
The Reference Manual for the intentTM Kernel

5

1

VERSION 1.484

The Reference Manual for the intentTM Kernel

Page 2

1. INTRODUCTION ...13

1.1 A REAL TIME OPERATING SYSTEM..13

1.2 PORTABILITY..13

2. TOOL HANDLING...14

2.1 CALLING TOOLS ...14

2.2 TOOL STRUCTURE ..15

2.3 TOOL MANAGEMENT FUNCTIONS ...16

2.3.1 Decrement the reference count of the specified tool - sys/kn/tool/deref...............................17

2.3.2 Increment the reference count of the specified tool - sys/kn/tool/ref17

2.3.3 Get pointer to an executable tool - sys/kn/tool/open...17

2.3.4 Flush all unreferenced tools from memory - sys/kn/tool/flush...17

2.3.5 Flush specific tool from memory - sys/kn/tool/flushname ...18

2.3.6 Copy the name of a tool into the user's buffer - sys/kn/tool/getname...................................18

2.3.7 Run-time stack tracing - sys/kn/tool/stktrace ..18

2.3.8 Find tool containing specified code address - sys/kn/tool/lookup ...18

2.3.9 Set stack pointer and jump to specified address, clearing up stack - sys/kn/tool/setspngo .19

2.3.10 Return information about tool-list memory usage - sys/kn/tool/memstats19

2.3.11 Return the reference count of a given tool - sys/kn/tool/getrefcount19

2.3.12 Enumerate the tool list - sys/kn/tool/enumerate..19

2.4 TOOL-OPEN FAILURES ..19

2.4.1 Tool-open Failure Callback Function ..20

2.4.2 This function frees the error information structure passed to a tool-open failure callback

handler - sys/kn/tool/dispose_error ..20

2.4.3 Error information for callback function ..21

2.4.4 Special tool-open error codes ...21

3. PROCESS MANAGEMENT..22

3.1 PROCESS STATES..22

3.2 PROCESS MANAGEMENT FUNCTION DESCRIPTIONS ...24

3.2.1 Create a process - sys/kn/proc/create ..24

3.2.2 Delete a process - sys/kn/proc/delete...25

3.2.3 Start a process - sys/kn/proc/start ..25

3.2.4 Stop the execution of a running process - sys/kn/proc/exit ..26

3.2.5 Terminate a process - sys/kn/proc/terminate..26

3.2.6 Sleep for a specified time - sys/kn/proc/sleep...26

The Reference Manual for the intentTM Kernel

Page 3

3.2.7 Wake a sleeping process - sys/kn/proc/wake ...27

3.2.8 Suspend the operation of a process - sys/kn/proc/suspend ...27

3.2.9 Decrement the suspend count for a process - sys/kn/proc/resume......................................28

3.2.10 Yield CPU - sys/kn/proc/deschedule...28

3.2.11 Cause scheduling to take place - sys/kn/proc/ideschedule ..28

3.2.12 Alter the values in the process control block - sys/kn/proc/setparams29

3.2.13 Acquire information about a process - sys/kn/proc/getparams...29

3.2.14 Wait for a child process to stop or terminate, and delete it if it has terminated -

sys/kn/proc/wait..29

3.2.15 Wait for a child process to terminate - sys/kn/proc/chld ...30

3.2.16 Change the priority of the calling process - sys/kn/proc/chpri ..30

3.2.17 Return the priority of the calling process - sys/kn/proc/getpri ...30

3.2.18 Set the parent process of the specified process - sys/kn/proc/chppid................................30

3.2.19 Sleep until event occurs, storing any spurious wakes - sys/kn/proc/devsleep30

3.2.20 Add routines to atexit list - sys/kn/proc/atexit..31

3.3 PROCESS CREATION HELPER FUNCTIONS ...31

3.3.1 Create and start a process on the same processor as the calling process -

sys/kn/proc/exec/local ..31

3.3.2 Create and start a process on a specified processor - sys/kn/proc/exec/remote31

3.3.3 Create and start a process on a processor chosen by the kernel - sys/kn/proc/exec/any ...32

3.4 SPAWN STRUCTURE FUNCTIONS...32

3.4.1 Create a spawn structure - sys/kn/proc/spawn/make ...32

3.4.2 Create a spawn structure (exec-style) - sys/kn/proc/spawn/emake33

3.4.3 Modify file descriptor in spawn structure - sys/kn/proc/spawn/modfd...................................33

3.4.4 Add global data initialisation in spawn structure - sys/kn/proc/spawn/modglobs34

3.4.5 Add SPAWN_PARENT record to spawn structure - sys/kn/proc/spawn/modparent............34

3.4.6 Add SPAWN_STACK record to spawn structure - sys/kn/proc/spawn/modstack34

3.4.7 Add SPAWN_SIGMASK record to spawn structure - sys/kn/proc/spawn/modsig................35

3.4.8 Add SPAWN_STACKLIMIT record to spawn structure - sys/kn/proc/spawn/modstklimit35

3.4.9 Adds requirement to use local PID to spawn structure - sys/kn/proc/spawn/modlocal35

3.5 SPAWN STRUCTURE MACROS..36

4. PROCESS MANAGEMENT DATA STRUCTURES ...38

4.1 PROCESS ID ..38

4.2 HIERARCHICAL PROCESS TABLE ...38

4.3 NETWORK-UNIQUE PROCESS IDS...40

4.4 PROCESSOR ID HANDLING FUNCTIONS ...40

The Reference Manual for the intentTM Kernel

Page 4

4.4.1 Gets the PID of the calling process - sys/kn/proc/pid/get ...41

4.4.2 Return an array of all valid PIDs - sys/kn/proc/pid/enumerate..41

5. PROCESS SCHEDULING ..42

5.1 THE INTENT SCHEDULER ..42

5.1.1 Contexts ..42

5.2 THE DISPATCHER...42

5.3 SCHEDULING POLICY..43

5.4 USING MORE THAN ONE SCHEDULING POLICY WITHIN AN INTENT SYSTEM...45

5.4.1 Scheduling Example ...45

5.5 DEADLINE FAILURES...46

6. PROCESS SYNCHRONISATION...48

6.1 COUNTING SEMAPHORES ...48

6.1.1 Initialise a Semaphore - sys/kn/sem/init..49

6.1.2 Destroy an Unnamed Semaphore - sys/kn/sem/destroy ..49

6.1.3 Wait on a Semaphore - sys/kn/sem/wait...49

6.1.4 Wait on a Semaphore, non blocking - sys/kn/sem/trywait ..49

6.1.5 Decrement the semaphore count by the specified amount without blocking -

sys/kn/sem/trymwait ...49

6.1.6 Wait on a Semaphore with timeout - sys/kn/sem/timedwait ...50

6.1.7 Post to a Semaphore - sys/kn/sem/post ...50

6.1.8 Get the Value of a Semaphore - sys/kn/sem/getvalue..50

6.2 MUTEXES...50

6.2.1 Initialise Mutex - sys/kn/mtx/init...51

6.2.2 Destroy Mutex - sys/kn/mtx/destroy ..52

6.2.3 Lock Mutex - sys/kn/mtx/lock ..52

6.2.4 Lock Mutex, non blocking - sys/kn/mtx/trylock..52

6.2.5 Lock Mutex with timeout - sys/kn/mtx/timedlock ...53

6.2.6 Unlock Mutex - sys/kn/mtx/unlock...53

6.2.7 Locks a mutex, retrying if interrupted by a signal - sys/kn/mtx/siglock53

6.2.8 Attempt to lock a mutex with timeout, retrying if interrupted by a signal -

sys/kn/mtx/sigtimedlock ...54

6.2.9 Return lock status of mutex - sys/kn/mtx/islocked ..54

6.3 EVENT FLAGS ..54

6.3.1 Initialise an event flag structure - sys/kn/evf/init..54

6.3.2 Destroy an event flag - sys/kn/evf/destroy ..54

6.3.3 Set the flag pattern of an event flag - sys/kn/evf/set ...54

The Reference Manual for the intentTM Kernel

Page 5

6.3.4 Clear the flag pattern of an event flag - sys/kn/evf/clr...54

6.3.5 Waiting on an Eventflag ..55

6.3.6 Wait on event flag until a specific condition is fulfilled - sys/kn/evf/wait................................55

6.3.7 Test event flag for specified event flag pattern, non blocking - sys/kn/evf/trywait55

6.3.8 Wait on event flag for specific condition (blocking), with timeout - sys/kn/evf/timedwait56

6.3.9 Get event flag information - sys/kn/evf/info...56

6.4 READER/WRITER LOCKS ..56

6.4.1 Initialises a reader/writer lock - sys/kn/rwlock/init ...56

6.4.2 Destroys a reader/writer lock - sys/kn/rwlock/destroy...57

6.4.3 Waits on a reader/writer lock (blocking, no timeout) - sys/kn/rwlock/wait.............................57

6.4.4 Waits on a reader/writer lock (non-blocking) - sys/kn/rwlock/trywait57

6.4.5 Waits on a reader/writer lock (blocking, with timeout) - sys/kn/rwlock/timedwait57

6.4.6 Unlocks a reader/writer lock - sys/kn/rwlock/unlock..57

6.4.7 When holding the lock as a reader, become a writer - sys/kn/rwlock/upgrade.....................57

6.5 MAILBOXES..58

6.5.1 Mail Messages ..58

6.5.2 Allocate a mailbox - sys/kn/mbox/alloc ...59

6.5.3 Free a mailbox - sys/kn/mbox/free..59

6.5.4 Send Message to mailbox - sys/kn/mbox/send...59

6.5.5 Read mail from mailbox - sys/kn/mbox/read...59

6.5.6 Read mail from a mailbox, non-blocking - sys/kn/mbox/tryread ...60

6.5.7 Read mail from a mailbox, with blocking and timeout – sys/kn/mbox/timedread60

6.5.8 Set the callback function for the specified mailbox - sys/kn/mbox/setcallback.....................60

6.5.9 Call the specified function with the message list of the mailbox - sys/kn/mbox/enumerate .61

6.6 SYNCHRONISATION GROUPS ..61

6.6.1 Initialise Synchronisation Group - sys/kn/sgrp/init ..62

6.6.2 Destroy Synchronisation Group - sys/kn/sgrp/destroy..62

6.6.3 Associate Mutex with Synchronisation Group - sys/kn/sgrp/mtx_assoc...............................62

6.6.4 Associate Semaphore with Synchronisation Group - sys/kn/sgrp/sem_assoc.....................62

6.6.5 Associate Mailbox with Synchronisation Group -sys/kn/sgrp/mbox_assoc62

6.6.6 Associate Event Flag with Synchronisation Group - sys/kn/sgrp/evf_assoc62

6.6.7 Associate Synchronisation Group with Synchronisation Group - sys/kn/sgrp/sgp_assoc....62

6.6.8 Disassociate Mutex from Synchronisation Group - sys/kn/sgrp/mtx_disassoc63

6.6.9 Disassociate Semaphore from Synchronisation Group - sys/kn/sgrp/sem_disassoc...........63

6.6.10 Disassociate Mailbox from Synchronisation Group - sys/kn/sgrp/mbox_disassoc.............63

6.6.11 Disassociate EVF Condition from Synchronisation Group - sys/kn/sgrp/evf_disassoc63

6.6.12 Disassociate Event Flag from Synchronisation Group - sys/kn/sgrp/evf_destroy63

The Reference Manual for the intentTM Kernel

Page 6

6.6.13 Disassociate Synchronisation Group from Synchronisation Group -

sys/kn/sgrp/sgp_disassoc ..63

6.6.14 Wait on Synchronisation Group – sys/kn/sgrp/wait...63

6.6.15 Test Synchronisation Group, non-blocking – sys/kn/sgrp/trywait64

6.6.16 Wait on Synchronisation Group, with timeout – sys/kn/sgrp/timedwait64

6.7 STRUCTURE OF SYNCHRONISATION GROUP INFORMATION RECORDS..64

7. MEMORY MANAGEMENT ...66

7.1 DYNAMIC MEMORY ALLOCATION ...67

7.1.1 Allocate memory from specified type of memory object - sys/kn/mem/alloc<type>67

7.1.2 Allocates memory with a specified alignment - sys/kn/mem/allocaligned.............................68

7.1.3 Allocate memory from specified memory object - sys/kn/mem/alloc68

7.1.4 Free memory allocated from corresponding allocation tool - sys/kn/mem/free69

7.1.5 Re-allocate memory - sys/kn/mem/realloc..69

7.1.6 Check structure of all system memory objects - sys/kn/mem/check69

7.1.7 Get pointer to named memory object - sys/kn/mem/lookup ...69

7.1.8 Return size of block of memory - sys/kn/mem/size...70

7.1.9 Returns the memory object associated with a block - sys/kn/mem/getobj70

7.2 VIRTUAL MEMORY SERVICES ..70

7.2.1 Lock Memory - sys/kn/mem/lock...70

7.2.2 Unlock Memory - sys/kn/mem/unlock ...71

7.3 MEMORY OBJECT METHODS...71

7.3.1 Constructor tool - <class name>/_new ...71

7.3.2 Initialise memory object - _init...72

7.3.3 Allocate memory from memory object - alloc (xmethod) ..72

7.3.4 Free memory to memory object - free (xmethod) ...72

7.3.5 Add memory block to memory object - addblock ..72

7.3.6 Return statistics about memory usage - info...72

7.3.7 Check memory object structure - check..72

7.3.8 Return size of largest available memory block - largest ...72

7.4 MEMORY FLUSHING..72

7.4.1 Add callback routine to memory flush list - sys/kn/mem/addflush ..73

7.4.2 Remove a callback function from the memory flush list - sys/kn/mem/removeflush73

7.4.3 Process memory flush callback list - sys/kn/mem/flush..73

8. TIMER MANAGEMENT ..75

8.1.1 Set up a timer, using the priority of the calling process - sys/kn/timer/set76

8.1.2 Set up a timer, using the priority specified in the timer data structure - sys/kn/timer/dset....77

The Reference Manual for the intentTM Kernel

Page 7

8.1.3 Unset timer - sys/kn/timer/unset..77

8.1.4 Unsets periodic timer from within its own handler - sys/kn/timer/handler_unset77

9. INTERRUPT HANDLING ..78

9.1 RESTRICTIONS ON INTERRUPT HANDLERS ...78

10. EXCEPTION HANDLING..80

10.1 EXCEPTION NUMBERS ..81

10.2 THE PROCESS/DEBUGGER THIRD LEVEL EXCEPTION HANDLER..82

10.2.1 Enables a process to throw a software exception - process_exception_handler82

10.3 EXCEPTION HANDLING FUNCTIONS ..83

10.3.1 Register a process's exception handler with the kernel - sys/kn/exc/set............................83

10.3.2 Deregister a process's exception handler with the kernel - sys/kn/exc/unset.....................83

10.3.3 Register a system-wide exception handler with the kernel - sys/kn/exc/setsys83

10.3.4 Deregister a system-wide exception handler with the kernel - sys/kn/exc/unsetsys83

10.3.5 Register a debugger's exception handler with the kernel - sys/kn/exc/setdbg83

10.3.6 Deregister a debugger's exception handler with the kernel - sys/kn/exc/unsetdbg............84

10.3.7 Throw a software exception - sys/kn/exc/throw ..84

11. SIGNALS...85

11.1 GENERATING SIGNALS ...86

11.2 SIGNAL ACTIONS..86

11.3 DELIVERING A SIGNAL TO A PROCESS ...87

11.4 DISABLING SIGNAL DELIVERY ...87

11.5 SIGNAL FUNCTIONS..88

11.5.1 Send a signal to a process- sys/kn/sig/kill ..88

11.5.2 Examine or change signal action - sys/kn/sig/action ..88

11.5.3 Examine or change blocked signals - sys/kn/sig/procmask..88

11.5.4 Examine pending signals - sys/kn/sig/pending ...89

11.5.5 Return set of signals which have been raised but not yet taken - sys/kn/sig/raised...........89

11.5.6 Wait for a signal - sys/kn/sig/suspend...89

11.5.7 Disable or enable signal handling - sys/kn/sig/setflag ..89

11.5.8 Sets handler for specified signal - sys/kn/sig/signal..90

11.6 SIGNAL SET FUNCTIONS..90

11.6.1 Creates an empty set - sys/kn/sig/emptyset ...90

11.6.2 Creates a full set - sys/kn/sig/fillset ...90

11.6.3 Adds a signal to a set - sys/kn/sig/addset...90

11.6.4 Delete a signal from the set - sys/kn/sig/delset...90

The Reference Manual for the intentTM Kernel

Page 8

11.6.5 Tests set to see if signal is a member - sys/kn/sig/ismember...91

11.6.6 Modifies the set of pending signals - sys/kn/sig/setpending ...91

11.6.7 Modifies the set of pending signals - sys/kn/sig/orpending...91

12. EVENT TOOLS ...92

12.1.1 Initialises an event tracker - sys/kn/event/init..92

12.1.2 Destroys an event tracker - sys/kn/event/destroy ...93

12.1.3 Waits on an event tracker (blocking, no timeout) - sys/kn/event/wait93

12.1.4 Waits on an event tracker (non-blocking) - sys/kn/event/trywait...94

12.1.5 Waits on an Event tracker (blocking, with timeout) - sys/kn/event/timedwait94

12.1.6 Alters the state of an event tracker - sys/kn/event/alter ..94

12.1.7 Gets the value of an event tracker - sys/kn/event/info..94

12.1.8 Waits on an event tracker in a specified way (blocking, no timeout) - sys/kn/event/wait_fn

..94

12.1.9 Waits on an event tracker in a specified way (non-blocking) - sys/kn/event/trywait_fn94

12.1.10 Waits on an event tracker in a specified way (blocking, with timeout) -

sys/kn/event/timedwait_fn ..94

12.1.11 Alters the state of an event tracker in a specified way - sys/kn/event/alter_fn95

12.1.12 Call a function for each caller waiting on an event tracker - sys/kn/event/enumerate......95

13. CALLBACK MANIPULATION FUNCTIONS..96

13.1 THE CALLBACK DATA STRUCTURE ..96

13.2 THE CALLBACK HANDLER FUNCTION...97

13.3 KERNEL CALLBACK MANIPULATION FUNCTIONS ...97

13.3.1 Set a callback - sys/kn/callback/set ..97

13.3.2 Unset a callback - sys/kn/callback/unset ..97

13.3.3 Disable/Enable callbacks for the calling process - sys/kn/callback/setflag.........................97

13.3.4 Process any pending callbacks - sys/kn/callback/process ...98

13.3.5 Returns the value of the PF_CALLBACK_OCCURRED flag for the calling process -

sys/kn/callback/occurred ..98

13.3.6 Clears the PF_CALLBACK_OCCURRED flag for the calling process -

sys/kn/callback/clr_occurred ..98

13.3.7 Indicate whether a callback is currently pending for the calling process -

sys/kn/callback/pending ...98

14. NAMED DATA AREA FUNCTIONS ...99

14.1.1 Associate the specified pointer with the specified string - sys/kn/nda/name99

14.1.2 Delete the NDA record for the specified string - sys/kn/nda/del ...99

The Reference Manual for the intentTM Kernel

Page 9

14.1.3 Look up the NDA record for the specified string - sys/kn/nda/find......................................99

15. ATOMS..100

15.1 ATOM VALUES ..100

15.2 STATIC ATOMS...100

15.3 DYNAMIC ATOMS..100

15.4 ATOM FUNCTIONS...100

15.4.1 Return atom value for specified string, create new atom if required - sys/kn/atom/add ...100

15.4.2 Dereference the specified atom, delete if unreferenced - sys/kn/atom/del.......................101

15.4.3 Return the atom value corresponding to the specified string - sys/kn/atom/find101

15.4.4 Return a copy of the string corresponding to the specified atom - sys/kn/atom/getname 101

15.4.5 Increment the reference count of an atom - sys/kn/atom/ref ..101

16. KERNEL NOTIFICATION FUNCTIONS ...102

16.1 SYSTEM EVENTS..102

16.2 THE EVENT HANDLING FUNCTION...102

16.3 KERNEL NOTIFICATION FUNCTIONS ...103

16.3.1 Announce that an event has taken place - sys/kn/notify/announce..................................103

16.3.2 Register an interest in being notified when a particular event occurs -

sys/kn/notify/subscribe ...103

16.3.3 Register an interest in being notified when a particular named event occurs -

sys/kn/notify/subscribe_name ..103

16.3.4 Withdraw previous subscription to be notified when a certain event is generated -

sys/kn/notify/unsubscribe ...104

16.3.5 Register as a generator of a particular kind of event - sys/kn/notify/generator104

16.3.6 Register as a generator of a particular kind of named event - sys/kn/notify/generator_name

..104

16.3.7 Cease to be a generator of a particular type of event - sys/kn/notify/ungenerator104

17. ATOMIC LIST FUNCTIONS..105

17.1.1 Add a node to the head of the list - sys/kn/atomic/addhead ...105

17.1.2 Add a node to the tail of the list - sys/kn/atomic/addtail ..105

17.1.3 Add a node after the specified list node - sys/kn/atomic/addnode....................................105

17.1.4 Add a node before the specified list node - sys/kn/atomic/addnodeb...............................105

17.1.5 Remove the node from the head of the specified list - sys/kn/atomic/removehead106

17.1.6 Remove the specified node from its list - sys/kn/atomic/removenode..............................106

17.1.7 Moves the entire contents of one list onto another - sys/kn/atomic/movelist....................106

18. MINI ATOMIC BLOCKS..107

The Reference Manual for the intentTM Kernel

Page 10

18.1.1 Enter a scheduler MAB - sys/kn/mab/begin_s ..107

18.1.2 Leave a scheduler MAB - sys/kn/mab/end_s..107

18.1.3 Enter a thread MAB - sys/kn/mab/begin_t ..107

18.1.4 Leave a thread MAB - sys/kn/mab/end_t..107

18.1.5 Enter an interrupt MAB - sys/kn/mab/begin_i ...107

18.1.6 Leave an interrupt MAB - sys/kn/mab/end_i ...108

19. AVL TREE MANAGEMENT FUNCTIONS..109

19.1 KERNEL MANAGEMENT FUNCTIONS FOR THE AVL TREE ..110

19.1.1 Initialises an AVL tree header - sys/kn/avl/init ..110

19.1.2 Initialises an AVL tree header with relocatable stack - sys/kn/avl/init_rs..........................110

19.1.3 Initialises an AVL tree header to permit elements with duplicate keys - sys/kn/avl/init_dup

..111

19.1.4 Initialises an AVL tree header with relocatable stack to permit elements with duplicate keys

- sys/kn/avl/init_dup_rs...111

19.1.5 Switch the location of the relocatable stack - sys/kn/avl/move_rs111

19.1.6 Deinitialises an AVL tree header - sys/kn/avl/deinit ..111

19.1.7 Inserts a new node into an AVL tree - sys/kn/avl/insert ..111

19.1.8 Removes a node from an AVL tree, rebalancing the tree - sys/kn/avl/remove112

19.1.9 Removes all the elements from an AVL tree - sys/kn/avl/removeall.................................112

19.1.10 Removes elements within the given range from an AVL tree - sys/kn/avl/removerange112

19.1.11 Finds an element within a tree - sys/kn/avl/find ..112

19.1.12 Finds a node with a specified key value within a tree - sys/kn/avl/findkey113

19.1.13 Returns the maximal element within an AVL tree - sys/kn/avl/maximum113

19.1.14 Returns the minimal element within an AVL tree - sys/kn/avl/minimum113

19.1.15 Enumerates all elements in an AVL tree, calling a function for each one -

sys/kn/avl/enumerate ...113

19.1.16 Returns the number of elements in an AVL tree - sys/kn/avl/size113

19.1.17 Checks the consistency of an AVL tree - sys/kn/avl/check...113

19.1.18 Finds the leftmost element greater than or equal to a key - sys/kn/avl/ubound113

19.1.19 Finds the rightmost element less than or equal to a key - sys/kn/avl/lbound114

19.1.20 Finds the next element left from a given element (ie. next smaller key) -

sys/kn/avl/walkleft...114

19.1.21 Finds the next element right from a given element (ie. next larger key) -

sys/kn/avl/walkright ..114

20. KERNEL DEVICE FUNCTIONS ...115

20.1.1 Look up a device in the system mount table - sys/kn/dev/lookup.....................................115

The Reference Manual for the intentTM Kernel

Page 11

20.1.2 Look up a device in the system mount table - sys/kn/dev/rlookup....................................116

20.1.3 Add a device to the system mount table - sys/kn/dev/mount..116

20.1.4 Remove the specified device from the system mount table - sys/kn/dev/unmount116

20.1.5 Adds a delayed-mount record for a device to the mount table - sys/kn/dev/mount_delayed

..116

20.1.6 Adds a new device driver to a running system - sys/kn/dev/start116

20.1.7 Unmounts and stops a device - sys/kn/dev/stop...117

21. STATIC AREAS SUPPORT..118

21.1 STATIC DATA CACHES..118

21.2 ACCESSING STATICS ..118

21.2.1 Find the data associated with a cache, or allocate it if necessary -

sys/kn/statics/statics_get..120

21.2.2 Delete the statics associated with the key and clear the cache -

sys/kn/statics/statics_delete...121

21.2.3 Allocates a static area (used when WDA_SETUP_LENGTH is -1)- alloc121

21.2.4 Performs initialisation on an automatically allocated static area- new..............................122

21.2.5 If setup length is 0 or more then the space is automatically allocated - init......................122

21.2.6 Wait for statics area to be initialised - wait..122

21.2.7 Deinitialise the statics area - deinit..123

21.2.8 Deletes the statics area by freeing it - delete..123

22. KERNEL ENTROPY COLLECTOR..124

22.1 ENTROPY COLLECTION OVERVIEW..124

22.2 THE KERNEL ENTROPY COLLECTOR..126

22.2.1 Entropy Collector Input..126

22.2.2 Entropy Collector Output...127

22.3 KERNEL ENTROPY COLLECTOR FUNCTIONS ..127

22.3.1 Add entropy to the kernel collector pool - sys/kn/entropy/add ..127

22.3.2 Add timer entropy to the pool - sys/kn/entropy/add_time ...127

22.3.3 Register the timer clock resolution - sys/kn/entropy/reg_time ..127

22.3.4 Extract entropy from collector pool - sys/kn/entropy/get...128

22.3.5 Extract entropy from collector pool (alternative interface) - sys/kn/entropy/getrand.........128

22.3.6 Extract entropy asynchronously - sys/kn/entropy/get_async..129

22.3.7 Cancel asynchronous entropy request - sys/kn/entropy/get_abort...................................129

23. KERNEL TIME FUNCTIONS ..130

23.1.1 Get the kernel time - sys/kn/time/get ..130

The Reference Manual for the intentTM Kernel

Page 12

24. DATA STRUCTURE DEFINITIONS..131

24.1 PROCESS CONTROL BLOCK STRUCTURE...131

24.2 SPAWN STRUCTURE...132

24.3 EVENT FLAG INFORMATION STRUCTURE..133

24.4 MAIL MESSAGE HEADER...133

24.5 MEMORY FLUSH LIST NODES..134

24.6 CALLBACK DATA STRUCTURE ...134

24.7 NOTIFY DATA STRUCTURE..135

24.8 AVL TREE..135

24.9 TIMER STRUCTURE ..136

24.10 ENTROPY COLLECTOR CONTROL STRUCTURE...137

25. GLOSSARY...139

The Reference Manual for the intentTM Kernel

Page 13

1. Introduction

The kernel for the intentTM environment is a collection of functions which provide basic facilities such
as the transportation of messages, memory management, process distribution, code and data
caching, and process scheduling. intent kernel functions are effectively globally accessible tools.

The intent kernel is a microkernel, a set of compact modules which may be easily configured, and
which demands only a small memory footprint. Many functions that the kernel of a standard operating
system might be expected to contain are not considered to be part of the intent kernel, but instead are
categorised separately. Device drivers, for example, are not part of the kernel.

This document provides a detailed overview of the functionality offered by the kernel. Readers
intending to perform programming involving the kernel are advised to use this manual in conjunction
with the relevant API documents. Each of these documents may be found in the relevant subdirectory
of the sys/kn directory.

1.1 A Real Time Operat ing System
intent is an environment with real time capabilities. This means that within the system, operations can
be guaranteed to take place in a deterministic fashion. This means that given sufficient information
about the state of the system, the length of time taken by an operation can be calculated.

The kernel contains functions that govern the system's scheduler, timer and synchronisation
mechanisms. It also provides a means of manipulating tools and processes, and handling memory
and data structures.

1.2 Portability
All functions contained within the intent kernel are portable.

Where the kernel is called upon to use system functionality that is processor-dependent, it is achieved
through the CPU Isolation Interface (CII). The CII acts as an interface between the kernel and the
processor, and aids in the execution of tasks such as those involving stack allocation, manipulation of
the native instruction set, scheduler-related functions and cache-flushing.

The kernel achieves interface with underlying hardware, or software in the case of a hosted system,
through use of the Platform Isolation Layer (PIL). The PIL is mainly comprised of the device drivers,
and the Platform Isolation Interface (PII). The PII is used by the kernel to effect tasks such as interrupt
handling, system startup and shutdown, and exception management. When the system is running
hosted on another OS, the PII can also handle memory management, but this is rarely used. Usually,
the kernel itself will be responsible for memory management.

Details of PII and CII functions may be found in the relevant section of The System Programmer’s
Guide, and in a number of documents included in the build, such as sys/cii/api.html and
sys/pii/api.html.

The Reference Manual for the intentTM Kernel

Page 14

2. Tool Handling

intent may be regarded as using a 'tool-based' system. Within intent tools are structures in memory
which contain code, in the form of subroutines and functions, and data.

In storage, tools exist as non-executable templates. Most tools are stored in VP, and translated into
native code at either load time or sysgen time. A tool will always contain only native code when in
executable state. Tools may also be stored in native code. This permits some processor-specific
operations and optimisations to be incorporated into an intent system if required.

Tools may be bound into an application in two different ways, through static binding or through
dynamic binding.

In the case of static binding, intent makes use of an image generation facility. Two of these are
available, the Sysbuild Utility and the System Image Generation Utility (Sysgen). The Sysgen utility
creates a bootable image from a list of instructions. These describe the tools to be included in the
image, the processes and device objects to be created at initialisation, and the system boot
sequence. The image may then be booted and executed as an application. The Sysbuild utility
receives an applications ‘sysbuild file,’ which contains details of tools and data files which the
application requires. Sysbuild then calls upon the underlying Sysgen functionality to create a bootable
application image.

In the case of dynamic binding, tools are loaded as they are referenced. This usually takes place
when processes are created; the ‘main’ tool, which the process will begin by executing, and any tools
qcalled by it, will be dynamically loaded, translated, and bound. Tools may also be referenced as a
result of virtual qcalls by other tools. Thus tools are brought into memory as and when they are
required. This binding process is transparent to the user.

It is usual to use only static binding in embedded systems. Other systems will often combine the two
tool loading mechanisms. While the initial system image will customarily be generated using static
binding, other tools will often be loaded using dynamic binding, once the system is running.

2.1 Calling Tools
Within intent, tools may call one another in a similar manner to that in which one might call a library
function in a high-level language such as C.

intent tools make use of three qcalls (quick call). These are the 'normal' qcall, the virtual qcall and the
virtual+fixup qcall. These calls vary only in their binding semantics, and their differences will not be
apparent to the user.

• "Normal" qcall
The referenced tool is found at bind-time (loaded, translated if necessary and bound if it does not
exist in memory), and the calling tool is fixed up to call directly to its entry point. There is no run-
time performance penalty for using this method - it is as fast as a subroutine call. The referenced
tool remains in memory until the calling tool is removed.

• "Virtual" qcall
At bind-time, the calling tool is bound to a kernel function with the name of the tool to be called. At
run-time, the kernel function finds the referenced tool (loading, translating if necessary and
binding it if it does not exist in memory), and then calls it. The referenced tool is dereferenced
when the call returns.

The Reference Manual for the intentTM Kernel

Page 15

This method is considerably slower than a normal qcall, but it has the advantage that the tool
being called is only referenced during the period of its execution. Therefore, it can be removed
from memory if necessary while it is not executing. If this occurs, it is automatically reloaded on
the next call to it (and re-translated and re-bound).

• "Virtual+fixup" qcall
At bind-time, the calling tool is bound to a kernel function with the name of the tool to be called. At
run-time, the first time that the call is executed, the kernel function finds the referenced tool
(loading, translating if necessary and binding it if it does not exist in memory), and then modifies
the calling instruction to point directly to the referenced tool. It then calls the referenced tool. The
referenced tool returns directly to the calling tool.

Subsequent executions of the call are almost as fast as a normal qcall, having the overhead of a
single constant load instruction. This mechanism is almost as slow as a virtual qcall on its first
execution, but almost as fast as a normal qcall on all subsequent executions. The referenced tool
cannot be removed from memory after it is loaded, until the calling tool itself is removed (as with a
normal qcall).

This method is commonly used where a number of tools may be called, and it is unknown at
assembly-time which one(s) will be used. However, once it is decided which tools are to be used
(according to some run-time parameter), the calls to the tools must be as fast as possible. This
avoids the memory overhead of loading all of the referenced tools, at the expense of a slower first
call.

In general, tools are loaded and fixed up automatically by the kernel binder when they are implicitly
referenced by another tool, or by the creation of a process. However, it is possible to open a specified
tool manually. This uses the same mechanism as the intent dynamic binder, but can be valuable in
situations where, for example, the name of the tool to be called is not known at assembly-time.

2.2 Tool structure
In intent, a tool is a structure containing a small header, executable code, and some information for
use by the dynamic binder. Below a typical tool is shown, in template format, as generated by
translators, assemblers or compilers, and in ready, run-time format, after being processed by the
kernel binder.

The Reference Manual for the intentTM Kernel

Page 16

Tool signature
4 bytes

Tool creation time
4 bytes

Length of tool
4 bytes

Tool flags
1 byte

Code length
3 bytes

Proc type
1 byte

Offset to code start
3 bytes

Skip size
1 byte

Toolname
Variable length

Padding to 4 byte boundary
Variable length (0-3 bytes)

Others, depending upon flags
Variable length

Fixup table
Variable length

Pointer to next tool
4 bytes

Tool loader object ID
4 bytes

Length of tool
4 bytes

Tool flags
1 byte

Reference count
3 bytes

Pointer to code start
4 bytes

Skip size
1 byte

Toolname
Variable length

Padding to 4 byte boundary
Variable length (0-3 bytes)

Others, depending upon flags
Variable length

Fixup table
Variable length

Negative offset to start of header
(native tools only)

4 bytes

Tool code
Variable length

Resource references
Variable length

Debug information
Variable length

Pointer to start of header
4 bytes

Tool code
Variable length

Resource references
Variable length

Debug information
Variable length

Template Format Ready Format

Diagram 1: Structure of an intent Tool

One part of the structure (enclosed within the dashed box in each diagram) is repeated one or more
times to allow multiple named entry points into the tool. In all except the first, the processor type field
is set to zero.

The intent tool header fields are described in detail in ‘The Elate Tool Programming Guide’.

2.3 Tool management f unctions
The functions described in this document allow some control over the behaviour of the kernel's tool
handling system.

The Reference Manual for the intentTM Kernel

Page 17

2.3.1 Decrement the reference count of the specified tool - sys/kn/tool/deref
This function decrements the reference count of the specified tool. The reference count indicates the
number of tools in memory that are referencing, or using, the specified tool. While the count remains
above zero, the tool is retained in memory. If the count reaches zero, this indicates that the tool is no
longer required, and it may be flushed out of memory.

The sys/kn/tool/deref function may be used to decrement the reference count 'artificially,' so as to
allow a particular tool to be flushed from memory.

See Also: sys/kn/tool/ref, sys/kn/tool/open

2.3.2 Increment the reference count of the specified tool - sys/kn/tool/ref
This function increments the reference count of the specified tool. The sys/kn/tool/ref function may be
used to increase the reference count 'artificially,' so that a tool is not flushed out of memory even
when it is being referenced by no other tools.

This functionality is valuable where it is undesirable for specific tools to be flushed, even when the
system memory is running low. Device drivers, for example, often need to remain in memory, even
when they are not being referenced by any other tool.

See Also: sys/kn/tool/deref, sys/kn/tool/open

2.3.3 Get pointer to an executable tool - sys/kn/tool/open
This function searches for the specified tool. The tool is sought first in the kernel's tool list on the
caller's processor. The name of the tool found must be an exact match. If the search is successful, the
function returns pointers to the tool. If the tool is not found here, the specified tool loader is called. If
the value -1 is specified as the tool loader ID, however, the system will search the list of tools already
in memory but will not attempt to load the tool if it is not found.

The tool loader is system-dependent, but on a desktop-type system, it typically attempts to load the
file from disk using a set of tool extensions specified at sysgen time to determine the search order.
Native tools are loaded in preference to VP tools. Several native code extensions can be specified,
and these will be searched in the specified order.

Thus, the tool loader will usually attempt first to find a version of the tool in code native to the
processor upon which the system running. It will then seek versions in the code for machines of the
same processor family, searching for the best match first. If none such are found, it will resort to the
version in VP. The advantage of selecting the native version where possible, is that time may be
saved through omission of the translation stage.

If a tool is opened, it is automatically referenced. An open tool, therefore, will remain in memory until it
is explicitly dereferenced.

If the specified tool is not found or if another error occurs, both returned pointers are NULL.

See Also: sys/kn/tool/deref

2.3.4 Flush all unreferenced tools from memory - sys/kn/tool/flush
This function may be used to flush all unreferenced tools from memory when system resources are
running low.

See Also: sys/kn/tool/flushname

The Reference Manual for the intentTM Kernel

Page 18

2.3.5 Flush specific tool from memory - sys/kn/tool/flushname
This function allows a specific tool to be flushed from memory. If the specified tool has a reference
count of zero, this function will simply remove it from memory. If its reference count is non-zero, then
there are other tools referencing it, and it cannot yet be removed from memory. In this case, the
toolname is ‘annulled,’ meaning that the tool is flagged as having been flushed. Subsequent attempts
to bind to the annulled tool will fail, and the tool must be re-loaded the next time it is opened. Any
processes or tools which are using the specified tool when it is annulled will continue to use it until
they have finished.

If the toolname is annulled, the tool list is searched for other tools which reference the specified tool,
and all tools that reference those tools, etc. If found, their names are also annulled. This prevents any
future bind operations from indirectly referencing the flushed tool.

It should be noted that the kernel is never guaranteed to flush a tool immediately and in all cases it
may elect to simply mark the tool as flushed as described above, then perform the actual flush at
some later point.

See Also: sys/kn/tool/flush

2.3.6 Copy the name of a tool into the user's buffer - sys/kn/tool/getname
This function is passed a pointer to a particular tool, and copies the textual name of this tool into the
specified buffer.

If the specified buffer pointer is NULL, the string cannot be copied. The length of the buffer required,
including the null character used to mark the end of the string, is returned. This is equivalent to the
length of the string to be copied.

2.3.7 Run-time stack tracing - sys/kn/tool/stktrace
This function allows the system to make an accurate stack trace of Java™ methods when Java™
exceptions are thrown. This tool makes use of the translator, which outputs stack trace information
inside tools for which the stack trace feature is enabled. Enough information is output to ensure that at
every point where a Java™ exception may be thrown, it is possible to perform a stack trace through
an instance of that subroutine.

A stack trace can usually be started by calling this subroutine, and passing it the parameter pointer
and the link pointer, as the first and second pointer input values respectively.

If a CPU exception has caused a signal, the PII needs to supply the values of the program counter
and stack pointer, at the point when the exception was thrown. The PII will have saved these values in
its first level exception handler.

On output, the tool pointer may be non zero when the other return values are 0. This occurs when the
supplied program counter is in a valid tool, but that tool has no stack trace information.

2.3.8 Find tool containing specified code address - sys/kn/tool/lookup
This function returns the header and entrypoint addresses of the tool containing the specified address.
If no tool contains this address, NULL pointers are returned. The name of the tool returned can be
obtained by calling sys/kn/tool/getname.

The Reference Manual for the intentTM Kernel

Page 19

This function is usually required during debugging. While it is often easy to establish the code address
at which an error has occurred, it is more useful to know the identity of the tool that contains this
address.

Since this tool returns two values, it cannot currently be directly called from C.

See Also: sys/kn/tool/getname

2.3.9 Set stack pointer and jump to specified address, clearing up stack -
sys/kn/tool/setspngo

This tool is used to jump back to an earlier (or higher) program state. It sets the stack pointer to the
specified value, removing any linked stack blocks which become unused by this process, and also
dereferencing any virtually called tools whose returns are jumped past.

The jump must be made to a sync instruction. The global pointer is not modified by this call. The
parameter pointer and the link pointer are restored to the states appropriate for the point to which
execution is jumping. The contents of all other VP registers, however, are undefined after the jump,
unless those registers were the subject of a syncreg instruction at the time that the execution
originally left that function. In such cases, they will recover the values they held at that time.

There are typically two ways in which the stack pointer and program counter values are determined.
The first is to simply store the current value of stack pointer during some function, and store the
address of a label at the same stack level (i.e. a label within the same ent block and without any
intervening als statements).

The second way is that within a function, one can store the values of the parameter pointer and link
pointer registers, and later pass them as parameters to sys/kn/tool/setspngo. However, it should be
noted that, in this second case, the function in which parameter pointer and link pointer are stored
must take a single pointer as input and return a single integer.

2.3.10 Return information about tool-list memory usage - sys/kn/tool/memstats
This tool fills in the specified structure with information about the contents of the current tool-list. At
present the ELATE_TLINFO structure contains the following fields:

• totalmem
This field contains the total amount of memory used by the tools on the tool-list, in bytes.

• numtools
This field contains the number of tools on the tool-list.

2.3.11 Return the reference count of a given tool - sys/kn/tool/getrefcount
sys/kn/tool/getrefcount returns the value of the reference counter of the tool specified.

2.3.12 Enumerate the tool lis t - sys/kn/tool/enumerate
This tool enumerates all elements on the tool list. For each tool, the user-defined handling function is
called. If the handling function returns a non-zero value, then the enumeration is aborted and the
same return value is returned by this tool.

2.4 Tool-open failures
A call to sys/kn/tool/open may fail for a number of possible reasons. This may be caused by the failure
of functions called during the operation of sys/kn/tool/open, such as mutex locking or memory

The Reference Manual for the intentTM Kernel

Page 20

allocation functions. Tool-open failure may also be caused by errors more specific to the tool loading
mechanism, such as a range of bind failures, translation failures and loading failures.

Since the tool-open errors are entirely internal to the tool-loading mechanism, they are not assigned
system-wide error codes. This prevents the wasteful use of the general error codes space for a set of
errors applicable only to a narrow and specific set of circumstances.

Thus, a separate set of error codes have been defined for tool-open errors. They are all positive, and
thus can be distinguished from the more generic error codes, which are uniformly negative. The value
0 is usually used to mean ‘no error’ within both sets of error codes.

2.4.1 Tool-open Failure Callback Function
When a tool operation fails, a call is made to any user-defined callback function indicated by the
process global data field PROC_TFHANDLER. If this field contains NULL, no action is taken, and
NULL is returned from sys/kn/tool/open. (It should be noted that although this function can be
considered to be a callback it is not of the format used by the sys/kn/callback functions.)

Error values passed into this function may be either normal intent error codes, or one of the values
designed specifically for tool-open failures. The VP macros iferrno and boolerrno may be used to
determine which of these types of error code has been passed to the function, as they will not
consider numbers specific to tool-open failures to be error codes.

Error codes simply identify the system condition that has prevented the completion of a certain
operation, such as lack of memory, and thus cannot generally be associated with the failure of a
specific tool. For this reason, if the callback function is passed a valid error code, the error information
pointer will be set to point to the name of the top-level requested tool.

If the callback function is passed one of the special error codes defined below, the contents of the
memory indicated by the error information pointer parameter depends on the exact error code.

The callback function can do many things, including printing out the error details, or recording the
error information in some way. The behaviours of such callback functions may be divided between
those that return to the calling function and those that do not.

A tool-open failure callback function which returns to the caller does not need to take any special
action, and can simply process the error information as it desires and then return to the caller which
will perform any necessary clean-up actions.

A tool-open failure callback function which does not return to the caller (such as a handler which
throws a high-level language exception or performs a C-style longjmp) must call the function
sys/kn/tool/dispose_error to ensure that the error information is cleared up properly.

2.4.2 This function frees the error information structure passed to a tool-open
failure callback handler - sys/kn/tool/dispose_error

This function should only be called if the handler function will not return to its caller.

This function takes two parameters, a pointer to the error information, and an error code. Both
parameters to this function should be passed through from the tool-open failure handler function
unmodified.

The Reference Manual for the intentTM Kernel

Page 21

2.4.3 Error information for callback function
The pointer passed to the callback function indicates an area of error information including a 'tool
binding list.' This is a structure that contains information concerning the error that has occurred, and
takes the format described below. All strings within this structure are null-terminated.

String This is the name of the tool containing the error.
String(s) This part of the structure is optional, and may contain multiple strings. Each of

these strings is the name of the tool referencing the previous tool to be named.
String This is the name of the tool requested at the top level by a call to

sys/kn/tool/open. The tool named here is a 'primary tool.'
Byte 0

This structure describes the hierarchy of tools being bound when the error was found. The second
part of the structure may vary radically in size, but the structure can be decoded by treating the first
string as the name of the tool containing the error, and the last string as that of the tool requested at
top level. If there is only one string in the structure, the error has been found in the top-level tool.

2.4.4 Special tool-open error codes
The following error codes are defined. The error information for the callback function varies depending
upon the error code. Below, for each error code, the corresponding error information is described.

Code Error Error information
1 Bad resource number 4-byte integer specifying the invalid resource number,

followed by a "tool-binding list."
2 NDA not found The name string of the named data area which was not

found, followed by a "tool-binding list."
3 Failed to create atom The string for which an atom could not be created,

followed by a "tool-binding list."
4 Failed to find resource Resource name which could not be found, followed by a

"tool-binding list."
5 PII opentool failed Name of failing tool, followed by a "tool-binding list."
6 Tool not found Name of tool which was not found, followed by a "tool-

binding list."
7 I/O error Name of tool which could not be read, followed by a

"tool-binding list."
8 Translator not found Name of translator which was not found, followed by a

"tool-binding list."
9 Jcode translation error 4-byte integer containing translator error code, followed

by a "tool-binding list."
10 VP translation error 4-byte integer containing translator error code, followed

by a "tool-binding list."
11 Invalid executable format Name of tool containing invalid executable, followed by a

"tool-binding list."
12 Could not resolve constant fixup Constant fixup string which could not be resolved,

followed by a "tool-binding list."

The Reference Manual for the intentTM Kernel

Page 22

3. Process Management

In intent, applications are comprised of processes. A process is made up of one or more threads, a
thread being the route through the executable code in a series of tools.

In other systems threads are commonly used for the following reasons:

• It is usually faster to create or destroy threads than processes.
• Threads can be used to share certain types of data, such as open files, signal tables, etc.
• Threads from the same application often operate within a single memory space, allowing them to

share data more efficiently. This occurs even on operating systems which generally compel
memory protection between processes.

In intent, processes are able to usurp many of these advantages, so that there are not the same
benefits in the use of threads instead of processes.

• The creation of processes in intent is very lightweight and memory efficient.
• In intent, memory protection between processes is not enforced. Thus processes running upon

the same processor can access one another's data.
• Like other operating systems, intent supports threads which allow the sharing of system

resources such as the file table, signal table, etc. However, in intent these threads are effectively
normal processes with some additional attributes.

The kernel contains numerous process management functions, offering the capacity to create and
destroy processes, to switch them between different 'states,' to change their scheduling
characteristics and to acquire information about them.

3.1 Process States
Processes in real time intent can exist in one of several states, defined as follows:

• NON-EXISTENT
This can be regarded as a pseudo-state, since a real intent process never actually exists in this
state. A 'non-existent' process has not yet been created, or has been deleted. This 'state' is
defined only so that the complete life-cycle of a process can be described.

• DORMANT
A process in this state is either not yet ready to execute, or has already completed.

• SUSPEND
A process in this state has been halted in its execution by another process.

• SLEEP
A process in this state cannot execute because it has voluntarily gone to sleep, and is waiting to
be woken up after a set amount of time or by another process.

• SLEEP & SUSPEND
A process in this state has had a suspend operation performed upon it while already in the SLEEP
state. It is therefore waiting both to be resumed and to be woken.

• RUN
A process in this state is currently running. Only one process may exist in this state at any
particular time.

• READY
A process in this state is neither suspended or sleeping, and is therefore ready to execute, but is
prevented from doing so because a higher or equal priority process is running.

The Reference Manual for the intentTM Kernel

Page 23

The interrelation of the different process states is shown in Diagram 2.

Functions that directly modify the state of a process may be divided into two groups. One group
operates upon the calling process, while the other group is called from one process to operate upon
another. Only a process in the RUN state is capable of performing an operation, and only one process
may be in this state at one time. Thus, a function to change the state of the running process can only
be called by a process to modify its own state.

Changes to the state of a process may be effected by the primitive operations described below. The
state of the calling process, among others, may be indirectly modified by functions such as the
synchronisation functions (see later section on “Process Synchronisation”), but only through use of
these same primitive operations. Diagram 2 shows the functions which are available for management
of processes, and for control of their scheduling characteristics.

Diagram 2: Process State Diagram

The interrelation of the process states is described in even greater detail in Diagram 3 below.

NON-EXISTENT

DORMANT

SUSPEND

SLEEP &
SUSPEND

SLEEP

READY RUN

Create Delete

Process Creation
Helper Functions

Start

Terminate

Terminate

Terminate

Terminate
Suspend

Suspend

Suspend

Suspend

Resume

Resume

Exit

Sleep

Sleep

Wake

Wake

Timeout

Dispatch

Deschedule

Wait

The Reference Manual for the intentTM Kernel

Page 24

Temp Dormant and
Starting

Ready

Running

Dead

Suspended Dormant Dormant and
Sleeping

Dormant and
Running

Dormant, Sleeping
and Suspended

Sleeping Sleeping and
Suspended

create

dispatch schedule

schedule

setparams

start delete

suspend /
increment
susCount

resume
[susCount=0] /

decrement susCount

terminate

terminate

suspend /
increment susCount

delete

wake

resume [susCount>0] /
decrement susCount

suspend /
increment
susCount

resume
[susCount=0] /

decrement
susCount

suspend /
increment
susCount

suspend /
increment
susCount

wake

resume
[susCount>0] /

decrement susCount

resume
[susCount=0] /

decrement susCount

suspend /
increment
susCount

wakesleep [if
wakeCount=0]

wake /
increment
wakeCount

sleep
[if wakeCount > 0] /

decrement wakeCount
exit [parent on remote chip]

exit [parent
on same

chip]

terminate

resume [susCount>0] /
decrement susCount terminate

sleep

Diagram 3 : Process State Diagram – Detailed

3.2 Process Management Function Descriptions

3.2.1 Create a process - sys /kn/proc/create

This function allocates and initialises the process state, including the stack, global data area, file
descriptors, environment list, etc. The main tool of the process is opened at this point. When this
function returns, therefore, the main tool will be fully bound and ready to be executed (excepting any
virtual or virtual+fixup qcalls it contains, which are bound at run-time).

This function moves the process from the NON-EXISTENT state to the DORMANT state. The process
will not, however, begin running until it has been started (using sys/kn/proc/start). The function takes
as parameters a pointer to a spawn structure, which is used to specify a process. The structure
includes the name of the main tool, any command line parameters, any environment variables, and
any file descriptors which are to be initially open.

The sys/kn/proc/create function also takes a pointer to a process control block (pcb) structure which
contains the scheduling parameters for the process. If NULL is specified then the pcb structure of the
calling process will be used.

The Reference Manual for the intentTM Kernel

Page 25

More detailed descriptions of the spawn structure and the pcb structure may be found in "Data
Structure Definitions" section later in this document. An account of the kernel functions for creating
and modifying spawn structures may be found later in this section.

Where the function has completed successfully, the process identifier of the new process will be
returned in the form of a positive integer. In the case of a failure, the function will return a negative
integer. It should be noted that the values returned by this function do not correspond to the normal
error code values.

The errors returned by this function are as follows:

-1 Invalid data memory object specified
-2 Invalid stack memory object specified
-3 No main tool specified
-4 Failed to open/bind main tool
-5 Tool specified does not have f_main bit set
-6 Could not allocate global data area
-7 Could not allocate stack
-8 Could not allocate PID
-9 Could not allocate scheduler data structure
-10 General ‘out of memory’ error
-11 Could not retrieve parent’s PCB block

The process identifier is described in more detail later in this section.

3.2.2 Delete a process - sys /kn/proc/delete
This function deletes the specified process, and automatically frees not only the resources which were
previously allocated by sys/kn/proc/create, but also some of the resources allocated by the process
during its execution.

These include the stack, global data area, main tool reference, file descriptors and environment
variables for the specified process. The function operates on a process in the DORMANT state, and
therefore cannot be called by a process upon itself.

If any child processes belonging to the process being deleted are in the DORMANT state, they are
also deleted. If any child processes belonging to it exist but are not in the DORMANT state, they
become children of process ID 0, the init process, which should delete them in the correct manner
when they terminate.

This function returns 0 if successful, or an error code indicating the error if it failed.

3.2.3 Start a process - sys/kn/proc/start
This function starts the specified process. It operates on a process in the DORMANT state, and
moves it to the READY state. The priority of the process is set to the value specified in the initial pcb
given when the process was created.

sys/kn/proc/start calls are not queued. In other words, if sys/kn/proc/start is called on a process which
is not in the DORMANT state, the request is ignored, and an error code is returned. If the specified
process later becomes DORMANT, it will not be immediately restarted due to this function call.

The Reference Manual for the intentTM Kernel

Page 26

3.2.4 Stop the execution of a running process - sys/kn/proc/exit
This function is called by a process to end its own activity. It moves the calling process from the RUN
state to the DORMANT state. From this DORMANT state it may be restarted or deleted by another
process. The sys/kn/proc/exit function takes an integer as its parameter. This integer is returned to the
process which calls sys/kn/proc/delete on this process. This function never returns to the caller,
which, in the case of a successful completion, is rendered dormant.

Information about the process is reset whenever the process is moved to the DORMANT state. This
information includes the contents of the pcb structure and the program counter, which gives the
memory address for the instruction currently undergoing execution. These are reset to the values that
were initially specified when the process was created. As a consequence, if the process has changed
its scheduling parameters during execution by using the sys/kn/proc/setparams function, the new
values are not retained when the process exits. If the process is restarted at a future point, its values
return to their initial settings.

3.2.5 Terminate a process - sys/kn/proc/terminate
This function terminates the specified process, moving it from its current state into the DORMANT
state. The function may not operate upon a process in the RUN state, or a process which is already in
the DORMANT state. If the caller specifies a process in either of these states, an error is returned and
no action is taken. This function is often used to induce abnormal termination in the case of a system
malfunction.

An 'interrupt-safe' version of this tool, sys/kn/int/proc/terminate, is also available.
sys/kn/int/proc/terminate can safely be called from inside an interrupt. Further details are available in
the later section on “Interrupt Handling.”

3.2.6 Sleep for a specified t ime - sys/kn/proc/sleep
This function causes the calling process to block until it is 'woken' by another process or an interrupt
handler, until the specified timeout expires, or until an unblocked signal becomes pending. Another
process may wake the sleeping process by using the sys/kn/proc/wake function. An interrupt handler
may wake it by using the sys/kn/int/proc/wake function.

Any queued calls to sys/kn/proc/wake will cause this function to return immediately.

The timeout parameter is a 64-bit quantity specified in nanoseconds, and should be -1 if no timeout is
desired. The timeout is the period during which the process will wait to be woken before abandoning
its SLEEP state.

If sys/kn/proc/wake or sys/kn/int/proc/wake is called before the period of time specified by the timeout
parameter elapses, sys/kn/proc/sleep will complete normally, and a value of 0 will be returned. If a
signal becomes pending for the process while it is asleep, sys/kn/proc/sleep returns EINTR. If a
callback is pending when sys/kn/proc/sleep is called, or one becomes pending while the process is
asleep, EINTR is returned. If none of the above conditions become true before the timeout period
elapses, ETIMEDOUT is returned.

It is possible for several of these conditions to occur simultaneously. For example, it is possible for the
timeout to expire just as the process is being woken. Alternatively, a signal might be sent to the
process at the same time as the expiry of a timeout, or the waking of a process.

If a combination of these conditions occurs, the call to sys/kn/proc/wake is always considered to have
occurred before the arrival of a signal, a callback or a timeout. Similarly, a timeout is always
considered to have occurred before a signal or a callback. Since there is no way to discriminate
between signals and callbacks, they have equal precedence. Thus, EINTR will be returned if a signal

The Reference Manual for the intentTM Kernel

Page 27

or callback occurred, but there was no timeout or call to sys/kn/proc/wake. ETIMEDOUT will be
returned if a timeout occurred but no call was made to sys/kn/proc/wake. If a call was made to
sys/kn/proc/wake or sys/kn/int/proc/wake, zero will be returned, regardless of the occurrence of the
other conditions.

Since the sys/kn/proc/sleep function may only be called by a process upon itself, calls to
sys/kn/proc/sleep cannot be nested. Once in the SLEEP state, the calling process cannot place
subsequent calls to the function, and thus create 'layers' of sleep, each needing to be dispelled by a
different call to the sys/kn/proc/wake function. It is possible, however, for another process to call
sys/kn/proc/suspend specifying a task which is in the SLEEP state. This will result in the specified
process changing to the SLEEP&SUSPEND state.

One can determine whether a callback was taken during a sleep by examining the value returned by
sys/kn/callback/occurred. The value of this flag is cleared on entry to sys/kn/proc/sleep if callbacks are
enabled, and is set if callbacks are processed. It should be noted that if callbacks are completely
disabled, the value of this flag is not affected by a call to sys/kn/proc/sleep.

If the callback flag state (see the description of sys/kn/callback/setflag in the section on “Callbacks”) is
2, then a callback being posted to the sleeping process will cause it to wake. The callback, however,
will not be taken immediately. Instead it will become pending. This condition can be tested by calling
sys/kn/callback/pending.

3.2.7 Wake a sleeping process - sys/kn/proc/wake
This function releases the specified process from its SLEEP state. A process may not specify itself in
this function call.

If the specified process is not in the SLEEP state, the sys/kn/proc/wake request will be queued, so
that the next time the specified process calls sys/kn/proc/sleep, the call will return immediately and the
process will be 'woken.'

This function can be called when interrupts are off, and will return with interrupts in the same state as
when it was called. However, the operation of calling sys/kn/proc/wake cannot be assumed to be
atomic, as the process being woken may run, with interrupts on, before this function returns.

An 'interrupt-safe' version of this tool, sys/kn/int/proc/wake, is also available. sys/kn/int/proc/wake can
safely be called from inside an interrupt. Further details are available in the later section on “Interrupt
Handling.”

3.2.8 Suspend the operation of a process - sys/kn/proc/suspend
This function is called by one process to operate upon another, moving it into the SUSPEND state.

If the specified process is in the SLEEP state, this function moves it into the SLEEP&SUSPEND state.
If, while in this state, the process is the subject of a sys/kn/proc/wake function call, it will be moved
into the SUSPEND state. If the process is the subject of a sys/kn/proc/resume function call while in
the SLEEP&SUSPEND state, it will be moved back to the SLEEP state.

A process may not specify itself as the parameter to the sys/kn/proc/suspend function.

sys/kn/proc/suspend calls are queued. If a process is the subject of a series of sys/kn/proc/suspend
function calls, it requires an equal number of sys/kn/proc/resume function calls to release it from the
SUSPEND state. A suspend count is maintained for each process, which is incremented by each
successful call to sys/kn/proc/suspend and decremented by each successful call to
sys/kn/proc/resume.

The Reference Manual for the intentTM Kernel

Page 28

The fact that a process is in the SUSPEND state does not affect how it is allocated resources such as
semaphores and mutexes.

An 'interrupt-safe' version of this tool, sys/kn/int/proc/suspend, is also available.
sys/kn/int/proc/suspend can safely be called from inside an interrupt. Further details are available in
the later section on “Interrupt Handling.”

3.2.9 Decrement the suspend count for a process - sys/kn/proc/resume
This function decrements the suspend count described in the section on the sys/kn/proc/suspend
function. If the suspend count reaches zero, the process has its SUSPEND state removed. This does
not necessarily mean that the process becomes READY, since it may just move the process from the
SLEEP&SUSPEND state to the SLEEP state.

A process may not specify itself as the parameter to this function.

This function does not allow the suspend count to fall below zero. If this function is called on a
function which is not in the SUSPEND state and thus has a suspend count of zero, an error is
returned.

This function can be called when interrupts are off, and will return with interrupts in the same state as
when it was called. However, the operation of calling sys/kn/proc/wake cannot be assumed to be
atomic, as the process being woken may run, with interrupts on, before this function returns.

An 'interrupt-safe' version of this tool, sys/kn/int/proc/resume, is also available. sys/kn/int/proc/resume
can safely be called from inside an interrupt. Further details are available in the later section on
“Interrupt Handling.”

3.2.10 Yield CPU - sys/kn/proc/deschedule
This function moves the calling process to the end of the scheduler list for the appropriate priority
level, and invokes the scheduler to dispatch another process. This is discussed in greater detail in the
section on process scheduling, later in this document.

The calling process is moved from the RUN state to the READY state.

3.2.11 Cause scheduling to take place - sys/kn/proc/ideschedule
This function is solely for use by PIIs as described in PII development documentation. Use by any
other code is likely to cause unpredictable behaviour.

This function is called by the PII when an interrupt handler has indicated that it requires a scheduler
operation. It should be called in a normal CPU context.

sys/kn/proc/ideschedule causes timers to be processed. If there are any processes which have been
woken or rescheduled in some other way during the interrupt service, and which have a higher priority
than the process which was running at the time of the interrupt, then the function allows them to run
immediately.

The function should be called within the context of the process which was running at the time of the
interrupt. The calling process is moved from the RUN state to the READY state. It will be run later
when it becomes the highest priority runnable process in the system. It is possible that this may occur
immediately.

The Reference Manual for the intentTM Kernel

Page 29

3.2.12 Alter the values in the process control block - sys/kn/proc/setparams
This function changes the scheduling parameters of the specified process. A process may call
sys/kn/proc/setparams to operate upon another process, or upon itself.

The first parameter to sys/kn/proc/setparams is a pointer to the identifier of the process that must be
modified. The second parameter is a pointer to a process control block structure which contains the
parameters to be set.

If the process is not running, and its priority is modified so that it becomes the highest priority runnable
process, a context switch will be made so that this process can run. If the process is running, and its
priority is modified so that it is no longer the highest priority runnable process, a switch will be made to
the new highest priority runnable process.

An 'interrupt-safe' version of this tool, sys/kn/int/proc/setparams, is also available.
sys/kn/int/proc/getparams can safely be called from inside an interrupt. Further details are available in
the later section on “Interrupt Handling.”

3.2.13 Acquire information about a process - sys/kn/proc/getparams
This function returns information about the specified process. A process may call
sys/kn/proc/getparams to acquire information about another process, or about itself. The second
parameter to sys/kn/proc/getparams is a pointer to a process control block structure. The
sys/kn/proc/getparams function will fill this structure with the relevant parameters.

3.2.14 Wait for a child process to stop or terminate, and delete it if it has
terminated - sys/kn/proc/wait

This function checks whether the specified child process has terminated or stopped. If no process was
specified, the function checks all child processes of the caller and operates upon the first of these that
has stopped or terminated.

If the specified process has terminated, its exit status is stored in the location specified by the input
pointer, the process is deleted, and its process ID is returned.

If the specified process has stopped due to a job-control signal, information about the process's
current state is stored in the specified location. Its process ID is then returned. The information stored
may be examined using the WIF* macros. These macros can only be used to return information about
stopped processes if the WUNTRACED flag is specified on input.

If the input integer specifies a process that has neither terminated nor stopped, then the action of the
function will depend upon the flag parameter. If the WNOHANG flag is specified, this ensures that the
calling process does not 'hang.' Instead of blocking, the process returns ECHILD, to indicate that it
has not found a child process of the appropriate type. If the WNOHANG flag is not specified, the
calling process will try to block until the specified child process terminates or stops due to a job-control
signal.

Notification of the death of a child process is performed using the SIGCHLD signal. Thus, if the calling
process has its signal mask adjusted so as to block this signal, it cannot wait for the child process to
terminate, since this would cause it to block indefinitely.

Similarly, if the signal handler for the SIGCHLD signal is not set to SIG_DFL, the calling process
cannot block waiting for the child process. If the handler is set to SIG_DFL, this ensures that the it will
perform the process's default action in response to the signal. In the case of SIGCHLD, the default
action is to ignore the signal.

The Reference Manual for the intentTM Kernel

Page 30

In both of these cases, ECHILD is returned.

It should be noted that this function will not reap child processes which have been created but not yet
started. This removes the danger of a newly-created process being accidentally deleted due to the
occurrence of a SIGCHLD after the process has been created and before it has been started.

More details on SIGCHLD, signal handlers and signal masks may be found in the "Signals" section
later in this document.

3.2.15 Wait for a child process to terminate - sys/kn/proc/chld
This function behaves in the same way as sys/kn/proc/wait, except that it does not delete the child
process. Instead, it is the caller's responsibility to call sys/kn/proc/delete, and thus ensure that the
child process is properly deleted.

3.2.16 Change the priority of the calling process - sys/kn/proc/chpri
This function changes the priority of the calling process to the specified value. The previous priority
value is returned. If the 'new priority value' is given as -1, the priority is not changed.

If due to the changes caused by this function the calling process ceases to be the highest priority
runnable process in the system, it is pre-empted by the new highest priority process.

3.2.17 Return the priority of the calling process - sys/kn/proc/getpri
This function returns the priority of the calling process.

3.2.18 Set the parent process of the specified process - sys/kn/proc/chppid
This function changes the parent process ID of the specified process to the given value. The process
IDs given for the process and for its 'new parent' must both be valid and existent. After this function
has operated upon a process, the system considers the process to be the child of the specified 'new
parent.' The ID of the process's 'previous parent' is returned.

This functionality allows the programmer to choose which process will receive SIGCHLD notification
when a process dies. The 'new parent' should be prepared to receive SIGCHLD signals when its new
'child' terminates, and to reap it at this point in the appropriate manner. If process ID 0 is set as the
'new parent,' it will automatically reap any terminating child processes for which it receives a
SIGCHLD signal, regardless of whether it started them.

3.2.19 Sleep until event occurs, storing any spurious wakes -
sys/kn/proc/devsleep

This function is for use primarily by device drivers. It is used to wait until the occurrence of an event
specified by the caller, or until an abnormal termination condition arises.

sys/kn/proc/devsleep is called with interrupts off, and returns with interrupts off. This function assumes
that the caller has set up a callback function and signals to be enabled or disabled, according to the
caller's preference.

sys/kn/proc/devsleep returns when the specified timeout occurs, when an unblocked signal becomes
pending, or when the user-specified event occurs. The occurrence of the event is determined by
calling the callback function specified in the parameter list. The callback function takes a single pointer
parameter (specified by the caller to this function), and returns an integer. If this integer has a non-

The Reference Manual for the intentTM Kernel

Page 31

zero value, the event has occurred. The callback function is called with interrupts off, and is expected
to operate entirely without re-enabling interrupts.

If the calling process is the subject of any calls to sys/kn/proc/wake during this period, the number of
calls is stored, and restored when this function finally returns, such that the wake count of the process
when this function returns will be the sum of the count on entry to this function and the number of calls
to sys/kn/proc/wake, minus 1. (The count is reduced by one for the call to sys/kn/proc/wake which
caused this function to return, and which may have been due to a signal).

3.2.20 Add routines to atexit list - sys/kn/proc/atexit
This function is used to add a routine to the 'atexit list.' All routines on this list are executed when the
process from within which sys/kn/proc/atexit was called exits.

Passing -1 in place of user data causes all nodes referencing the routine specified by the first input
pointer parameter to be removed from the atexit list. The function returns success if this routine is not
present on the atexit list.

sys/kn/proc/atexit may be called from within a routine on the atexit list.

3.3 Process Creation He lper Functions
Besides these general process management functions, intent offers several 'process creation helper
functions' which facilitate process creation by combining the functionality of sys/kn/proc/create and
sys/kn/proc/start.

Diagram 4 - Process Creation Helper Functions

In addition, different helper functions allow the creation of processes on remote processors, or abet
the even distribution of processes across the intent network.

3.3.1 Create and start a process on the same processor as the calling process
- sys/kn/proc/exec/local

This function creates and starts a process on the same processor as the calling process, using the
specified parameters.

3.3.2 Create and start a process on a specified processor -
sys/kn/proc/exec/remote

This function creates and starts a process on the specified processor, using the specified parameters.

It is possible that the calling process may be a local process, that is to say, one with a process ID in
the non network-unique range. If this is the case, or if the spawn structure passed in has a
SPAWN_LOCAL field, 0 will be returned as the child's process ID. In such circumstances, the parent

NON-EXISTENT

DORMANT READY

CREATE

START

PROCESS CREATION
HELPER FUNCTIONS

The Reference Manual for the intentTM Kernel

Page 32

process will not be able to communicate with the child, even to wait for the child process or send it
signals.

3.3.3 Create and start a process on a processor chosen by the kernel -
sys/kn/proc/exec/any

This function creates and starts a process using the specified parameters. The intent kernel is
permitted to select the processor upon which the process is started. This selection is made using the
kernel's load balancing routines.

intent makes use of a 'load balancing' algorithm in order to ensure that within a network some
processors do not lie idle while others are overburdened. Taking into consideration the speed of
execution for each processor, and the number of processes running upon each, intent is able to
assign new tasks to the processors that are less 'busy' and thus capable of executing the new
processes more swiftly.

3.4 Spawn Structure Functions
The spawn structure is a data structure integral to the 'spawning' of new processes. A spawn structure
holds all the data necessary for the creation of a new process, apart from scheduling parameters. In
order to create a new process, a pointer to the relevant spawn structure should be passed as a
parameter to sys/kn/proc/create. A more detailed account of spawn structures may be found later in
this document, in the section on "Data Structure Definitions."

The functions for the creation of spawn structures may be found below. The structures thus created
are not 'consumed' or modified by calls to sys/kn/proc/create, may be used more than once, and must
be freed when no longer required.

3.4.1 Create a spawn structure - sys/kn/proc/spawn/make
This function creates a spawn structure from the supplied parameters. The sys/kn/proc/spawn/make
function is passed all data necessary for the creation of the prospective child process, except for
scheduling parameters, and unites this information within a spawn structure. This structure contains
the most commonly used spawn structure record types, and may then be used as a parameter to
sys/kn/proc/create.

This function takes a number of pointer parameters, which specify:

• The name of the main tool to be run for the child process. This tool must have the TF_MAIN flag
set in its tool header to indicate that it is a 'main tool.'

• A pointer to an array of other pointers, which indicate the strings that will be supplied to the new
process as its argv array. If this parameter is NULL, the child process receives no argv array. The
array of pointers must be terminated by a NULL pointer, to mark the end. The input array is
copied by this function rather than the original being shared.

• A pointer to the name of the memory object to use for the stack of the child process. If NULL is
specified, the default stack memory object is used.

• A pointer to the name of the memory object to use for the data of the child process. If NULL is
specified, the default data memory object is used.

• A pointer to a block of data to be copied into the global data area of the child process when it is
created.

The Reference Manual for the intentTM Kernel

Page 33

Further integer parameters specify:

• The size of the area to be copied into the global data area.

• A flag that specifies whether the prospective child process should inherit file descriptors from the
calling process. If this flag has the value 0, file descriptors are not inherited. If the flag is 1, all file
descriptors without the FD_CLOEXEC flag set are copied into the spawn structure. Before a
spawn structure is used to create a process, these file descriptors can be modified or deleted by
using the sys/kn/proc/spawn/modf function. The function may also be used to add new file
descriptors to the spawn structure.

• A flag that specifies whether the child process should inherit environment variables from the
calling process. If this flag is 0, environment variables are not inherited by the child process. If the
flag is 1, all environment variables in the calling process are copied to the structure, and inherited
by the child.

Much of the information contained within the spawn structure can be modified, or new data added,
before process creation, using the functions detailed below.

3.4.2 Create a spawn structure (exec-style) - sys/kn/proc/spawn/emake
This function creates a spawn structure from the supplied parameters, which may then be used as a
parameter to sys/kn/proc/create. The sys/kn/proc/spawn/emake function differs from the
sys/kn/proc/spawn/make function in that it uses an interface similar to that of exec, the POSIX
function for creating processes.

The parameters taken by the function are as follows:

• A pointer to a string specifying the name of the main tool to be run for the child process. This tool
must have the TF_MAIN flag set in its tool header.

• A pointer to an array of other pointers, which point to the strings that will be supplied to the new
process as its argv array. If this parameter is NULL, the child process receives no argv array. The
input array is copied by this function rather than the original being shared.

• A pointer to an intent environment object containing environment nodes to be copied into the
child's environment. A description of environment nodes may be found in the section on "Data
Structure Definitions."

• A flag specifying whether to inherit file descriptors from the calling process. If this flag has the
value 0, file descriptors are not inherited. If the flag is 1, all file descriptors without the
FD_CLOEXEC flag set are copied into the spawn structure. They may be modified or deleted
before the spawn structure is used to create a process using the sys/kn/proc/spawn/modfd
function. File descriptors may also be added to the spawn structure using this function.

The structure returned should be freed by the calling process when it is no longer required, using
sys/kn/mem/free.

3.4.3 Modify file descriptor in spawn structure - sys/kn/proc/spawn/modfd
This function modifies a spawn structure. Besides the pointer to the relevant spawn structure, this
function takes two integer parameters. The second integer parameter (fd1) is the file number of the
file descriptor to be changed in the child process. The first integer parameter (fd0) is the file number of
a file descriptor existing in the parent process.

The Reference Manual for the intentTM Kernel

Page 34

The spawn structure is searched for a file descriptor record with file number fd1. If found, this file
descriptor record is removed. If the file descriptor with file number fd0 is open in the calling process, a
record is added to the spawn structure duplicating that file, but giving it the file number fd1. Thus, the
function permits a specified file descriptor, copied from the calling process, to replace a descriptor
contained within the spawn structure.

The spawn structure returned by the function may be different from the input structure, in which case
the input and output spawn structure pointers will differ, and the old structure will still exist unmodified.
Both structures need to be freed using sys/kn/mem/free when they are no longer needed.

3.4.4 Add global data initial isation in spawn structure -
sys/kn/proc/spawn/modglobs

This function modifies a spawn structure, inserting global data initialisation record. If there is already a
global data initialisation record in the spawn structure which is large enough for the specified data, a
pointer to it is returned to the caller.

If there is not, a new spawn structure is created which is identical to the input spawn structure except
that it contains a global data initialisation record large enough for the specified amount of data.

The spawn structure returned by the function may be different from the input structure, in which case
the input and output spawn structure pointers will differ, and the old structure will still exist unmodified.
Both structures need to be freed using sys/kn/mem/free when they are no longer needed.

It should be noted that if one is using C, the function sys/kn/proc/spawn/modglobs returns a pointer to
the modified spawn structure. The pointer to the global data initialisation area will be returned in the
location indicated by result. In addition when using C, the function sys/kn/proc/spawn/modglobs
returns two values, so it is necessary to use the multiple return registers facility of the Elate C
compiler.

3.4.5 Add SPAWN_PARENT record to spawn structure -
sys/kn/proc/spawn/modparent

This function modifies a spawn structure, inserting a SPAWN_PARENT record if one does not already
exist. If there is already a SPAWN_PARENT record, a pointer to the original spawn structure is
returned to the caller.

If there is not, a new spawn structure is created which is identical to the input spawn structure except
that it contains a SPAWN_PARENT record.

The spawn structure returned by the function may be different from the input structure, in which case
the input and output spawn structure pointers will differ, and the old structure will still exist unmodified.
Both structures need to be freed using sys/kn/mem/free when they are no longer needed.

3.4.6 Add SPAWN_STACK record to spawn structure -
sys/kn/proc/spawn/modstack

This function modifies a spawn structure, inserting a SPAWN_STACK record if one does not already
exist. If the structure already contains a SPAWN_STACK record, the size of stack requested is
updated if necessary, and a pointer to the original spawn structure is returned to the caller.

If a SPAWN_STACK record does not exist, a new spawn structure is created. This is identical to the
input spawn structure except that it contains a SPAWN_STACK record.

The Reference Manual for the intentTM Kernel

Page 35

The spawn structure returned by the function may be different from the input structure, in which case
the input and output spawn structure pointers will differ, and the old structure will still exist unmodified.
Both structures need to be freed using sys/kn/mem/free when they are no longer needed.

3.4.7 Add SPAWN_SIGMASK record to spawn structure -
sys/kn/proc/spawn/modsig

This function modifies a spawn structure, inserting a SPAWN_SIGMASK record if one does not
already exist.

If there is already a SPAWN_SIGMASK record, the signal mask is updated if necessary and a pointer
to the original spawn structure is returned to the caller. If there is not, a new spawn structure is
created. This is identical to the input spawn structure except that it contains a SPAWN_SIGMASK
record.

The spawn structure returned by the function may be different from the input structure, in which case
the input and output spawn structure pointers will differ, and the old structure will still exist unmodified.
Both structures need to be freed using sys/kn/mem/free when they are no longer needed.

3.4.8 Add SPAWN_STACKLIMIT record to spawn structure -
sys/kn/proc/spawn/modstklimit

This function modifies a spawn structure, inserting a SPAWN_STACKLIMIT record if one does not
already exist.

If there is already a SPAWN_STACKLIMIT record, the size limit is updated if necessary and a pointer
to the original spawn structure is returned to the caller. If there is not, a new spawn structure is
created. This is identical to the input spawn structure except that it contains a SPAWN_STACKLIMIT
record.

The spawn structure returned by the function may be different from the input structure, in which case
the input and output spawn structure pointers will differ, and the old structure will still exist unmodified.
Both structures need to be freed using sys/kn/mem/free when they are no longer needed.

3.4.9 Adds requirement to use local PID to spawn structure -
sys/kn/proc/spawn/modlocal

This function modifies a spawn structure, inserting a record which requires the spawned process to
use a local process ID. If there is already such a record in the specified spawn structure it is returned
unchanged. If such a record does not already exist in the input spawn structure, a new spawn
structure is created which is identical to the input spawn structure except that it contains a record to
require use of a local process ID.

On a multiprocessor system, use of a local process ID is appropriate for processes which do not
interact in any way with processes on other CPUs. Use of a local PID is compulsory for any process
which is created during system boot before the multiprocessing server is running. This may be the
case for certain device drivers.

The spawn structure returned by the function may be different from the input structure, in which case
the input and output spawn structure pointers will differ, and the old structure will still exist unmodified.
Both structures need to be freed using sys/kn/mem/free when they are no longer needed.

The Reference Manual for the intentTM Kernel

Page 36

3.5 Spawn structure macros
In addition to the functions described above for dynamically creating spawn structures, Elate provides
a set of macros which can be used to statically create template data for spawn structures in the body
of tools at assembly time. These templates can then be copied out into RAM at runtime, onto the
stack or into an allocated memory block. They can then be passed to any function which requires a
spawn structure as a parameter, including sys/kn/proc/create and the spawn structure functions
described earlier in this section.

• spawnstart defines the beginning of the spawn structure, and also its name. Each spawn
structure template defined using the spawn structure macros has a different name, so that they
can be referred to individually. This name can be used to refer to the structure template, and also
to the offsets of the fields within the structure. This macro should only be used in the data section
of the tool.

• spawnend marks the end of the template spawn structure. It must come after the corresponding
spawnstart macro, with only spawn macros used in between.

• spawn should only be used between the spawnstart and spawnend macros. Each use of the
spawn macro defines one record into the spawn structure template. The record type emitted is
specified by the first parameter to the spawn macro. It is possible to use the symbolic names for
the record types used in the spawn structure, with the SPAWN_ text removed from the start of
their names. An full list of these record types can be found in the description of spawn structures
in the “Data Structure Definitions” section later in this document.

The spawn/spawnstart/spawnend macros serve several purposes:

In the first place, they create a template spawn structure. At assembly time it is often impossible to
know all of the data which needs to be put into the structure before it is used. Therefore, these macros
create a template structure which contains most but not quite all of the necessary data at the correct
locations.

The example below creates a "Stack object" record. This record needs to contain the address of the
stack memory object to be used for the process being created. This address cannot be known at
assembly-time. This part of the data is not filled in, therefore, but the record for the stack object is
generated so that the information can be inserted later.

data
spawnstart tspawn
spawn NAME, 'sys/kn/cpu/server' ;Create a "toolname" record
spawn STACKOBJ ;Create a stack object record
spawn DATAOBJ ;Create a data object record
spawnend

The spawn structure macros also define a label with the name specified on the spawnstart macro line.
This label points to the start of the template structure. The macros also define the size of the structure
using the same name, with _size appended. In the above example, therefore, the label is tspawn and
the size is tspawn_size.

Finally, the macros define assembler constants, which define the offsets from the start of the structure
to particular items of data within the structure. In the above example, the offset of the stack object
data is defined as tspawn_stackobj, and the offset of the data object data is defined as
tspawn_dataobj. The main toolname record is entirely defined at assembly time, so it is not necessary
for a constant to be defined for it.

The Reference Manual for the intentTM Kernel

Page 37

The spawn structure is copied onto the stack, its undefined portions are filled in, and it is then ready
for use. The structure template must be copied out of the tool body into a RAM area before any of its
data fields are modified, since the tool body may be in ROM. However, the template structure may be
complete, in which case it is not necessary to copy it to RAM. (If the structure consists of just a main
tool record, for example, the structure will have no incomplete records.)

The Reference Manual for the intentTM Kernel

Page 38

4. Process Management Data Structures

4.1 Process ID
In order to allow easy reference to the various processes within a system, intent has adopted the
widely used concept of a "Process ID." intent process IDs are defined to be unsigned 32-bit integers.
These cannot be confused with error codes, since the defined error code values are not valid process
IDs.

The Process ID can be used to find an index to an entry in a table known as the "Process Table". Any
functions which operate upon a process will use this ID as a parameter, to direct them to the correct
address. The process table provides a mapping between each process ID and the scheduler data
structure (SCHED_) for the related process. Access to the process table takes place via a well-
defined, portable API. This level of abstraction ensures that applications will remain compatible with
all future improvements to the kernel, and permits implementations of differing functionality.

The process table can be implemented with a fixed size, which is defined when the kernel is compiled.
If at design time a reasonable upper bound is known for the number of processes which will need to
be able to run upon the system at any one time, such an implementation offers more efficiency in
terms of speed and memory than a more flexible strategy. The 'simple' process table is an example of
such an implementation.

Thus, the simple process table might be suitable for an embedded system for which the maximum
number of concurrent processes was known at design time. However, it supports only local processes
and so is unsuitable for a multi-processor system which requires network-unique Process IDs (see
below).

The fixed size of the table imposes a limit upon the number of processes which may run concurrently
on the system. In most systems the table can be defined to be quite large, so that this limitation does
not pose a problem. However, in the case of an embedded system, or any other system requiring a
small footprint, the memory cost of a large table is undesirable. On many UNIX systems, the table is
defined to have 32768 entries. If each entry is assumed to take up 4 bytes, the table may be expected
to use 131072 bytes of memory (128kbytes).

Where it is not possible to predict how many processes will be running in a system at the same time,
a more flexible solution is needed. In the case of desktop systems, set-top boxes where code is
downloaded across a network, or systems where an unknown number of processes may be started
dynamically, the hierarchical process table structure will be used. This design allows for the dynamic
extension of the table as required, up to the physical limitations of memory, and is the default
implementation of the process table in intent.

4.2 Hierarchical Process Table
The data structures used in the hierarchical process table have considerable similarity to the structure
of "Page Tables" on an x86 microprocessor.

As can be seen in Diagram 5, below, these tables exist in a hierarchical structure. The top level table
is called the "Process Table Directory." This contains pointers to the second level tables, which are
known as the "Process Tables." If a particular process table does not exist, the corresponding entry in
the Process Table Directory is 0.

The Reference Manual for the intentTM Kernel

Page 39

Each process table is 4096 bytes in size, and contains 1024 entries, each 4 bytes long. Each entry
contains a pointer to the data structures for the corresponding process, or a NULL pointer if the
corresponding process does not exist.

The process table directory, which will contain a pointer to the first process table, has an initial size of
4 bytes. If more than 1024 process IDs are required, a new process table is created in which to store
the pointers to the processes. Since the process directory table will not be large enough to contain the
pointer to this new table, a new directory table, 4 bytes bigger, is created and the old one freed. The
number of process IDs can be dynamically extended in this way as many times as physical memory
constraints allow.

This is a significant improvement over the conventional fixed size table method. For example, if it is
thought that an application might require over 4000 concurrent processes, it would be necessary to
create a 16kbyte fixed size table, which would exist for the duration of the application. The hierarchical
process table will take up only slightly over 4kbytes at start-up time, and will only allocate more
memory as and when the extra process IDs are necessary, This memory is freed again as soon as it
is no longer needed. Use of this method leads to a significantly lower memory requirement for at least
part, and potentially all, of the life of the application.

0
0

0
0
0

Diagram 5: Process Table Structure

The pointer to a specified process's data structures can be found in a quick and deterministic manner,
by using the following algorithm:

1. Take the process ID and divide it by 1024, using integer division. This gives the index into the
Process Table Directory.

2. Use this number to find the pointer to the correct process table. If the pointer is NULL, the specified
process ID is invalid.

3. Using the remainder from the above division, find the correct entry in the process table. If the entry
is NULL, the specified process ID is invalid. Otherwise, the entry contains a pointer to the data
structures for the specified process.

By using powers of 2 for the sizes of the process tables, the division described above can be
performed using SHIFT and AND operations, making it extremely fast to execute.

The Reference Manual for the intentTM Kernel

Page 40

4.3 Network-Unique Process IDs
When an intent system spans a network of several processors, it is useful to be able to refer to a
process on another machine. In order to be able to use the process ID for this purpose, it must be
guaranteed that the ID will refer to no more than one process throughout the whole network.

Process identifiers are not network-unique by default, since not all processes require a network
specific ID. Many processes, including most created by device drivers or the kernel, are not referred
to by code outside the processor upon which they run. Such processes need only 'local' IDs.
Application processes, on the other hand, may be distributed to processors other than those upon
which their parent processes run, and for this reason generally need their IDs to be network-unique.

If the kernel on a specific processor needs to assign network-specific IDs, it will allocate a particular
range of ID values which will then be reserved for this purpose. This allocation is made with the
agreement of the kernels running upon the other processors in the network, which subsequently will
not attempt to assign values from this range as identifiers for their own processes. If the first kernel
exhausts the values in the allocated range, it may request an additional range.

Since communication with the kernels on the other processors of the network is a prerequisite for the
allocation of a network-unique process ID range, network-unique IDs may not be allocated upon a
processor that is not yet connected to the network. Care should be taken by the programmer and
system integrator to ensure that processes created prior to their processor's connection to the
network are assigned 'local,' rather than network-unique, IDs.

In addition, network-unique IDs are only supported by systems that employ intent's default
implementation of the process table, the hierarchical table model. The simple implementation entailing
the single, fixed size look-up table, supports only local process IDs.

The use of a local process ID entails several restrictions. A process with a local ID may create a child
process on another processor. However, when this child terminates, it will be unable to notify its
parent of this by means of a SIGCHLD signal, in the usual manner. (Details of SIGCHLD may be
found in the section on "Signals" later in this document.) Instead, it is necessary to reset the 'parent
process ID' of the child process to 0, so that they will be automatically deleted after termination. This
can be achieved through the use of the function sys/kn/proc/chppid (see section on "Process
Management Function Descriptions"). Under these circumstances the parent cannot use
sys/kn/proc/wait for the child, since this would cause the parent to block indefinitely, waiting for the
SIGCHLD message it was unable to receive.

4.4 Processor ID Handling Functions
All accesses to the process table should be made using the functions in the sys/kn/proc/pid directory.
This provides scope for the system to provide multiple implementations. These functions can be used
to look up a specific process ID in the process table, to allocate a new process ID, to allocate ranges
of network-unique process ID values, to return the current processor number or the ID of the calling
process, and so forth.

A system which uses only local process IDs may still implement the process ID handling functions in
this directory. However, those functions related to the allocation of network-unique ID ranges would
always need to fail. Any requests for allocation of network-unique process IDs should be mapped onto
local process ID requests. An implementation of this type could not run on a processor that was part
of a larger network.

Some of these functions are for internal use within the kernel, and thus are not listed in this document.
sys/kn/proc/pid/get and sys/kn/proc/pid/enumerate, however, are described below.

The Reference Manual for the intentTM Kernel

Page 41

4.4.1 Gets the PID of the ca lling process - sys/kn/proc/pid/get
This function takes no input parameters, and returns the processor ID of the calling process.

4.4.2 Return an array of all valid PIDs - sys/kn/proc/pid/enumerate
This function returns an array containing all the PIDs which correspond to processes on the caller's
processor, effectively a list of all the processes in the local system. Some of these PIDs may,
however, correspond to processes which have exited but have not yet been reaped, or which have
not yet been started.

The array should be freed via a call to sys/kn/mem/free once it is no longer required.

Since this tool returns two values, if it is called it from C it is necessary to use the multiple return
registers facility of the Elate C compiler.

The Reference Manual for the intentTM Kernel

Page 42

5. Process Scheduling

5.1 The intent Schedule r
The scheduler is the most time critical part of the intent kernel, and is run whenever a task-switching
operation is required. This may occur when a high priority process becomes runnable, or when the
current timeslice expires, at a priority level where timeslicing is enabled. This may also occur during
co-operative scheduling operations, such as when a process goes to sleep.

The intent scheduling model has two hundred and fifty-six priority levels, each of which can contain an
unlimited number of processes simultaneously. Like schedulers in other operating systems, the intent
scheduler is divided into two basic parts. The first is the dispatcher, a simple mechanism which runs
the first process in a list of schedulable structures representing the processes awaiting execution. The
second part governs scheduling policy, and determines the order of the processes within this list.

5.1.1 Contexts
As the scheduler switches between the processes demanding processor time, it is essential that
processes should be able to resume execution in a condition unaltered during their period of
suspended animation. For this reason it is necessary to save 'contexts,' records of the states of the
program counter, stack pointer and so on, all of which define the state of a process at a particular
moment in time. On a simple system, this usually consists only of the processor's native registers. On
a more complex processor, this may include the state of the memory management unit, and the state
of other parts of the CPU.

The code to save these contexts is processor specific, and parts of it are often written in native code.
Functions devoted to initialising, storing and restoring contexts can be found in the CPU Isolation
Interface (CII).

Descriptions of these functions may be found in the relevant developer documents in the build,
notably sys/cii/api.html. Further description of CII functionality may also be found in The System
Programmer’s Guide.

5.2 The Dispatcher
The dispatcher is common to all scheduling models. Each schedulable structure included upon the
run queue corresponds to an intent process. These structures each contain a small header, which is
comprised of a list node, the process's priority level, a pointer to the process's global data area, the
process's suspend counter, its wake counter, and some information about the signal state of the
process. After the header, there is a data block which is maintained by the tool implementing the
system's scheduling policy. The contents of this block are dependent upon the demands of the
scheduling policy of the individual system, and therefore may not be described in detail in this
document.

When the dispatcher is invoked, it takes the node from the front of the run queue, and dispatches the
corresponding process. It also updates the pointers in the "scheduler pointer table" and the "scheduler
bit table".

These two tables are used to provide deterministic searching and insertion into the run queue. The
"shortcut pointer table" contains 256 pointers, one for each priority level. Each pointer points to the
first node in the run queue of the corresponding priority. If there are no nodes in the run queue for a
particular priority level, the pointer in the table entry for that priority contains zero.

The Reference Manual for the intentTM Kernel

Page 43

The shortcut table is illustrated in Diagram 6.

0

POINTER
TABLE

0

RUN
QUEUE

LIST
HEAD

Diagram 6: Run Queue and Shortcut Pointer Table

See the later section on “Scheduling Examples” for some examples of the use and modification of this
table.

For each priority level, the "bit table" contains 1 bit, which indicates whether any processes at that
level are in the READY state. The bit table allows for deterministic insertion into the run queue.

The simplicity of the dispatcher allows context switches to take place very quickly. The complex task
of implementing scheduling policies is transferred to higher level routines which can be adapted to suit
the application.

5.3 Scheduling Policy
The scheduling policy of a system is the part of the scheduler which calculates the appropriate order
for processes within the run queue, and selects the process to be run next.

Only processes in the READY state are allowed a place in the run queue. When a process is moved
into the READY state, a call is automatically made to the function that governs scheduling policy, so
that the process's place in the run queue may be established.

This function is sys/kn/sched/schedule. It is usually called by sys/kn/proc/resume, sys/kn/proc/wake,
sys/kn/proc/deschedule, or another system function responsible for moving the relevant process into
the READY state. It may not be called from user code. After performing any necessary calculations,
sys/kn/proc/schedule links the process into the correct position in the run queue.

The way in which the processes are ordered is based on various parameters. These parameters may
be assigned at design time or run-time, depending upon the nature of the policy in question. The
priority in Rate Monotonic scheduling, for example, must be statically assigned at the system design

The Reference Manual for the intentTM Kernel

Page 44

phase. The laxity in Minimum Laxity First scheduling and Maximum Urgency First scheduling, and the
'time to deadline' in Earliest Deadline First scheduling, however, must be re-calculated and modified
dynamically during the system operation.

intent supports the use of a wide variety of scheduling policies and scheduling models, a few of which
are listed below.

• Minimum Laxity First. (MLF)
This is a scheduling method which orders tasks on the basis of their 'laxity.' Laxity can be defined
as the gap between the current time, and the latest time at which the process could start and still
complete before its deadline passes. The task with the lowest laxity value is dispatched first.

• Maximum Urgency First. (MUF)
This is a modification of the MLF scheduling method. Here, tasks are divided among several
priority levels. Tasks with higher priorities are always dispatched first. Within a priority level, the
task with the smallest laxity is dispatched first.

This modification makes it possible to control which tasks fail their deadlines in a transient system
overload. When using policies like EDF and MLF, it is not possible to control which tasks fail.

• Earliest Deadline First. (EDF)
This is a scheduling method which orders tasks on the dispatch list according to their deadlines.
The task with the closest deadline is dispatched first.

At present, intent uses by default a Fixed Priority scheduling mechanism, whereby a process is
assigned a priority on some basis, and scheduling is carried out based entirely on the relative
priorities of the processes. These priorities are statically assigned as part of system analysis, but can
also be altered by the user during run-time.

If there are two or more processes at a particular priority level, the one which was started first will run
first, until it no longer wishes to run, followed by the next “oldest” and so on, providing timeslicing is
switched off. If timeslicing is switched on, it is slightly harder to predict in which order the processes
will run.

Examples of static analysis methods are:

• Rate Monotonic Scheduling. (RM)
This method assigns task priorities for a real time system solely on the basis of the period of the
tasks. The task with the shortest period (the highest frequency) has the highest priority. Since all
the calculation for this method is completed at design time, and the policy is fully static at run-time,
the scheduler policy unit is very simple.

In theory, using this method, it should be possible to calculate the completion times of all periodic
tasks, and in mathematical terms to guarantee that none will fail their deadlines. However, the
CPU utilisation must be significantly lower than 100% for this guarantee to hold.

For a particular set of tasks with known worst case execution times, etc, it is possible to calculate
the maximum CPU utilisation that can occur without compromising this guarantee of
schedulability. If this threshold is exceeded, this may result in a temporary overload, and some
tasks may fail to meet their deadlines. The order in which tasks will fail to meet their deadlines is
always lowest priority first.

There are numerous extensions to the method to provide for aperiodic tasks and dynamic priority
modification.

The Reference Manual for the intentTM Kernel

Page 45

• Deadline Monotonic Scheduling. (DMS)
This method assigns task priorities for a real time system, based solely on task deadlines. The
task with the shortest interval between triggering and deadline is given the highest priority.

5.4 Using more than one scheduling policy within an intent system
Many different scheduling policies can operate simultaneously in a single intent system. As in other
operating systems that share this feature, each scheduling policy running within an intent system must
have exclusive rights to operate upon a range of priority levels. There can be no overlap between the
priority ranges governed by different scheduling policies, since their modes of calculation may be
incompatible.

The EDF scheduling model, for example, uses no real concept of "priority," only of execution order.
For this reason it requires only one priority level, and may operate by modifying the order of the
processes within that priority level. When a process is moved into the READY state, its deadline is
calculated and it is positioned in the run queue so that its deadline is later than that of the previous
node in the list, and earlier than that of the next node in the list.

In the case of Rate Monotonic Analysis, on the other hand, the priorities of processes are calculated
statically at design time. It is therefore impossible to determine whether an EDF process with a
particular deadline should be executed before a process given a priority through RM, unless the EDF
scheduler schedules its tasks at one priority level, and the tasks assigned by RM analysis are
scheduled at a different range of priorities.

Although the necessity of segregating different scheduling models can be seen as a limitation, there
are also advantages to maintaining separately scheduled task sets. The partitioning system can, for
example, help to control the failure of critical tasks in the case of a period of transient overload.

If a particular set of tasks exceed their allotted maximum CPU utilisation, the processor may overload
for a brief interval, causing some of the tasks to fail to meet their deadlines. Scheduling mechanisms
such as EDF and MLF have the disadvantage that in such cases it is impossible to ensure that those
tasks that fail are non-critical.

By segregating the different scheduling policies, it is possible to partition the processes in the system
into critical and non-critical tasks, or even to divide them into a hierarchy of different levels of
importance. This makes it possible to predict which processes will fail to meet their deadlines during
transient overload situations.

Below is an example of a system designed to accommodate numerous scheduling models, including
EDF and RM mechanisms.

5.4.1 Scheduling Example
A system designer has chosen that a set of processes with their priorities statically assigned using
RM analysis should have higher priorities than all other processes in the system. The scheduling
guarantees provided by using Rate Monotonic analysis are therefore not affected by the presence of
other processes and other scheduling methods in the system.

For this example, the priority levels are partitioned as shown in the table below.

Scheduling Policy Priority Range
Statically Assigned Priorities by RM Analysis 0-15
EDF Scheduling 16
EDF Scheduling 17
Fixed Priority (Timesliced) 18-255

The Reference Manual for the intentTM Kernel

Page 46

When a process is started, its priority is specified by its parent, and it is thus assigned to a particular
scheduling mechanism. It is possible for a process to change its priority and even its scheduling
mechanism using the kn_proc_setparams function, but the system designer should be careful not to
allow processes to change their scheduling mechanism unintentionally.

Note that the technique used by the fixed priority scheduler has a bounded execution time with a very
small jitter. A jitter is the random variation in the timing of a signal. In this case, the jitter is slightly
smaller if there is another process in the priority level.

The technique used by the EDF and MLF schedulers has a bounded execution time if the number of
processes being scheduled by that technique is known. The jitter is quite large, which is a result of the
search required by EDF and MLF schedulers.

5.5 Deadline Failures
Deadline failure detection may be provided for any process which provides the system with its
deadline, and indicates when it has completed its tasks. The process usually indicates this by ceasing
to execute.

If the process also provides its best case execution time, the system may compare this to the time to
deadline, and thus detect some deadline failures before the process executes. This enables the
process to take appropriate action. The process may switch to a mode requiring less calculation,
increasing the likelihood of completion within deadline. Alternatively, other processes that would
otherwise have failed their deadlines may be allowed to execute in its place, and perhaps complete
successfully.

In the case of a deadline failure, a SIGDLINE signal is generated for the process. The system will
ignore this signal, unless the user has set up a handler for this signal using the sys/kn/sig/action
function.

Typically, upon receipt of a SIGDLINE signal, the deadline failure signal handler would set a flag
indicating a deadline failure. This would allow the failed process to modify its operation, so as to make
future deadline failures less likely. Another common action of the handler would be to use the
lib/longjmp function and cause the program to change to an alternate code path. For example, in a
polygon drawing tool, it may be useful to set up the system to provide a deadline failure exception
after a certain period of time, so that the amount of detail in the scene could be reduced for the next
frame.

In high level languages that support deadline exception handling, such as Java, the following type of
construct can be used to catch deadline exceptions:

 try {
/* Execute some code which may fail to meet its deadline */
} catch (DeadlineException d) {
/* Handle the exception here */
}

In high level languages that do not have built-in exception handling support, the following type of
functionality will be available:

 for(;;) {
sleep(-1); /*Wait until triggered by interrupt or something similar */
periodic_start (gettime()+period, rt_function, rt_exception);
}

The Reference Manual for the intentTM Kernel

Page 47

int rt_function() {
/* Execute some code which may fail to meet the deadline */
}
int rt_exception() {
/* Handle the deadline exception here */
}

Both of these mechanisms will be implemented using intent’s low-level exception/signal handling
mechanism. Further details of intent’s support for signals may be found later in this document in the
appropriate section.

The Reference Manual for the intentTM Kernel

Page 48

6. Process Synchronisation

intent provides several methods of process synchronisation. These include counting semaphores,
mutexes, event flags, and mailboxes.

6.1 Counting Semaphores
Counting semaphores are structures in memory. These structures provide access protection for a
resource to which a limited number of simultaneous accesses are permitted, and ensure that the set
limit is not exceeded.

A process can only access a semaphore if it knows its address, or can find its address (through
communication with a parent process, for example).

The counting semaphore maintains a count of the 'vacancies' available for additional processes to
access the relevant resource. The wait, timedwait and trywait operations decrement the count, and
the post operation increments the count. If the count falls to zero, there are no more vacancies, and
the next process to call one of the *wait functions on the semaphore is blocked until a process calls
post on the semaphore. Multiple processes may be blocked on the semaphore at the same time, in
which case they are queued. The queue is ordered either by priority or on a first-in-first-out (FIFO)
basis, depending on the flags with which the semaphore was created.

Semaphores in intent do not support any priority-inversion protection mechanisms (see Glossary).
Most priority-inversion protection mechanisms act by modifying the priority of the 'owner' of the
protected resource. Since a semaphore does not have an 'owner', unlike a mutex, it is difficult to
protect in this manner. Many processes can successfully wait on a semaphore at the same time,
unless the count is one, in which case the semaphore effectively acts as a mutex (see below).

intent semaphores provide the same functionality as POSIX.4 unnamed (memory) semaphores, with
the following modifications and improvements:

• The posix "pshared" parameter on sem_init() does not exist in the intent function sys/kn/sem/init.
• The intent function sys/kn/sem/init has an extra parameter "flags" which the posix function lacks.
• intent semaphores provide an extra function sys/kn/sem/timedwait.
• intent semaphores provide an extra function sys/kn/sem/trymwait.
• intent semaphores provide an extra function sys/kn/int/sem/post, which can be used to post

semaphores from hardware interrupt handlers and intent timers.

The function mapping between posix semaphores and intent semaphores is shown in Table 2 -
Correspondence between intent and Posix.4 semaphore functions.

intent Function Posix.4 Function
int kn_sem_init(ELATE_SEMAPHORE *sem,
unsigned int count, int flags);

int sem_init(sem_t *sem, int
pshared, unsigned int count);

int kn_sem_destroy(ELATE_SEMAPHORE *sem); int sem_destroy (sem_t *sem);
int kn_sem_trywait(ELATE_SEMAPHORE *sem); int sem_trywait(sem_t *sem);
int kn_sem_wait(ELATE_SEMAPHORE *sem); int sem_wait(sem_t *sem);
int kn_sem_timedwait(ELATE_SEMAPHORE *sem,
time_t timeout);

No equivalent

int kn_sem_post(ELATE_SEMAPHORE *sem); int sem_post(sem_t *sem);
int kn_sem_getvalue(ELATE_SEMAPHORE *sem); int sem_getvalue(sem_t *sem, int

*value);

The Reference Manual for the intentTM Kernel

Page 49

int kn_int_sem_post(ELATE_SEMAPHORE *sem); No equivalent
int kn_int_sem_trymwait(ELATE_SEMAPHORE
*sem, int num);

No equivalent

6.1.1 Initialise a Semaphore - sys/kn/sem/init
This function is used to initialise the semaphore structure to which the pointer parameter points. The
semaphore count is initialised to the value specified, which must be greater than or equal to zero.

The flags parameter controls the order in which blocked processes are unblocked. Exactly one of the
following flag bits must be set in the flags parameter.

• SEM_FIFO : This flag specifies that when processes block waiting for the semaphore, they
should be unblocked in a first-in-first-out order.

• SEM_PRIO : This flag specifies that when processes block waiting for the semaphore, they
should be unblocked in a highest priority first order. If multiple processes of the same priority are
blocked on the same semaphore, they are unblocked in a first-in-first-out order.

6.1.2 Destroy an Unnamed Semaphore - sys/kn/sem/destroy
This function is used to destroy the specified semaphore. Only a semaphore which was initialised
using sys/kn/sem/init may be destroyed using this function. Calling sys/kn/sem/destroy does not free
any memory associated with the semaphore.

The effect of subsequent use of the specified semaphore is undefined, unless it has been re-initialised
by another call to sys/kn/sem/init.

Destroying a semaphore that has processes waiting on it has the effect of unblocking all of those
processes and returning the error code EINVAL to them.

6.1.3 Wait on a Semaphore - sys/kn/sem/wait
This function decrements the count of the specified semaphore. If the resulting count is greater than
or equal to zero, 0 is returned, to indicate successful completion. If the resulting count is negative, the
calling process blocks until another process calls sys/kn/sem/post or the semaphore is destroyed
using sys/kn/sem/destroy.

6.1.4 Wait on a Semaphore, non blocking - sys/kn/sem/trywait
The sys/kn/sem/trywait function decrements the count associated with the semaphore, and returns
successfully if the value of the count is greater than zero. If the count is not greater than zero it returns
EBUSY to indicate that no 'vacancies' are available at the semaphore.

6.1.5 Decrement the semaphore count by the specified amount without
blocking - sys/kn/sem/trymwait

The sys/kn/sem/trymwait function attempts to decrement the semaphore count by the specified
amount. If the amount specified is greater than the semaphore count, the semaphore count is set to
zero and the value returned is the amount by which the count was decremented.

The input value is treated as an unsigned value.

The Reference Manual for the intentTM Kernel

Page 50

6.1.6 Wait on a Semaphore with timeout - sys/kn/sem/timedwait
This function decrements the count of the specified semaphore. If the resulting count is greater than
or equal to zero, 0 is returned, to indicate successful completion. If the resulting count is negative, the
calling process blocks until another process calls sys/kn/sem/post, the semaphore is destroyed using
sys/kn/sem/destroy or the amount of time specified by the timeout parameter has passed.

6.1.7 Post to a Semaphore - sys/kn/sem/post
If there are any processes waiting for the specified semaphore, the 'first' of them is unblocked. This
process will be at the head of the queue which is ordered in accordance with the SEM_PRIO or
SEM_FIFO flag specified when the semaphore was initialised. If there are no processes waiting for
the semaphore, its count is incremented.

6.1.8 Get the Value of a Semaphore - sys/kn/sem/getvalue
This function returns the value of the specified semaphore's count. The state of the semaphore is not
affected.

If the value returned is positive, this indicates the number of 'vacancies' at the semaphore. If the
semaphore is locked, the value returned is a negative number whose absolute value represents the
number of processes waiting for the semaphore.

The value returned indicates the semaphore count, or the number of waiting processes, at one point
during the sys/kn/sem/getvalue call. It does not necessarily represent the state of the semaphore at
the time the function returns.

6.2 Mutexes
A mutex (mutual exclusion object) serves a slightly different purpose from a semaphore. Whereas a
semaphore maintains a limit to the number of processes achieving access to a resource, a mutex
provides mutual exclusion, like a counting semaphore with a count of one.

Mutexes are often used to provide exclusive access to data structures that must be accessed by no
more than one piece of code at a time. It is sometimes highly undesirable for two processes to
operate upon the same data structure at once. For instance, if two processes attempted to read,
modify and write a memory variable simultaneously, there would a danger of losing one of the
changes.

A mutex may only be locked by one process at a time, and in this way provides mutual exclusion.
While it is locked, any other process attempting to access it will block until it next becomes unlocked.
In intent, mutexes allow substantial control over the way in which processes block. A number of
mechanisms are provided to make sure that a high priority process is forced to wait as little time as
possible for any mutex locked by a lower priority process.

There are several ways to ensure mutual exclusion. Interrupts and facilities for pre-emption, for
example, may be disabled to prevent task switches. However, these tactics seriously delay and
hamper the system's ability to respond to interrupts, to reschedule tasks, etc. Unconnected processes
are prevented from running, even if they do not attempt to access the relevant data structure. There is
a danger of priority inversion, since a high priority process could be blocked indefinitely by a process
with a lower priority.

A mutex does not impede unrelated tasks in the same fashion. Even related tasks can still execute
providing they do not attempt to access the resource protected by the mutex. In addition, mutexes are
still reliable when operating within a shared memory multiprocessor system, whereas disabling

The Reference Manual for the intentTM Kernel

Page 51

interrupts on one chip in such a system does not necessarily prevent access to the data structure in
question from other processors.

A mutex also has several advantages over a semaphore with a count of one. Semaphores have no
'owner'. Any process with access to the semaphore can 'post' it, allowing a blocked process access to
the resource. There is no way to ensure that the semaphore can only be posted by its current 'owner.'
The lack of an 'owner', furthermore, prevents the implementation of a mechanism to prevent priority
inversion.

Mutexes are not restricted in this way. Once a process locks a mutex, it becomes the 'owner,' and no
other process can unlock it. Since the mutex contains a record of its 'owner,' furthermore, it can be
subjected to techniques such as the Basic Priority Inheritance Protocol or the Highest Locker Protocol
(see glossary) which are designed to avoid priority inversion.

6.2.1 Initialise Mutex - sys/kn/mtx/init
This function initialises a mutex structure, making it ready for use. If this function succeeds, the
specified mutex can be used as a parameter to the functions sys/kn/mtx/destroy, sys/kn/mtx/lock,
sys/kn/mtx/trylock, sys/kn/mtx/timedlock, sys/kn/mtx/unlock and sys/kn/mtx/ islocked. This tool must
not be called on a mutex which is already initialised under any circumstances.

The flags parameter specifies the order in which processes are released from the blocked state, if
there are multiple processes waiting for the mutex at one time. It also specifies the method used to
avoid priority inversion. The valid values are shown below. Exactly one of MTX_FIFO and MTX_PRIO
should be specified, and exactly one from MTX_BPIP, MTX_HLP, MTX_SIG and MTX_NONE should
be specified. In addition, MTX_SIGMASK may be specified in combination with any of the other flags
except MTX_SIG. MTX_LOCK and MTX_RECURSIVE may be specified in combination with any
other flags.

• MTX_FIFO :
This flag specifies that when multiple processes block waiting for the mutex, they should be
unblocked in a first-in-first-out order.

• MTX_PRIO :
This flag specifies that when multiple processes block waiting for the mutex, they should be
unblocked in a highest priority first order. If multiple processes of the same priority are blocked on
the same semaphore, they are unblocked in a first-in-first-out order.

• MTX_BPIP :
This flag specifies that the Basic Priority Inheritance Protocol should be used to avoid priority
inversion. The "ceiling" parameter is unused.

• MTX_HLP :
This flag specifies that the Highest Locker Protocol should be used to avoid priority inversion. The
parameter "ceiling" specifies the priority ceiling of the mutex.

• MTX_NONE :
This flag specifies that there is no mechanism used to avoid priority inversion. The "ceiling"
parameter is unused.

• MTX_SIG :
This flag specifies that priority inversion is to be avoided by using the priority signalling
mechanism. The "ceiling" parameter is unused.

• MTX_SIGMASK :
This flag specifies that when a process locks the mutex, its signal disable flag should be set. This
prevents the process from receiving any signals while it is in control of the mutex. The process's
signal disable flag returns to its original state when the mutex is unlocked. The MTX_SIGMASK
flag is usually set to prevent a process longjmping out of its signal handler without relinquishing
the mutex lock. This flag also prevents high-level-language exceptions from being processed.

• MTX_LOCK:

The Reference Manual for the intentTM Kernel

Page 52

This flag specifies that the mutex should be created in a locked state. If this flag is specified, the
mutex can never be available to any process other than the caller, unless first this call returns and
the calling process explicitly calls sys/kn/mtx/unlock.

• MTX_RECURSIVE:
This flag specifies that recursive locking of the mutex should be allowed. This means that
sys/kn/mtx/lock will never return EDEADLK. Instead, attempts by the ‘owner’ to lock the mutex
recursively will succeed, and a count will be maintained such that the mutex must be unlocked the
same number of times as it has been locked before the mutex is released. Processes other than
the owner of the mutex will block, or return an error code, as normal.

See the glossary for descriptions of the Highest Locker Protocol, Basic Priority Inheritance Protocol,
Priority Signalling and priority inversion.

Upon successful initialisation, the mutex is in an unlocked state unless the MTX_LOCK flag was
specified.

6.2.2 Destroy Mutex - sys/kn/mtx/destroy
This function destroys the specified mutex, in effect deinitialising it. It does not free any memory
associated with the mutex. A destroyed mutex can be re-initialised by calling sys/kn/mtx/init. The
effects of using a destroyed mutex are undefined.

A mutex may only be destroyed while it is unlocked, or while it is locked by the calling process. In the
latter case, any blocked processes are unblocked, and return EINVAL, and the lock is automatically
released.

Attempting to destroy a mutex which is locked by another process will fail.

6.2.3 Lock Mutex - sys/kn/mtx/lock
If the specified mutex is unlocked, the sys/kn/mtx/lock function locks it and returns. The calling
process thus becomes the 'owner' of the mutex.

If the mutex is already locked by the calling process, the action is dependent on whether the mutex
was initialised with the MTX_RECURSIVE flag. If it was not, EDEADLK is returned and no further
action is taken. If the flag was set, this function returns 0 (success) and a count is incremented to
indicate the number of recursive locks which the process has on the mutex. The function
sys/kn/mtx/unlock must be called the same number of times in order to release the mutex.

If the mutex is locked by another process, the calling process is placed on the queue of processes
waiting for the mutex lock. Any priority inversion prevention measures specified at mutex initialisation
time are automatically applied.

If an unmasked signal becomes pending, but signals were disabled before entry to the function, then
EINTR is returned. Internally, this function will retry the blocking operation if it can to ensure that the
signal has been properly processed. It should be noted that in the case of an unmasked signal
becoming pending, EINTR will only be returned if this signal processing has been disabled outside of
the scope of this function. If this is unacceptable then sys/kn/mtx/siglock should be called instead.

6.2.4 Lock Mutex, non block ing - sys/kn/mtx/trylock
If the specified mutex is unlocked, the sys/kn/mtx/trylock function locks it and returns zero.

If the mutex is already locked by the calling process, the action is dependent on whether the mutex
was initialised with the MTX_RECURSIVE flag. If it was not, EDEADLK is returned and no further

The Reference Manual for the intentTM Kernel

Page 53

action is taken. If the flag was set, this function returns successfully, and a count is incremented to
indicate the number of recursive locks which the process has on the mutex. The function
sys/kn/mtx/unlock must be called the same number of times in order to release the mutex.

If the mutex is locked by another process, the function returns an error code indicating the error.

6.2.5 Lock Mutex with timeout - sys/kn/mtx/timedlock
If the specified mutex is unlocked, the sys/kn/mtx/timedlock function locks it and returns.

If the mutex is already locked by the calling process, the action is dependent on whether the mutex
was initialised with the MTX_RECURSIVE flag. If not, EDEADLK is returned and no further action is
taken. If the flag was set, this function returns successfully, and a count is incremented to indicate the
number of recursive locks which the process has on the mutex. The function sys/kn/mtx/unlock must
be called the same number of times in order to release the mutex.

If the mutex is locked by another process, the calling process is placed on the queue of processes
waiting for the mutex lock, as specified at the initialisation of the mutex. If the amount of time specified
by the timeout parameter passes before the mutex becomes available, this function returns
ETIMEDOUT.

If an unmasked signal becomes pending, but signals were disabled before entry to the function, then
EINTR is returned. Internally, this function will retry the blocking operation if it can ensure that the
signal has been properly processed. If an unmasked signal becomes pending, EINTR will only be
returned if this signal processing has been disabled outside of the scope of this function.

6.2.6 Unlock Mutex - sys/kn /mtx/unlock
This function is called by the current owner of the mutex to unlock it. If the MTX_RECURSIVE flag
was specified when the mutex was initialised, this operation will decrement the count of recursive
locks held by the calling process. If this decremented count is non-zero, the function simply returns a
value of 1 without taking any further action. When this count reaches zero, the mutex is unlocked
normally, as described below.

If this function is called by a process which is not the owner of the mutex, the unlock operation fails.
Calling sys/kn/mtx/unlock when the mutex is not locked results in undefined behaviour.

If there are processes blocked on the mutex when it becomes available, one of the processes is
unblocked and becomes the 'owner' of the mutex, and 0 is returned. If multiple processes are blocked,
the decision as to which is rescheduled is based on the flags parameter with which the mutex was
initialised.

If the recursive lock count has dropped to 0, then the mutex is fully unlocked and the return value is 0.

6.2.7 Locks a mutex, retrying if interrupted by a signal - sys/kn/mtx/siglock
This tool is a variant of sys/kn/mtx/lock. The difference is that this tool will never return EINTR.
Instead, if an unmasked signal occurs which would otherwise have resulted in a return value of
EINTR, the locking attempt will be retried until EINTR is no longer returned.

The Reference Manual for the intentTM Kernel

Page 54

6.2.8 Attempt to lock a mutex with timeout, retrying if interrupted by a signal -
sys/kn/mtx/sigtimedlock

This tool is a variant of sys/kn/mtx/timedlock, but differs in that this tool will never return EINTR. In the
case of an unmasked signal which would have caused sys/kn/mtx/timedlock to return a value of
EINTR, this tool retries the locking attempt until EINTR is no longer returned.

6.2.9 Return lock status of mutex - sys/kn/mtx/islocked
This function returns the mutex lock status, indicating whether the mutex is locked or unlocked at that
time. The state of the mutex is not modified by this function.

6.3 Event Flags
More versatile than either semaphores or mutexes, event flags allow multiple tasks to wait for multiple
events.

An event flag represents 32 events which can be waited on in combination. Each event is represented
by a bit in the event flag pattern; if the relevant bit is not set, then the event has not yet happened, if
set then it has. The meaning of these events is not predetermined, and is entirely defined by the
application using the flag. Each task can separately specify the set of events of which it needs
notification, and the combination of events for which it is waiting. A single event trigger operation can
trigger multiple tasks.

6.3.1 Initialise an event flag structure - sys/kn/evf/init
This function initialises the event flag structure, and sets it to the specified pattern. The meaning of the
bits in the flag pattern is not passed in; it is the responsibility of the application programmer to ensure
that the correct bits in the pattern are set when necessary.

6.3.2 Destroy an event flag - sys/kn/evf/destroy
This function destroys the specified event flag, rendering it unusable. Any attempt to use this event
flag after its destruction gives undefined results. This function does not free the memory associated
with the event flag structure.

If there are processes waiting for the event flag, they are restarted. In each case the function that the
process called in order to wait upon the event flag (sys/kn/evf/wait, sys/kn/evf/trywait or
sys/kn/evf/timedwait) returns zero.

6.3.3 Set the flag pattern of an event flag - sys/kn/evf/set
This function sets the event flag pattern, passing in a bit pattern to OR into the current event flag
pattern. Any processes waiting upon the event flag will be unblocked if their conditions are met by the
new flag pattern of the event flag.

An 'interrupt-safe' version of this tool, sys/kn/int/evf/set, is also available. sys/kn/int/evf/set can safely
be called from inside an interrupt. Further details are available in the later section on “Interrupt
Handling.”

6.3.4 Clear the flag pattern of an event flag - sys/kn/evf/clr
This function sets the event flag pattern to the logical AND of its value parameter with the current
event flag pattern. Processes are not unblocked due to this operation.

The Reference Manual for the intentTM Kernel

Page 55

6.3.5 Waiting on an Eventflag
Processes may call one of three different functions in order to test an event flag for a condition. These
are sys/kn/evf/wait, sys/kn/evf/trywait, and sys/kn/evf/timedwait. Each of these takes a pointer to the
event flag to be tested, an integer representing the flag pattern against which the existing flag is to be
compared, and a mode parameter indicating the manner in which the two flag patterns are to be
compared. The sys/kn/evf/timedwait function also takes a long integer which specifies the timeout
period in nanoseconds.

The mode parameter may give one of two values, indicating either the EVFF_AND mode or the
EVFF_OR mode.

• EVFF_AND
If this flag is specified, the comparison will only evaluate to TRUE if all of the bits set in the pattern
parameter are set in the event flag's pattern.

• EVFF_OR
If this flag is specified, the comparison will evaluate to TRUE if any of the bits set in the pattern
parameter are set in the event flag's pattern.

In addition, the EVFF_CLR flag may optionally be set in the mode parameter.

• EVFF_CLR
If this flag is specified, all bits of the event flag will be cleared to zero after the wait conditions of
the waiting task are satisfied.

6.3.6 Wait on event flag unt il a specific condition is fulfilled - sys/kn/evf/wait
The sys/kn/evf/wait function is called by a process to test the event flag for the specified condition.
The function blocks if the condition is not TRUE. If a call to sys/kn/evf/set is later employed to change
the flag pattern of the event flag, the condition will be retested, and this call will return if the new
pattern matches the specified values.

This function returns the value of the event flag pattern when the specified condition is satisfied. If the
EVFF_CLR flag is specified, the function returns the value of the event flag before the flag pattern is
cleared to 0.

The value 0 may not be specified in the input pattern parameter, since it satisfies no wait conditions.
Consequently a return of 0 is always an error, and may not be mistaken for a record of the flag
pattern.

When multiple processes are waiting on an event flag, a single call to the sys/kn/evf/set function may
satisfy the wait conditions of multiple processes. If a process which has specified the EVFF_CLR flag
is released in this manner, the event flag pattern is cleared to 0 as the process is released. Any
processes behind this process in the queue are not released.

6.3.7 Test event flag for specified event flag pattern, non blocking -
sys/kn/evf/trywait

The sys/kn/evf/trywait function tests the event flag for the specified condition. Instead of blocking until
the condition is met, it immediately returns the logical result of this test (TRUE or FALSE).

The value 0 may not be specified in the input pattern parameter, since it satisfies no wait conditions.

The Reference Manual for the intentTM Kernel

Page 56

6.3.8 Wait on event flag for specific condition (blocking), with timeout -
sys/kn/evf/timedwait

The sys/kn/evf/timedwait function is called by a process to test for the specified condition. If the
condition is not TRUE, the function blocks. It may be restarted by a subsequent call to sys/kn/evf/set
with a matching pattern, or by the expiration of the specified timeout period.

This function returns the value of the event flag pattern when the specified condition is satisfied. If the
EVFF_CLR flag is specified, the function returns the value of the event flag before the flag pattern is
cleared to 0.

The value 0 may not be specified in the input pattern parameter, since it satisfies no wait conditions.
Consequently a return of 0 is always an error, and may not be mistaken for a record of the flag
pattern.

When multiple processes are waiting on an event flag, a single call to the sys/kn/evf/set function may
satisfy the wait conditions of multiple processes. If a process which has specified the EVFF_CLR flag
is released in this manner, the event flag pattern is cleared to 0 as the process is released. Any
processes behind this process in the queue are not released.

6.3.9 Get event flag information - sys/kn/evf/info
This function returns information about the specified event flag by filling in the supplied Event Flag
Information Structure, defined in the section on “Data structure definitions.”

The field holding information about the event flag pattern contains the pattern at the time that the
structure is filled. This need not be the event flag pattern by the time this function returns. The field
giving information about the processes waiting on the flag contains 0 if there are no processes waiting
on the event flag, or a non-zero value if there are one or more processes waiting.

6.4 Reader/Writer Locks
Sometimes when a resource is protected from simultaneous use by two or more processes, this
places it under unnecessary restriction. In particular, for many resources it is acceptable for multiple
processes to simultaneously use the data structures involved provided that no process attempts to
concurrently modify these structures. Reader/writer locks are a locking mechanism designed to permit
this.

A reader/writer lock may be locked by a process in one of two modes. If it is locked to ‘read’ then
other processes may still obtain the lock in ‘read’ mode. If it is locked to ‘write’ then no other process
can obtain the lock in either mode.

In addition, if one or more processes are blocked on the lock waiting to write then no new processes
may acquire the lock in read mode.

6.4.1 Initialises a reader/wri ter lock - sys/kn/rwlock/init
This tool initialises a reader/writer lock structure. The function is passed a pointer which must point to
a block of memory RWLOCK_SIZE bytes in length (this constant is defined in the document
sys/kn/rwlock/rwlock.inc), or sizeof(ELATE_RWLOCK) if programming in C. The returned parameter
contains an error code, or 0 if the function has completed successfully.

The Reference Manual for the intentTM Kernel

Page 57

6.4.2 Destroys a reader/writer lock - sys/kn/rwlock/destroy
This function is used to destroy the specified reader/writer lock. The tool is passed a pointer to the
relevant reader/writer lock, and returns an error code, or 0 if it completes successfully. Only a
reader/writer lock which was initialised using sys/kn/rwlock/init may be destroyed using this function.

6.4.3 Waits on a reader/writer lock (blocking, no timeout) - sys/kn/rwlock/wait
This tool attempts to lock the reader/writer lock. The function is passed a pointer to the relevant
reader/writer lock, and an integer which indicates the mode of lock. If the latter parameter is 1 then the
tool attempts to acquire the lock in 'write' mode, otherwise 'read' mode is selected. In either case, this
tool blocks until the lock is successfully acquired.

6.4.4 Waits on a reader/writer lock (non-blocking) - sys/kn/rwlock/trywait
This tool behaves similarly to sys/kn/rwlock/wait except that the tool simply returns an EBUSY error
code if the lock cannot immediately be acquired. This tool never blocks.

6.4.5 Waits on a reader/writer lock (blocking, with timeout) -
sys/kn/rwlock/timedwait

This tool behaves similarly to sys/kn/rwlock/wait except that it takes an additional input parameter,
which gives a timeout period in nanoseconds, or a value of –1 for an indefinite wait. After the period of
time specified by this parameter has expired, the tool ceases to wait and returns the error value
ETIMEDOUT.

6.4.6 Unlocks a reader/writer lock - sys/kn/rwlock/unlock
This tool unlocks a lock reader/writer lock. The function is passed a pointer to the relevant
reader/writer lock, and returns either an error code or 0 if it has completed successfully. It should be
noted that if the lock is in read mode it must be unlocked before any attempt to acquire it in write
mode or use sys/kn/rwlock/upgrade.

6.4.7 When holding the lock as a reader, become a writer -
sys/kn/rwlock/upgrade

This tool attempts to acquire a reader/writer lock in write mode for a caller who already holds it in read
mode. There are three possible outcomes.

If the call is successful then 0 is returned. This guarantees that no other process has obtained the lock
for writing in the meantime.

If the return value is EBUSY this means that another process is entitled to obtain the write lock before
the caller. This may happen if, for example, there is a prior call to sys/kn/rwlock/upgrade by another
process. Alternatively, this other process may have called sys/kn/rwlock/*wait, passing in 1 as the lock
mode parameter so that the resource is held in write mode. In such a case, when
sys/kn/rwlock/upgrade returns the resource is not locked by the caller, not even in read mode. This is
because the lock must be unlocked for the other process to acquire it in write mode.

The third possible outcome is a return value of EAGAIN. In this case, another process succeeded in
acquiring the lock in write mode before the caller, but the caller now has the lock in write mode.

These error conditions must not be treated as identical or the lock will become corrupted.

The Reference Manual for the intentTM Kernel

Page 58

6.5 Mailboxes
Since early in the development of intent, mailboxes have been a core means of effecting
communication and synchronisation between processes and other objects within the system.

intent's base functionality for message passing is asynchronous, allowing processes to continue with
other tasks after sending messages instead of lying idle while waiting for replies. However, the
asynchronous functions may also be used to achieve synchronous message passing. A synchronous
message passing model can be implemented using intent mailboxes by having the process send the
message block until a reply is received.

Unlike mutexes, semaphores and event flags, which may occupy any area of memory, mailboxes are
created by the intent system. When a mailbox is created, the intent system returns a "Mailbox ID," a
64-bit quantity which is subsequently used to refer to that particular mailbox. The ID is used when
sending or reading mail from a mailbox, or when freeing a mailbox that is no longer required.

The mailbox ID is unique across the entire intent processor network. Processes on different
processors, therefore, can use the ID to communicate, without the different applications involved
requiring any special code to handle this.

When a message arrives at its destination mailbox, it is placed in a queue of the other messages
waiting to be read. Any number of messages may be queued in a mailbox simultaneously. If there are
no messages available to be read from a mailbox, a process may block until a message arrives.

Mailboxes provide the ability to register a message arrival callback function which is called when a
message arrives at the mailbox. This function is called after the incoming message has been added to
the message list. It may modify the message list in any way, such as by discarding or combining
messages. This allows simple implementation of message filters. It also provides functionality such as
the automatic combination of several messages into one, which is useful when managing, for
example, mouse movement messages in a GUI. The process context in which the message arrival
callback function is called depends on several factors, and is described in a later section upon the
callback function. A more detailed account of the message arrival callback function is given in the
description of sys/kn/mbox/setcallback.

sys/kn/mbox/send and sys/kn/int/mbox/send are the only mailbox functions that may be used on
mailboxes on other processors. It is not possible to read from or free a mailbox on a remote
processor, since such an implementation would incur significant overheads, but the absence of this
feature is seldom a problem.

6.5.1 Mail Messages
An intent mail message consists of a header and a body section. Memory for these should be
allocated using sys/kn/mem/allocmail.

The header structure is described in detail later in this document, in the section on data structures. In
short, it contains a list node which allows it to be linked onto a list, the length of the message
(including both header and body), and the sender's mailbox ID. The length and sender's mailbox ID
should be filled in by the sending process before the mail is sent. The sender ID is only required if a
reply is expected. If it is not, the field may be set to zero.

The header is followed by the body of the message. This is comprised of the data to be sent. It may
be of any length, and its contents are not interpreted by the system in any way.

The basic intent mailbox system provides facilities which are sufficient for most applications, and
which do not add overhead (either memory or execution-time) for application specific features that are

The Reference Manual for the intentTM Kernel

Page 59

rarely used. More complex behaviour can easily be implemented using the basic mailbox facilities,
such as chains of mailboxes or prioritised messages. The latter functionality can be achieved by
defining some further structure to a particular applications messages, which can be interpreted by a
message arrival callback function to perform priority ordering of the mailbox list or forwarding of the
message to another mailbox after processing. It is also possible for different message types to be
defined for specific applications.

6.5.2 Allocate a mailbox - sys/kn/mbox/alloc
This function allocates and initialises a new mailbox on the same processor as the calling process.
The mailbox is initially empty.

This function returns the allocated mailbox ID if successful, otherwise it returns an error code
indicating the error.

6.5.3 Free a mailbox - sys/kn/mbox/free
This function frees the specified mailbox, and any associated resources. Any messages waiting to be
read are discarded. Any processes waiting on the mailbox are woken, and return to their calling
contexts with an error code EINVAL.

This function may only be called by a process on the processor upon which the mailbox was
allocated.

6.5.4 Send Message to mailbox - sys/kn/mbox/send
This function takes a pointer to a mail message, and sends it to the specified mailbox.

Memory for a message should be allocated using sys/kn/mem/allocmail. After a call to
sys/kn/mbox/send, the memory containing the message is considered to belong to the intent system
until it arrives at its destination. No attempt should be made to free or manipulate the memory
occupied by the message. Where the message is being sent across a link to a mailbox on another
processor, the message memory is automatically freed when it is no longer required. If the destination
is a mailbox on the same processor as the sender, the message memory is owned by the process
which reads it from the destination mailbox.

If there are any processes blocked on the destination mailbox, the first one in the list is woken from its
SLEEP state and receives the message.

If the calling process is running on the same processor as the destination address, any callback
function defined for the destination mailbox is called during the execution of sys/kn/mbox/send. If they
are running on different processors, a callback function defined for the destination mailbox will only
execute upon the arrival of the message.

An 'interrupt-safe' version of this tool, sys/kn/int/mbox/send, is also available. sys/kn/int/mbox/send
can safely be called from inside an interrupt. Further details are available in the later section on
“Interrupt Handling.”

6.5.5 Read mail from mailbox - sys/kn/mbox/read
If there are one or more messages waiting to be read from the mailbox, the first message is removed
from the list and returned to the caller.

If no messages are available, the calling process is added to the list of processes waiting to read from
the mailbox. This list is ordered by the priority of the waiting processes. When a message arrives, the

The Reference Manual for the intentTM Kernel

Page 60

first (i.e. highest priority) process on the list is woken and returns to its calling context with a pointer to
the mail message.

This function may not be used to read from a mailbox allocated on another processor. It is possible to
implement this functionality in user-space, by creating a process on the same processor as the
mailbox to service requests from the remote process. However, this functionality is not provided at the
system level, and programmers are recommended to avoid this implementation unless absolutely
necessary.

If an unblocked signal or a callback becomes pending while a process is blocked in this function, the
blocking operation will terminate, and NULL will be returned.

6.5.6 Read mail from a mailbox, non-blocking - sys/kn/mbox/tryread
If there are one or more messages waiting to be read from the mailbox, the first message is removed
from the list and returned to the caller.

If there are no messages available, a NULL pointer is returned.

This function may not be used to read from a remote mailbox.

6.5.7 Read mail from a mailbox, with blocking and timeout –
sys/kn/mbox/timedread

If there are one or more messages waiting to be read from the mailbox, the first message is removed
from the list and returned to the caller.

If no messages are available, the calling process is added to the list of processes waiting to read from
the mailbox. The list order is based upon the priority of the waiting processes. When a message
arrives, the first process on the list is woken and returns to its calling context with a pointer to the mail
message.

If the amount of time specified in the timeout parameter elapses before the process is woken by the
arrival of a message, this function returns NULL.

If an unblocked signal or a callback becomes pending while a process is blocked in this function, the
blocking operation will terminate, and NULL will be returned.

This function may not be used to read from a remote mailbox.

6.5.8 Set the callback funct ion for the specified mailbox -
sys/kn/mbox/setcallback

This function registers a callback function to be called when a message arrives at the mailbox. It
should be noted that although this function can be considered to be a callback it is not of the format
used by the sys/kn/callback functions.

The message arrival callback function will normally be called from the process sending the mail.
However, if the message has been sent from an interrupt handler, the callback function is instead
called from the next process attempting to read from the mailbox. Alternatively, in the special case of
mail being sent to a mailbox on another processor, the callback will be called from an unspecified
process.

The Reference Manual for the intentTM Kernel

Page 61

The input parameter to the message arrival callback function points to the message list of the mailbox.
This is a standard intent double-linked-list, the nodes of which are the messages currently queued in
the mailbox. The newly arrived message will be the last on the list.

The message arrival callback function may modify this list by removing messages, or by modifying the
data in the messages. If messages are removed from the list in this way, the author of the callback
function is responsible for freeing them.

During the execution of the message arrival callback function, the mailbox is locked by the executing
process and cannot be modified by any other processes. If the callback function performs any
blocking operations, the programmer must be careful to avoid potential deadlock situations.

The message arrival callback function is intended for lightweight operations such as filtering and
coalescing, as described above, and not for the actual processing of the messages, it. The chief
advantage of this is that messages filtered out or coalesced by the message arrival callback function
are never seen by a process reading from the mailbox. Therefore, they do not cause that process to
run, and simply discard the message, or duplicate work which could have been performed more
efficiently by combining messages. This reduces the number of context-switches, and the overall
processing overhead.

6.5.9 Call the specified func tion with the message list of the mailbox -
sys/kn/mbox/enumerate

The specified function is called with a pointer to the mailbox's message list, and a user data pointer,
allowing operations such as redundant message removal, etc.

The message list parameter to the callback function points to a standard intent double-linked-list, the
nodes of which are the messages currently queued in the mailbox.

The callback function may modify this list by removing messages, or by modifying the data in the
messages. If messages are removed from the list in this way, the author of the callback function is
responsible for freeing them.

During the execution of the callback function, the mailbox is locked by the executing process and
cannot be modified by any other processes. If the callback function performs any blocking operations,
the programmer must be careful to avoid potential deadlock situations.

6.6 Synchronisation Groups
In a realistic system, it is often necessary to wait for one of several events to occur. These events may
be of different types, and may affect different synchronisation objects. For example, it may be
necessary to wait on several mailboxes and a semaphore, with a timeout. Some older systems use
polling to achieve this. However, since polling forces the system to check the condition of a number of
facilities repeatedly, this technique is inefficient and wastes processor resources.

The "synchronisation group" in intent provides the same functionality without this inefficiency. A
"synchronisation group" is a construct that groups synchronisation objects together. A process waiting
on this group will receive notification of the first event to occur at any of the grouped synchronisation
objects.

When a synchronisation object is associated with a synchronisation group, it should only be accessed
as a part of that group, by using the sys/kn/sgrp/* functions. If it is accessed individually through the
normal mutex, semaphore, mailbox or event flag functions, the results may be unpredictable.

The Reference Manual for the intentTM Kernel

Page 62

6.6.1 Initialise Synchronisa tion Group - sys/kn/sgrp/init
This function initialises the specified synchronisation group structure, making it usable. The
synchronisation group initially has no associated synchronisation objects. The maximum number of
synchronisation objects which can be associated with the group is specified as a parameter to this
function. Attempts to associate more objects than specified on initialisation will fail.

6.6.2 Destroy Synchronisat ion Group - sys/kn/sgrp/destroy
This function destroys the specified synchronisation group structure, making it unusable. The
synchronisation group cannot be destroyed while it has associated synchronisation objects. This
function does not free any memory associated with the synchronisation group.

Any processes waiting on the synchronisation group are woken, and the EINVAL error code is
returned to them.

6.6.3 Associate Mutex with Synchronisation Group - sys/kn/sgrp/mtx_assoc
This function associates the specified mutex with the synchronisation group, so that when the mutex
is unlocked, the synchronisation group will be notified.

6.6.4 Associate Semaphore with Synchronisation Group -
sys/kn/sgrp/sem_assoc

This function associates the specified semaphore with the synchronisation group, so that when the
semaphore is posted, the synchronisation group will be notified.

6.6.5 Associate Mailbox with Synchronisation Group -
sys/kn/sgrp/mbox_assoc

This function associates the specified mailbox with the synchronisation group, so that when the
mailbox receives mail, the synchronisation group will be notified.

6.6.6 Associate Event Flag with Synchronisation Group -
sys/kn/sgrp/evf_assoc

This function is slightly different from those listed above, in that it takes not only a pointer to the
synchronisation group and a pointer to the event flag, but also a pattern parameter, and a mode
parameter. The pattern parameter is needed so that it can be compared to the relevant event flag
pattern. The mode dictates the manner in which the two flag patterns are to be compared.

A single event flag may be associated with a synchronisation object multiple times, with different
modes and patterns. In such cases, a synchronisation group will be notified if a particular event flag
matches any of the specified sets of conditions.

When the event flag matches the specified pattern in the manner decreed by the mode, the
synchronisation group is notified.

6.6.7 Associate Synchronisation Group with Synchronisation Group -
sys/kn/sgrp/sgp_assoc

This function takes as parameters pointers to two synchronisation groups, and associates the second
group with the first. Thus, when the second synchronisation group is posted, for any reason, the first
synchronisation group will be notified.

The Reference Manual for the intentTM Kernel

Page 63

6.6.8 Disassociate Mutex from Synchronisation Group -
sys/kn/sgrp/mtx_disassoc

This function disassociates the specified mutex from the synchronisation group, so that when the
mutex is unlocked, the synchronisation group is no longer notified.

6.6.9 Disassociate Semaphore from Synchronisation Group -
sys/kn/sgrp/sem_disassoc

This function disassociates the specified semaphore from the synchronisation group, so that when the
semaphore is posted, the synchronisation group is no longer notified.

6.6.10 Disassociate Mailbox from Synchronisation Group -
sys/kn/sgrp/mbox_disassoc

This function disassociates the specified mailbox from the synchronisation group, so that when the
mailbox receives mail, the synchronisation group is no longer notified.

6.6.11 Disassociate EVF Condition from Synchronisation Group -
sys/kn/sgrp/evf_disassoc

This function disassociates the specified combination of event flag, pattern and mode from the
specified synchronisation object, so that when this pattern and mode combination occur in the
specified event flag, the synchronisation object is no longer notified.

If the relevant event flag is associated with the synchronisation group multiple times, only the
specified combination of pattern and mode are disassociated from the group. The synchronisation
group will still be notified if the event flag satisfies the conditions specified by other combinations of
event flag, pattern and mode that are still associated with the group.

6.6.12 Disassociate Event Flag from Synchronisation Group -
sys/kn/sgrp/evf_destroy

This function disassociates all records which refer to the specified event flag from the specified
synchronisation object.

6.6.13 Disassociate Synchronisation Group from Synchronisation Group -
sys/kn/sgrp/sgp_disassoc

This function takes as parameters pointers to two synchronisation groups, and disassociates the first
group from the second. Thus when the second synchronisation group is posted, the first
synchronisation group will no longer be notified.

6.6.14 Wait on Synchronisation Group – sys/kn/sgrp/wait
If any of the associated synchronisation objects are in the available state (unlocked for a mutex,
positive count for a semaphore, etc), information about one of these objects is returned to the caller,
and some operation is performed on it to ensure that no other process is triggered by the same object
(for details of the structure of the information returned, see below).

If none of the objects is in an available state, the calling process is added to a priority-ordered list of
processes waiting for one of the objects in the synchronisation group to become available.

The Reference Manual for the intentTM Kernel

Page 64

6.6.15 Test Synchronisation Group, non-blocking – sys/kn/sgrp/trywait
If any of the associated synchronisation objects are in the available state (unlocked for a mutex,
positive count for a semaphore, etc), information about one of these objects is returned to the caller,
and some operation is performed on it to ensure that no other process is triggered by the same object
(for details of the structure of the information returned, see below).

If none of the objects is in an available state, the information structure returned will contain an error
code to indicate this.

6.6.16 Wait on Synchronisation Group, with timeout – sys/kn/sgrp/timedwait
If any of the associated synchronisation objects are in the available state (unlocked for a mutex,
positive count for a semaphore, etc), information about one of these objects is returned to the caller,
and some operation is performed on it to ensure that no other process is triggered by the object (see
below).

If none of the objects is in an available state, the calling process is added to a priority-ordered list of
processes waiting for one of the objects in the synchronisation group to become available. If the
specified timeout period expires before one of the synchronisation objects in the group becomes
available, the information structure returned will contain an error code to indicate this.

6.7 Structure of Synchronisation Group Information records
Each of the "wait" functions above is passed a data structure which it fills with information about the
event that has occurred, including identification of the synchronisation object that caused the wait to
be terminated. The structure is a block of memory 16 bytes in length, with contents defined as follows:

The first word of the structure identifies the type of object that has caused the wait to be terminated. It
also determines the contents of the remainder of the structure, and the action that was taken when
the event occurred. Possible values of the first word are

• EINVAL: Error
The remainder of the structure is undefined

• ETIMEDOUT: Timeout
The remainder of the structure is undefined

• ENOLCK: No available synchronisation objects
The remainder of the structure is undefined

• EINTR: An unmasked signal occurred
The remainder of the structure is undefined

• 0: Mutex
The second word of the structure contains a pointer to the mutex that was triggered. The
mutex is now locked by the calling process.

• 1: Semaphore
The second word of the structure contains a pointer to the semaphore that was triggered. The
semaphore has been "waited on" by the calling process.

• 2: Mailbox
The second and third words of the structure contain the mailbox ID of the triggering mailbox.
A message has been read from the mailbox, and its pointer is in the fourth word of the
structure.

• 3: Synchronisation Group

The Reference Manual for the intentTM Kernel

Page 65

The second word of the structure contains a pointer to the synchronisation group that was
triggered. The third word of the structure contains a pointer to the information structure that
was passed in when the synchronisation object was associated.

• 4: Event Flag
The second word of the structure contains a pointer to the event flag which whose pattern
was matched. The matching pattern is in the third word of the structure and the matching
mode is in the fourth word of the structure.

The Reference Manual for the intentTM Kernel

Page 66

7. Memory Management

The intent model for memory allocation is object-oriented, and therefore very flexible and
configurable. The intent "memory object" implements an interface which supports allocation, freeing,
increasing and decreasing the size of the memory pool available to the object, structural checking and
information gathering. There are a number of different classes which implement this interface, each of
which provides a different memory allocation algorithm, designed for particular features such as
speed, low memory overhead or determinism.

There are standard memory object "mappings" defined by the intent system. These are simply
pointers to the memory object to be used for a particular set of memory operations. For example,
there are mappings defined for the following areas:

• default application data memory object
• default stack memory object
• system data memory object
• mail message memory object
• code memory object

These mappings may all refer to separate memory objects, allowing the different areas of the
system's memory usage to be directed to specific memory objects. These may be implemented by
different classes, and may therefore use different algorithms for allocation and freeing. Alternatively,
the mappings may all point to the same memory object, which may be the only object in the system.
As these mappings are defined at sysgen-time, this gives the system integrator freedom to modify the
system memory layout without even reassembling.

There is no limit on the number of memory objects that may exist within a particular intent system.
These objects may be defined at sysgen-time, or dynamically created and destroyed at run-time. In
the former case, the objects are usually named, whereas in the latter case they tend to be unnamed.
A memory object can be made visible to the whole system by giving it a name, or by defining one of
the system mappings to point to it. Alternatively, the object may be private to a particular application
or set of applications.

During the lifetime of an individual object, the amount of memory available for the object's use may be
dynamically increased or decreased. Memory from one object may be used for the creation of another
object, thus creating a hierarchy of memory objects. The algorithm used for allocation or deallocation
of memory is dependent on the class used, and may be specified at sysgen-time, or when the
memory object is created.

For many embedded systems, a fixed amount of memory is determined at sysgen-time, and remains
a constant for that particular platform. On others, it may be desirable to operate at boot time as though
only a small, fixed amount of memory were available, and later to perform a memory scan to find the
real amount of memory present. Any extra memory then found can be added to one of the memory
objects in the system. On yet other systems, a host OS may provide memory services. In these
cases, it may be possible to allocate extra memory for the intent system at any time using the host
OS's memory services.

Like other intent objects, memory objects are initialised through the use of a constructor. A constructor
is a function belonging to a specific class, and used to initialise and name objects of that class. The
constructor used dictates the type of memory object being constructed.

The following memory allocator classes are available:

The Reference Manual for the intentTM Kernel

Page 67

Class Name Functionality
sys/kn/mem/debug Debugging memory object which checks for corrupt free blocks, writes

off the end and start of allocated blocks, etc. By default, debug extends
the gwc allocator, but can be customised to inherit from any other

memory allocator.

Since this memory allocator reduces performance, and increases
memory usage, it should be used only for debugging purposes.

sys/kn/mem/gwc 'Good Worst Case' allocator. Provides deterministic best-fit allocation
and constant-time freeing. This is the default allocator for systems

which do not rely on the PII for allocation and is particularly
recommended for heavy loads or where fragmentation is a concern.

sys/kn/mem/pii Calls down to PII (underlying OS) for each allocate and free.
Performance and determinism entirely dependent on underlying OS.

sys/kn/mem/bp This ‘bomb proof’ allocator is based on the GWC allocator but is
modified to assist detection of memory-related errors. It is slower than
GWC and has a higher per-block memory overhead. This allocator is
also capable of repairing some types of memory corruption in order to
prevent crashes. This allocator is only intended for development use.

7.1 Dynamic Memory Al location

7.1.1 Allocate memory from specified type of memory object -
sys/kn/mem/alloc<type>

The flexibility of the intent system allows for a variety of different underlying memory configurations.

An intent system may contain several memory objects, dedicated to different purposes. For example,
there may be one area of memory for process stacks, another for system data, and yet another for
general application data. As another example, a system may be designed so that a separate memory
object exists for each application, using memory taken from the system default memory object.
Alternatively, a system can be configured so that it contains only one memory object.

Such details are invisible to the typical intent application, which is simply offered a range of kernel
tools that allow it to allocate memory for particular purposes. Provided the correct tool is used to
allocate particular types of memory, the calling code will work irrespective of the memory configuration
of the system.

These tools are listed below:

• sys/kn/mem/allocstk
Used by the intent system to allocate memory for process stacks.

• sys/kn/mem/allocdata
Used by applications for allocating data which does not need to persist after the allocation process
terminates.

• sys/kn/mem/allocsys
Used to allocate data memory for the intent system itself.

• sys/kn/mem/alloccode
Used to allocate memory to store dynamically loaded tools.

• sys/kn/mem/allocmail
Used to allocate memory to be sent as mail messages. Having a separate object for this allows for
the possibility of mapping memory between memory spaces on platforms which support this.

• sys/kn/mem/allocdef

The Reference Manual for the intentTM Kernel

Page 68

Used by libraries to allocate data memory which may need to be shared with other processes, and
which must exist after the allocating process terminates.

All of these tools share the same interface, as documented above.

It is important to allocate from the correct memory object for various reasons, the most important
being the occasional need for an object to persist after the termination of the process which allocated
it.

For example, it is possible for each process in a system to have a separate memory object for its
default data allocator. The function sys/kn/mem/allocdata is suitable for allocation of a process's data,
which does not need to persist after the process's termination. However, a library function called by
one of the processes might need to allocate memory which must 'outlive' the allocating process. In
such a case sys/kn/mem/allocdata would be unsuitable, whereas the sys/kn/mem/allocdef function is
designed for just this sort of allocation.

The tools described above all call down to the appropriate memory object through an intermediate
level interface, sys/kn/mem/alloc. This function records the memory object from which each block is
allocated. Thus, when it is desirable to free blocks of memory back to the memory object from which
they were allocated, it is not necessary for the system to contain a range of separate routines for
freeing memory, each corresponding to a different function in the list above. Instead, there is a single
tool sys/kn/mem/free which automatically frees the memory to the correct memory object, using the
record made by sys/kn/mem/alloc.

Memory blocks returned by these tools are always 8-aligned and always a multiple of 8 bytes in size.

7.1.2 Allocates memory with a specified alignment - sys/kn/mem/allocaligned

Inputs
• i<bytes>: number of bytes required
• i<alignment>: alignment required (must be a power of 2)

Outputs
• p<mem>: pointer to allocated memory (NULL if failed)
• i<actualbytes>: size of allocated memory

This function allocates a memory block. sys/kn/mem/allocaligned takes two parameters, one which
dictates the size of the block, and one which specifies the alignment. For example, if the ‘alignment’
parameter is 32, the returned memory block will be 32-byte aligned. sys/kn/mem/allocaligned
allocates this block from the system memory allocator, in the same manner as sys/kn/mem/allocsys.

The function returns two parameters, one of which gives the size of the allocated memory, and one of
which is either a pointer to the allocated memory, or is null to indicate a failure. It should be noted that,
since this tool returns two values, if it is called from C the multiple return registers facility of the Elate
C compiler will need to be used.

7.1.3 Allocate memory from specified memory object - sys/kn/mem/alloc
This function is used for allocating memory from a specified memory object. It can be used, for
example, by a process which is using a dynamically created memory object.

The Reference Manual for the intentTM Kernel

Page 69

When an application-level memory routine is used to allocate memory from a memory object, this tool
records the size of the allocated block, and the memory object from which the block was allocated.
These details, therefore, do not need to be specified when the block is freed back to the appropriate
object.

Due to this, the API for freeing a block which was allocated using this function is very simple (see
sys/kn/mem/free).

If the specified memory object returns a failure, the tool sys/kn/mem/flush is called, and the allocation
attempted again. If the memory object still returns a failure, this is returned to the caller.

Memory blocks returned by this tool are always 8-aligned and always a multiple of 8 bytes in size.

7.1.4 Free memory allocated from corresponding allocation tool -
sys/kn/mem/free

This tool frees the specified block, which must have been allocated using sys/kn/mem/alloc,
sys/kn/mem/realloc or one of the sys/kn/mem/alloc* tools. Using the record made by
sys/kn/mem/alloc, it automatically frees the block to the correct memory object, releasing the same
number of bytes as was originally allocated.

If a NULL pointer is passed in, the function returns immediately.

7.1.5 Re-allocate memory - sys/kn/mem/realloc
This tool returns a memory block which is at least as large as the specified size, containing the same
data as the block passed in, up to the size of the original block.

If the input block is large enough to satisfy the request, the returned block will be identical to the input
block. If the requested block of memory is larger than the input block, the returned block will contain
the input block data plus enough memory to meet the request.

If the returned block is not the same as the input block, the input block will be freed automatically
before this call returns. It should therefore never be used by the calling process again.

If the input block is not large enough to satisfy the request and memory cannot be allocated to meet
the request, NULL is returned as the pointer to the new block. In this case, the input block is still valid
and may still be used by the caller (and indeed must still be freed by the caller when it is no longer
required).

7.1.6 Check structure of all system memory objects - sys/kn/mem/check
This tool calls the check method of all memory objects known by the intent system. This includes any
named memory objects in the sysgen instruction file that have manager tools defined. It also includes
any memory objects for which system mappings are defined.

The check method checks the consistency of the memory object; further details can be found below in
the section on “Memory Object Methods.”

7.1.7 Get pointer to named memory object - sys/kn/mem/lookup
Memory objects defined at sysgen-time are named. This function returns a pointer to the memory
object with the specified name.

The Reference Manual for the intentTM Kernel

Page 70

Having received this pointer, the caller may then directly call the memory object using any of the
methods documented in the section "Memory Object Methods," or it may use the sys/kn/mem/alloc
tool to allocate memory from it. Memory allocated by directly calling the methods of the memory object
must be freed in the same way, and can neither be freed using sys/kn/mem/free nor reallocated using
sys/kn/mem/realloc.

7.1.8 Return size of block of memory - sys/kn/mem/size
Given a pointer to a block of memory allocated by sys/kn/mem/alloc or any of the
sys/kn/mem/alloc<type> functions, sys/kn/mem/size returns the size in bytes of usable memory in the
block. The size returned will be the same as that returned by the original call to the allocation function.

It should be noted that this function can only be called with the exact pointer returned by the allocation
function. Other pointers, including pointers to other locations within the same block, will cause the
function to return undefined values.

7.1.9 Returns the memory object associated with a block - sys/kn/mem/getobj
Given a pointer to a block of memory returned by sys/kn/mem/alloc or any of the
sys/kn/mem/alloc<type> tools, this function returns a pointer to the memory object from which the
block was allocated.

It should be noted that this tool may only be called with the exact pointer returned from the allocation
function. Other pointers, including pointers to locations within the same block, will cause this function
to return undefined values.

7.2 Virtual Memory Serv ices
intent is generally used in embedded applications, for which virtual memory capabilities are often
undesirable. As a consequence, the majority of platforms upon which intent is run do not provide a
virtual memory system. However, since such facilities are available in platforms such as Linux, DOS
DPMI and Win32, the intent kernel contains a few functions which may be used to control the virtual
memory system.

The only functions required by the programmer are those for locking down blocks of memory, so that
they are not paged out during periods of high memory usage. Blocks of memory that are paged out to
disk may be re-used, and their contents altered. In some cases this is undesirable.

This particularly applies to the writing of interrupt handlers, since many platforms will not support page
loading during an interrupt service routine. Therefore interrupt handlers must only use memory that
has already been locked. Neither code nor data memory used by the interrupt handler may be allowed
to be 'swapped out' by the virtual memory system. This avoids the following situation:

Like a virtual memory paging, an interrupt induces the processor to save the state of the halted
operation, and jump to another part of the code. If the appropriate handler for an interrupt is 'swapped
out' when the interrupt occurs, the system needs at once to save the state of the interrupted
operation, and to retrieve the interrupt handler using the virtual memory paging system. In such
circumstances, the state of the system may become confused.

7.2.1 Lock Memory - sys/kn /mem/lock
This function locks the specified region of memory into physical memory, so that it is no longer eligible
for paging.

The Reference Manual for the intentTM Kernel

Page 71

This function should be used with care in any system that uses virtual memory since, if too much
memory is locked, the system may 'thrash.' Thrashing occurs where the operation of a system is
seriously slowed through a shortage of free memory resources. To use virtual memory, a system must
save the contents of memory to disk in order to free memory space, retrieving it from disk again when
it is needed. A system using virtual memory is said to thrash when there is insufficient unlocked
memory to provide a reasonable sized working set for normal memory operations, a situation that
forces repeated saves to and loads from disk.

The parameters passed to sys/kn/mem/lock specify the address of the start of the region to be locked,
and the length of the region in bytes.

sys/kn/mem/lock may be called repeatedly to lock the same memory area, without the region needing
to be unlocked between these calls. These locks are nested, and a count of multiply locked blocks is
maintained. A block which is locked multiple times must be unlocked the same number of times in
order to be eligible for paging.

7.2.2 Unlock Memory - sys/kn/mem/unlock
This function unlocks the specified region of memory. If the region, or any page within it, becomes
completely unlocked, it is eligible to be paged by the virtual memory system.

The parameters passed in to the function specify the address of the start of the region to unlock, and
the length of the region in bytes.

The sys/kn/mem/unlock function must only be called to unlock memory regions which were previously
locked using sys/kn/mem/lock. If the specified region of memory is not locked, EINVAL is returned.

7.3 Memory Object Methods

7.3.1 Constructor tool - <class name>/_new
The constructor is normally the only tool which is called by name to act upon a memory object. All
other tools that operate upon memory objects are called using the ncall mechanism, isolating the
programmer from the details of the memory object type.

The constructor tool takes a pointer to the address at the start of the region from which memory may
be allocated. The tool also takes a parameter indicating the length of the specified memory area. In
some cases it may be possible for the allocator to acquire its memory pool from another source, so
that these parameters are not needed. In the case of a hosted environment, for example, the memory
block may be supplied by the host OS.

Most object constructors take no parameters, and return a pointer to an ncallable object which they
have allocated. This is obviously impossible for a memory object constructor, as the only memory
available for allocation may exist within the pool of memory which is being set aside for the object.

The parameters to the memory object, therefore, are not passed straight to the object's _init method
as would usually be the case. Instead the parameters are passed into the object's _new tool, or
constructor tool. This tool takes on the task of allocating memory for the object. The _init method still
exists, and should perform most of the object initialisation. The _new tool should simply set up the
object so that the _init method can be called.

The following methods are supported by memory objects:

The Reference Manual for the intentTM Kernel

Page 72

7.3.2 Initialise memory object - _init
This method initialises the specified memory object in a class-specific manner.

7.3.3 Allocate memory from memory object - alloc (xmethod)
This method attempts to allocate the specified number of bytes from the relevant memory object.

If successful, the function returns a pointer to the allocated memory. It returns 0 if the allocation failed.

No memory object will successfully allocate less than 16 bytes. If less than 16 bytes is requested, the
request size is rounded up to at least 16 bytes. Memory objects will only return memory blocks whose
size is a multiple of 8 and the start of the blocks should be aligned to an 8-byte boundary.

7.3.4 Free memory to memory object - free (xmethod)
This method releases the specified memory block, making it available for re-allocation. If the block
passed to this method was not originally allocated from this memory object, the results are undefined.

7.3.5 Add memory block to memory object - addblock
This method adds a block of memory to the pool of the specified memory object. This allows the
object to allocate from this block.

7.3.6 Return statistics about memory usage - info
This method returns information about the memory usage of the memory object. It returns the total
amount of memory in the pool, the amount of available memory, the size of the largest available
block, and the number of available memory blocks.

7.3.7 Check memory object structure - check
This method is used for debugging, and checks the consistency of the memory object's structures.
The method may be called by an application when memory corruption is suspected. If an error in the
object's structures is found, the memory object should call sys/cii/breakpt after printing a diagnostic
message. This CII function creates a breakpoint within the code, and thus execution is halted if a fault
is found by this method.

In this way, buffer overruns, invalid pointer uses, etc, may be isolated by inserting numerous calls to
this method within their code.

7.3.8 Return size of largest available memory block - largest
This method returns a lower bound on the size (in bytes) of the largest block of memory currently
available for allocation by the memory object.

If only the ‘largest block’ memory statistic is required, the largest method removes the need to call the
much more heavyweight info method.

7.4 Memory Flushing
This facility permits applications, device drivers and other code within the intent system to be called
and flushed in the event of a memory shortage. Thus, programs are able to implement their own
caches in the fashion suited to each. This is achieved by the addition of a "memory flush node" to the
kernel's memory flush list, which is processed when resources are low.

The Reference Manual for the intentTM Kernel

Page 73

The memory flush list is comprised of a series of callback nodes. A callback node is a data structure
designed to notify a callback handler of the occurrence of a specific event. In this case, the event in
question occurs when the system runs low on memory. These nodes can be found described in
greater detail in the account of 'Memory Flush List Nodes' in the section on data structures later in this
document. (It should be noted that here the ‘callback’ is not of the format used by the sys/kn/callback
functions.)

Each node contains the address of a callback handler function to be called when the system is low on
memory. This function is called using a pointer to its memory flush list (MFL_) node, and it returns
nothing.

When the memory runs low, the kernel calls the sys/kn/mem/flush function to process the nodes in the
flush list. The callback nodes then notify their handlers, and the areas of memory that they represent
are freed.

7.4.1 Add callback routine to memory flush list - sys/kn/mem/addflush
This function allows a callback node to be added to the kernel's flush list. This list is processed by the
sys/kn/mem/flush function when the kernel finds that it has run out of memory.

It is the caller's responsibility to set not only the MFL_HANDLER field, which must point to the flush
callback routine, but also two other fields: MFL_MEMOBJ and MFL_PRIORITY. If the node handles
flushes for a specific kernel memory object, then MFL_MEMOBJ must be a pointer to this object.
Alternatively, if this handler is called by all flushes, then MFL_MEMOBJ just be NULL.
MFL_PRIORITY is an integer which affects the order in which handlers are called when attempting to
free up memory. If enough memory is freed by earlier handlers, then lower priority handlers may
never be called. The value of MFL_PRIORITY should normally only be set to one of: MFP_PREFER,
MFP_OFTEN, MFP_NORMAL, MFP_SELDOM OR MFP_EMERGENCY. If in doubt, MFP_NORMAL
should be used.

The flush callback routine must not call any tool which might attempt to allocate memory. This will
generally mean that no kernel functions should be called other than sys/kn/mem/free. In addition, no
function should be called using VIRTUAL and VIRTUAL+FIXUP, since these mechanisms both
implicitly allocate memory.

If the routine must access data structures protected by a mutex, it should be prepared for the fact that
the calling process may already own the mutex, in which case EDEADLK will be returned. In such
circumstances, the callback handler should generally abort without accessing the data structures.

The callback routine may be called from within any process which attempts to allocate memory, and
not necessarily from within the process which originally placed it on the flush list. It returns a lower
bound on the amount of memory freed by flushing, which should be the exact amount if it is known.

7.4.2 Remove a callback function from the memory flush list -
sys/kn/mem/removeflush

This function removes a callback node from the kernel's flush list. This list is processed by the
sys/kn/mem/flush function when the kernel finds that it has run out of memory.

7.4.3 Process memory flush callback list - sys/kn/mem/flush
This function is called by the kernel when the system is low on available memory. It may also be
called by applications at any time, although this is not commonly done.

The Reference Manual for the intentTM Kernel

Page 74

It calls the callback routines specified in each of the MFL_ nodes on the callback list, allowing them to
free memory. Nodes are traversed in decreasing order of MFL_PRIORITY. If a memory object pointer
is passed to this tool then only nodes with matching MFL_MEMOBJ (or NULL) will be considered. If
the target amount of memory is freed then no further nodes are visited.

The Reference Manual for the intentTM Kernel

Page 75

8. Timer Management

intent provides two types of timers, periodic and monoshot.

A monoshot timer expires after the specified time, and then becomes inactive.

A periodic timer expires after the specified initial interval. Its expiry time is then reset to the amount of
time specified as its 'period.' The timer's expiry time is reset to its period after each subsequent expiry,
until it is disabled by a call to sys/kn/timer/unset.

In either case, at the expiration of the timer, an application specified action is performed. The action
can be one of the following:

• Wake a specified process
• Send a signal to a specified process
• Call a specified function - a timer handler

Timers have two main uses. The first is as a means of providing application or device specific timing
information. When transmitting packets of data across networks, for example, timers may be used to
make sure that data is not lost in transit. Packets can be given deadlines, so that if they have not
reached their destination by a certain time, they will be retransmitted.

Timers may also aid system processing by, for example, rescheduling processes or providing
deadline violation detection.

The same mechanism for timer handling is used by applications as by the system.

A timer is a data structure, and is defined in greater detail in the section on data structures later in this
document. When a timer is set, it is linked onto a list of timers. This list is ordered primarily by the
priority of the timer owner process, and secondarily by the expiry time of the timer, as shown in
Diagram 7.

Prio=200
Exp=120

Prio=200
Exp=200

Prio=150
Exp=150

Prio=100
Exp=80

Prio=100
Exp=90

Prio=100
Exp=500

Prio=50
Exp=300

Diagram 7 - Timer List

The Reference Manual for the intentTM Kernel

Page 76

The expiry times shown in Diagram 7 are fictitious, and are used only to show the ordering of timers
on the list.

When a dispatch operation occurs, the list is scanned. Each node is processed until a node is
reached whose priority is lower than the priority of the highest runnable process. Thus, the only nodes
processed are those with priorities greater than or equal to that of the highest priority runnable
process. This prevents a high priority task being stopped while a timer handler executes for a lower
priority process (a case of priority inversion).

This has no effect on the scheduling order of the system or the performance of the lower priority
process. Even if, technically, the effects of a low priority process timeout should occur during a period
when a higher process is running, these effects only become relevant when it is the turn of the lower
priority process to run.

When the sys/kn/timer/set is called to set up the timer, the priority of the timer handler is set to match
that of the owner process. Subsequent changes to the priority levels of the owner process do not
affect the priority at which the timer handler executes. If the timer handler for a process needs to
increase the priority of the process by calling sys/kn/proc/setparams or some similar function,
problems can be avoided by making the relevant alteration to the priority of the process before the
timer is set up, or by using the sys/kn/timer/dset function, which allows the caller to specify the priority
of the timer.

If an application timer handler function is specified by a timer, the value specified in the TT_PARAM
field of the timer structure is passed in to the timer handler. No other parameters are given, and no
return parameters are expected.

Timer handlers can legally call only a restricted set of functions. The handlers do not execute "within"
the context of the process which set them up, and are effectively software interrupt handlers. Timer
handlers will in fact execute with the GP register set to NULL and with interrupts off, in the same
fashion as interrupt handlers. A timer handler should return in the same way as a normal function.

See the account of interrupt handlers, in the documentation on the Platform Isolation Interface, for
information about the system functions and macros available for use by interrupt/timer handlers.

8.1.1 Set up a timer, using the priority of the calling process - sys/kn/timer/set
This function sets up a timer with the same priority as that of the calling process, using parameters
given in the specified timer structure. When the structure is passed to this function, all fields but those
containing the link node and the priority should already be complete. The structure should not be
modified, re-used or freed by application code until the timer is unset, or until the timer permanently
expires (this last may only occur in the case of a monoshot timer).

The timer set up in this fashion may be either monoshot or periodic, and may specify relative or
absolute times. All times are specified in nanoseconds, though the system granularity may not be this
fine.

This function cannot be called from within a timer handler. To do this, one should use
sys/kn/timer/dset.

The Reference Manual for the intentTM Kernel

Page 77

8.1.2 Set up a timer, using the priority specified in the timer data structure -
sys/kn/timer/dset

This function sets a timer, using the parameters given in the specified timer structure. Unlike the
sys/kn/timer/set, this function does not give the timer the priority of the calling process. Instead, the
timer priority is specified in the structure.

When the structure is passed to this function, all fields but the link node should already be complete.
The structure should not be modified, re-used or freed by application code until the timer is unset, or
until the timer permanently expires (this last may only occur in the case of a monoshot timer).

The timer set up in this fashion may be either monoshot or periodic, and may specify relative or
absolute times. All times are specified in nanoseconds, though the system granularity may not be this
fine. This function can be called from within a timer handler.

8.1.3 Unset timer - sys/kn/timer/unset
This function removes the specified timer from the system timer list. The input pointer must indicate a
valid timer data structure. If it is not, the results are undefined. It is not necessary for the application to
ensure that the timer is running at the time of the call, however the application must ensure that the
structure is currently in use as a timer.

8.1.4 Unsets periodic timer from within its own handler -
sys/kn/timer/handler_unset

This function removes the specified periodic timer from the system timer list. The function is passed a
pointer, which must point to the correct timer data structure, otherwise the results are undefined. No
output parameters are returned. The function should only be called from within the handler of the
timer which is to be removed.

The Reference Manual for the intentTM Kernel

Page 78

9. Interrupt Handling

intent interrupt handlers may be written in VP, native code or a high level language. Most are now
written in VP. intent provides support for deterministic handling of interrupts; this is handled
exclusively by the Platform Isolation Interface (PII).

The functions devoted to interrupt handler management are listed below.

• Set up an interrupt handler - sys/pii/setint
• Remove an interrupt handler - sys/pii/unsetint
• Disable all interrupts - sys/pii/int_off
• Enable all interrupts - sys/pii/int_on
• Disable specified interrupt - sys/pii/int_dis
• Enable specified interrupt - sys/pii/int_en
• Restore previous interrupt state - sys/pii/int_restore
• Set up a scheduling flag from within an interrupt handler - sys/pii/sched_op

These are described in greater detail in the documentation devoted to the PII.

9.1 Restrictions on Inter rupt Handlers
The behaviour of interrupt handler functions is subject to strict restrictions. If these restrictions are not
observed, the results may be unpredictable. These restrictions apply to areas such as stack usage
and memory usage, the responsibility for which lies with the PII, and to certain parts of the kernel.

• Memory Usage
All memory accessed by an interrupt handler must be locked using sys/kn/mem/lock. This applies
to both code and data memory.

• Code Usage
The set of system functions which may be called from an interrupt handler is very limited. User
functions may be callable, so long as they adhere to the rules set down for interrupt handlers
regarding Stack, Memory and Code Usage. The system functions available are:

• sys/kn/int/event/alter
• sys/kn/int/event/alter_fn
• sys/kn/int/evf/set
• sys/kn/int/mbox/send
• sys/kn/int/proc/wake
• sys/kn/int/proc/suspend
• sys/kn/int/proc/terminate
• sys/kn/int/proc/setparams
• sys/kn/int/proc/getparams
• sys/kn/int/proc/resume
• sys/kn/int/reslock/unblock
• sys/kn/int/reslock/unblockall
• sys/kn/int/sem/post
• sys/kn/int/sig/kill
• sys/kn/callback/set

The Reference Manual for the intentTM Kernel

Page 79

These tools have the same interfaces as those of the corresponding tools without the "/int" in their
names, and documentation can be found in the relevant sections. It should be noted that these
tools cannot be called from a normal process context.

Programmers should also be aware that within an interrupt handler the global pointer will always be
set to 0. Thus if the tools called rely on accessing the global pointer this must be done in a different
way.

The Reference Manual for the intentTM Kernel

Page 80

10. Exception Handling

The Elate kernel provides facilities which enable a process to catch and handle processor exceptions
using Third Level Exception Handlers (TLEHs). The mechanism described here applies to processor
exceptions. These are typically exceptions generated by the CPU, although a processor exception
can be generated by software. A processor exception is distinct from software exceptions thrown by
applications using lib/throw.

When an exception occurs, the First Level Exception Handler (FLEH) pushes the exception details
onto the stack in the form of an EXC structure, then invokes the kernel's Second Level Exception
Handler (SLEH). This SLEH then proceeds to call a number of TLEHs in sequence, until the exception
has been successfully processed. Once the exception has been handled by a TLEH, the SLEH
ceases to call TLEHs.

The FLEH is part of the Platform Isolation Interface (PII), and the SLEH is part of the kernel. TLEHs
are written at an application level, using functionality provided by the kernel.

TLEHs may be divided into System and Process TLEHs, or into Debugger and non-Debugger TLEHs.
A Debugger TLEH is registered by the debugger. There can be at most one System Debugger TLEH
in the system, and at most one Process Debugger TLEH per process. All TLEHs share the same
calling convention.

In the event of an exception, the kernel SLEH will first call the System Debugger TLEH, if such exists.
The non-Debugger System TLEHs are then called one by one. If a Process Debugger TLEH exists for
the relevant process, then this is called next. The non-Debugger Process TLEHs are then called in
sequence. If the exception is still unprocessed, the Process Debugger TLEH, if any, is called again.
Finally, if a System Debugger TLEH exists within the system, it is called once more.

Each TLEH can handle one or more intent exceptions. An intent process may add further Process
TLEHs to its own list of TLEHs. The new handler's place in the list depends upon whether it is
'dynamic' or 'static.'

A dynamic Process TLEH may be considered 'temporary.' It is for the duration of a particular piece of
code, such as a tool or library call. If multiple dynamic TLEHs are set they must be unset in the
opposite order to the order in which they were set (ie. LIFO). The memory used to store the
corresponding list entry is allocated from the stack, so that the kernel can detect and tidy up
appropriately if an asynchronous transfer of control (such as a software exception, longjmp call or a
direct call to sys/kn/tool/setspngo) bypasses the normal return path and jumps directly to a higher
stack level. This allocation must be done by the code which installs the dynamic exception handler.
New handlers of this sort are placed at the head of the list.

Static Process TLEHs are installed for the life of the process, and may be considered permanent.
sys/kn/memallocdef is used to allocate the memory needed for the TLEH list entry. A new static
handler will be positioned in the list after the dynamic entries, but before the other static entries. Thus
the latest static entry will be the first static handler to be invoked when an exception occurs.

The list of Process TLEHs, therefore, is structured as shown below. The numbers in Diagram 8
indicate the order in which the handlers of each type were installed.

The Reference Manual for the intentTM Kernel

Page 81

Dynamic
handler

x

Dynamic
handler

2

Dynamic
handler

1

Static
handler

y

Static
handler

2

Static
handler

1

Head of
list

Diagram 8 – List of Process TLEHs

A TLEH may modify the fields of the EXC structure. The EXC structure is set up by the FLEH in the
case of hardware exceptions, or by the sys/kn/exc/throw tool in the case of software exceptions. The
structure is then placed on the stack. This takes place before the SLEH is invoked.

A TLEH may, for example, be used to manipulate the EXC_PC field so that, when the FLEH finishes,
execution will resume from the new location to which the program counter has been set.

TLEHs operate in an Exception Context under the following restrictions:

• A TLEH may not perform a long-jump, or call any tool that performs a long-jump. This restriction
prevents TLEH records remaining on the list after the code for the TLEH has been unloaded.
Instead, the Program Counter in the EXC structure is altered to point to the destination of the
long-jump. EXC_SP should be set to the correct stack position for the destination. The first
instruction after the jump should be a 'sync'. The SLEH performs the longjump via a call to
sys/kn/tool/setspngo, which removes dynamic exception handlers from the stack as they are
passed over.

• A TLEH may not remove itself from the list of handlers.

• TLEHs may not call any other tools.

• When a TLEH returns, it must return a code indicating the action the SLEH should take next (see
the description of process_exc_handler).

10.1 Exception Numbers
This table lists the numbers of the intent exceptions for which a TLEH can register.

intent Exception Number (Hex) and meaning Signal sent to the process by Kernel SLEH if the
exception is not handled

0: Integer divide by zero SIGKILL
1: Single step SIGKILL
2: Breakpoint SIGKILL
3: Invalid OpCode SIGILL
4: No coprocessor available SIGFPE
5: Double fault SIGKILL
6: Stack exception SIGSTACK
7: General protection error SIGSEGV
8: Memory fault SIGKILL
9: Data type misalignment SIGKILL
A: Invalid class method SIGKILL
FFF: General fault (catch-all for remaining SIGKILL

The Reference Manual for the intentTM Kernel

Page 82

documented exceptions)
1000 - 1FFF: (Platform dependent exceptions) SIGKILL
FFFF: Unidentifiable exception (catch-all for
undocumented exceptions)

SIGKILL

Exception FFFF is a catch-all for exceptions that are not catered for because they are not
documented. All exception numbers not documented in the above ranges are reserved.

10.2 The Process/Debugger third level exception handler
The interface for a TLEH is described below.

10.2.1 Enables a process to throw a software exception -
process_exception_handler

This describes a TLEH which is provided to sys/kn/exc/set, sys/kn/exc/setsys or sys/kn/exc/setdbg in
order to catch processor exceptions. The name process_exception_handler is a placeholder for
whatever name the programmer chooses.

The first of the parameters passed as an input to this function contains the exception details. The
second is the data pointer passed to sys/kn/exc/set.

The status code returned must contain one of the following values.

• EXC_HANDLED
This indicates that the exception has been handled, and that the SLEH should return to the FLEH
to resume execution. The TLEH may have modified some of the values in EXC on the stack, in
which case these changes must be propagated down to the FLEH. If EXC_PC has been modified,
however, the TLEH will return EXC_HANDLED_LONGJUMP rather than EXC_HANDLED.

• EXC_HANDLED_LONGJUMP_VP
This indicates that the exception has been handled and that the TLEH has modified EXC_PC to
effect a long-jump, which will typically be carried out by at the FLEH level. (It may also alter other
fields of the EXC structure.) The jump will be carried out indirectly, through the use of
sys/kn/tool/setspngo by the kernel SLEH. Before the jump, control is passed back to the FLEH,
with the EXC_PC field set to the jump routine within the SLEH.

• EXC_HANDLED_LONGJUMP
This is similar to EXC_HANDLED_LONGJUMP_VP, except that the jump is not handled
indirectly. This has certain disadvantages, since in this case sys/kn/tool/setspngo will not tidy up
the virtual calls and dynamic exception handlers. The advantage of this variant is that the
processor's native registers are not corrupted.

• EXC_NOT_HANDLED
This indicates that the exception has not been handled, and that the SLEH should invoke the next
TLEH on the list. If there are no more TLEHs on the list, the SLEH takes the default action. This
entails calling the debugger, if one has registered, or calling sys/kn/sig/kill with an appropriate
signal to the offending intent process. (A list of signals appropriate to each exception is given in
the table in the section on "Exception Numbers." No exception details will be available to the
signal handler.) This normally results in termination of that intent process.

• EXC_KILL_PROCESS
This indicates that the process must be killed immediately, without invoking any more TLEHs on
the list.

The Reference Manual for the intentTM Kernel

Page 83

10.3 Exception handling functions
 The kernel contains a number of functions which allow processes to register and deregister TLEHs.

10.3.1 Register a process's exception handler with the kernel - sys/kn/exc/set
This function enables a process to register an exception handler. This handler is added to the list of
non-debugger Process TLEHs for that process. If a dynamic handler is being registered, the memory
for the TLEH list node should be allocated from the stack.

The function returns two values. The first is a token which can be passed to sys/kn/exc/unset when
the process no longer wishes to deregister the handler. The second is either an error value, or 0 if the
function has completed successfully. It should be noted that since this tool returns two values, if it is
called from C it will be necessary to use the multiple return registers facility of the Elate C compiler.

10.3.2 Deregister a process's exception handler with the kernel -
sys/kn/exc/unset

This function enables a process to deregister an exception handler which was earlier registered by
sys/kn/exc/set. Thus a specific non-debugger Process TLEH is removed from the list.

This function takes as a parameter a token which should be a value returned from sys/kn/exc/set. It
returns either an error code, or 0 if the function has completed successfully.

10.3.3 Register a system-wide exception handler with the kernel -
sys/kn/exc/setsys

This function is used to register an non-debugger exception handler, which applies to the whole
system as opposed to just a single process.

The function returns two values. The first is a token which can be passed to sys/kn/exc/unsetsys
when the process no longer wishes to deregister the handler. The second is either an error value, or 0
if the function has completed successfully. It should be noted that, since this tool returns two values, if
it is called from C it will be necessary to use the multiple return registers facility of the Elate C
compiler.

10.3.4 Deregister a system-w ide exception handler with the kernel -
sys/kn/exc/unsetsys

This function is used to deregister a system-wide non-debugger exception handler registered by
sys/kn/exc/setsys.

10.3.5 Register a debugger's exception handler with the kernel -
sys/kn/exc/setdbg

This function enables a debugger to register an exception handler. Only one debugger TLEH can be
registered. Attempts to register further debugger TLEH's will result in an error code being returned.

The function takes three pointer parameters. The first points to the exception handler. The second
provides a pointer to be passed to the exception handler when an exception occurs. The third pointer
parameter indicates whether the debugger is to be registered at process-level or system-level.

The function returns two values. The first is a token which can be passed to sys/kn/exc/unsetdbg
when the process no longer wishes to deregister the handler. The second is either an error value, or 0
if the function has completed successfully. It should be noted that, since this tool returns two values, if

The Reference Manual for the intentTM Kernel

Page 84

it is called from C it will be necessary to use the multiple return registers facility of the Elate C
compiler.

10.3.6 Deregister a debugger 's exception handler with the kernel -
sys/kn/exc/unsetdbg

This function enables a debugger to deregister an exception handler.

The value passed in to the function should be a token returned by sys/kn/exc/setdbg.

10.3.7 Throw a software exception - sys/kn/exc/throw
This function enables a process to throw a software exception.

The Reference Manual for the intentTM Kernel

Page 85

11. Signals

A signal is a notification of a specific event, sent by the kernel to a process. A range of different
signals may be sent, including some with user-defined meanings. Each signal indicates the
occurrence of a different event, and is associated with a different signal number. This number may be
used to distinguish between the different signals, and is the only information carried by the signal.

A process possesses a different handler for each signal, and can specify actions to be performed
when each signal occurs. Each signal has a default action. Details of these can be found listed below.

When the event that causes a signal occurs, that signal is said to be "generated" or “raised.” When an
appropriate action is taken as a consequence of a signal reaching the process, the signal is said to be
"delivered."

The intent signal mechanism has full functional compatibility with POSIX.1 signals, although the
interface to the intent kernel signal function has slightly different return parameters, in order to comply
with the intent kernel standard. (In intent, error values are returned in a register to indicate an error. In
POSIX, -1 is usually returned, and the global variable error values set, to indicate an error.) The
precise POSIX interface can easily be provided as a higher level library layer. POSIX.4 extensions to
signals are not supported.

The following signals are defined for intent:

Symbolic Name Default Action Description
SIGNULL None Null signal, can never actually be raised
SIGABRT Terminate Abnormal termination signal
SIGALRM Terminate Alarm signal (a POSIX alarm has been triggered)
SIGFPE Terminate Arithmetic error signal
SIGHUP Terminate Hangup of controlling terminal
SIGILL Terminate Invalid instruction
SIGINT Terminate Interactive attention signal
SIGKILL Terminate Termination signal (this cannot be caught or ignored)
SIGPIPE Terminate Write on a pipe with no readers
SIGQUIT Terminate Interactive termination signal
SIGSEGV Terminate Invalid memory reference detected
SIGTERM Terminate Termination signal
SIGCHLD Ignore Child process terminated
SIGUSR1 Terminate Application-defined signal 1
SIGUSR2 Terminate Application-defined signal 2
SIGUSR3 Terminate Application-defined signal 3
SIGTOOL Terminate Virtual tool call failed to open destination tool
SIGRES Ignore Priority inversion detected
SIGDLINE Ignore Deadline violation detected
SIGCONT Continue process Job-control continue signal
SIGSTOP Pause process Job-control stop signal
SIGTSTP Pause process Job-control interactive stop signal
SIGTTIN Pause process Job-control signal - background process attempted to read

from input
SIGTTOU Pause process Job-control signal - background process attempted to write

to output

The Reference Manual for the intentTM Kernel

Page 86

SIGCHLD behaves in a manner different to the other signals. Although this signal is ignored if its
handler is set to SIG_DFL (i.e. carry out default behaviour), the child process will be automatically
reaped (see sys/kn/proc/wait) if the handler is set to SIG_IGN (i.e. ignore signal). This feature
provides compatibility with common UNIX systems.

When one of the signals SIGSTOP, SIGTSTP, SIGTTIN or SIGTTOU is generated, any pending
SIGCONT signals are discarded. Delivery of these signals causes the target process to stop until a
SIGCONT is received. While a process is stopped due to a job-control signal, only SIGCONT and
SIGKILL signals will be delivered to the process. When one of the stop signals is delivered to a
process, the parent of the target process is sent a SIGCHLD signal.

The generation of a SIGCONT signal causes any pending stop signals to be discarded. It also causes
a stopped process to continue even if it is blocked. However in these cases the signal handler, if any,
will not be processed until the signal is unblocked.

11.1 Generating Signals
A signal is said to be "generated" or "raised" when the event which causes the signal occurs. Events
that might cause a signal to be sent to a process can be generally categorised as follows:

• Hardware exceptions
These include illegal instruction exceptions, invalid memory reference exceptions, arithmetic
exceptions, etc.

• Abnormal software conditions
These include writing to a pipe with no readers, termination of a child process, attempts to virtually
call tools which do not exist, etc.

• User-initiated events
These include the user pressing control-C or control-Y at the keyboard (currently not supported),
running the kill program, etc.

• Program-initiated events
These include the expiration of an alarm, inter-process communication using one of the SIGUSRn
signals, etc.

11.2 Signal Actions
Each process has a set action with which to respond to each signal defined by the system. An
application may individually set the action for each signal supported by the system. There are three
possible actions for a signal.

• SIG_DFL
The process may perform the default action for this signal. These actions are described in the
table above.

• SIG_IGN
The process may ignore the signal. If this action is taken, the process is unaffected by the delivery
of the signal. This action cannot be specified as a response to the SIGKILL signal. If it is set as a
response to a SIGSEGV, SIGILL or SIGFPE which was not generated by a call to sys/kn/sig/kill,
the behaviour of the process is undefined. If the termination of a child process causes the
generation of SIGCHLD, and this signal is subsequently ignored, the child process shall be
automatically deleted.

• Pointer to signal handling function
On delivery of the signal, the receiving process may execute the user-defined signal handler
indicated by a pointer. After execution of the signal handler, the process continues from the point
at which it was interrupted. The signal handler is a function which takes a single integer parameter
specifying the signal number, and which returns nothing.

The Reference Manual for the intentTM Kernel

Page 87

A signal handling function may not be set as the response to a SIGKILL signal. If a process
returns normally from a signal handling function for a SIGSEGV, SIGILL or SIGFPE which was not
generated by a call to sys/kn/sig/kill, the ensuing behaviour of a process is undefined.

Instead of returning normally, a signal handling function may use the longjmp function to jump to a
state recorded earlier using the setjmp function.

11.3 Delivering a Signal t o a Process
A signal is said to be "delivered" to a process when the process's set response to that particular signal
is enacted. It is at this point, rather than at the time of generation, that the action to be taken in
response to a signal is determined. If the set action is changed during the period between generation
and delivery, the revised action will be taken when the signal is delivered.

During the period between a signal's generation and its delivery, it is said to be "pending." Normally
this period cannot be detected by the application, as the signal is usually delivered as soon as the
process becomes runnable. A signal may be suspended in the pending state for an indefinite period,
however, if the signal mask of the receiving process is adjusted. A signal mask exists for each
process, and defines the set of signals that are currently blocked, and cannot be delivered to the
process. The SIGKILL signal, however, cannot be blocked in this manner.

If a signal is blocked when it is generated, it remains pending until it is unblocked. If the action for a
signal is set to ignore, the signal remains pending until it is unblocked and can be delivered, at which
point it is ignored. This behaviour is unspecified by POSIX.

A signal will not be generated again for a process that already has that same signal pending. This
behaviour is unspecified by POSIX.

When numerous signals are pending for a process, the signal with the lowest number is placed first in
the queue. This is unspecified by POSIX.

11.4 Disabling Signal Del ivery
Many POSIX compliant systems use the concept of a process existing in a "system-state" or a "user-
state." Signals are usually only delivered while a process is executing in the "user-state." This
provides protection from signal delivery while sensitive operations such as I/O or manipulation of
system data structures are being performed.

Although intent uses no concept of a "system-state" or "user-state," it provides the same sort of
protection through a mechanism that makes it possible to "switch off" signal delivery to a process.
This does not affect its signal mask, or any pending signals. Most critical regions in the system are
protected by mutexes, which provide the MTX_SIGMASK flag. If this flag is set, signals will be
switched off automatically by the mutex code when a process becomes the owner of the mutex.
Signals are re-enabled when the process unlocks the mutex.

This removes the danger that, during the execution of critical sections of code, the death of a process
due to an uncaught signal may compromise the consistency of the data structures, or that the process
may longjmp out of a signal handler to a code outside the critical section. If the MTX_SIGMASK flag is
used, the critical section is guaranteed to complete before any signal can be delivered which might
have these effects.

In most cases signal masks will be sufficient, and applications will not need to use this functionality. It
is documented here mainly for the benefit of the authors of device-drivers, and other pieces of code
which would conventionally exist in the "system-state."

The Reference Manual for the intentTM Kernel

Page 88

11.5 Signal Functions

11.5.1 Send a signal to a process- sys/kn/sig/kill
This function generates the specified signal for the relevant target process. The signal number
specified should be one of the signals listed in the table above.

If the signal specified is SIGNULL (zero), error checking is being performed to make sure that it would
be possible for the calling process to send a signal to the target process, but no signal is sent. The
null signal can be used to check the validity of the specified process ID.

If the specified process ID refers to the calling process, and if the specified signal is not blocked for
the calling process, the signal is handled before sys/kn/sig/kill returns.

11.5.2 Examine or change signal action - sys/kn/sig/action
This function allows the calling process to examine and/or modify its signal handling actions. The
function takes three parameters, an integer and two pointer parameters. The integer argument
specifies the signal to which the response should be investigated or altered.

If the first pointer is non-NULL, it points to a sigaction data structure specifying the new action to be
set for the specified signal. Otherwise, the action for the specified signal is not modified by this call.

If the second pointer is non-NULL, the action associated with the specified signal at the time of the
call is stored into the structure to which it points.

The sigaction data structure is defined as follows:

Name Description
 SA_HANDLER SIG_DFL, SIG_IGN or a pointer to a function
 SA_MASK Additional set of signals to be blocked during execution of signal handler function
 SA_FLAGS Flags affecting behaviour of signal

The valid flags in the SA_FLAGS field of the structure are:

• SA_NOMASK
This indicates that the signal is not blocked by the mask, and does not prevent the signal from
being delivered while within its own handler.

• SA_ONESHOT
This restores the signal action to SIG_DFL after the signal handler has been called. The default
behaviour is for the signal action to remain the same after a signal handler executes.

11.5.3 Examine or change blocked signals - sys/kn/sig/procmask
This function allows the calling process to examine and/or modify its signal mask, thus altering the set
of signals that are blocked from delivery. Sets of signals are expressed within sigset_t structures,
which are 32 bit integers in which each signal supported by Elate is represented by one bit. The value
of each bit indicates whether the associated signal is a member of the group.

The function takes an integer and two pointers as parameters, which specify the action to be
performed, as described below.

The value of the integer parameter specifies the operation to be performed on the current set of
blocked signals, as follows:

The Reference Manual for the intentTM Kernel

Page 89

• SIG_BLOCK
The new set of blocked signals is the union of the current set and the set specified by the set
parameter.

• SIG_UNBLOCK
The new set of blocked signals is the intersection of the current set and the complement of the set
specified by the set parameter.

• SIG_SETMASK
The new set of blocked signals is the set specified by the set parameter.

If the first pointer is non-NULL, it points to a sigset_t structure. The current signal mask is a sigset_t
structure. The new sigset_structure indicated is used to alter the old in a fashion specified by the how
parameter. If the pointer is NULL, the set of blocked signals is not modified by this call.

If the second pointer is non-NULL, the condition of the signal mask at the time of the call is stored into
the sigset_t structure to which it points.

If any pending signals become unblocked by the call to sys/kn/sig/procmask, these signals shall be
delivered before the call returns.

11.5.4 Examine pending signals - sys/kn/sig/pending
This function examines the set of signals which are blocked from delivery and are pending for the
current process. It stores this set into a specified empty sigset_t structure. This function will only
detect signals that are blocked, either by the signal mask or through disabling of signals. Unblocked
signals will always be delivered before it can be called.

11.5.5 Return set of signals which have been raised but not yet taken -
sys/kn/sig/raised

This function returns the set of signals which have been raised but have not yet been taken by the
calling process. This function will only return a non-zero value if signals have been disabled using the
sys/kn/sig/setflag function.Otherwise, the signals will have been taken immediately upon delivery.

The set of signals returned by this function includes no signals that are blocked using the process's
signal mask. While signals are disabled, the operation of the process may only be affected by signals
that have not been blocked in this manner.

11.5.6 Wait for a signal - sys /kn/sig/suspend
This function replaces the signal mask of the calling process with the specified signal set. The calling
process is suspended until the delivery of a signal causes it either to execute a user-specified signal
handling function, or to be terminated.

If the process is terminated, this call never returns. If the action is to call a signal handler, this call
returns after the signal handler returns, with the signal mask reset to its value before this call.

Since this function suspends the calling process indefinitely, there is no successful completion value.
-1 is always returned.

11.5.7 Disable or enable signal handling - sys/kn/sig/setflag
This function allows the caller to disable the intent signal mechanism for the calling process. This is
usually a temporary measure adopted during critical sections of code where the occurrence of

The Reference Manual for the intentTM Kernel

Page 90

unpredictable actions such as process termination, or longjmping from a signal handler, could leave
system data structures in an inconsistent state, and cause a system crash.

The flag values are:

0: Enable signals
1: Disable signals

Usually, the previous state of the signal flag is restored at the end of a critical section, rather than
simply using the value 0. This allows for nesting of these operations, without unpredictable effects.

This function should not be called to enable signals when interrupts are off, as this may cause
unpredictable behaviour.

11.5.8 Sets handler for specif ied signal - sys/kn/sig/signal
This function is used to set the handler for a particular signal. The function is passed a pointer to the
handler, which must point to one of SIG_DFL, SIG_IGN, or to a user-defined handler.

SIG_DFL causes the default action to be performed, SIG_IGN the signal to be ignored. If a user-
defined handler is supplied, then on delivery of the signal the receiving process may execute the
handler. After execution of the signal handler, the process continues from the point at which it was
interrupted. See the earlier section on “Signal Actions” for more details, and for information on special
cases.

It is possible to use the same signal handler for several signals.

11.6 Signal set functions
These functions manipulate sets of signals. A set of signals is expressed within a sigset_t structure, a
block of memory of size SIG_SIZE. An empty set contains no signals, a full set contains all signals,
and a partial set contains one or more, but not all.

11.6.1 Creates an empty set - sys/kn/sig/emptyset
The sys/kn/sig/emptyset function initialises the specified signal set structure in such manner that no
signals supported by the intent system are members of the set.

11.6.2 Creates a full set - sys /kn/sig/fillset
The sys/kn/sig/fillset function initialises the signal set indicated by its argument set in such manner
that all signals supported by the intent system are members of the set.

Applications should call either sys/kn/sig/emptyset or sys/kn/sig/fillset at least once for each data
structure of type sigset_t prior to its use as a parameter to any other signal function. If this is not done,
the results are undefined.

11.6.3 Adds a signal to a set - sys/kn/sig/addset
 The sys/kn/sig/addset function adds the signal with the specified number to the specified signal set.

11.6.4 Delete a signal from the set - sys/kn/sig/delset
The sys/kn/sig/delset function deletes the signal with the specified number from the specified signal
set.

The Reference Manual for the intentTM Kernel

Page 91

11.6.5 Tests set to see if signal is a member - sys/kn/sig/ismember
 The sys/kn/sig/ismember function tests whether the indicated signal is a member of the specified set.

11.6.6 Modifies the set of pending signals - sys/kn/sig/setpending
This function allows the caller to modify the set of signals which are currently pending for the calling
process. The new set is specified by the sigset_t passed in as the first parameter. If the second
parameter is non-NULL, it should point to a sigset_t structure, which is filled with the previous set of
pending signals.

This function takes no account of whether the specified signals are blocked. It is possible to set the
pending mask to include signals which are blocked or non-blocked, and the returned signal mask will
contain both blocked and non-blocked signals. If the set is changed to include a signal which is not
blocked, the signal(s) will be taken immediately, unless signal handling has been disabled using
sys/kn/sig/setflag.

This facility is most commonly used by device drivers that need to remove a signal temporarily from
the pending signal set, in order to complete their operations. This allows the device drivers to block on
calls to sys/kn/proc/sleep without returning immediately due to having signals pending. The signals
are usually added back to the pending signal set before the device driver re-enables signals.

11.6.7 Modifies the set of pending signals - sys/kn/sig/orpending
This function allows the caller to modify the set of signals which are currently pending for the calling
process. The new set is set to the union of a specified sigset_t structure, and the current set of
pending signals. If the second parameter is non-NULL, it is assumed to point to a sigset_t structure
and filled with the previous set of pending signals.

This function takes no account of whether the specified signals are blocked. It is possible to set the
pending mask to include signals which are blocked or non-blocked, and the returned signal mask will
contain both blocked and non-blocked signals. If the set of pending signals is changed to include a
signal which is not blocked, the signal will be taken immediately (unless signal handling is disabled
using sys/kn/sig/setflag).

This facility is most commonly used by device drivers to restore a pending signal which has previously
been removed.

The Reference Manual for the intentTM Kernel

Page 92

12. Event Tools

Many programs commonly require that some event takes place as part of a process, for which other
processes need to wait. For example, processes might need to wait for a shared resource to be
available, or for the results of a computation.

Sometimes many processes may need to wait simultaneously for a single event. When the event
occurs, one, many or all of the waiting processes may be able to unblock. Sometimes a process may
wish to wait for a certain pattern of events to have occurred. The events in question may be
permanent, in the sense that they are associated with some sort of state change, or they may be
temporary. All of these possibilities and many more are covered by the kernel event tools.

The event tools use a system of 'event trackers,' upon which processes can wait for an event to occur
or for a certain state to be reached. Each event tracker holds 32 bits of internal state the semantics of
which can vary. For example, it might be used as a 32-bit integer counter, or as a set of 32 boolean
flags or even as the "p2i" value of a pointer, which could point to a block of memory whose contents
are to be used as the state.

A process may alter the state of an event tracker. If any processes which are waiting are satisfied as a
result, they consequently unblock. It should be noted that only calls to the alteration functions
sys/kn/event/alter and sys/kn/event/alter_fn can unblock a waiting process. Other changes to the state
of the event tracker will not result in unblocking.

Waiting processes which are unblocked by an alteration to the state of the event tracker may adjust
the state of the tracker themselves as part of exiting the wait. For example, a process which had been
waiting on a semaphore would decrement the semaphore's count when unblocked.

The event tools do not have a built in priority inversion prevention mechanism, such as that provided
by mutexes.

The event tools switch off interrupts as a mechanism for preventing simultaneous modification of the
event tracker state by two or more processes. When this is done, interrupts are restored afterwards to
their state on entry to the tool.

12.1.1 Initialises an event tracker - sys/kn/event/init
This tool initialises an event tracker structure.

The tool is passed a pointer to the event tracker structure to be initialised. This should be a block of
memory ETOOLS_SIZE bytes in length or sizeof(ELATE_ETOOLS) if using C).

Another pointer points to the default ‘state change function,’ which is designed to transform the event
tracker state. The default state change function for a semaphore, for example, would simply increment
the input state. There is no restriction on the use of the data value used by a state change function,
which is simply an integer chosen by the caller. It should be noted that a state change function may
not switch interrupts on at any point since it may be called within an interrupt handler routine.

Another pointer indicates a different state change function, the ‘reset’ function. This is designed to be
called after state alteration. The ‘reset’ function is called by the sys/kn/event/alter tool after all
appropriate unblocking of waiting processes has taken place. For example, if a particular event were
only relevant at the time of the call then the ‘reset’ function might ignore its input state and return 0.

The Reference Manual for the intentTM Kernel

Page 93

A fourth pointer points to the default ‘state checking function‘ for this event tracker. A state checking
function is used to decide whether to unblock a process waiting on an event handler, based on the
state of the handler and a value passed in. The checking function should return 0 if the check passes,
indicating that unblocking should take place. Otherwise it should return an error code which indicates
why it cannot unblock, typically EBUSY to signify a busy resource. The state checking function returns
one other parameter, which specifies the new state of the event tracker. Like a state change function,
a state checking function may not switch interrupts on at any point since it may be called within an
interrupt handler routine.

Here, the state checking function is called by the various wait tools (sys/kn/event/wait,
sys/kn/event/trywait, sys/kn/event/timedwait, sys/kn/event/wait_fn, sys/kn/event/trywait_fn,
sys/kn/event/timedwait_fn) to test whether it is possible to unblock. For example, the checking
function for a semaphore makes no use of its second parameter and returns 0 if its first parameter is
greater than 0 or EBUSY. If it returns 0, it also decrements the semaphore count. Since the state
checking function returns two parameters, it is therefore it is necessary to use the multiple return
registers facility if programming in C.

It should be noted that, since these the default state change function, the reset function and the
default state checking function are called with interrupts off, they must perform only brief computations
to avoid affecting system performance.

The tool is also passed a flags parameter, which controls the order in which blocked processes are
unblocked. Currently only the least significant bit is used:

• Bit 0 clear - ETOOLS_FIFO : Specifies that when processes block waiting for an event, they
should be unblocked in a first-in-first-out order.

• Bit 0 set - ETOOLS_PRIO : Specifies that when processes block waiting for the event, they
should be unblocked in a highest priority first order. If multiple processes of the same priority are
blocked on the same Event tracker, they are unblocked in a first-in-first-out order.

The last parameter passed to the tool specifies the initial state of the event tracker.

12.1.2 Destroys an event tracker - sys/kn/event/destroy
This function is used to destroy the specified event tracker. Only an event tracker which was initialised
using sys/kn/event/init may be destroyed using this function.

The effect of subsequent use of the specified event tracker is undefined, unless it has been re-
initialised by another call to sys/kn/event/init.

Destroying an event tracker that has processes waiting on it has the effect of unblocking all of those
processes and returning the error code EINVAL to them.

12.1.3 Waits on an event tracker (blocking, no timeout) - sys/kn/event/wait
This function checks the state of the specified event tracker. The check is carried out by calling the
default state checking function with which the event tracker was initialised. The calling process blocks
if the checking function does not return success (ie. does not return 0). Unblocking can only occur via
a call to sys/kn/event/alter or sys/kn/event/alter_fn. Note that it is undefined how often the checking
function is called on a blocked wait, so in general the state should not be changed from the input
value unless the check has passed. Although it is not forbidden to change it in other cases, this is
usually undesirable.

The Reference Manual for the intentTM Kernel

Page 94

12.1.4 Waits on an event tracker (non-blocking) - sys/kn/event/trywait
This tool behaves similarly to sys/kn/event/wait except that the checking function is called only once
and if the check fails, the tool simply returns an error (typically EBUSY). This tool never blocks.

12.1.5 Waits on an Event tracker (blocking, with timeout) -
sys/kn/event/timedwait

This tool behaves similarly to sys/kn/event/wait except that after a specified period of time has
expired, the tool ceases to wait and returns ETIMEDOUT.

12.1.6 Alters the state of an event tracker - sys/kn/event/alter
The default state change function associated with the event tracker is called on the event tracker's
current state. This may permit the unblocking of one or more waiting processes. Waiting processes
are considered one by one in order, since the unblocking of each may change the state further. The
order in which the blocked processes are considered is determined by the
ETOOLS_FIFO/ETOOLS_PRIO flag passed to sys/kn/event/init.

An 'interrupt-safe' version of this tool, sys/kn/int/event/alter, is also available. sys/kn/int/event/alter can
safely be called from inside an interrupt. Further details are available in the later section on “Interrupt
Handling.”

12.1.7 Gets the value of an event tracker - sys/kn/event/info
This function returns the value of the specified Event tracker's state.

12.1.8 Waits on an event tracker in a specified way (blocking, no timeout) -
sys/kn/event/wait_fn

This tool behaves identically to sys/kn/event/wait, except that it takes an extra parameter which
affects the operation. This parameter is a pointer which specifies a state checking function to use in
place of that specified at initialisation time. This substitution applies to this call only, and the old
function is not permanently replaced.

12.1.9 Waits on an event tracker in a specified way (non-blocking) -
sys/kn/event/trywait_fn

This tool behaves identically to sys/kn/event/trywait except that it takes an extra parameter which
affects the operation. This parameter is a pointer which specifies a state checking function to use in
place of that specified at initialisation time. This substitution applies to this call only, and the old
function is not permanently replaced.

12.1.10 Waits on an event tracker in a specified way (blocking, with timeout) -
sys/kn/event/timedwait_fn

This tool behaves identically to sys/kn/event/timedwait except that it takes an extra parameter which
affects the operation. This parameter is a pointer which specifies a state checking function to use in
place of that specified at initialisation time. This substitution applies to this call only, and the old
function is not permanently replaced.

The Reference Manual for the intentTM Kernel

Page 95

12.1.11 Alters the state of an event tracker in a specified way -
sys/kn/event/alter_fn

This tool behaves identically to sys/kn/event/alter except that it takes two extra parameters which
affect the operation. The first is a pointer which specifies a state checking function to use in place of
that specified at initialisation time. This substitution applies to this call only, and the old function is not
permanently replaced. The second extra parameter replaces, in a similar fashion, the default state
change function called after all checks for unblocking of processes are complete.

An 'interrupt-safe' version of this tool, sys/kn/int/event/alter_fn, is also available.
sys/kn/int/event/alter_fn can safely be called from inside an interrupt. Further details are available in
the later section on “Interrupt Handling.”

12.1.12 Call a function for each caller waiting on an event tracker -
sys/kn/event/enumerate

This tool calls an ‘enumeration function’ upon the event tracker, once for each blocked call waiting on
the event tracker. The calls are made in an order determined by the order in which the blocked calls
would be considered following a call to sys/kn/event/alter.

The enumeration function returns a parameter which specifies the new state of the event tracker, and
thus each call to an enumeration function may change the state of the event tracker. The enumeration
function can also alter a value parameter, which can be used therefore to count the number of
blocked waits.

A typical use of this tool is to correct the state of the event tracker when a timed wait times out and the
corresponding blocked call is removed from the list. It may at that point be necessary to assess the
remaining blocked calls in order to determine the new state.

The Reference Manual for the intentTM Kernel

Page 96

13. Callback Manipulation Functions
Within intent, a device driver or another piece of code is able to register a function to be called within
the context of a specific process.

Device drivers often use callbacks to notify an application of the completion of I/O operations that
have been executed in an asynchronous fashion. When an application is writing a quantity of data to a
device, it may often be undesirable for the application to wait until this task is complete. If a callback is
set up, the application specifies a function to be called when the task is complete. It is then able to
proceed with other tasks, until the specified function is called. Thus the application is notified that the
task is complete, and that the buffer holding the relevant data may be safely reused.

A callback is defined by a data structure which contains information such as the address of the
function to be called back, the process ID of the process in whose context the callback is to be
executed, and a data pointer to be passed to the callback handler function.

A process requests that a callback function be executed within its context by "setting a callback." To
do this, the process calls the kernel callback manipulation function sys/kn/callback/set (see below).
The data structure that defines the callback function is placed on the relevant process's callback list
so that, the next time the process is idle, a call to the specified callback function will be triggered.

Whereas signals are executed asynchronously with program execution, and therefore may be
delivered at any time that they are not blocked on a mutex or a signal mask, callbacks only execute
under specific circumstances.

Callbacks may be called when a process halts its own execution by calling sys/kn/proc/sleep or
sys/kn/proc/deschedule, unless callback processing has been disabled using sys/kn/callback/setflag.
(It is desirable that the callback should execute while the process is idle, so that it cannot interfere
with the deterministic performance of the process's other activities.) However, it is also possible for
the programmer to make a direct call to sys/kn/callback/process and thus process any outstanding
callbacks without surrendering CPU time. Note that if sys/kn/callback/process is called directly,
callbacks are processed regardless of whether callbacks are nominally enabled or disabled.

If a process with pending callbacks exits, the callbacks will never be taken. It is safe to free any
associated resources, for example memory used for the callback structure, in this case.

Just as signals may be 'switched off' to protect sensitive operations from signal delivery, the execution
of callbacks can be disabled through use of the kernel function sys/kn/callback/setflag. The
processing of callbacks during the execution of some system functions or device drivers can create a
risk of deadlocks or race conditions. If this is the case, callbacks should be disabled throughout the
execution of the function or driver.

13.1 The Callback Data Structure
Callback functions are defined by callback data structures, which are described in greater detail in the
"Data Structure Definitions" section later in this document.

Each structure contains the list node used to link the structure onto the process's callback list, a data
pointer to be passed to the callback function to be called, the address of the callback function, and the
identifier of the process within the context of which the callback is to be executed.

 When a callback is "set" by a process, this structure is placed on the process's callback list.

The Reference Manual for the intentTM Kernel

Page 97

13.2 The Callback Handle r Function
A callback function is in effect a handler for a specific event.

A callback handler function takes as parameters a pointer to the associated callback data structure,
and the value in the CALLBACK_DATA field of this structure. The function has no return values.

The callback handler function executes in the context of the process which was specified in the
CALLBACK_PID field of the callback data structure when sys/kn/callback/set was called.

During a callback, the intent system is in a state similar to that during normal execution. There are no
restrictions upon which functions may be called while a callback handler is executing.

Any system function or device driver which wishes to prevent callbacks from being processed during
its execution to prevent race conditions or deadlocks should use the sys/kn/callback/setflag function to
prevent callbacks being processed.

13.3 Kernel Callback Man ipulation Functions

13.3.1 Set a callback - sys/kn /callback/set
This function sets a callback for the process whose PID is specified in the callback data structure. The
next time the specified process calls sys/kn/proc/sleep or sys/kn/proc/deschedule, if callbacks are
enabled, the relevant callback function will be executed. Callbacks are enabled or disabled depending
upon the status of the callback flags, which are described in greater detail in the account of the
function sys/kn/callback/setflag.

If the target process is currently in the SLEEP state and its callback flags are set to either 0 or 2, it is
woken, and EINTR is returned from sys/kn/proc/sleep. If the target process is in the SLEEP state and
its callback flags are set to 0, the callback is processed immediately in the context of the target
process, before it returns from sys/kn/proc/sleep.

The CALLBACK_DATA, CALLBACK_HANDLER and CALLBACK_PID fields of the data structure
should be filled in by the caller before sys/kn/callback/set is called. From the time that the callback is
set until the callback has either been processed or abandoned, the memory allocated for this structure
must remain reserved for this purpose.

It is the responsibility of the process in whose context the callback is executing to ensure that the
callback structure passed in is freed when it is no longer required. This tends to be a simple to
arrange since this process is usually the same as that which originally allocated the callback structure.

This function may be called from within an interrupt handler or from normal process context.

13.3.2 Unset a callback - sys /kn/callback/unset
This function unsets the specified callback, so that it cannot be processed at a future point. The caller
must ensure that the specified callback has been set and is still waiting to be processed. If the
specified callback is not currently pending, the behaviour is undefined. Once the callback has been
unset, the data structure must be freed if it is no longer required.

13.3.3 Disable/Enable callbacks for the calling process -
sys/kn/callback/setflag

This function enables or disables callback processing for the calling process, depending on the value
of the input flag.

The Reference Manual for the intentTM Kernel

Page 98

If the value of the input flag is 0, callbacks are enabled. In this state, if a callback is pending at the
time that sys/kn/proc/sleep is called, or becomes pending during the sleep, this will cause
sys/kn/proc/sleep to return EINTR, and cause the callback to be taken before the sleep returns. If
sys/kn/proc/deschedule is called, any pending callbacks will be taken immediately.

If the value of the flag is 1, callbacks are completely disabled, and a callback being pending or
becoming pending will not cause sys/kn/proc/sleep to return. Callbacks will not be taken on a call to
sys/kn/proc/deschedule.

If the value of the flag is 2, a callback will cause a call to sys/kn/proc/sleep operation to return EINTR,
but will not cause the callback to be taken. In this flag state, callbacks will not be taken on a call to
sys/kn/proc/deschedule.

13.3.4 Process any pending callbacks - sys/kn/callback/process
This function processes all the current process’ outstanding callbacks. An explicit call to this function
overrides the callback disable flag state, and thus any pending callbacks are processed even if
callbacks are 'disabled.'

13.3.5 Returns the value of the PF_CALLBACK_OCCURRED flag for the calling
process - sys/kn/callback/occurred

The value returned by this function is the current value of the flag PF_CALLBACK_OCCURRED. This
indicates whether a callback has occurred for the calling process since the tool
sys/kn/callback/clr_occurred was last called to clear the flag. A value of 1 indicates that a callback has
occurred, 0 that none has.

It should be noted that sys/kn/proc/sleep implicitly clears this flag. The flag is also modified by
sys/kn/callback/process and sys/kn/callback/clr_occurred.

13.3.6 Clears the PF_CALLB ACK_OCCURRED flag for the calling process -
sys/kn/callback/clr_occurred

This function clears the PF_CALLBACK_OCCURRED flag for the calling process. Subsequent calls to
sys/kn/callback/occurred will return a value indicating that no callbacks have been processed, until a
call (either explicit or implicit) to sys/kn/callback/process processes a pending callback and sets the
flag again.

13.3.7 Indicate whether a cal lback is currently pending for the calling process
- sys/kn/callback/pending

This function returns a value indicating whether any callbacks are pending for the calling process. A
non-zero value indicates one or more callbacks pending, a zero value that there are none.

The Reference Manual for the intentTM Kernel

Page 99

14. Named Data Area Functions

The intent kernel provides the facility for processes to associate data pointers with strings.

A Named Data Area (NDA) can be accessed by an unlimited number of processes running on the
same processor. These processes, which may be of any type, access the NDA by calling the kernel
function sys/kn/atom/find to look up the name string in the NDA table, and return the associated
pointer. Thus it is possible to implement processor-wide data structures that may be shared between
many processes.

14.1.1 Associate the specified pointer with the specified string -
sys/kn/nda/name

This function creates a record of the association between the specified data area pointer and the
given string, and stores the record in a table. Since this record is within the kernel structure, it is
accessible by all processes running on the same processor. Other processes, therefore, can look up
the name, and access the corresponding data area pointer.

If there is already an NDA with the specified name, the data pointer corresponding to that name is
returned. If the function successfully creates a new record, the pointer to the input data area is
returned. Thus, comparing the input and output data pointers provides a means of checking whether
an NDA with the chosen name already existed.

Passing in a NULL data pointer to the function will successfully set up an NDA associated with that
address. However, a subsequent successful attempt to find this NDA name will be indistinguishable
from a failure, since NULL will be returned from sys/kn/nda/find in both cases. It is therefore not
usually advisable to set up an NDA with a NULL pointer.

14.1.2 Delete the NDA record for the specified string - sys/kn/nda/del
This function deletes the NDA record for the specified string if it is found, and returns 0. If the string is
not found, EINVAL is returned. Any subsequent attempt by a process to find the data pointer by using
sys/kn/nda/find will fail.

The sys/kn/nda/del function only removes the relevant string and associated data pointer from the
table in the kernel data area. It does not affect the data area itself. Thus, any process which already
has the data pointer may continue to use it.

It should be noted that the pointer to the NDA data may already be held by one or more processes. If
the data memory corresponding to the NDA is to be freed or reused, the application must first co-
operate with any other processes using the NDA to find some way to ensure that the memory is
unused.

14.1.3 Look up the NDA record for the specified string - sys/kn/nda/find
This function looks up the specified string in the NDA table. If a record containing the specified string
is found, the corresponding data area pointer is returned. If no record is found for the specified string,
NULL is returned.

The Reference Manual for the intentTM Kernel

Page 100

15. Atoms

While a string of characters is more easily recognised and interpreted by the programmer, machines
operate more efficiently and rapidly when working with numbers. It is often useful to represent a string
in a more compact form, while retaining its uniqueness.

For this purpose, intent uses atoms. These are integer values that each uniquely represent a
particular string. The intent kernel provides functions to create, delete and look up atoms. Each
processor in an intent system possesses an atom table, which records the mapping between integers
and the corresponding strings.

The intent kernel stores atoms in different ways, depending upon whether they are created statically
by the Sysgen utility, or dynamically by the kernel itself.

15.1 Atom values
Atom values are 32-bit values, composed of two parts. The most significant 24 bits is a unique
identifier assigned at run-time by the system (or by sysgen, in the case of statically generated atoms).
This value cannot in general be predicted in advance. The least significant 8 bits of the value are
found by adding together the bytes composing the string that the atom represents, and using the
bottom 8 bits of the sum. This is always constant for a given string, and so can be used at assembly
time to implement a simple hash function.

15.2 Static Atoms
Static atoms are stored in a table created by sysgen. The atoms are stored in such a way that both
name to value lookups and value to name lookups can be done using a binary-chop algorithm,
resulting in very high performance. In addition, the textual data for static atoms may be compressed to
save space in the image.

Atoms that are statically generated exist for the lifetime of the system, and may even be placed in
ROM so that they cannot be modified. They are not reference counted, and do not cease to exist
when unused by the system. They require less memory than dynamically generated atoms, and they
may be compressed to a higher level without requiring much run-time overhead.

15.3 Dynamic Atoms
Dynamically generated atoms are stored either in a singly linked list or in an AVL tree, depending on
the configuration of the system. The AVL tree version is considerably faster, but has a higher memory
overhead.

15.4 Atom functions

15.4.1 Return atom value for specified string, create new atom if required -
sys/kn/atom/add

This function searches for an atom representing the specified string. If such an atom is found, the
corresponding atom value is returned. If no such atom is found, it is dynamically created. The
specified string is added to the system's atom table, and the function returns the corresponding atom
value, which may subsequently be used to identify the string. The reference count of the new atom is
initialised to 1.

The Reference Manual for the intentTM Kernel

Page 101

Once created, the reference count of a dynamic atom is incremented by any subsequent calls to
sys/kn/atom/add that specify the same string. The same atom value is returned in these cases. The
atom will continue to exist until its reference count drops to zero. The reference count is decremented
when sys/kn/atom/del is called.

If an error occurs, zero is returned. Zero is not a valid atom value.

15.4.2 Dereference the speci fied atom, delete if unreferenced - sys/kn/atom/del
If the atom specified is a dynamic atom, this function decrements the reference. If the reference count
is decremented to zero, the atom is removed from the atom table. Once this happens, the specified
atom value may no longer be validly used to refer to the previously associated string.

If the same string is added to the atom table again, the atom value returned may be different.

If the specified atom value corresponds to a statically generated atom, no action is taken and success
is returned.

15.4.3 Return the atom value corresponding to the specified string -
sys/kn/atom/find

This function looks up the specified string in the atom table and returns the corresponding atom value.
If there is no atom for the specified string, zero (an invalid atom value) is returned.

The reference count of the atom is not incremented, even if it is successfully found.

15.4.4 Return a copy of the s tring corresponding to the specified atom -
sys/kn/atom/getname

This function looks up the atom specified by the given atom value. If found, the corresponding string is
copied into the buffer provided by the user.

If the buffer pointer specified is NULL, the string is not copied, but the size of the buffer required to
contain the string is returned.

15.4.5 Increment the reference count of an atom - sys/kn/atom/ref
This function looks up the specified atom. If it is found, the reference count is incremented.

The Reference Manual for the intentTM Kernel

Page 102

16. Kernel Notification Functions

intent supports a mechanism which allows applications, device drivers, debuggers and so forth to
subscribe to various system events so as to be notified when they occur.

Notification takes the form of a call to a function registered by the subscriber. This call can take place
through one of a number of mechanisms. For example, it can take place in the context of the process
which registered the subscription, exactly like a callback. Alternatively, the call can occur in the same
context as whatever generated the relevant system event. The mechanism to be used is determined
at subscription time, and may be different for each subscriber.

Two data pointers are passed to the handling function. One of these points to a Notify Data Structure
which stores data about the event as well as information used by the callback mechanism. A
description of this structure may be found later in this document in the section on data structures. The
other pointer indicates data supplied by the subscriber at subscription time. This may contain data of
any sort, since it will only be used by the subscriber's handling function.

It is possible for a process to be subscribed invariably to certain events, if they are a standard part of
the system. However, new events can also be added dynamically. If the event requested by the
subscriber is not a standard system event, this will take place automatically. Subscriptions are
normally made by means of an event ID code, or optionally by means of a name string. The event ID
codes are derived from the names using the kernel atom functions. For more details of these, please
consult the earlier section on atom functions.

Where the notification is to be handled in the subscriber's context, a callback data structure is linked
to the process's callback list as it would with any other callback. Where notification is handled within
the context of the generator, a callback structure is still used to store the subscriber data pointer and
the pointer to the handling function, but is not linked to the generating process's callback list.

16.1 System Events
Certain event names are reserved and correspond to pre-defined system events. The meaning of the
NOTIFY_EVENT_DATA pointer is specific to each event type. This section provides some examples
of likely uses of the notification mechanism.

Event Name Event Data
"KernelEvent_ToolLoad" Pointer to array of tools
"KernelEvent_ToolFlush" Pointer to array of tools
"KernelEvent_ToolAnnul" Pointer to tool
"KernelEvent_AtomAdd" Pointer to atom number
"KernelEvent_AtomDel" Pointer to atom number

16.2 The event handling function
This is the function specified as the event handler by the first parameter to sys/kn/notify/subscribe,
and conforms to the interface described above.

When a request is made for notification of a particular event, a pointer to a handling function is
provided. This handling function is called when the event occurs via one of a number of mechanisms
as selected by the original call to sys/kn/notify/subscribe. Two pointers are passed to it, both of which

The Reference Manual for the intentTM Kernel

Page 103

are provided by the subscriber at subscription time. The NOTIFY_EVENT_DATA field of the Notify
Data Structure is filled in when the event is generated, not by the subscriber.

If the callback is occurring in process context, it is the responsibility of the handler to free the memory
used for the callback structure. The notification mechanism cannot free the memory, as it cannot
guarantee not to do so before the callback has been taken. Furthermore, it cannot be freed by the
callback mechanism, since this behaviour is not desirable for other uses of callbacks.

16.3 Kernel Notification Functions

16.3.1 Announce that an event has taken place - sys/kn/notify/announce
This tool notifies all interested parties, namely those which have previously called
sys/kn/notify/subscribe, that a particular event has been generated. It is the responsibility of the caller,
before calling this tool, to ensure that the correct event data is indicated by the event data pointer.

The event handle passed in to this function should be a value returned by either
sys/kn/notify/generator or sys/kn/notify/generator_name.

16.3.2 Register an interest in being notified when a particular event occurs -
sys/kn/notify/subscribe

This tool allows a process to subscribe to an event using a unique ID code. Thereafter, whenever this
event is announced by means of sys/kn/notify/announce then the specified handling function will be
called. The handling function need not always be a straightforward callback and further mechanisms
may be added in future.

An integer parameter specifies whether the handling function is to be executed within the context of
the process generating the event, or that of the subscriber process. Choice of which context to use
may be dictated by, for example, requirements to access of the global pointer of one or other of the
processes.

Subscribing to a previously unknown event type will cause that event type to be dynamically created.

If subscribing to a callback in process context, it must be remembered that, as with other callbacks,
the callback data structure must be freed when it is no longer required. The data structure is passed
as a parameter to sys/kn/notify/announce, and must be freed by the process in whose context the
callback is being taken.

16.3.3 Register an interest in being notified when a particular named event
occurs - sys/kn/notify/subscribe_name

This tool allows a process to subscribe to an event in a fashion identical to sys/kn/notify/subscribe, but
using a string to refer to the event, rather than an integer acting as an ID code.

The textual name of the event (specified by the string) may be a name previously passed to
sys/kn/notify/generator_name, or may be an unknown event type which will be dynamically generated.
The 'notification mechanism' parameter controls what form the notification will take. This need not
always be a straightforward callback.

Subscribing to a previously unknown event type will cause that event type to be dynamically created.

If subscribing to a callback in process context, it must be remembered that, as with other callbacks,
the callback data structure must be freed when it is no longer required. The data structure is passed

The Reference Manual for the intentTM Kernel

Page 104

as a parameter to sys/kn/notify/announce, and must be freed by the process in whose context the
callback is being taken.

16.3.4 Withdraw previous subscription to be notified when a certain event is
generated - sys/kn/notify/unsubscribe

This tool cancels an earlier subscription to an event. The token returned when interest in the event
was registered (using either sys/kn/notify/subscribe, or sys/kn/notify/subscribe_name) is passed as a
parameter to identify which subscription is to be removed. If after this the event type has no
subscribers or generators, it is deleted.

16.3.5 Register as a generator of a particular kind of event -
sys/kn/notify/generator

This tool informs the kernel of a new generator for a particular kind of event. A handle is then returned
which is passed to sys/kn/notify/announce whenever the event is generated. Registering a generator
for a previously unknown event type will cause that event type to be dynamically generated.

The user must establish a policy for the allocation of ID codes to identify the event, and for this reason
may find it easier to use sys/kn/notify/generator_name.

16.3.6 Register as a generator of a particular kind of named event -
sys/kn/notify/generator_name

This tool informs the kernel of a new generator for a particular kind of event. This function behaves in
the same way as sys/kn/notify/generator, except that the event is identified using a textual name,
represented by a string, rather than an ID code.

16.3.7 Cease to be a generator of a particular type of event -
sys/kn/notify/ungenerator

This tool unregisters an event generator, i.e. records that a particular process no longer wishes to be
a generator for this event. If after this the event type has no registered generators or subscribers, it is
deleted.

The token used to identify the particular event generator should be a value returned by either
sys/kn/notify/generator or sys/kn/notify/generator_name.

The Reference Manual for the intentTM Kernel

Page 105

17. Atomic List Functions

Alterations to a linked list cannot be interrupted without the risk of leaving the list in a temporarily
'broken' state, which may cause undefined behaviour in any operation that attempts to use it.
Therefore, it is often necessary to add or remove items from a list in an atomic manner, so that the
operation is indivisible and may not be halted before completion.

The Platform Isolation Interface (PII) provides tools for switching interrupts on and off. These can be
used to ensure that interrupts cannot halt list modifications before completion. Details of the functions
usually used for interrupt handling may be found in the PII documentation.

The functions described below, however, provide a somewhat more convenient interface for altering
lists in an atomic manner. These functions are atomic with respect to interrupts and all other forms of
context switching.

17.1.1 Add a node to the head of the list - sys/kn/atomic/addhead
This function adds the specified node at the head of the indicated list. The caller process cannot be
interrupted while the list operation is in progress, so other processes and interrupt handlers cannot
access the temporarily broken list.

17.1.2 Add a node to the tail of the list - sys/kn/atomic/addtail
This function adds the specified node at the tail of the indicated list. The caller process cannot be
interrupted while the list operation is in progress, so other processes and interrupt handlers cannot
access the temporarily broken list.

17.1.3 Add a node after the specified list node - sys/kn/atomic/addnode
This function places the node pointed to by the second pointer parameter on a list, after the node
specified by the first. Since a node must not be linked to more than one list, there is no need for a
parameter specifying the list.

The return value is a pointer to the node which is immediately after the newly added node.

The caller process cannot be interrupted while the list operation is in progress, so other processes
and interrupt handlers cannot access the temporarily broken list.

17.1.4 Add a node before the specified list node - sys/kn/atomic/addnodeb
This function places the node pointed to by the second pointer parameter on a list, before the node
specified by the first. Since a node must not be linked to more than one list, there is no need for a
parameter specifying the list.

The return value is a pointer to the node which is immediately before the newly added node.

The caller process cannot be interrupted while the list operation is in progress, so other processes
and interrupt handlers cannot access the temporarily broken list.

The Reference Manual for the intentTM Kernel

Page 106

17.1.5 Remove the node from the head of the specified list -
sys/kn/atomic/removehead

This function removes a node from the head of the specified list. It then returns a pointer to the
removed node. The caller process cannot be interrupted while the list operation is in progress, so
other processes and interrupt handlers cannot access the temporarily broken list.

If there are no nodes in the list, NULL is returned.

17.1.6 Remove the specified node from its list - sys/kn/atomic/removenode
This function removes the specified node from the list containing it. Since a node must not be linked to
more than one list, there is no need for a parameter specifying the list.

The return values indicate the nodes which were immediately before and immediately after the
removed node. It should be noted that since sys/kn/atomic/removenode returns two values the
multiple return registers facility of the Elate C compiler should be used if calling this tool from C.

The caller's process cannot be interrupted while the list operation is in progress, so other processes
and interrupt handlers cannot access the temporarily broken list.

17.1.7 Moves the entire contents of one list onto another -
sys/kn/atomic/movelist

This function moves all of the nodes on one list onto another. This operation is performed atomically
and deterministically, and the time spent performing this operation is not dependent on the number of
nodes in either list. A flag can be set to indicate whether the nodes are to be added to the head or the
tail of the destination list.

This operation is atomic with respect to interrupts and all other forms of context switching.

The Reference Manual for the intentTM Kernel

Page 107

18. Mini Atomic Blocks

Mini atomic blocks (MABs) are a mechanism for ensuring the atomicity of certain operations with
respect to each other. An operation is said to be atomic with respect to a set of things if none of them
can occur during the execution of the operation.

Different kinds of MABs exist to exclude different kinds of things. Whilst execution is within the scope
of a MAB, the excluded things are guaranteed not to occur.

MABs are nestable, since it is possible to use a MAB within the scope of another MAB.

18.1.1 Enter a scheduler MAB - sys/kn/mab/begin_s
This tool begins a scheduler MAB. Within the scope of a scheduler MAB, no scheduler activity may
take place. This prevents any thread other than that currently running from executing, regardless of
priority. It will also prevent timer processing. Interrupts may still occur, however, which may result in
the execution of interrupt handler routines.

If a process goes to sleep whilst within a scheduler MAB (or, equivalently, blocks whilst waiting on
some synchronisation object) then this will allow other threads to schedule. However, once the
sleeping process is woken and runs again, it will resume execution within the MAB, so scheduling will
once again be prevented.

The return value is not defined to have any particular form. It must be passed in to sys/kn/mab/end_s
at the end of the MAB's scope.

18.1.2 Leave a scheduler MAB - sys/kn/mab/end_s
This tool marks the end of a scheduler MAB. The value passed into this tool must be the value
returned by sys/kn/mab/begin_s.

18.1.3 Enter a thread MAB - s ys/kn/mab/begin_t
This tool begins a thread MAB. Within a thread MAB, no other threads besides the current thread
within the calling process may run. However, threads within other processes may run as normal.

The return value is not defined to have any particular form. It must be passed in to sys/kn/mab/end_t
at the end of the MAB's scope.

Since intent does not currently have a notion of threads as distinct from processes, thread MABs
behave identically to scheduler MABs. However, any thread implementations which may exist in
future will behave correctly with respect to thread MABs and so these should be used if and only if
they are appropriate.

18.1.4 Leave a thread MAB - sys/kn/mab/end_t
This tool marks the end of a thread MAB. The value passed into this tool must be the value returned
by sys/kn/mab/begin_t.

18.1.5 Enter an interrupt MAB - sys/kn/mab/begin_i
This tool begins an interrupt MAB. Within an interrupt MAB, interrupts are disabled and cannot occur.
This also prevents pre-emptive descheduling of the current thread.

The Reference Manual for the intentTM Kernel

Page 108

The return value is not defined to have any particular form. It must be passed in to sys/kn/mab/end_i
at the end of the MAB's scope.

18.1.6 Leave an interrupt MAB - sys/kn/mab/end_i
This tool marks the end of an interrupt MAB. The tool is passed a value which indicates the MAB state
which should be restored. This value must be the value returned by sys/kn/mab/begin_i.

The Reference Manual for the intentTM Kernel

Page 109

19. AVL Tree Management Functions

The kernel contains functions for the management of AVL trees within intent. AVL trees are a specific
form of balanced binary tree.

A binary tree is a tree graph, each node of which has at most two outgoing edges. Balanced binary
trees are structured so as to limit imbalances in size between two subtrees of any node.

A balanced binary tree is an efficient general purpose data structure. The primary advantage of this
structure is that it is possible to add, remove and search for elements in such a way that, as the size
of the tree increases, the time required only increases in proportion to the log of the number of
elements in the tree. This is a significant improvement over linked lists, which require time linear in the
length of the list for operations involving searching, though addition and removal of nodes is only of
order 1.

AVL trees (named after Adelson-Velskii and Landis, the inventors of the system) are a type of
balanced binary tree.The criterion for balance at a node of an AVL tree is that the difference in the
height of the two subtrees is never more than one. Height and depth for trees are defined as follows:

• The height of a tree with no elements is 0.
• The height of a tree with one element is one. The depth of the root node of any tree is 1.
• The height of a tree with more than one element is the height of the tallest subtree plus one. The

depth of a node in such a tree is the depth of its parent, plus 1.

An example of a tree that fits this criterion is shown below.

Root node

Depth of node
within tree

1

2

3

4

5

Height of tree = 6

6

Diagram 9 - The AVL Tree

The Reference Manual for the intentTM Kernel

Page 110

The 'balanced' property of an AVL tree is maintained incrementally in a time-efficient manner, as
previously described. Whenever a node is inserted or removed, one or more 'rebalancing'
transformations are performed upon the tree.

The intent implementation of AVL trees is non-recursive and therefore does not rely upon the
allocation of memory or availability of stack space.

In order to implement the functionality required, AVL trees use comparison routines to order the data
they contain. If there is no way to define a well-ordering of the data, then it is not suitable for use with
an AVL tree.

Each AVL tree has a main structure which holds a pointer to the root element of the tree, and pointers
to the comparison routines which order the elements within the tree. The fields of this structure should
only ever be changed using the tools defined in this section during normal operations on the AVL tree.
In addition, each element in the tree requires a separate structure at the same offset from the
beginning of the element.

As with most intent procedures, it is the responsibility of the application to allocate memory for tree
headers and nodes, and to free it when it is no longer required. Removing a node from a tree (using
sys/kn/avl/remove or sys/kn/avl/removeall) does not free the memory associated with it.

It should be noted that intent AVL trees have no inherent concurrency control. If there is a possibility
of several threads or process accessing the tree concurrently, some external means must be used to
guarantee that operations which modify the tree are performed in an atomic manner. Such operations
would include the insertion and removal of nodes. It is the caller’s responsibility to ensure this, though
the Elate kernel provides a variety of mechanisms to achieve this goal.

19.1 Kernel Management Functions for the AVL Tree

19.1.1 Initialises an AVL tree header - sys/kn/avl/init
This tool initialises the AVL tree header indicated by the first input pointer. No elements are added,
and the tree is left empty.

As previously stated, the AVL node structures of a tree are each placed at the same offset from the
start of the element in which they are embedded. The input integer contains the value of this byte
offset for each node that will be added to the tree. This offset must be a multiple of 4. It should be
noted that the AVL tree initialised by this tool will not permit the insertion of elements with duplicate
key values. If such elements are required then sys/kn/avl/init_dup should be used instead. If duplicate
values are inserted into the tree, sys/kn/avl/init will return an error.

The second input pointer indicates the comparison function to be used for the tree. This function takes
pointers to two elements of a tree, and returns a value which is less than, equal to or greater than
zero to indicate whether the first element is less than, equal to or greater than the second.

19.1.2 Initialises an AVL tree header with relocatable stack - sys/kn/avl/init_rs
This tool performs the same function as sys/kn/avl/init except that the stack used as workspace by the
AVL algorithms is passed in explicitly by the user via the third pointer parameter.

The block supplied by the caller must be at least avl_kstack_size bytes in length (see the description
of the AVL tree structure in the later section on “Data Structure Definitions”). It will only be used by the
AVL algorithms during calls to AVL functions and so under some circumstances can be used for other
purposes when no such calls are taking place.

The Reference Manual for the intentTM Kernel

Page 111

It is permissible to pass in a NULL stack. The tree will then be unusable until the sys/kn/avl/move_rs
tool is called passing in a usable stack.

19.1.3 Initialises an AVL tree header to permit elements with duplicate keys -
sys/kn/avl/init_dup

This tool initialises the AVL tree header indicated by the first input pointer, in a manner similar to
sys/kn/avl/init. However, the tree resulting from use of this function does permit the insertion of
elements with duplicate keys. This is achieved through the use of a second comparison function,
which provides a means of ordering two elements with duplicate keys.

The third input pointer points to this 'tie-breaker' comparison function, which refines the comparison
function indicated by the second input pointer. Where the standard comparison function returns a non-
zero value, the tiebreaker comparison function will return the same value. Whenever the value
returned by the standard comparison function is zero, indicating that the keys of the elements are
identical, the tiebreaker function instead imposes a consistent ordering between the two elements.
This ordering may be achieved by, for example, comparing the values of the pointers to the elements.

This stronger comparison is used for insertion and removal of elements. Standard comparison is used
for other purposes, such as searching the tree. Both comparison functions have the form described
under sys/kn/avl/init.

19.1.4 Initialises an AVL tree header with relocatable stack to permit elements
with duplicate keys - sys/kn/avl/init_dup_rs

This tool performs the same function as sys/kn/avl/init_dup except that the stack used as workspace
by the AVL algorithms is passed in explicitly by the user via the fourth input pointer parameter.

The block supplied by the caller must be at least avl_kstack_size bytes in length (see the description
of the AVL tree structure in the later section on “Data Structure Definitions”). It will only be used by the
AVL algorithms during calls to AVL functions and so under some circumstances can be used for other
purposes when no such calls are taking place.

19.1.5 Switch the location of the relocatable stack - sys/kn/avl/move_rs
This tool switches to a new location for the AVL workspace stack. It is passed two parameters, one of
which points to the header of the relevant AVL tree, and one of which is may be NULL, may point to
the new stack, or may hold a value of -1.

If this latter parameter is NULL, then this tool simply returns a pointer to the old stack. If it is –1, then
the tree cannot be used until a valid stack is passed in at a later point. This can be useful where it is
desirable to ensure that, for example, an AVL tree stack allocated from a process' stack is not used
after the routine in which it was allocated has returned, since this could otherwise have odd side
effects.

If the pointer returned by this tool has value -1, this means that no stack was set prior to the call.

19.1.6 Deinitialises an AVL tree header - sys/kn/avl/deinit
This tool deinitialises the specified AVL tree header, making further operations on the tree invalid.

19.1.7 Inserts a new node into an AVL tree - sys/kn/avl/insert
This tool inserts the specified new node into the indicated AVL tree, which is then rebalanced. The
first input pointer indicates the header of the AVL tree into which the element is to be added, and the

The Reference Manual for the intentTM Kernel

Page 112

second pointer points to the element to be inserted. If an element with the same key already exists in
the tree, then the new element is inserted just to the right of the existing one(s) (providing the tree was
initialised using sys/kn/avl/init_dup). If the specified element itself is already in the tree, behaviour is
undefined.

19.1.8 Removes a node from an AVL tree, rebalancing the tree -
sys/kn/avl/remove

This function removes the given element from the specified tree.

19.1.9 Removes all the elements from an AVL tree - sys/kn/avl/removeall
This tool removes all the elements from the specified tree, leaving it empty. For each element in the
tree the callback function is called and passed pointers to the user's data and to the current element.
If the callback function ever returns a non-zero value then no further nodes will be processed via the
callback, the tree will be left empty and the callback function's return value is passed back to the caller
of this tool. The order in which the nodes of the tree are enumerated is undefined.

Any attempt by another process to perform a tree operation at the same time will result in undefined
behaviour.

This function does not deinit the tree header, and so the user can begin adding nodes to the tree
again once sys/kn/avl/removeall has returned.

19.1.10 Removes elements wi thin the given range from an AVL tree -
sys/kn/avl/removerange

This tool removes those elements of the tree the nodes of which lie between two specified dummy
nodes in the ordering. This range includes the two specified nodes themselves. Elements are
removed in the order defined by the tree's ordering.

For each element removed from the tree a specified callback function is called with pointers to the
user's data and the element currently being removed. If the callback function ever returns a non-zero
value then the node in question is not removed and the callback is not applied to the remaining nodes,
which are also not removed. In this case the callback function's return value is passed back to the
caller of this tool. The order in which elements are returned is undefined.

Note that it is not necessary for the nodes specified as the extremities of the range to contain values
which actually exist within the tree.

During the execution of this tool any attempt by another thread to perform another operation on the
target tree will result in undefined behaviour.

19.1.11 Finds an element with in a tree - sys/kn/avl/find
This tool finds an element within the specified AVL tree which matches the given key. The second
input pointer indicates a structure which resembles an element sufficiently to enable the tree's
comparison function to compare it with such an element. This can be a block of memory of the correct
size, with the key written into the correct location. The AVL node structure embedded within normal
elements is ignored within the key specified by the second input parameter.

If the AVL tree contains more than one element with a matching key, the node returned will be the
leftmost.

The Reference Manual for the intentTM Kernel

Page 113

19.1.12 Finds a node with a specified key value within a tree -
sys/kn/avl/findkey

This tool finds an element within the AVL tree, the key of which matches a specified key value. It
behaves identically to sys/kn/avl/find except that a key value and a comparator are passed in rather
than a dummy node. The custom comparator must impose the same ordering as the comparison
function for the tree. However, it should take as its first parameter a key value rather than a node. In
particular, it should be noted that the first parameter to the comparator is still a pointer.

The purpose of this tool is simply to remove the need to construct a dummy node in cases where the
copying of the desired key value into the dummy node would be an unacceptable performance
overhead.

If the AVL tree contains more than one element with a matching key, the node returned will be the
leftmost. Others can be accessed by using sys/kn/avl/walkright.

19.1.13 Returns the maximal e lement within an AVL tree - sys/kn/avl/maximum
This tool returns the maximal element within a tree, using the comparison function specified at
initialisation. If there is no maximal element because the tree is empty, then NULL is returned.

19.1.14 Returns the minimal e lement within an AVL tree - sys/kn/avl/minimum
This tool returns the minimal element within a tree, using the comparison function specified at
initialisation. If there is no minimal element because the tree is empty, then NULL is returned.

19.1.15 Enumerates all elements in an AVL tree, calling a function for each
one - sys/kn/avl/enumerate

This tool enumerates all elements within the specified AVL tree in a left-to-right order (i.e. minimal to
maximal). For each element, the specified callback function is called, and is passed the data pointer
originally passed to sys/kn/avl/enumerate, and the pointer to the current node. If the callback function
returns a non-zero value, then the enumeration is aborted and the same return value is returned by
this tool.

19.1.16 Returns the number of elements in an AVL tree - sys/kn/avl/size
This tool returns the number of elements in the specified AVL tree.

19.1.17 Checks the consistency of an AVL tree - sys/kn/avl/check
This tool checks the consistency of an AVL tree. The checks performed will fail if the input pointer
does not point to a valid AVL tree, all the flags and walkpointers of which accurately describe the
tree's structure.

When writing an AVL application, it should be noted that a successful return from this tool obviously
does not prevent errors where the tree is consistent within itself but nonetheless contains wrong
elements.

19.1.18 Finds the leftmost element greater than or equal to a key -
sys/kn/avl/ubound

This tool finds within the given AVL tree the leftmost element that matches or is greater than the
specified key. The second input pointer points to a structure which resembles an element sufficiently

The Reference Manual for the intentTM Kernel

Page 114

to enable the tree's comparison function to compare it with such an element. The AVL node structure
embedded within normal elements is ignored within the key specified by the second input parameter.

If no suitable element exists, since all elements are less than the key, then NULL is returned.

19.1.19 Finds the rightmost element less than or equal to a key -
sys/kn/avl/lbound

This tool finds the rightmost element within the specified AVL tree which matches or is less than the
specified key. The second input pointer points to a structure which resembles an element sufficiently
to enable the tree's comparison function to compare it with such an element. The AVL node structure
embedded within normal elements is ignored within the key specified by the second input parameter.

If no suitable element exists, since all elements are less than the key, then NULL is returned.

19.1.20 Finds the next element left from a given element (ie. next smaller key) -
sys/kn/avl/walkleft

This tool finds the next element left from the specified node. Although in the worst case this may take
a length of time proportional to the height of the tree, on average it is much quicker. If the starting
element is the leftmost element of the given tree, then this tool returns NULL.

19.1.21 Finds the next element right from a given element (ie. next larger key) -
sys/kn/avl/walkright

This tool finds the next element right from the specified node. Although in the worst case this may
take a length of time proportional to the height of the tree, on average it is much quicker. If the starting
element is the rightmost element of the given tree, then this tool returns NULL.

The Reference Manual for the intentTM Kernel

Page 115

20. Kernel Device Functions

In intent, devices are made available to applications through the use of a mount table. Each mount
table record contains the device ID, the name of the mount point, and some flags.

The device ID is a 64 bit value, divided into two parts. The least significant 32 bits contains the device
driver's instance pointer. The most significant 32 bits contains the number of the processor upon
which the device is situated.

The mount point name is assigned when the device is mounted. If the devstart program has been
used to mount the device, then the mount point will be specified by the user. If the device is mounted
when the system boots, then the system-integrator will specify the mount point. If different names are
associated with the same pointer, then more than one instance of a device driver may exist in memory
at the same time.

The flags are also specified at the time the device is mounted. These can be used to specify whether
the device is network-visible, or only visible to processes on the same CPU. Link drivers and similar
device drivers will usually be mounted to be locally-visible only.

The intent kernel provides a range of functions for manipulating the device mount table, and for
looking up specific devices within it.

20.1.1 Look up a device in the system mount table - sys/kn/dev/lookup
This function looks up the specified device in the mount table and returns details of the best match
found.

In many cases, there may be an incomplete match. For example, systems often have a filesystem
device mounted as "", which will match any name. However, if the mount table also contains a
filesystem mounted as "var" a lookup on the name "var/tmp/tmpfile0001" will return the "var"
filesystem instead of "".

In addition to the device object instance pointer, a string pointer is returned. This is a pointer to the
end of the matched string within the input string (with any leading slash stripped off). In the above
example, the string would be “tmp/tmpfile0001”. This represents the filename relative to the root of the
matched device.

If an exact match is required, the caller should check that returned string pointer points to a nul char.

If the device exists on a different processor from that upon which the lookup is taking place, a local
alias for the device will be created, and a pointer to this object returned. The alias is designed to form
a transparent interface between application and driver. The application is able to send an ncall to the
alias, as if to a device driver local to the application's own processor.

An "agent" process, local to the real device object, then retrieves information concerning the
parameters of the ncall. The agent performs the same ncall to the device driver, which treats it as if it
had been sent by a local application. The results of the ncall are then sent by the agent to the alias.
The agent process and the alias are created only when the remote device is first accessed.

If the mount table entry indicates that the device was mounted using the delayed-mount option, then,
before returning the device ID, this function will instigate the execution of the normal sequence of
operations for initialising a device.

The Reference Manual for the intentTM Kernel

Page 116

This entails loading the _new tool to create the object. After this, the init method is called using
parameters specified in the corresponding call to sys/kn/dev/mount_delayed. If these initialisation
steps are successful, this function returns the object ID to the caller in the usual manner.

20.1.2 Look up a device in the system mount table - sys/kn/dev/rlookup
This function looks up the specified device in the mount table and returns the corresponding device
name string.

20.1.3 Add a device to the system mount table - sys/kn/dev/mount
This function inserts the specified device ID into the mount table, giving it the specified name. The
device is 'mounted,' placed into a hierarchy of devices. This operation renders the device accessible
to any processes that seek it by name in the mount table.

At present, the only flag defined is the MNTF_LOCAL flag. If this flag is set, the device is not visible to
processes on CPUs other than that upon which it is mounted.

20.1.4 Remove the specified device from the system mount table -
sys/kn/dev/unmount

This function removes the specified device from the mount table. This does not prevent the device
being accessed by processes which already have its device object instance pointer, but processes
attempting to look up the device by name will no longer be able to find its instance pointer.

20.1.5 Adds a delayed-mount record for a device to the mount table -
sys/kn/dev/mount_delayed

This function stores details of an association between a mount point and a specific parameter by
creating a record in the mount table. This record contains details of the mount point, and the
parameters of the relevant device. The device in question is considered to have been mounted using
the 'delayed-mount' option.

When the function sys/kn/dev/lookup is used to reference the device, the parameters in this record
are used transparently to initialise the device, before the device ID is returned in the normal manner.

20.1.6 Adds a new device driver to a running system - sys/kn/dev/start
This tool starts a new device driver whilst the system is running. To load device drivers from the
sysgen steering file, the .obj directive should be used. A new device driver object belonging to the
specified class is created, and then added to the mount table associated with the specified path.

There are currently two option flags which can be set. Bit 0 indicates that the device should be
mounted only on the local processor rather than other processors being notified. If bit 1 is set, then a
delayed mount should be used (see sys/kn/dev/mount_delayed).

Two integers are returned by the tool. The first indicates whether an error has occurred and, if so, at
which stage. The second integer is only relevant if an error has occurred, and provides more
information specific to the stage at which the tool failed. The different values of the second integer
signify the following:

• Stage 0 - Success (no error) - Error value is undefined.
• Stage 1 - Device _new tool open failed - Error value is undefined.
• Stage 2 - Call to new failed - Error value is ENOMEM.
• Stage 3 - Call to init failed - Error value is an error code.

The Reference Manual for the intentTM Kernel

Page 117

• Stage 4 - Mount failed - Error value is an error code.
• Stage 5 - Out of memory - Error value is ENOMEM.

It should be noted that since this tool returns two values, if calling it from C it will be necessary to use
the multiple return registers facility of the Elate C compiler.

20.1.7 Unmounts and stops a device - sys/kn/dev/stop
This function removes the specified device from the mount table and then causes it to stop. Care must
be taken in calling this tool, since other processes may still have the device object's instance pointer
and may not be aware that the device has been stopped.

The Reference Manual for the intentTM Kernel

Page 118

21. Static Areas Support

Normally, the only areas that can be easily referenced by a tool are those addressed directly or
indirectly via their parameters, via the PROC structure, or in named data areas. The static areas
support allows processes to access per process data rapidly. This is used, for example, in the C
shared libraries.

The statics areas support described in this section is dedicated to the rapid retrieval of the addresses
of static areas. It is not responsible for the allocation and deallocation of static areas, their format or
their contents. The simplest way to set up statics is by using the Simple Statics interfaces.

21.1 Static Data Caches
A particular static area, which has a different per process copy for each process using it, requires a
four word cache. This cache is typically placed in a tool's writable data. The tool's reference count is
incremented while the statics are in use to ensure that the tool, and hence the writable data, does not
disappear. A cache is structured as follows:

Field Type Field Name Description
Pointer WDA_CACHE_DATAPTR Static data area pointer
Pointer WDA_CACHE_CHECK Check – must be read after data pointer
Structure WDA_CACHE_NODE, LN_SIZE Chain for invalidating
Size WDA_CACHE_SIZE 16 bytes

21.2 Accessing statics
A static area is accessed as follows:

1. Get the address of the cache. This is typically the tool's writable data, arh ARH_WRDATA.
2. Load the cached static area pointer from WDA_CACHE_DATAPTR (offset 0) in the cache.
3. If the pointer at WDA_CACHE_CHECK (offset 4) in the cache is equal to the global pointer

register, then the static area pointer is the correct one.
4. Otherwise, call sys/kn/statics/statics_get, which either finds the applicable static area, or creates

and initialises a new one. In either case the area’s pointer is stored back in the cache.

Step (2) must be performed before step (3), otherwise another process might change the cache in
between the two steps. This could cause this code to assume incorrectly that it had been given the
static area pointer for the correct thread.

Example

The following example shows the simple statics interface in use. A circular buffer is implemented for
strings to output when the program ends (i.e. when the static areas are automatically deinitialised).

; Set up statics structure e.g. a circular trace buffer

include ‘taort’
include ‘sys/kn/statics/statics.inc’

SPACE_SIZE = 128 ; power of 2

structure
int32 CBUF_INDEX

The Reference Manual for the intentTM Kernel

Page 119

struct CBUF_BUF, SPACE_SIZE
size CBUF_SIZE

; cache for loader object pointer
.headerext TOOLHDREXT_WRDATA

dc.ni WDA_CACHE_SIZE ;16
dc.b $ff ;fill with -1's

.headerextend

tool 'testdir/ctrace'

ent p0 : -
defbegin 0
defp pstr
defp pcache, pspace, pbuf
defi index, c
cpy.p arh ARH_WRDATA, pcache
cpy.p [pcache+WDA_CACHE_DATAPTR], pspace ;+0
bcn.p [pcache+WDA_CACHE_CHECK] != gp, out_of_line_get ;+4

out_of_line_get_done:
; the work of the routine using pspace
cpy [pspace+CBUF_INDEX], index
cpy pspace+CBUF_BUF, pbuf
repeat

cpy.b [pstr], c
cpy pstr+1, pstr
if c == 0

cpy.b '\n', [pbuf+index]
else

cpy.b c, [pbuf+index]
endif
cpy (index+1) & (SPACE_SIZE-1), index

until c == 0
cpy index, [pspace+CBUF_INDEX]
ret

out_of_line_get:
gos get_space, (- : pspace)
go out_of_line_get_done
defend 0

get_space:
ent - : p0
defbegin 0
defp pspace
defp pcache
defi errno
cpy.p arh ARH_WRDATA, pcache
qcall sys/kn/statics/statics_get, (pcache, __thistool.p,

setup_loader.p, 0.p : pspace, errno)
if pspace == 0

tracef "statics_get error %d\n", errno
qcall lib/abort, (-:-)

endif
ret
defend 0

.data 4
setup_loader:

dc.p __thistool ; tool pointer
dc.i CBUF_SIZE ; size of statics
dc.p new_space ; new/alloc
dc.p 0 ; init

The Reference Manual for the intentTM Kernel

Page 120

dc.p 0 ; wait
dc.p deinit_space ; deinit
dc.p 0 ; delete
.code

new_space:
ent p0 p1 p2 : p0 i0
defbegin 0
defp pspace, pstatics, puser
defi errno
cpy 0, errno
; any special initialisation e.g. initialise buffer
cpy.i 0, [pspace+CBUF_INDEX]
qcall lib/memseti, ((pspace+CBUF_BUF).p, 0.i, SPACE_SIZE.i : p~)
ret
defend 0

deinit_space:
ent p0 p1 : i0
defbegin 0
defp pspace, pstatics
defi errno
defp pbuf
defi len, index, limit, cnt, c, lastc
cpy 0, errno
; any special deinitialisation - e.g. dump buffer
cpy [pspace+CBUF_INDEX], index
cpy pspace+CBUF_BUF, pbuf
cpy index, limit
cpy 0, lastc
tracef "cbuf=[\n"
repeat

cpy.b [pbuf+index], c
if c != 0

tracef "%c", c
endif
cpy (index+1) & (SPACE_SIZE-1), index

until index == limit
tracef "]\n"
cpy index, [pspace+CBUF_INDEX]
ret
defend 0

toolend

21.2.1 Find the data associated with a cache, or allocate it if necessary -
sys/kn/statics/statics_get

This tool finds data associated with a cache, using a pointer to the cache, and a key value. The
specified cache must be a -1 initialised cache area, typically in a tool's writable data. The key value
should normally be the code address of this tool.

One pointer passed to the tool either points to the simple statics configuration block, or contains 0. If it
contains 0 then the data area already exists, and will not be created. The simple statics configuration
block must be present until the static area is deleted. This may be ensured by putting it in the data
area of the calling tool:

Field Type Field Name Description
Pointer WDA_SETUP_TOOL Tool pointer of caller for tool reference
32-bit integer WDA_SETUP_LENGTH Size of user data allocated

The Reference Manual for the intentTM Kernel

Page 121

Pointer WDA_SETUP_NEW Initialisation with statics lock on
Pointer WDA_SETUP_INIT Initialisation with statics lock off
Pointer WDA_SETUP_WAIT Called if data area created but init not done
Pointer WDA_SETUP_DEINIT Deinitialisation routine
Pointer WDA_SETUP_DELETE Delete areas

The statics lock is a per process lock used by sys/kn/statics/statics_get. It is locked when the alloc or
new routine is called (see below). It is non-recursive, and thus no operations which use the statics
facilities are allowed within the process while it is held.

The fields within the block take the following forms:

• WDA_SETUP_TOOL - pointer to tool code for tool containing the cache in its writable data.
• WDA_SETUP_LENGTH - the length of the static area, or -1 (see below).
• WDA_SETUP_NEW - pointer to a new routine, or 0. If WDA_SETUP_LENGTH is -1, then this is

instead a pointer to an alloc routine.
• WDA_SETUP_INIT: pointer to an init routine, or 0.
• WDA_SETUP_WAIT: pointer to a wait routine, or 0.
• WDA_SETUP_DEINIT: pointer to a deinit routine, or 0.
• WDA_SETUP_DELETE: pointer to a delete routine, or 0.

The user initialisation data is passed back to the alloc/new and init routines if an area is created, and
to the wait routine if it is called. As a default, if all the procedure pointers are zero, a static area of size
WDA_SETUP_LENGTH is allocated and zero initialised. This static area will be automatically
removed when the process ends.

21.2.2 Delete the statics associated with the key and clear the cache -
sys/kn/statics/statics_delete

The static area associated with the cache in the current process is deleted. Static areas are deleted in
any case when a process ends, but this tool provides a way of forcibly deleting an area before this
point.

It is assumed that the user will have performed any necessary deinitialisation, but the delete routine is
called if it was specified in the setup data. The tool referenced in the setup data has its reference
count decremented.

21.2.3 Allocates a static area (used when WDA_SETUP_LENGTH is -1)- alloc
This routine must be provided to allocate a static area if WDA_SETUP_LENGTH is -1. It must also
allocate the associated static control area of size WDA_STATICS_SIZE. Both areas may be allocated
within the same block.

The routine is called when a request is made for a static area for a particular cache and process
where the area does not yet exist.

When using this routine, a delete routine must also be provided to remove the data.

This routine is called with the statics lock held, and therefore should only be used to perform very
simple tasks to avoid blocking other threads and processes accessing unrelated static areas. More
complex initialisation should be performed in the init routine. If there several threads within a process
may be sharing the static area, such that there could be a race condition as two threads call
sys/kn/statics/statics_get, then a lock should be used as follows:

The Reference Manual for the intentTM Kernel

Page 122

• In the alloc routine, create and acquire a lock in the static area itself
• Provide a wait routine to wait for the lock to be released
• In the init routine, complete the initialisation and then release the lock
• Free the lock in the deinit routine

21.2.4 Performs initialisation on an automatically allocated static area- new
If setup length is greater than or equal to 0, then the space is automatically allocated. In such
circumstances, where WDA_SETUP_LENGTH is not -1, the new routine may be provided to perform
fast initialisation of this automatically allocated static area. If the new routine is not supplied, then the
area is simply zero initialised. The space allocated will be automatically freed at the end of the
process.

This routine takes a pointer to the newly allocated static area, which has not been initialised to 0 or
any other value. The routine returns a statics area pointer which is typically the same as that passed
in, but may be changed so that a different address is cached and returned by
sys/kn/statics/statics_get.

This routine is called with the statics lock held, and therefore should only be used to perform very
simple tasks to avoid blocking other threads and processes accessing unrelated static areas. More
complex initialisation should be performed in the init routine. If there several threads within a process
may be sharing the static area, such that there could be a race condition as two threads call
sys/kn/statics/statics_get, then a lock should be used as follows:

• In the new routine, create and acquire a lock in the static area itself
• Provide a wait routine to wait for the lock to be released
• In the init routine, do the rest of the initialisation and then release the lock
• Free the lock in the deinit routine

21.2.5 If setup length is 0 or more then the space is automatically allocated -
init

This routine initialises a statics area where the task is likely to take too long using alloc or new. It is
passed a pointer to the user data area, a pointer to the user initialisation data, and a pointer to a
statics control of a specified size.

This routine is called with the statics lock off, so that calls may be made to other routines that use
statics.

If there may be a race to create the statics then the new or alloc routine should set up a lock which init
can then unlock. The wait interface must also be defined in this case.

21.2.6 Wait for statics area to be initialised - wait
This routine is called if init has not completed and sys/kn/statics/statics_get is being called from a
different thread within the same process to ask for the same static area. It is necessary that this
second thread wait for the first thread's init call to complete, and the wait routine is called to ensure
this. Calls to sys/kn/statics/statics_get in the same thread as that in which the statics are being
initialised will be honoured without calling wait.

This routine is called with the statics lock off. Calls may be made to other routines that use statics.

This routine is passed a user initialisation data pointer, which is identical to that passed to the current
call of sys/kn/statics/statics_get rather than the one initialising the area.

The Reference Manual for the intentTM Kernel

Page 123

21.2.7 Deinitialise the statics area - deinit
This routine deinitialises the statics area. This call is made before any statics are automatically freed.
The user should put any structured closedown code here. Calls to this interface take place in the
reverse order to that used when the areas were set up.

21.2.8 Deletes the statics area by freeing it - delete
This routine deletes the static area and frees the memory it occupies. If WDA_SETUP_LENGTH is -1,
then this routine must be provided to free a static area and its associated control area, as allocated by
alloc. If WDA_SETUP_LENGTH is not -1 the static area will be freed automatically, and the user must
not free it.

At this point only simple actions for freeing areas should be performed, since other statics may have
been freed leaving the environment in a less usable state.

The Reference Manual for the intentTM Kernel

Page 124

22. Kernel Entropy Collector

Numerous applications have requirements for a source of high-quality randomness. In particular,
many of the embedded systems upon which intent is designed to run, such as mobile phones and
PDAs, require encryption mechanisms for security purposes.

Most encryption algorithms demand a source of random data, for such processes as 'key generation'
and 'secret splitting.' (Encryption of a plaintext message will often be performed by an algorithm in
conjunction with a randomly generated key. In some cases the private decryption key will be
subjected to "secret splitting" which divides it into discrete shares, each of which is held by a different
trustee.)

Most computers that include 'random number generators' in fact make use of pseudorandom number
generators (PRNGs). These can be used to create a sequence of numbers that are evenly distributed
over a specific range of values, with little correlation between successive numbers. However, the
numbers generated by simple PRNG algorithms are not truly 'random,' and thus cannot offer the
unpredictability demanded by most encryption processes. In addition, even the cryptographically
secure PRNGs require access to a source of entropy with which to 'seed' their own processes.

By their very nature, software mechanisms for the generation of 'random' numbers are deterministic,
and therefore predictable. For this reason, they are unsuitable as sources of entropy for encryption
algorithms.

The intent kernel entropy collector, on a small scale, adopts the principle upon which much military-
grade cryptographic hardware has been based. Historically, such machines have often included
hardware specially designed to generate entropy. In fact, such specialised hardware is unnecessary.
The ordinary hardware associated with many PCs can be used to generate entropy at a reasonable
rate.

It is such ordinary sources of entropy that the intent entropy collector is designed to exploit. The
disorder in a system is measured and 'collected' through examination of random events. The latency
of a hard disk, for example, can be used in this way, since the time the disk takes to respond to
requests is influenced by the air turbulence around the spinning platter. The time lapse between user
key presses or network events, the noise from a semiconductor device and the least significant bits of
an audio input are also random factors that can be monitored.

Since this source of randomness is not based upon a software algorithm, the intent kernel entropy
collector is able to provide a means of accumulating real random data, collected from device drivers. If
a large quantity of random data is required, then the entropy collected can be used as a reliable seed
for a cryptographically secure PRNG.

22.1 Entropy Collection Overview
Since this form of entropy originates in the hardware, it is not feasible for individual applications to
collect the entropy they require directly.

Instead, each device driver is made responsible for tapping the entropy generated by the device with
which it is associated. The entropy collected by all drivers is collected by the kernel entropy collector,
which makes it available to all applications that require it.

The Reference Manual for the intentTM Kernel

Page 125

DEVICE
DRIVER

DEVICE

DEVICE
DRIVER

DEVICE

DEVICE
DRIVER

DEVICE

KERNEL ENTROPY
COLLECTOR

APPLICATION APPLICATION APPLICATION

Diagram 10 - The Kernel Entropy Collector

The random data supplied by the device drivers is transferred into a data pool maintained by the
kernel entropy collector. This collector maintains a count of the current number of entropic bits
contained within this pool. One method is employed to ensure that additions to the entropy in the pool
are paralleled by a comparable increase in this count. Another method ensures that when entropy is
extracted from the pool, the count decreases to the appropriate degree.

KERNEL ENTROPY
COLLECTOR

WAITING REQUESTS FOR ENTROPY

ENTROPY
COUNT

RANDOM DATA FROM DEVICE DRIVERS

DATA POOL

Diagram 11 - The Kernel Entropy Collector Data Pool

The Reference Manual for the intentTM Kernel

Page 126

Not all embedded systems will require this entropy collection facility. Some systems may have no
security requirements, and hence no need for a source of high-quality randomness. Others may
provide no source of randomness, and thus will be unable to support this facility.

In such cases, a null version of the kernel entropy collector will be used, instead of the full, functional
version. At sysgen time it is possible to specify whether the system will use the real entropy collector,
or a group of stub routines which only provide the appropriate API for device drivers.

If the real entropy collector is to be used, the sysgen steering file must contain the following directive:

#include sys/kn/entropy/entropy.sys

If this is not included, then the calls made to the collector in order to add entropy to its pool become
no-ops, and entropy cannot be extracted.

22.2 The Kernel Entropy Collector
In many cases, device drivers generate random data during interrupt service routines. For this reason,
entropy collection has been designed to cause as little delay as possible, and to avoid table lookups
and lengthy list searches.

In order for an addition to be made to the random data in the entropy collector's pool, a simple qcall is
made to the collector. Like most other facets of the kernel, the entropy collector itself is a collection of
tools. The references required by these tools have been statically fixed up, and this data stored in a
named data area.

The random data collected by the kernel is mixed using SHA-1, a cryptographic one-way hash
function. After mixing, the data contains maximum entropy. Thus, if the hash function is given an N-bit
input containing M bits of entropy, and yields an N-bit output, any M bits of the output will contain M
bits of entropy. In effect, a sufficiently large subset of a hashed bit sequence will contain, in the
absence of the rest of the sequence, the same amount of entropy as that in the original bit sequence.

Once the pool contains mixed data, it would be possible to copy portions of it immediately, and thus
generate pure entropy. However, this would be dangerous, since it would make it easier for malicious
parties to generate inputs partially correlated with the current pool. Therefore, before the data is used
by an application, it is operated upon by another hash function.

22.2.1 Entropy Collector Input
One result of using physical sources of randomness is that each entropy generator produces its
random data in a different form. The kernel entropy collector might, for example, be receiving data of
this sort from a driver monitoring the latency of the hard disk. Although the latency of the disk might
have a minimum bound of 5 milliseconds and maximum bound of 100 milliseconds, most values
would be distributed towards the lower end of this range. At the same time, other sources might be
producing random data in which all values were spread through a different range, or in a different
fashion.

The entropy collector is designed to accept random data in any form, regardless of its density or
distribution. The individual callers do not need to condense the random data into pure entropic bits.

It is not even necessary for the random data to be 'unbiased' by the caller. (Unbiasing a sequence of
values entails spreading the values over a specified range, different from that which they had
originally spanned.)

The Reference Manual for the intentTM Kernel

Page 127

22.2.2 Entropy Collector Output
The entropy collector is designed so that at no point can it output more data than there is entropy
remaining in the data pool. This ensures that successive outputs are in no way correlated.

Data emitted by the collector should have maximum entropy, i.e. one bit of entropy per data bit. Thus
applications do not need to 'fold' the data. A bit sequence that is 'folded' or 'compressed' is
transformed into a shorter bit sequence, while retaining the same amount of entropy.

In order to avoid a waste of entropy, each application is able to request a precise number of bits of
entropy. These are not restricted to any alignment.

22.3 Kernel Entropy Collector Functions

22.3.1 Add entropy to the kernel collector pool - sys/kn/entropy/add
This function adds random data to the entropy pool. This data need not be unbiased. Parts of the data
may be non-random, correlated or even selected maliciously without causing problems, providing that
they are in no way correlated to the contents of the pool.

The entropy input is an estimate of the amount of entropy contained in the random data. If this value
given is an underestimate, this causes no problems, since the system will 'play safe', assuming that
the data is less random than it is. However, the value in this parameter must never be an
overestimate, since this might lead non-random data to be treated as random.

Data that has been passed to sys/kn/entropy/add loses all entropy, from the point of view of the
entropy collector. If inputs are correlated, the total of their claimed entropies must be no higher than
the true total entropy of all the inputs.

22.3.2 Add timer entropy to the pool - sys/kn/entropy/add_time
This function adds the current time to the entropy pool, as random data. The actual entropy added by
this is estimated through use of an uncertainty parameter, U.

The semantic of the parameter U is as follows. The caller guarantees that observation of the system
and the data stored in the entropy pool cannot be used to predict the time at which the function is
called with an uncertainty of less than U nanoseconds.

For example, outside observation might reasonably establish the time of a keypress might to within
0.1 seconds (10^8 nanoseconds), through outside observation. If a call is to be made at the time of
this keypress, then the time of its occurrence can also be predicted to within 10^8 nanoseconds. U
should, therefore, be given the value 10^8, since this represents the level of uncertainty in
nanoseconds.

When calculating an appropriate value for U, an underestimate is safer than an overestimate. The
latter might result in the entropy collector attributing randomness to non-random data, and ultimately
supplying applications with data that is not truly random.

22.3.3 Register the timer clock resolution - sys/kn/entropy/reg_time
This tool is used to register the resolution of the system clock. This is necessary for estimation of the
entropy in times of random events, that is to say, the margin of unpredictability caused by system
disorder. This estimation is required in order to calculate the uncertainty parameter for
sys/kn/entropy/add_time (see above).

The Reference Manual for the intentTM Kernel

Page 128

The sys/kn/entropy/reg_time function should only ever be called by the timer device while it is
initialising.

The semantic of U, the uncertainty parameter for this function, is as follows. The timer device
guarantees that, when it updates the system time, the differences between two time values will be
correct with an uncertainty not greater than U nanoseconds. A reliable 1024Hz timer, for example,
would set U to 976563 or greater. When calculating the uncertainty parameter, it is safer to
overestimate than to underestimate.

It should be noted the uncertainty parameter is equivalent to the precision of the time source.
Distinctions must be drawn between the "precision," the "resolution" and the "accuracy" of a timer.
The "resolution" is the difference between consecutive representable times. The "precision" is the
difference between successive values of the clock. Accuracy is the maximum absolute difference
between the time shown on the clock and the actual current time.

The intent clock, for example, has resolution of one nanosecond. Its precision is platform dependent,
but is 0.1 seconds on Linux and 5 milliseconds on the Shboom board. On intent systems, the timer
will usually have an accuracy of a few seconds.

22.3.4 Extract entropy from collector pool - sys/kn/entropy/get
This tool is called by an application to extract entropy from the entropy pool. If the amount of entropy
in the pool is inadequate to satisfy the request made by this function, the system will wait for more
entropy to be collected. Thus the time taken for sys/kn/entropy/get to return the required entropy is of
arbitrary length. The collector will never return more entropy than is available in its data pool.

The two integer inputs specify the bounds of the range of quantities of entropy that are acceptable. In
most cases the application requires an exact number of bits, and consequently both these values will
be the same. If the values are different, the collector will return as soon the available entropy equals
or exceeds the minimum requirement. The collector will return as much of the available entropy as is
possible without exceeding the specified maximum.

This function returns unbiased random data, uncorrelated to any data generated by a different call. It
is computationally infeasible to determine the state of the entropy pool from this data. After a
successful return, it is equally infeasible to determine the data returned from the state of the entropy
pool.

The returned data is stored in provided buffer, starting at the location indicated by the input pointer,
and filling consecutive bytes. If the number of bits returned is not a multiple of 8, the excess bits are
stored in the low-order bits of the appropriate byte. The high-order bits of the byte are cleared. Further
bytes, beyond those required to store the result, are unaffected.

Some entropy may be successfully returned even if the operation as a whole fails, but should be
treated with caution.

22.3.5 Extract entropy from collector pool (alternative interface) -
sys/kn/entropy/getrand

Like sys/kn/entropy/get, this function provides synchronous entropy generation, extracting entropy
from the collector data pool. The sys/kn/entropy/get function offers the primary interface, but
sys/kn/entropy/getrand uses a different interface, one more suited to cases where the entropy
collector must be interchangeable with other bit stream sources.

The Reference Manual for the intentTM Kernel

Page 129

22.3.6 Extract entropy asynchronously - sys/kn/entropy/get_async
This tool queues an asynchronous request for entropy. The request is processed in the same way as
that issued by sys/kn/entropy/get, but instead of waiting for the correct amount of entropy to be made
available, this function returns immediately. Its status return gives no information as to whether the
requested entropy has been extracted. Instead it only indicates whether the request was successfully
queued.

When the request has been processed, the callback function specified in the control structure is
queued (see the section on "Callback Manipulation Functions"). The request can be terminated early
by using sys/kn/entropy/get_abort.

The control structure, of size ENTROPY_SZ, is defined in the section on "Data Structure Definitions."

This structure begins with a CALLBACK structure, which must be filled in by the caller to specify
which function needs to be called back. The caller also needs to fill in the following:

pointer ENTROPY_BUFFER - The output buffer
int32 ENTROPY_MIN - The minimum entropy to return (in bits)
int32 ENTROPY_MAX - The maximum entropy to return (in bits)

When the callback is called, the following fields will have been filled in:

int32 ENTROPY_STATUS - Status (0 if success, error code if error)
int32 ENTROPY_RET - The entropy actually returned (in bits)

22.3.7 Cancel asynchronous entropy request - sys/kn/entropy/get_abort
This function aborts the asynchronous entropy extraction request initiated by
sys/kn/entropy/get_async, and associated with the specified control structure. This can be called at
any time after the request has been queued and before the callback function is called.

If this tool is called after the callback is queued, then the call has no effect. If the callback has not yet
been queued, it will be so when this tool returns. No callbacks will be taken while the call is in
progress.

When the callback function is finally called, the ENTROPY structure will be updated to indicate the
actual status of the request. If it has completed successfully, this is indicated. A request that was
actually interrupted before completion will have a status of ECANCELED.

The Reference Manual for the intentTM Kernel

Page 130

23. Kernel Time functions

23.1.1 Get the kernel time - sys/kn/time/get
This function returns the current kernel time, in nanoseconds since the intent system was booted.

The Reference Manual for the intentTM Kernel

Page 131

24. Data Structure Definitions

24.1 Process Control Block Structure
The process control block (pcb) structure contains the scheduling parameters of a particular process,
and is defined as shown below.

Field Type Field Name Description
32-bit integer PCB_PRIORITY Process priority
32-bit integer PCB_STATE Process state
64-bit integer PCB_BCET Best-case execution time
64-bit integer PCB_WCET Worst-case execution time
64-bit integer PCB_PERIOD Period (for periodic processes)
64-bit integer PCB_DEADLINE Deadline
32-bit integer PCB_EXITVAL Exit status (only valid when process has run and exited)
32-bit integer PCB_PPID Parent process ID

The overall size of the data structure is PCB_SIZE.

Contents of fields:

• PCB_PRIORITY contains the base priority of the process. In a priority scheduler, this is the only
parameter which affects scheduling decisions. The highest priority process in the READY state is
always scheduled.

• PCB_STATE contains the process state. This is a combination of the following values, each of
which is represented by a single bit: PSTAT_DORMANT, PSTAT_RUN, PSTAT_READY,
PSTAT_SUSPEND, PSTAT_SLEEP. Normally only one of these bits is set. The only valid
combination is PSTAT_SLEEP + PSTAT_SUSPEND, which indicates that the process is in the
SLEEP+SUSPEND state.

• PCB_WCET contains the worst case execution time of the process. This may be used by a
dynamic scheduler (Earliest Deadline First, Minimum Laxity First, Maximum Urgency First, etc.) to
calculate the dynamic priority of the process.

• PCB_BCET contains the best case execution time for the process. This may be used as part of a
deadline violation detection mechanism.

• PCB_PERIOD contains the time between triggering events for a periodic process. For a non-
periodic process, period should specify the worst case interarrival time (the minimum possible
period). This may be used for scheduling decisions in a dynamic scheduler.

• PCB_DEADLINE contains the process's deadline time. The operating system may use this entry
to detect deadline violation. In some cases, it may be possible to detect the deadline failure
before the process is scheduled (e.g. if the deadline cannot be met due to pre-emption by a
higher priority task). For periodic processes, the deadline may often be found by adding the
period to the time at which the process was triggered.

• PCB_EXITVAL contains the contents of the PROC_EXITVAL field in the process's global data
area. When a process is in the DORMANT state, having completed its execution, this field usually

The Reference Manual for the intentTM Kernel

Page 132

contains the exit status of the process. If the process died due to an uncaught signal, this field
contains the signal number which caused the process to die.

• PCB_PPID contains the process ID of the parent of the process whose parameters are under
examination.

24.2 Spawn Structure
The spawn data structure specifies the parameters for process creation.

The structure starts with a 32-bit integer containing the size of the entire structure, followed by a
series of records.

The first word in each record is a 32-bit integer whose most significant 8 bits contain the record type,
and whose least significant 24 bits contain the record length (the offset from the start of the current
record to the start of the next). The contents of the body of each record depends on the record type.

The spawn structure is terminated by a record whose type/size field with a value of 0.

The table below shows the record types which are currently defined. The ‘Offchip’ column indicates
whether each record type can be used in spawn-structures being sent offchip (ie, to be run on another
processor). If a record type has an ‘Offchip’ value of ‘no,’ this is usually because the record type
involves transmitting a pointer value, which is useless on the target processor.

The following types are currently defined:

Data type Type Name Description Offchip
No data SPAWN_END Terminal record Yes
Null-terminated
string

SPAWN_NAME Name of main program tool Yes

32-bit integer N,
sequence of N
null-terminated
strings

SPAWN_ARGS Program argument. The integer indicates
how many strings there are in the sequence.
The strings specify the arguments passed to
the process.

Yes

Sequence of
two null-
terminated
strings

SPAWN_ENV Environment string pair to be declared as
local variables for the program (name, value)

Yes

32-bit integer,
32-bit pointer,
32-bit pointer,
32-bit integer

SPAWN_FD File descriptor template, in the format fd
number, device handle, device instance
pointer, processor number. (Note: the
programmer is discouraged from making
alterations to SPAWN_FD.)

Yes

Null-terminated
string

SPAWN_STACKNAME Name of memory object for stack allocation Yes

Null-terminated
string

SPAWN_DATANAME Name of memory object for data memory
allocation

Yes

32-bit pointer SPAWN_STACKOBJ Address of memory object for stack allocation No
32-bit pointer SPAWN_DATAOBJ Address of memory object for data memory

allocation
No

Sequence of
bytes

SPAWN_GLOBALS Initialised global data area for child (size if
given by type/size field for record)

Yes

32-bit pointer SPAWN_STATICS Address of statics object to give to child No

The Reference Manual for the intentTM Kernel

Page 133

Null-terminated
string

SPAWN_STDIN Textual name of file/device to open as
process's stdin

Yes

Null-terminated
string

SPAWN_STDOUT Textual name of file/device to open as
process's stdout

Yes

Null-terminated
string

SPAWN_STDERR Textual name of file/device to open as
process's stderr

Yes

32-bit pointer SPAWN_SIGNAL Signal table object pointer to give to child No
32-bit pointer SPAWN_FILETAB File table object pointer to give to child No
32-bit pointer SPAWN_ENVOBJ Environment object pointer to give to child No
No data SPAWN_PARENT Parent process ID from PCB_ structure

(presence of record is a boolean flag)
Yes

No data SPAWN_LOCALPID Flag: Allocate the process ID for child
process from local PID pool (presence of
record is a boolean flag)

Yes

32-bit pointer SPAWN_LOADER Tool loader to be used when loading the
main tool for the child process

No

32-bit integer SPAWN_STACKSIZE Size of the stack Yes
32-bit unsigned
integer

SPAWN_SIGMASK Signal mask to be used by process Yes

32-bit integer SPAWN_STKLIMIT Limit to the size of the stack Yes

It should be noted that spawn structures may or may not contain padding to align the records to 4-
byte boundaries. The programmer cannot assume the records are aligned, and any word accesses
into the structure must use the non-aligned VP instructions.

24.3 Event Flag Information Structure
The event flag information data structure is defined as follows:

Field Type Field Name Description
Unsigned 32-bit integer EVFI_PATTERN Event flag pattern
32-bit integer EVFI_TASK Details of waiting processes

The overall size of the data structure is EVFI_SIZE.

Contents of fields:

• The EVFI_PATTERN field contains the event flag pattern at the time that the structure was filled
in (usually by the evf_info function).

• The EVFI_TASK field contains 0 if there are no processes waiting on the event flag, or a non-zero
value if there are one or more processes waiting.

24.4 Mail Message Header
The structure of mail message headers is defined as follows:

Field Type Field Name Description
intent list node MSG_LISTNODE List node for use by the kernel
64-bit integer MSG_SENDER Mailbox ID of sender
32-bit integer MSG_LENGTH Message length

The Reference Manual for the intentTM Kernel

Page 134

At offset MSG_LISTNODE , there is a list node which allows the parts of message header structure to
be contained within a standard intent list. This is not a field of the structure, but is inherited from the
list node structure.

The overall size of the data structure is MSG_DATA (which is of course also the offset at which the
message data is found).

Contents of fields:

• The MSG_SENDER field contains the mailbox ID of the sender. This is often used when a reply is
required.

• The MSG_LENGTH field contains the length of the message, including both the message header
and the message body.

24.5 Memory Flush List Nodes
The memory flush list contains nodes with the following structure:

Field Type Field Name Description
intent memory node MFL_NODE List node for use by the kernel
Pointer MFL_HANDLER Routine to call on flushing
Pointer MFL_MEMOBJ Memory object from which this

memory was allocated
32-bit integer MFL_PRIORITY Flushing priority

At offset MFL_NODE there is a list node, containing information which is used by the kernel. This is
not a field of the structure, but is inherited from the list node structure.

The overall size of the data structure is MFL_SIZE.

Contents of fields:

• The MFL_HANDLER field of the structure contains a pointer to the function to be called when the
memory flush list is processed.

• The MFL_MEMOBJ field indicates which memory object allocated the memory associated with
this node. When a memory object requires to flush memory, only the handling functions of nodes
whose memory will be freed back to that object will be called. If the contents of the field is NULL,
then all flush operations will call this handler.

• The MFL_PRIORITY field contains the flushing priority of the node, which affects the order in
which the handlers are called when flushing occurs. If the first handlers called free sufficient
memory, then lower priority handlers might not be called. The priority should be one of:
MFP_PREFER, MFP_OFTEN, MFP_NORMAL, MFP_SELDOM or MFP_EMERGENCY.

24.6 Callback Data Struc ture
This data structure is used when posting callbacks to indicate device I/O completion, or other events.
The structure is defined as follows.

Field Type Field Name Description
intent list node List node for use by the kernel
Pointer CALLBACK_DATA Application-specific data to be

passed to handler function

The Reference Manual for the intentTM Kernel

Page 135

Pointer CALLBACK_HANDLER Address of handler function
Pointer CALLBACK_PID Process context details

The overall size of the data structure is CALLBACK_SIZE

The list node at the beginning of the data structure is the node used to link the structure onto the
process's callback list. This is not a field of the structure, but is inherited from the list node structure.

Contents of fields:

• The CALLBACK_DATA field contains the user-data to be passed to the handler function when a
callback occurrs. However, the exact format of the data is application specific, and hence cannot
be described here in any detail.

• The CALLBACK_HANDLER field contains a pointer to a callback handler function which must be
called and passed the value in the callback_data field. Further detail of this function can be found
in the chapter on Callbacks.

• The CALLBACK_PID field gives the identifier of the process within whose context the callback
function is running.

24.7 Notify Data Structure
The notify data structure is a block of memory with the following fields defined:

Field Type Field Name Description
intent Callback Structure NOTIFY_CALLBACK_DATA A callback data structure as

defined earlier in this section.
Pointer NOTIFY_EVENT_DATA Pointer to data associated with

the event.
Pointer NOTIFY_EVENT_ID Event ID (integer) of the event.

At offset NOTIFY_CALLBACK_DATA, there is a callback data structure. Where an event notification
is being handled in the context of the process that has subscribed to be notified, this callback is linked
to the process's callback list in the same fashion as any other callback. If the notification is to be
handled in the context of the generator of the event, then the callback data structure is not linked to
the callback list of the generator. However, it is still used to store the pointer to the handling function,
and the subscriber data pointer.

This is not a field of the data structure, but is inherited from the callback structure.

The overall size of the data structure is NOTIFY_SIZE.

Contents of fields:

• The NOTIFY_EVENT_DATA field contains user-defined data associated with the event.

• NOTIFY_EVENT_ID gives an ID code derived from the name of the event, using kernel atom
functions.

24.8 AVL tree
An AVL tree is a piece of memory of the appropriate size (see below) which has been passed as a
parameter to one of the sys/kn/avl/init* functions.

The Reference Manual for the intentTM Kernel

Page 136

Fixed stack AVL tree Relocatable stack AVL tree
C VP C VP

Structure
size

sizeof(ELATE_AVL
TREE)

avl_struct_size sizeof(ELATE_AVL
TREE_RS)

avl_struct_rs_size

Initialisation
functions

kn_avl_init()
kn_avl_init_dup()

sys/kn/avl/init
sys/kn/avl/init_dup

kn_avl_init_rs()
kn_avl_init_dup_rs()

sys/kn/avl/init_rs
sys/kn/avl/init_dup_rs

Each element within the tree needs a structure of size avl_item_size (or sizeof(ELATE_AVLNODE) if
using C) embedded within it at the same offset from the beginning of the element. This offset need not
be 0. Neither the AVL tree header nor the structure embedded within tree elements contains any user
fields.

When using the C interfaces, the type ELATE_AVLITEM is available. This may denote a pointer to an
element already in the AVL tree. Alternatively it may denote a pointer to an element to be inserted into
the tree or compared against elements in the AVL tree. It is not advised to use an (ELATE_AVLNODE
*) as a pointer to an AVL tree element, as the ELATE_AVLNODE structure is not necessarily
positioned at the beginning of the element.

24.9 Timer Structure
A timer is a data structure containing the following fields:

Field Type Field Name Description
intent memory node TT_NODE List node for use by the kernel
Pointer TT_HANDLER Pointer to function to call when

timer expires, or constant
specifying other action

64-bit integer TT_EXPIRE Expiry time
64-bit integer TT_PERIOD Period of timer
32-bit integer TT_PARAM Parameter to user-specified

timer handler function or other
action

32-bit integer TT_PRI Process ID of timer ‘owner’
32-bit integer TT_MODE Operation flags

At offset TT_NODE there is a memory structure which is used by the system. This is not a field of the
data structure, but is inherited from the memory node structure.

The overall size of the data structure is TT_SIZE.

Contents of fields:

• The TT_MODE field contains flags specifying the operation of the timer. One of the following flags
must be set:

- TTF_MONO
This value specifies that the timer is a monoshot timer. After its initial expiry, this timer becomes
dormant.

- TTF_PERIOD
This value specifies that the timer is a periodic timer. Each time this timer expires, the expiry
time is reset to the value in tt_period.

Also, one of the following flags must be set:

The Reference Manual for the intentTM Kernel

Page 137

- TTF_ABS
This value specifies that the time given in tt_expire is absolute.

- TTF_REL
This value specifies that the time given in tt_expire is relative to the time at which the timer was
set.

• The TT_EXPIRE field’s contents depends on the type of timer. If the timer is a monoshot timer,
the TT_EXPIRE field contains the timer's expiry time in nanoseconds. If the timer is a periodic
timer, the TT_EXPIRE field contains the start time of the timer, also in nanoseconds. The expiry
time is absolute if the timer is an absolute timer and relative if the timer is a relative timer.

• The TT_PERIOD field’s contents depends on the type of timer. If timer is a periodic timer, then
the field contains the period of the timer, in nanoseconds, as a relative value. The value gives the
expiry time to which the timer is set after each expiry. If the timer is a monoshot timer, the
TT_PERIOD field is not used and is set to 0.

• The TT_PRI field contains the priority of the process that owns the timer, and is filled in by the
system when the timer is set.

• The meaning of the TT_PARAM field depends on the value of the tt_handler field, as described
below.

• The TT_HANDLER field contains a pointer to the function to be called when the timer expires, or
a constant specifying other action. It contains one of the following values:

- TT_WAKEUP
This value specifies that the TT_PARAM field of the timer structure contains the process ID of a
process whose timeout has expired. The sys/kn/proc/wake function should be called on the
process.

- TT_DEADLINE
This value specifies that the TT_PARAM field of the timer structure contains the process ID of a
process which has failed to meet its deadline. A deadline exception should be generated for the
process.

- OTHER

Any other value is interpreted as the address of a timer handler to be called when the timer expires.
The TT_PARAM field is passed as a parameter to the handler.

24.10 Entropy Collector Control Structure
This structure contains details of an asynchronous request for entropy made to the kernel entropy
collector.

Field Type Field Name Description
intent callback structure Callback structure
32-bit integer ENTROPY_CBSET Callback check
Pointer ENTROPY_BUFFER Buffer into which results are

written
32-bit integer ENTROPY_MIN Minimum entropy to return
32-bit integer ENTROPY_MAX Maximum entropy to retun
32-bit integer ENTROPY_STATUS Status
32-bit integer ENTROPY_RET Entropy returned

The Reference Manual for the intentTM Kernel

Page 138

At the beginning of the data structure there is an inherited callback structure; this is not a field of the
data structure. The callback is queued when the request is processed.

The overall size of the data structure is ENTROPY_SZ.

Contents of fields:

• The ENTROPY_CBSET field indicates whether or not the callback has been set.

• The ENTROPY_BUFFER field contains a pointer to a buffer in to which the requested random
data should be written.

• The ENTROPY_MIN field contains the minimum number of bits that could be acceptably returned
in response to the request.

• The ENTROPY_MAX field contains the maximum number of bits that could be acceptably
returned in response to the request.

• The ENTROPY_STATUS field indicates the status of the request, and whether it has succeeded
(in which case it contains 0), or been prevented by an error (when it will contain the relevant error
code).

• The ENTROPY_RET field contains the number of bits of random data that have been returned, in
the case of the request being met.

The Reference Manual for the intentTM Kernel

Page 139

25. Glossary

Deadline
The deadline of a task is the latest time by which the task must have completed in order to be
considered successful.

Deadline Monotonic Scheduling.
This is a static analysis method in which task priorities for a real time system are assigned solely on
the basis of the deadline of the tasks. The task with the shortest deadline is given the highest priority.

Deadlock
The condition in which every response in a set of responses is using a resource and is also waiting for
another resource which must first be relinquished by another response in the set. In effect, they are all
waiting for each other.

EDF
Earliest Deadline First. Scheduling method where the tasks are ordered on the dispatch list according
to their deadlines. The task whose deadline is closest is dispatched first.

Highest Locker Protocol
This is a synchronisation protocol, in which the user of a data object executes at a priority which is
immediately greater than that of the highest priority task capable of accessing the data object.

Laxity
The laxity is the difference between the current time and the start deadline.

MLF
Minimum Laxity First. A scheduling method in which the tasks are ordered based on their laxity. The
task with the lowest laxity value is dispatched first.

MUF
Maximum Urgency First. A modification of the MLF scheduling method, in which tasks are categorised
into several priority levels. Tasks with higher priorities are always dispatched first. Within a priority
level, the task with the minimum laxity is dispatched first.

This modification makes it possible to control which tasks fail their deadlines in a transient system
overload (in EDF and MLF it is not possible to control which tasks fail).

Priority Inversion
This is a condition that occurs when a high priority process is blocked waiting for a resource (such as
a mutex) which is owned by a low priority process.

Since the low priority process is in a critical section, it would normally execute quickly and release the
lock, allowing the higher priority process to get the lock and continue. However, the low priority
process may be pre-empted by a medium priority process, which is not in a critical section and may
therefore fail to finish executing for an arbitrarily long time. This could cause the high priority process
to fail to meet its deadlines. This is called unbounded priority inversion.

PCP
Priority Ceiling Protocol. This is a method for preventing priority inversion. Each resource has a
priority ceiling assigned to it, as in the highest locker protocol. An operating system variable is
maintained, which is the highest priority ceiling of all locked resources. This variable is called the
current system ceiling.

The Reference Manual for the intentTM Kernel

Page 140

Unless a task holds the resource which set the current system ceiling, that task can only lock another
resource if that resource's priority ceiling is higher than the current system ceiling.

If a task is prevented from locking a resource, the task holding the resource inherits the priority of the
blocked task.

Priority Inheritance
This is a method for preventing priority inversion. It means that when a process owns a resource, it
executes at the higher of its priority and the highest priority of any process blocked waiting for the
resource. Thus, if a high priority process pre-empts a low priority process and attempts to get a
resource which is owned by the low priority process, the low priority process 'inherits' the priority of
the high priority process, and runs at high priority until it releases the resource.

Priority Signalling
This is a method for preventing priority inversion. In this method, when a process attempts to get a
resource that is locked by another (lower priority) process, the process which owns the lock receives a
signal SIGRES or an exception. The signalled process should immediately clear up its data structures
and unlock the resource, allowing the higher priority process to successfully acquire the lock.

This method provides potentially lower (and more predictable) latency for high priority processes
where the lock is held by a lower priority process for a significant amount of time, but it has higher
overhead than the priority inheritance or priority ceiling methods. This method causes low priority
processes to fail to complete critical sections if a higher priority process requires the resource. The
low priority process usually retries the critical section until it succeeds.

RMS
Rate Monotonic Scheduling. This is a static analysis method where task priorities for a realtime
system are assigned based solely on the period of the tasks. The task with the shortest period (the
highest frequency) has the highest priority.

Since this method is completely calculated at design time, and is fully static at run-time, the scheduler
is very simple. It need only dispatch the highest priority task that is in the READY state.

This method provides mathematical guarantees of task-set schedulability for periodic tasks. However,
the CPU utilisation must be significantly lower than 100% for this guarantee to hold. For a particular
set of tasks with known worst case execution times, etc, the maximum possible CPU utilisation for
guaranteed schedulability can be calculated. If this threshold is exceeded, some tasks may fail to
meet their deadlines. The order in which tasks will fail to meet their deadlines is always lowest priority
first.

There are numerous extensions to the method to provide for aperiodic tasks and dynamic priority
modification.

Start Deadline
The start deadline is the latest time at which the task must have started in order to be considered
successful.

Time to Deadline
The time to deadline is the amount of time between the current time and the deadline.

The Reference Manual for the intentTM Kernel

Page 141

© Tao Group Ltd or Tao Systems Ltd. 2000, 2001. All Rights Reserved.

Copyright in the software either belongs to Tao Group Ltd or Tao Systems Ltd. The software may not
be used, sold, licensed, transferred, copied or reproduced in whole or in part or in any manner or form
other than in accordance with the licence agreement provided with the software or otherwise without
the prior written consent of either Tao Group Ltd or Tao Systems Ltd.

No part of this publication may be reproduced in any material form (including photocopying or storing
it in any medium by electronic means and whether or not transiently or incidentally to some other use
of this publication) without the written permission of the copyright owner.

Elate®, intent® and the Tao logo are registered trademarks of Tao Group Ltd.
Digital Heaven™ is a trademark of Tao Group Ltd.
The rights of third party trademark owners are acknowledged.

