has been included to make the files more readable.

All setup commands consist of a #define or #redefine statement that may be conditional. To set a
value the following format may be used:

#redefine <value to set>

To set it to a specific string use:

#redefine <value to set><string>

Values can also be set to other values, or combinations of other values. For example:

#redefine AWD_OPTIONS $(AWD_DEVICE) $(AWD_OPTIONS)

It would be possible to use the #define command instead of #redefine in the examples above, but only
if the application or platform has not already set the value. If the value has already been set in this
fashion, the #define command will fail.

In some cases values should only be set if they are not currently set. In the example below, the
#ifndef command is used to establish whether this is the case. If check proves that the value is not
set, then the value is defined by the #define command. It is safe to use the #define command here,
since it follows a check to verify that the value is not already defined.

Reference Manual for the Sysbuild Utility

Copyright © Tao Systems Limited Page 8
March, 01

#ifndef IMAGE_FILE
#define IMAGE_FILE example

#endif

The values that can be defined in this section are listed in the build document
sys/platform/sysbuildapp.html. More details of these values may be found in the Sysbuild Reference
Guide, which can be found in the build in sys/platform/sysbuildref.html.

3.2. The DEPENDS stage
The ‘depends’ stage is used to set up any optional parts of the application's configuration, depending
on the platform. This stage is optional, and is not usually required in an application system
configuration file. It is not used to indicate those features of the intent system and platform upon which
the application depends.

All commands in this stage must be enclosed between the following two lines:

#if $(BUILD_STAGE) == $(BUILD_STAGE_DEPENDS)
#endif // $(BUILD_STAGE) == $(BUILD_STAGE_DEPENDS)

As in the case of the last section, the comment in the latter line is designed to make the code more
readable.

Any of the values defined in the ‘setup’ stage can be used in this stage. Optional parts of the
application can be conditional on any of the values defined in the ‘setup’ stage.

3.3. The ROMTOOLS stage
This stage contains a list of the tools which are required to run the application, and which can be run
from ROM. Most required tools will be capable of running from ROM. There will usually be two lists, a
list of executables and a list of data files.

All commands in this stage must be enclosed between the following two lines:

#if $(BUILD_STAGE) == $(BUILD_STAGE_ROMTOOLS)
#endif // $(BUILD_STAGE) == $(BUILD_STAGE_ROMTOOLS)

To include an VP tool, one should simply specify the toolname as in the example below.

path/to/tool/toolname

The specified tool and all tools that it relies on will be loaded into the image. The tool’s extension can
be given if it is important to specify which version is to be used. However, in general this approach is
not recommended.

To include a Java class file, specify the file as in the example below.

my/java/tool.class

In the case of Java classes, the .class extension must be given.

The ‘depends’ stage should also contain a list of data files that the application requires. These are
included in a slightly different way. To include the file images/image.gif use the following command:

.system("echo \
images/image.gif \
>> $(CFILENAME));

More than one file may be included, as in the example below.

Reference Manual for the Sysbuild Utility

Copyright © Tao Systems Limited Page 9
March, 01

.system("echo \
images/image1.gif \
images/image2.gif \
>> $(UFILENAME));

It should be noted that either UFILENAME or CFILENAME can be used to define data files. Data files
followed by CFILENAME will be compressed if a suitable filesystem is used, whereas files followed by
UFILENAME will remain uncompressed. It is also possible in this stage to specify which tools should
be dynamically translated. However tools that these depend upon will not automatically be loaded into
the image, and will also need to be specified. If data files are required for this application, then the
value WANT_FILESYSTEM should have been set in the ‘setup’ stage.

Application configuration files that need to be modified should also be specified in this stage. In this
case, the ‘setup’ section should contain WANT_RWFS so that a Read/Write filesystem is available to
store the modified files.

This stage can have conditional stages so that some files (tools or data) are only included if a certain
value is defined, for example if there is an optional part of the application that relies on a ppp dialup
connection you could have:

#ifdef WANT_PPP
list/of/tools
and/data/files
for/ppp/option

#endif

3.4. The RAMTOOLS stage
This stage contains a list of tools and data that must be stored in the platform's Read/Write memory
area. It is unusual for tools to be included in RAM, and most of them are run from ROM. This stage is
usually not needed.

All commands in this stage must be enclosed between the following two lines:

#if $(BUILD_STAGE) == $(BUILD_STAGE_RAMTOOLS)
#endif // $(BUILD_STAGE) == $(BUILD_STAGE_RAMTOOLS)

3.5. The APPS stage
This stage contains the information required to start the application.

All commands in this stage must be enclosed between the following two lines:

#if $(BUILD_STAGE) == $(BUILD_STAGE_APPS)
#endif // $(BUILD_STAGE) == $(BUILD_STAGE_APPS)

In the following example, the command line is being used to run a Java application my/java/app.class.

.spawn(tool="app/stdio/jcode",cmdline="jcode my/java/app.class");

Further information on running Java programs may be found in Using Java Technology with intent.
More general information on starting applications may be found in the Sysgen Reference Manual.

This stage can also use conditional statements to start selectively different applications or parts of
applications.

Reference Manual for the Sysbuild Utility

Copyright © Tao Systems Limited Page 10
March, 01

4. Creation of platform system configuration files
This section describes how to create new platform system configuration files for use with the sysbuild
shell command.

The platform system configuration information is split into two, or sometimes three, files.

• platform.sys – This is the platform system configuration file, and contains all information about the
platform except for details of devices.

• devices.sys - This is the devices system configuration file, and defines the devices that the
platform supports.

• sysbuild - This third file is optional. It takes the form of a shell script, which is designed to process
the image file after it has been created.

Further details of each of these files is provided in this section.

4.1. Platform system configuration file
The platform system configuration file is split up into several stages, which are included at various
points of the image building process.

SETUP This stage is used to set up the configuration required for the specific platform.
This may include setting some AVE parameters, or defining the serial port
configuration for the Sejin keyboard etc.

DEPENDS This stage is used to set up any optional parts of the platform configuration
depending on what is required by the applications and other areas.

MEMORY This stage defines the memory layout for the platform. It defines the platform boot
tools, memory regions etc.

Each of these stages is described in more detail below.

4.1.1. The SETUP stage

This stage is used to set up the configuration required for the platform. Values following the format
WANT_xxxx will normally be defined by the application and intent system configuration files.

The ‘setup’ stage is enclosed by the following two lines:

#if $(BUILD_STAGE) == $(BUILD_STAGE_SETUP)
#endif // $(BUILD_STAGE) == $(BUILD_STAGE_SETUP)

In this stage, #define and #redefine can be used to set values in the same fashion as for the ‘setup’
stage for an application system configuration file.

The values that can be defined in this section are listed in the build document
sys/platform/sysbuildapp.html. More details of these values may be found in the Sysbuild Reference
Guide, which can be found in the build in sys/platform/sysbuildref.html.

4.1.2. The DEPENDS stage

This stage sets up any optional parts of the platform configuration according to the requirements of
the applications, etc. The ‘depends’ stage is enclosed by the following two lines:

#if $(BUILD_STAGE) == $(BUILD_STAGE_DEPENDS)
#endif // $(BUILD_STAGE) == $(BUILD_STAGE_DEPENDS)

This stage will be comprised of conditional statements, of the form "if this then that". For example if
the platform does not have a keyboard, but it is usual to connect a Sejin keyboard to a serial port,
then the following will be needed:

Reference Manual for the Sysbuild Utility

Copyright © Tao Systems Limited Page 11
March, 01

#ifdef WANT_KEYRAW
#redefine WANT_SEJIN
#redefine WANT_SEJIN_KEYRAW

#endif

Besides setting up application-specific aspects of the platform configuration, the ‘depends’ stage
usually converts any generic WANT_xxxx settings to settings appropriate to the specific platform. For
example, the WANT_TCPIP setting may indicate that the dial up devices PPP, AWD, etc. are required
for this platform.

The values that can be used in this stage are listed in the build document
sys/platform/sysbuildplat.html.

4.1.3. The MEMORY stage

This stage is used to define the platform's memory layout. It also contains various other platform
specific information. All commands for this stage must exist in between the following two lines:

#if $(BUILD_STAGE) == $(BUILD_STAGE_MEMORY)
#endif // $(BUILD_STAGE) == $(BUILD_STAGE_MEMORY)

This stage also has other structural requirements and will generally look as follows:

// TRANSLATORS

// translator names and flags
.trans ("$(VPTRANS)");
.jtrans ("$(JCTRANS)",<jcode translator flags>);

// tool extentions
.toolext ("XX");

#ifdef WANT_LINK_SLAVE
.chipnum(-1);

#endif

// SCHEDULER

.scheduler
{

.priority (range=0-255,timeslice=true, \
policy="sys/kn/sched/fixed");

}

// IMAGE FILE

// ROM system
.memory (name="ROM",attr="rx", \

image="sys/platform/<platform>/$(IMAGE_FILE).img", \
manager="sys/kn/mem/gwc/_new")

{
// PLATFORM BOOT TOOLS

// KERNEL ROM TOOLS

#include sys/kn/rominit.sys

// PII

// RUNTIME INIT

.map_region (staticdata_ro);

.nda ("SYSGEN_RUNNODES");

.emit_dependencies;

Reference Manual for the Sysbuild Utility

Copyright © Tao Systems Limited Page 12
March, 01

// APPLICATIONS AND DEVICES

#redefine BUILD_STAGE $(BUILD_STAGE_DEVICES)
#include sys/platform/<platform>/devices.sys

#redefine BUILD_STAGE $(BUILD_STAGE_ROMTOOLS)
#include sys/platform/elate.sysinc

#redefine BUILD_STAGE $(BUILD_STAGE_APPS)
#include sys/platform/elate.sysinc

}

// RAM system
.memory (name="RAM",attr="rwx")
{

// PLATFORM SPECIFIC NDAS

// KERNEL STATICS

#include sys/kn/ramdata.sys

// MEMORY OBJECTS

// system memory
.map_region (system);

// tool memory
.map_region (defaultcode);

// statics r/w memory
.map_region (staticdata);

// stack memory
.map_region (defaultstack);

// mail memory
.map_region (defaultmail);

// shared memory
.map_region (defaultdata);

#redefine BUILD_STAGE $(BUILD_STAGE_RAMTOOLS)
#include sys/platform/elate.sysinc

}

// READ ONLY FILESYSTEM

#include sys/platform/buildrofs.sysinc

It should be noted that in the example above there are two memory regions, ROM and RAM. Not all
platforms will require two separate regions in this fashion. Information on filling out the above example
can be found in the sysgen documentation in the build.

The "PLATFORM BOOT TOOLS" section of this stage should contain the tools required to boot the
platform. These are usually a mixture of native and VP binaries.

The "PII" section of this stage should contain all tools required by the Platform Isolation Interface. This
again will be a mixture of native and VP binaries.

4.2. Devices system configuration file
This file defines which device drivers the platform supports. This will consist of:

• Platform specific device drivers
• Generic Elate® device drivers

Reference Manual for the Sysbuild Utility

Copyright © Tao Systems Limited Page 13
March, 01

4.2.1. Platform specific device drivers

Platform specific devices are defined using the .obj sysgen command. These should be wrapped in
ifdef/endif directives in the following manner:

#ifdef WANT_ETHERNET
.obj(newtool="/dev/network/myplat/_new", \

mountstr="/device/network",cmdline="myplat",local);
#endif

For most platform specific devices, the local option should be used as in the example above. The
exceptions are keyboard, keyraw, pointer, TCP/IP and display devices. In such cases, instead of local
the option used should be $(<device>_LOCAL_REMOTE), where <device> is KEYBOARD,
KEYRAW, etc, depending upon the device being defined. Thus a platform specific keyraw device
might be defined as follows:

#ifdef WANT_KEYRAW
.obj(newtool="/dev/keyboard/myplat/_new", \

mountstr="/device/keyboard",cmdline="myplat",$(KEYRAW_LOCAL_REMOTE));
#endif

The <device>_LOCAL_REMOTE values are defined in the generic system configuration files for use
with the link driver.

If the platform has a socket device then it should be mounted on $(INET_MOUNT). Any platform
specific Read/Write filesystem should be mounted on $(PLATFSROOT). These are both set up by the
generic platform configuration files.

4.2.2. Elate generic devices

To include an Elate generic device use the following syntax :

#redefine $(DEVICE_STAGE)=$(DEVICE_STAGE_XXXX)
#include sys/platform/elate.sysinc

The following is a list of the available generic devices:

DEVICE_STAGE_TOOLLOADER
DEVICE_STAGE_NULL
DEVICE_STAGE_TRACE
DEVICE_STAGE_ERROR
DEVICE_STAGE_PIPE
DEVICE_STAGE_RAMFS
DEVICE_STAGE_ZIP_ROFS
DEVICE_STAGE_EFS_ROFS
DEVICE_STAGE_ELATE_ROFS
DEVICE_STAGE_MERGEFS
DEVICE_STAGE_DEBUGFS
DEVICE_STAGE_KEYBOARD
DEVICE_STAGE_ADDMEM
DEVICE_STAGE_CONSOLE

DEVICE_STAGE_AVE
DEVICE_STAGE_LINK_MASTER
DEVICE_STAGE_LINK_SLAVE
DEVICE_STAGE_ELATE_TCPIP
DEVICE_STAGE_SEJIN
DEVICE_STAGE_SEJIN_KEYRAW
DEVICE_STAGE_SEJIN_POINTER
DEVICE_STAGE_AWD
DEVICE_STAGE_SCRIPT
DEVICE_STAGE_PPP
DEVICE_STAGE_DEBUGSTUB
DEVICE_STAGE_DEVZIP_ROFS
DEVICE_STAGE_MOUNT_ZIP

The values above are described in more detail in the Sysbuild Reference Guide which can be found in
the build in sys/platform/sysbuildref.

The devices system configuration files should only include devices that are suited to the specific
platform. For this reason, it may in some cases by necessary for a platform to have a generic device
set up in a special and platform-specific way.

Reference Manual for the Sysbuild Utility

Copyright © Tao Systems Limited Page 14
March, 01

4.3. Post sysbuild script
This optional file, sys/platform/<platform>/sysbuild, is a shell script that is executed after the image
has been created. This file does not exist for every platform.

This script can be used to transform the image before downloading. For example, it maybe used so
that byte swapping, Srecord creation, and so forth, occur automatically.

The first command line option will be the name of the image created, for example avedemos. It does
not contain the path or the file extension. The remaining command line options will be the options
given to sysgen for image creation.

Reference Manual for the Sysbuild Utility

Copyright © Tao Systems Limited Page 15
March, 01

5. Example Code
Shown below are several example application system configuration files.

5.1. Example 1
The file below relates to a number of demo applications which can easily be accessed from intent’s
audio visual environment. This file does not contain a ‘depends’ or a ‘ramtools’ file.

//Setup Stage

#if $(BUILD_STAGE) == $(BUILD_STAGE_SETUP)

// sysgen image filename
#ifndef IMAGE_FILE

#define IMAGE_FILE avedemos
#endif

#redefine WANT_AVE
#redefine WANT_TTF_FONT_ENGINE
#redefine WANT_FILESYSTEM

#endif // $(BUILD_STAGE) == $(BUILD_STAGE_SETUP)

//ROMTOOLS Stage

#if $(BUILD_STAGE) == $(BUILD_STAGE_ROMTOOLS)

//Data Files Required
.system ("echo \
images/cradle.flm \
images/cface96.gif \
images/rings.cpm \
fonts/curlz.ttf \
fonts/glowworm.ttf \
fonts/mmincho.ttf \
app/start/ave/avedemos.scr \
app/start/ave/demos/blend.scr \
app/start/ave/demos/boing.scr \
app/start/ave/demos/clock.scr \
app/start/ave/demos/filters.scr \
app/start/ave/demos/fonts.scr \
app/start/ave/demos/freeball.scr \
app/start/ave/demos/gadgets.scr \
app/start/ave/demos/images.scr \
images/boing1.gif \
images/boing2.gif \
images/boing3.gif \
images/boing4.gif \
images/boing5.gif \
images/boing6.gif \
images/boing7.gif \
images/boing8.gif \
images/boing9.gif \
images/boing10.gif \
images/boing11.gif \
images/boing12.gif \
images/boingm.cpm \
images/boings.cpm \

Reference Manual for the Sysbuild Utility

Copyright © Tao Systems Limited Page 16
March, 01

>>$(UFILENAME)");

//Tools required
demo/ave/rbuttons
demo/ave/lbuttons
demo/ave/lcheckboxes
demo/ave/lists
demo/ave/textfields
demo/ave/textareas
demo/ave/choices
demo/ave/menus
demo/ave/filedialogs
demo/ave/viewimg
demo/ave/viewflm
demo/ave/blend
demo/ave/clock
demo/ave/font
demo/ave/rgbmask
demo/ave/vgrad
demo/ave/boing
demo/ave/freeball
demo/ave/table

#endif // $(BUILD_STAGE) == $(BUILD_STAGE_ROMTOOLS)

//APPS stage

#if $(BUILD_STAGE) == $(BUILD_STAGE_APPS)

#ifdef WANT_APP_AUTOSTART
.spawn(tool="demo/ave/rbuttons",cmdline="rbuttons");
.spawn(tool="demo/ave/lbuttons",cmdline="lbuttons");
.spawn(tool="demo/ave/lcheckboxes",cmdline="lcheckboxes");
.spawn(tool="demo/ave/lists",cmdline="lists");
.spawn(tool="demo/ave/textfields",cmdline="textfields");
.spawn(tool="demo/ave/textareas",cmdline="textareas");
.spawn(tool="demo/ave/choices",cmdline="choices");
.spawn(tool="demo/ave/menus",cmdline="menus");
.spawn(tool="demo/ave/filedialogs",cmdline="filedialogs");
.spawn(tool="demo/ave/viewimg",cmdline="viewimg -t0

/images/rings.cpm");
.spawn(tool="demo/ave/viewflm",cmdline="viewflm -t0 -d100

/images/cradle.flm");
.spawn(tool="demo/ave/blend",cmdline="blend");
.spawn(tool="demo/ave/clock",cmdline="clock");
.spawn(tool="demo/ave/font",cmdline="font -s*1 -nMMincho -p24");
.spawn(tool="demo/ave/font",cmdline="font -s*4 -nMMincho -p24");
.spawn(tool="demo/ave/font",cmdline="font -s*3 -nMMincho -p48");
.spawn(tool="demo/ave/font",cmdline="font -s*2 -nMMincho -p72");
.spawn(tool="demo/ave/font",cmdline="font -nGlowworm -p24");
.spawn(tool="demo/ave/font",cmdline="font -nCurlz -p24");
.spawn(tool="demo/ave/font",cmdline="font -p24 -i");
.spawn(tool="demo/ave/rgbmask",cmdline="rgbmask");
.spawn(tool="demo/ave/vgrad",cmdline="vgrad");
.spawn(tool="demo/ave/boing",cmdline="boing");
.spawn(tool="demo/ave/freeball",cmdline="freeball");

#endif

#endif // $(BUILD_STAGE) == $(BUILD_STAGE_APPS)

Reference Manual for the Sysbuild Utility

Copyright © Tao Systems Limited Page 17
March, 01

5.2. Example 2
This file relates to a number of Java-based games, for each of which a different set of tools and data
files need to be specified. The ‘romtools’ stage for this file is divided into the lists of tools and data files
required for each of the games Dugout, Warp and Iceblox. This file does not include a ‘depends’ stage
or a ‘ramtools’ stage.

//Setup Stage

#if $(BUILD_STAGE) == $(BUILD_STAGE_SETUP)

// sysgen image filename
#ifndef IMAGE_FILE

#define IMAGE_FILE hornellgames
#endif

#redefine WANT_FILESYSTEM

#redefine WANT_MINIMAL_PJAVA

#endif // $(BUILD_STAGE) == $(BUILD_STAGE_SETUP)

//ROMTOOLS Stage

#if $(BUILD_STAGE) == $(BUILD_STAGE_ROMTOOLS)

//Dugout

//Data Files Required
.system ("echo \
hornell/dugout/dugout.gif \
hornell/dugout/dugout0.au \
hornell/dugout/dugout1.au \
hornell/dugout/dugout2.au \
hornell/dugout/dugout.html \
app/start/hornell/dugout.scr \
>>$(UFILENAME)");

//Tools required
.system ("echo \
hornell/dugout/dugout.class \
>>$(CFILENAME)");

//Warp

//Data Files Required
.system ("echo \
hornell/warp/warp.html \
hornell/warp/warp0.gif \
hornell/warp/warp1.gif \
hornell/warp/warp2.gif \
hornell/warp/warp3.gif \
hornell/warp/warp4.gif \
hornell/warp/warp5.gif \
hornell/warp/warp6.gif \
hornell/warp/warp7.gif \
hornell/warp/warp8.gif \
hornell/warp/warp9.gif \
hornell/warp/warpsnd0.au \
hornell/warp/warpsnd1.au \
hornell/warp/warpsnd2.au \
app/start/hornell/warp.scr \
>>$(UFILENAME)");

//Tools required
.system ("echo \

Reference Manual for the Sysbuild Utility

Copyright © Tao Systems Limited Page 18
March, 01

hornell/warp/warp.class \
>>$(CFILENAME)");

//IceBlox

//Data Files Required
.system ("echo \
hornell/iceblox/iceblox.html \
hornell/iceblox/iceblox.gif \
app/start/hornell/iceblox.scr \
>>$(UFILENAME)");

//Tools required
.system ("echo \
hornell/iceblox/iceblox.class \
>>$(CFILENAME)");

#endif // $(BUILD_STAGE) == $(BUILD_STAGE_ROMTOOLS)

//APPS Stage

#if $(BUILD_STAGE) == $(BUILD_STAGE_APPS)

#ifdef WANT_APP_AUTOSTART
.spawn(tool="app/stdio/jcode",cmdline="jcode -noverify

com.tao_group.applet.ElateAppletViewer
hornell/dugout/dugout.html",stdin="device/null",stdout="device/null",stderr
="device/error");

.spawn(tool="app/stdio/jcode",cmdline="jcode -noverify
com.tao_group.applet.ElateAppletViewer
hornell/iceblox/iceblox.html",stdin="device/null",stdout="device/null",stde
rr="device/error");

.spawn(tool="app/stdio/jcode",cmdline="jcode -noverify
com.tao_group.applet.ElateAppletViewer
hornell/warp/warp.html",stdin="device/null",stdout="device/null",stderr="de
vice/error");

#endif

#endif // $(BUILD_STAGE) == $(BUILD_STAGE_APPS)

5.3. Example 3
The following application system configuration file relates to two Java-technology-based
demonstration programs, Molecule Viewer and Wireframe. As can be seen below, the ‘romtools’ stage
of the file is divided between the lists of tools and data files for Molecule Viewer, and those for
Wireframe. Once again, this file does not include a ‘depends’ stage or a ‘ramtools’ stage.

//SETUP Stage

#if $(BUILD_STAGE) == $(BUILD_STAGE_SETUP)

// sysgen image filename
#ifndef IMAGE_FILE

#define IMAGE_FILE jdkdemos
#endif

#redefine WANT_FILESYSTEM

#redefine WANT_MINIMAL_PJAVA

#endif // $(BUILD_STAGE) == $(BUILD_STAGE_SETUP)

Reference Manual for the Sysbuild Utility

Copyright © Tao Systems Limited Page 19
March, 01

//ROMTOOLS Stage

#if $(BUILD_STAGE) == $(BUILD_STAGE_ROMTOOLS)

//Molecule Viewer

//Data Files Required
.system ("echo \
sun/applets/MoleculeViewer/Matrix3D.java \
sun/applets/MoleculeViewer/XYZApp.java \
sun/applets/MoleculeViewer/example1.html \
sun/applets/MoleculeViewer/example2.html \
sun/applets/MoleculeViewer/example3.html \
sun/applets/MoleculeViewer/index.html \
sun/applets/MoleculeViewer/models/benzene.xyz \
sun/applets/MoleculeViewer/models/buckminsterfullerine.xyz \
sun/applets/MoleculeViewer/models/HyaluronicAcid.xyz \
sun/applets/MoleculeViewer/models/cyclohexane.xyz \
sun/applets/MoleculeViewer/models/ethane.xyz \
sun/applets/MoleculeViewer/models/water.xyz \
app/start/sun/applets/moleculeviewer.scr \
>>$(UFILENAME)");

//Tools required
.system ("echo \
sun/applets/MoleculeViewer/Matrix3D.class \
sun/applets/MoleculeViewer/XYZChemModel.class \
sun/applets/MoleculeViewer/XYZApp.class \
sun/applets/MoleculeViewer/Atom.class \
>>$(CFILENAME)");

//WireFrame

//Data Files Required
.system ("echo \
sun/applets/WireFrame/Matrix3D.java \
sun/applets/WireFrame/ThreeD.java \
sun/applets/WireFrame/example1.html \
sun/applets/WireFrame/example2.html \
sun/applets/WireFrame/example3.html \
sun/applets/WireFrame/example4.html \
sun/applets/WireFrame/index.html \
sun/applets/WireFrame/models/cube.obj \
sun/applets/WireFrame/models/dinasaur.obj \
sun/applets/WireFrame/models/hughes_500.obj \
sun/applets/WireFrame/models/knoxS.obj \
app/start/sun/applets/wireframe.scr \
>>$(UFILENAME)");

//Tools required
.system ("echo \
sun/applets/WireFrame/Matrix3D.class \
sun/applets/WireFrame/FileFormatException.class \
sun/applets/WireFrame/Model3D.class \
sun/applets/WireFrame/ThreeD.class \
>>$(CFILENAME)");

#endif // $(BUILD_STAGE) == $(BUILD_STAGE_ROMTOOLS)

Reference Manual for the Sysbuild Utility

Copyright © Tao Systems Limited Page 20
March, 01

//APPS Stage

#if $(BUILD_STAGE) == $(BUILD_STAGE_APPS)

#ifdef WANT_APP_AUTOSTART
.spawn(tool="app/stdio/jcode",cmdline="jcode -noverify

com.tao_group.applet.ElateAppletViewer
sun/applets/MoleculeViewer/example1.html",stdin="device/null",stdout="devic
e/null",stderr="device/error");

.spawn(tool="app/stdio/jcode",cmdline="jcode -noverify
com.tao_group.applet.ElateAppletViewer
sun/applets/MoleculeViewer/example2.html",stdin="device/null",stdout="devic
e/null",stderr="device/error");

.spawn(tool="app/stdio/jcode",cmdline="jcode -noverify
com.tao_group.applet.ElateAppletViewer
sun/applets/WireFrame/example2.html",stdin="device/null",stdout="device/nul
l",stderr="device/error");

.spawn(tool="app/stdio/jcode",cmdline="jcode -noverify
com.tao_group.applet.ElateAppletViewer
sun/applets/WireFrame/example3.html",stdin="device/null",stdout="device/nul
l",stderr="device/error");

#endif

#endif // $(BUILD_STAGE) == $(BUILD_STAGE_APPS)

 © Tao Group Ltd or Tao Systems Ltd. 2000, 2001. All Rights Reserved.

Copyright in the software either belongs to Tao Group Ltd or Tao Systems Ltd. The software may not
be used, sold, licensed, transferred, copied or reproduced in whole or in part or in any manner or form
other than in accordance with the licence agreement provided with the software or otherwise without
the prior written consent of either Tao Group Ltd or Tao Systems Ltd.

No part of this publication may be reproduced in any material form (including photocopying or storing
it in any medium by electronic means and whether or not transiently or incidentally to some other use
of this publication) without the written permission of the copyright owner.

Elate®, intent® and the Tao logo are registered trademarks of Tao Group Ltd.
Digital Heaven™ is a trademark of Tao Group Ltd.
The rights of third party trademark owners are acknowledged.

