
v

 
 

 
 

 
 

 

Teach Yourself

Borland C++ 4
in 21 Days

A Division of Macmillan Computer Publishing
201 West 103rd Street, Indianapolis, Indiana  46290

Namir Clement Shammas
Craig Arnush
Edward Mulroy

About this electronic book...
Click anywhere on this page to jump to the Table of Contents. See the Help menu if you don't know how to use Acrobat Reader.



vi

Teach Yourself Borland C++ 4 in 21 Days21

To my nephew, Julian Aziz—Namir Clement Shammas

To Bzrblt, who kept me company—Craig Arnush

To Marie—Edward Mulroy

Copyright © 1994 by Sams Publishing
FIRST EDITION
FIRST PRINTING—1994

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from the publisher. No patent
liability is assumed with respect to the use of the information contained herein.
Although every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions. Neither is
any liability assumed for damages resulting from the use of the information
contained herein. For information, address Sams Publishing, a division of
Macmillan Computer Publishing, 201 W. 103rd St., Indianapolis, IN 46290.

International Standard Book Number: 0-672-30483-X

Library of Congress Catalog Card Number: 94-65309

97    96    95    94 4    3    2    1

Interpretation of the printing code: the rightmost double-digit number is the year
of the book’s printing; the rightmost single-digit, the number of the book’s
printing. For example, a printing code of 94-1 shows that the first printing of the
book occurred in 1994.

Composed in AGaramond and MCPdigital by Macmillan Computer Publishing

Printed in the United States of America

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to the
accuracy of this information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark. Borland C++ is a registered
trademark of Borland International, Inc.



vii

Publisher
Richard K. Swadley

Associate Publisher
Jordan Gold

Acquisitions
Manager

Stacy Hiquet

Managing Editor
Cindy Morrow

Acquisitions Editor
Grace Buechlein

Development Editor
Dean Miller

Production Editor
Deborah Frisby

Copy Editor
Joe Williams

Editorial and
Graphics
Coordinator

Bill Whitmer

Editorial Assistants
Carol Ackerman
Sharon Cox
Lynette Quinn

Technical Reviewer
Bob Arnson

Marketing Manager
Gregg Bushyeager

Cover Designer
Dan Armstrong

Book Designer
Michele Laseau

Director of
Production and
Manufacturing

Jeff Valler

Imprint Manager
Juli Cook

Manufacturing
Coordinator

Paul Gilchrist

Production Analysts
Dennis Clay Hager
Mary Beth Wakefield

Graphics Image
Specialists

Tim Montgomery

Dennis Sheehan
Sue VandeWalle

Production
Steve Adams
Nick Anderson
Carol Bowers
Ayrika Bryant
Kim Cofer
Terri Edwards
Greg Kemp
Betty Kish
Jamie Milazzo
Wendy Ott
Shelly Palma
Chad Poore
Beth Rago
Michelle Self
Susan Shepard
S A Springer
Rebecca Tapley

Indexers



i

 

 
   

DO
DON’T

  
 

About This Book
This book is designed to help you teach yourself the new and necessary aspects of programming
with Borland C++ 4. In 21 days, you’ll learn about such fundamentals as the Borland C++ 4
environment, managing I/O, loops and arrays, object-oriented programming, and creating
basic OWL applications—all in well-structured and easy-to-follow lessons. Each lesson
provides a sample listing—complete with sample output and an analysis of the code—to
illustrate the topics of the day. Syntax examples are clearly marked for handy reference.

To help you become more proficient, each lesson ends with a set of common questions and
answers, exercises, and a quiz. You can check your progress by examining the quiz answers
provided in the book’s appendix.

Who Should Read This Book
You don’t need any previous experience in programming to learn Borland C++ with this book.
You’ll find the numerous examples of syntax and detailed analysis of code an excellent guide
as you begin your journey into this rewarding environment. If you have programmed before
or have some familiarity with C++, you will see that this book treats many important new
features of the Borland product. Whether you are just beginning or need only to learn the latest
about Borland C++ 4, this book’s clear organization makes doing so fast and easy.

Conventions
Note: These boxes highlight information that can make your Borland C++ 4
programming more efficient and effective.

Warning: These boxes focus your attention on problems or side effects that can
occur in specific situations.

New Term: These boxes provide clear definitions of essential terms.

DO use the “Do/Don’t” boxes to find a quick summary of a fundamental
principle in a lesson.

DON’T overlook the useful information offered in these boxes.

This book uses various typefaces to help you distinguish C++ code from regular English.
Actual C++ code is typeset is a special monospace font. Placeholders—words or characters
used to represent the real words or characters you would type in code—are typeset in italic
monospace. New or important terms are typeset in italic.

In the listings in this book, each real code line is numbered. If you see an unnumbered line
in a listing, you’ll know that the unnumbered line is really a continuation of the preceding
numbered code line (some code lines are too long for the width of the book).



viii

Teach Yourself Borland C++ 4 in 21 Days21

 
 

 
 

 
 

 

Charlotte Clapp
Jennifer Eberhardt

Overview
Introduction xxv

Week 1 at a Glance 1
Day 1 Getting Started 3

2 C++ Program Components 53
3 Operators and Expressions 83
4 Managing I/O 117
5 The Decision-Making Constructs 131
6 Loops 153
7 Arrays 175

Week 1 in Review 213

Week 2 at a Glance 217
Day 8 User-Defined Types and Pointers 219

9 Strings 253
10 Advanced Function Parameters 285
11 Object-Oriented Programming and C++ Classes 319
12 Basic Stream File I/O 357
13 The C++ string Class 391
14 Programming Windows with OWL 2.0 419

Week 2 in Review 447

Week 3 at a Glance 451
Day 15 Basic Windows 453

16 OWL Controls 473
17 Grouped Controls 505
18 List Box Controls 521
19 Scroll Bars and Combo Boxes 553
20 Dialog Boxes 581
21 MDI Windows 601

Week 3 in Review 631



ix

Extra Credit Bonus Section
Bonus 1 Debugging 633

2 Visual Programming 649
3 Using the Application Expert 715
4 Generating MDI Applications with AppExpert 769
5 Using the ClassExpert 817
6 Common Dialog Boxes 865

Appendix
Appendix A Answers 913

Index 949



xi

Contents
Introduction xxv

Week 1 at a Glance 1

Day 1 Getting Started 3
The Basics of C++ Programs ....................................................................... 4
Loading the Borland C++ IDE ................................................................... 5
An Overview of the Borland C++ IDE ....................................................... 5

The File Menu ....................................................................................... 7
The Edit Menu .................................................................................... 11
The Search Menu ................................................................................ 14
The View Menu .................................................................................. 19
The Project Menu ............................................................................... 28
The Debug Menu ................................................................................ 34
The Tool Menu ................................................................................... 35
The Options Menu .............................................................................. 36
The Window Menu ............................................................................. 41
The Help Menu ................................................................................... 42

The EasyWin Applications ....................................................................... 43
Your First C++ Program ........................................................................... 44
Exiting the IDE ........................................................................................ 48
Summary .................................................................................................. 48
Q&A ........................................................................................................ 49
Workshop ................................................................................................ 50

Quiz .................................................................................................... 50
Exercise ................................................................................................ 51

2 C++ Program Components 53
Predefined Data Types in Borland C++ 4.0 .............................................. 54
Naming Items in Borland C++ 4.0 ........................................................... 56
The #include Directive .............................................................................. 56
Declaring Variables ................................................................................... 57
Declaring Constants ................................................................................. 59

Using Macro-Based Constants ............................................................. 61
Using Formal Constants ...................................................................... 62

Declaring and Prototyping Functions ....................................................... 64
Local Variables in Functions ..................................................................... 67
Static Variables in Functions .................................................................... 68
Inline Functions ....................................................................................... 70
Exiting Functions ..................................................................................... 72
Default Arguments ................................................................................... 72
Function Overloading .............................................................................. 75
Summary .................................................................................................. 78



xii

Teach Yourself Borland C++ 4 in 21 Days21

Q&A ........................................................................................................ 79
Workshop ................................................................................................ 80

Quiz .................................................................................................... 80
Exercise ................................................................................................ 82

3 Operators and Expressions 83
Arithmetic Operators ................................................................................ 84
Arithmetic Expressions ............................................................................. 87
Increment Operators ................................................................................ 88
Assignment Operators .............................................................................. 91
The sizeof Operator .................................................................................. 94
Typecasting .............................................................................................. 96
Relational and Logical Operators ............................................................ 100
Boolean Expressions ............................................................................... 102
Bit-Manipulation Operators ................................................................... 106
The Comma Operator ............................................................................ 108
Operator Precedence and Evaluation Direction ...................................... 109
Summary ................................................................................................ 112
Q&A ...................................................................................................... 112
Workshop .............................................................................................. 113

Quiz .................................................................................................. 113
Exercises ............................................................................................ 115

4 Managing I/O 117
Formatted Stream Output ...................................................................... 118
Stream Input .......................................................................................... 120
The printf Function ................................................................................ 123
Summary ................................................................................................ 128
Q&A ...................................................................................................... 129
Workshop .............................................................................................. 129

Quiz .................................................................................................. 129
Exercises ............................................................................................ 130

5 The Decision-Making Constructs 131
The Single-Alternative if  Statement ....................................................... 132
The Dual-Alternative if-else Statement .................................................... 134

Potential Problems with the if Statement ........................................... 136
The Multiple-Alternative if-else Statement .............................................. 137
The switch Statement .............................................................................. 141
Nested Decision-Making Constructs ...................................................... 145
Summary ................................................................................................ 147
Q&A ...................................................................................................... 148
Workshop .............................................................................................. 150

Quiz .................................................................................................. 150
Exercises ............................................................................................ 151



xiii

6 Loops 153
The for Loop .......................................................................................... 154

Open Loops Using the for Loops ....................................................... 158
The do-while Loop .................................................................................. 160
The while Loop ...................................................................................... 163
Skipping Loop Iterations ........................................................................ 164
Exiting Loops ......................................................................................... 167
Nested Loops .......................................................................................... 168
Summary ................................................................................................ 170
Q&A ...................................................................................................... 171
Workshop .............................................................................................. 172

Quiz .................................................................................................. 172
Exercises ............................................................................................ 174

7 Arrays 175
Declaring Single-Dimensional Arrays ..................................................... 176
Using Single-Dimensional Arrays ........................................................... 177
Initializing Single-Dimensional Arrays .................................................... 180
Array Parameters in Functions ................................................................ 184
Sorting Arrays ......................................................................................... 187
Searching Arrays ..................................................................................... 192
Multidimensional Arrays ........................................................................ 199
Initializing Multidimensional Arrays ...................................................... 203
Multidimensional Array Parameters ........................................................ 205
Summary ................................................................................................ 208
Q&A ...................................................................................................... 210
Workshop .............................................................................................. 211

Quiz .................................................................................................. 211
Exercise .............................................................................................. 212

Week 1 in Review 213

Week 2 at a Glance 217

Day 8 User-Defined Types and Pointers 219
Type Definition in C++ .......................................................................... 220
Enumerated Data Types ......................................................................... 221
Structures ............................................................................................... 225
Unions ................................................................................................... 230
Reference Variables ................................................................................. 230
Overview of Pointers .............................................................................. 233
Pointers to Existing Variables ................................................................. 233
Pointers to Arrays ................................................................................... 236
The Pointer Increment/Decrement Method ........................................... 239
Pointers to Structures ............................................................................. 241
Pointers and Dynamic Memory .............................................................. 244



xiv

Teach Yourself Borland C++ 4 in 21 Days21

Far Pointers ............................................................................................ 248
Summary ................................................................................................ 249
Q&A ...................................................................................................... 250
Workshop .............................................................................................. 251

Quiz .................................................................................................. 251
Exercises ............................................................................................ 252

9 Strings 253
C++ Strings: An Overview ...................................................................... 254
String Input ............................................................................................ 255
Using the STRING.H Library ................................................................ 256
Assigning Strings .................................................................................... 256
The Length of a String ........................................................................... 259
Concatenating Strings ............................................................................ 259
String Comparison ................................................................................. 263
Converting Strings .................................................................................. 268
Reversing Strings .................................................................................... 270
Locating Characters ................................................................................ 273
Locating Strings ...................................................................................... 275
Summary ................................................................................................ 280
Q&A ...................................................................................................... 281
Workshop .............................................................................................. 283

Quiz .................................................................................................. 283
Exercises ............................................................................................ 284

10 Advanced Function Parameters 285
Passing Arrays as Arguments ................................................................... 286
Using Strings as Arguments .................................................................... 289
Using Structures as Arguments ............................................................... 291
Passing Arguments by Reference ............................................................. 293
Passing Structures by Reference .............................................................. 293
Passing Structures by Pointers ................................................................ 295
Recursive Functions ................................................................................ 297
Passing Pointers to Dynamic Structures .................................................. 300
Pointers to Functions ............................................................................. 304
Summary ................................................................................................ 314
Q&A ...................................................................................................... 315
Workshop .............................................................................................. 316

Quiz .................................................................................................. 316
Exercise .............................................................................................. 318

11 Object-Oriented Programming and C++ Classes 319
Basics of Object-Oriented Programming ................................................ 320

Classes and Objects ............................................................................ 321
Messages and Methods ...................................................................... 321
Inheritance ........................................................................................ 321
Polymorphism ................................................................................... 322



xv

Declaring Base Classes ............................................................................ 322
The Sections of a Class ...................................................................... 323

Constructors ........................................................................................... 327
Destructors ............................................................................................. 330

Examples of Constructors and Destructors ........................................ 331
Declaring a Class Hierarchy .................................................................... 334
Virtual Functions ................................................................................... 339

Rules for Virtual Functions ................................................................ 343
Friend Functions .................................................................................... 345
Operators and Friend Operators ............................................................. 349
Summary ................................................................................................ 353
Q&A ...................................................................................................... 354
Workshop .............................................................................................. 355

Quiz .................................................................................................. 355
Exercise .............................................................................................. 356

12 Basic Stream File I/O 357
The C++ Stream Library ......................................................................... 358
Common Stream I/O Functions ............................................................. 359
Sequential Text Stream I/O .................................................................... 361
Sequential Binary File Stream I/O .......................................................... 366
Random Access File Stream I/O ............................................................. 373
Exception Handling ............................................................................... 379
Summary ................................................................................................ 388
Q&A ...................................................................................................... 389
Workshop .............................................................................................. 390

Quiz .................................................................................................. 390
Exercise .............................................................................................. 390

13 The C++ string Class 391
Benefits of the C++ string Class ............................................................... 392
The string Class Header File CSTRING.H ............................................. 394
Bug Busters ............................................................................................ 402
Reading and Comparing Strings ............................................................. 402
String Search, Substitution, and File I/O ................................................ 407
Other C++ string Class Functions ........................................................... 413
Summary ................................................................................................ 415
Q&A ...................................................................................................... 415
Workshop .............................................................................................. 416

Quiz .................................................................................................. 416
Exercises ............................................................................................ 417

14 Programming Windows with OWL 2.0 419
Templates ............................................................................................... 420
OWL and Windows Issues ..................................................................... 425
Hungarian Notation ............................................................................... 427



xvi

Teach Yourself Borland C++ 4 in 21 Days21

The Basic Structure of OWL .................................................................. 428
Event Handling, TEventHandler ........................................................ 428
Streamable or Persistent Objects, TStreamableBase ............................ 428

Module Management—TModule and TApplication ................................ 428
Window Management, TWindow ...................................................... 428

A Sample OWL Program ....................................................................... 429
Windows Messages and OWL ................................................................ 431
A Real OWL Program: Resources, Menus, Screen Writing ..................... 433
Summary ................................................................................................ 442
Q&A ...................................................................................................... 443
Workshop .............................................................................................. 444

Quiz .................................................................................................. 444
Exercise .............................................................................................. 445

Week 2 in Review 447

Week 3 at a Glance 451

Day 15 Basic Windows 453
Creating a Read-Only Text Window ...................................................... 454
Scrolling Through Text .......................................................................... 459
A Scrolling Window ............................................................................... 462
The SetupWindow Member Function ..................................................... 470
Summary ................................................................................................ 471
Q&A ...................................................................................................... 472
Workshop .............................................................................................. 472

Quiz .................................................................................................. 472
Exercise .............................................................................................. 472

16 OWL Controls 473
The TControl Object .............................................................................. 474
The Static Text Control ......................................................................... 475
The Edit Control .................................................................................... 479

The TEdit Class ................................................................................. 479
Clipboard-Related Editing Functions ................................................ 482
Query of Edit Controls ...................................................................... 482
Altering the Edit Controls ................................................................. 485

The Pushbutton Control ........................................................................ 486
The TButton Class ............................................................................. 487
Handling Button Messages ................................................................ 488
Manipulating Buttons ........................................................................ 488

Mr. Calculator ........................................................................................ 489
Summary ................................................................................................ 501
Q&A ...................................................................................................... 502
Workshop .............................................................................................. 502

Quiz .................................................................................................. 502
Exercises ............................................................................................ 503



xvii

17 Grouped Controls 505
The Check Box Control ......................................................................... 506

The TCheckBox Class ......................................................................... 507
Responding to Check Box Messages .................................................. 508

The Radio Button Control ..................................................................... 508
The TRadioButton Class .................................................................... 508

The Group Control ................................................................................ 509
The TGroupBox Class ........................................................................ 510

The Widget Selection Application .......................................................... 510
Summary ................................................................................................ 518
Q&A ...................................................................................................... 519
Workshop .............................................................................................. 519

Quiz .................................................................................................. 519
Exercise .............................................................................................. 520

18 List Box Controls 521
The List Box Control ............................................................................. 522
The TListBox Class ................................................................................. 522

Responding to List Box Notification Messages .................................. 532
The List Manipulation Tester ............................................................ 533

Handling Multiple-Selection Lists .......................................................... 543
The Multiple-Selection List Tester ..................................................... 544

Summary ................................................................................................ 550
Q&A ...................................................................................................... 550
Workshop .............................................................................................. 551

Quiz .................................................................................................. 551
Exercise .............................................................................................. 551

19 Scroll Bars and Combo Boxes 553
The Scroll Bar Control ........................................................................... 554

The TScrollBar Class .......................................................................... 554
Responding to Scroll Bar Notification Messages ................................ 558

The Countdown Timer .......................................................................... 559
The Combo Box Control ....................................................................... 565

Responding to Combo Box Notification Messages ............................ 568
Combo Boxes as History List Boxes ................................................... 570

The Son of Mister Calculator Application .............................................. 570
Summary ................................................................................................ 578
Q&A ...................................................................................................... 578
Workshop .............................................................................................. 579

Quiz .................................................................................................. 579
Exercise .............................................................................................. 579

20 Dialog Boxes 581
Constructing Dialog Boxes ..................................................................... 582
Creating Dialog Boxes ............................................................................ 584
Connecting OWL Objects with Windows Controls ............................... 590



xviii

Teach Yourself Borland C++ 4 in 21 Days21

Transferring Control Data ...................................................................... 591
Data Transfer for Modal Dialog Boxes ................................................... 593
Transferring Data for Modeless Dialog Boxes ......................................... 598
Summary ................................................................................................ 599
Q&A ...................................................................................................... 600
Workshop .............................................................................................. 600

Quiz .................................................................................................. 600
Exercises ............................................................................................ 600

21 MDI Windows 601
The MDI Application Features and Components ................................... 602
Basics of Building an MDI Application .................................................. 603
The TMDIFrame Class ........................................................................... 604
Building MDI Frame Windows .............................................................. 605
The TMDIClient Class ........................................................................... 606
The MDI Child Window Class .............................................................. 608
Building MDI Child Windows ............................................................... 609
Managing MDI Messages ....................................................................... 610
Simple Text Viewer ................................................................................ 610
Revised Text Viewer ............................................................................... 618
Summary ................................................................................................ 629
Q&A ...................................................................................................... 629
Workshop .............................................................................................. 629

Quiz .................................................................................................. 630
Exercises ............................................................................................ 630

Week 3 in Review 631

Bonus 1 Debugging 633
The Integrated Debugger ........................................................................ 634

The Debug Menu .............................................................................. 634
The View Menu ................................................................................ 638

Debugging a Program ............................................................................. 639
Other Debugging Tools ......................................................................... 646
Summary ................................................................................................ 647
Q&A ...................................................................................................... 647

2 Visual Programming 649
Resource Workshop Overview ................................................................ 650
Types of Resources ................................................................................. 651

Accelerators ....................................................................................... 651
Bitmaps ............................................................................................. 652
Cursors .............................................................................................. 652
Dialog Boxes ...................................................................................... 652
Fonts ................................................................................................. 652
Icons .................................................................................................. 652
Menus ............................................................................................... 652



xix

String Tables ...................................................................................... 653
User-Defined and rcdata Resources .................................................... 653
VERSIONINFO ............................................................................... 653

Resource Files ......................................................................................... 653
Creating Menu Resources ....................................................................... 654
Creating Accelerator Resources ............................................................... 668
Creating Icon Resources ......................................................................... 677
Creating Dialog Box Resources ............................................................... 680

The Tools Palette ............................................................................... 681
The Alignment Palette ....................................................................... 682

Creating a Bare-Bones Dialog Box Resource ........................................... 683
Creating Dialog Box Resources with Basic Controls ............................... 689
Creating Dialog Box Resources with Grouped Controls ......................... 695
Creating a Fully Operational Dialog Box ................................................ 705

The TMainWindow Class .................................................................. 711
The TCalcDialog Class ....................................................................... 712

Summary ................................................................................................ 713
Q&A ...................................................................................................... 714

Exercises ............................................................................................ 714

3 Using the Application Expert 715
Using the AppExpert Utility ................................................................... 716

The Application Topic ...................................................................... 717
The Main Window Topic .................................................................. 721
The MDI Child/View Topic ............................................................. 724

Studying the AppExpert Output ............................................................. 727
The XPED1 Project ............................................................................... 728
The XPED2 Project ............................................................................... 756
Summary ................................................................................................ 766
Q&A ...................................................................................................... 766

Exercises ............................................................................................ 767

4 Generating MDI Applications with AppExpert 769
The XPED3 Project ............................................................................... 770
The XPED4 Project ............................................................................... 786
The XPED5 Project ............................................................................... 807
Summary ................................................................................................ 814
Q&A ...................................................................................................... 814

Exercises ............................................................................................ 815

5 Using the ClassExpert 817
Invoking ClassExpert .............................................................................. 818
Adding New Member Functions ............................................................ 819
Adding a Class ........................................................................................ 840
Summary ................................................................................................ 862
Q&A ...................................................................................................... 863

Exercises ............................................................................................ 863



xx

Teach Yourself Borland C++ 4 in 21 Days21

6 Common Dialog Boxes 865
Software Requirements ........................................................................... 866
The TInputDialog Class .......................................................................... 867
The TCommonDialog Class .................................................................... 873
The File Dialog Classes .......................................................................... 874

The Supporting Classes and Structures .............................................. 875
Invoking the File Dialog Box ............................................................. 880
The File Statistics Program ................................................................ 880

The TChooseColorDialog Class ................................................................ 885
Supporting Classes and Structures ..................................................... 885
A Sample Program ............................................................................. 888

The Find and Replace Dialog Classes ..................................................... 892
Supporting Classes and Structures ..................................................... 894
The TFindReplaceDialog Class ........................................................... 894
The TFindDialog Class ...................................................................... 896
The TReplaceDialog Class .................................................................. 897
Notifying the Parent Window ........................................................... 897
A Sample Program ............................................................................. 901

Summary ................................................................................................ 910
Q&A ...................................................................................................... 911

Exercises ............................................................................................ 911

Appendix A Answers 913
Answers to Day 1, “Getting Started” .................................................. 914
Answers to Day 2, “C++ Program Components” ............................... 914
Answers to Day 3, “Operators and Expressions” ................................ 917
Answers to Day 4, “Managing I/O” ................................................... 918
Answers to Day 5, “The Decision-Making Constructs” ..................... 920
Answers to Day 6, “Loops” ................................................................ 924
Answers to Day 7, “Arrays” ................................................................ 926
Answers to Day 8, “User-Defined Types and Pointers” ...................... 928
Answers to Day 9, “Strings” ............................................................... 931
Answers to Day 10, “Advanced Function Parameters” ....................... 934
Answers to Day 11, “Object-Oriented

Programming and C++ Classes” ...................................................... 939
Answers to Day 12, “Basic Stream File I/O” ...................................... 940
Answers to Day 13, “The C++ string Class” ....................................... 942
Answers to Day 14, “Programming Windows with OWL 2.0” .......... 944
Answers to Day 15, “Basic Windows” ................................................ 945
Answers to Day 16, “OWL Controls” ................................................ 945
Answers to Day 17, “Grouped Controls” ........................................... 946
Answers to Day 18, “List Box Controls” ............................................ 946
Answers to Day 19, “Scroll Bars and Combo Boxes” ......................... 946
Answers to Day 20, “Dialog Boxes” ................................................... 947
Answers to Day 21, “MDI Windows” ............................................... 947

Index 949



xxi

Acknowledgments
I would like to thank Grace Buechlein at Sams Publishing for having the patience to
deal with the likes of me. Also, thanks to Dean Miller, who listened to my suggestions
and even liked my bugs. My thanks go out to all those at Sams who participated in
putting this book together and eventually into your hands. —Craig Arnush

I would like to thank Grace Buechlein, who provided kind, frank guidance; and Peter
Aitken, whose responses convinced me to do this. Special thanks to my wife Marie,
who has been supportive throughout. —Edward Mulroy

I wish to thank the many people at Sams for encouraging me and working with me
on this project. First, I would like to thank Publisher Richard Swadley and Associate
Publisher Jordan Gold for their support. Many thanks also to Grace Buechlein, Dean
Miller, Joe Williams, and Deborah Frisby for their first-class work. Thanks to all who
participated in producing this book. —Namir Clement Shammas

Finally, all of the authors wish to thank Robert Arnson, technical editor for this book.
Arnson, who used to work in Borland’s Technical Publications department on C++
projects, is now a free-lance writer, editor, and consultant. He’s also a member of
Team Borland, Borland’s group of volunteers who help support Borland products on
CompuServe, GEnie, and BIX. His speciality is application frameworks, and he has
worked with OWL for more than three years. You can contact him on CompuServe
(72662,1376) and GEnie (ARNSON). You can also contact him via Internet mail
at robert.arnson.@channel1.com.



xxiii

About the Authors
Namir Clement Shammas is a full-time author of programming books and an expert
in object-oriented programming. He has written and coauthored more than 40 books
on programming languages such as C++, C, Pascal, and Visual Basic. Among his many
books are Advanced C++, Teach Yourself Visual C++ in 21 Days, and What Every
Borland C++ 4 Programmer Should Know.

Craig Arnush is an independent software consultant in San Diego and is an expert
on Windows. He volunteers his time answering technical questions on the Borland
CompuServe forums as a member of Team Borland. Craig can be reached via his
CompuServe account at 71333,3052 or via the Internet at craiga@netcom.com.

Edward Mulroy is Chief Engineer for RF Data Corporation, a company specializing
in communications and embedded work. Since 1990, he has assisted fellow users of
C++, C, and Assembler on the Borland CompuServe forums as a member of Team
Borland.



xxv

Introduction
This book has three major goals: teaching you to program in C++, teaching you to
create Windows applications using Borland C++, and teaching you the new features
of Borland C++ 4. No prior programming experience is required. However, knowing
how to program in other languages, such as BASIC or Pascal, certainly helps. This
book is not for the faint-hearted, because becoming familiar with the new features of
a new compiler is hard enough, but also learning to program in C++ and learning to
write Windows applications in C++ are two nontrivial tasks!

The book contains 21 chapters, one for each study day. The material is somewhat fast-
paced in order to meet the goals of the book. Each chapter contains a Q&A section,
a quiz section, and an exercise section. In the back of the book you’ll find the answers
to the quizzes and to many of the exercises.

Day 1 gives you a brief tour of the Borland C++ IDE, the Windows environment that
you use to develop C++ programs. The chapter also presents your first C++ program
to demonstrate the basic components of a non-Windows C++ program.

Day 2 looks at C++ program components in more detail. The chapter discusses
naming and declaring variables, constants, and functions. The book also provides an
early focus on C++ functions because they are important program building blocks.

Day 3 presents the various C++ operators and expressions. Operators enable you to
manipulate data and form expressions that support more complex data manipulation.

Day 4 discusses formatted stream input and output, as well the famous printf
function. The latter function supports versatile formatted output.

Day 5 covers C++ decision-making constructs. These constructs include the various
kinds of if statements as well as the switch statement.

Day 6 discusses C++ loops, including the for, do-while, and while loops. The
chapter demonstrates how to use the for loop as an open loop. In addition, the
chapter discusses skipping loop iterations, exiting loops, and nesting loops.

Day 7 presents arrays in C++. The chapter covers both single-dimensional and
multidimensional arrays and discusses how to declare them and initialize them. In
addition, the chapter discusses sorting and searching single-dimensional arrays.

Day 8 covers user-defined types and pointers. The chapter discusses enumerated data
types, structures, unions, reference variables, and pointers. The text demonstrates
how to declare and use pointers with simple variables, arrays, structures, and dynamic
memory.



xxvi

Teach Yourself Borland C++ 4 in 21 Days21

Day 9 focuses on strings and the STRING.H library, which is inherited from C. The
chapter covers topics like assigning, concatenating, comparing, converting, and
reversing strings. In addition, the chapter discusses searching for characters and
substrings in strings.

Day 10 discusses advanced function parameters and mainly covers parameters that are
arrays, strings, structures, and pointers to functions. The chapter also discusses the
various ways to pass structures as parameters and presents recursive functions.

Day 11 introduces you to the world of object-oriented programming (OOP). The
chapter covers the basics of OOP and presents C++ classes. The text discusses the
basic components of a C++ class and the rules related to using these components.

Day 12 discusses the basic stream file I/O, which is supported by the C++ stream
library. The chapter covers common stream functions, sequential text stream I/O,
sequential binary stream I/O, and random-access stream I/O.

Day 13 covers the string class, an alternative to strings, and the functions in
STRING.H that work with them. This class conforms to the preliminary strings class
from the ANSI C++ committee and is prototyped in the header file CSTRING.H.

Day 14 presents very simple OWL-based Windows applications. Object Windows
Library version 2.0, or OWL2, is included with BC++ 4. It is a C++ library for use in
Windows programming, and using it shortens the time and effort in developing a
Windows program. OWL is written in C++ and uses a feature of that language called
templates, which you also learn on Day 14.

Day 15 focuses on drawing text in a window. The chapter presents both nonscrolling
and scrolling windows and illustrates how to draw text (as graphics) in these windows.

Day 16 presents the OWL library classes, which model static text controls, edit
controls, and pushbutton controls. The chapter also presents a nontrivial command-
oriented line calculator as an example that uses these controls.

Day 17 presents the OWL library classes that model the check box control, the radio
button control, and the group control.

Day 18 covers the OWL library class that models list box controls. The chapter
discusses both single-selection and multiple-selection list boxes. The programs in the
chapter illustrate both kinds of list boxes.



xxvii

Day 19 presents the OWL library classes, which model the scroll bar control and the
combo box control. The chapter also discusses how to create history boxes using
combo boxes. In addition, the chapter presents a version of the calculator program
that uses the combo boxes.

Day 20 focuses on creating and using dialog boxes. The chapter shows you how to use
resource files to define modal and modeless dialog boxes. In addition, the chapter
discusses data transfer between a dialog box and its parent window.

Day 21 looks at Multiple Document Interface (MDI) windows. The chapter presents
the classes that support MDI-compliant applications and illustrates how to manage
MDI-child windows.

The bonus chapters present the new features of Borland C++ 4, including AppExpert,
ClassExpert, the Resource Workshop, and the debugging tools. In addition, you get
a bonus chapter on common dialog boxes.

The book contains Windows programs that illustrate aspects of programming that go
beyond the trivial aspects of using various visual controls. Study these programs, as
they contain techniques and tricks that can enrich your Windows programming. We
all learn to program by looking at examples (including nontrivial ones) and by asking
friends questions.

In the back of the book is an explanation of how to obtain a companion disk that
includes the source code and the project files presented in this book. You can also
download the files from CompuServe; type: GO SAMS. The Files can be found in the
Sams Programming Library 9.

Happy programming!



Sa
m

s
Le

a
rn

in
g

Ce
nt

er

abcd

1

A/ns6   TY Borland C++ in 21 Days #30483  Lisa D  4-14-94       AAG1     LP#2(sp 4/12 folio)

M
T

W
R

F
S

S
1

2

3

4

5

6

7

1
WEEK

AT
 A

 G
LA

N
C

E

The first week of your journey into learning to write
Windows applications starts with an introduction to the
Borland C++ 4.0 environment—the IDE (integrated
development environment). The remaining days in this
week present the basics of the C++ language itself. You
learn about predefined data types; naming constants,
variables, and functions; C++ operators and expressions;
managing basic input and output; making decisions;
writing loops; and declaring and using arrays. Thus, this
week covers the basic components of the C++ language.



3

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

M
T

W
R

F
S

S

WEEK

11
Getting Started

11



4

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Welcome to the world of C++ and Windows programming. Your journey into this
exciting world begins today. Most of the information in today’s lesson familiarizes you
with the Borland C++ Integrated Development Environment (IDE). You will learn
about the following topics:

■■ The basics and history of C++ programs

■■ Loading and using the Borland C++ IDE

■■ The EasyWin applications

■■ Typing and running your first C++ program

The Basics of C++ Programs
You don’t need any previous experience in programming to learn Borland C++ with
this book; but if you have programmed before, things will be easier. As with other
languages, C++ is made up of declarations and statements that specify exact instruc-
tions to be executed when the program runs.

C++ was developed by Bjarn Stroustrup at Bell Labs. The language is meant to
supersede and build on the popular C language, mainly by adding object-oriented
language extensions.

☛ New Term: An object-oriented language represents the attributes and
operations of objects.

In addition, C++ offers a number of enhancements to C that are not object-oriented.
Thus, learning C++ gives you the bonus of becoming very familiar with C. However,
unlike C, which has been standardized, C++ is still undergoing the standardization
process.

Programming in C++ requires that you become aware of the supporting libraries,
which perform various tasks such as input/output, text manipulation, math opera-
tions, file I/O (input/output), and so on. In languages such as BASIC, support for such
operations is transparent to programs, meaning that it is automatically available to
these programs. As a result, many programs come across as single components that are
independent of any other programming components. By contrast, programming in
C++ makes you more aware of a program’s dependency on various libraries. The



5

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

advantage of this language feature is that you are able to select between similar
libraries, including ones that you develop. Thus, C++ programs are modular. C++
compilers, including Borland C++, use project files and program files. The Borland
C++ IDE uses project files to manage the creation and updating of a program.

☛ New Term: Project files specify the library. Program files create an applica-
tion.

Loading the Borland C++ IDE
The Borland C++ IDE is the visual interface for the C++ compiler, linker, debugger,
and other tools that are used to create, manage, and maintain C++ programs. You can
load the IDE by simply clicking the Borland C++ icon or by double-clicking the
BCW.EXE program from the File Manager. (The file BCW.EXE is located in the
directory \BC4\BIN.)

An Overview of the
Borland C++ IDE

The Borland C++ IDE is an MDI-compliant application with the following main
components:

■■ The frame window with the menu system, minimize, and maximize icons.
You can resize, move, maximize, and minimize the Borland C++ IDE
window. This window has a title that reflects the name of the active window.

■■ The system menu, which offers numerous options.

■■ The speed bar, which contains special bitmapped buttons that offer short-
cuts to specific commands. The IDE enables you to customize the
bitmapped buttons in the speed bar. In addition, these buttons are context
sensitive. Their number and type can change, depending on the current task
or active window. The IDE supports a nice feature that displays what a
bitmapped button does (the text appears in the status line) when you move
the mouse over that button.



6

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

■■ The client area, which contains various windows, such as the source-code
editing window, the message window, the variable watch window, and so
on.

■■ The status line located at the bottom of the IDE window. This line displays
brief online help as you move the mouse over the buttons in the speed bar,
offers a brief explanation for the various menu items, displays the cursor
location, and shows the status of the insert/overwrite mode.

Figure 1.1 shows a sample session with the Borland C++ IDE.

Figure 1.1. The Borland C++ IDE.

Note: Because the IDE is meant to accommodate software developers,
many of the options will seem advanced to you if you are a novice
programmer. However, you only need to be familiar with the options and
their related terms. As you become more experienced, these options and
terms will become part of your knowledge as a Borland C++ programmer.



7

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

The File Menu
The File menu provides options to manage files, to print text, and to exit the IDE.
Table 1.1 summarizes the options in the File menu. The File menu also includes a
dynamic list of the most recently opened source-code files.

Table 1.1. Summary of the options in the File menu.

Command Shortcut Keys Function

New Opens a new edit window.

Open… Loads an existing source-code file into a
new edit window.

Save Ctrl+K S Saves the contents of the active edit
window.

Save as… Saves the contents of the active edit
window using a new filename.

Save all Saves all of the opened source-code
windows in their respective files.

Print… Prints the contents of a source code
window.

Print setup… Sets up the printer.

Exit Exits the IDE.

The New Command
The New option opens a new edit window (also known as a source-code window) and
assigns it a default associated filename. The default filename of the first new window
you open is NONAME00.CPP. Likewise, the default filename of the second new
window is NONAME01.CPP, and so on. The newly opened window is initially
empty and has the same window size and location of the last active window. In other
words, if the last active window was maximized, the new window will also be
maximized.



8

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

The Open… Option
The Open… option enables you to load the contents of an existing source code file
into a new edit window. In fact, the IDE is able to load multiple files. The option
invokes the Open a File dialog box, shown in Figure 1.2. The dialog box has several
list box and combo box controls that enable you to locate the source-code file and then
select it. These controls permit you to choose the drive, directory, and filename
wildcards that help you to locate the source-code file you seek.

Figure 1.2. The Open a File dialog box.

The Save Option
The Save option assists you in saving the contents of the active edit window to its
associated file. If you invoke this option with a new edit window, the Save option
invokes the Save File As dialog box, shown in Figure 1.3. This dialog box enables you
to optionally specify the nondefault filename, as well as the destination drive and
directory. The shortcut keys for the Save option are Ctrl+K S.



9

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Figure 1.3. The Save File As dialog box.

The Save As… Option
The Save As… option enables you to save the contents of the active edit window in
a file that is different from the currently associated file. In fact, the new filename
becomes the new associated file for the active edit window. The Save As… option
invokes the Save File As dialog box, shown in Figure 1.3. If you select an existing file,
the option brings up a message dialog box to ask you if you wish to overwrite the
contents of the existing file with those of the active edit window.

The Save All Option
The Save All option writes the contents of all the modified edit windows to their
associated files. If the IDE contains new edit windows, this option invokes the Save
File As dialog box to save these new windows.

The Print… Option
The Print… option enables you to print the contents of the active edit window. The
option brings up the Print Options dialog box, shown in Figure 1.4. This dialog box
has check boxes for the following options:



10

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

■■ Print a header and page numbers

■■ Print line numbers

■■ Highlight syntax keywords by printing them in bold characters

■■ Use color (if your printer supports colors)

■■ Wrap lines

■■ Left margin edit box option

Figure 1.4. The Print Options dialog box.

The Print Setup… Option
The Print Setup… option enables you to set up your printer using the Print… option
before you print. The printer setup option brings up the Setup dialog box, shown in
Figure 1.5. (The dialog box in this figure is based on a system that has an HP LaserJet
III.) This dialog box contains controls that enable you to specify the following items:

■■ The paper size.

■■ The paper source.

■■ The number of copies to print.



11

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

■■ The amount of printer memory.

■■ The orientation of the printout.

■■ The selected font cartridges and fonts.

■■ Page protection to reserve additional memory for printing a page. This
option is available only when you have more than one 1 MB of printer
memory.

Figure 1.5. The Setup dialog box.

The Exit Option
The Exit option enables you to exit the Borland C++ IDE altogether. The IDE
prompts you for any modified edit window that has not been saved.

The Edit Menu
The Edit menu contains options that enable you to edit the text in the edit windows.
Table 1.2 summarizes the options in the Edit menu.



12

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Table 1.2. Summary of the options in the Edit menu.

Command Shortcut Keys Function

Undo Ctrl+Z Undoes the last editing action.

Redo Shift+Ctrl+Z Reverses the action of the last Undo
option.

Cut Ctrl+X Deletes the selected text and copies it
to the Clipboard. The previous
contents of the Clipboard are lost.

Copy Ctrl+C Copies the selected text to the Clip-
board. The previous contents of the
Clipboard are lost.

Paste Ctrl+V Inserts the contents of the Clipboard
at the current cursor location.

Clear Ctrl+Delete Deletes selected text but does not
write it to the Clipboard.

Select all Selects all of the text in the active edit
window.

Buffer list… Displays the Buffer List dialog box.

The Undo Option
The Undo option enables you to reverse the effect of the last editing task and restore
the contents of the active edit window. The shortcut keys for this option are Ctrl+Z.
This option enables you to quickly and efficiently deal with editing errors—especially
after working long hours.

The Redo Option
The Redo option enables you to reverse the action of the Undo option. The shortcut
keys for the Redo option are Shift+Ctrl+Z. The Redo option enables you to switch
between two versions of edited source code. This option is beneficial to the truly
exhausted programmer who cannot make up his mind about how the source code
should look!



13

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

The Cut Option
The Cut option deletes selected text and places it in the Clipboard. The previous
contents of the Clipboard are lost. The shortcut keys for the Cut option are Ctrl+X.

The Copy Option
The Copy option copies the selected text into the Clipboard. The previous contents
of the Clipboard are lost. The shortcut keys for the Copy option are Ctrl+C.

The Paste Option
The Paste option inserts the contents of the Clipboard at the current insertion point.
The contents of the Clipboard remain unaffected. Thus you can use the Cut and Paste
options to move text in the same edit window or across different edit windows. You
can also use the Copy and Paste options to duplicate blocks of text in the same edit
window or across different edit windows. The shortcut keys for the Paste option are
Ctrl+V.

The Clear Option
The Clear option clears the selected text without copying it to the Clipboard. This
does not mean that the deleted text is irreversibly lost, because you can use the Undo
option to undelete that text. The shortcut keys for the Clear option are Ctrl+Delete.

The Select All Option
The Select All option selects all of the text in the active edit window. You can copy
this text to the Clipboard by using the Copy option. Then you can write the contents
of the Clipboard to another edit window using the Paste option.

The Buffer List… Option
The Buffer List… option enables you to examine the list of buffers used with the
various edit windows. This option brings up the Buffer List dialog box, shown in
Figure 1.6. The dialog box enables you to load a buffer into an edit window. The
dialog box contains the list of buffers; those that have changed since they were last
loaded have the word MODIFIED (placed in parentheses) after them. The dialog box
enables you to replace the contents of an edit window without closing the associated
file. If the replaced file is not loaded into another edit window, it is hidden. You may
use the buffer list later in order to load the hidden buffer into an edit window.



14

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

You can use the Save pushbutton of the Buffer List dialog box to update the file
associated with the selected buffer. This action causes the word MODIFIED to disappear
from the selected buffer entry. You may also use the Delete pushbutton to remove the
selected buffer from memory, if that buffer is not in an Edit window.

Figure 1.6. The Buffer List dialog box.

The Search Menu
The Search menu contains options that enable you to locate various kinds of
information, such as text, symbol definitions, function declarations, and program-
building errors. Table 1.3 summarizes the options in the Search menu.

Table 1.3. Summary of the options in the Search menu.

Command Shortcut Keys Function

Find… Ctrl+Q F Searches for text in the active edit
window.

Replace… Ctrl+Q A Replaces text in the active source-
code window.

Search again F3 Repeats the last Find or Replace
operation.



15

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Command Shortcut Keys Function

Browse symbol… Locates a symbol in any source code
that is part of the current project.

Locate function… Locates a function.

Previous message Alt+F7 Selects the previous program-
building message and places the
cursor at the offending line in an edit
window.

Next message Alt+F8 Selects the next program-building
message and places the cursor at the
offending line in an edit window.

The Find… Option
The Find… option supports searches for text in the active edit window. This option,
which has the shortcut keys Ctrl+Q F, brings up the Find Text dialog box, shown in
Figure 1.7. This dialog box has the following controls:

■■ The Text to find combo box control, which enables you either to type in
the search text or to recall recently searched text.

■■ The Options check boxes, which include

■■ The Case sensitive check box, which enables you to select case-
sensitive or case-insensitive text search.

■■ The Whole words only check box, which enables you to choose
between matching entire words or matching any text.

■■ The Regular expression check box, which turns on or off the use of
the BRIEF editor’s regular expressions feature. Such expressions result
in using the text in the Text to find control as the text pattern.

■■ The Direction diamond-shaped radio button controls. These controls
enable you to choose between forward and backward search.

■■ The Scope diamond-shaped radio button controls. These controls
enable you to choose between searching the entire text and limiting the
search to the selected text.



16

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

■■ The Origin diamond-shaped radio button controls. These controls
enable you to choose between searching the entire edit window and
searching from the cursor position.

■■ The OK, Cancel, and Help buttons.

Figure 1.7. The Find Text dialog box.

The Replace… Option
The Replace… option supports replacing text in the active edit window. This option,
which has the shortcut keys Ctrl+Q A, brings up the Replace Text dialog box, shown
in Figure 1.8. This dialog box has the following controls:

■■ The Text to find combo box control, which enables you either to type in
the search text or to recall recently searched text.

■■ The New text combo box, which enables you either to enter the replacement
text or to select recently used replacement text.

■■ The Options check boxes, which include

■■ The Case sensitive check box, which enables you to select case-
sensitive or case-insensitive text search.



17

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

■■ The Whole words only check box, which enables you to choose
between matching entire words or matching any text.

■■ The Regular expression check box, which turns on or off the use of
the BRIEF editor’s regular expressions. Such expressions result in using
the text in the Text to find control as a text pattern.

■■ The Prompt on replace check box, which enables you to select
whether or not text shall be replaced without your confirmation.

■■ The Direction diamond-shaped radio button controls. These controls
permit you to choose between forward and backward search.

■■ The Scope diamond-shaped radio button controls. These controls
enable you to choose between searching the entire text and limiting the
search to the selected text.

■■ The Origin diamond-shaped radio button controls. These controls
enable you to choose between searching the entire edit window and
searching from the cursor position.

■■ The Change All pushbutton, which enables you to replace all of the
matching text. By contrast, if you click the OK button you will only
replace the next matching text.

■■ The OK, Cancel, and Help buttons.

Figure 1.8. The Replace Text dialog box.



18

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

The Search Again Option
The Search Again option enables you to repeat the last Find… or Replace… option.
The shortcut key for this option is the F3 function key.

The Browse Symbol… Option
The Browse Symbol… option enables you to browse the makeup of a symbol,
including classes, functions, and variables. These symbols need not be defined in the
active edit window, as long as they are defined in one of the current project’s source-
code files (your files or the library’s included files). Figure 1.9 shows a sample symbol-
browsing dialog box.

Figure 1.9. A sample symbol-browsing dialog box.

The Locate Function… Option
The Locate Function… option enables you to find the definition of a function. This
option brings up the Locate Function dialog box, shown in Figure 1.10, which
prompts you to enter the name of the function you wish to find. The IDE responds
by moving to it in an existing edit window or by displaying the function definition
in a new edit window, if need be.



19

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Figure 1.10. The Locate Function dialog box.

The Previous Message Option
The Previous Message option enables you to zoom in on the offending source-code
line that is associated with the previous message in the Message window. The IDE
responds to this option by displaying the edit window that contains the offending
source-code line. The shortcut keys for this option are Alt+F7.

The Next Message Option
The Next Message option enables you to zoom in on the offending source-code line
that is associated with the next message in the Message window. The IDE responds
to this option by displaying the edit window which contains the offending source-
code line. The shortcut keys for this option are Alt+F8.

The View Menu
The View menu contains options that enable you to view and browse through a wide
variety of information. This information goes beyond the declarations in the source-
code files of your own project. Table 1.4 summarizes the options in the View menu.



20

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Table 1.4. Summary of the options in the View menu.

Command Shortcut Keys Function

ClassExpert Invokes the ClassExpert utility, which
works with project files generated by
AppExpert.

Project Displays the Project window.

Message Displays the Message window.

Classes Browses through the classes.

Globals Browses through global data types,
constants, and variables.

Watch Selects or opens the Watch window.

Breakpoint Selects or opens the Breakpoints window.

Call stack Selects or opens the Call Stack window.

Register Selects or opens the Registers window.

Event log Selects or opens the Event Log window.

Information… Displays system or status information.

The ClassExpert Option
The ClassExpert option invokes the ClassExpert utility, which works only with
project files created by the AppExpert (which we introduce in the next section). This
option invokes the ClassExpert window, which has three panes, as follows:

■■ The Classes pane, which lists the classes involved in the project created using
AppExpert. The information in the other two panes is related to the cur-
rently selected class in this pane.

■■ The Events pane, which lists the command notification, control notifica-
tions, virtual functions, Windows messages, and other events that are related
to the class selected in the Classes pane.

■■ The source-code window, in which the selected class is defined.

Figure 1.11 shows a sample ClassExpert window.



21

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Figure 1.11. A sample ClassExpert window.

The Project Option
The Project option selects or opens the Project window, which lists the targets in the
nodes in the current .IDE file. The Project window displays the files of a target in the
form of a tree-like outline. The outline is made up of nodes that you can expand and
collapse (if they have child nodes). Figure 1.12 shows a sample Project window. Each
node has a bitmap to its left. If the bitmap graphic has a + sign, then the node has child
nodes that are currently hidden. If you click the + sign, you expand that node, and the
IDE replaces the + sign with a – sign. The child nodes without + or – signs have no
child nodes of their own.

If you click the right mouse button on a node in the Project window, the IDE displays
a floating menu that enables you to view various components of the project, manage
nodes, and edit project-related components.

The Message Option
The Message option displays, selects, or opens the Message window, which contains
the source-code compiler, resource compiler, and linker messages. These messages
inform you of the progress of building the .EXE program file. In addition, the Message
window contains any warning or error messages generated by the compilers or by the
linker.



22

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Figure 1.12. A sample Project window.

The Classes Option
The Classes option displays the Browsing Objects window, showing a graph of the
various classes in the current project and how they are interlinked. Typically, the
Browsing Objects window has a vertical and horizontal scroll bar to enable you to
scroll through the various classes involved in the current project. Figure 1.13 shows
a sample Browsing Objects window that displays the custom application class
TWinApp and the application’s frame window class, TMainWindow.

The Globals Option
The Globals option displays the Browsing Globals window, which shows the global
data types, constants, variables, and functions. Figure 1.14 shows a sample Browsing
Globals window. The window identifies each item by using the following special
bitmaps:

■■ The bitmap T indicates that the symbol is a data type.

■■ The bitmap C signals that the symbol is a constant.

■■ The bitmap F signifies that the symbol is a function.

■■ The bitmap V indicates that the symbol is a variable.



23

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Figure 1.13. A sample Browsing Objects window.

The Browsing Globals window contains switches that enable you to filter the viewing
of certain global symbols. The window also contains an edit box control that enables
you to type in the name of the symbol you want to find. The edit box control filters
the symbols with every keystroke you enter.

Figure 1.14. A sample Browsing Globals window.



24

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

The Watch Option
The Watch option selects or opens the Watch window. This window lists the
currently watched variables in your program. Figure 1.15 shows a sample Watch
window. The window displays a check box to the left of each variable. The check box
is checked by default to display and update the value in the associated variable. You
can uncheck the control to temporarily disable displaying the value of a variable. This
task is especially meaningful when the watched variable is not defined in the currently
traced function.

Figure 1.15. A sample Watch window.

The Breakpoint Option
The Breakpoint option displays the Breakpoints window, which lists the location and
type of breakpoints. A breakpoint is a program statement at which the program stops
to enable you to inspect its variables. Figure 1.16 shows a sample Breakpoints window.
The Breakpoints window displays the following information:

■■ The filename that contains the breakpoint.

■■ The line number where the breakpoint is located.

■■ The state of the breakpoint.



25

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

■■ The number of passes (that is, the number of times the statement is executed
before the program stops at the breakpoint).

If you double-click any entry in the Breakpoints window, the IDE displays the
Breakpoints Properties dialog box. This dialog box enables you to edit the breakpoint’s
data. We’ll cover this dialog box when we discuss managing breakpoints in the Debug
menu section.

Figure 1.16. The Breakpoints window.

The Call Stack Option
The Call Stack option displays the Call Stack window, which lists the pending
program and the DLL functions that were called (and not yet returned) when the
program reached the current breakpoint or the current single-stepped line. Figure
1.17 shows a sample Call Stack window. The DLL functions are referenced by the
name of the DLL library, followed by the address of the function.

The Register Option
The Register option displays the Registers window, which reveals the current values
in CPU registers. The information in this window helps you perform a low-level
debug and trace of a program.



26

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Figure 1.17. A sample Call Stack window.

The Event Log Option
The Event Log option displays the Event Log window, which lists the sequence of
breakpoint events. Each log entry includes the breakpoint address, followed by text
that identifies the related Windows messages, output messages, or exceptions. Figure
1.18 shows a sample Event Log window.

The Information… Option
The Information… option displays the Information dialog box. This dialog box
contains the following information:

■■ The current directory

■■ The Windows version and mode

■■ The MS-DOS version

■■ The total free memory space

■■ The largest free memory block

■■ The percent of USER, GDI, and total free heap space

Figure 1.19 shows a sample Information dialog box.



27

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Figure 1.18. A sample Event Log window.

Figure 1.19. A sample Information dialog box.



28

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

The Project Menu
The Project menu offers options that manage a project to build an executable program
or a library. Table 1.5 summarizes the options in the Project menu.

Table 1.5. Summary of the options in the Project menu.

Command Shortcut Keys Function

AppExpert… Invokes the AppExpert utility to
generate the files of a project.

New project… Creates a new project.

Open project… Opens an existing project and closes
the current project.

Close project Closes the current project.

New target… Creates a new target in the current
project.

Compile Alt+F9 Compiles the file in the active edit
window.

Make all Updates the project files by compil-
ing and linking the necessary source-
code files.

Build all Unconditionally compiles and links
all of the project source-code files.

Generate makefile Generates a .MAK makefile.

The AppExpert… Option
The AppExpert… option invokes the AppExpert utility, which is a valuable and
sophisticated tool for rapid program development. The third extra-credit chapter,
“Using the Application Expert,” discusses using the AppExpert.



29

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

The New Project… Option
The New project… option triggers the process that enables you to create a new project
without involving the AppExpert utility. This option brings up the New Project
dialog box, shown in Figure 1.20. The dialog box enables you to specify the following
information:

■■ The path and name of the new project.

■■ The target name (that is, the name of the .EXE file).

■■ The target type, which can be one of the following:

■■ A Windows .EXE application.

■■ A Windows .DLL dynamic library.

■■ An EasyWin .EXE program.

■■ A .LIB static library.

■■ A .LIB import library.

■■ A Windows .HLP help file.

■■ The application’s platform, which can be 16-bit Windows 3.x, Win32, DOS
standard or DOS overlay.

■■ The target’s memory model, which can be tiny, small, compact, medium,
large, or huge (the tiny and huge memory models are only available for DOS
targets).

■■ A variety of choices related to the libraries included.

■■ The options to specify child node files with .C or .CPP extension along with
an optional .RC resource file and a .DEF definition file. The Advanced
pushbutton control in the dialog box offers these options through a special
dialog box.

■■ The option to select the path for the project. The Browse pushbutton
control in the dialog box offers this option.



30

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Figure 1.20. A sample New Project dialog box.

The Open Project… Option
The Open Project… option enables you to open a new project and automatically close
the current one. This option brings up the Open Project File dialog box, which
resembles the File Open dialog box. The Project File dialog box enables you to specify
the drive, directory, and filename wildcards involved in selecting the .IDE or .PRJ
project files. The .IDE project files are new to Borland C++ 4.0 and support multiple
targets. The .PRJ project files are available for backward compatibility with previous
versions of Borland C++ and are automatically converted to .IDE files.

The Close Project Option
The Close Project option closes the current project and its edit windows.

The New Target… Option
The New Target… option enables you to add another target to the project. The
option first brings up the New Target dialog box, which enables you to enter the name
and type of the target. The target type may be AppExpert, Standard, and SourcePool.
If you choose the AppExpert target type, the IDE invokes the AppExpert once you



31

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

close the New Target dialog box. If you select the Standard target type, the IDE
invokes the Add Project dialog box. If you choose the SourcePool target type, the IDE
quietly adds a SourcePool target node. The Project window reflects the addition of the
new target and indicates its type.

A source pool target contains a set of nodes that are not built in the project. Instead,
source pools play the role of templates for creating reference copies, which allow
different targets to employ common source code. For example, you can use the source
pools in creating a 16-bit .EXE target and a 32-bit .EXE target.

The Compile Option
The Compile option compiles the source code in the active edit window. The option
displays the Compile Status dialog box, which informs you of the files being compiled,
the number of lines, the number of warnings, and the number of errors. Once the
compilation process ends, the Message window displays general messages for
the compilation steps and includes warning and error messages generated by the
compiler, linker, and other tools. The shortcut key for this option is Alt+F9.

The Make All Option
The Make All option updates the project’s target by compiling and linking only those
files that have been changed since the previous program make or build operations. The
option also uses the Compile Status dialog box to display the progress of the
compilation and linking steps. Once this process is terminated, the Message window
displays messages that reflect the progress of compiling and linking, along with any
warning and error messages.

The Build All Option
The Build All option is similar to the Make All option, except that it systematically
recompiles and links all of the project’s files.

The Generate Makefile Option
The Generate Makefile option generates a .MAK file. This option opens a new edit
window for the .MAK file, creates the contents of the .MAK file, and then displays
the contents of the makefile in a new edit window. Listing 1.1 shows a sample
COMMDLG1.MAK makefile.



32

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Listing 1.1. The COMMDLG1.MAK file.

#
# Borland C++ IDE generated makefile
#
.AUTODEPEND

IDE_TARGET_NAME = steps

#
# Borland C++ tools
#
TLINK   = TLink
TLINK32 = TLink32
IMPLIB  = Implib
TASM    = Tasm
BCC     = Bcc +$(IDE_TARGET_NAME).cfg
BCC32   = Bcc32 +$(IDE_TARGET_NAME).cfg
BRC     = Brc
BRC32   = Brc32

#
# IDE Debug/Release option
#
!if $d(PRJ_DEBUG)

IDE_DBG_LFLAGS = -v
IDE_DBG_CFLAGS = -v

!endif

#
# IDE macros
#

#
# Options
#
IDE_LFLAGS =  -L\BC4\LIB -c -C
IDE_RFLAGS =  -I\BC4\INCLUDE
IDE_BFLAGS =
CLAT_commdlg1dexe =  -ml -WS -D_USEDLL;
LLAT_commdlg1dexe =  -Twe -C -c
RLAT_commdlg1dexe =
BLAT_commdlg1dexe =
CEAT_commdlg1dexe = $(CLAT_commdlg1dexe)
LEAT_commdlg1dexe = $(LLAT_commdlg1dexe)
REAT_commdlg1dexe = $(RLAT_commdlg1dexe)
BEAT_commdlg1dexe = $(BLAT_commdlg1dexe)
CLAT_commdlg1dcpp =



33

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

LLAT_commdlg1dcpp =
RLAT_commdlg1dcpp =
BLAT_commdlg1dcpp =
CEAT_commdlg1dcpp = $(CEAT_commdlg1dexe) $(CLAT_commdlg1dcpp)
LEAT_commdlg1dcpp = $(LEAT_commdlg1dexe) $(LLAT_commdlg1dcpp)
REAT_commdlg1dcpp = $(REAT_commdlg1dexe) $(RLAT_commdlg1dcpp)
BEAT_commdlg1dcpp = $(BEAT_commdlg1dexe) $(BLAT_commdlg1dcpp)
CLAT_commdlg1drc =
LLAT_commdlg1drc =
RLAT_commdlg1drc =
BLAT_commdlg1drc =
CEAT_commdlg1drc = $(CEAT_commdlg1dexe) $(CLAT_commdlg1drc)
LEAT_commdlg1drc = $(LEAT_commdlg1dexe) $(LLAT_commdlg1drc)
REAT_commdlg1drc = $(REAT_commdlg1dexe) $(RLAT_commdlg1drc)
BEAT_commdlg1drc = $(BEAT_commdlg1dexe) $(BLAT_commdlg1drc)

#
# Dependency List
#
Dep_steps = \
   commdlg1.exe

steps : $(IDE_TARGET_NAME).cfg $(Dep_steps)
#  $(MakeNode) steps

Dep_commdlg1dexe = \
   commdlg1.obj\
   commdlg1.res\
   commdlg1.def

commdlg1.exe : $(Dep_commdlg1dexe)
  $(TLINK)   @&&|
 $(IDE_DBG_LFLAGS) +
 $(IDE_LFLAGS) $(LEAT_commdlg1dexe) +
C:\BC4\LIB\c0wl.obj+
commdlg1.obj
$<,$*
C:\BC4\LIB\bidsi.lib+
C:\BC4\LIB\owlwi.lib+
C:\BC4\LIB\import.lib+
C:\BC4\LIB\crtldll.lib
commdlg1.def
|
   $(BRC) commdlg1.res $<

commdlg1.obj :  commdlg1.cpp
  $(BCC)   -c $(CEAT_commdlg1dcpp) -o$@ commdlg1.cpp

commdlg1.res :  commdlg1.rc
  $(BRC) $(IDE_RFLAGS) $(REAT_commdlg1drc) -R -FO$@ commdlg1.rc

continues



34

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Listing 1.1. continued

# Compiler configuration file
$(IDE_TARGET_NAME).cfg :
   Copy &&|
$(IDE_DBG_CFLAGS)
-I\BC4\INCLUDE
| $(IDE_TARGET_NAME).cfg

The Debug Menu
The Debug menu provides you with options that enable you to manage debugging
and executing your C or C++ source code. Table 1.6 summarizes the options in the
Debug menu.

Table 1.6. Summary of the options in the Debug menu.

Command Shortcut Keys       Function

Run Ctrl+F9                 Runs the program of the current
target. If necessary, this option also
compiles and links the project
source-code files.

Step over F8                          Single-steps through the next
statement without tracing the
statements of functions that are
called in the next statement.

Trace into F7                          Single-steps through the next
statement and also traces the
statements of functions that are
called in the next statement.

Toggle breakpoint F5                          Toggles making the line at the
current cursor location an uncondi-
tional breakpoint.

Find execution                              Shows the source code at the point
of execution.

Pause program                              Pauses the program and switches to
the debugger.



35

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Terminate program Ctrl+F2                 Stops the program and restarts it
from the beginning.

Add watch… Ctrl+F5                 Opens the Watch Properties dialog
box to add a variable to watch.

Add breakpoint…                              Opens the Breakpoint Properties
dialog box to add a breakpoint.

Evaluate/Modify…                              Evaluates an expression and modi-
fies the value in a variable.

Inspect… Alt+F5                   Inspects the contents of a variable.

Load symbol table…                              Loads DLL symbol table.

The Tool Menu
The Tool menu provides you with access to several programming utilities. The IDE
Tools… option in the Options menu enables you to customize the list of program-
ming tools that appear in the Tool menu. Table 1.7 summarizes the default options
in the Tool menu.

Table 1.7. Summary of the default options in the Tool menu.

Command Shortcut Keys Function

TDW Invokes the Turbo Debugger for
Windows to work with the current
target node.

Resource Workshop Invokes the Resource Workshop
utility.

Grep Runs the Grep utility on the currently
selected nodes.

WinSight Invokes the WinSight utility to
monitor Windows messages.

Command Shortcut Keys       Function

continues



36

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Table 1.7. continued

Command Shortcut Keys Function

WinSpector Runs the WinSpector utility to per-
form postmortem analysis.

Key map compiler Compiles the IDE key map file.

The Options Menu
The Options menu enables you to fine-tune the operations of the compiler, linker,
editor, and all of the other components of the IDE. Table 1.8 summarizes the options
in the Options menu.

Table 1.8. Summary of the options in the Options menu.

Command Shortcut Keys Function

Project… Inspects and edits the setting of the
current project.

Environment… Views and edits the setting of the envi-
ronment.

Tools… Adds or deletes (or both) tools in the
Tool commands.

Style Sheets… Edits the options style sheets.

Save… Configures to save the project, desktop,
and environment.

The Project… Option
The Project… option displays the dialog box with the title “Style Sheet: Default
Project Options,” as shown in Figure 1.21. The Project Option dialog box contains
a list of topics that influence the appearance of commenting text and the controls for
each topic. The Project Options topics are these:



37

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

■■ The Directories topic, which enables you to specify the directories for the
include, library, and source code files, as well as to specify the paths for
intermediate and final files.

■■ The Compiler topic, which enables you to fine-tune the compiling of C and
C++ source code, specify the preprocessor definitions, manage the inclusion
of debug information, and manage precompiled header files.

■■ The 16-bit Compiler topic, which enables you to manage compiling for 16-
bit Windows 3.x applications, select the processor type, and choose the
memory model for the compiled files.

■■ The 32-bit Compiler topic, which enables you to generate 32-bit Windows
applications (aimed at Win32s and Windows NT) and specify the processor
type.

■■ The C++ Options topic, which assists you in determining how the C++
compiler interprets your source code to manage new and old C++ language
features.

■■ The Optimizations topic, which enables you to fine-tune the generation of
the program or library code to make that code smaller or faster, or to
perform general optimization.

■■ The Messages topic, which enables you to determine the kind of messages
emitted during the creation of the program. The options in the Message
topic allows you to choose anything from a very strict to a very relaxed level
of warnings and errors.

■■ The Linker topic, which enables you to control the creation of .OBJ, and
.LIB  files, which are united into the executable .EXE files.

■■ The Librarian section, which enables you to combine a set of .OBJ files into
a .LIB file and control this process.

■■ The Resources section, which enables you to specify the target Windows
version in order to create the right kind of .RES compiled resource file and
how it is bound to the .EXE.

■■ The Make section, which offers options that control the integrated make
process.



38

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Figure 1.21. A sample session with the Project Options dialog box.

The Environment… Option
The Environment… option brings up the Environment Options dialog box, shown
in Figure 1.22, which enables you to customize various aspects of the IDE. These
aspects are organized and controlled by the following sections that appear in the dialog
box:

■■ The Editor topic, which controls the operations of the IDE’s text editor.
The Editor’s subtopics allow you to select the default text editor (which is
similar to WordStar), select the IDE classical text editor, to emulate the
BRIEF editor, to emulate the Epsilon editor, or to customize various aspects
of the current text editor.

■■ The Syntax Highlighting topic, which enables you to determine both the
color and style used by the editor to display the source code. The syntax
topic offers a few predefined sets of colors and styles.

■■ The Browser topic, which enables you to determine the default filters for the
Browser. In addition, the topic enables you to request the creation of new
windows as you traverse through the hierarchy of classes.



39

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

■■ The Debugger topic, which enables you to select between hard mode and
soft mode debugging and to select smart mode debugging. (The hard and
soft debugging modes determine how the Windows messages are intercepted
by the debugger.) In addition, this topic enables you to select the capture of
Windows messages, output messages, and breakpoints.

■■ The Speedbar section, which enables you to customize the location and
contents of the speed bar.

■■ The Preferences section, which provides you with options related to saving
various IDE components, such as the editor files, the environment, the
desktop, and the project. The section also provides you with options to
specify which parts of the desktop to save.

■■ The Project View section, which provides options that determine the kind of
information to include in the Project window—code size, data size, location,
name, number of lines, node type, and so on.

Figure 1.22. A sample session with the Environment Options dialog box.

The Tools… Option
The Tools… option enables you to add new menu items to the Tool menu and to
delete items from that menu. Figure 1.23 shows the Tools dialog box, which contains



40

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

a Tools list box that shows you the available tools. If you click the Edit pushbutton,
the dialog box brings up the Tools Options dialog box, as shown in Figure 1.24. The
latter dialog box enables you to specify the name of the tool, along with its path,
command line, menu text, and help hint (which appears in the status line).

Figure 1.23. The Tools dialog box.

Figure 1.24. The Tools Options dialog box.



41

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

The Style Sheets… Option
The Style Sheets… option displays the Style Sheet dialog box, shown in Figure 1.25,
which enables you to select a configuration for the compile and runtime settings for
a project. Each style sheet is a predefined collection of settings that can be affiliated
with a node.

Figure 1.25. The Style Sheet dialog box.

The Save… Option
The Save… option enables you to specify to automatically save the desktop,
environment, and project file. This option invokes the Save Options dialog box,
which offers check boxes for saving these three IDE components.

The Window Menu
The Window menu offers options to manage windows in the IDE client area. These
options, which are summarized in Table 1.9, allow you to arrange, close, minimize,
and restore some or all of the windows. In addition to the standard options, the
Window menu also lists the current windows.



42

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Table 1.9. Summary of the options in the Window menu.

Command Shortcut Keys Function

Cascade Shift+F5 Cascades the windows in the client area of
the IDE.

Tile Shift+F4 Tiles the windows horizontally on the
client area of the IDE.

Tile vertical Tiles the windows vertically on the client
area of the IDE.

Arrange icons Arranges the icons in the client area of the
IDE.

Close all Closes all windows— debugger windows,
browser windows, or editor windows.

Minimize all Minimizes all windows, debugger win-
dows, browser windows, or editor win-
dows.

Restore all Restores all windows, debugger windows,
browser windows, or editor windows.

The Help Menu
The Help menu provides you with the kind of online help you may have gotten from
other software. Table 1.10 summarizes the options in the Help menu.

Table 1.10. Summary of the options in the Help menu.

Command Shortcut Keys Function

Contents Displays the table of contents for the
online help system.

Keyword search F1 Displays help regarding the keyword
upon which the cursor is situated.

Keyboard Displays information about the mapping
of the keyboard.



43

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Using help Displays information to assist you in
using the online help system.

About… Displays information regarding the
software version and copyright.

The EasyWin Applications
The Borland C++ IDE enables you to build a special kind of program called an
EasyWin application. This application is a cross between an MS-DOS program and
a Windows program. The programs in Days 1 through 12 of this book are EasyWin
applications that enable you to focus on learning C++ using a DOS-like interface and
input/output procedure. The EasyWin window is the standard input and output for
C++ programs (compiled as EasyWin applications). The EasyWin window has a
simple menu with few options and a few selections.

To create an EasyWin application, perform the following steps:

1. Load the Borland C++ IDE.

2. Choose the Project menu from the menu bar.

3. Select the New Project command to invoke the New Project dialog box.

4. Enter the path and name of the .IDE project file in the topmost edit box.
The dialog box echoes the pathname (as you type it) in the Target name edit
box (that is, it makes the program name match the name of the project).
You need to edit the target name if the name of the program does not match
the name of the .IDE project file. You can use the Browse… pushbutton to
select the directory that will contain the project files.

5. Click the Advanced… pushbutton to invoke the Advanced Options dialog
box. Select the check box labeled .cpp node. This selection causes the IDE
to insert the .CPP node for the EasyWin source-code file. Close the Ad-
vanced Options dialog box.

6. Select the EasyWin [.exe] item in the Target type list box.

7. Click the OK pushbutton to create the new project file.

Command Shortcut Keys Function



44

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

8. The IDE displays the Project window, which lists the nodes for the various
programs. When you first create a project file, the Project window will have
only one node.

9. Click the main node to view the files contained in that node. The nodes of
EasyWin programs contain only one file, a .CPP file, which has the source
code. Double-click the .CPP file to request editing the file. Initially, the
source window for the .CPP file is empty.

10. Enter the source code for the EasyWin program.

11. Press the Ctrl+F9 keys to compile, link, and run the EasyWin program. The
compiler flags any errors and lists them in the Message window. If the
EasyWin program is correct, the IDE will launch it.

You can add more than one program in an .IDE file. We suggest that you group the
programs of each of the first twelve days in .IDE files named DAY1.IDE, DAY2.IDE,
and so on. Grouping related program files in a single IDE saves space because the .IDE
files are not small.

To add another node to an existing .IDE file, you perform the following steps:

1. Load the Borland C++ IDE.

2. Choose the Project menu from the menu bar.

3. Select the New Target command to invoke the New Target dialog box.

4. Enter the name of the new program and click the OK pushbutton.

5. The IDE displays the New Project dialog box. Simply click the OK
pushbutton to add a new program node in the Project window.

6. The IDE displays the Project window, which lists the new nodes for the new
program.

Your First C++ Program
The first C++ program presented in this book displays a one-line greeting message.
This simple program enables you to see the very basic components of a C++ program.

Listing 1.2 contains the source code for the program HELLO.CPP with numbered
lines. Do not enter the line numbers when you type in the program. These line
numbers serve as reference only. This simple program displays the string Hello
Programmer! Carry out the following steps to create and run this first C++ program:



45

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Type

1. Load the Borland C++ IDE if it is not already loaded.

2. Choose the Project menu from the menu bar.

3. Select the New Project command to invoke the New Project dialog box.

4. Enter \bc4\bc21day\hello.ide in the edit box requesting the Project path
and name. The dialog box also shows the name “hello” in the Target name
edit box.

5. Click the Advanced… pushbutton to invoke the Advanced Options dialog
box. Select the check box labeled .cpp Node. Close the Advanced Options
dialog box.

6. Select the EasyWin [.exe] item in the Target type list box.

7. Click the OK pushbutton to create the new project file.

8. The IDE displays the Project window, which lists the node for the hello
program.

9. Click the hello.exe node to view the hello.cpp node. Double-click the
hello.cpp node to invoke the IDE editor.

10. Enter in the new window the program shown in Listing 1.1.

11. Choose the Save As… command in the File menu. Save the C++ programs
as HELLO.CPP in directory \BC4\BC21DAY.

12. Press the Ctrl+F9 keys to compile, link, and run the HELLO.EXE program.

When an EasyWin program ends, the runtime system alters the title of the program’s
window to include the word Inactive. To close the program’s window, select the Close
command from the system menu, or simply press the Alt+F4 keys.

Listing 1.2. Source code for the program HELLO.CPP.

1: // a trivial C++ program that says hello
2:
3: #include <iostream.h>
4:
5: main()
6: {
7:   cout << “Hello Programmer!”;
8:   return 0;
9: }



46

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

The output of the program appears in Figure 1.26. Notice that the caption of the
output window starts with the word Inactive to indicate that the program has
terminated.

Figure 1.26. The output of the HELLO.EXE program.

Examine the short code of the C++ program and notice the following
characteristics:

■■ C++ uses the // characters for comments that go to the end of the line. C++
also supports the C-style comments that begin with the /* characters and
end with the */ characters. Line 1 contains a comment that briefly describes
the program.

☛ New Term: Comments are remarks that you put in the program to explain
or clarify certain parts of the program. The compiler ignores comments.

■■ The C++ program has no reserved keywords that declare the end of a
program. In fact, C++ uses a rather simple scheme for organizing a program.
This scheme supports two levels of code: global and single-level functions. In

Analysis



47

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

addition, the function main, which starts in line 5, plays a very special role
because runtime execution begins with this function. Therefore, there can be
only a single function main in a C++ program. You can place the function
main anywhere in the code.

■■ The C++ strings and characters are enclosed in double and single quotes,
respectively. Thus, ‘A’ is a single character whereas “A” is a single-character
string. Mixing C++ single-character strings and characters is not allowed.

☛ New Term: Strings can have any number of characters, including no
characters. A string without any characters is called the empty string.

■■ C++ defines blocks using the { and } characters. See examples in lines 6 and
9, respectively.

■■ Every statement in a C++ program must end with a semicolon (;).

■■ C++ contains the #include compiler directive. An example of this is in line
3, instructing the Borland C++ compiler to include the IOSTREAM.H
header file. C++ extends the notion of streams, which already exists in C.
IOSTREAM.H provides the operations that support basic stream input and
output. The C++ language does not include built-in I/O routines. Instead,
the language relies on libraries specializing in various types of I/O.

☛ New Term: A compiler directive is a special instruction for the compiler. A
header file contains the declarations of constants, data types, variables, and
forward (early) declarations of functions. A stream is a sequence of data
flowing from one part of a computer to another.

■■ The C++ program outputs the string Hello Programmer! to the standard
output stream cout, which is the EasyWin window. In addition, the pro-
gram uses the extractor operator, <<, to send the emitted string to the output
stream.

■■ The function main must return a value that reflects the error status of the
C++ program. Returning the value 0 signals to the operating system that the
program terminated normally.



48

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Exiting the IDE
To exit the IDE, choose the Exit command in the File menu.

Summary
Today’s lesson introduced you to the Borland C++ IDE and presented you with the
first C++ program. You learned these basics:

■■ C++ programs are modular and rely on standard and custom libraries.

■■ The two ways to load the Borland C++ IDE are clicking the Borland C++
icon or double-clicking the BCW.EXE file when using the File Manager (or
any similar utility).

■■ The Borland C++ IDE is a versatile environment for developing, maintain-
ing, and debugging C and C++ programs and libraries for MS-DOS and
Windows applications.

■■ The File menu manages the creation of new files, the opening of files, the
saving of files, printing, and exiting the IDE.

■■ The Edit menu offers options to perform popular editing operations (such as
undo, cut, copy, paste, and delete).

■■ The Search menu enables you to find and replace text, as well as to browse
through symbols, locate functions, and visit the offending source-code lines.

■■ The View menu enables you to view a wide variety of information. Among
the viewable information are the project nodes, compiler and linker mes-
sages, the hierarchy of the project classes, global symbols, watched variables,
the stack of called functions, and the CPU registers.

■■ The Project menu provides options to create, open, close and manage a
project. The project options enable you to compile and link related source
code files.

■■ The Debug menu offers options that enable you to debug and single-step in
the source code from within the IDE and watch the values of variables in the
Watch window.



49

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

■■ The Tool menu enables quick access to a variety of Windows programming
tools, such as the Turbo Debugger for Windows, the message-tracing
WinSight utility, the postmortem WinSpector utility, and your own tools.

■■ The Options menu enables you to fine-tune various aspects of your
project—environment, tools, and project style sheets.

■■ The Window menu is for managing, arranging, closing, and restoring the
windows in the IDE desktop.

■■ The Help menu provides you with the online help.

■■ The EasyWin applications are Windows applications providing special
windows that act as standard input and output devices. EasyWin applica-
tions allow you to write DOS-like programs.

■■ The first C++ program in this book is a simple greeting program that
illustrates the basic components of a C++ program. These components
include comments, the #include directive, and the main function.

■■ You exit the IDE through the Exit selection in the File menu.

Q&A
Q Does C++ use line numbers?

A No. We are using line numbers in the listings in this book only for the sake
of reference.

Q Does the IDE’s editor monitor what I type?

A Yes, it does. In fact, when you type a C++ keyword, the IDE quickly colors
that keyword.

Q What happens if I forget to type the second double quote in the first
program?

A The compiler tells you that there is an error in the program. You need to add
the second double quote and build the project.

Q How do I delete text in the currently edited window?

A Use the Replace selection in the Edit option and specify nothing for the
replacement string, or use the Edit menu’s cut and clear commands.



50

Getting Started
M

T
W

R
F

S
S

DAYDAY

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing on to the
next day’s lesson. (Answers are provided in Appendix A, “Answers.”)

Quiz
1. What is the output of the following program?

1: // quiz program #1

2:

3: #include <iostream.h>

4:

5: main()

6: {

7:   cout << “C++ in 21 Days?”;

8:   return 0;

9: }

2. What is the output of the following program?

1: // quiz program #2

2:

3: #include <iostream.h>

4:

5: main()

6: {

7:   // cout << “C++ in 21 Days?”;

8:   return 0;

9: }

3. What is wrong with the following program?

1: // quiz program #3

2:

3: #include <iostream.h>

4:

5: main()

6: {



51

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

1

two/bns8 TYS Borland C++ 21  #30483  kim  4-13-94    CH01   LP#3(sp 4/12 folio)

7:   cout << “C++ in 21 Days?”

8:   return 0;

9: }

Exercise
Write a program that displays the message I am a C++ Programmer.



VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

53

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

2

M
T

W
R

F
S

S

WEEK

C++ Program
Components

22

11



54

C++ Program Components
M

T
W

R
F

S
S

DAYDAY

2

VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

Day 1 presented the Borland IDE and a simple C++ program. Today you will focus
on the basic components of C++ programs, including data types, variables, constants,
and functions. You will learn about the following topics:

■■ The predefined data types in Borland C++ 4.0

■■ Naming items in Borland C++ 4.0

■■ The #include directive

■■ Declaring variables

■■ Declaring constants

■■ Declaring and prototyping functions

■■ Local variables in functions

■■ Static variables in functions

■■ Inline functions

■■ Exiting functions

■■ Default arguments

■■ Function overloading

Predefined Data Types
in Borland C++ 4.0

Borland C++ 4.0 offers the int, char, float, double, and void data types to represent
integers, characters, single-precision floating-point numbers, double-precision
floating-point numbers, and valueless data, respectively. C++ uses the void type with
a function’s returned values to indicate that the function does not yield a significant
result—that is, the function acts as a procedure.

C++ adds more flexibility to data types by supporting data type modifiers. The type
modifiers are as follows: signed, unsigned, short, and long. Table 2.1 shows the
predefined data types in C++ (and includes the type modifiers), along with their sizes
and ranges. Notice that int and unsigned int are system-dependent. The table shows
the 16-bit values for the predefined data types in C++.

☛ New Term: Data type modifiers alter the precision and the range of values.



VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

55

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

2

Table 2.1. Predefined data types in C++.

Data Type Byte Size Range Examples

char 1 –128 to 127 ‘A’,’!’

signed char 1 –128 to 127 23

unsigned char 1 0 to 255 200,0x1a

int 2 Depends on system 3000

–32768 to 32767
for 16-bit

unsigned int 2 Depends on system 0xffff,
0 to 65535 for 16-bit 65535

short int 2 –32768 to 32767 100

unsigned short int 2 0 to 65535 0xff,
40000

long int 4 –2147483648 to 0xfffff

2147483647 -123456,

unsigned long int 4 0 to 4294967295 123456

float 4 3.4E–38 to 3.4E+38 2.35,
and –3.4E–38 to -52.354,
–3.4E+38 1.3e+10

double 8 1.7E–308 to 1.7E+308 12.354

and –1.7E–308 -2.5e+100

to –1.7E+308 -78.32544

long double 10 3.4E–4932 to
1.1E+4932 8.5e-3000

and –1.1E–4932
to –3.4E+4932

☛
New Term: C++ supports hexadecimal numbers. Such numbers begin
with the characters 0x, followed by the hexadecimal value. For example,
the number 0xff is the hexadecimal equivalent of the decimal number
255.



56

C++ Program Components
M

T
W

R
F

S
S

DAYDAY

2

VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

Naming Items in Borland C++
4.0

Borland C++ 4.0 requires you to observe the following rules with identifiers:

1. The first character must be a letter or an underscore (_).

2. Subsequent characters can be letters, digits, or underscores.

3. The maximum length of an identifier is 32 characters.

4. Identifiers are case-sensitive in C++. Thus, the names rate, RATE, and Rate
refer to three different identifiers.

5. Identifiers cannot be reserved words, such as int, double, or static to name
just a few.

The following are examples of valid identifiers:

X
x
aString
DAYS_IN_WEEK
BinNumber0
bin_number_0
bin0Number2
_length

DO DON’T
DO use descriptive names that have a reasonable length.

DON’T use identifier names that are too short or too long. Short names yield
poor readability, and long names are prone to typographical errors.

The #include Directive
You will recall that a directive is a special instruction for C and C++ compilers. A
directive begins with the # character and is followed by the directive name. Directives
are usually placed in the first column of a line. They can be preceded only by spaces
or tab characters. The C++ program in Day 1 contains the #include directive. This
directive tells the compiler to include the text of a file as if you have typed that text
yourself. Thus, the #include directive is a better alternative than cutting text from one
file and pasting in another file. Recall from Day 1 that programs use the #include
directive to include header files.



VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

57

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

2

The #include Directive
The general syntax for the #include directive is

#include <filename>
#include “filename”

Examples:

#include <iostream.h>
#include “string.h”

The filename represents the name of the included file. The two forms differ in how
the #include directive searches for the included file. The first form searches for the file
in the special directory for included files. The second form extends the search to
involve the current directory before searching the include directory.

Declaring Variables
Declaring variables requires you to state the data type of the variable and the name of
the variable. The word variable indicates that you can alter the data of these data
containers.

☛ New Term: Variables are identifiers used to store and recall information.
You can regard a variable as a labeled data container.

Declaring Variables
The general syntax for declaring variables is

type variableName;
type variableName = initialValue;
type var1 [= initVal1], var2 [= initVal2], ...;

Examples:

int j;
double z = 32.314;
long fileSize, diskSize, totalFileSize = 0;

C++ enables you to declare a list of variables (that have the same types) in a declarative
statement, for example:

S
yn

ta
x

S
yn

ta
x



58

C++ Program Components
M

T
W

R
F

S
S

DAYDAY

2

VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

Type

int j, i = 2, k = 3;
double x = 3.12;
double y = 2 * x, z = 4.5, a = 45.7;

The initializing values may contain other variables defined earlier.

DO DON’T
DO resist using global variables.

DON’T declare variables within the same program unit with names that are
different in character case (such as rate and Rate).

Let’s look at a simple example that uses variables. Listing 2.1 shows the source code
for the program VAR1.CPP. The program declares four variables, two of which are
initialized during their declarations. The program then assigns values to the uninitialized
variables and displays the contents of all four variables. Create the project DAY2.IDE
(in the directory \BC4\BC21DAY) and include the VAR1.CPP file as a node.
Compile and run the VAR1.EXE program.

Listing 2.1. Source code for the program VAR1.CPP.

1:  // C++ program that illustrates simple variables
2:
3:  #include <iostream.h>
4:
5:  main()
6:  {
7:    int i, j = 2;
8:    double x, y = 355.0 / 113;
9:
10:   i = 3 * j;
11:   cout << “i = “ << i << “\n”
12:        << “j = “ << j << “\n”;
13:
14:   x = 2 * y;
15:   x = x * x;
16:   cout << “y = “ << y << “\n”
17:        << “x = “ << x << “\n”;
18:   return 0;
19:
20: }



VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

59

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

2

Here is a sample session with the program in Listing 2.1:

i = 6
j = 2
y = 3.14159

  x = 39.4784

The program uses the #include directive in line 3 to include the stream I/O
header file IOSTREAM.H. The function main appears in line 5. The function
contains the declarations of the int-typed variables i, j in line 7, and the double-

typed variables x and y in line 8. The declarations initialize the variable j and y. The
statement in line 10 multiplies the value in variable j (which is 2) by 3 and stores the
result in variable x. The stream output statement in lines 11 and 12 displays the values
of variables i and j. The statement includes strings that label the output.

The statement in line 14 doubles the value in variable y and stores it in variable x. The
statement in line 15 squares the value in variable x and assigns the result back to
variable x. This statement uses the variable x on both sides of the equal sign. The
stream output statement in lines 16 and 17 displays the values in variable x and y. The
statement in line 18 returns 0 as the result of function main.

Declaring Constants
Many languages, such as BASIC (the more recent implementations), Modula-2, Ada,
C, Pascal, and C++, support constants. No one can deny that constants enhance the
readability of a program by replacing numeric constants with identifiers that are more
descriptive. Moreover, using constants enables you to change the value of a program
parameter by merely changing the value of that parameter in one location. This
capability is more convenient and less prone to generate the errors that may occur
when you employ your text editor to replace certain numbers with other numbers.

☛ New Term: Constants are identifiers that are associated with fixed values.
C++ offers constants in two varieties: macro-based and formal. The macro-
based constants are inherited from C and use the #define compiler
directive.

Output

Analysis



60

C++ Program Components
M

T
W

R
F

S
S

DAYDAY

2

VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

The #define Directive
The general syntax for the #define directive is

#define constantName constantValue

The #define directive causes the compiler to invoke the preprocessor and perform text
substitution to replace the macro-based constants with their values. This text
replacement step occurs before the compiler processes the statements in the source file.
Consequently, the compiler never sees the macro-based constants themselves—only
what they expand to.

Examples:

#define ASCII_A 65
#define DAYS_IN_WEEK 7

The second type of constant in C++ is the formal constant.

The Formal Constant
The general syntax for the formal constant is

const dataType constantName = constantValue;

The dataType item is an optional item that specifies the data type of the constant
values. If you omit the data type, the C++ compiler assumes the int type.

Examples:

const unsigned char ASCII_A = 65;
const DAYS_IN_WEEK = 7;
const char FIRST_DISK_DRIVE = ‘A’;

DO DON’T
DO use uppercase names for constants. This naming style enables you to
determine quickly if an identifier is a constant.

DON’T assume that other people who read your code will know what
embedded numbers mean. Use declared constants to enhance the readability
of your programs.

S
yn

ta
x

S
yn

ta
x



VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

61

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

2
Type

Using Macro-Based Constants
Now consider an example that uses macro-based constants. Listing 2.2 shows the
source code for the program CONST1.CPP. The program prompts you to enter the
number of hours, minutes, and seconds since midnight. The program then calculates
and displays the total number of seconds since midnight. Add the CONST1.CPP file
as a node in the project file DAY2.IDE. Compile and run the CONST1.EXE program
by pressing Ctrl+F9.

Listing 2.2. Source code for the program CONST1.CPP.

1:  // C++ program that illustrates constants
2:
3:  #include <iostream.h>
4:
5:  #define SEC_IN_MIN 60
6:  #define MIN_IN_HOUR 60
7:
8:  main()
9:  {
10:   long hours, minutes, seconds;
11:   long totalSec;
12:
13:   cout << “Enter hours: “;
14:   cin >> hours;
15:   cout << “Enter minutes: “;
16:   cin >> minutes;
17:   cout << “Enter seconds: “;
18:   cin >> seconds;
19:
20:   totalSec = ((hours * MIN_IN_HOUR + minutes) *
21:                SEC_IN_MIN) + seconds;
22:
23:   cout <<“\n\n” << totalSec << “ seconds since midnight”;
24:   return 0;
25: }

Here is a sample session with the program in Listing 2.2:

Enter hours: 10
Enter minutes: 0
Enter seconds: 0

    36000 seconds since midnight

Output



62

C++ Program Components
M

T
W

R
F

S
S

DAYDAY

2

VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

The program uses the #include directive in line 3 to include the header file
IOSTREAM.H. Lines 5 and 6 contain the #define directive that declares the
macro-based constants SEC_IN_MIN and MIN_IN_HOUR. Both constants have the

value 60, but each value has a different meaning. The function main, which starts at
line 8, declares four long-typed variables: hours, minutes, seconds, and totalSec.

The function uses pairs of statements to output the prompting messages and receive
input. Line 13 contains the stream output statement that prompts you for the number
of hours. Line 14 contains the stream input statement. The identifier cin is the name
of the standard input stream and uses the insertion operator >> to read data from the
keyboard and to store it in the variable hours. The input and output statements in lines
15 through 18 perform a similar task of prompting for input and obtaining keyboard
input.

Line 20 contains a statement that calculates the total number of seconds since
midnight and stores the result in the variable totalSec. The statement uses the macro-
based constants MIN_IN_HOUR and SEC_IN_MIN. As you can see, using these constants
enhances the readability of the statement, compared to using the number 60 in place
of both constants. Line 23 contains a stream output statement that displays the total
number of seconds since midnight (stored in the variable totalSec), followed by
qualifying text to clarify the output.

Using Formal Constants
Now let’s look at a new version of the program, one that uses the formal C++
constants. Listing 2.3 shows the source code for the program CONST2.CPP. This
program works like the CONST1.CPP program. Add the CONST2.CPP file as a
node in the project file DAY2.IDE. Compile and run the CONST2.EXE program by
pressing the Ctrl+F9 keys.

Note: At this point, we assume that you are familiar with the process of
creating the .CPP source file, creating the .IDE project file, and adding
.CPP files as nodes in the project file. From now on we will not mention
creating these files, unless there is a special set of source files in a project.

Analysis



VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

63

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

2

Type Listing 2.3. Source code for the program CONST2.CPP.

1:  // C++ program that illustrates constants
2:
3:  #include <iostream.h>
4:
5:  const SEC_IN_MIN = 60; // global constant
6:
7:  main()
8:  {
9:    const MIN_IN_HOUR = 60; // local constant
10:
11:   long hours, minutes, seconds;
12:   long totalSec;
13:
14:   cout << “Enter hours: “;
15:   cin >> hours;
16:   cout << “Enter minutes: “;
17:   cin >> minutes;
18:   cout << “Enter seconds: “;
19:   cin >> seconds;
20:
21:   totalSec = ((hours * MIN_IN_HOUR + minutes) *
22:                SEC_IN_MIN) + seconds;
23:
24:   cout <<“\n\n” << totalSec << “ seconds since midnight”;
25:   return 0;
26: }

Here is a sample session with the program in Listing 2.3:

Enter hours: 1
Enter minutes: 10
Enter seconds: 20

     4220 seconds since midnight

The programs in Listings 2.2 and 2.3 are similar. The difference between them
is in how they declare their constants. In Listing 2.3, we use the formal C++
constant syntax to declare the constants. In addition, we declare the constant

SEC_IN_MIN in line 5, outside the function main. This kind of declaration makes the
constant global. That is, if there were another function in the program, it would be
able to use the constant SEC_IN_MIN. By contrast, we declare the constant MIN_IN_SEC
inside the function main. Thus, the constant MIN_IN_SEC is local to the function main.

Output

Analysis



64

C++ Program Components
M

T
W

R
F

S
S

DAYDAY

2

VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

Declaring and Prototyping
Functions

Most programming languages use functions and procedures. C++ does not support
formal procedures. Instead, all C++ routines are functions.

☛ New Term: Functions are the primary building blocks that conceptually
extend the C++ language to fit your custom programs.

Declaring Functions
The general form for the ANSI C style of declaring functions (which is maintained
by C++) is

returnType functionName(typedParameterList)

Examples:

double sqr(double y)
{ return y * y; }

char prevChar(char c)
{ return c - 1; }

Remember the following rules when declaring C++ functions:

1. The return type of the C++ function appears before the function’s name.

2. If the parameter list is empty, you still use empty parentheses. C++ also
allows you the option of using the void keyword to explicitly state that there
are no parameters.

3. The typed parameter list consists of a list of typed parameters that use the
following general format:

[const] type1 parameter1, [const] type2 parameter2, ...

This format shows that the individual parameter is declared like a variable—
you state the type first and then the parameter’s identifier. The list of
parameters in C++ is comma-delimited. In addition, you cannot group a
sequence of parameters that have exactly the same data type. You must
declare each parameter explicitly. If a parameter has the const clause, the

S
yn

ta
x



VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

65

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

2

compiler makes sure that the function does not alter the arguments of that
parameter.

4. The body of a C++ function is enclosed in braces ({}). There is no semicolon
after the closing brace.

5. C++ supports passing arguments either by value or by reference. By default,
parameters pass their arguments by value. Consequently, the functions work
with a copy of the data, preserving the original data. To declare a reference
parameter, insert the & character after the data type of the parameter. A
reference parameter becomes an alias to its arguments. Any changes made to
the reference parameter also affect the argument. The general form for
reference parameters is

[const] type1& parameter1, [const] type2& parameter2, ...

If a parameter has the const clause, the compiler makes sure that the func-
tion does not alter the arguments of that parameter.

6. C++ supports local constants, data types, and variables. Although these data
items can appear in nested block statements, C++ does not support nested
functions.

7. The return keyword returns the function’s value.

8. If the function’s return type is void, you do not have to use the return
keyword, unless you need to provide an exit route in the middle of the
function.

☛ New Term: C++ dictates that you either declare or define a function
before you use it. Declaring a function, commonly called prototyping, lists
the function name, return type, and the number and type of its param-
eters. Including the name of the parameter is optional. You also need to
place a semicolon after the close parenthesis. C++ requires that you
declare a function if you call it before you define it.

The following is a simple example of prototyping:

// prototype the function square
double sqr(double);

main()
{



66

C++ Program Components
M

T
W

R
F

S
S

DAYDAY

2

VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

  cout << “5^2 = “ << sqr(5) << “\n”;
  return 0;
}

double sqr(double z)
{ return z * z; }

Notice that the declaration of function sqr only contains the type of its single
parameter.

Typically, the declaration of a function is global. You may still prototype a function
within its client function. This technique conceals the prototype from other func-
tions.

Calling a function requires that you supply its parameter with arguments. The
arguments are mapped onto the parameter by the sequence in which the parameters
are declared. The arguments must be data types that match or are compatible with
those of the parameters. For example, you may have a function volume, defined as
follows:

double volume(double length, double width, double height)
{
  return length * width * height;
}

To call the function volume, you need to supply double-typed arguments or arguments
with compatible types (which, in this case, are all of numeric data types). Here are a
number of sample calls to the function volume:

double len = 34, width = 55, ht = 100;
int i = 3;
long j = 44;
unsigned k = 33;

cout << volume(len, width, ht) << “\n”;
cout << volume(1, 2, 3) << “\n”;
cout << volume(i, j, k) << “\n”;
cout << volume(len, j, 22.3) << “\n”;

Note: C++ enables you to discard the result of a function. This kind of
function call is used when the focus is on what the function does rather
than its return value.



VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

67

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

2

Type

Local Variables in Functions
Good structured-programming techniques foster the notion that functions should be
as independent and as reusable as possible. Consequently, functions can have their
own data types, constants, and variables to give them this independence.

☛ New Term: The local variable in a function exists only when the host
function is called. Once the function terminates, the runtime system
removes the local variables. Consequently, local variables lose their data
between function calls. In addition, the runtime system applies any
initialization to local variables every time the host function is called.

DO DON’T
DO use local variables to store and alter the values of parameters that are
declared with the const clause.

DON’T declare a local variable to have the same name as a global variable
that you need to access in the function.

Let’s look at an example. Listing 2.4 displays the value of the mathematical function

f(X) = X2 - 5 X + 10

and its slope at the argument 3.5. The program calculates the slope using the
approximation

f’(X) = (f(X + h) - f(X - h)) / 2h

where h is a small increment.

Listing 2.4. Source code for the program VAR2.CPP.

1:  // C++ program that illustrates local variables in a function
2:
3:  #include <iostream.h>
4:
5:  double f(double x)
6:  {
7:    return x * x - 5 * x + 10;

continues



68

C++ Program Components
M

T
W

R
F

S
S

DAYDAY

2

VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

Listing 2.4. continued

8:  }
9:
10: double slope(double x)
11: {
12:   double f1, f2, incrim = 0.01 * x;
13:   f1 = f(x + incrim);
14:   f2 = f(x - incrim);
15:   return (f1 - f2) / 2 / incrim;
16: }
17:
18: main()
19: {
20:  double x = 3.5;
21:
22:   cout << “f(“  << x << “) = “ << f(x) << “\n”
23:        << “f’(“ << x << “) = “ << slope(x) << “\n”;
24:
25:   return 0;
26: }

Here is a sample session with the program in Listing 2.4:

f(3.5) = 4.75
f’(3.5) = 2

The program in Listing 2.4 declares three functions, namely f (in line 5), slope
(in line 10), and main (in line 18). The function f is simple and returns the value
of the mathematical function. The function f is void of local variables. By

contrast, the function slope declares the local variables f1, f2, and incrim. This
function also initializes the latter variable. Line 13 assigns the value of f(x + incrim)
to the local variable f1. Line 14 assigns the value of f(x - incrim) to the local variable
f2. Line 15 returns the value for function slope using the local variables f1, f2, and
incrim. The function main simply displays the values of the mathematical function
and its slope when x = 3.5.

Static Variables in Functions
In Listing 2.4, the local variables in the function slope lose their values once the
function terminates. C++ enables you to declare a local variable as static simply by
placing the static keyword to the left of its data type. Static variables are usually
initialized. This initialization is performed once, when the host function is called for
the first time.

Output

Analysis



VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

69

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

2

Type

☛ New Term: There are a number of programming techniques that require
maintaining the values of local variables between function calls. These
special local variables are called static variables.

When the host function terminates, the static variables maintain their values. The
compiler supports this language feature by storing static variables in a separate
memory location that is maintained while the program is running. You can use the
same names for static variables in different functions. This duplication does not
confuse the compiler because it keeps track of which function owns which static
variables.

Let’s look at a simple program. Listing 2.5 uses a function with static variables to
maintain a moving average. The program supplies its own data and calls that function
several times in order to obtain and display the current value of the moving average.

Listing 2.5. Source code for the program STATIC1.CPP.

1:  // C++ program that illustrates static local variables
2:
3:  #include <iostream.h>
4:
5:  double mean(double x)
6:  {
7:    static double sum = 0;
8:    static double sumx = 0;
9:
10:   sum = sum + 1;
11:   sumx = sumx + x;
12:   return sumx / sum;
13: }
14:
15: main()
16: {
17:   cout << “mean = “ << mean(1) << “\n”;
18:   cout << “mean = “ << mean(2) << “\n”;
19:   cout << “mean = “ << mean(4) << “\n”;
20:   cout << “mean = “ << mean(10) << “\n”;
21:   cout << “mean = “ << mean(11) << “\n”;
22:   return 0;
23: }

Here is a sample session with the program in Listing 2.5:

mean = 1



70

C++ Program Components
M

T
W

R
F

S
S

DAYDAY

2

VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

mean = 1.5
mean = 2.33333
mean = 4.25

  mean = 5.6

The program in Listing 2.5 declares the function mean, which contains static
local variables. Lines 7 and 8 declare the static variables sum and sumx, respec-
tively. The function initializes both static variables with 0. The statement in line

10 increments the variable sum by 1. The statement in line 11 increments the variable
sumx by the value of parameter x. Line 12 returns the updated moving average,
obtained by dividing sumx by sum.

The function main issues a series of calls to function mean. The stream output
statements in lines 17 through 21 display the updated moving average. These results
are possible thanks to the static local variables sum and sumx in function mean. If static
variables are not supported by C++, you must resort to using global variables—a
highly questionable programming choice.

Inline Functions
Using functions requires the overhead of calling them, passing their arguments, and
returning their results. C++ enables you to use inline functions that expand into their
statements. Thus, inline functions offer faster execution time—especially helpful
where speed is critical—at the cost of expanding the code.

The inline Function
The general syntax for the inline function is

inline returnType functionName(typedParameterList)

Examples:

inline double cube(double x)
{ return x * x * x; }

inline char nextChar(char c)
{ return c + 1; }

The alternative to using inline functions is the use of the #define directive to create
macro-based pseudofunctions. Many C++ programmers strongly recommend fore-
going this method in favor of inline functions. The justification for this is that inline
functions provide type checking. Macros created with the #define directive do not.

Output

Analysis

S
yn

ta
x



VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

71

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

2

Type

DO DON’T
DO start by declaring inline functions as ordinary functions when you
develop your programs. Non-inline functions are easier to debug. Once your
program is working, insert the inline keyword where needed.

DON’T declare inline functions with many statements. The increase in
.EXE program size may not be acceptable.

Here is a simple example of a program that uses inline functions. Listing 2.6 contains
the source code for the program INLINE1.CPP. This program prompts you for a
number, then calculates and displays the square and cube values for your input.

Listing 2.6. Source code for the program INLINE1.CPP.

1:  // C++ program that illustrates inline functions
2:
3:  #include <iostream.h>
4:
5:  inline double sqr(double x)
6:  {
7:    return x * x;
8:  }
9:
10: inline double cube(double x)
11: {
12:   return x * x * x;
13: }
14:
15: main()
16: {
17:   double x;
18:
19:   cout << “Enter a number: “;
20:   cin >> x;
21:
22:   cout << “square of “  << x << “ = “ << sqr(x) << “\n”
23:        << “cube of “ << x << “ = “ << cube(x) << “\n”;
24:
25:   return 0;
26: }

Here is a sample session with the program in Listing 2.6:



72

C++ Program Components
M

T
W

R
F

S
S

DAYDAY

2

VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

Enter a number: 2.5
square of 2.5 = 6.25
cube of 2.5 = 15.625

The program in Listing 2.6 declares the inline functions sqr and cube. Each
function heading starts with the keyword inline. The other aspects of the inline
functions resemble short normal functions. The function main calls the func-

tions sqr and cube to display the square and cube values, respectively.

Exiting Functions
Usually you make an early exit from a function because particular conditions do not
allow you to proceed with executing the statements in that function. C++ provides the
return statement to exit from a function. If the function has the void type, you then
employ the statement return and include no expression after the return. By contrast,
if you exit a non-void function, the return statement should produce a value that
indicates the purpose for exiting the function.

Default Arguments
Default arguments are a language feature that is quite simple and yet very powerful.
When you omit the argument of a parameter that has a default argument, that
argument is automatically used.

Note: C++ permits you to assign default arguments to the parameters of a
function.

Using default arguments requires that you follow these rules:

1. Once you assign a default argument to a parameter, you must do so for all
subsequent parameters in the same parameter list. You cannot randomly
assign default arguments to parameters. This rule means that the parameter
list can be divided into two sublists: the leading parameters, which do not
have default arguments, and the trailing parameters, which do.

2. You must provide an argument for every parameter that has no default
argument.

3. You may omit the argument for a parameter that has a default argument.

Output

Analysis



VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

73

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

2

Type

4. Once you omit the argument for a parameter with a default argument, the
arguments for all subsequent parameters must also be omitted.

Note: The best way to list the parameters with default arguments is to
locate them according to the likelihood of using their default arguments.
Place the least-likely-to-be-used arguments first and the most-likely-to-be-
used arguments last.

Let’s look at a simple example that uses a function with default arguments. Listing 2.7
shows the source code for the program DEFARGS1.CPP. The program prompts you
to enter the x and y coordinates of two points. Then the program calculates and
displays the distance between the two points and between each point and the origin
(0, 0).

Listing 2.7. Source code for the program
DEFARGS1.CPP.

1:  // C++ program that illustrates default arguments
2:
3:  #include <iostream.h>
4:  #include <math.h>
5:
6:  inline double sqr(double x)
7:  { return x * x; }
8:
9:  double distance(double x2, double y2,
10:                 double x1 = 0, double y1 = 0)
11: {
12:   return sqrt(sqr(x2 - x1) + sqr(y2 - y1));
13: }
14:
15: main()
16: {
17:   double x1, y1, x2, y2;
18:
19:   cout << “Enter x coordinate for point 1: “;
20:   cin >> x1;
21:   cout << “Enter y coordinate for point 1: “;
22:   cin >> y1;
23:   cout << “Enter x coordinate for point 2: “;
24:   cin >> x2;
25:   cout << “Enter y coordinate for point 2: “;

continues



74

C++ Program Components
M

T
W

R
F

S
S

DAYDAY

2

VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

Listing 2.7. continued

26:   cin >> y2;
27:
28:   cout << “distance between points = “
29:        << distance(x1, y1, x2, y2) << “\n”;
30:   cout << “distance between point 1 and (0,0) = “
31:        << distance(x1, y1, 0) << “\n”;
32:   cout << “distance between point 2 and (0,0) = “
33:        << distance(x2, y2) << “\n”;
34:
35:   return 0;
36: }

Here is a sample session with the program in Listing 2.7:

Enter x coordinate for point 1: 1
Enter y coordinate for point 1: 1
Enter x coordinate for point 2: -1
Enter y coordinate for point 2: 1
distance between points = 2
distance between point 1 and (0,0) = 1.41421
distance between point 2 and (0,0) = 1.41421

The program in Listing 2.7 includes not one but two header files. Line 4 uses the
#include directive to include the MATH.H header file, which declares the
square-root math function, sqrt. The program declares the inline sqr function

in line 6. This function returns the square value of the arguments for parameter x. The
program also declares the function distance with four double-typed parameters. The
parameters x2 and y2 represent the x and y coordinates, respectively, for the second
point, whereas the parameters x1 and y1 represent the x and y coordinates, respec-
tively, for the first point. Both parameters x1 and y1 have the default argument of 0.
The function returns the distance between the two points. If you omit the arguments
for x1 and y1, the function returns the distance between the point (x2, y2) and the
origin (0, 0). If you omit only the argument for the last parameter, the function yields
the distance between the points (x2, y2) and (x1, 0).

The function main prompts you to enter the x and y coordinates for two points, using
the statements in lines 19 through 26. The output statement in lines 28 and 29 calls
the function distance, providing it with four arguments, namely, x1, y1, x2, and y2.
Therefore, this call to the function distance uses no default arguments. By contrast,
the statement in lines 30 and 31 calls the function distance, supplying it with only
three arguments. This call to the function distance uses the default argument for the
last parameter. The statement in lines 32 and 33 calls the function distance,
providing it with only two arguments. This call to the function distance uses the two

Output

Analysis



VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

75

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

2

default arguments for the third and fourth parameters. We can omit the third
argument in the second call to the function distance and still compile and run the
program.

Function Overloading
Function overloading is a language feature in C++ that has no parallel in C, Pascal,
or BASIC. This new feature enables you to declare multiple functions that have the
same name but different parameter lists. The function’s return type is not part of the
function signature, because C++ enables you to discard the result type. Consequently,
the compiler is not able to distinguish between two functions with the same
parameters and different return type when these return types are omitted.

☛ New Term: A parameter list is also called the function signature.

!! Warning: Using default arguments with overloaded functions may
duplicate the signature for some of the functions (when the default
arguments are used). The C++ compiler is able to detect this ambiguity
and generate a compile-time error.

DO DON’T
DO use default arguments to reduce the number of overloaded functions.

DON’T use overloaded functions to implement different operations.

Let’s look at a simple program that uses overloaded functions. Listing 2.8 contains the
source code for the program OVERLOAD.CPP. The program performs the follow-
ing tasks:

■■ Declares variables that have the char, int, and double types, and initializes
them with values



76

C++ Program Components
M

T
W

R
F

S
S

DAYDAY

2

VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

Type

■■ Displays the initial values

■■ Invokes overloaded functions that increment the variables

■■ Displays the updated values stored in the variables

Listing 2.8. Source code for the program
OVERLOAD.CPP.

1:  // C++ program that illustrates function overloading
2:
3:  #include <iostream.h>
4:
5:  // inc version for int types
6:  void inc(int& i)
7:  {
8:    i = i + 1;
9:  }
10:
11: // inc version for double types
12: void inc(double& x)
13: {
14:   x = x + 1;
15: }
16:
17: // inc version for char types
18: void inc(char& c)
19: {
20:   c = c + 1;
21: }
22:
23: main()
24: {
25:   char c = ‘A’;
26:   int i = 10;
27:   double x = 10.2;
28:
29:   // display initial values
30:   cout << “c = “ << c << “\n”
31:        << “i = “ << i << “\n”
32:        << “x = “ << x << “\n”;
33:   // invoke the inc functions
34:   inc(c);
35:   inc(i);
36:   inc(x);
37:   // display updated values
38:   cout << “After using the overloaded inc function\n”;
39:   cout << “c = “ << c << “\n”



VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

77

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

2

40:        << “i = “ << i << “\n”
41:        << “x = “ << x << “\n”;
42:
43:   return 0;
44: }

Here is a sample session with the program in Listing 2.8:

c = A
i = 10
x = 10.2
After using the overloaded inc function
c = B
i = 11
x = 11.2

The program in Listing 2.8 declares three versions of the overloaded void
function inc. The first version of function inc has an int-typed reference
parameter, i. The function increments the parameter i by 1. Because the

parameter i is a reference to its arguments, the action of function inc(int&) affects
the argument outside the scope of the function. The second version of function inc
has a double-typed reference parameter, x. The function increments the parameter x
by 1. Because the parameter x is a reference to its arguments, the action of function
inc(double&) affects the argument beyond the scope of the function. The second
version of function inc has a char-typed reference parameter, c. The function
increments the parameter c by 1. The reference parameter affects its arguments
outside the scope of the function.

The function main declares the variables c, i, and x to have the char, int, and double
types, respectively. The function also initializes the variables c, i, and x using the
values ‘A’, 10, and 10.2, respectively. The statement in lines 30 through 32 displays
the initial values in variables c, i, and x. The function main invokes the overloaded
function inc in lines 34 through 36. The call to function inc in line 34 ends up calling
the function inc(char&) because the argument used is a char-typed variable. The call
to function inc in line 35 results in calling the function inc(int&) because the
argument used is an int-typed variable. The call to function inc in line 36 invokes the
function inc(double&) because the argument used is a double-typed variable. The
output statement in lines 39 through 41 displays the updated values in variable c, i,
and x.

Output

Analysis



78

C++ Program Components
M

T
W

R
F

S
S

DAYDAY

2

VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

Summary
Today’s lesson presented the basic components of C++ programs. These components
include data types, variables, constants, and functions. You learned these basics:

■■ The predefined data types in Borland C++ 4.0 include the int, char, float,
double, and void data types. C++ adds more flexibility to data types by
supporting data-type modifiers. These modifiers alter the precision and the
range of values. The type modifiers are signed, unsigned, short, and long.

■■ Borland C++ 4.0 identifiers can be up to 32 characters long and must begin
with a letter or an underscore. The subsequent characters of an identifier
may be a letter, digit, or underscore. C++ identifiers are case-sensitive.

■■ The #include directive is a special instruction to the compiler. The directive
tells the compiler to include the contents of the specified file as though you
typed it in the currently scanned source file.

■■ Declaring variables requires you to state the data type of the variable and the
name of the variable. C++ enables you to initialize a variable when you
declare it. You can declare multiple variables in a single declarative state-
ment.

■■ Declaring constants involves using the #define directive to declare macro-
based constants or using the const keyword to declare formal constants. The
formal constants require that you specify the constant’s type (the default is
int, when omitted), the name of the constants, and the associated value.

■■ The general form for defining functions is

returnType functionName(parameterList)

{

    <declarations of data items>

    <function body>

    return returnValue;

}

You need to prototype a function if it is used by a client function before the
prototyped function is defined. The general form for prototyping functions
is

returnType functionName(parameterList);

You can omit the name of the parameters from the parameter list.



VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

79

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

2

■■ Local variables in a function support the implementation of highly indepen-
dent functions. Declaring local variables is similar to declaring global
variables.

■■ Static variables in functions are declared by placing the keyword static
before the data type of the variables. Static variables retain their values
between function calls. In most cases, you need to initialize static variables.
These initial values are assigned to the static variables the first time the
program calls the host function.

■■ Inline functions enable you to expand their statements in place, like macro-
based pseudofunctions. However, unlike these pseudofunctions, inline
functions perform type checking.

■■ You exit functions with the return statement. Void functions do not need to
include an expression after the return keyword.

■■ Default arguments enable you to assign default values to the parameters of a
function. When you omit the argument of a parameter that has a default
argument, that argument is automatically used.

■■ Function overloading enables you to declare multiple functions that have the
same name but different parameter lists (the parameter list is also called the
function signature). The function’s return type is not part of the function
signature, because C++ enables you to discard the result type.

Q&A
Q Is there a specific style for naming identifiers?

A There are a few styles that have become popular in recent years. The one we
use has the identifier begin with a lowercase character. If the identifier
contains multiple words, such as numberOfElements, make the first character
of each subsequent word an uppercase letter.

Q Can C++ functions declare nested functions?

A No. Nested functions actually add a lot of overhead at runtime.

Q When can I use static global variables?

A Never. Global variables need not be declared static, because they exist for the
entire program’s lifetime.



80

C++ Program Components
M

T
W

R
F

S
S

DAYDAY

2

VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing on to the
next day’s lesson. Answers are provided in Appendix A, “Answers.”

Quiz
1. Which of the following variables are valid, and which are not? Why?

numFiles

n0Distance_02_Line

0Weight

Bin Number

static

Static

2. What is the output of the following program? What can you say about the
function swap?

#include <iostream.h>

void swap(int i, int j)

{

  int temp = i;

  i = j;

  j = temp;

}

main()

{

  int a = 10, b = 3;

  swap(a, b);

  cout << “a = “ << a << “ and b = “ << b;

  return 0;

}

3. What is the output of the following program? What can you say about the
function swap?

#include <iostream.h>



VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

81

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

2

void swap(int& i, int& j)

{

  int temp = i;

  i = j;

  j = temp;

}

main()

{

  int a = 10, b = 3;

  swap(a, b);

  cout << “a = “ << a << “ and b = “ << b;

  return 0;

}

4. What is the problem with the following overloaded functions?

void inc(int& i)

{

  i = i + 1;

}

void inc(int& i, int diff = 1)

{

  i = i + diff;

}

5. Where is the error in the following function?

double volume(double length, double width = 1, double

height)

{

  return length * width * height

}

6. Where is the error in the following function?

void inc(int& i, int diff = 1)

{

  i = I + diff;

}



82

C++ Program Components
M

T
W

R
F

S
S

DAYDAY

2

VA   TYS Borland C++ 21 Days  #30483  nick  4-13-94     CH2   LP#2(sp 4/12 folio)

7. What is the error in the following program, and how can you correct it?

#include <iostream.h>

main()

{

  double x = 5.2;

  cout << x << “^2 = “ << sqr(x);

  return 0;

}

double sqr(double x)

{ return x * x ; }

Exercise
Create the program OVERLOD2.CPP by adding a second parameter with default
arguments to the overloaded inc functions in the program OVERLOAD.CPP. The
new parameter should represent the increment value, with a default argument of 1.



83

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

M
T

W
R

F
S

S

WEEK

33

11

Operators and
Expressions



84

Operators and Expressions
M

T
W

R
F

S
S

DAYDAY

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

The manipulation of data involves expressions that are made up of operands and
operators. C++ supports several kinds of operators and expressions.

☛ New Term: Operators are special symbols that take the values of operands
and produce a new value.

Each category of operator manipulates data in a specific way. Today you will learn
about the following topics:

■■ Arithmetic operators and expressions

■■ Increment operators

■■ Arithmetic assignment operators

■■ Typecasting and data conversion

■■ Relational operators and conditional expressions

■■ Bit-manipulating operators

■■ The comma operator

Arithmetic Operators
Table 3.1 shows the C++ arithmetic operators. The compiler carries out floating-
point or integer division, depending on the operands. If both operands are integer
expressions, the compiler yields the code for an integer division. If either or both
operands are floating-point expressions, the compiler generates code for floating-
point division.

Table 3.1. C++ arithmetic operators.

C++ Operator Purpose Data Type Example

+ Unary plus Numeric x = +y + 3;

- Unary minus Numeric x = -y;

+ Add Numeric z = y + x;

- Subtract Numeric z = y - x;

* Multiply Numeric z = y * x;



85

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

Type

/ Divide Numeric z = y / x;

% Modulus Integers z = y % x;

Let’s look at an example that uses the mathematical operators with integers and
floating-point numbers. Listing 3.1 shows the source code for program OPER1.CPP.
(We suggest that you place all of today’s programs in the DAY3.IDE project file.) The
program performs the following tasks:

■■ Prompts you to enter two integers (one integer per prompt).

■■ Applies the +, -, *, /, and % operators to the two integers, storing the results
in separate variables.

■■ Displays the results of the integer operations.

■■ Prompts you to enter two floating-point numbers (one number per prompt).

■■ Applies the +, -, *, and / operators to the two numbers, storing the results in
separate variables.

■■ Displays the result of the floating-point operations.

Listing 3.1. Source code for the program OPER1.CPP.

1:  // simple C++ program to illustrate simple math operations
2:
3:  #include <iostream.h>
4:
5:  main()
6:  {
7:
8:      int int1, int2;
9:      long long1, long2, long3, long4, long5;
10:     float x, y, real1, real2, real3, real4;
11:
12:     cout << “\nType first  integer : “;
13:     cin >> int1;
14:     cout << “Type second integer : “;
15:     cin >> int2;
16:     cout << “\n”;
17:     long1 = int1 + int2;
18:     long2 = int1 - int2;
19:     long3 = int1 * int2;
20:     long4 = int1 / int2;

continues

C++ Operator Purpose Data Type Example



86

Operators and Expressions
M

T
W

R
F

S
S

DAYDAY

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

Listing 3.1. continued

21:     long5 = int1 % int2;
22:     cout << int1 << “ + “ << int2 << “ = “ << long1 << ‘\n’;
23:     cout << int1 << “ - “ << int2 << “ = “ << long2 << ‘\n’;
24:     cout << int1 << “ * “ << int2 << “ = “ << long3 << ‘\n’;
25:     cout << int1 << “ / “ << int2 << “ = “ << long4 << ‘\n’;
26:     cout << int1 << “ mod “ << int2 << “ = “ << long5 << ‘\n’;
27:     cout << “\n\n”;
28:     cout << “Type first  real number : “;
29:     cin >> x;
30:     cout << “Type second real number : “;
31:     cin >> y;
32:     cout << “\n”;
33:     real1 = x + y;
34:     real2 = x - y;
35:     real3 = x * y;
36:     real4 = x / y;
37:     cout << x << “ + “ << y << “ = “ << real1 << ‘\n’;
38:     cout << x << “ - “ << y << “ = “ << real2 << ‘\n’;
39:     cout << x << “ * “ << y << “ = “ << real3 << ‘\n’;
40:     cout << x << “ / “ << y << “ = “ << real4 << ‘\n’;
41:     cout << “\n\n”;
42:     return 0;
43: }

Here is a sample session with the program in Listing 3.1:

Type first  integer : 10
Type second integer : 5

10 + 5 = 15
10 - 5 = 5
10 * 5 = 50
10 / 5 = 2
10 mod 5 = 0

Type first  real number : 1.25
Type second real number : 2.58

1.25 + 2.58 = 3.83
1.25 - 2.58 = -1.33
1.25 * 2.58 = 3.225
1.25 / 2.58 = 0.484496

The program in Listing 3.1 declares a set of int-typed, long-typed, and float-
typed variables in the function main. Some of these variables store your input,
and others store the results of the mathematical operations. The output

statement in line 12 prompts you to enter the first integer. The input statement in line

Analysis

Output



87

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

13 obtains your input and stores it in the variable int1. Lines 14 and 15 perform a
similar operation to prompt you for the second integer and store it in variable int2.

The program performs the integer math operation in lines 17 through 21 and stores
the results of these operations in variables long1 through long5. We declared these
variables as long-typed to guard against possible numeric overflow. The output
statements in lines 22 through 26 display the integer operands, the operators used, and
the results.

The output statement in line 28 prompts you to enter the first floating-point number.
The input statement in line 29 obtains your input and stores it in the variable x. Lines
30 and 31 perform a similar operation to prompt you for the second floating-point
number and to store it in variable y.

☛ New Term: A floating-point number is also known as a real number.

The program performs the floating-point math operation in lines 33 through 36 and
stores the results of these operations in variables real1 through real4. The output
statements in lines 37 through 40 display the operands, the operators used, and the
results.

Arithmetic Expressions
The simplest kinds of expressions are the ones that contain literals, such as

-12
34.45
‘A’
“Hello”

☛ New Term: In general terms, an arithmetic expression is part of a program
statement that contains a value.

The literal constants -12 and 35.45 are the simplest arithmetic expressions. The next
level of arithmetic expressions includes single variables or constants, such as

DAYS_IN_WEEK // a constant
i
x



88

Operators and Expressions
M

T
W

R
F

S
S

DAYDAY

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

Yet another level of arithmetic expressions contains a single operator with numbers,
constants, and variables as operands. Here are a few examples:

355 / 113
4 * i
45.67 + x

More advanced arithmetic expressions contain multiple operators, parentheses, and
even functions, such as

(355 / 113) * square(radius)
PIE * square(radius)
((2 * x - 3) * x + 2) * x - 5
(1 + x) / (3 - x)

We will discuss the order of executing the operators at the end of today’s lesson, after
introducing the other types of operators.

Increment Operators
C++ supports the special increment and decrement operators.

☛ New Term: Increment (++) and decrement (--) operators enable you to
increment and decrement, respectively, by 1 the value stored in a variable.

S
y
n
ta

x

Increment Operators
The general syntax for the increment operators is

variable++  // post-increment
++variable  // pre-increment

Examples:

lineNumber++;
++index;

S
y
n
ta

x

Decrement Operators
The general syntax for the decrement operators is

variable--  // post-decrement
--variable  // pre-decrement



89

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

Type

Examples:

lineNumber--;
--index

This general syntax demonstrates that there are two ways to apply the ++ and --
operators. Placing these operators to the left of their operand changes the value of the
operand before the operand contributes its value in an expression. Likewise, placing
these operators to the right of their operands alters the value of the operand after the
operand contributes its value in an expression. If the ++ or -- operators are the only
operators in a statement, there is no practical distinction between using the pre- or
post- forms.

Here are a few simple examples:

int n, m, t = 5;

t++; // t is now 6, same effect as ++t
--t; // t is now 5, same effect as t--
t = 5;
n = 4 * t++; // t is now 6 and n is 20
t = 5;
m = 4 * ++m; // m is now 6 and n is 24

The first statement uses the post-increment ++ operator to increment the value of
variable t. If you write ++t instead, you get the same result once the statement finishes
executing. The second statement uses the pre-decrement -- operator. Again, if we
write t-- instead, we get the same result. The next two statements assign 5 to variable
t and then use the post-increment ++ operator in a simple math expression. This
statement multiplies 4 by the current value of t (that is, 5), assigns the result of 20 to
the variable n, and then increments the values in variable t to 6. The last two
statements show a different outcome. The statement first increments the value in
variable t (the value in variable t becomes 6), then performs the multiplication, and
finally assigns the result of 24 to the variable n.

Let’s look at a simple program that illustrates the feature of the increment operator.
Listing 3.2 shows the source code for the program OPER2.CPP. The program
requires no input from you. It simply displays two integers whose values were obtained
using the increment operator.

Listing 3.2. Source code for the program OPER2.CPP.

1:  /*
2:     C++ program to illustrate the feature of the increment operator.
3:     The ++ or -- may be included in an expression.  The value

continues



90

Operators and Expressions
M

T
W

R
F

S
S

DAYDAY

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

Listing 3.2. continued

4:     of the associated variable is altered after the expression
5:     is evaluated if the var++ (or var--) is used, or before
6:     when ++var (or --var) is used.
7:  */
8:
9:  #include <iostream.h>
10:
11: main()
12: {
13:    int i, k = 5;
14:
15:    // use post-incrementing
16:    i = 10 * (k++); // k contributes 5 to the expression
17:    cout << “i = “ << i << “\n\n”; // displays 50 (= 10 * 5)
18:
19:    k--; // restores the value of k to 5
20:
21:    // use pre-incrementing
22:    i = 10 * (++k); // k contributes 6 to the expression
23:    cout << “i = “ << i << “\n\n”; // displays 60 (= 10 * 6)
24:    return 0;
25: }

Here is a sample session with the program in Listing 3.2:

i = 50

i = 60

The program in Listing 3.2 has the function main, which declares two int-typed
variables, i and k. The function initializes the variable k by assigning it the value
5. Line 16 contains a statement that applies the post-increment operator to the

variable k. Consequently, the statement multiplies 10 by the initial value in k, 5, and
assigns the product, 50, to variable i. After assigning the result to variable i, the
program increments the value in variable k. The output statement in line 17 displays
the value in variable i. The statement in line 19 decrements the value in variable k back
to 5. The statement in line 22 applies the pre-increment operator to the variable k.
Therefore, the program first increments the value in variable k (from 5 to 6) and then
multiplies 10 by the updated value in k. The program assigns the result of the
multiplication, 60, to the variable i. The output statement in line 23 displays the
current value of variable i.

Output

Analysis



91

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

Assignment Operators
As a programmer, you may often come across statements that look similar to this:

IndexOfFirstElement = IndexOfFirstElement + 4;
GraphicsScaleRatio = GraphicsScaleRatio * 3;
CurrentRateOfReturn = CurrentRateOfReturn / 4;
DOSfileListSize = DOSfileListSize - 10;

The variable that receives the result of an expression is also the first operand. (Of
course, the addition and multiplication are communicative operations. Therefore, the
assigned variable can be either operand with these operations.) Notice that we chose
relatively long names to remind you of your need to shorten the expression without
making the names of the variables shorter.

☛ New Term: C++ offers assignment operators that merge with simple math
operators.

You can write the following statements:

IndexOfFirstElement += 4;
GraphicsScaleRatio *= 3;
CurrentRateOfReturn /= 4;
DOSfileListSize -= 10;

Notice that the name of the variable appears only once. In addition, notice that the
statements use the operators +=, *=, /=, and -=. Table 3.2 shows the arithmetic
assignment operators. C++ supports other types of assignment operators.

Table 3.2. Arithmetic assignment operators.

Assignment Operator Long Form Example

x += y x = x + y x += 12;

x -= y x = x - y x -= 34 + y;

x *= y x = x * y scale *= 10;

x /= y x = x / y z /= 34 * y;

x %= y x = x % y z %= 2;



92

Operators and Expressions
M

T
W

R
F

S
S

DAYDAY

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

Type

Let’s look at a program that applies the assignment operators to integers and floating-
point numbers. Listing 3.3 shows the source code for the program OPER3.CPP. The
program performs the following tasks:

■■ Prompts you to enter two integers (one integer per prompt).

■■ Applies a set of assignment and increment operators to the two integers.

■■ Displays the new values of the integers.

■■ Prompts you to enter two floating-point numbers (one number per prompt).

■■ Applies a set of assignment and increment operators to the two numbers.

■■ Displays the new values of the floating-point numbers.

Listing 3.3. Source code for the program OPER3.CPP.

1:  // C++ program to illustrate math assignment operators
2:
3:  #include <iostream.h>
4:
5:  main()
6:  {
7:      int i, j;
8:      double x, y;
9:
10:     cout << “Type first  integer : “;
11:     cin >> i;
12:     cout << “Type second integer : “;
13:     cin >> j;
14:     i += j;
15:     j -= 6;
16:     i *= 4;
17:     j /= 3;
18:     i++;
19:     j--;
20:     cout << “i = “ << i << “\n”;
21:     cout << “j = “ << j << “\n”;
22:
23:     cout << “Type first  real number : “;
24:     cin >> x;
25:     cout << “Type second real number : “;
26:     cin >> y;
27:     // abbreviated assignments also work with doubles in C++
28:     x += y;
29:     y -= 4.0;
30:     x *= 4.0;
31:     y /=  3.0;
32:     x++;



93

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

33:     y--;
34:     cout << “x = “ << x << “\n”;
35:     cout << “y = “ << y << “\n”;
36:     return 0;
37: }

Here is a sample session with the program in Listing 3.3:

Type first  integer : 55
Type second integer : 66
i = 485
j = 19
Type first  real number : 2.5
Type second real number : 4.58
x = 29.32
y = -0.806667

The program in Listing 3.3 contains the function main, which declares two int-
typed variables (i and j) and two double-typed variables (x and y) in lines 7 and
8, respectively. The output statement in line 10 prompts you to enter the first

integer. The input statement in line 11 receives your input and stores it in the variable
i. Lines 12 and 13 are similar to lines 10 and 11—they prompt you for the second
integer and store it in variable j.

The program manipulates the values in variables i and j using the statements in lines
14 through 19. In line 14, the program uses the += operator to increment the value
in variable i by the value in variable j. Line 15 uses the -= operator to decrement the
value in variable j by 6. Line 16 applies the *= operator to multiply the value in variable
i by 4 and to assign the result back to variable i. Line 17 utilizes the /= operator to
divide the value in variable j by 3 and to store the result in j. Lines 18 and 19 apply
the increment and decrement operators to variables i and j, respectively. The output
statements in lines 20 and 21 display the contents of variables i and j, respectively.

The output statement in line 23 prompts you to enter the first floating-point number.
The input statement in line 24 receives your input and saves it in the variable x. Lines
25 and 26 are similar to lines 23 and 24; they prompt you for the second floating-point
number and store it in variable y.

The program manipulates the values in variable x and y using the statements in lines
28 through 33. In line 28, the program uses the += operator to increment the value
in variable x by the value in variable y. Line 29 uses the -= operator to decrement the
value in variable y by 4. Line 30 applies the *= operator to multiply the value in variable

Output

Analysis



94

Operators and Expressions
M

T
W

R
F

S
S

DAYDAY

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

x by 4 and to save the result back to x. Line 31 utilizes the /= operator to divide the
value in variable y by 3 and to store the result in y. Lines 32 and 33 apply the increment
and decrement operators to variable x and y, respectively. The output statements in
lines 34 and 35 display the contents of variables x and y, respectively.

The sizeof Operator
Frequently your programs need to know the byte size of a data type or of a variable.
C++ provides the sizeof operator, which takes for an argument either a data type or
the name of a variable (scalar, array, record, and so on).

S
y
n
ta

x

The sizeof Operator
The general syntax for the sizeof operator is

sizeof({variable_name | data_type})
sizeof {variable_name | data_type}

Examples:

int sizeDifference = sizeof(double) - sizeof(float);
int intSize = sizeof int;

DO DON’T
DO use sizeof with the name of the variable instead of its data type. This
approach is safer because if you alter the data type of the variable, the sizeof
operator still returns the correct answer. By contrast, if you use the sizeof
operator with the data type of the variable and later alter the variable’s type,
you create a bug if you do not update the argument of the sizeof operator.

DON’T use numbers to represent the size of a variable. This approach often
causes errors.

Let’s look at an example that uses the sizeof operator with variables and data types.
Listing 3.4 contains the source code for the program SIZEOF1.CPP. The program
displays two similar tables that indicate the sizes of the short int, int, long int, char,
and float data types. The program displays the first table by applying the sizeof
operators to variables of these types. The program displays the second table by directly
applying the sizeof operator to the data types.



95

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

Type Listing 3.4. Source code for the program SIZEOF1.CPP.

1:  /*
2:    simple program that returns the data sizes using the sizeof()
3:    operator with variables and data types.
4:  */
5:
6:  #include <iostream.h>
7:
8:  main()
9:
10: {
11:     short int aShort;
12:     int anInt;
13:     long aLong;
14:     char aChar;
15:     float aReal;
16:
17:     cout << “Table 1. Data sizes using sizeof(variable)\n\n”;
18:     cout << “    Data type         Memory used\n”;
19:     cout << “                        (bytes)\n”;
20:     cout << “------------------    ----------”;
21:     cout << “\n     short int            “ << sizeof(aShort);
22:     cout << “\n      integer             “ << sizeof(anInt);
23:     cout << “\n   long integer           “ << sizeof(aLong);
24:     cout << “\n     character            “ << sizeof(aChar);
25:     cout << “\n      float               “ << sizeof(aReal);
26:     cout << “\n\n\n\n”;
27:
28:     cout << “Table 2. Data sizes using sizeof(dataType)\n\n”;
29:     cout << “    Data type         Memory used\n”;
30:     cout << “                        (bytes)\n”;
31:     cout << “------------------    ----------”;
32:     cout << “\n     short int            “ <<  sizeof(short int);
33:     cout << “\n      integer             “ <<  sizeof(int);
34:     cout << “\n    long integer          “ <<  sizeof(long);
35:     cout << “\n     character            “ <<  sizeof(char);
36:     cout << “\n       float              “ <<  sizeof(float);
37:     cout << “\n\n\n\n”;
38:
39:     return 0;
40: }



96

Operators and Expressions
M

T
W

R
F

S
S

DAYDAY

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

Here is a sample session with the program in Listing 3.4:

Table 1. Data sizes using sizeof(variable)

    Data type         Memory used
                        (bytes)
------------------    ----------
     short int            2
      integer             2
   long integer           4
     character            1
      float               4

Table 2. Data sizes using sizeof(dataType)

    Data type         Memory used
                        (bytes)
------------------    ----------
     short int            2
      integer             2
    long integer          4
     character            1
       float              4

The program in Listing 3.4 declares five variables in the function main. Each
variable has a different data type and derives its name from its data type. For
example, the variable anInt is an int-typed variable, the variable aLong is a long-

typed variable, and so on.

The statements in lines 17 through 25 display the table of data sizes. The output
statements in lines 21 through 25 use the sizeof operator with the variables.

The statements in lines 28 through 36 also display the table of data sizes. The output
statements in lines 32 through 36 use the sizeof operator with the data-type
identifiers.

Typecasting
Automatic data conversion of a value from one data type to another compatible data
type is one of the duties of a compiler. This data conversion simplifies expressions and
eases the frustration of both novice and veteran programmers. With behind-the-
scenes data conversion, you do not need to examine every expression that mixes
compatible data types in your program. For example, the compiler handles most
expressions that mix various types of integers or mix integers and floating-point types.
You get a compile-time error if you attempt to do something illegal.

Output

Analysis



97

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

☛ New Term: Typecasting is a language feature that enables you to specify
explicitly how to convert a value from its original data type into a com-
patible data type. Thus, typecasting instructs the compiler to perform the
conversion you want and not the one the compiler thinks is needed.

S
yn

ta
x

Typecasting
C++ supports the following forms of typecasting:

type_cast(expression)

and

(type_cast) expression

Examples:

int i = 2;
float a, b;
a = float(i);
b = (float) i;

Let’s look at an example that illustrates implicit data conversion and typecasting.
Listing 3.5 shows the source code for the program TYPCAST1.CPP. The program
declares variables that have the character, integer, and floating-point data types. Then
the program performs two sets of similar mathematical operations. The first set relies
on the automatic conversions of data types, performed by the compiler. The second
set of operations uses typecasting to explicitly instruct the compiler on how to convert
the data types. The program requires no input—it provides its own data—and it
displays the output values for both sets of operations. The program illustrates that the
compiler succeeds in generating the same output for both sets of operations.

Listing 3.5. Source code for the program
TYPCAST1.CPP.

1:  // simple C++ program that demonstrates typecasting
2:
3:  #include <iostream.h>
4:
5:  main()
6:  {
7:      short shortInt1, shortInt2;

Type

continues



98

Operators and Expressions
M

T
W

R
F

S
S

DAYDAY

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

Listing 3.5. continued

8:      unsigned short aByte;
9:      int anInt;
10:     long aLong;
11:     char aChar;
12:     float aReal;
13:
14:     // assign values
15:     shortInt1 = 10;
16:     shortInt2 = 6;
17:     // perform operations without typecasting
18:     aByte = shortInt1 + shortInt2;
19:     anInt = shortInt1 - shortInt2;
20:     aLong = shortInt1 * shortInt2;
21:     aChar = aLong + 5; // conversion is automatic to character
22:     aReal = shortInt1 * shortInt2 + 0.5;
23:
24:     cout << “shortInt1 = “ << shortInt1 << ‘\n’
25:          << “shortInt2 = “ << shortInt2 << ‘\n’
26:          << “aByte = “ << aByte << ‘\n’
27:          << “anInt = “ << anInt << ‘\n’
28:          << “aLong = “ << aLong << ‘\n’
29:          << “aChar is “ << aChar << ‘\n’
30:          << “aReal = “ << aReal << “\n\n\n”;
31:
32:     // perform operations with typecasting
33:     aByte = (unsigned short) (shortInt1 + shortInt2);
34:     anInt = (int) (shortInt1 - shortInt2);
35:     aLong = (long) (shortInt1 * shortInt2);
36:     aChar = (unsigned char) (aLong + 5);
37:     aReal = (float) (shortInt1 * shortInt2 + 0.5);
38:
39:     cout << “shortInt1 = “ << shortInt1 << ‘\n’
40:          << “shortInt2 = “ << shortInt2 << ‘\n’
41:          << “aByte = “ << aByte << ‘\n’
42:          << “anInt = “ << anInt << ‘\n’
43:          << “aLong = “ << aLong << ‘\n’
44:          << “aChar is “ << aChar << ‘\n’
45:          << “aReal = “ << aReal << “\n\n\n”;
46:     return 0;
47: }



99

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

Here is a sample session with the program in Listing 3.5:

shortInt1 = 10
shortInt2 = 6
aByte = 16
anInt = 4
aLong = 60
aChar is A
aReal = 60.5

shortInt1 = 10
shortInt2 = 6
aByte = 16
anInt = 4
aLong = 60
aChar is A
aReal = 60.5

The program in Listing 3.5 declares the following variables in the function main:

■■ The short-typed variables shortInt1 and shortInt2

■■ The unsigned short-typed variable aByte

■■ The int-typed variable anInt

■■ The long-typed variable aLong

■■ The char-typed variable aChar

■■ The float-typed variable aReal

Lines 15 and 16 assign the integers 10 and 6 to variable shortInt1 and shortIn2,
respectively. Lines 18 through 22 perform various mathematical operations and
assign the results to variables aByte, anInt, aLong, aChar, and aReal.

Note: C and C++ treat the char type as a special integer. Each char-type
literal (such as ‘A’), constant, or variable has an integer value that is equal
to its ASCII representation. This language feature enables you to store an
integer in a char-type variable and treat a char-type data item as an
integer. The statement in line 21 adds the integer 5 to the value of the
variable aLong and assigns the result, an integer, to the variable aChar.
The value of the assigned integer, 65, represents the ASCII code for the
letter A.

Output

Analysis



100

Operators and Expressions
M

T
W

R
F

S
S

DAYDAY

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

The output statement in lines 24 through 30 displays the values stored in the variables.
Notice that the output for variable aChar is the letter A. If we write the output term
for variable aChar as << (int) aChar, we get 65, the ASCII code of the character stored
in aChar.

The statements in lines 32 through 37 perform similar operations to the statements
in lines 18 through 22. The main difference is that the statements in lines 32 through
37 use typecasting to explicitly instruct the compiler on how to convert the result. The
output statement in lines 39 through 45 displays the contents of the variables.

Relational and Logical Operators
Table 3.3 shows the C++ relational and logical operators. Notice that C++ does not
spell out the operators AND, OR, and NOT. Rather, it uses single- and dual-character
symbols. Also notice that C++ does not support the relational XOR operator. You can
use the #define macro directives, shown in the New Term box, to define the AND, OR,
and NOT identifiers as macros.

☛ New Term: The relational operators (less than, greater than, and equal to)
and the logical operators (AND, OR, and NOT) are the basic building blocks of
decision-making constructs in any programming language.

#define AND &&

#define OR ||

#define NOT !

Table 3.3. C++ relational and logical operators.

C++ Operator Meaning Example

&& Logical AND if (i > 1 && i < 10)

|| Logical OR if (c==0 || c==9)

! Logical NOT if (!(c>1 && c<9))

< Less than if (i < 0)

<= Less than or equal to if (i <= 0)

> Greater than if (j > 10)



101

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

C++ Operator Meaning Example

>= Greater than or equal to if (x >= 8.2)

== Equal to if (c == ‘\0’)

!= Not equal to if (c != ‘\n’)

? : Conditional assignment k = (i<1) ? 1 : i;

Although these macros are permissible in C++, you might get a negative reaction from
veteran C++ programmers who read your code. Who says that programming is always
objective?

!! Warning: Do not use the = operator as the equality relational operator.
This common error is a source of logical bugs in a C++ program. You may
be accustomed to using the = operator in other languages to test the
equality of two data items. In C++, you must use the == operator. What
happens if you employ the = operator in C++? Do you get a compiler
error? The answer is that you may get a compiler warning. Other than
that, your C++ program should run. When the program reaches the
expression that it is supposed to test for equality, it actually attempts to
assign the operand on the right of the = sign to the operand on the left of
the = sign. Of course, a session with such a program most likely leads to
weird program behavior or even a system hang.

Note: C++ does not support predefined Boolean identifiers. Instead, the
language regards 0 as false and a nonzero value as true. To add clarity to
your programs, we suggest that you declare the global constants TRUE and
FALSE and assign them 1 and 0, respectively.

Notice that the last operator in Table 3.3 is the ?: operator. This special operator
supports what is known as the conditional expression.



102

Operators and Expressions
M

T
W

R
F

S
S

DAYDAY

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

☛ New Term: The conditional expression is a shorthand for a dual-alternative
simple if-else statement. (See Day 5 for more information about the if
statement.)

For example, the following is an if-else statement that can be compressed into a
conditional expression:

if (condition)
     variable = expression1;
else
     variable = expression2;

The equivalent conditional expression is as follows:

variable = (condition) ? expression1 : expression2;

The conditional expression tests the condition. If that condition is true, it assigns
expression1 to the target variable. Otherwise, it assigns expression2 to the target
variable.

Boolean Expressions
Often, you need to use a collection of relational and logical operators to formulate a
nontrivial condition. Here are examples of such conditions:

x < 0 || x > 11
(i != 0 || i > 100) && (j != i || j > 0)
x != 0 && x != 10 && x != 100

☛ New Term: Boolean (also called logical) expressions are expressions that
involve logical operators and/or relational operators.

DO DON’T
DO double-check to avoid Boolean expressions that are either always true or
always false. For example, the expression (x < 0 && x > 10) is always false,
because no value of x can be negative and greater than 10 at the same time.

DON’T use the = operator to test for equality.



103

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

Type

Consider now an example that uses relational and logical operators and expressions.
Listing 3.6 shows the source code for the program RELOP1.CPP. The program
prompts you to enter three integers and then proceeds to perform a battery of tests.
The program displays the relational and logical operations, their operands, and their
results.

Listing 3.6. Source code for the program RELOP1.CPP.

1:  /*
2:     simple C++ program that uses logical expressions
3:     this program uses the conditional expression to display
4:     TRUE or FALSE messages, since C++ does not support the
5:     BOOLEAN data type.
6:  */
7:
8:  #include <iostream.h>
9:
10: const MIN_NUM = 30;
11: const MAX_NUM = 199;
12: const int TRUE = 1;
13: const int FALSE = 0;
14:
15: main()
16: {
17:     int i, j, k;
18:     int flag1, flag2, in_range,
19:         same_int, xor_flag;
20:
21:     cout << “Type first  integer : “; cin >> i;
22:     cout << “Type second integer : “; cin >> j;
23:     cout << “Type third  integer : “; cin >> k;
24:
25:     // test for range [MIN_NUM...MAX_NUM]
26:     flag1 = i >= MIN_NUM;
27:     flag2 = i <= MAX_NUM;
28:     in_range = flag1 && flag2;
29:     cout << “\n” << i << “ is in the range “
30:          << MIN_NUM << “ to “ << MAX_NUM << “ : “
31:          << ((in_range) ? “TRUE” : “FALSE”);
32:
33:     // test if two or more entered numbers are equal
34:     same_int = i == j || i == k || j == k;
35:     cout << “\nat least two integers you typed are equal : “
36:          << ((same_int) ? “TRUE” : “FALSE”);
37:
38:     // miscellaneous tests
39:     cout << “\n” << i << “ != “ << j << “ : “
40:          << ((i != j) ? “TRUE” : “FALSE”);

continues



104

Operators and Expressions
M

T
W

R
F

S
S

DAYDAY

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

Listing 3.6. continued

41:     cout << “\nNOT (“ << i << “ < “ << j << “) : “
42:          << ((!(i < j)) ? “TRUE” : “FALSE”);
43:     cout << “\n” << i << “ <= “ << j << “ : “
44:          << ((i <= j) ? “TRUE” : “FALSE”);
45:     cout << “\n” << k << “ > “ << j << “ : “
46:          << ((k > j) ? “TRUE” : “FALSE”);
47:     cout << “\n(“ << k << “ = “ << i << “) AND (“
48:          << j << “ != “ << k << “) : “
49:          << ((k == i && j != k) ? “TRUE” : “FALSE”);
50:
51:     // NOTE: C++ does NOT support the logical XOR operator for
52:     // boolean expressions.
53:     // add numeric results of logical tests.  Value is in 0...2
54:     xor_flag = (k <= i) + (j >= k);
55:     // if xor_flag is either 0 or 2 (i.e. not = 1), it is
56:     // FALSE therefore interpret 0 or 2 as false.
57:     xor_flag = (xor_flag == 1) ? TRUE : FALSE;
58:     cout << “\n(“ << k << “ <= “ << i << “) XOR (“
59:          << j << “ >= “ << k << “) : “
60:          << ((xor_flag) ? “TRUE” : “FALSE”);
61:     cout << “\n(“ << k << “ > “ << i << “) AND(“
62:          << j << “ <= “ << k << “) : “
63:          << ((k > i && j <= k) ? “TRUE” : “FALSE”);
64:     cout << “\n\n”;
65:     return 0;
66: }

Here is a sample session with the program in Listing 3.6:

Type first  integer : 55
Type second integer : 64
Type third  integer : 87

55 is in the range 30 to 199 : TRUE
at least two integers you typed are equal : FALSE
55 != 64 : TRUE
NOT (55 < 64) : FALSE
55 <= 64 : TRUE
87 > 64 : TRUE
(87 = 55) AND (64 != 87) : FALSE
(87 <= 55) XOR (64 >= 87) : FALSE
(87 > 55) AND(64 <= 87) : TRUE

The program in Listing 3.6 declares four global constants. The constants
MIN_NUM and MAX_NUM define a range of numbers used in the logical tests. The
constants TRUE and FALSE represent the Boolean values. The function main

declares a number of int variables that are used for input and various testing. The

Output

Analysis



105

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

statements in lines 21 through 23 prompt you for three integers and store them in the
variables i, j, and k, respectively.

The statements in lines 26 through 31 involve testing whether the value in variable
i lies in the range of MIN_NUM and MAX_NUM. The statement in line 26 tests if the value
in i is greater than or equal to the constant MIN_NUM. The program assigns the Boolean
result to the variable flag1. The statement in line 27 tests whether the value in i is less
than or equal to the constant MAX_NUM. The program assigns the Boolean result to the
variable flag2. The statement in line 28 applies the && operator to the variable flag1
and flag2, and it assigns the Boolean result to the variable in_range. The output
statement in lines 29 through 31 states what the test is and displays TRUE or FALSE
depending on the value in the variable in_range. The statement uses the conditional
operator ?: to display the string TRUE if in_range has a nonzero value and to display
the string FALSE if otherwise.

The statements in lines 34 through 36 determine whether at least two of the three
integers you entered are equal. The statement in line 34 uses a Boolean expression that
applies the == relational operators and the || logical operators. The statement assigns
the Boolean result to the variable same_int. The output statement in lines 35 and 36
states the test and displays the TRUE/FALSE outcome. The output statement uses the
conditional operator to display the strings TRUE or FALSE depending on the value in
variable same_int.

The statements in lines 39 through 49 perform miscellaneous tests that involve the
input values, and they display both the test and the results. Please feel free to alter these
statements to conduct different tests.

Note: The statements in lines 54 through 60 perform an XOR test and
display the outcome. The program uses a simple programming trick to
implement the XOR operator. The statement in line 54 adds the Boolean
value of the subexpressions (k <= i) and (j >= k). The result is 0 if both
subexpressions are false, 1 if only one of the subexpressions is true, and 2
if both subexpressions are true. Because the XOR operator is true only if
either subexpression is true, the statement in line 57 assigns TRUE to the
variable xor_flag if the previous value is 1. Otherwise, the statement
assigns FALSE to xor_flag. The statements in lines 61 through 63 perform
another miscellaneous test.



106

Operators and Expressions
M

T
W

R
F

S
S

DAYDAY

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

Bit-Manipulation Operators
C++ is a programming language that is suitable for system development. System
development requires bit-manipulating operators.

☛ New Term: Bit-manipulating operators toggle, set, query, and shift the bits
of a byte or a word.

Table 3.4 shows the bit-manipulating operators. Notice that C++ uses the symbols &
and | to represent the bitwise AND and OR, respectively. Recall that the && and ||
characters represent the logical AND and OR operators, respectively. In addition to the
bit-manipulating operators, C++ supports the bit-manipulating assignment opera-
tors, shown in Table 3.5. (Using bit-manipulating operators is a part of advanced
programming that involves fiddling with single bits. As a novice C++ programmer,
you most likely will not use these operators in the near future.)

Table 3.4. C++ bit-manipulating operators.

C++ Operator Meaning Example

& Bitwise AND i & 128

| Bitwise OR j | 64

^ Bitwise XOR j ^ 12

~ Bitwise NOT ~j

<< Bitwise shift left i << 2

>> Bitwise shift right j >> 3

Table 3.5. C++ bit-manipulating assignment operators.

C++ Operator Long Form Example

x &= y x = x & y i &= 128

x |= y x = x | y j |= 64

x ^= y x = x ^ y k ^= 15



107

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

Type

C++ Operator Long Form Example

x <<= y x = x << y j <<= 2

x >>= y x = x >> y k >>= 3

Let us present a C++ program that performs simple bit manipulation. Listing 3.7
contains the source code for the program BITS1.CPP. The program requires no
input, because it uses internal data. The program applies the |, &, ̂ , >>, and << bitwise
operators and displays the results of the bitwise manipulation.

Listing 3.7. Source code for the program BITS1.CPP.

1:  // C++ program to perform bit manipulations
2:
3:  #include <iostream.h>
4:
5:  main()
6:  {
7:
8:       int i, j, k;
9:
10:      // assign values to i and j
11:      i = 0xF0;
12:      j = 0x1A;
13:
14:      k = j & i;
15:      cout << j << “ AND “ << i << “ = “ << k << “\n”;
16:
17:      k = j | i;
18:      cout << j << “ OR “ << i << “ = “ << k << “\n”;
19:
20:      k = j ^ 0x1C;
21:      cout << j << “ XOR “ << 0x1C << “ = “ << k << “\n”;
22:
23:      k = i << 2;
24:      cout << i << “ shifted left by 2 bits = “ << k << “\n”;
25:
26:      k = i >> 2;
27:      cout << i << “ shifted right by 2 bits = “ << k << “\n”;
28:      return 0;
29: }



108

Operators and Expressions
M

T
W

R
F

S
S

DAYDAY

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

Here is a sample session with the program in Listing 3.7:

26 AND 240 = 16
26 OR 240 = 250
26 XOR 28 = 6
240 shifted left by 2 bits = 960
240 shifted right by 2 bits = 60

The program in Listing 3.7 declares three int-typed variables, i, j, and k. The
statements in lines 11 and 12 assign hexadecimal numbers to the variables i and
j, respectively. The statement in line 14 applies the bitwise AND operator to the

variables i and j, and it stores the result in variable k. The output statement in line
15 displays the operands, the bitwise operator, and the results. The statement in line
17 applies the bitwise OR operator to the variable i and j, and it saves the result to
variable k. The output statement in line 18 displays the operands, the bitwise operator,
and the results. The statement in line 20 applies the bitwise XOR operator using the
variable j and the hexadecimal integer 0x1C. The output statement in line 21 displays
the operands, the bitwise operator, and the results.

The statements in lines 23 through 27 apply the shift-left and shift-right operators to
variable i. These operators shift the bits of the variable i by two bits and assign the
result to variable k. The effect of the left-shift operator is the same as multiplying the
value in the variable i by 4. Similarly, the effect of the right-shift operator is the same
as dividing the value in the variable i by 4.

The Comma Operator
The comma operator requires that the program completely evaluate the first expres-
sion before evaluating the second expression. Both expressions are located in the same
C++ statement. What does located in the same C++ statement mean exactly? Why use
this rather unusual operator in the first place? Because the comma operator with its
peculiar role does serve a specific and very important purpose in the for loop.

☛ New Term: Loops are powerful language constructs that enable computers
to excel in achieving repetitive tasks. The comma operator enables you to
create multiple expressions that initialize multiple loop-related variables.

Output

Analysis



109

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

S
yn

ta
x

The Comma Operator
The general syntax for the comma operator is

expression1, expression2

Example:

for (i = 0, j = 0; i < 10; i++, j++)

You will learn more about the for loop in Day 6. For now, this example shows you
how to apply the comma operator.

Operator Precedence and
Evaluation Direction

Now that you are familiar with most of the C++ operators (there are a few more
operators that deal with pointers and addresses), you need to know two related aspects:
first, the precedence of the C++ operators; and second, the direction (or sequence) of
evaluation. Table 3.6 shows the C++ precedence of the C++ operators that we have
covered so far and also indicates the evaluation direction.

Table 3.6. C++ operators and their precedence.

Category Name Symbol Evaluation Precedence
Direction

Monadic

Post-increment ++ Left to right 2

Post-decrement -- Left to right 2

Address & Right to left 2

Bitwise NOT ~ Right to left 2

Typecast (type) Right to left 2

Logical NOT ! Right to left 2

Negation - Right to left 2

continues



110

Operators and Expressions
M

T
W

R
F

S
S

DAYDAY

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

Table 3.6. continued

Category Name Symbol Evaluation Precedence
Direction

Monadic

Plus sign + Right to left 2

Pre-increment ++ Right to left 2

Pre-decrement -- Right to left 2

Size of data sizeof Right to left 2

Multiplicative

Modulus % Left to right 3

Multiply * Left to right 3

Divide / Left to right 3

Additive

Add + Left to right 4

Subtract - Left to right 4

Bitwise Shift

Shift left << Left to right 5

Shift right >> Left to right 5

Relational

Less than < Left to right 6

Less or equal <= Left to right 6

Greater than > Left to right 6

Greater or equal >= Left to right 6

Equal == Left to right 7

Not equal != Left to right 7



111

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

Category Name Symbol Evaluation Precedence
Direction

Bitwise

AND & Left to right 8

XOR ^ Left to right 9

OR | Left to right 10

Logical

AND && Left to right 11

OR || Left to right 12

Ternary

Cond. express. ?: Right to left 13

Assignment

Arithmetic = Right to left 14

+= Right to left 14

-= Right to left 14

*= Right to left 14

/= Right to left 14

%= Right to left 14

Shift >>= Right to left 14

<<= Right to left 14

Bitwise &= Right to left 14

|= Right to left 14

^= Right to left 14

Comma , Left to right 15



112

Operators and Expressions
M

T
W

R
F

S
S

DAYDAY

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

Summary
Today’s lesson presented the various C++ operators and discussed how to use these
operators to manipulate data. You learned the following:

■■ The arithmetic operators include +, -, *, /, and % (modulus).

■■ The arithmetic expressions vary in complexity. The simplest expression
contains a single data item (literal, constant, or variable). Complex expres-
sions include multiple operators, functions, literals, constants, and variables.

■■ The increment and decrement operators come in the pre- and post- forms.
C++ enables you to apply these operators to variables that store characters,
integers, and even floating-point numbers.

■■ The arithmetic assignment operators enable you to write shorter arithmetic
expressions in which the primary operand is also the variable receiving the
result of the expression.

■■ The sizeof operator returns the byte size of either a data type or a variable.

■■ Typecasting enables you to force the type conversion of an expression.

■■ Relational and logical operators enable you to build logical expressions. C++
does not support a predefined Boolean type and instead considers 0 as false
and any nonzero value as true.

■■ Boolean expressions combine relational and logical operators to formulate
nontrivial conditions. These expressions allow a program to make sophisti-
cated decisions.

■■ The conditional expression offers you a short form for the simple dual-
alternative if-else statement.

■■ The bit-manipulation operators perform bitwise AND, OR, XOR, and NOT
operations. In addition, C++ supports the << and >> bitwise shift operators.

■■ The bit-manipulation assignment operators offer short forms for simple bit-
manipulation statements.

Q&A
Q How does the compiler react when you declare a variable but never

assign a value to it?

A The compiler issues a warning that the variable is unreferenced.



113

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

Q What is the Boolean expression for checking that the value of a variable,
i, is in the range of values (for example, defined by variables lowVal and
hiVal)?

A The expression that determines whether the value in variable i is located in a
range is

(i >= lowVal && i <= hiVal)

Q What is the Boolean expression for checking that the value of a variable,
i, is inside the range of values (for example, defined by variables lowVal
and hiVal)?

A The expression that determines whether the value in variable i is located
inside a range is

(i > lowVal && i < hiVal)

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing on to the
next day’s lesson. (Answers are provided in Appendix A, “Answers.”)

Quiz
1. What is the output of the following program?

#include <iostream.h>

main()

{

  int i = 3;

  int j = 5;

  double x = 33.5;

  double y = 10.0;

  cout << 10 + j % i << “\n”;

  cout << i * i - 2 * i + 5 << “\n”;

  cout << (19 + i + j) / (2 * j + 2) << “\n”;



114

Operators and Expressions
M

T
W

R
F

S
S

DAYDAY

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

   cout << x / y + y / x << “\n”;
  cout << i * x + j * y << “\n”;

  return 0;

}

2. What is the output of the following program?

#include <iostream.h>

main()

{

  int i = 3;

  int j = 5;

  cout << 10 + j % i++ << “\n”;

  cout << --i * i - 2 * i + 5 << “\n”;

  cout << (19 + ++i + ++j) / (2 * j + 2) << “\n”;

  return 0;

}

3. What is the output of the following program?

#include <iostream.h>

main()

{

  int i = 3;

  int j = 5;

  i += j;

  j *= 2;

  cout << 10 + j % i << “\n”;

  i -= 2;

  j /= 3;

  cout << i * i - 2 * i + j << “\n”;

  return 0;

}



115

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

3

ns8/p2vA    TYS Borland C++ 21 Days   #30483   kim   4-13-94    ch3  LP#3(sp 4/12 folio)

4. What is the output of the following program?

#include <iostream.h>

main()

{

  int i = 5;

  int j = 10;

  cout << ((i < j) ? “TRUE” : “FALSE”) << “\n”;

  cout << ((i > 0 && j < 100) ?  “TRUE” : “FALSE”) << “\n”;

  cout << ((i > 0 && i < 10) ? “TRUE” : “FALSE”) << “\n”;

  cout << ((i == 5 && i == j) ? “TRUE” : “FALSE”) << “\n”;

  return 0;

}

Exercises
1. Use the conditional operator to write the function max, which returns the

greater of two integers.

2. Use the conditional operator to write the function min, which returns the
smaller of two integers.

3. Use the conditional operator to write the function abs, which returns the
absolute value of an integer.

4. Use the conditional operator to write the function isOdd, which returns 0 if
its integer argument is an odd number and yields 1 if otherwise.



117

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

4

VOL A/N&S8  TY Borland C++ 21 30483  kim  CH04  LP#3(sp 4/12 folio)

M
T

W
R

F
S

S

WEEK

44

11

Managing I/O



118

Managing I/O
M

T
W

R
F

S
S

DAYDAY

4

VOL A/N&S8  TY Borland C++ 21 30483  kim  CH04  LP#3(sp 4/12 folio)

C++, like its parent language C, does not define I/O operations that are part of the core
language. Instead, C++ and C rely on I/O libraries to provide the needed I/O support.
Such libraries are mainly aimed at non-GUI (graphical user interface) environments
such as MS-DOS. These libraries usually work with EasyWin applications, which is
why they are of interest in this book. However, because our primary goal here is to
teach you how to write Windows programs, we are keeping the discussion of these
I/O libraries to a minimum. Today’s short lesson looks at a small selection of input
and output operations and functions that are supported by the STDIO.H and
IOSTREAM.H header files. You will learn about the following topics:

■■ Formatted stream output

■■ Stream input

■■ The printf function

Formatted Stream Output
C++ brings with it a family of extendable I/O libraries. The language designers
recognized that the I/O functions in STDIO.H, inherited from C, have their
limitations when dealing with classes. (You will learn more about classes in Day 11.)
Consequently, C++ extends the notion of streams. Recall that streams, which already
exist in C, are a sequence of data flowing from part of a computer to another. In the
programs that we have presented thus far, you have seen the extractor operator <<
working with the standard output stream, cout. You also saw the inserter operator >>
and the standard input stream, cin. In this section, we introduce you to the stream
functions width and precision, which help in formatting the output. The C++ stream
libraries have many more functions to additionally fine-tune the output. However, as
we stated earlier, because these functions work for non-GUI interfaces, we don’t want
to overwhelm you with information that is not relevant to Windows programming.
The width function specifies the width of the output. The general form for using this
function with the cout stream is

cout.width(widthOfOutput);

The precision function specifies the number of digits for floating-point numbers.
The general form for using this function with the cout stream is

cout.precision(numberOfDigits);

Let’s look at an example. Listing 4.1 contains the source code for the program
OUT1.CPP. (We suggest that you place all of today’s programs in the DAY4.IDE
project file.) The program, which requires no input, displays formatted integers,



119

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

4

VOL A/N&S8  TY Borland C++ 21 30483  kim  CH04  LP#3(sp 4/12 folio)

Type

floating-point numbers, and characters using the width and precision stream
functions.

Listing 4.1. Source code for the program OUT1.CPP.

1: // Program that illustrates C++ formatted stream output
2: // using the width and precision functions
3:
4: #include <iostream.h>
5:
6: main()
7: {
8:   short    aShort     = 4;
9:   int      anInt      = 67;
10:  unsigned char aByte = 128;
11:  char     aChar      = ‘@’;
12:  float    aSingle    = 355.0;
13:  double   aDouble    = 1.130e+002;
14:  // display sample expressions
15:  cout.width(3); cout << int(aByte) << “ + “;
16:  cout.width(2); cout << anInt << “ = “;
17:  cout.width(3); cout << (aByte + anInt) << ‘\n’;
18:
19:  cout.precision(4); cout << aSingle << “ / “;
20:  cout.precision(4); cout << aDouble << “ = “;
21:  cout.precision(5); cout << (aSingle / aDouble) << ‘\n’;
22:
23:  cout << “The character in variable aChar is “
24:       << aChar << ‘\n’;
25:  return 0;
26: }

Here is a sample session with the program in Listing 4.1:

128 + 67 = 195
355 / 113 = 3.1416
The character in variable aChar is @

The program in Listing 4.1 declares a set of variables that have different data
types. The statements in lines 15 through 17 use the stream function width to
specify the output width for the next item displayed by a cout statement. Notice

that it takes six statements to display three integers. In addition, notice that in line 15
the program uses the expression int(aByte) to typecast the unsigned char type into
an int. Without this type conversion, the contents of the variable aByte appear as a
character instead of a number. If we use the stream output to display integers that have
default widths, we can indeed replace the six stream-output statements with a single
one.

Output

Analysis



120

Managing I/O
M

T
W

R
F

S
S

DAYDAY

4

VOL A/N&S8  TY Borland C++ 21 30483  kim  CH04  LP#3(sp 4/12 folio)

Lines 19 through 21 contain the second set of stream-output statements for the
floating-point numbers. The statements in these lines contain the stream function
precision to specify the total number of digits to display. Again, it takes six C++
statements to output three floating-point numbers. Once more, if we use the stream
output to display numbers that have default widths, we can replace the six stream-
output statements with a single one.

Stream Input
Like the standard output stream, C++ offers the standard input stream, cin. This
input stream can read predefined data types, such as int, unsigned, long, and char.
Typically, you use the inserter operator >> to obtain input for the predefined data
types. The programs that we presented so far use the >> operator to enter a single item.
C++ streams enable you to chain the >> operator to enter multiple items. In the case
of multiple items, you need to observe the following rules:

1. Enter a space between two consecutive numbers to separate them.

2. Entering a space between two consecutive chars is optional.

3. Entering a space between a char and a number (or vice versa) is necessary
only if the char is a digit.

4. The input stream ignores spaces.

5. You can enter multiple items on different lines. The stream-input statements
are not fully executed until they obtain all the specified input.

Note: For now, we will postpone discussing the input of character strings.
Day 9 covers strings and includes the input of strings.

Let’s look at a program that illustrates both the input of multiple items and different
combinations of data types. Listing 4.2 shows the source code for the program
IN1.CPP. The program performs the following tasks:

■■ Prompts you to enter three numbers

■■ Calculates the sum of the three numbers

■■ Displays the sum and the average of the three numbers you entered



121

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

4

VOL A/N&S8  TY Borland C++ 21 30483  kim  CH04  LP#3(sp 4/12 folio)

Type

■■ Prompts you to type in three characters

■■ Displays your input

■■ Prompts you to enter a number, a character, and a number

■■ Displays your input

■■ Prompts you to enter a character, a number, and a character

■■ Displays your input

Listing 4.2. Source code for the program IN1.CPP.

1:  // Program that illustrates standard stream input
2:
3:  #include <iostream.h>
4:
5:  main()
6:  {
7:    double x, y, z, sum;
8:    char c1, c2, c3;
9:
10:   cout << “Enter three numbers separated by a space : “;
11:   cin >> x >> y >> z;
12:   sum = x + y + z;
13:   cout << “Sum of numbers = “ << sum
14:        << “\nAverage of numbers = “ << sum / 2 << “\n”;
15:   cout << “Enter three characters : “;
16:   cin >> c1 >> c2 >> c3;
17:   cout << “You entered characters ‘“ << c1
18:        << “‘, ‘“ << c2 << “‘, and ‘“
19:        << c3 << “‘\n”;
20:   cout << “Enter a number, a character, and a number : “;
21:   cin >> x >> c1 >> y;
22:   cout << “You entered “ << x << “ “ << c1 << “ “ << y << “\n”;
23:   cout << “Enter a character, a number, and a character : “;
24:   cin >> c1 >> x >> c2;
25:   cout << “You entered “ << c1 << “ “ << x << “ “ << c2 << “\n”;
26:
27:   return 0;
28: }

Here is a sample session with the program in Listing 4.2:

Enter three numbers separated by a space : 1 2 3
Sum of numbers = 6
Average of numbers = 3
Enter three characters : ABC

Output



122

Managing I/O
M

T
W

R
F

S
S

DAYDAY

4

VOL A/N&S8  TY Borland C++ 21 30483  kim  CH04  LP#3(sp 4/12 folio)

You entered characters ‘A’, ‘B’, and ‘C’
Enter a number, a character, and a number : 12A34.4
You entered 12 A 34.4
Enter a character, a number, and a character : A3.14Z
You entered A 3.14 Z

The program in Listing 4.2 declares four double-typed variables and three char-
typed variables. The output statement in line 10 prompts you to enter three
numbers. The input statement in line 11 obtains your input and stores the

numbers in variables x, y, and z. You need to enter a space character between any two
numbers. You can also enter each number on a separate line. The statement stores the
first number you enter in variable x, the second number in variable y, and the third
one in variable z. This sequence is determined by the sequence in which these variables
appear in line 11. The statement in line 12 calculates the sum of the values in variables
x, y, and z. The output statement in lines 13 and 14 displays the sum and average of
the numbers that you entered.

The output statement in line 15 prompts you to enter three characters. The input
statement in line 16 obtains your input and sequentially stores the characters in
variables c1, c2, and c3. Your input need not separate the characters with a space.
Thus, you can type in characters such as 1A2, Bob, and 1   D   d. The output statement
in lines 17 through 19 displays the characters that you type, separated by spaces.

The output statement in line 20 prompts you to enter a number, a character, and a
number. The input statement in line 21 sequentially stores your input in variables x,
c1, and y. You need to type a space between the character and either of the numbers
only if the character can be interpreted as part of either number. For example, if you
want to enter the number 12, the dot character, and the number 55, type 12 . 55. The
spaces around the dot ensure that the input stream does not consider it as a decimal
part of either floating-point number. The output statement in line 22 displays the
values you entered, separated by spaces.

The output statement in line 23 prompts you to enter a character, a number, and a
character. The input statement in line 24 sequentially stores your input in variables
c1, x, and c2. You need to enter a space between the characters and the number only
if the characters can be interpreted as part of the number. For example, if you want
to enter the character -, the number 12, and the digit 0, type in - 12 0. The output
statement in line 25 displays the values you entered, separated by spaces.

Analysis



123

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

4

VOL A/N&S8  TY Borland C++ 21 30483  kim  CH04  LP#3(sp 4/12 folio)

The printf Function
As a novice C++ programmer, you have a wealth of I/O functions from which to
choose. In this section, we discuss the formatting features of the function printf,
which is part of the standard I/O of C. The function is prototyped in the header file
STDIO.H.

The printf function offers much power and presents formatted controls. The general
syntax for the individual formatting instruction is

% [flags] [width] [.precision] [F | N | h | l] <type character>

The flags options indicate the output justification, numeric signs, decimal points,
and trailing zeros. In addition, these flags also specify the octal and hexadecimal
prefixes. Table 4.1 shows the options for the flags in the format string of the printf
function.

The width option indicates the minimum number of displayed characters. The printf
function uses zeros and blanks to pad the output if needed. When the width number
begins with a 0, the printf function uses leading zeros, instead of spaces, for padding.
When the * character appears instead of a width number, the printf function obtains
the actual width number from the function’s argument list. The argument that
specifies the required width must come before the argument that is actually being
formatted. The following is an example that displays the integer 3 using 2 characters,
as specified by the third argument of printf:

printf(“%*d”, 3, 2);

The precision option specifies the maximum number of displayed characters. If you
include an integer, the precision option defines the minimum number of displayed
digits. When the * character is used in place of a precision number, the printf
function obtains the actual precision from the argument list. The argument that
specifies the required precision must come before the argument that is actually being
formatted. The following is an example that displays the floating-point number
3.3244 using 10 characters, as specified by the third argument of printf:

printf(“%7.*f”, 3.3244, 10);

The F, N, h, and l options are sized options that are used to overrule the argument’s
default size. The F and N options are used in conjunction with far and near pointers,
respectively. The h and l options are used to indicate short int or long, respectively.



124

Managing I/O
M

T
W

R
F

S
S

DAYDAY

4

VOL A/N&S8  TY Borland C++ 21 30483  kim  CH04  LP#3(sp 4/12 folio)

Table 4.1. The escape sequence.

Sequence Decimal Value Hex Value Task

\a  7 0×07 Bell

\b  8 0×08 Backspace

\f 12 0×0C Formfeed

\n 10 0×0A New line

\r 13 0×0D Carriage return

\t  9 0×09 Horizontal tab

\v 11 0×0B Vertical tab

\\ 92 0×5C Backslash

\’ 44 0×2C Single quote

\” 34 0×22 Double quote

\? 63 0×3F Question mark

\OOO 1 to 3 digits for octal
value

\Xhhh and 0×hhh Hexadecimal value

\xhhh

The printf function requires that you specify a data type character with each % format
code. Table 4.2 shows the options for the flags in the format string of printf. Table
4.3 shows the data type characters used in the format string of printf.

Table 4.2. Options for the flags in the format string of
the printf function.

Format Option Outcome

- Justifies to the left within the specified field

+ Displays the plus or minus sign of a value

blank Displays a leading blank if the value is positive; displays a
minus sign if the value is negative



125

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

4

VOL A/N&S8  TY Borland C++ 21 30483  kim  CH04  LP#3(sp 4/12 folio)

# No effect on decimal integers; displays a leading 0X or 0x
for hexadecimal integers; displays a leading zero for octal
integers; displays the decimal point for reals

Table 4.3. Data type characters used in the format
string of printf.

Category Type Character Outcome

Character c Single character

d Signed decimal int

i Signed decimal int

o Unsigned octal int

u Unsigned decimal int

x Unsigned hexadecimal int (the set of
numeric characters used is
01234567890abcdef)

X Unsigned hexadecimal int; the set of
numeric characters used is
01234567890abcdef

Pointer p Displays only the offset for near
pointers as OOOO; displays far
pointers as SSSS:OOOO

Pointer to int n

Real f Displays signed value in the format
[-]dddd.dddd

e Displays signed scientific value in the
format [-]d.dddde[+|-]ddd

E Displays signed scientific value in the
format [-]d.ddddE[+|-]ddd

Format Option Outcome

continues



126

Managing I/O
M

T
W

R
F

S
S

DAYDAY

4

VOL A/N&S8  TY Borland C++ 21 30483  kim  CH04  LP#3(sp 4/12 folio)

Type

Table 4.3. continued

Category Type Character Outcome

g Displays signed value using either the f
or e formats, depending on the value
and the specified precision

G Displays signed value using either the f
or E formats, depending on the value
and the specified precision

String pointer s Displays characters until the null
terminator of the string is reached

Note: Although the function printf plays no role in the output of
Windows applications, its sister function, sprintf, does. The latter
function creates a string of characters that contains the formatted image
of the output. We discuss the sprintf function in a later lesson, and we
use that function later to create a dialog box that contains messages that
include numbers.

Consider now a simple example. Listing 4.3 shows the source code for the program
OUT2.CPP. We created this program by editing the OUT1.CPP in Listing 4.1. The
new version displays formatted output using the printf function. The program
displays the same floating-point numbers using three different sets of format code.

Listing 4.3. Source code for the program OUT2.CPP.

1: // C++ program that uses the printf function for formatted output
2:
3: #include <stdio.h>
4:
5: main()
6: {
7:    short    aShort     = 4;
8:    int      anInt      = 67;
9:    unsigned char aByte = 128;
10:   char     aChar      = ‘@’;
11:   float    aSingle    = 355.0;
12:   double   aDouble    = 1.130e+002;
13:   // display sample expressions
14:   printf(“%3d %c %2d = %3d\n”,



127

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

4

VOL A/N&S8  TY Borland C++ 21 30483  kim  CH04  LP#3(sp 4/12 folio)

15:           aByte, ‘+’, anInt, aByte + anInt);
16:
17:   printf(“Output uses the %%lf format\n”);
18:   printf(“%6.4f / %6.4lf = %7.5lf\n”, aSingle, aDouble,
19:                                    aSingle / aDouble);
20:   printf(“Output uses the %%le format\n”);
21:   printf(“%6.4e / %6.4le = %7.5le\n”, aSingle, aDouble,
22:                                    aSingle / aDouble);
23:   printf(“Output uses the %%lg format\n”);
24:   printf(“%6.4g / %6.4lg = %7.5lg\n”, aSingle, aDouble,
25:                                    aSingle / aDouble);
26:
27:   printf(“The character in variable aChar is %c\n”, aChar);
28:   printf(“The ASCII code of %c is %d\n”, aChar, aChar);
29:    return 0;
30: }

Here is a sample session with the program in Listing 4.3:

128 + 67 = 195
Output uses the %lf format
355.0000 / 113.0000 = 3.14159
Output uses the %le format
3.5500e+002 / 1.1300e+002 = 3.14159e+000
Output uses the %lg format
   355 / 113 = 3.1416
The character in variable aChar is @
The ASCII code of @ is 64

The program in Listing 4.3 declares a collection of variables with different data
types. The output statement in lines 14 and 15 displays integers and characters
using the %d and %c format controls. Table 4.4 shows the effect of the various

format controls in the printf statement at line 14. Notice that the printf function
converts the first item in output from an unsigned char to an int.

Table 4.4. Effects of the various format controls in the printf
statement at line 16.

Format Control Item Data Type Output

%3d aByte unsigned char Integer

%c ‘+’ char Character

%2d anInt int Integer

%3d aByte + int Integer

anInt

Output

Analysis



128

Managing I/O
M

T
W

R
F

S
S

DAYDAY

4

VOL A/N&S8  TY Borland C++ 21 30483  kim  CH04  LP#3(sp 4/12 folio)

The output statement in line 18 displays the variable aSingle, the variable aDouble,
and the expression aSingle / aDouble using the format controls %6.4f, %6.4lf and
%7.5lf. These controls specify precision values of 4, 4, and 5 digits, respectively, and
minimum widths of 6, 6, and 7 characters, respectively. The last two format controls
indicate that they display a double-typed value.

The output statement in line 21 is similar to that in line 18. The main difference is
that the printf in line 21 uses the e format instead of the f format. Consequently, the
three items in the printf statement appear in scientific notation.

The output statement in line 24 is similar to that in line 18. The main difference is
that the printf in line 24 uses the g format instead of the f format. Consequently, the
first two items in the printf statement appear with no decimal places because they are
whole numbers.

The output statement in line 27 displays the contents in the variable aChar using the
%c format control. The output statement in line 28 displays the contents of variable
aChar twice: once as a character and once as an integer (or, to be more exact, the ASCII
code of a character). The printf function in line 28 performs this task by using the
%c and %d format controls, respectively.

Summary
Today’s lesson examined the basic input and output operations and functions that are
supported by the IOSTREAM.H and STDIO.H header files. You learned the
following:

■■ Formatted stream output uses the precision and width functions to provide
some basic formatting output.

■■ Standard stream input supports the insert operator >> to obtain input for the
predefined data types in C++.

■■ The format codes involved in the format string of the printf function allow
the printf function to control the appearance of the output and even
perform type conversion.



129

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

4

VOL A/N&S8  TY Borland C++ 21 30483  kim  CH04  LP#3(sp 4/12 folio)

Q&A
Q How can I chain >> or << operators?

A Each of these operators returns a special stream data type that can be the
input for another similar stream operator.

Q Why can’t I use the stream I/O operators in Windows applications?

A Windows applications have a fundamentally different way of interacting
with you. When an EasyWin program (which emulates a non-GUI MS-
DOS application) executes an input statement, it goes into a special mode
where it monitors the keyboard input. By contrast, Windows programs
(which are GUI applications) are always monitoring the mouse (its move-
ments and its button clicks) and the keyboard and reporting the current
status to the part of Windows that monitors such events. The vast differ-
ences between GUI and non-GUI applications render non-GUI input
functions useless in GUI applications.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing on to the
next day’s lesson. Answers are provided in Appendix A, “Answers.”

Quiz
1. What is wrong with the following statement?

cout << “Enter a number “ >> x;

2. What happens in the following statement?

cout << “Enter three numbers : “;

cin >> x >> y >> x;



130

Managing I/O
M

T
W

R
F

S
S

DAYDAY

4

VOL A/N&S8  TY Borland C++ 21 30483  kim  CH04  LP#3(sp 4/12 folio)

Exercises
1. Write the program OUT3.CPP, which displays a table of square roots for

whole numbers in the range of 2 to 10. Use the MATH.H header file to
import the sqrt function, which calculates the square root of a double-typed
argument. Because we have not discussed C++ loops, use repetitive state-
ments to display the various values. Employ the format controls %3.0lf and
%3.4lf to display the number and its square root, respectively.

2. Write the program OUT4.CPP, which prompts you for an integer and
displays the hexadecimal and octal equivalent forms. Use the printf format
controls to perform the conversion between decimal, hexadecimal, and octal
numbers.



131

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

M
T

W
R

F
S

S

WEEK

55

11

The Decision-
Making Constructs



132

The Decision-Making Constructs
M

T
W

R
F

S
S

DAYDAY

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

Different programming languages offer varying support for decision-making con-
structs. Some languages provide only simple decision-making constructs, whereas
others offer more sophisticated constructs.

☛ New Term: Decision-making constructs allow your applications to examine
conditions and choose courses of action.

Today’s lesson looks at the decision-making constructs in C++ and covers the
following topics:

■■ The single-alternative if statement

■■ The dual-alternative if-else statement

■■ The multiple-alternative if-else statement

■■ The multiple-alternative switch statement

■■ Nested decision-making constructs

The Single-Alternative
if  Statement

Unlike many programming languages, C++ does not have the keyword then in any
form of the if statement. This language feature may lead you to ask how the if
statement separates the tested condition from the executable statements. The answer
is that C++ dictates that you enclose the tested condition in parentheses.

☛ New Term: An if statement is a single-alternative statement.

The Single-Alternative if Statement
The general syntax for the single-alternative if statement is

if (condition)
     statement;

for a single executable statement, and

S
yn

ta
x



133

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

Type

if (condition) {
     <sequence of statements>
}

for a sequence of executable statements.

Examples:

if (numberOfLines < 0)
     numberOfLines = 0;

if ((height - 54) < 3) {
     area = length * width;
     volume = area * height;
}

C++ uses the open and close braces {} to define a block of statements. Figure 5.1 shows
the flow in a single-alternative if statement.

if (condition) {

True
Yes

No

statement 1
statement 2
...

}

statement

Figure 5.1. The program flow in the single-alternative if statement.

Let’s look at an example. Listing 5.1 shows a program with a single-alternative if
statement. The program prompts you to enter a nonzero number and stores the
input in the variable x. If the value in x is not zero, the program displays the reciprocal
of x.

Listing 5.1. Source code for the program IF1.CPP.

 1: // Program that demonstrates the single-alternative if statement
 2:
 3: #include <iostream.h>
 4:
 5: main()
 6: {
 7:   double x;
 8:   cout << “Enter a non-zero number : “;

continues



134

The Decision-Making Constructs
M

T
W

R
F

S
S

DAYDAY

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

Listing 5.1. continued

9:    cin >> x;
10:   if (x != 0)
11:     cout << “The reciprocal of “ << x
12:          << “ is “ << (1/x) << “\n”;
13:   return 0;
14: }

Here is a sample session with the program in Listing 5.1:

Enter a non-zero number : 25
The reciprocal of 25 is 0.04

The program in Listing 5.1 declares the double-typed variable x in the function
main. The output statement in line 8 prompts you to enter a nonzero number.
The input statement in line 9 stores your input in variable x. The if statement

in line 10 determines whether x does not equal zero. If this condition is true, the
program executes the output statement in lines 11 and 12. This statement displays the
value of x and its reciprocal, 1/x. If the tested condition is false, the program skips the
statements in lines 11 and 12 and resumes at the statement in line 13.

The Dual-Alternative
if-else Statement

In the dual-alternative form of the if statement, the else keyword separates the
statements that are used to execute each alternative.

☛ New Term: The dual-alternative if-else statement provides you with
two alternate courses of action based on the Boolean value of the tested
condition.

The Dual-Alternative if-else Statement
The general syntax for the dual-alternative if-else statement is

if (condition)
     statement1;
else
     statement2;

Output

Analysis

S
yn

ta
x



135

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

for a single executable statement in each clause, and

if (condition) {
     <sequence #1 of statements>
}
else {
     <sequence #2 of statements>
}

for a sequence of executable statements in both clauses.

Example:

if (moneyInAccount > withdraw) {
  moneyInAccount -= withdraw;
  cout << “You withdrew $” << withdraw << “\n”;
  cout << “Balance is $” << moneyInAccount << “\n”;
}
else {
  cout << “Cannot withdraw $” << withdraw << “\n”;
  cout << “Account has $” << moneyInAccount << “\n”;
}

Figure 5.2. shows the program flow in the dual-alternative if-else statement.

if (condition) {

True
Yes

No

statement 1
statement 2
...
statement n

statement 1
statement 2
...

}
else {

}

statement

Figure 5.2. The program flow in the dual-alternative if-else statement.

Let’s look at an example that uses the dual-alternative if-else statement. Listing 5.2
contains the source code for the program IF2.CPP. The program prompts you to enter
a character and then determines whether or not you entered a letter. The program
output classifies your input as either a letter or a nonletter character.



136

The Decision-Making Constructs
M

T
W

R
F

S
S

DAYDAY

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

Type Listing 5.2. Source code for the program IF2.CPP.

1:  // Program that demonstrates the dual-alternative if statement
2:
3:  #include <iostream.h>
4:  #include <ctype.h>
5:
6:  main()
7:  {
8:    char c;
9:    cout << “Enter a letter : “;
10:   cin >> c;
11:   // convert to uppercase
12:   c = toupper(c);
13:   if (c >= ‘A’ && c <= ‘Z’)
14:     cout << “You entered a letter\n”;
15:   else
16:     cout << “Your input was not a letter\n”;
17:   return 0;
18: }

Here is a sample session with the program in Listing 5.2:

Enter a character : g
You entered a letter

The program in Listing 5.2 declares the char-typed variable c in line 8. The
output statement in line 9 prompts you to enter a letter. The input statement in
line 10 obtains your input and stores it in variable c. The statement in line 12

converts the value in the variable to uppercase by calling the function toupper
(prototyped in the CTYPE.H header file). This character case conversion simplifies
the tested condition in the if-else statement at line 13. The if-else statement
determines if the variable c contains a character in the range of A to Z. If this condition
is true, the program executes the output statement in line 14. This statement displays
a message stating that you have entered a letter. Alternatively, if the tested condition
is false, the program executes the else clause statement in line 16. This statement
displays a message stating that your input was not a letter.

Potential Problems with the if
Statement

There is a potential problem with the dual-alternative if statement. This problem

Output

Analysis



137

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

occurs when the if clause includes another single-alternative if statement. In this
case, the compiler considers that the else clause pertains to the nested if statement.
(A nested if statement is one that contains another if statement in the if and/or else
clauses. You will learn more about nesting in the next section.) Here is an example:

if (i > 0)
     if (i = 10)
          cout << “You guessed the magic number”;
else
     cout << “Number is out of range”;

In this code fragment, when the variable i is a positive number other than 10, the code
displays the message Number is out of range. The compiler treats these statements
as though the code fragment meant

if (i > 0)
     if (i = 10)
          cout << “You guessed the magic number”;
     else
          cout << “Number is out of range”;

To correct this problem, enclose the nested if statement in a statement block:

if (i > 0) {
     if (i = 10)
          cout << “You guessed the magic number”;
}
else
     cout << “Number is out of range”;

The Multiple-Alternative
if-else Statement

C++ enables you to nest if-else statements to create a multiple-alternative form. This
alternative gives a lot of power and flexibility to your applications.

☛ New Term: The multiple-alternative if-else statement contains nested
if-else statements.



138

The Decision-Making Constructs
M

T
W

R
F

S
S

DAYDAY

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

The Multiple-Alternative if-else Statement
The general syntax for the multiple-alternative if-else statement is

if (tested_condition1)
     statement1; | { <sequence #1 of statement> }
else if (tested_condition2)
     statement2; | { <sequence #2 of statement> }
...
else if (tested_conditionN)
     statementN; | { <sequence #N of statement> }
[else
     statementN+1; | { <sequence #N+1 of statement> }]

Example:

char op;

int opOk = 1;
double x, y, z;
cout << “Enter operand1 operator operand2: “;
cin >> x >> op >> y;
if (op == ‘+’)
     z = x + y;
else if (op == ‘-’)
     z = x - y;
else if (op == ‘*’)
     z = x * y;
else if (op == ‘/’ && y != 0)
     z = x / y;
else
     opOk = 0;

The multiple-alternative if-else statement performs a series of cascaded tests until
one of the following occurs:

1. One of the conditions in the if clause or in the else if clauses is true. In
this case, the accompanying statements are executed.

2. None of the tested conditions is true. The program executes the statements
in the catch-all else clause (if there is an else clause).

Figure 5.3 shows the program flow in the multiple-alternative if-else statement.

S
yn

ta
x



139

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

Type

if (condition #1) {

True
Yes

sequence #1 of statements

}
else if (condition #2) {

Truesequence #2 of statements

else {

sequence #3 of statements

}
statement

No

No

Yes
}

Figure 5.3. The program flow in the multiple-alternative if-else statement.

Consider the following example. Listing 5.3 shows the source code for the program
IF3.CPP. The program prompts you to enter a character and uses the
multiple-alternative if-else statement to determine whether your input is one of the
following:

■■ An uppercase letter

■■ A lowercase letter

■■ A digit

■■ A non-alphanumeric character

Listing 5.3. Source code for the IF3.CPP program.

 1: // Program that demonstrates the multiple-alternative if statement
 2:
 3: #include <iostream.h>
 4:
 5: main()
 6: {
 7:   char c;
 8:   cout << “Enter a character : “;

continues



140

The Decision-Making Constructs
M

T
W

R
F

S
S

DAYDAY

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

Listing 5.3. continued

9:    cin >> c;
10:   if (c >= ‘A’ && c <= ‘Z’)
11:     cout << “You entered an uppercase letter\n”;
12:   else if (c >= ‘a’ && c <= ‘z’)
13:     cout << “You entered a lowercase letter\n”;
14:   else if (c >= ‘0’ && c <= ‘9’)
15:     cout << “You entered a digit\n”;
16:   else
17:     cout << “You entered a non-alphanumeric character\n”;
18:   return 0;
19: }

Here is a sample session with the program in Listing 5.3:

Enter a character : !
You entered a non-alphanumeric character

The program in Listing 5.3 declares the char-typed variable c in line 7. The
output statement in line 8 prompts you to enter a letter. The input statement in
line 9 obtains your input and stores it in variable c. The multi-alternative

if-else statement tests the following conditions:

1. In line 10, the if statement determines whether the variable c contains a
letter in the range of A to Z. If this condition is true, the program executes
the output statement in line 11. This statement confirms that you entered an
uppercase letter. The program then resumes at line 18.

2. If the condition in line 10 is false, the program jumps to the first else if
clause, in line 12. There the program determines whether the variable c
contains a letter in the range of a to z. If this condition is true, the program
executes the output statement in line 13. This statement confirms that you
entered a lowercase letter. The program then resumes at line 18.

3. If the condition in line 12 is false, the program jumps to the second else if
clause, in line 14. There the program determines whether the variable c
contains a digit. If this condition is true, the program executes the output
statement in line 15. This statement confirms that you entered a digit. The
program then resumes at line 18.

4. If the condition in line 14 is false, the program jumps to the catch-all else
clause in line 16 and executes the output statement in line 17. This state-
ment displays a message telling you that your input was neither a letter nor a
digit.

Output

Analysis



141

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

The switch Statement
The switch statement offers a special form of multiple-alternative decision-making.
It enables you to examine the various values of an integer-compatible expression and
choose the appropriate course of action.

The switch Statement
The general syntax for the switch statement is

switch (expression) {
     case constant1_1:
[    case constant1_2: ...]
          <one or more statements>
          break;
     case constant2_1:
[    case constant2_2: ...]
          <one or more statements>
          break;
...
     case constantN_1:
[    case constantN_2: ...]
          <one or more statements>
          break;
     default:
          <one or more statements>
}

Example:

OK = 1;
switch (op) {
     case ‘+’:
          z = x + y;
          break;
     case ‘-’:
          z = x - y;
          break;
     case ‘*’:
          z = x * y;
          break;
     case ‘/’:
          if (y != 0)
               z = x / y;
          else
               OK = 0;
          break;
     default:
          Ok = 0;
}

S
yn

ta
x



142

The Decision-Making Constructs
M

T
W

R
F

S
S

DAYDAY

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

The rules for using a switch statement are

1. The switch requires an integer-compatible value. This value may be a
constant, variable, function call, or expression. The switch statement does
not work with floating-point data types.

2. The value after each case label must be a constant.

3. C++ does not support case labels with ranges of values. Instead, each value
must appear in a separate case label.

4. You need to use a break statement after each set of executable statements.
The break statement causes program execution to resume after the end of
the current switch statement. If you do not use the break statement, the
program execution resumes at the subsequent case labels.

5. The default clause is a catch-all clause.

6. The set of statements in each case label or grouped case labels need not be
enclosed in open and close braces.

Note: The lack of single case labels with ranges of values makes it more
appealing to use a multiple-alternative if-else statement if you have a
large contiguous range of values.

Figure 5.4 shows the program flow in the multiple-alternative switch statement.

Let’s look at an example that uses the switch statement. Listing 5.4 contains the source
code for the program SWITCH1.CPP that we obtained by editing Listing 5.3. The
new program performs the same task of classifying your character input, this time
using a switch statement.



143

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

Type

switch (testValue)  {

case matchValue1:
(?=? testValue)

True
Yes

sequence #1 of statements
break;

case matchValue2:

Truesequence #2 of statements
break;

default:

sequence #3 of statements

statement

}

No

No

Yes

(?=? testValue)

Figure 5.4. The program flow in the multiple-alternative switch statement.

Listing 5.4. Source code for the
SWITCH1.CPP program.

1:  // Program that demonstrates the multiple-alternative switch statement
2:
3:  #include <iostream.h>
4:
5:  main()
6:  {
7:    char c;
8:    cout << “Enter a character : “;
9:    cin >> c;
10:   switch (c) {
11:     case ‘A’:
12:     case ‘B’:
13:     case ‘C’:
14:     case ‘D’:

continues



144

The Decision-Making Constructs
M

T
W

R
F

S
S

DAYDAY

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

Listing 5.4. continued
15:     // other case labels
16:       cout << “You entered an uppercase letter\n”;
17:       break;
18:     case ‘a’:
19:     case ‘b’:
20:     case ‘c’:
21:     case ‘d’:
22:     // other case labels
23:       cout << “You entered a lowercase letter\n”;
24:       break;
25:     case ‘0’:
26:     case ‘1’:
27:     case ‘2’:
28:     case ‘3’:
29:     // other case labels
30:       cout << “You entered a digit\n”;
31:       break;
32:     default:
33:       cout << “You entered a non-alphanumeric character\n”;
34:   }
35:   return 0;
36: }

Here is a sample session with the program in Listing 5.4:

Enter a character : 2
You entered a digit

The program in Listing 5.4 declares the char-typed variable c. The output
statement in line 8 prompts you to enter a character. The statement in line 9
stores your input in variable c. The switch statement starts at line 10. Lines 11

through 14 contain the case labels for the letters A through D. We omitted the case
labels for the rest of the uppercase letters to keep the program short. If the character
in variable c matches any value in lines 11 through 14, the program executes the
output statement in line 16. This statement confirms that you entered an uppercase
letter. (Because we reduced the number of case labels, the program executes the
statement in line 16 only if you enter one of the letters A through D.) The break
statement in line 17 causes the program flow to jump to line 35, past the end of the
switch statement.

If the character in variable c does not match any of the case labels in lines 11 through
14, the program resumes at line 18 where it encounters another set of case labels.

Output

Analysis



145

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

These labels are supposed to represent lowercase characters. As you can see, we
reduced the number of labels to shorten the program. If the character in variable c
matches any value in lines 18 through 21, the program executes the output statement
in line 23. This statement confirms that you entered a lowercase letter. (Because we
reduced the number of case labels, the program executes the statement in line 23 only
if you enter one of the letters a through d.) The break statement in line 24 causes the
program flow to jump to line 35, past the end of the switch statement.

If the character in variable c does not match any of the case labels in lines 18 through
21, the program resumes at line 25, where it encounters another set of case labels.
These labels are supposed to represent digits. Again, you can see that we reduced the
number of labels to shorten the program. If the character in variable c matches any
value in lines 25 through 28, the program executes the output statement in line 30.
This statement confirms that you entered a digit. (Because we reduced the number of
case labels, the program executes the statement in line 30 only if you enter one of the
digits 0 to 3.) The break statement in line 31 causes the program flow to jump to line
35, past the end of the switch statement.

If the character in variable c does not match any case label in lines 25 through 28, the
program jumps to the catch-all clause in line 32. The program executes the output
statement in line 33. This statement tells you that you entered a non-alphanumeric
character.

Nested Decision-Making
Constructs

Often you need to use nested decision-making constructs to manage nontrivial
conditions. Nesting decision-making constructs enables you to deal with complicated
conditions using a divide-and-conquer approach. The outer-level constructs help you
to test preliminary or more general conditions. The inner-level constructs help you
deal with more specific conditions.

Let’s look at an example. Listing 5.5 shows the source code for the program IF4.CPP.
The program prompts you to enter a character. Then the program determines if your
input is an uppercase letter, a lowercase letter, or a character that is not a letter. The
program displays a message that classifies your input.



146

The Decision-Making Constructs
M

T
W

R
F

S
S

DAYDAY

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

Type Listing 5.5. Source code for the program IF4.CPP.

1:  // Program that demonstrates the nested if statements
2:
3:  #include <iostream.h>
4:
5:  main()
6:  {
7:    char c;
8:    cout << “Enter a character : “;
9:    cin >> c;
10:   if ((c >= ‘A’ && c <= ‘Z’) || (c >= ‘a’ && c <= ‘z’))
11:     if (c >= ‘A’ && c <= ‘Z’)
12:       cout << “You entered an uppercase letter\n”;
13:     else
14:       cout << “You entered a lowercase letter\n”;
15:   else
16:     cout << “You entered a non-letter character\n”;
17:   return 0;
18: }

Here is a sample session with the program in Listing 5.5:

Enter a character : a
You entered a lowercase letter

The program in Listing 5.5 declares the char-typed variable c. The output
statement in line 8 prompts you to enter a character. The statement in line 9
stores your input in variable c. The program uses nested if-else statements that

begin at lines 10 and 11. The outer if-else statement determines whether or not the
variable c contains a letter. If the tested condition is true, the program executes the
inner if-else statement in line 11. Otherwise, the program resumes at the else clause
of the outer if-else statement and executes the output statement in line 16. This
statement tells you that your input was not a letter.

The program uses the inner if-else statement to further examine the condition of the
outer if-else statement. The if-else statement in line 11 determines whether the
variable c contains an uppercase letter. If this condition is true, the program executes
the output statement in line 12. Otherwise, the program executes the else clause
statement in line 14. These output statements tell you whether you entered an
uppercase or a lowercase letter. After executing the inner if-else statement, the
program jumps to line 17, past the end of the outer if-else statement.

Output

Analysis



147

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

Summary
Today’s lesson presented the various decision-making constructs in C++, including
the following:

■■ The single-alternative if statement, such as

if (tested_condition)

     statement; | {     <sequence of statements> }

■■ The dual-alternative if-else statement, such as

if (tested_condition)

    statement1; { <sequence #1 of statements> }

else

    statement1; { <sequence #1 of statements> }

■■ The multiple-alternative if-else statement, such as

if (tested_condition1)

     statement1; | { <sequence #1 of statement> }

else if (tested_condition2)

     statement2; | { <sequence #2 of statement> }

...

else if (tested_conditionN)

     statementN; | { <sequence #N of statement> }

[else

     statementN+1; | { <sequence #N+1 of statement> }]

■■ The multiple-alternative switch statement, such as

switch (caseVar) {

    case constant1_1:

    case constant1_2:

    <other case labels>

         <one or more statements>

         break;

    case constant2_1:

    case constant2_2:

    <other case labels>

         <one or more statements>

         break;

    ...

    case constantN_1:



148

The Decision-Making Constructs
M

T
W

R
F

S
S

DAYDAY

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

    case constantN_2:

    <other case labels>

         <one or more statements>

         break;

    default:

         <one or more statements>

         break;

}

You also learned about the following topics:

■■ The if statements require you to observe the following two rules:

■■ The tested condition must be enclosed in parentheses.

■■ Blocks of statements are enclosed in pairs of open and close braces.

■■ Nested decision-making constructs enable you to deal with complex condi-
tions using a divide-and-conquer approach. The outer-level constructs help
you in testing preliminary or more general conditions. The inner-level
constructs assist in handling more specific conditions.

Q&A
Q Does C++ impose any rules for indenting statements in the clauses of an

if statement?

A No. The indentation is purely up to you. Typical indentations range from
2 to 4 spaces. Using indentations makes your listings much more readable.
Here is the case of an if statement with unindented clause statements:

if (i > 0)

j = i * i;

else

j = 10 - i;

Compare the readability of that listing with this indented version:

if (i > 0)

  j = i * i;

else

  j = 10 - i;

The indented version is much easier to read.



149

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

Q What are the rules for writing the condition of an if-else statement?

A There are two schools of thought. The first one recommends that you write
the condition so that it is more often true than not. The second school
recommends avoiding negative expressions (those that use the relational
operator != and the Boolean operator !). Programmers in this camp translate
this if statement,

if (i != 0)

    j = 100 / i;

else

    j = 1;

into the following equivalent form,

if (i == 0)

    j = 1;

else

    j = 100 \ i;

even though the likelihood of variable i storing 0 might be very low.

Q How do I handle a condition such as the following, which divides by a
variable that can possibly be zero?

if (i != 0 && 1/i > 1)

    j = i * i;

A C++ does not always evaluate the entire tested condition. This partial
evaluation occurs when a term in the Boolean expression renders the entire
expression false or true, regardless of the values of the other terms. In this
case, if variable i is 0, the runtime system does not evaluate the term 1/i >
1. This is because the term i != 0 is false and would render the entire
expression false, regardless of what the second term yields.

Q Is it really necessary to include an else or default clause in multi-
alternative if-else and switch statements?

A Programmers highly recommend the inclusion of these catch-all clauses to
ensure that the multiple-alternative statements handle all conditions.



150

The Decision-Making Constructs
M

T
W

R
F

S
S

DAYDAY

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing on to the
next day’s lesson. (Answers are provided in Appendix A, “Answers.”)

Quiz
1. Simplify the following nested if statements by replacing them with a single

if statement:

if (i > 0)

  if (i < 10)

     cout << “i = “ << i << “\n”;

2. Simplify the following if statements by replacing them with a single if
statement:

if (i > 0) {

    j = i * i;

    cout << “j = “ << j << “\n”;

}

if (i < 0) {

    j = 4 * i;

    cout << “j = “ << j << “\n”;

}

if (i == 0) {

    j = 10 + i

    cout << “j = “ << j << “\n”;

}

3. True or false? The following if statements perform the same tasks as the
if-else statement:

if (i < 0) {

     i = 10 + i;

     j = i * i;

     cout << “i = “ << i << “\n”;

     cout << “j = “ << j << “\n”;

}



151

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

if (i >= 0) {

     k = 4 * i + 1;

     cout << “k = “ << k << “\n”;

}

if (i < 0) {

     i = 10 - i;

     j = i * i;

     cout << “i = “ << i << “\n”;

     cout << “j = “ << j << “\n”;

}

else {

     k = 4 * i + 1;

     cout << “k = “ << k << “\n”;

}

4. Simplify the following if-else statement:

if (i > 0 && i < 100)

  j = i * i;

else if (i > 10 && i < 50)

  j = 10 + i;

else if (i >= 100)

  j = i;

else

  j = 1;

5. What is wrong with the following if statement?

if (i > (1 + i * i)) {

  j = i * i

  cout << “i = “ << i << “ and j = “ << j << “\n”;

}

Exercises
1. Write the program IF5.CPP to solve for the roots of a quadratic equation.

The quadratic equation is

A X2 + B X + C = 0



152

The Decision-Making Constructs
M

T
W

R
F

S
S

DAYDAY

5

A/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94 CH05  LP#3(sp 4/12 folio)

The roots of the quadratic equation are

root1 = (-B + √(B2 - 4AC)) / (2A)
root1 = (-B - √(B2 - 4AC)) / (2A)

If the term in the square root is negative, the roots are complex. If the term
in the square root term is zero, the two roots are the same and are equal to
-B/(2A).

2. Write the program SWITCH2.CPP, which implements a simple four-
function calculator. The program should prompt you for the operand and
the operator, and display both the input and the result. Include error
checking for bad operators and for the attempt to divide by zero.



153

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

M
T

W
R

F
S

S

WEEK

11

66
Loops



154

Loops
M

T
W

R
F

S
S

DAYDAY

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

You will recall from Day 3 that loops are powerful language constructs that improve
the processing of repetitive tasks. Computers are able to repeat tasks quickly,
accurately, and tirelessly. (In this regard, they are better than humans.) Today’s lesson
presents the following loops in C++:

■■ The for loop statement

■■ The do-while loop statement

■■ The while loop statement

■■ Skipping iterations

■■ Exiting loops

■■ Nested loops

The for Loop
The for loop in C++ is a versatile loop because it offers both fixed and conditional
iterations. The latter feature of the for loop deviates from the typical use of the for
loop in other programming languages, such as Pascal and Basic.

S
yn

ta
x

The for Loop
The general syntax for the for loop statement is

for (<initialization of loop control variables>;
     <loop continuation test>;
     <increment/decrement of loop control variables>)

Example:

for (i = 0; i < 10; i++)
     cout << “The cube of “ << i << “ = “ << i * i * i << “\n”;

The for loop statement has three components, each of which are optional. The first
component initializes the loop control variables. (C++ enables you to use more than
one loop control variable.) The second part of the loop is the condition that
determines whether or not the loop makes another iteration. The last part of the for
loop is the clause that increments and/or decrements the loop control variables.



155

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

Type

Note: The C++ for loop enables you to declare the loop control variables.
Such variables exist in the scope of the loop. This scope is defined by the
block of statements that contains the loop.

Let’s look at an example. Listing 6.1 contains the source code for the program
FOR1.CPP. The program prompts you to define a range of integers by specifying the
lower and upper bounds. Then the program calculates the sum of the integers in the
range you specify, as well as the average value.

Listing 6.1. Source code for the program FOR1.CPP.

1:  // Program that calculates a sum and average of a range of
2:  // integers using a for loop
3:
4:  #include <iostream.h>
5:
6:  main()
7:  {
8:      double sum = 0;
9:      double sumx = 0.0;
10:     int first, last, temp;
11:
12:     cout << “Enter the first integer : “;
13:     cin >> first;
14:     cout << “Enter the last integer : “;
15:     cin >> last;
16:     if (first > last) {
17:       temp= first;
18:       first = last;
19:       last = temp;
20:     }
21:     for (int i = first; i <= last; i++) {
22:       sum++;
23:       sumx += (double)i;
24:     }
25:     cout << “Sum of integers from “
26:          << first << “ to “ << last << “ = “
27:          << sumx << “\n”;
28:     cout << “Average value = “ << sumx / sum;
29:     return 0;
30: }



156

Loops
M

T
W

R
F

S
S

DAYDAY

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

Output

Analysis

Here is a sample session with the program in Listing 6.1:

Enter the first integer : 1
Enter the last integer : 100
Sum of integers from 1 to 100 = 5050
Average value = 50.5

The program in Listing 6.1 declares a collection of int-typed and double-typed
variables in function main. The function initializes the summation variables, sum
and sumx, to 0. The input and output statements in lines 12 through 15 prompt

you to enter the integers that define a range of values. The program stores these
integers in the variables first and last. The if statement in line 16 determines
whether the value in variable first is greater than the value in variable last. If this
condition is true, the program executes the block of statements in lines 17 through 19.
These statements swap the values in variables first and last, using the variable temp
as a swap buffer. Thus, the if statement ensures that the integer in variable first is
less than or equal to the integer in variable last.

The program carries out the summation using the for loop in line 21. The loop
declares its own control variable, i, and initializes it with the value in the variable
first. The loop continuation condition is i <= last. This condition indicates that
the loop iterates as long as i is less than or equal to the value in the variable last. The
loop increment component is i++, which increments the loop control variable by 1
for every iteration. The loop contains two statements. The first statement increments
the value in the variable sum. The second statement adds the value of i (after
typecasting it to double) to the variable sumx.

Note: You can rewrite the for loop to move the first loop statement to
the loop increment component:

for (int i = first; i <= last; i++, sum++)

   sumx += (double)i;

The output statement in lines 25 through 27 displays the sum and average of integers
in the range you specified.

To illustrate the flexibility of the for loop, we created the program FOR2.CPP, shown
in Listing 6.2, by editing the program FOR1.CPP. The two programs perform the
same tasks and interact identically with the user. The changes we made are in line 10
and lines 21 through 25. Line 10 declares the loop control variable. In line 21, we



157

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

Type

initialize the variable i using the value in the variable first. The for loop is located
at line 22. The loop has no initialization part, because we took care of that in line 21.
In addition, we removed the loop increment component and compensated for it by
applying the post-increment operator to the variable i in line 24.

Listing 6.2. Source code for the program FOR2.CPP.

1:  // Program that calculates a sum and average of a range of
2:  // integers using a for loop
3:
4:  #include <iostream.h>
5:
6:  main()
7:  {
8:      double sum = 0;
9:      double sumx = 0.0;
10:     int first, last, temp, i;
11:
12:     cout << “Enter the first integer : “;
13:     cin >> first;
14:     cout << “Enter the last integer : “;
15:     cin >> last;
16:     if (first > last) {
17:       temp= first;
18:       first = last;
19:       last = temp;
20:     }
21:     i = first;
22:     for (; i <= last; ) {
23:       sum++;
24:       sumx += (double)i++;
25:     }
26:     cout << “Sum of integers from “
27:          << first << “ to “ << last << “ = “
28:          << sumx << “\n”;
29:     cout << “Average value = “ << sumx / sum;
30:     return 0;
31: }

Here is a sample session with the program in Listing 6.2:

Enter the first integer : 10
Enter the last integer : 100
Sum of integers from 10 to 100 = 5005
Average value = 55

Output



158

Loops
M

T
W

R
F

S
S

DAYDAY

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

Type

Open Loops Using the for Loops
When we introduced you to the C++ for loop, we stated that the three components
of the for loop are optional. In fact, C++ permits you to leave these three components
empty.

☛ New Term: When you leave the three components of a loop empty, the
result is an open loop.

It is worthwhile to point out that other languages, such as Ada and Modula-2, do
support formal open loops and provide mechanisms to exit these loops. C++ permits
you to exit from a loop in the following two ways:

1. The break statement causes the program execution to resume after the end
of the current loop. Use the break statement when you wish to exit a for
loop and resume with the remaining parts of the program.

2. The exit function (declared in the STDLIB.H header file) enables you to
exit the program. Use the exit function if you want to stop iterating and
also exit the program.

Consider the following example. Listing 6.3 contains the source code for the program
FOR3.CPP. The program uses an open loop to prompt you repeatedly for a number.
The program takes your input and displays it along with its reciprocal value. Then the
program asks you whether or not you wish to calculate the reciprocal of another
number. If you type in the letter Y or y, the program performs another iteration.
Otherwise, the program ends. If you keep typing Y or y for the latter prompt, the
program keeps running—at least until the computer breaks down!

Listing 6.3. Source code for the program FOR3.CPP.

1:  // Program that demonstrates using the
2:  // for loop to emulate an infinite loop.
3:
4:  #include <iostream.h>
5:  #include <ctype.h>
6:
7:  main()
8:  {
9:     char ch;
10:    double x, y;
11:



159

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

12:    // for loop with empty parts
13:    for (;;) {
14:       cout << “\nEnter a number : “;
15:       cin >> x;
16:       // process number if non-zero
17:       if (x != 0) {
18:         y = 1/ x;
19:         cout << “1/(“ << x << “) = “ << y << “\n”;
20:         cout << “More calculations? (Y/N) “;
21:         cin >> ch;
22:         ch = toupper(ch);
23:         if (ch != ‘Y’)
24:            break;
25:       }
26:       else
27:         // display error message
28:         cout << “Error: cannot accept 0\n”;
29:    }
30:    return 0;
31: }

Here is a sample session with the program in Listing 6.3:

Enter a number : 5
1/(5) = 0.2
More calculations? (Y/N) y

Enter a number : 12
1/(12) = 0.0833333
More calculations? (Y/N) y

Enter a number : 16
1/(16) = 0.0625
More calculations? (Y/N) n

The program in Listing 6.3 declares the char-typed variable ch and two double-
typed variables, x and y. The function main uses the for loop, in line 13, as an
open loop by eliminating all three loop components. The output statement in

line 14 prompts you to enter a number. The input statement in line 15 obtains your
input and stores it in variable x. The if-else statement in line 17 determines if the
value in variable x is not zero. If this condition is true, the program executes the block
of statements in lines 18 through 24. Otherwise, the program executes the else clause
statement in line 28. This statement displays an error message.

The statement in line 18 assigns the reciprocal of the value in variable x to variable y.
The output statement in line 19 displays the values in variables x and y. The output
statement in line 20 prompts you for more calculations, and requires a Y/N (in either
uppercase or lowercase) type of answer. The input statement in line 21 stores your

Output

Analysis



160

Loops
M

T
W

R
F

S
S

DAYDAY

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

single-character input in variable c. The statement in line 22 converts your input into
uppercase, using the function toupper. (This function is prototyped in the CTYPE.H
header file.) The if statement in line 23 determines whether the character in variable
c is not the letter Y. If this condition is true, the program executes the break statement
in line 24. This statement causes the program execution to exit the open loop and to
resume at line 30.

The do-while Loop
The do-while loop in C++ is a conditional loop that tests the iteration condition at
the end of the loop. Therefore, the do-while loop iterates at least once.

☛ New Term: A conditional loop iterates as long as a condition is true. This
condition is tested at the end of the loop.

S
yn

ta
x

The do-while Loop
The general syntax for the do-while loop is

do {
     <sequence of statements>
} while (condition);

Example:

The following loop displays the squares of 2 to 10:

int i = 2;
do {
     cout << i << “^2 = “ << i * i << “\n”;
} while (++i < 11);

Let’s look at an example. Listing 6.4 shows the source code for the program
DOWHILE1.CPP, which essentially calculates square root values. The program
performs the following tasks:

■■ Prompts you to enter a number. (If you enter a negative number, the
program reprompts you for a number.)

■■ Calculates and displays the square root of the number you entered.

■■ Asks you if you wish to enter another number. (If you enter the letter Y or y,
the program resumes at step number 1; otherwise, the program ends.)



161

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

Type Listing 6.4. Source code for the program
DOWHILE1.CPP.

1:  // Program that demonstrates the do-while loop
2:
3:  #include <iostream.h>
4:
5:  const double TOLERANCE = 1.0e-7;
6:
7:  double abs(double x)
8:  {
9:    return (x >= 0) ? x : -x;
10: }
11:
12: double sqroot(double x)
13: {
14:   double guess = x / 2;
15:   do {
16:     guess = (guess + x / guess) / 2;
17:   } while (abs(guess * guess - x) > TOLERANCE);
18:   return guess;
19: }
20:
21: double getNumber()
22: {
23:   double x;
24:   do {
25:     cout << “Enter a number: “;
26:     cin >> x;
27:   } while (x < 0);
28:   return x;
29: }
30:
31: main()
32: {
33:    char c;
34:    double x, y;
35:
36:    do {
37:       x = getNumber();
38:       y = sqroot(x);
39:       cout << “Sqrt(“ << x << “) = “ << y << “\n”
40:            << “Enter another number? (Y/N) “;
41:       cin >> c;
42:       cout << “\n”;
43:    } while (c == ‘Y’ || c == ‘y’);
44:    return 0;
45: }

Here is a sample session with the program in Listing 6.4:



162

Loops
M

T
W

R
F

S
S

DAYDAY

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

Enter a number: 25
Sqrt(25) = 5
Enter another number? (Y/N) y

Enter a number: 144
Sqrt(144) = 12
Enter another number? (Y/N) n

The program in Listing 6.4 declares the global constant TOLERANCE and the
functions abs, sqroot, getNumber, and main. The function abs, located in line
7, returns the absolute value of double-typed arguments.

The function sqroot, located in line 12, returns the square root of the parameter x.
The function sets the initial guess for the square root to x / 2 in line 14. Then the
function uses a do-while loop to refine iteratively the guess for the square root. The
condition in the while clause determines if the absolute difference between the square
of the current guess and the parameter x is greater than the allowable error (represented
by the constant TOLERANCE). The loop iterates as long as this condition is true. The
function returns the guess for the square root in line 18. The function sqroot
implements Newton’s method for iteratively obtaining the square root of a number.

The function getNumber, located in line 21, prompts you for a number and stores your
input in the local variable x. The function uses a do-while loop to ensure that you enter
a nonnegative number. The while clause in line 27 determines if the value in variable
x is negative. As long as this condition is true, the do-while loop iterates. In line 28,
the return statement yields the value of x.

The function main, located in line 31, uses a do-while loop to perform the following
tasks:

■■ Prompts you for a number by calling function getNumber. (The statement
in line 37 contains the function call and assigns the result to the local
variable x.)

■■ Calculates the square root of x by calling function sqroot, and assigns the
result to the variable y. (The statement that contains this function call is in
line 38.)

■■ Displays the values in variables x and y.

■■ Asks you if you want to enter another number. (The input statement in line
41 takes your single-character Y/N input and stores it in variable c.)

The while clause, located in line 43, determines if the variable c contains either the
letter Y or y. The do-while loop iterates as long as this condition is true.

Analysis

Output



163

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

Type

The program in Listing 6.4 illustrates the following uses for the do-while loop:

1. Iterative calculations. The loop in function sqroot demonstrates this aspect.

2. Data validation. The loop in function getNumber demonstrates this aspect.

3. Program continuation. The loop in function main demonstrates this aspect.

The while Loop
The while loop in C++ is another conditional loop that iterates as long as a condition
is true. Thus, the while loop may not iterate if the tested condition is initially false.

Sy
nt

ax The while Loop
The general syntax of the while loop is

while (condition)
     statement; | { sequence of statements }

Example:

function power(double x, int n)
{
  double pwr = 1;
  while (n-- > 0)
     pwr *= x;
  return pwr;
}

Look at the next example. Listing 6.5 shows the source code for the program
WHILE1.CPP. This program performs the same operations as the program
FOR1.CPP, in Listing 6.1. The two programs interact with the user in the same way
and yield the same results.

Listing 6.5. Source code for the program WHILE1.CPP.

1:  // Program that demonstrates the while loop
2:
3:  #include <iostream.h>
4:
5:  main()
6:  {
7:      double sum = 0;
8:      double sumx = 0.0;
9:      int first, last, temp, i;
10:

continues



164

Loops
M

T
W

R
F

S
S

DAYDAY

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

11:     cout << “Enter the first integer : “;
12:     cin >> first;
13:     cout << “Enter the last integer : “;
14:     cin >> last;
15:     if (first > last) {
16:       temp= first;
17:       first = last;
18:       last = temp;
19:     }
20:     i = first;
21:     while (i <= last) {
22:       sum++;
23:       sumx += (double)i++;
24:     }
25:     cout << “Sum of integers from “
26:          << first << “ to “ << last << “ = “
27:          << sumx << “\n”;
28:     cout << “Average value = “ << sumx / sum;
29:     return 0;
30: }

Here is a sample session with the program in Listing 6.5:

Enter the first integer : 1
Enter the last integer : 100
Sum of integers from 1 to 100 = 5050
Average value = 50.5

Because the programs in Listings 6.5 and 6.1 are similar, we will focus here on
lines 20 through 24, where the main difference between the two programs lies.
The statement in line 20 assigns the value of the variable first to the variable

i. The while loop starts at line 21. The loop iterates as long as the value in the variable
i is less than or equal to the value in the variable last. The variable i plays the role
of the loop control variable. The statement in line 22 increments the value in the
variable sum. The statement in line 23 adds the value in variable i to the variable sumx
and also increments the variable i. The statement performs the latter task by applying
the post-increment operator to the variable i.

Skipping Loop Iterations
C++ enables you to jump to the end of a loop and resume the next iteration using the
continue statement. This programming feature permits your loop to skip iteration for
special values that may cause runtime errors.

Listing 6.5. continued

Output

Analysis



165

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

Type

S
yn

ta
x

The continue Statement
The general form for using the continue statement is

<loop-start clause> {
     // sequence #1 of statements
     if (skipCondition)
          continue;
     // sequence #2 of statements
} <loop-end clause>

Example (in a for loop):

double x, y;
for (int i = -10; i < 11; i++) {
  x = i;
  if (i == 1)
     continue;
  y = 1/sqrt(x * x - 1);
  cout << “1/sqrt(“ << (x*x-1) << “) = “ << y << “\n”;
}

This form shows that the evaluation of the first sequence of statements in the for loop
gives rise to a condition tested in the if statement. If that condition is true, the if
statement invokes the continue statement to skip the second sequence of statements
in the for loop.

Let’s look at an example. Listing 6.6 shows the source code for the pro-
gram FOR4.CPP. The program displays the table of values for the function
f(X) = =(X2–9) at integer values between –10 and 10. Because the integers
between –2 and 2 yield complex results, which the program avoids, the table does
not display the complex values for f(X) between –2 and 2.

Listing 6.6. Source code for the program FOR4.CPP.

1:  // Program that demonstrates using the continue statement
2:  // to skip iterations.
3:
4:  #include <iostream.h>
5:  #include <math.h>
6:
7:
8:  double f(double x)
9:  {
10:   return sqrt(x * x - 9);
11: }
12:

continues



166

Loops
M

T
W

R
F

S
S

DAYDAY

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

13: main()
14: {
15:    double x, y;
16:
17:    cout << “        X”;
18:    cout << “          f(X)\n”;
19:    cout << “_________________________________\n\n”;
20:    // for loop with empty parts
21:    for (int i = -10; i <= 10; i++) {
22:      if (i > -3 && i < 3)
23:        continue;
24:      x = (double)i;
25:      y = f(x);
26:      cout << “      “;
27:      cout.width(3);
28:      cout << x << “        “;
29:      cout.width(7);
30:      cout << y << “\n”;
31:    }
32:    return 0;
33: }

Here is a sample session with the program in Listing 6.6:

        X          f(X)
_________________________________

      -10        9.53939
       -9        8.48528
       -8         7.4162
       -7        6.32456
       -6        5.19615
       -5              4
       -4        2.64575
       -3              0
        3              0
        4        2.64575
        5              4
        6        5.19615
        7        6.32456
        8         7.4162
        9        8.48528
       10        9.53939

Listing 6.6. continued

Output



167

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

The program in Listing 6.6 declares the function f to represent the mathematical
function f(X). The function main declares the double-typed variables x and y in
line 15. The output statements in lines 17 through 19 display the table’s heading.

The for loop in line 21 declares its own control variable and iterates between –10 and
10, in increments of 1. The first statement inside the loop is the if statement located
at line 22. This statement determines if the value in variable i is greater than –3 and
less than 3. If this condition is true, the program executes the continue statement in
line 23. Thus, the if statement enables the for loop to skip error-generating iterations
and resume with the next iteration. The statement in line 24 assigns the value in
variable i to variable x. The statement in line 25 calls the function f and supplies it
with the argument x. The statement then assigns the result to variable y. The output
statements in lines 25 through 30 display the values of the variables x and y. The
statements use the function width for simple formatting.

Exiting Loops
C++ supports the break statement to exit a loop. The break statement makes the
program resume after the end of the current loop.

S
yn

ta
x

The break Statement
The general form for using the break statement in a loop is

<start-loop clause> {
     // sequence #1 of statements
     if (exitLoopCondition)
          break;
     // sequence #2 of statements
} <end-loop clause>
// sequence #3 of statements

Example:

// calculate the factorial of n
factorial = 1;
for (int i = 1; ; i++) {
  if (i > n)
     break;
  factorial *= (double)i;
}

Analysis



168

Loops
M

T
W

R
F

S
S

DAYDAY

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

Type

This form shows that the evaluation of the first sequence of statements in the for loop
gives rise to a condition tested in the if statement. If that condition is true, the if
statement invokes the break statement to exit the loop altogether. The program
execution resumes at the third sequence of statements.

For a good example that uses the break statement, we recommend that you reexamine
the FOR3.CPP program in Listing 6.3.

Nested Loops
Nested loops enable you to contain repetitive tasks as part of other repetitive tasks.
C++ enables you to nest any kind of loops to just about any level needed. Nested loops
are frequently used to process arrays (which are covered in Day 7).

The following is an example that uses nested loops. Listing 6.7 shows the source code
for the program NESTFOR1.CPP. The program displays a table for square roots for
whole numbers in the range of 1 to 10. The program uses an outer loop to iterate over
this range of numbers and employs an inner loop to iteratively calculate the square
root.

Listing 6.7. Source code for the program
NESTFOR1.CPP.

1:  // Program that demonstrates nested loops
2:
3:  #include <stdio.h>
4:
5:  const double TOLERANCE = 1.0e-7;
6:  const int MIN_NUM = 1;
7:  const int MAX_NUM = 10;
8:
9:  double abs(double x)
10: {
11:   return (x >= 0) ? x : -x;
12: }
13:
14: main()
15: {
16:    double x, sqrt;
17:
18:    printf(“  X       Sqrt(X)\n”);
19:    printf(“_____________________\n\n”);
20:    // outer loop



169

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

21:    for (int i = MIN_NUM; i <= MAX_NUM; i++) {
22:      x = (double)i;
23:      sqrt = x /2;
24:      // inner loop
25:      do {
26:        sqrt = (sqrt + x / sqrt) / 2;
27:      } while (abs(sqrt * sqrt - x) > TOLERANCE);
28:      printf(“%4.1f     %8.6lf\n”, x, sqrt);
29:    }
30:    return 0;
31: }

Here is a sample session with the program in Listing 6.7:

  X       Sqrt(X)
_____________________

 1.0     1.000000
 2.0     1.414214
 3.0     1.732051
 4.0     2.000000
 5.0     2.236068
 6.0     2.449490
 7.0     2.645751
 8.0     2.828427
 9.0     3.000000
10.0     3.162278

The program in Listing 6.7 includes the header file STDIO.H in order to use
the printf output function with its powerful formatting capabilities. Lines 5
through 7 define the constants TOLERANCE, MIN_NUM, and MAX_NUM to represent,

respectively, the tolerance in square root values, the first number in the output table,
and the last number in the output table. The program defines the function abs to
return the absolute number of a double-typed number.

The function main declares the double-typed variables x and sqrt. The output
statements in lines 18 and 19 display the table’s heading. Line 21 contains the outer
loop, a for loop. This loop declares its control variable, i, and iterates from MIN_NUM
to MAX_NUM in increments of 1. Line 22 stores the typecast value of i in variable x. The
statement in line 23 obtains the initial guess for the square root and stores it in variable
sqrt. Line 25 contains the inner loop, a do-while loop that iterates to refine the guess
for the square root. The statement in line 26 refines the guess for the square root. The
while clause in line 27 determines whether or not the refined guess is adequate. The
output statement in line 28 displays the formatted values for the variables x and sqrt.

Output

Analysis



170

Loops
M

T
W

R
F

S
S

DAYDAY

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

Summary
Today’s lesson covered the C++ loops and topics related to loops. You learned about
the following:

■■ The for loop in C++ has the following general syntax:

for (<initialization of loop control variables>;

     <loop continuation test>;

     <increment/decrement of loop control variables>)

The for loop contains three components: the loop initialization, loop
continuation condition, and the increment/decrement of the loop variables.

■■ The conditional loop do-while has the following general syntax:

do {

     sequence of statements

} while (condition);

The do-while loop iterates at least once.

■■ The conditional while loop has the following general syntax:

while (condition)

     statement; | { sequence of statements }

The while loop might not iterate if its tested condition is initially false.

■■ The continue statement enables you to jump to the end of the loop and
resume with the next iteration. The advantage of the continue statement is
that it uses no labels to direct the jump.

■■ Open loops are for loops with empty components. The break statement
enables you to exit the current loop and resume program execution at the
first statement that comes after the loop. The exit function (declared in
STDLIB.H) enables you to make a critical loop exit by halting the C++
program altogether.

■■ Nested loops enable you to contain repetitive tasks as part of other repetitive
tasks. C++ enables you to nest any kind of loops to just about any level
needed.



171

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

Q&A
Q How can a while loop simulate a for loop?

A Here is a simple example:

int i;                                int i = 1;

for (i = 1; i <= 10; i +=2) {          while (i <= 10) {

  cout << i << “\n”;                    cout << i << “\n”;

                                        i += 2;

                                      }

The while loop needs a leading statement that initializes the loop control
variable. Also notice that the while loop uses a statement inside it to alter the
value of the loop control variable.

Q How can a while loop simulate a do-while loop?

A Here is a simple example:

i = 1;                       i = 1;

do {                         while (i <= 10) {

  cout << i << “\n”;           cout << i << “\n”;

  i += 2;                      i += 2;

} while (i <= 10);           }

The two loops have the same condition in their while clauses.

Q How can the open for loop emulate the while and do-while loops?

A The open for loop is able to emulate the other C++ loops by placing the
loop-escape if statement near the beginning or end of the loop. Here is how
the open for loop emulates a sample while loop:

i = 1;                       i = 1;

while (i <= 10) {            for (;;) {

                               if(i > 10) break;

  cout << i << “\n”            cout << i << “\n”

  i += 2;                      i += 2;

}                            }



172

Loops
M

T
W

R
F

S
S

DAYDAY

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

Notice that the open for loop uses a loop-escape if statement as the first
statement inside the loop. The condition tested by the if statement is the
logical reverse of the while loop condition. Here is a simple example show-
ing the emulation of the do-while loop:

i = 1;                       i = 1;

do {                         for (;;) {

  cout << i << “\n”            cout << i << “\n”

  i += 2;                      i += 2;

                               if (i > 10) break;

} while (i <= 10);           }

The open for loop uses a loop-escape if statement right before the end of
the loop. The if statement tests the reverse condition as the do-while loop.

Q In nested for loops, can I use the loop control variable of the outer
loops as part of the range of values for the inner loops?

A Yes. C++ does not prohibit such use. Here is a simple example:

for (int i = 1; i <= 100; i += 5)

    for (int j = i; j <= 100; j++)

         cout << i * j << “\n”;

Q Does C++ restrict nesting of the various types of loops?

A No. You can nest any combination of loops in a C++ program.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing on to the
next day’s lesson. (Answers are provided in Appendix A, “Answers.”)

Quiz
1. What is wrong with the following loop?

i = 1;

while (i < 10) {

  j = i * i - 1;

  k = 2 * j - i;

  cout << “i = “ << i << “\n”;



173

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

  cout << “j = “ <<  j << “\n”;

  cout << “k = “ << k << “\n”;

}

2. What is the output of the following for loop?

for (int i = 5; i < 10; i + 2)

     cout << i - 2 << “\n”;

3. What is the output of the following for loop?

for (int i = 5; i < 10; )

     cout << i - 2 << “\n”;

4. What is wrong with the following code?

for (int i = 1; i <= 10; i++)

     for (i = 8; i <= 12; i++)

          cout << i << “\n”;

5. Where is the error in the following nested loops?

for (int i = 1; i <= 10; i++)

  cout << i * i << “\n”;

for (int i = 1; i <= 10; i++)

  cout << i * i * i << “\n”;

6. Where is the error in the following loop?

i = 1;

while (1 > 0) {

  cout << i << “\n”;

  i++;

}

7. The factorial of a number is the product of the sequence of integers from 1
to that number. The following general equation defines the factorial (which
uses the symbol !):

n! = 1 * 2 * 3 * ... * n

Here is a C++ program that calculates the factorial of a number. The
problem is that for whatever positive value you enter, the program displays a
0 value for the factorial. Where is the error in the program?

int n;

double factorial;



174

Loops
M

T
W

R
F

S
S

DAYDAY

6

A/ns6   TYS Borland C++ 21 Days  #30483  Lisa D  4-14-94     CH6   LP#4(sp 4/12 folio)

cout << “Enter positive integer : “;

cin >> n;

for (int i = 1; i <= n; i++)

  factorial *= i;

cout << n << “!= “ << factorial;

Exercises
1. Write the program FOR5.CPP, which uses a for loop to obtain and display

the sum of odd integers in the range of 11 to 121.

2. Write the program WHILE2.CPP, which uses a while loop to obtain and
display the sum of the squared odd integers in the range of 11 to 121.

3. Write the program DOWHILE2.CPP, which uses a do-while loop to obtain
and display the sum of the squared odd integers in the range of 11 to 121.



175

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

M
T

W
R

F
S

S

WEEK

11

77
Arrays



176

Arrays
M

T
W

R
F

S
S

DAYDAY

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

Arrays are among the most utilized data structures. They enable programs to store data
for later processing. Most popular programming languages support static arrays.
Many languages also support dynamic arrays.

☛ New Term: An array is a group of variables.

Today, you will learn about the following topics related to static arrays:

■■ Declaring single-dimensional arrays

■■ Using single-dimensional arrays

■■ Initializing single-dimensional arrays

■■ Declaring single-dimensional arrays as function parameters

■■ Sorting arrays

■■ Searching arrays

■■ Declaring multidimensional arrays

■■ Using multidimensional arrays

■■ Initializing multidimensional arrays

■■ Declaring multidimensional arrays as function parameters

Declaring Single-Dimensional
Arrays

The single-dimensional array is the simplest kind of array. In a single-dimensional
array, each variable is individually accessed using a single index.

☛ New Term: A single-dimensional array is a group of variables that share
the same name (the name of the array).



177

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

S
y
n
ta

x

A Single-Dimensional Array
The general syntax for declaring a single-dimensional array is

type arrayName[numberOfElements];

C++ requires you to observe the following rules in declaring single-dimensional arrays:

1. The lower bound of a C++ array is set at 0. C++ does not allow you to
override or alter this lower bound.

2. Declaring a C++ array entails specifying the number of members. Keep in
mind that the number of members is equal to the upper bound plus one.

The valid range of indices for this form extends between 0 and numberOfElements - 1.

Examples:

int intArray[10];
char name[31];
double x[100];

Using Single-Dimensional Arrays
Using a single-dimensional array involves stating both its name and the valid index
in order to access one of its members. Depending on where the reference to an array
element occurs, it can either store or recall a value. The simple rules to remember are

1. Assign a value to an array element before accessing that element to recall
data. Otherwise, you get garbage data.

2. Use a valid index.

DO DON’T
DO make reasonable checks for the indices that access the arrays.

DON’T assume that indices are always valid.

Let’s look at an example. Listing 7.1 shows the source code for the program
ARRAY1.CPP. The program uses a 30-element numeric array to calculate the average
for the data in a numeric array. The program performs the following tasks:



178

Arrays
M

T
W

R
F

S
S

DAYDAY

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

Type

■■ Prompts you to enter the number of actual data points. (This value must lie
in the range of valid numbers indicated by the prompting message.)

■■ Prompts you to enter the data for the array elements.

■■ Calculates the average of the data in the array.

■■ Displays the average value.

Listing 7.1. Source code for the program ARRAY1.CPP.

1:  /*
2:    C++ program that demonstrates the use of one-dimensional
3:    arrays.  The average value of the array is calculated.
4:  */
5:
6:  #include <iostream.h>
7:
8:  const int MAX = 30;
9:
10: main()
11: {
12:
13:     double x[MAX];
14:     double sum, sumx = 0.0, mean;
15:     int i, n;
16:
17:     do { // obtain number of data points
18:         cout << “Enter number of data points [2 to “
19:              << MAX << “] : “;
20:         cin >> n;
21:         cout << “\n”;
22:     } while (n < 2 || n > MAX);
23:
24:     // prompt user for data
25:     for (i = 0; i < n; i++) {
26:         cout << “X[“ << i << “] : “;
27:         cin >> x[i];
28:     }
29:
30:     // initialize summations
31:     sum = n;
32:
33:     // calculate sum of observations
34:     for (i = 0; i < n; i++)
35:         sumx += x[i];
36:
37:     mean = sumx / sum; // calculate the mean value



179

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

38:     cout << “\nMean = “ << mean << “\n\n”;
39:     return 0;
40: }

Here is a sample session with the program in Listing 7.1:

Enter number of data points [2 to 30] : 5

X[0] : 12.5
X[1] : 45.7
X[2] : 25.6
X[3] : 14.1
X[4] : 68.4

Mean = 33.26

The program in Listing 7.1 declares the global constant MAX as the size of the array
used in the program. The function main declares the double-typed array x, in line
13, to have MAX elements. The function also declares other nonarray variables in

lines 14 and 15.

The do-while loop, located in lines 17 through 22, obtains the number of data points
that you want to store in the array x. The output statement in lines 18 and 19 prompts
you to enter the number of data points. The output indicates the range of valid
numbers, which is 2 to MAX. The statement in line 20 obtains your input and stores
it in the variable n. The while clause validates your input. The clause determines if the
value in variable n is less than 2 or is greater than MAX. If this condition is true, the do-
while loop iterates again to obtain a correct input value.

The for loop statement, in lines 25 through 28, prompts you to enter the data. The
loop uses the control variable i and iterates from 0 to n-1, in increments of 1. The
output statement in line 26 prompts you to enter the value for the indicated array
element. The input statement in line 27 obtains your input and stores it in the element
x[i].

The statement in line 31 assigns the integer in variable n to the double-typed variable
sum. The for loop in lines 34 and 35 adds the values in array x to the variable sumx.
The loop uses the control variable i and iterates from 0 to n-1, in increments of 1. The
statement in line 35 uses the increment assignment operator to add the value in
element x[i] to the variable sumx.

The statement in line 37 calculates the mean value and stores it in variable mean. The
output statement in line 38 displays the mean value.

Output

Analysis



180

Arrays
M

T
W

R
F

S
S

DAYDAY

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

Note: The program in Listing 7.1 shows how to use a for loop to process
the elements of an array. The loop-continuation test uses the < operator
and the value beyond the last valid index. You can use the <= operator
followed by the last index. For example, we can write the data-input loop
as

24:     // prompt user for data
25:     for (i = 0; i <= (n - 1); i++) {
26:         cout << “X[“ << i << “] : “;
27:         cin >> x[i];
28:     }

However, this form is not popular, because it requires an additional
operator, whereas the condition i < n does not.

DO DON’T
DO write the loop-continuation expression so that it uses the minimum
number of operators. This approach reduces the code size and speeds up
loop execution.

DON’T use the <= operator in the loop-continuation condition, unless using
the operator helps you write an expression that minimizes the number of
operations.

Initializing Single-Dimensional
Arrays

C++ enables you to initialize arrays and is flexible about the initialization. You need
to enclose the list of initializing values in a pair of open and close braces ({}). The list
is comma-delimited and may continue on multiple lines. If there are fewer items in
the initializing list than there are array elements, the compiler assigns 0 to balance the
array elements. By contrast, if the list of initializing values has more items than the
number of array elements, the compiler flags a compile-time error.



181

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

Type

The next program, Listing 7.2, modifies the last program to supply data internally.
Consequently, we eliminate the steps that prompt you for the number of data points
and the data itself. The program simply displays the array elements (obtained from the
initialization list) and the average value for the data. Although this program does not
interact with the user, it offers a version that stores data in the source code. You can
edit the program periodically to add, edit, and delete data before recalculating a new
average value.

Listing 7.2. Source code for the program ARRAY2.CPP.

1:  /*
2:    C++ program that demonstrates the use of single-dimensional
3:    arrays.  The average value of the array is calculated.
4:    The array has its values preassigned internally.
5:  */
6:
7:  #include <iostream.h>
8:
9:  const int MAX = 10;
10:
11: main()
12: {
13:
14:     double x[MAX] = { 12.2, 45.4, 67.2, 12.2, 34.6, 87.4,
15:                       83.6, 12.3, 14.8, 55.5 };
16:     double sum = MAX, sumx = 0.0, mean;
17:     int n = MAX;
18:
19:     // calculate sum of observations
20:     cout << “Array is:\n”;
21:     for (int i = 0; i < n; i++) {
22:         sumx += x[i];
23:         cout << “x[“ << i << “] = “ << x[i] << “\n”;
24:     }
25:
26:     mean = sumx / sum; // calculate the mean value
27:     cout << “\nMean = “ << mean << “\n\n”;
28:     return 0;
29: }

Here is a sample session with the program in Listing 7.2:

Array is:
x[0] = 12.2
x[1] = 45.4
x[2] = 67.2
x[3] = 12.2

Output



182

Arrays
M

T
W

R
F

S
S

DAYDAY

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

Type

x[4] = 34.6
x[5] = 87.4
x[6] = 83.6
x[7] = 12.3
x[8] = 14.8
x[9] = 55.5

Mean = 42.52

Now we will focus on the initialization of the array x in Listing 7.2. Line 14
contains the declaration of array x and its initialization. The initializing list,
which runs to line 15, is enclosed in a pair of braces and has comma-delimited

values. The statement in line 16 declares the variables sum and sumx and initializes these
variables to MAX and 0, respectively. The statement in line 17 declares the int-typed
variable n and initializes it with the value MAX. The rest of the program resembles parts
of the program in Listing 7.1.

If you are somewhat dismayed by the fact that you have to count the exact number
of initializing values, then we have some good news for you: C++ enables you to size
an array automatically by using the number of items in the corresponding initializing
list. Consequently, you don’t need to place a number in the square brackets of the
array, and you can let the compiler do the work for you.

DO DON’T
DO include dummy values in the initializing list, if the initialized array
needs to expand later.

DON’T rely on counting the number of items in the initializing list to
provide the data for the number of array elements.

Listing 7.3 shows the source code for the program ARRAY3.CPP. This new version
uses the feature of automatic array sizing.

Listing 7.3. Source code for the program ARRAY3.CPP.

1:  /*
2:    C++ program that demonstrates the use of single-dimensional
3:    arrays.  The average value of the array is calculated.
4:    The array has its values preassigned internally.
5:  */
6:
7:  #include <iostream.h>
8:

Analysis



183

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

9:  main()
10: {
11:
12:     double x[] = { 12.2, 45.4, 67.2, 12.2, 34.6, 87.4,
13:                    83.6, 12.3, 14.8, 55.5 };
14:     double sum,  sumx = 0.0, mean;
15:     int n;
16:
17:     n = sizeof(x) / sizeof(x[0]);
18:     sum = n;
19:
20:     // calculate sum of observations
21:     cout << “Array is:\n”;
22:     for (int i = 0; i < n; i++) {
23:         sumx += x[i];
24:         cout << “x[“ << i << “] = “ << x[i] << “\n”;
25:     }
26:
27:     mean = sumx / sum; // calculate the mean value
28:     cout << “\nNumber of data points = “ << n << “\n”
29:          << “Mean = “ << mean << “\n”;
30:     return 0;
31: }

Here is a sample session with the program in Listing 7.3:

Array is:
x[0] = 12.2
x[1] = 45.4
x[2] = 67.2
x[3] = 12.2
x[4] = 34.6
x[5] = 87.4
x[6] = 83.6
x[7] = 12.3
x[8] = 14.8
x[9] = 55.5

Number of data points = 10
Mean = 42.52

Notice that the program in Listing 7.3 does not declare the constant MAX, which
appears in the previous version (shown in Listing 7.2). How does the program
determine the number of array elements? Line 17 shows that the program

calculates the number of elements in array x by dividing the size of the array x
(obtained by using sizeof(x)) by the size of the first element (obtained by using
sizeof(x[0])). You can use this method to obtain the size of any array of any data type.

Output

Analysis



184

Arrays
M

T
W

R
F

S
S

DAYDAY

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

Array Parameters in Functions
C++ enables you to declare function parameters that are arrays. In fact, C++ permits
you to be either specific or general about the size of the array parameter. If you want
an array parameter to accept arrays of a fixed size, you can specify the size of the array
in the parameter declaration. Alternatively, if you want the array parameter to accept
arrays with the same basic type but different sizes, use empty brackets with the array
parameter.

S
yn

ta
x

A Fixed-Array Parameter
The general syntax for declaring a fixed-array parameter is

type parameterName[arraySize]

Examples:

int minArray(int arr[100], int n);
void sort(unsigned dayNum[7]);

S
yn

ta
x

An Open-Array Parameter
The general syntax for declaring an open-array parameter is

type parameterName[]

Examples:

int minArray(int arr[], int n);
void sort(unsigned dayNum[]);

DO DON’T
DO use open-array parameters in functions.

DON’T forget to check the upper bounds of an open-array parameter in
general-purpose functions.

Let’s look at a simple example. Listing 7.4 shows the source code for the program
ARRAY4.CPP. The program performs the following tasks:

■■ Prompts you to enter the number of data points, which ranges from 2 to 10.

■■ Prompts you to enter the integer values for the arrays.



185

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

Type

■■ Displays the smallest value in the array.

■■ Displays the largest value in the array.

Listing 7.4. Source code for the program ARRAY4.CPP.

1:  // C++ program that passes arrays as arguments of functions
2:
3:  #include <iostream.h>
4:
5:  const int MAX = 10;
6:
7:  main()
8:  {
9:    int arr[MAX];
10:   int n;
11:
12:   // declare prototypes of functions
13:   int getMin(int a[MAX], int size);
14:   int getMax(int a[], int size);
15:
16:   do { // obtain number of data points
17:     cout << “Enter number of data points [2 to “
18:         << MAX << “] : “;
19:     cin >> n;
20:     cout << “\n”;
21:   } while (n < 2 || n > MAX);
22:
23:   // prompt user for data
24:   for (int i = 0; i < n; i++) {
25:     cout << “arr[“ << i << “] : “;
26:     cin >> arr[i];
27:   }
28:
29:   cout << “Smallest value in array is “
30:        << getMin(arr, n) << “\n”
31:        << “Biggest value in array is “
32:        << getMax(arr, n) << “\n”;
33:   return 0;
34: }
35:
36:
37: int getMin(int a[MAX], int size)
38: {
39:   int small = a[0];
40:   // search for the smallest value in the
41:   // remaining array elements
42:   for (int i = 1; i < size; i++)
43:     if (small > a[i])
44:       small = a[i];

continues



186

Arrays
M

T
W

R
F

S
S

DAYDAY

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

45:   return small;
46: }
47:
48: int getMax(int a[], int size)
49: {
50:   int big = a[0];
51:   // search for the biggest value in the
52:   // remaining array elements
53:   for (int i = 1; i < size; i++)
54:     if (big < a[i])
55:       big = a[i];
56:   return big;
57: }

Here is a sample session with the program in Listing 7.4:

Enter number of data points [2 to 10] : 5

arr[0] : 55
arr[1] : 69
arr[2] : 47
arr[3] : 85
arr[4] : 14
Smallest value in array is 14
Biggest value in array is 85

The program in Listing 7.4 declares the global constant MAX, in line 5, to size up
the array of data. The function main declares the int-typed array arr in line 9.
Line 10 contains the declaration of the int-typed variable n. Lines 13 and 14

declare the prototypes for the functions getMin and getMax, which return the smallest
and biggest values in an int-typed array, respectively. The prototype of the function
getMin indicates that it uses a fixed-array parameter. By contrast, the prototype of the
function getMax indicates that it uses an open-array parameter. We use both kinds of
array parameters for the sake of demonstration.

The do-while loop, located in lines 16 through 21, obtains the number of data points
you want to store in the array arr. The output statement in lines 17 and 18 prompts
you to enter the number of data points. The output indicates the range of valid
numbers, which runs between 2 and MAX. The statement in line 19 obtains your input
and stores it in variable n. The while clause validates your input. The clause determines
if the value in variable n is less than 2 or is greater than MAX. If this condition is true,
the do-while loop iterates again to obtain a correct input value.

The for loop statement in lines 24 through 27 prompts you to enter the data. The loop
uses the control variable i and iterates from 0 to n-1, in increments of 1. The output

Listing 7.4. continued

Output

Analysis



187

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

statement in line 25 prompts you to enter the value for the indicated array element.
The statement in line 26 obtains your input and stores it in the element arr[i].

The output statement in lines 29 through 32 displays the smallest and biggest integers
in array arr. The statement invokes the functions getMin and getMax, supplying each
one of them with the arguments arr and n.

The program defines the function getMin in lines 37 through 46. The function has
two parameters: the int-typed, fixed-array parameter a, and the int-typed parameter
size. The function declares the local variable small and initializes it with a[0], the first
element of parameter a. The function searches for the smallest value in the parameter
a using the for loop in line 42. This loop declares the control variable i, and iterates
from 1 to size-1, in increments of 1. The loop contains an if statement that assigns
the value in element a[i] to variable small, if the latter is greater than element a[i].
The function returns the value in variable small. The function getMin only accepts
int-typed arrays that have MAX elements.

The program defines the function getMax in lines 48 through 57. This function, which
is similar to the function getMin, has two parameters: the int-typed, open-array
parameter a, and the int-typed parameter size. The function declares the local
variable big and initializes it with a[0], the first element of parameter a. The function
searches for the smallest value in the parameter a, using the for loop in line 53. This
loop declares the control variable i, and iterates from 1 to size-1, in increments of 1.
The loop contains an if statement that assigns the value in element a[i] to the variable
big, if the latter is less than element a[i]. The function returns the value in the variable
big. The function getMax accepts int-typed arrays of any size.

Sorting Arrays
Sorting and searching are the most common nonnumerical operations for arrays.
Sorting an array typically arranges its elements in ascending order. The process uses
parts or all of the value in each element to determine the precedence of the elements
in the array. Searching for data in sorted arrays is much easier than in unordered arrays.

Computer scientists have spent much time and effort studying and creating methods
for sorting arrays. A comprehensive discussion of these methods is beyond the scope
of this book. We will only mention that some favorite array sorting methods include
the QuickSort, Shell-Metzner sort, heap sort, and the new Comb sort. The QuickSort
method is the fastest method, in general, but requires some operational overhead. The
Shell-Metzner and Comb sort methods do not require similar overhead. The example
in this section uses the new Comb sort method, which is more efficient than the Shell-
Metzner method.



188

Arrays
M

T
W

R
F

S
S

DAYDAY

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

Type

The Comb sort method uses the following steps, given an array, A, with N elements:

1. Initializes the Offset value, used in comparing elements, to N.

2. Sets the Offset value to either 8*Offset/11 or 1, whichever is bigger.

3. Sets the InOrder flag to true.

4. Loops for values 0 to N-Offset, using the loop control variable i:

■■ Assigns I + Offset to J

■■ If A[I] is greater than A[J], swaps A[I] with A[J] and sets the InOrder
flag to false

5. Resumes at step 2 if Offset is not 1 and InOrder is false.

Let’s look at a program that sorts an array of integers. Listing 7.5 shows the source code
for the program ARRAY5.CPP. The program performs the following tasks:

■■ Prompts you to enter the number of data points.

■■ Prompts you to enter the integer values for the array.

■■ Displays the elements of the unordered array.

■■ Displays the elements of the sorted array.

Listing 7.5. Source code for the program ARRAY5.CPP.

1:  // C++ program that sorts arrays using the Comb sort method
2:
3:  #include <iostream.h>
4:
5:  const int MAX = 10;
6:  const int TRUE = 1;
7:  const int FALSE = 0;
8:
9:  int obtainNumData()
10: {
11:   int m;
12:   do { // obtain number of data points
13:     cout << “Enter number of data points [2 to “
14:         << MAX << “] : “;
15:     cin >> m;
16:     cout << “\n”;
17:   } while (m < 2 || m > MAX);
18:   return m;
19: }
20:
21: void inputArray(int intArr[], int n)



189

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

22: {
23:   // prompt user for data
24:   for (int i = 0; i < n; i++) {
25:     cout << “arr[“ << i << “] : “;
26:     cin >> intArr[i];
27:   }
28: }
29:
30: void showArray(int intArr[], int n)
31: {
32:   for (int i = 0; i < n; i++) {
33:     cout.width(5);
34:     cout << intArr[i] << “ “;
35:   }
36:   cout << “\n”;
37: }
38:
39: void sortArray(int intArr[], int n)
40: {
41:   int offset, temp, inOrder;
42:
43:   offset = n;
44:   do {
45:     offset = (8 * offset) / 11;
46:     offset = (offset == 0) ? 1 : offset;
47:     inOrder = TRUE;
48:     for (int i = 0, j = offset; i < (n - offset); i++, j++) {
49:       if (intArr[i] > intArr[j]) {
50:         inOrder = FALSE;
51:         temp = intArr[i];
52:         intArr[i] = intArr[j];
53:         intArr[j] = temp;
54:       }
55:     }
56:   } while (!(offset = 1 && inOrder == TRUE));
57: }
58:
59: main()
60: {
61:   int arr[MAX];
62:   int n;
63:
64:   n = obtainNumData();
65:   inputArray(arr, n);
66:   cout << “Unordered array is:\n”;
67:   showArray(arr, n);
68:   sortArray(arr, n);
69:   cout << “\nSorted array is:\n”;
70:   showArray(arr, n);
71:   return 0;
72: }



190

Arrays
M

T
W

R
F

S
S

DAYDAY

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

Here is a sample session with the program in Listing 7.5:

Enter number of data points [2 to 10] : 10
arr[0] : 55
arr[1] : 68
arr[2] : 74
arr[3] : 15
arr[4] : 28
arr[5] : 23
arr[6] : 69
arr[7] : 95
arr[8] : 22
arr[9] : 33
Unordered array is:
   55    68    74    15    28    23    69    95    22    33

Sorted array is:
   15    22    23    28    33    55    68    69    74    95

The program in Listing 7.5 declares the constants MAX, TRUE, and FALSE in lines
5 through 7. The constant MAX defines the size of the array used in the program.
The constants TRUE and FALSE define the Boolean values. The program also

defines the functions obtainNumData, inputArray, showArray, sortArray, and main.

The parameterless function obtainNumData, defined in lines 9 through 19, prompts
you to enter the number of values. The output statement in lines 13 and 14 also
specifies the valid range for your input. The statement in line 15 stores your input in
the local variable m. The function uses a do-while loop to ensure that it returns a valid
number. The loop iterates as long as the value in variable m is less than 2 or greater than
MAX. The function returns the value in variable m.

The function inputArray, defined in lines 21 through 28, obtains the data for the
tested array. The function has two parameters. The open-array parameter intArr
passes the input values back to the caller of the function. The parameter n specifies how
many values to obtain for parameter intArr. The function uses a for loop, which
iterates from 0 to n-1, in increments of 1. Each loop iteration prompts you for a value
and stores that value in an element of the array intArr.

Note: The function inputArray illustrates that C++ functions treat array
parameters as if they were references to their arguments because these
parameters affect the values in the arguments beyond the scope of the
functions. In reality, the C++ compiler passes a copy of the address of the
array argument to the function when dealing with an array parameter.
Armed with the address of the array, C++ functions can then alter the

Output

Analysis



191

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

values of the array beyond the scope of these functions. This feature is
possible because the function is working with the original array and not a
copy.

The function showArray, defined in lines 30 through 37, displays the meaningful data
in an array. The function has two parameters. The open-array parameter intArr passes
the array values to be displayed by the function. The parameter n specifies how many
elements of array intArr to display. (Remember that not all of the array elements are
used to store your data.) The function uses a for loop, which iterates from 0 to n-1,
in increments of 1. Each loop iteration displays the value in an array element. The
array elements appear on the same line.

The function sortArray, defined in lines 39 through 57, sorts the elements of an array
using the Comb sort method. The function has two parameters. The open-array
parameter intArr passes the array values to be sorted by the function. The parameter
n specifies how many array elements to sort. The statements in the function sortArray
implement the Comb sort method outlined earlier.

Note: The function sortArray illustrates how array parameters can pass
data to and from a function. The function sortArray receives an unor-
dered array, sorts it, and passes the ordered array to the function’s caller.
The compiler supports this feature by passing a copy of the address of the
array to the function. Thus, the function need not explicitly return the
array, because it is working with the original data and not a copy.

The function main performs the various program tasks by calling the functions
mentioned earlier. The function declares the array arr and the simple variable n in
lines 61 and 62, respectively. The statement in line 64 calls function obtainNumData
to obtain the number of data points you want to store in the array. The statement
assigns the result of the function obtainNumData to variable n. The statement in line
65 calls the function inputArray to prompt you for the data. The function call passes
the arguments arr and n. The output statement in line 66 displays a message
indicating that the program is about to display the elements of the unordered array.
The statement in line 67 calls showArray and passes it the arguments arr and n. This
function call displays the elements of the array arr on one line. The statement in line
68 calls the function sortArray to sort the first n elements in array arr. The output



192

Arrays
M

T
W

R
F

S
S

DAYDAY

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

statement in line 69 displays a message indicating that the program is about to display
the elements of the sorted array. The statement in line 70 calls showArray and passes
the arguments arr and n. This function call displays the elements of the ordered array
arr on one line.

Searching Arrays
Searching arrays is another important nonnumerical operation. Because arrays can be
sorted or unordered, there is a general category of search methods for each. The
simplest search method for unordered arrays is the linear search method. The simplest
search method for sorted arrays is the versatile binary search method. The search
methods for unordered arrays can also be applied to sorted arrays. However, they do
not take advantage of the array order.

☛ New Term: The linear search method sequentially examines the array
elements, looking for an element that matches the search value. If the
sought value is not in the array, the linear search method examines the
entire array’s elements.

☛ New Term: The binary search method takes advantage of the order in the
array. The method searches for a matching value by using the shrinking
intervals approach. The initial search interval includes all the array
elements (which contain meaningful data). The method compares the
median element of the interval with the search value. If the two match,
the search stops. Otherwise, the method determines which sub-interval to
use as the next search interval. Consequently, each search interval is half
the size of the previous one. If the search value has no match in the
examined array, the binary method makes far fewer examinations than the
linear search method. The binary search method is the most efficient
general-purpose search method for sorted arrays.



193

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

DO DON’T
DO use the unordered-array search method when you are not sure that the
array is sorted.

DON’T use sorted-array search methods with unordered arrays. The results
of such searches are not reliable.

Let’s look at a program that sorts an array of integers. Listing 7.6 shows the source code
for the program ARRAY6.CPP. We created this program by adding functions and
operations to the program ARRAY5.CPP. The program performs the following tasks:

1. Prompts you to enter the number of data points.

2. Prompts you to enter the integer values for the array.

3. Displays the elements of the unordered array.

4. Asks you if you want to search for data in the unordered array. (If you type
characters other than Y or y, the program resumes at step 8.)

5. Prompts you for a search value.

6. Displays the search outcome. (If the program finds a matching element, it
displays the index of that element; otherwise, the program tells you that it
found no match for the search value.)

7. Resumes at step 4.

8. Displays the elements of the sorted array.

9. Asks you if you want to search for data in the unordered array. (If you type
characters other than Y or y, the program ends.)

10. Prompts you for a search value.

11. Displays the search outcome. (If the program finds a matching element, it
displays the index of that element; otherwise, the program tells you that it
found no match for the search value.)

12. Resumes at step 9.



194

Arrays
M

T
W

R
F

S
S

DAYDAY

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

Type Listing 7.6. Source code for the program ARRAY6.CPP.

 1:  // C++ program that searches arrays using the linear
 2:  // and binary searches methods
 3:
 4:  #include <iostream.h>
 5:
 6:  const int MAX = 10;
 7:  const int TRUE = 1;
 8:  const int FALSE = 0;
 9:  const int NOT_FOUND = -1;
 10:
 11: int obtainNumData()
 12: {
 13:   int m;
 14:   do { // obtain number of data points
 15:     cout << “Enter number of data points [2 to “
 16:         << MAX << “] : “;
 17:     cin >> m;
 18:     cout << “\n”;
 19:   } while (m < 2 || m > MAX);
 20:   return m;
 21: }
 22:
 23: void inputArray(int intArr[], int n)
 24: {
 25:   // prompt user for data
 26:   for (int i = 0; i < n; i++) {
 27:     cout << “arr[“ << i << “] : “;
 28:     cin >> intArr[i];
 29:   }
 30: }
 31:
 32: void showArray(int intArr[], int n)
 33: {
 34:   for (int i = 0; i < n; i++) {
 35:     cout.width(5);
 36:     cout << intArr[i] << “ “;
 37:   }
 38:   cout << “\n”;
 39: }
 40:
 41: void sortArray(int intArr[], int n)
 42: // sort the first n elements of array intArr
 43: // using the Comb sort method
 44: {
 45:   int offset, temp, inOrder;
 46:
 47:   offset = n;
 48:   do {
 49:     offset = (8 * offset) / 11;



195

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

 50:     offset = (offset == 0) ? 1 : offset;
 51:     inOrder = TRUE;
 52:     for (int i = 0, j = offset; i < (n - offset); i++, j++) {
 53:       if (intArr[i] > intArr[j]) {
 54:         inOrder = FALSE;
 55:         temp = intArr[i];
 56:         intArr[i] = intArr[j];
 57:         intArr[j] = temp;
 58:       }
 59:     }
 60:   } while (!(offset = 1 && inOrder == TRUE));
 61: }
 62:
 63: int linearSearch(int searchVal, int intArr[], int n)
 64: // perform linear search to locate the first
 65: // element in array intArr that matches the value
 66: // of searchVal
 67: {
 68:   int notFound = TRUE;
 69:   int i = 0;
 70:   // search through the array elements
 71:   while (i < n && notFound)
 72:     // no match?
 73:     if (searchVal != intArr[i])
 74:       i++; // increment index to compare the next element
 75:     else
 76:       notFound = FALSE; // found a match
 77:   // return search outcome
 78:   return (notFound == FALSE) ? i : NOT_FOUND;
 79: }
 80:
 81: int binarySearch(int searchVal, int intArr[], int n)
 82: // perform binary search to locate the first
 83: // element in array intArr that matches the value
 84: // of searchVal
 85: {
 86:   int median, low, high;
 87:
 88:   // initialize the search range
 89:   low = 0;
 90:   high = n - 1;
 91:   // search in array
 92:   do {
 93:     // obtain the median index of the current search range
 94:     median = (low + high) / 2;
 95:     // update search range
 96:     if (searchVal > intArr[median])
 97:       low = median + 1;
 98:     else
 99:       high = median - 1;

continues



196

Arrays
M

T
W

R
F

S
S

DAYDAY

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

100:   } while (!(searchVal == intArr[median] || low > high));
101:   // return search outcome
102:   return (searchVal == intArr[median]) ? median : NOT_FOUND;
103: }
104:
105: void searchInUnorderedArray(int intArr[], int n)
106: // manage the linear search test
107: {
108:   int x, i;
109:   char c;
110:   // perform linear search
111:   cout << “Search in unordered array? (Y/N) “;
112:   cin >> c;
113:   while (c == ‘Y’ || c == ‘y’) {
114:     cout << “Enter search value : “;
115:     cin >> x;
116:     i = linearSearch(x, intArr, n);
117:     if (i != NOT_FOUND)
118:       cout << “Found matching element at index “ << i << “\n”;
119:     else
120:       cout << “No match found\n”;
121:     cout << “Search in unordered array? (Y/N) “;
122:     cin >> c;
123:   }
124: }
125:
126: void searchInSortedArray(int intArr[], int n)
127: // manage the binary search test
128: {
129:   int x, i;
130:   char c;
131:   // perform binary search
132:   cout << “Search in sorted array? (Y/N) “;
133:   cin >> c;
134:   while (c == ‘Y’ || c == ‘y’) {
135:     cout << “Enter search value : “;
136:     cin >> x;
137:     i = binarySearch(x, intArr, n);
138:     if (i != NOT_FOUND)
139:       cout << “Found matching element at index “ << i << “\n”;
140:     else
141:       cout << “No match found\n”;
142:     cout << “Search in sorted array? (Y/N) “;
143:     cin >> c;
144:   }
145: }
146:
147: main()
148: {

Listing 7.6. continued



197

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

149:   int arr[MAX];
150:   int n;
151:
152:   n = obtainNumData();
153:   inputArray(arr, n);
154:   cout << “Unordered array is:\n”;
155:   showArray(arr, n);
156:   searchInUnorderedArray(arr, n);
157:   sortArray(arr, n);
158:   cout << “\nSorted array is:\n”;
159:   showArray(arr, n);
160:   searchInSortedArray(arr, n);
161:   return 0;
162: }

Here is a sample session with the program in Listing 7.6:

Enter number of data points [2 to 10] : 5

arr[0] : 85
arr[1] : 41
arr[2] : 55
arr[3] : 67
arr[4] : 48
Unordered array is:
   85    41    55    67    48
Search in unordered array? (Y/N) y
Enter search value : 55
Found matching element at index 2
Search in unordered array? (Y/N) y
Enter search value : 41
Found matching element at index 1
Search in unordered array? (Y/N) n

Sorted array is:
   41    48    55    67    85
Search in sorted array? (Y/N) y
Enter search value : 55
Found matching element at index 2
Search in sorted array? (Y/N) y
Enter search value : 67
Found matching element at index 3
Search in sorted array? (Y/N) n

The program in Listing 7.6 declares the functions obtainNumData, inputArray,
sortArray, linearSearch, binarySearch, searchInUnorderedArray,
searchInSortedArray, and main. Because the first three functions are identical

to those in Listing 7.5, we will discuss only the remaining functions.

Output

Analysis



198

Arrays
M

T
W

R
F

S
S

DAYDAY

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

The linearSearch function performs a linear search to find the first element in array
intArr with a value that matches the one in parameter searchVal. The function
searches the first n elements in array intArr. The linearSearch function returns the
index of the matching element in array intArr or yields the value of the global constant
NOT_FOUND if no match is found. The function uses a while loop to examine the
elements in array intArr. The search loop iterates while the value in variable i is less
than that in variable n and while the local variable notFound stores TRUE. The statement
in line 78 returns the function result using the conditional operator.

The binarySearch function has the same parameters as the linearSearch function
and returns the same kind of value. The function uses the local variables low and high
to store the current search interval. The function initializes the variables low and high
using the values 0 and n-1, respectively. The do-while loop in lines 92 through 100
calculates the index of the median element and compares the median element with the
search value. The if statement in line 96 performs this comparison, and its clauses
update the value of either variable low or variable high, depending on the outcome of
the comparison. The update in either variable shrinks the search interval. The return
statement in line 102 yields the function’s value based on one last comparison between
the search value and the median element of the current search interval.

The function searchInUnorderedArray manages the search in the unordered array.
The function accesses the unordered array using the open-array parameter intArr.
The function declares local variables that are used to prompt you for and store the
search value. The statement in line 116 calls the function linearSearch and passes the
argument x (the local variable that stores the search value), intArr, and n. The
statement assigns the result of function linearSearch to the local variable i. The if
statement in line 117 determines whether or not the value in variable i is not
NOT_FOUND. If this condition is true, the output statement in line 118 shows the index
of the matching element. Otherwise, the output statement in line 120 displays a no-
match-found message.

The function searchInSortedArray  is very similar to the function
searchInUnorderedArray. The main difference is that the function searchInSortedArray
deals with ordered arrays and therefore calls the binarySearch function to conduct a
binary search on the ordered array intArr.

The function main invokes these functions to support the program tasks that we
described earlier.



199

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

Multidimensional Arrays
In a multidimensional array, each additional dimension provides you with an
additional access attribute. Two-dimensional arrays (or matrices, if you prefer) are the
most popular kind of multidimensional array. Three-dimensional arrays are used less
frequently than matrices, and so on.

☛ New Term: Multidimensional arrays are supersets of the single-
dimensional arrays.

S
yn

ta
x

Two-Dimensional and Three-Dimensional
Arrays
The general syntax for declaring two-dimensional and three-dimensional arrays is

type array [size1][size2];
type array [size1][size2][size3];

As with simple arrays, each dimension has a lower bound index of 0, and the
declaration defines the number of elements in each dimension.

Examples:

double matrixA[100][10];
char table[41][22][3];
int index[7][12];

It is important to understand how C++ stores the elements of a multidimensional
array. Most compilers store the elements of a multidimensional array in a contiguous
fashion (that is, as one long array). The runtime code calculates where a sought
element is located in that long array. To explain the storage scheme of multidimen-
sional arrays, we’ll start by employing a convention for referencing the indices of the
different dimensions. The following schema specifies the dimension numbering and
the concept of high- and low-order dimensions. Here is a six-dimensional array—an
extreme case that is a good example:

    1    2    3    4    5    6  <-- dimension number
M [20]  [7]  [5]  [3]  [2]  [2]
    higher dimension order -->

The first element of the array M is M[0][0][0][0][0][0] and is stored at the first



200

Arrays
M

T
W

R
F

S
S

DAYDAY

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

Type

memory location of array M. The array M is stored in a contiguous block of 8,400
elements. The location in that contiguous block stores the element at index 1 in the
highest dimension number, dimension 6 (that is, M[0][0][0][0][0][1]). The loca-
tion of the next elements in the contiguous block stores the subsequent elements in
dimension 6 until the upper limit of dimension 6 is reached. Reaching this limit
bumps the index of dimension 5 by 1 and resets the index of dimension 6 to 0. This
process is repeated until every element in a multidimensional array is accessed. You
can compare this storage scheme to looking at a gasoline pump meter when refueling
your car: the right digits turn the fastest, the left digits turn the slowest.

Here is another example that uses a three-dimensional array, M[3][2][2]:

M[0][0][0]     <-- the starting memory address
M[0][0][1]     <-- 3rd dimension is filled
M[0][1][0]
M[0][1][1]     <-- 2nd and 3rd dimensions are filled
M[1][0][0]
M[1][0][1]     <-- 3rd dimension is filled
M[1][1][0]
M[1][1][1]     <-- 2nd and 3rd dimensions are filled
M[2][0][0]
M[2][0][1]     <-- 3rd dimension is filled
M[2][1][0]
M[2][1][1]     <-- all dimensions are filled

Let’s consider an example that illustrates basic matrix manipulation. Listing 7.7 shows
the source code for the MAT1.CPP program. The program manages a matrix that
contains up to 10 columns and 30 rows and performs the following tasks:

■■ Prompts you to enter the number of rows; the program validates your input.

■■ Prompts you to enter the number of columns; the program validates your
input.

■■ Prompts you to enter the matrix elements.

■■ Calculates and displays the average for each column in the matrix.

Listing 7.7. Source code for the program MAT1.CPP.

1:  /*
2:    C++ program that demonstrates the use of two-dimensional arrays.
3:    The average value of each matrix column is calculated.
4:  */
5:
6:  #include <iostream.h>
7:
8:  const int MAX_COL = 10;
9:  const int MAX_ROW = 30;
10:



201

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

11: main()
12: {
13:     double x[MAX_ROW][MAX_COL];
14:     double sum, sumx, mean;
15:     int rows, columns;
16:
17:     // get the number of rows
18:     do {
19:       cout << “Enter number of rows [2 to “
20:            << MAX_ROW << “] : “;
21:       cin >> rows;
22:     } while (rows < 2 || rows > MAX_ROW);
23:
24:     // get the number of columns
25:     do {
26:       cout << “Enter number of columns [1 to “
27:            << MAX_COL << “] : “;
28:       cin >> columns;
29:     } while (columns < 1 || columns > MAX_COL);
30:
31:     // get the matrix elements
32:     for (int i = 0; i < rows; i++)  {
33:       for (int j = 0; j < columns; j++)  {
34:           cout << “X[“ << i << “][“ << j << “] : “;
35:           cin >> x[i][j];
36:       }
37:       cout << “\n”;
38:     }
39:
40:     sum = rows;
41:     // obtain the sum of each column
42:     for (int j = 0; j < columns; j++)  {
43:       // initialize summations
44:       sumx = 0.0;
45:       for (i = 0; i < rows; i++)
46:         sumx += x[i][j];
47:       mean = sumx / sum;
48:       cout << “Mean for column “ << j
49:            << “ = “ << mean << “\n”;
50:     }
51:     return 0;
52: }

Here is a sample session with the program in Listing 7.7:

Enter number of rows [2 to 30] : 3
Enter number of columns [1 to 10] : 3
X[0][0] : 1
X[0][1] : 2
X[0][2] : 3

Output



202

Arrays
M

T
W

R
F

S
S

DAYDAY

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

X[1][0] : 4
X[1][1] : 5
X[1][2] : 6

X[2][0] : 7
X[2][1] : 8
X[2][2] : 9

Mean for column 0 = 4
Mean for column 1 = 5
Mean for column 2 = 6

The program in Listing 7.7 declares the global constants MAX_COL and MAX_ROW
in lines 8 and 9, respectively. These constants define the dimensions of the
matrix that is created in the program. The function main declares the matrix x

to have MAX_ROW rows and MAX_COL columns. The function also declares other nonarray
variables.

The do-while loop, in lines 18 through 22, prompts you to enter the number of rows
of matrix x that will contain your data. The output statement in lines 19 and 20
indicates the range of the valid number of rows. The statement in line 21 stores your
input in the variable rows.

The second do-while loop, in lines 25 through 29, prompts you to enter the number
of columns of matrix x that will contain your data. The output statement in lines 26
and 27 indicates the range of the valid number of columns. The statement in line 28
saves your input in the variable columns.

The nested for loops, in lines 32 through 38, prompt you for the matrix elements. The
outer for loop uses the control variable i and iterates from 0 to rows-1, in increments
of 1. The inner for loop uses the control variable j and iterates from 0 to columns-1,
in increments of 1. The output statement in line 34 displays the index of the matrix
element that will receive your input. The statement in line 35 stores your input in the
matrix element x[i][j].

The process of obtaining the average of each matrix column starts at line 40. The
statement in that line assigns the integer in variable rows to the double-typed variable
sum. The program uses another pair of nested for loops in lines 42 through 50. The
outer for loop uses the control variable j and iterates from 0 to columns-1, in
increments of 1. This loop processes each column. The first statement inside the outer
for loop assigns 0 to the variable sumx. The inner for loop is located at line 45. This
loop uses the control variable i and iterates from 0 to rows-1, in increments of 1. The
inner loop uses the statement in line 46 to add the values of elements x[i][j] to the
variable sumx. The statement in line 47 (which is outside the inner for loop) calculates
the column average and assigns it to the variable mean. The output statement in lines
48 and 49 displays the column number and its average value.

Analysis



203

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

Type

Note: The for loop in line 42 redeclares its control variable j. (This is not
the case with the for loop in line 45.) Why? The for loop in line 33 also
declares the control variable j. However, the scope of that loop is limited
to the scope of the outer for loop. Once the first pair of nested loops
finishes executing, the loop control variable j is removed by the runtime
system.

Initializing Multidimensional
Arrays

C++ enables you to initialize a multidimensional array in a manner similar to single-
dimensional arrays. You need to use a list of values that appear in the same sequence
in which the elements of the initialized multidimensional array are stored. Now you
realize the importance of understanding how C++ stores the elements of a multidi-
mensional array. We modified the previous C++ program to use an initializing list that
internally supplies the program with data. Consequently, the program does not
prompt you for any data. Rather, the program displays the values of the matrix and
the average for its columns. Listing 7.8. shows the source code for the MAT2.CPP
program.

Listing 7.8. Source code for the program MAT2.CPP.

1:  /*
2:    C++ program that demonstrates the use of two-dimensional arrays.
3:    The average value of each matrix column is calculated.
4:  */
5:
6:  #include <iostream.h>
7:
8:  const int MAX_COL = 3;
9:  const int MAX_ROW = 3;
10:
11: main()
12: {
13:     double x[MAX_ROW][MAX_COL] = {
14:                                   1, 2, 3, // row # 1
15:                                   4, 5, 6, // row # 2
16:                                   7, 8, 9  // row # 3
17:                                   };
18:     double sum, sumx, mean;
19:     int rows = MAX_ROW, columns = MAX_COL;

continues



204

Arrays
M

T
W

R
F

S
S

DAYDAY

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

20:
21:     cout << “Matrix is:\n”;
22:     // display the matrix elements
23:     for (int i = 0; i < rows; i++)  {
24:       for (int j = 0; j < columns; j++)  {
25:           cout.width(4);
26:           cout.precision(1);
27:           cout << x[i][j] << “ “;
28:       }
29:       cout << “\n”;
30:     }
31:     cout << “\n”;
32:
33:     sum = rows;
34:     // obtain the sum of each column
35:     for (int j = 0; j < columns; j++)  {
36:       // initialize summations
37:       sumx = 0.0;
38:       for (i = 0; i < rows; i++)
39:         sumx += x[i][j];
40:       mean = sumx / sum;
41:       cout << “Mean for column “ << j
42:            << “ = “ << mean << “\n”;
43:     }
44:     return 0;
45: }

Here is a sample session with the program in Listing 7.8:

Matrix is:
   1    2    3
   4    5    6
   7    8    9

Mean for column 0 = 4
Mean for column 1 = 5
Mean for column 2 = 6

The program in Listing 7.8 declares the matrix x and initializes its elements with
a list of values. Notice that the program declares the constants MAX_COL and
MAX_ROW with values that match the size of the initialized matrix. The declaration

statement in lines 13 through 17 shows the elements assigned to each row. The
function main also initializes the variable rows and columns with the constants MAX_ROW
and MAX_COL, respectively. The function performs this initialization for two reasons.
First, the program no longer prompts you to enter values for the variable rows and
columns. Second, the program is working with a custom-fit size for matrix x.

Listing 7.8. continued

Output

Analysis



205

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

The program uses the nested for loops in lines 21 through 30 to display the elements
of the matrix x. The second pair of nested for loops calculates the average for each
matrix column. This nested for loop is identical to the one in Listing 7.7.

Multidimensional Array
Parameters

C++ enables you to declare function parameters that are multidimensional arrays. As
with single-dimensional arrays, C++ enables you to be either specific or general about
the size of the array parameter. However, in the latter case, you can only generalize the
first dimension of the array. If you wish an array parameter to accept arrays of a fixed
dimension, you can specify the size of each dimension of the array in the parameter
declaration. By contrast, if you want the array parameter to accept arrays of the same
basic type but of different first-dimension sizes, use empty brackets for the first
dimension in the array parameter.

S
yn

ta
x

A Fixed-Array Parameter
The general syntax for declaring a fixed-array parameter is

type parameterName[dim1Size][dim2Size]...

Examples:

int minMatrix(int intMat[100][20], int rows, int cols);
void sort(unsigned mat[23][55],
          int rows, int cols, int colIndex);

S
yn

ta
x

An Open-Array Parameter
The general syntax for declaring an open-array parameter is

type parameterName[][dim2Size]...

Examples:

int minMat(int intMat[][100], int rows, int cols);
void sort(unsigned mat[][55],
          int rows, int cols, int colIndex);

Let’s look at an example. Listing 7.9 shows the source code for the program
MAT3.CPP. The program performs the same tasks as program MAT1.CPP in Listing
7.7. We created program MAT3.CPP by editing program MAT1.CPP and placing
each program task in a separate function. Thus, program MAT3.CPP is a highly
structured version of program MAT1.CPP.



206

Arrays
M

T
W

R
F

S
S

DAYDAY

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

Type Listing 7.9. Source code for the program MAT3.CPP.

1:  /*
2:    C++ program that demonstrates the use of two-dimensional arrays.
3:    The average value of each matrix column is calculated.
4:  */
5:
6:  #include <iostream.h>
7:
8:  const int MAX_COL = 10;
9:  const int MAX_ROW = 30;
10:
11: int getRows()
12: {
13:   int n;
14:   // get the number of rows
15:   do {
16:     cout << “Enter number of rows [2 to “
17:          << MAX_ROW << “] : “;
18:     cin >> n;
19:   } while (n < 2 || n > MAX_ROW);
20:   return n;
21: }
22:
23: int getColumns()
24: {
25:   int n;
26:   // get the number of columns
27:   do {
28:     cout << “Enter number of columns [1 to “
29:          << MAX_COL << “] : “;
30:     cin >> n;
31:   } while (n < 1 || n > MAX_COL);
32:   return n;
33: }
34:
35: void inputMatrix(double mat[][MAX_COL],
36:                  int rows, int columns)
37: {
38:   // get the matrix elements
39:   for (int i = 0; i < rows; i++)  {
40:     for (int j = 0; j < columns; j++)  {
41:       cout << “X[“ << i << “][“ << j << “] : “;
42:       cin >> mat[i][j];
43:     }
44:     cout << “\n”;
45:   }
46: }
47:
48: void showColumnAverage(double mat[][MAX_COL],



207

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

49:                        int rows, int columns)
50: {
51:   double sum, sumx, mean;
52:   sum = rows;
53:   // obtain the sum of each column
54:   for (int j = 0; j < columns; j++)  {
55:     // initialize summations
56:     sumx = 0.0;
57:     for (int i = 0; i < rows; i++)
58:       sumx += mat[i][j];
59:     mean = sumx / sum;
60:     cout << “Mean for column “ << j
61:          << “ = “ << mean << “\n”;
62:   }
63: }
64:
65: main()
66: {
67:     double x[MAX_ROW][MAX_COL];
68:     int rows, columns;
69:     // get matrix dimensions
70:     rows = getRows();
71:     columns = getColumns();
72:     // get matrix data
73:     inputMatrix(x, rows, columns);
74:     // show results
75:     showColumnAverage(x, rows, columns);
76:     return 0;
77: }

Here is a sample session with the program in Listing 7.9:

Enter number of rows [2 to 30] : 3
Enter number of columns [1 to 10] : 3
X[0][0] : 10
X[0][1] : 20
X[0][2] : 30

X[1][0] : 40
X[1][1] : 50
X[1][2] : 60

X[2][0] : 70
X[2][1] : 80
X[2][2] : 90

Mean for column 0 = 40
Mean for column 1 = 50
Mean for column 2 = 60

Output



208

Arrays
M

T
W

R
F

S
S

DAYDAY

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

The program in Listing 7.9 declares the functions getRows, getColumns,
inputMatrix, showColumnAverage, and main. The function getRows prompts you
for the number of matrix rows that you will be using. The function returns your

validated input. Similarly, the function getColumns returns the validated number of
matrix columns.

The function inputMatrix obtains the data for the matrix. The function has three
parameters. The parameter mat specifies the matrix parameter (with an open first
dimension). The parameters rows and columns specify the number of rows and the
number of columns of matrix mat that will receive input data.

The function showColumnAverage calculates and displays the column averages for the
matrix parameter mat. The parameters rows and columns specify the number of rows
and the number of columns of matrix mat that contain meaningful data.

This function contains the same statements that appeared in the program MAT1.CPP.
Program MAT3.CPP uses these functions as shells or wrappers for the statements that
perform the various tasks. From a structured programming point of view, program
MAT3.CPP is superior to program MAT1.CPP.

The function main declares the matrix x with MAX_ROW rows and MAX_COL columns. The
function calls the functions getRows and getColumns to obtain the number of working
rows and columns, respectively. The statement in line 73 invokes the function
inputMatrix and supplies it with the arguments x, rows, and columns. The statement
in line 75 calls function showColumnAverage and passes it the arguments x, rows, and
columns.

Summary
Today’s lesson covered various topics related to arrays, including single-dimensional
and multidimensional arrays. You learned the following:

■■ Declaring single-dimensional arrays requires you to state the data type of the
array elements, the name of the array, and the number of array elements
(enclosed in square brackets). All C++ arrays have a 0 lower bound. The
upper bound of an array is equal to the number of elements minus one.

■■ Using single-dimensional arrays requires you to state the array’s name and to
include a valid index, enclosed in square brackets.

■■ The initializing of single-dimensional arrays can be carried out while declar-
ing them. The initializing list of data is enclosed in braces and contains

Analysis



209

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

comma-delimited data. C++ enables you to include fewer data than the size
of the array. In this case, the compiler automatically assigns zeros to the
elements that you do not explicitly initialize. In addition, C++ enables you
to omit the explicit size of the initialized array and instead use the number of
initializing items as the number of array elements.

■■ Declaring single-dimensional arrays as function parameters takes two forms.
The first one deals with fixed-array parameters, whereas the second one
handles open-array parameters. Fixed-array parameters include the size of the
array in the parameter. Arguments for this kind of parameter must match
the type and size of the parameter. Open-array parameters use empty
brackets to indicate that the arguments for the parameters can be of any size.

■■ Sorting arrays is an important nonnumerical array operation. Sorting
arranges the elements of an array in either ascending or descending order.
Sorted arrays are much easier to search. For sorting arrays, the new Comb
sort method is very efficient.

■■ Searching arrays involves locating an array element that contains the same
data as the search value. Searching methods are geared toward either unor-
dered or ordered arrays. The linear search method is used for unordered
arrays, and the binary search method is used for sorted arrays.

■■ Declaring multidimensional arrays requires you to state the data type of the
array elements, the name of the array, and the size of each dimension
(enclosed in separate brackets). The lower index of each dimension is 0. The
upper bound of each dimension in an array is equal to the dimension size
minus one.

■■ Using multidimensional arrays requires you to state the array’s name and to
include valid indices. Each index must be enclosed in a separate set of
brackets.

■■ The initializing of multidimensional arrays can be carried out while declar-
ing them. The initializing list of data is enclosed in braces and contains
comma-delimited data. C++ enables you to include fewer data than the total
size of the array. In this case, the compiler automatically assigns zeros to the
elements that you do not explicitly initialize.

■■ Declaring multidimensional arrays as function parameters takes two forms.
The first one deals with fixed-array parameters, whereas the second one
handles parameters with an open first dimension. Fixed-array parameters
include the size of each dimension in the array parameter. Arguments for



210

Arrays
M

T
W

R
F

S
S

DAYDAY

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

this kind of parameter must match the type and sizes of the parameter.
Open-array parameters use empty brackets for only the first dimension to
indicate that the arguments for the parameters have varying sizes for the first
dimensions. The other dimensions of the arguments must match those of
the array parameter.

Q&A
Q Does C++ permit me to alter the size of an array?

A No. C++ does not allow you to redimension arrays.

Q Can I declare arrays with the basic type void (for example, void
array[81];) to create buffers?

A No. C++ does not allow you to use the void type with an array, because the
void type has no defined size. Use the char or unsigned char type to create
an array that works as a buffer.

Q Does C++ allow me to redeclare an array?

A C++ enables you to redeclare an array to change its basic type, the number of
dimensions, and its size if you declare these arrays in nested statement
blocks. Here is an example:

#include <iostream.h>

const MAX = 100;

const MAX_ROWS = 100;

const MAX_COLS = 20;

main()

{

  // declare variables here?

  {

    double x[MAX];

    // declare other variables?

    // statements to manipulate the single-dimensional

       array x

  }

  {

    double x[MAX_ROWS][MAX_COLS];

    // declare other variables?



211

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

    // statements to manipulate the matrix x

  }

  return 0;

}

The function main declares the array x in the first nested statement block.
When program execution reaches the end of that block, the runtime system
removes the array x and all other variables declared in that block. Then the
function redeclares x as a matrix in the second block. When program
execution reaches the end of the second block, the runtime system removes
the matrix x and all other variables declared in that block.

Q Are arrays limited to the predefined types?

A Not at all. C++ enables you to create arrays using user-defined types. (See
Day 8.)

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing on to the
next day’s lesson. (Answers are provided in Appendix A, “Answers.”)

Quiz
1. What is the output of the following program?

#include <iostream.h>

const int MAX = 5;

main()

{

  double x[MAX];

  x[0] = 1;

  for (int i = 1; i < MAX; i++)

    x[i] = i * x[i-1];

  for (i = 0; i < MAX; i++)

    cout << “x[“ << i << “] = “ << x[i] << “\n”;

  return 0;

}



212

Arrays
M

T
W

R
F

S
S

DAYDAY

7

A/NS8   TYS Borland C++ 21 Days  #30483 Casey 4-14-94    CH07  LP#4(sp 4/12 folio)

2. What is the output of the following program?

#include <iostream.h>

#include <math.h>

const int MAX = 5;

main()

{

  double x[MAX];

  for (int i = 0; i < MAX; i++)

    x[i] = sqrt(double(i));

  for (i = 0; i < MAX; i++)

    cout << “x[“ << i << “] = “ << x[i] << “\n”;

  return 0;

}

3. Where is the error in the following program?

#include <iostream.h>

const int MAX = 5;

main()

{

  double x[MAX];

  x[0] = 1;

  for (int i = 0; i < MAX; i++)

     x[i] = i * x[i-1];

  for (i = 0; i < MAX; i++)

     cout << “x[“ << i << “] = “ << x[i] << “\n”;

  return 0;

}

Exercise
Write the program ARRAY7.CPP by editing program ARRAY6.CPP and replacing
the Comb sort method in the function sortArray with an implementation of the
Shell-Metzner method.



Sa
m

s
Le

a
rn

in
g

Ce
nt

er

abcd

213213

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A/ns6   TY Borland C++ in 21 Days #30483   Lisa D   4-14-94      Rev1     LP#2(sp 4/12 folio)

M
T

W
R

F
S

S
1

2

3

4

5

6

7

1
WEEK

IN
 

R
E

V
IE

W

Before you proceed to the second week of learning about
programming with Borland C++ 4.0, let’s look at a special
example that you will see developed as you work through
the next two weeks. The example is a simple number-
guessing game, shown in Listing R1.1. The program
selects a number at random between 0 and 1,000 and
prompts you to enter a number in that range. If your input
is greater than the secret number, the program tells you
that your guess was higher. By contrast, if your input is less
than the secret number, the program tells you that your
guess was lower. If you guess the secret number, the game
ends with your victory. The program allows you up to 11
guesses. You can end the game at any prompt by entering
a negative integer. In this case, the program stops the game
and displays the secret number.



214214

Week 1 in Review
M

T
W

R
F

S
S

WEEKWEEK

1

A/ns6   TY Borland C++ in 21 Days #30483   Lisa D   4-14-94      Rev1     LP#2(sp 4/12 folio)

Type Listing R1.1. Source code for program GAME1.CPP.

1:  #include <stdlib.h>

2:  #include <iostream.h>

3:  #include <time.h>

4:

5:  // declare a global random number generating function

6:  int random(int maxVal)

7:  { return rand() % maxVal; }

8:

9:

10: main()

11: {

12:   int n, m;

13:   int MaxIter = 11;

14:   int iter = 0;

15:   int ok = 1;

16:

17:

18:   // reseed random-number generator

19:   srand((unsigned)time(NULL));

20:   n = random(1001);

21:   m = -1;

22:

23:   // loop to obtain the other guesses

24:   while (m != n && iter < MaxIter && ok == 1) {

25:     cout << “Enter a number between 0 and 1000 : “;

26:     cin >> m;

27:     ok = (m < 0) ? 0 : 1;

28:     iter++;

29:     // is the user’s guess higher?

30:     if (m > n)

31:       cout << “Enter a lower guess\n\n”;

32:     else if (m < n)

33:       cout << “Enter a higher guess\n\n”;

34:     else

35:       cout << “You guessed it! Congratulations.”;

36:   }

37:   // did the user guess the secret number

38:   if (iter >= MaxIter || ok == 0)

39:     cout << “The secret number is “ << n << “\n”;



Sa
m

s
Le

a
rn

in
g

Ce
nt

er

abcd

215215

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A/ns6   TY Borland C++ in 21 Days #30483   Lisa D   4-14-94      Rev1     LP#2(sp 4/12 folio)

40:

41:   return 0;

42: }

Here is a sample session with the program in Listing R1.1:

Enter a number between 0 and 1000 : 500

Enter a lower guess

Enter a number between 0 and 1000 : 250

Enter a higher guess

Enter a number between 0 and 1000 : -1

Enter a higher guess

The secret number is 399

The program in Listing R1.1 declares the function random to return a
random number in the range of 0 to 1,000. The program also declares the
function main, which conducts the guessing game. The function declares

a number of local variables in lines 12 through 15. The statement in line 19
reseeds the random number generator. The statement in line 20 assigns the
secret number to the variable n. The statement in line 21 assigns –1 to the
variable m, which stores your guesses.

The while loop in lines 24 through 36 conducts the game. The while loop
determines whether or not the following conditions are all true:

■■ Your guess (stored in variable m) does not match the secret number
stored in variable n.

■■ The number of iterations (stored in variable iter) are less than the
maximum number of iterations (stored in variable MaxIter).

■■ The variable ok stores 1.

The first statement in the loop prompts you to enter a number between 0 and
1,000. The statement in line 26 obtains your input and stores it in variable m.
The statement in line ok assigns 0 to the variable ok if you entered a negative
integer. Otherwise, the statement assigns 1 to variable ok. The statement in line
28 increments the variable iter.

Output

Analysis



216216

Week 1 in Review
M

T
W

R
F

S
S

WEEKWEEK

1

A/ns6   TY Borland C++ in 21 Days #30483   Lisa D   4-14-94      Rev1     LP#2(sp 4/12 folio)

The multi-alternative if statement in lines 30 through 35 compares your input
with the secret number and displays the appropriate message reflecting your
guess.

The if statement in line 38 displays the secret number if you failed to guess it
in MaxIter iterations or if you entered a negative integer.



219

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

M
T

W
R

F
S

S

WEEK

22

88
User-Defined
Types and Pointers



220

User-Defined Types and Pointers
M

T
W

R
F

S
S

DAYDAY

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

Creating user-defined data types is one of the necessary features of a modern
programming language. Today’s lesson looks at the enumerated data types and
structures that enable you to better organize your data. In addition, this lesson
discusses using pointers with simple variables, arrays, structures, and dynamic data.
Today, you will learn about the following topics:

■■ The type definition using typedef

■■ Enumerated data types

■■ Structures

■■ Unions

■■ Reference variables

■■ Pointers to existing variables

■■ Pointers to arrays

■■ Pointers to structures

■■ Using pointers to access and manage dynamic data

■■ Far pointers

Type Definition in C++
C++ offers the typedef keyword, which enables you to define new data type names
as aliases of existing types.

S
yn

ta
x

The typedef Keyword
The general syntax for using typedef is

typedef knownType newType;

Examples:

typedef unsigned word;
typedef unsigned char byte;
type unsigned char boolean;

The typedef keyword defines a new type from a known one. You can use typedef to
create aliases that shorten the names of existing data types or to define names of data
types that are more familiar to you. (See the second of the preceding examples, which
typedefs a byte type). In addition, the typedef statement can define a new type name



221

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

that better describes how the data type is used. The third of the preceding examples
illustrates this use of typedef. You can also use typedef to define the name of an array
type.

An Array Type Name
The general syntax for defining the name of an array type is

typedef baseType arrayTypeName[arraySize];

The typedef statement defines the arrayTypeName, whose basic type and size are
baseType and arraySize, respectively.

Examples:

typedef double vector[10];
typedef double matrix[10][30];

Thus, the identifiers vector and matrix are names of data types.

Enumerated Data Types
The rule to follow with enumerated data types is that although the enumerated
identifiers must be unique, the values assigned to them need not be unique.

☛ New Term: An enumerated type defines a list of unique identifiers and
associates values with these identifiers.

S
yn

ta
x

An Enumerated Type
The general syntax for declaring an enumerated type is

enum enumType { <list of enumerated identifiers> };

Examples:

enum Boolean { false, true };
num YesNo { no, yes, dontCare, maybe };
enum weekday { Sunday, Monday, Tuesday,
               Wednesday, Thursday, Friday, Saturday };

S
y
n
ta

x



222

User-Defined Types and Pointers
M

T
W

R
F

S
S

DAYDAY

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

Here is an example of declaring an enumerated type:

enum CPUtype { i8088, i80286, i80386DX, i80386SX,
               i80486DX, i80486SX };

C++ associates integer values with the enumerated identifiers. For example, in this
type, the compiler assigns 0 to i8088, 1 to i80286, and so on.

C++ is very flexible in declaring an enumerated type. First, the language enables you
to explicitly assign a value to an enumerated identifier. Here is an example:

enum weekday { Sunday = 1, Monday, Tuesday, Wednesday,
               Thursday, Friday, Saturday };

This declaration explicitly assigns 1 to the enumerated identifier Sunday. The compiler
then assigns the next integer, 2, to the next identifier, Monday, and so on. C++ enables
you to explicitly assign a value to each member of the enumerated list. Moreover, these
values need not be unique. Here are some examples of the flexibility in declaring
enumerated types in C++:

// explicit value assignment for every list member
enum colors { black = 1, red = 2, blue = 3, green = 5,
               yellow = 7, white = 11 };

// intermittent value assignment
enum colors { black = 1, red, blue, green = 5,
               yellow = 7, white = 11 };

// duplicate values
enum CPUtype { i8088 = 1, i80286 = 2,
               i80386DX = 3, i80386SX = 3,
               i80486DX = 4, i80486SX = 4 };

enum choiceType { false, true, dontCare = 0 };

In the last example, the compiler associates the identifier false with 0 by default.
However, the compiler also associates the value 0 with dontCare because of the explicit
assignment.

C++ enables you to declare variables that have enumerated types in the following ways:

1. The declaration of the enumerated type may include the declaration of the
variables of that type. The general syntax is

enum enumType { <list of enumerated identifiers> }

               <list of variables>;

Here is an example:

enum weekDay { Sun = 1, Mon, Tue, Wed, Thu, Fri, Sat }

          recycleDay, payDay, movieDay;



223

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

Type

2. The separate declaration of the enumerated type and its variables includes
multiple statements to declare the type and the associated variables sepa-
rately. The general syntax is

enum enumType { <list of enumerated identifiers> };

enumType var1, var2, ..., varN;

Let’s look at an example. Listing 8.1 shows the source code for the program
ENUM1.CPP. The program implements a simple one-line, four-function calculator
that performs the following tasks:

■■ Prompts you to enter a number, an operator (+, –, *, or /), and a number.

■■ Performs the requested operation, if valid.

■■ Displays the operands, the operator, and the result, if the operation was
valid; otherwise displays an error message that indicates the kind of error.
(You either entered a bad operator or attempted to divide by 0.)

Listing 8.1. Source code for the program ENUM1.CPP.

1:  /*
2:  C++ program that demonstrates enumerated types
3:  */
4:
5:  #include <iostream.h>
6:
7:  enum mathError { noError, badOperator, divideByZero };
8:
9:  void sayError(mathError err)
10: {
11:   switch (err) {
12:     case noError:
13:       cout << “No error”;
14:       break;
15:     case badOperator:
16:       cout << “Error: invalid operator”;
17:       break;
18:     case divideByZero:
19:       cout << “Error: attempt to divide by zero”;
20:   }
21: }
22:
23: main()
24: {
25:   double x, y, z;
26:   char op;
27:   mathError error = noError;
28:

continues



224

User-Defined Types and Pointers
M

T
W

R
F

S
S

DAYDAY

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

29:   cout << “Enter a number, an operator, and a number : “;
30:   cin >> x >> op >> y;
31:
32:   switch (op) {
33:     case ‘+’:
34:       z = x + y;
35:       break;
36:     case ‘-’:
37:       z = x - y;
38:       break;
39:     case ‘*’:
40:       z = x * y;
41:       break;
42:     case ‘/’:
43:       if (y != 0)
44:         z = x / y;
45:       else
46:         error = divideByZero;
47:       break;
48:     default:
49:       error = badOperator;
50:   }
51:
52:   if (error == noError)
53:     cout << x << “ “ << op << “ “ << y << “ = “ << z;
54:   else
55:     sayError(error);
56:   return 0;
57: }

Here is a sample session with the program in Listing 8.1:

Enter a number, an operator, and a number : 355 / 113
355 / 113 = 3.14159

The program in Listing 8.1 declares the enumerated type mathError in line 7.
This data type has three enumerated values: noError, badOperator, and
divideByZero.

The program also defines the function sayError in lines 9 through 21 to display a
message based on the value of the enumerated parameter err. The function uses the
switch statement in line 11 to display messages that correspond to the various
enumerated values.

Listing 8.1. continued

Output

Analysis



225

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

The function main declares the double-typed variables x, y, and z to represent the
operands and the result, respectively. In addition, the function declares the char-typed
variable op to store the requested operation, and the enumerated variable error to
store the error status. The function initializes the variable error with the enumerated
value noError.

The output statement in line 29 prompts you to enter the operands and the operator.
The statement in line 30 stores your input in variables x, op, and y, in that order. The
function uses the switch statement in line 32 to examine the value in variable op and
perform the requested operation. The case labels in lines 33, 36, 39, and 42 provide
the values for the four supported math operations. The last case label contains an if
statement that detects the attempt to divide by zero. If this is true, the else clause
statement assigns the enumerated value divideByZero to the variable error.

The catch-all default clause in line 48 handles invalid operators. The statement in line
49 assigns the enumerated value badOperator to the variable error.

The if statement in line 52 determines whether or not the variable error contains the
enumerated value noError. If this condition is true, the program executes the output
statement in line 53. This statement displays the operands, the operator, and the
result. Otherwise, the program executes the else clause statement that calls the
function sayError and passes it the argument error. This function call displays a
message that identifies the error.

Structures
C++ supports structures, and these members can be predefined types or other
structures.

☛ New Term: Structures enable you to define a new type that logically
groups several fields or members.

S
yn

ta
x

A Structure
The general syntax for declaring a structure is

struct structTag {
     < list of members >
};



226

User-Defined Types and Pointers
M

T
W

R
F

S
S

DAYDAY

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

Examples:

struct point {
     double x;
     double y;
};

struct rectangle {
     point upperLeftCorner;
     point lowerRightCorner;
     double area;
};

struct circle {
     point center;
     double radius;
     double area;
};

Once you define a struct type, you can use that type to declare variables. Here are
examples of declarations that use structures that we declared in the syntax box:

point p1, p2, p3;

You can also declare structured variables when you define the structure itself:

struct point {
     double x;
     double y;
} p1, p2, p3;

☛ New Term: Untagged structures enable you to declare structure variables
without defining a name for their structures.

Note: Interestingly, C++ permits you to declare untagged structures. For
example, the following structure definition declares the variables p1, p2,
and p3 but omits the name of the structure:

struct {
     double x;
     double y;
} p1, p2, p3;



227

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

C++ enables you to declare and initialize a structured variable. Here is an example:

point pt = { 1.0, -8.3 };

Accessing the members of a structure uses the dot operator. Here are a few examples:

p1.x = 12.45;
p1.y = 34.56;
p2.x = 23.4 / p1.x;
p2.y = 0.98 * p1.y;

Let’s consider an example. Listing 8.2 shows the source code for the program
STRUCT1.CPP. The program prompts you for four sets of coordinates that define
four rectangles. Each rectangle is defined by the x and y coordinates of the upper-left
and lower-right corners. The program calculates the areas of each rectangle, sorts the
rectangles by area, and displays the rectangles in the order of their areas.

Listing 8.2. Source code for the program
STRUCT1.CPP.

1:  /*
2:    C++ program that demonstrates structured types
3:  */
4:
5:  #include <iostream.h>
6:  #include <stdio.h>
7:  #include <math.h>
8:
9:  const MAX_RECT = 4;
10:
11: struct point {
12:   double x;
13:   double y;
14: };
15:
16: struct rect {
17:   point ulc; // upper left corner
18:   point lrc; // lower right corner
19:   double area;
20:   int id;
21: };
22:
23: typedef rect rectArr[MAX_RECT];
24:
25: main()
26: {
27:   rectArr r;
28:   rect temp;

continues

Type



228

User-Defined Types and Pointers
M

T
W

R
F

S
S

DAYDAY

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

29:   double length, width;
30:
31:   for (int i = 0; i < MAX_RECT; i++) {
32:     cout << “Enter (X,Y) coord. for ULC of rect. # “
33:          << i << “ : “;
34:     cin >> r[i].ulc.x >> r[i].ulc.y;
35:     cout << “Enter (X,Y) coord. for LRC of rect. # “
36:          << i << “ : “;
37:     cin >> r[i].lrc.x >> r[i].lrc.y;
38:     r[i].id = i;
39:     length = fabs(r[i].ulc.x - r[i].lrc.x);
40:     width = fabs(r[i].ulc.y - r[i].lrc.y);
41:     r[i].area = length * width;
42:   }
43:
44:   // sort the rectangles by areas
45:   for (i = 0; i < (MAX_RECT - 1); i++)
46:     for (int j = i + 1; j < MAX_RECT; j++)
47:       if (r[i].area > r[j].area) {
48:         temp = r[i];
49:         r[i] = r[j];
50:         r[j] = temp;
51:       }
52:
53:   // display rectangles sorted by area
54:   for (i = 0; i < MAX_RECT; i++)
55:     printf(“Rect # %d has area %5.4lf\n”, r[i].id, r[i].area);
56:   return 0;
57: }

Here is a sample session with the program in Listing 8.2:

Enter (X,Y) coord. for ULC of rect. # 0 : 1 1
Enter (X,Y) coord. for LRC of rect. # 0 : 2 2
Enter (X,Y) coord. for ULC of rect. # 1 : 1.5 1.5
Enter (X,Y) coord. for LRC of rect. # 1 : 3 4
Enter (X,Y) coord. for ULC of rect. # 2 : 1 2
Enter (X,Y) coord. for LRC of rect. # 2 : 5 8
Enter (X,Y) coord. for ULC of rect. # 3 : 4 6
Enter (X,Y) coord. for LRC of rect. # 3 : 8 4
Rect # 0 has area 1.0000
Rect # 1 has area 3.7500
Rect # 3 has area 8.0000
Rect # 2 has area 24.0000

Listing 8.2. continued

Output



229

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

The program in Listing 8.2 includes the header files IOSTREAM. MATH.H,
and STDIO.H. The program declares the global constant MAX_RECT to specify
the maximum number of rectangles. Line 11 contains the declaration of

structure point, which is made up of two double-typed members, x and y. This
structure models a two-dimensional point. Line 16 contains the declaration of
structure rect, which models a rectangle. The structure contains two point-typed
members, ulc and lrc, the double-typed member area, and the int-typed member
id. The members ulc and lrc represent the coordinates for the upper-left and lower-
right corners that define a rectangle. The member area stores the area of the rectangle.
The member id stores a numeric identification number.

The typedef statement in line 23 defines the type recArr as an array of MAX_RECT
elements of structure rect.

The function main declares the rectArr-typed array r, the rect-typed structure temp,
and the double-typed variables length and width.

The function main uses the for loop in lines 31 through 42 to prompt you for the
coordinates of the rectangles, calculate their areas, and assign their id numbers. The
output statements in lines 32 and 33, and in lines 35 and 36, prompt you for the x
and y coordinates of the upper-left and lower-right corners, respectively. The input
statements in lines 34 and 37 store the coordinates you enter in members r[i].ulc.x,
r[i].ulc.y, r[i].lrc.x, and r[i].lrc.y, respectively. The statement in line 38
stores the value of the loop control variable i in member r[i].id. The statement in
line 39 calculates the length of a rectangle using the x members of the ulc and lrc
members in the element r[i]. The statement in line 40 calculates the width of a
rectangle using the y members of the ulc and lrc members in the element r[i]. The
statement in line 41 calculates the area of the rectangle and stores it in member
r[i].area.

The nested loops in lines 44 through 51 sort the elements of array r using the member
area. The loops implement the simple bubble sort method (which is useful for very
small arrays). The if statement in line 47 compares the areas of elements r[i] and
r[j]. If the area of rectangle r[i] is larger than that of rectangle r[j], the statements
in lines 48 through 50 swap all the members of r[i] and r[j]. The swap uses the
structure temp. This task illustrates that you can assign all the members of a structure
to another structure in one statement.

The for loop in lines 54 and 55 displays the rectangles sorted according to their areas.
The output statement in line 55 uses the printf function to display the rectangle id
numbers and areas.

Analysis



230

User-Defined Types and Pointers
M

T
W

R
F

S
S

DAYDAY

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

Unions
The size of a union is equal to the size of its largest member.

☛ New Term: Unions are special structures that store members that are
mutually exclusive.

S
y
n
ta

x Unions
The general syntax for unions is

union unionTag {
     type1 member1;
     type2 member2;
     ...
     typeN memberN;
};

Example:

union Long {
     unsigned mWord[2];
     long mLong;
};

The union Long stores either two unsigned integers (each requiring two bytes) or a
four-byte long integer. In addition, the union Long allows you to access the lower or
higher words (two-byte integers) of a long integer.

Unions offer an easy alternative for quick data conversion. Unions were more
significant in the recent past, when the price of computer memory was much higher
and it was feasible to use unions to consolidate memory. Accessing union members
involves the dot access operators, just as in structures.

Reference Variables
In Day 2, you learned that you declare reference parameters by placing the & symbol
after the parameter’s type. Recall that a reference parameter becomes an alias to its
arguments. In addition, any changes made to the reference parameter affect its
argument. In addition to reference parameters, C++ supports reference variables. You
can manipulate the referenced variable by using its alias. As a novice C++ programmer,



231

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

Type

your initial use of reference variables will most likely be limited. On the other hand,
you are probably using reference parameters more frequently. As you advance in using
C++, you will discover how reference variables can implement programming tricks
that deal with advanced class design. This book discusses only the basics of reference
variables.

☛ New Term: Like reference parameters, reference variables become aliases
to the variables they access.

S
yn

ta
x

A Reference Variable
The general syntax for declaring a reference variable is

type& refVar;
type& refVar = aVar;

The refVar is the reference variable that can be initialized when declared. You must
ensure that a reference variable is initialized or assigned a referenced variable before
using the reference variable.

Examples:

int x = 10, y = 3;
int& rx = x;
int& ry;
ry = y; // take the reference

Here is a simple example that shows a reference variable at work. Listing 8.3 shows
the source code for the program REFVAR1.CPP. The program displays and alters the
values of a variable using either the variable itself or its reference. The program requires
no input.

Listing 8.3. Source code for the program
REFVAR1.CPP.

 1: /*
 2:   C++ program that demonstrates reference variables
 3: */
 4:
 5: #include <iostream.h>
 6:
 7: main()
 8: {

continues



232

User-Defined Types and Pointers
M

T
W

R
F

S
S

DAYDAY

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

Listing 8.3. continued

9:    int x = 10;
10:   int& rx = x;
11:   // display x using x and rx
12:   cout << “x contains “ << x << “\n”;
13:   cout << “x contains (using the reference rx) “
14:        << rx << “\n”;
15:   // alter x and display its value using rx
16:   x *= 2;
17:   cout << “x contains (using the reference rx) “
18:        << rx << “\n”;
19:   // alter rx and display value using x
20:   rx *= 2;
21:   cout << “x contains “ << x << “\n”;
22:   return 0;
23: }

Here is a sample session with the program in Listing 8.3:

x contains 10
x contains (using the reference rx) 10
x contains (using the reference rx) 20
x contains 40

The program in Listing 8.3 declares the int-typed variable x and the int-typed
reference variable rx. The program initializes the variable x with 10 and the
reference variable rx with the variable x.

The output statement in line 12 displays the value in variable x using the variable x
itself. By contrast, the output statement in lines 13 and 14 displays the value in variable
x using the reference variable rx.

The statement in line 16 doubles the integer in variable x. The output statement in
lines 17 and 18 displays the new value in variable x using the reference variable rx. As
the output shows, the reference variable accurately displays the updated value in
variable x.

The statement in line 20 doubles the value in variable x by using the reference variable
rx. The output statement in line 21 displays the updated value in variable x using
variable x. Again, the output shows that the variable x and the reference variable rx
are synchronized.

Output

Analysis



233

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

Overview of Pointers
Each piece of information, both code and data, in the computer’s memory resides at
a specific address and occupies a specific number of bytes. When you run a program,
your variables reside at specific addresses. With a high-level language such as C++, you
are not concerned about the actual address of every variable. That task is handled
transparently by the compiler and the runtime system. Conceptually, each variable in
your program is a tag for a memory address. Manipulating the data using the tag is
much easier than dealing with actual numerical addresses, such as 0F64:01AF4.

☛ New Term: An address is a memory location. A tag is the variable’s name.

C++ and its parent C are programming languages that are also used for low-level
systems programming. In fact, many regard C as a high-level assembler. Low-level
systems programming requires that you frequently work with the address of data. This
is where pointers, in general, come into play. Knowing the address of a piece of data
enables you to set and query its value.

☛ New Term: A pointer is a special variable that stores the address of
another variable or information.

!! Warning: Pointers are very powerful language components. They can also
be dangerous if used carelessly, because they may hang your system. This
malfunction occurs when the pointer happens to have a low memory
address of some critical data or function.

Pointers to Existing Variables
In this section, you learn how to use pointers to access the values in existing variables.
C++ requires that you associate a data type (including void) with a declared pointer.
The associated data type may be a predefined type or a user-defined structure.



234

User-Defined Types and Pointers
M

T
W

R
F

S
S

DAYDAY

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

S
yn

ta
x

A Pointer
The general syntax for declaring a pointer is

type* pointerName;
type* pointerName = &variable;

The & operator is the address-of operator (this is not the reference operator, which also
uses the & symbol) and is used to take the address of a variable. The address-of
operator returns the address of a variable, structure, function, and so on. By contrast,
the reference operator creates an alias to a variable using another variable.

Example:

int *intPtr; // pointer to an int
double *realPtr; // pointer to a double
char *aString; // pointer to a character
long lv;
long* lp = &lv;

You can also declare nonpointers in the same lines that declare pointers:

int *intPtr, anInt;
double *realPtr, x;
char *aString, aKey;

Note: C++ permits you to place the asterisk character right after the
associated data type. You should not interpret this kind of syntax to mean
that every other identifier appearing in the same declaration is automati-
cally a pointer:

int* intPtr; // pointer to an int
double* realPtr; // pointer to a double
char* aString; // pointer to a character
int *intP, j; // intP is a pointer to int, j is an int
double *realPtr, *doublePtr;  // both identifiers
                              // are pointers to a double

DO DON’T
DO initialize a pointer before you use it, just as you do with ordinary
variables. In fact, the need to initialize pointers is even more pressing—using
uninitialized pointers invites trouble that can lead to unpredictable program
behavior or a system hang.



235

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

Type

DON’T assume that uninitialized pointers are harmless.

Once a pointer contains the address of a variable, you can access the value in that
variable using the * operator followed by the pointer’s name. For example, if px is a
pointer to the variable x, you can use *px to access the value in variable x.

DO DON’T
DO include the * operator to the left of a pointer to access the variable
whose address is stored in the pointer.

DON’T forget to use the * operator. Without it, a statement ends up
manipulating the address in the pointer instead of the data at that address.

Here is a simple example that shows a pointer at work. Listing 8.4 shows the source
code for the program PTR1.CPP. The program displays and alters the values of a
variable using either the variable itself or its pointer. The program requires no input.

Listing 8.4. Source code for the program PTR1.CPP.

1:  /*
2:    C++ program that demonstrates pointers to existing variables
3:  */
4:
5:  #include <iostream.h>
6:
7:  main()
8:  {
9:    int x = 10;
10:   int* px = &x;
11:   // display x using x and rx
12:   cout << “x contains “ << x << “\n”;
13:   cout << “x contains (using the pointer px) “
14:        << *px << “\n”;
15:   // alter x and display its value using *px
16:   x *= 2;
17:   cout << “x contains (using the pointer px) “
18:        << *px << “\n”;
19:   // alter *px and display value using x
20:   *px *= 2;
21:   cout << “x contains “ << x << “\n”;
22:   return 0;
23: }



236

User-Defined Types and Pointers
M

T
W

R
F

S
S

DAYDAY

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

Here is a sample session with the program in Listing 8.4:

x contains 10
x contains (using the pointer px) 10
x contains (using the pointer px) 20
x contains 40

The program in Listing 8.4 declares the int-typed variable x and the int-typed
pointer px. The program initializes the variable x with 10 and the pointer px with
the address of variable x.

The output statement in line 12 displays the value in variable x using the variable x.
By contrast, the output statement in lines 13 and 14 displays the value in variable x
using the pointer px. Notice that the statement uses *px to access the value in vari-
able x.

The statement in line 16 doubles the integer in variable x. The output statement in
lines 17 and 18 displays the new value in variable x using the pointer px. As the output
shows, the pointer accurately displays the updated value in variable x.

The statement in line 20 doubles the value in variable x by using the pointer px. Notice
that the assignment statement uses *px on the left side of the = operator to access the
variable x. The output statement in line 21 displays the updated value in variable x
using variable x. Again, the output shows that the variable x and the pointer px are
synchronized.

Pointers to Arrays
C++ and its parent language, C, support a special use for the names of arrays. The
compiler interprets the name of an array as the address of its first element. Thus, if x
is an array, the expressions &x[0] and x are equivalent. In the case of a matrix—call
it mat—the expressions &mat[0][0] and mat are also equivalent. This aspect of C++
and C makes them work as high-level assembly languages. Once you have the address
of a data item, you’ve got its number, so to speak. Your knowledge of the memory
address of a variable or array enables you to manipulate its contents using pointers.

☛ New Term: A program variable is a label that tags a memory address.
Using a variable in a program means accessing the associated memory
location by specifying its name (or tag, if you prefer). In this sense, a
variable becomes a name that points to a memory location—a pointer.

Output

Analysis



237

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

Type

C++ enables you to use a pointer to access the various elements of an array. When you
access the element x[i] of array x, the compiled code performs two tasks. First, it
obtains the base address of the array x (that is, where the first array element is located).
Second, it uses the index i to calculate the offset from the base address of the array.
This offset equals i multiplied by the size of the basic array type:

address of element x[i] = address of x + i * sizeof(basicType)

Looking at the preceding equation, assume that we have a pointer ptr that takes the
base address of array x:

ptr = x; // pointer ptr points to address of x[0]

We can now substitute x with ptr in the equation and come up with the following:

address of element x[i] = ptr + i * sizeof(basicType)

In order for C++ and C to be high-level assemblers, they simplify the use of this
equation by absolving it from having to explicitly state the size of the basic array type.
Thus, you can write the following:

address of element x[i] = p + i

This equation states that the address of element x[i] is the expression (p + i).

Let’s illustrate the use of pointers to access one-dimensional arrays by presenting the
next program, PTR2.CPP (Listing 8.5). This program is a modified version of the
program ARRAY1.CPP that calculates the average value for data in an array. The
program begins by prompting you to enter the number of data points and the data
itself. Then the program calculates the average of the data in the array. Next, the
program displays the average value.

Listing 8.5. Source code for the program PTR2.CPP.

1:  /*
2:     C++ program that demonstrates the use of pointers with
3:     one-dimension arrays.  Program calculates the average
4:     value of the data found in the array.
5:  */
6:
7:  #include <iostream.h>
8:
9:  const int MAX = 30;
10:
11: main()

continues



238

User-Defined Types and Pointers
M

T
W

R
F

S
S

DAYDAY

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

Listing 8.5. continued

12: {
13:
14:     double x[MAX];
15:     // declare pointer and initialize with base
16:     // address of array x
17:     double *realPtr = x; // same as = &x[0]
18:     double sum, sumx = 0.0, mean;
19:     int n;
20:     // obtain the number of data points
21:     do {
22:         cout << “Enter number of data points [2 to “
23:              << MAX << “] : “;
24:         cin >> n;
25:         cout << “\n”;
26:     } while (n < 2 || n > MAX);
27:
28:     // prompt for the data
29:     for (int i = 0; i < n; i++) {
30:         cout << “X[“ << i << “] : “;
31:         // use the form *(x+i) to store data in x[i]
32:         cin >> *(x + i);
33:     }
34:
35:     sum = n;
36:     for (i = 0; i < n; i++)
37:     // use the form *(realPtr + i) to access x[i]
38:         sumx += *(realPtr + i);
39:     mean = sumx / sum;
40:     cout << “\nMean = “ << mean << “\n\n”;
41:     return 0;
42: }

Here is a sample session with the program in Listing 8.5:

Enter number of data points [2 to 30] : 5

X[0] : 1
X[1] : 2
X[2] : 3
X[3] : 4
X[4] : 5

Mean = 3

The program in Listing 8.5 declares the double-typed array x to have MAX
elements. In addition, the program declares the pointer realPtr and initializes
it using the array x. Thus, the pointer realPtr stores the address of x[0], the first

element in array x.

Output

Analysis



239

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

Type

The program uses the pointer for *(x + i) in the input statement at line 32. Thus,
the identifier x works as a pointer to the array x. Using the expression *(x + i) accesses
the element number i of array x, just as using the expression x[i] does.

The program uses the pointer realPtr in the for loop at lines 37 and 38. The
expression *(realPtr + i) is the equivalent of *(x + i), which in turn is equivalent
to x[i]. Thus, the for loop uses the pointer realPtr with an offset value, i, to access
the elements of array x.

The Pointer Increment/
Decrement Method

The preceding C++ program maintains the same address in the pointer realPtr.
Employing pointer arithmetic with the for loop index i, we can write a new program
version that increments the offset to access the elements of array x. C++ provides you
with another choice that enables you to access sequentially the elements of an array
without the help of an explicit offset value. The method merely involves using the
increment or decrement operator with a pointer. You still need to initialize the pointer
to the base address of an array and then use the ++ operator to access the next array
element. Here is a modified version of the preceding program, a version that uses the
pointer increment method. Listing 8.6 shows the source code for the PTR3.CPP
program.

Listing 8.6. Source code for the program PTR3.CPP.

1:  /*
2:    C++ program that demonstrates the use of pointers with
3:    one-dimension arrays.  The average value of the array
4:    is calculated.  This program modifies the previous version
5:    in the following way:  the realPtr is used to access the
6:    array without any help from any loop control variable.
7:    This is accomplished by ‘incrementing’ the pointer, and
8:    consequently incrementing its address.  This program
9:    illustrates pointer arithmetic that alters the pointer’s
10:   address.
11:
12: */
13:
14: #include <iostream.h>
15:
16: const int MAX = 30;

continues



240

User-Defined Types and Pointers
M

T
W

R
F

S
S

DAYDAY

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

Listing 8.6. continued

17:
18: main()
19: {
20:
21:     double x[MAX];
22:     double *realPtr = x;
23:     double sum, sumx = 0.0, mean;
24:     int i, n;
25:
26:     do {
27:         cout << “Enter number of data points [2 to “
28:              << MAX << “] : “;
29:         cin >> n;
30:         cout << “\n”;
31:     } while (n < 2 || n > MAX);
32:
33:     // loop variable i is not directly involved in accessing
34:     //  the elements of array x
35:     for (i = 0; i < n; i++) {
36:         cout << “X[“ << i << “] : “;
37:         // increment pointer realPtr after taking its reference
38:         cin >> *realPtr++;
39:     }
40:
41:     // restore original address by using pointer arithmetic
42:     realPtr -= n;
43:     sum = n;
44:     // loop variable i serves as a simple counter
45:     for (i = 0; i < n; i++)
46:        // increment pointer realPtr after taking a reference
47:         sumx += *(realPtr++);
48:     mean = sumx / sum;
49:     cout << “\nMean = “ << mean << “\n\n”;
50:     return 0;
51:
52: }

Here is a sample session with the program in Listing 8.6:

Enter number of data points [2 to 30] : 5

X[0] : 10
X[1] : 20
X[2] : 30
X[3] : 40
X[4] : 50

Mean = 30

Output



241

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

The program in Listing 8.6 initializes the realPtr pointer to the base address of
array x, in line 22. The program uses the realPtr pointer in the keyboard input
statement in line 38. This statement uses *realPtr++ to store your input in the

currently accessed element of array x and then to increment the pointer to the next
element of array x. When the input loop terminates, the pointer realPtr points past
the tail of array x. To reset the pointer to the base address of array x, the program uses
the assignment statement in line 42. This statement uses pointer arithmetic to
decrease the current address in pointer realPtr by n times sizeof(real). The
statement resets the address in the pointer realPtr to access the array element x[0].
The program uses the same incrementing method to calculate the sum of data in the
second for loop in line 47.

Pointers to Structures
C++ supports declaring and using pointers to structures. Assigning the address of a
structured variable to a pointer of the same type uses the same syntax as with simple
variables. Once the pointer has the address of the structured variable, it needs to use
the -> operator to access the members of the structure.

S
yn

ta
x

Accessing Structure Members
The general syntax for a pointer to access the members of a structure is

structPtr->aMember

Example:

struct point {
  double x;
  double y;
};

point p;
point* ptr = &p;

ptr->x = 23.3;
ptr->y = ptr->x + 12.3;

Here is a sample program that uses pointers to structures. Listing 8.7 shows the source
code for the program PTR4.CPP. This program is the version of program
STRUCT1.CPP that uses pointers. The program prompts you for four sets of
coordinates that define four rectangles. Each rectangle is defined by the x and y

Analysis



242

User-Defined Types and Pointers
M

T
W

R
F

S
S

DAYDAY

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

Type

coordinates of the upper-left and lower-right corners. The program calculates the area
of each rectangle, sorts the rectangles by area, and displays the rectangles in the order
of their areas.

Listing 8.7. Source code for the program PTR4.CPP.

1:  /*
2:    C++ program that demonstrates pointers to structured types
3:  */
4:
5:  #include <iostream.h>
6:  #include <stdio.h>
7:  #include <math.h>
8:
9:  const MAX_RECT = 4;
10:
11: struct point {
12:   double x;
13:   double y;
14: };
15:
16: struct rect {
17:   point ulc; // upper left corner
18:   point lrc; // lower right corner
19:   double area;
20:   int id;
21: };
22:
23: typedef rect rectArr[MAX_RECT];
24:
25: main()
26: {
27:   rectArr r;
28:   rect temp;
29:   rect* pr = r;
30:   rect* pr2;
31:   double length, width;
32:
33:   for (int i = 0; i < MAX_RECT; i++, pr++) {
34:     cout << “Enter (X,Y) coord. for ULC of rect. # “
35:          << i << “ : “;
36:     cin >> pr->ulc.x >> pr->ulc.y;
37:     cout << “Enter (X,Y) coord. for LRC of rect. # “
38:          << i << “ : “;
39:     cin >> pr->lrc.x >> pr->lrc.y;
40:     pr->id = i;
41:     length = fabs(pr->ulc.x - pr->lrc.x);
42:     width = fabs(pr->ulc.y - pr->lrc.y);
43:     pr->area = length * width;
44:   }



243

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

45:
46:   pr -= MAX_RECT; // reset pointer
47:   // sort the rectangles by areas
48:   for (i = 0; i < (MAX_RECT - 1); i++, pr++) {
49:     pr2 = pr + 1; // reset pointer pr2
50:     for (int j = i + 1; j < MAX_RECT; j++, pr2++)
51:       if (pr->area > pr2->area) {
52:         temp = *pr;
53:         *pr = *pr2;
54:         *pr2 = temp;
55:       }
56:   }
57:
58:   pr -= MAX_RECT - 1; // reset pointer
59:   // display rectangles sorted by area
60:   for (i = 0; i < MAX_RECT; i++, pr++)
61:     printf(“Rect # %d has area %5.4lf\n”, pr->id, pr->area);
62:   return 0;
63: }

Here is a sample session with the program in Listing 8.7:

Enter (X,Y) coord. for ULC of rect. # 0 : 1 1
Enter (X,Y) coord. for LRC of rect. # 0 : 2 2
Enter (X,Y) coord. for ULC of rect. # 1 : 1.5 1.5
Enter (X,Y) coord. for LRC of rect. # 1 : 3 4
Enter (X,Y) coord. for ULC of rect. # 2 : 1 2
Enter (X,Y) coord. for LRC of rect. # 2 : 5 8
Enter (X,Y) coord. for ULC of rect. # 3 : 4 6
Enter (X,Y) coord. for LRC of rect. # 3 : 8 4
Rect # 0 has area 1.0000
Rect # 1 has area 3.7500
Rect # 3 has area 8.0000
Rect # 2 has area 24.0000

The program in Listing 8.7 declares the pointers pr and pr2 in lines 29 and 30,
respectively. These pointers access the structure of type rect. The program
initializes the pointer pr with the base address of array r.

The first for loop, which begins at line 33, uses the pointer pr to access the elements
of array r. The loop increment part contains the expression pr++, which uses pointer
arithmetic to make the pointer pr access the next element in array r. The input
statements in lines 36 and 39 use the pointer pr to access the members ulc and lrc.
Notice that the statements use the pointer access operator -> to allow pointer pr to
access the members ulc and lrc. The statements in lines 40 through 43 also use the
pointer pr to access the members id, ulc, lrc, and area, using the -> operator.

Analysis

Output



244

User-Defined Types and Pointers
M

T
W

R
F

S
S

DAYDAY

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

The statement in line 46 resets the address stored in pointer pr by MAX_RECT units (that
is MAX_RECT * sizeof(double) bytes). The nested loops in lines 48 through 56 use the
pointers pr and pr2. The outer for loop increments the address in pointer pr by one
before the next iteration. The statement in line 49 assigns pr + 1 to the pointer pr2.
This statement gives the pointer pr2 the initial access to the element i + 1 in array r.
The inner for loop increments the pointer pr2 by 1 before the next iteration. Thus,
the nested for loops use the pointers pr and pr2 to access the elements of array r. The
if statement in line 51 uses the pointers pr and pr2 to access the area member in
comparing the areas of various rectangles. The statements in line 52 through 54 swap
the elements of array r, which are accessed by pointers pr and pr2. Notice that the
statements use *pr and *pr2 to access an entire element of array r.

The statement in line 58 resets the address in the pointer pr by subtracting
MAX_RECT - 1. The last for loop also uses the pointer pr to access and display the
members id and area of the various elements in array r.

This program illustrates that you can completely manipulate an array using pointers
only. They are powerful and versatile.

Pointers and Dynamic Memory
The programs presented thus far create the space for their variables at compile-time.
When the programs start running, the variables have their memory spaces preas-
signed. There are many applications in which you need to create new variables during
the program execution. You need to allocate the memory space dynamically for these
new variables at runtime. The designers of C++ have chosen to introduce new
operators, which are not found in C, to handle the dynamic allocation and deallocation
of memory. These new C++ operators are new and delete. While the C-style dynamic
memory functions malloc, calloc, and free are still available, you should use the
operators new and delete. These operators are more aware of the type of dynamic data
that is created than are functions malloc, calloc, and free.

S
yn

ta
x

The new and delete Operators
The general syntax for using the new and delete operators in creating dynamic scalar
variables is

pointer = new type;
delete pointer;



245

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

The operator new returns the address of the dynamically allocated variable. The
operator delete removes the dynamically allocated memory accessed by a pointer. If
the dynamic allocation of operator new fails, it returns a NULL (equivalent to 0) pointer.
Therefore, you need to test for a NULL pointer after using the new operator if you suspect
trouble.

Example:

int *pint;
pint = new int;
*pint = 33;
cout << “Pointer pint stores “ << *pint;
delete pint;

S
yn

ta
x

A Dynamic Array
To allocate and deallocate a dynamic array, use the following general syntax:

arrayPointer = new type[arraySize];
delete [] arrayPointer;

The operator new returns the address of the dynamically allocated array. If the
allocation fails, the operator assigns NULL to the pointer. The operator delete removes
the dynamically allocated array that is accessed by a pointer.

Example:

const int MAX = 10;
int* pint;
pint = new int[MAX];
for (int i = 0; i < MAX; i++)
     *pint[i] = i * i
for (i = 0; i < MAX; i++)
     cout << *(pint + i) << “\n”;
delete [] pint;

DO DON’T
DO maintain access to dynamic variables and arrays at all times. Such access
does not need the original pointers that were used to create these dynamic
variables and arrays. Here is an example:

int* p = new int;
int* q;
*p = 123;
q = p; // q now also points to 123
p = new int; // create another dynamic variable
*p = 345; // p points to 345 whereas q points to 123



246

User-Defined Types and Pointers
M

T
W

R
F

S
S

DAYDAY

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

Type

cout << *p << “ “ << *q << “ “ << (*p + *q) << “\n”;
delete p;
delete q;

DON’T forget to delete dynamic variables and arrays at the end of their
scope.

Using pointers to create and access dynamic data can be illustrated with the next
program, PTR5.CPP (Listing 8.8). This program is a modified version of program
ARRAY1.CPP that calculates the average value for data in an array. The program
begins by prompting you to enter the actual number of data and validates your input.
Then the program prompts you for the data and calculates the average of the data in
the array. Next, the program displays the average value.

Listing 8.8. Source code for the program PTR5.CPP.

1:  /*
2:    C++ program that demonstrates the pointers to manage
3:    dynamic data
4:  */
5:
6:  #include <iostream.h>
7:
8:  const int MAX = 30;
9:
10: main()
11: {
12:
13:     double* x;
14:     double sum, sumx = 0, mean;
15:     int *n;
16:
17:     n = new int;
18:     if (n == NULL)
19:       return 1;
20:
21:     do { // obtain number of data points
22:         cout << “Enter number of data points [2 to “
23:              << MAX << “] : “;
24:         cin >> *n;
25:         cout << “\n”;
26:     } while (*n < 2 || *n > MAX);
27:     // create tailor-fit dynamic array
28:     x = new double[*n];
29:     if (!x) {
30:       delete n;



247

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

31:       return 1;
32:     }
33:     // prompt user for data
34:     for (int i = 0; i < *n; i++) {
35:         cout << “X[“ << i << “] : “;
36:         cin >> x[i];
37:     }
38:
39:     // initialize summations
40:     sum = *n;
41:     // calculate sum of observations
42:     for (i = 0; i < *n; i++)
43:         sumx += *(x + i);
44:
45:     mean = sumx / sum; // calculate the mean value
46:     cout << “\nMean = “ << mean << “\n\n”;
47:     // deallocate dynamic memory
48:     delete n;
49:     delete [] x;
50:     return 0;
51: }

Here is a sample session with the program in Listing 8.8:

Enter number of data points [2 to 30] : 5

X[0] : 1
X[1] : 2
X[2] : 3
X[3] : 4
X[4] : 5

Mean = 3

The program in Listing 8.8 uses two pointers for dynamic allocations. Line 13
declares the first pointer, which is used to allocate and access the dynamic array.
Line 15 declares the pointer to create a dynamic variable.

The statement in line 17 uses the operator new to allocate the space for a dynamic int
variable. The statement returns the address of the dynamic data to the pointer n. The
if statement in line 18 determines whether or not the dynamic allocation failed. If so,
the function main exits and returns an exit code of 1 (to flag an error).

The do-while loop in lines 21 through 26 prompts you to enter the number of data
points. The statement in line 24 stores your input in the dynamic variable accessed
by pointer n. The statement uses the pointer reference *n for this access. The while
clause also uses *n to access the value in the dynamic variable. In fact, all the statements
in the program access the number of data points using the pointer reference *n.

Output

Analysis



248

User-Defined Types and Pointers
M

T
W

R
F

S
S

DAYDAY

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

The statement in line 28 creates a dynamic array using the operator new. The statement
creates a dynamic double-typed array with the number of elements that you specify.
This feature demonstrates the advantage of using dynamic allocation to create
custom-fit arrays. The if statement in line 29 determines whether or not the
allocation of the dynamic array was successful. If not, the statements in lines 30 and
31 deallocate the dynamic variable accessed by pointer n and exit the function with
a return value of 1.

The for loop in lines 34 through 37 prompts you to enter values for the dynamic array.
The statement in line 36 stores your input to the element i of the dynamic array.
Notice that the statement uses the expression x[i] to access the targeted element. This
form resembles that of static arrays. C++ treats the expression x[i] as equivalent to *(x
+ i). In fact , the program uses the latter form in the second for loop in lines 42 and
43. The statement in line 43 accesses the elements in the dynamic array using the form
*(x + i).

The last statements in function main delete the dynamic variable and array. The
statement in line 48 deallocates the space for the dynamic variable accessed by pointer
n. The statement in line 49 deletes the dynamic array that is accessed by pointer x.

Far Pointers
The architecture of processors such as the family of Intel 80x86 features segmented
memory. Each segment is 64 kilobytes in size. Using segments has advantages and
disadvantages. This storage scheme supports two kinds of pointers: near pointers and
far pointers.

☛ New Term: Within a segment you can use near pointers to access data in
the same segment. The pointers only store the offset address in the
segment and thus require fewer bytes to store their address. By contrast,
far pointers store the segment and offset addresses, and thus they require
more space. Windows applications use far pointers.

To declare far pointers, insert the keyword far (or sometimes __far) between the
pointer’s type and the pointer’s name.



249

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

Summary
Today’s lesson introduced you to user-defined data types and covered the following
topics:

■■ You can use the typedef statements to create alias types of existing types and
define array types. The general syntax for using typedef is

typedef knownType newType;

■■ Enumerated data types enable you to declare unique identifiers that repre-
sent a collection of logically related constants. The general syntax for declar-
ing an enumerated type is

enum enumType { <list of enumerated identifiers> };

■■ Structures enable you to define a new type that logically groups several fields
or members. These members can be predefined types or other structures.
The general syntax for declaring a structure is

struct structTag {

     < list of members >

};

■■ Unions are a form of variant structures. The general syntax for unions is

union unionTag {

     type1 member1;

     type2 member2;

     ...

     typeN memberN;

};

■■ Reference variables are aliases of the variables that they reference. To declare
a reference variable, place the & after the data type of the reference variable or
to the left of the variable’s name.

■■ Pointers are variables that store the addresses of other variables or data. C++
uses pointers to offer flexible and efficient manipulation of data and system
resources.

■■ Pointers to existing variables use the & operator to obtain the addresses of
these variables. Armed with these addresses, pointers offer access to the data
in their associated variables. To access the value by using a pointer, use the *
operator followed by the name of the pointer.



250

User-Defined Types and Pointers
M

T
W

R
F

S
S

DAYDAY

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

■■ Pointers access the elements of arrays by being assigned the base address of a
class. C++ considers the name of an array as equivalent to the pointer of the
base address. For example, the name of the array X is treated as &X[0].
Pointers can be used to sequentially traverse the elements of an array to store
and/or recall values from these elements.

■■ Pointers to structures manipulate structures and access their members. C++
provides the -> operator in order to allow a pointer access to the members of
a structure.

■■ Pointers can create and access dynamic data by using the operators new and
delete. These operators enable you to create dynamic variables and arrays.
The new operator assigns the address of the dynamic data to the pointer used
in creating and accessing the data. The operator delete assists in recuperat-
ing the space of dynamic data when that information is no longer needed.

■■ Far pointers are pointers that store both the segment and the offset addresses
of an item. Near pointers only store the offset address of an item. Far
pointers require more storage than near pointers.

Q&A
Q Does C++ support pointers to the predefined type void?

A Yes, void* pointers are considered typeless pointers and can be used to copy
data.

Q Because C++ pointers (including void* pointers) have types, can I use
typecasting to translate the data accessed by the general-purpose void*
pointers to non-void* pointers?

A Yes. C++ enables you to typecast pointer references. For example:

void* p = data;

long *lp = (long*) p;

The pointer lp uses the typecast to translate the data it accesses.

Q What happens if I delete a dynamic array by using the delete operator
without following it with the empty brackets?

A The effect of deleting an array with a plain delete operator is undefined.
Expect the plain delete operator to leave orphaned dynamic memory.



251

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

Q Can a structure contain a pointer to itself?

A Yes. Many structures that model dynamic data structures use this kind of
declaration. For example, the following structure models the nodes of a
dynamic list with pointer-based links:

struct listNode {

  dataType data;

  listNode *next;

};

Q Does C++ allow the declaration of a pointer-to-structure type before
declaring the structure?

A Yes. This feature makes declaring nodes of dynamic data structure possible.

Q Does C++ allow pointers that access the addresses of other pointers?

A Yes. C++ supports pointers to pointers (also called double pointers). To
declare such pointers, use two * characters, as shown in the following
example, which declares the double pointer p:

int x;

int *px = &x;

int **p = &px;

The expression *p accesses the pointer px, and the expression **p accesses the
variable x.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing on to the
next day’s lesson. (Answers are provided in Appendix A, “Answers.”)

Quiz
1. What is the error in the following statements?

enum Boolean { false, true };

enum State { on, off };

enum YesNo { yes, no };

enum DiskDriveStatus { on , off };



252

User-Defined Types and Pointers
M

T
W

R
F

S
S

DAYDAY

8

A/s&n2   TYS Borland C++ 21 Days  #30483 Casey  4-14-94    CH8   LP#4(sp 4/12 folio)

2. True or false? The declaration of the following enumerated type is incorrect.

enum YesNo ( no = 0, No = 0, yes = 1, Yes = 1 };

3. What is the problem with the following program?

#include <iostream.h>

main()

{

  int *p = new int;

  cout << “Enter a number : “;

  cin >> *p;

  cout << “The square of “ << *p << “ = “ << (*p * *p);

  return 0;

}

Exercises
1. Modify the program PTR4.CPP to create the program PTR6.CPP, which

uses the Comb sort method to sort the array of rectangles.

2. Define a structure that can be used to model a dynamic array of integers.
The structure should have a member to access the dynamic data and a
member to store the size of the dynamic array. Call the structure
intArrStruct.

3. Define a structure that can be used to model a dynamic matrix. The struc-
ture should have a member to access the dynamic data and two members to
store the number of rows and columns. Call the structure matStruct.



253

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

M
T

W
R

F
S

S

WEEK

22

99
Strings



254

Strings
M

T
W

R
F

S
S

DAYDAY

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

The examples presented from Day 1 through Day 8 are predominantly numeric, with
a few that involve character manipulation. You may have grown suspicious about the
absence of strings in all of these examples. On Day 13 you will learn about the C++
string class. Today’s lesson discusses C++ strings. You will learn about the following
topics:

■■ Strings in C++

■■ String input

■■ Using the standard string library

■■ Assigning strings

■■ Obtaining the length of strings

■■ Concatenating strings

■■ Comparing strings

■■ Converting strings

■■ Reversing the characters in a string

■■ Locating characters

■■ Locating substrings

C++ Strings: An Overview
C++ (and its parent language C) have no predefined string type. Instead, C++, like C,
regards strings as arrays of characters that end with the ASCII 0 null character (‘\0’).

☛ New Term: The ‘\0’ character is also called the null terminator. Strings
that end with the null terminator are sometimes called ASCIIZ strings,
with the letter Z standing for zero, the ASCII code of the null terminator.

The null terminator must be present in all strings and taken into account when
dimensioning a string. When you declare a string variable as an array of characters, be
sure to reserve an extra space for the null terminator. The advantage of using the null
terminator is that you can create strings that are not restricted by any limit imposed
by the C++ implementation. In addition, ASCIIZ strings have very simple structures.



255

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

Note: The lesson in Day 8 discusses how pointers can access and manipu-
late the elements of an array. C and C++ make extensive use of this
programming feature in manipulating the characters of a string.

DO DON’T
DO include an extra space for the null terminator when specifying the size
of a string.

DON’T declare a string variable as a single-character array. Such a variable is
useless.

String Input
The programs that we have presented thus far display string literals in output stream
statements; C++ supports stream output for strings as a special case for a nonpredefined
data type. (You can say the support came by popular demand.) String output using
string variables uses the same operator and syntax. With string input, the inserter
operator >> does not work well because strings often contain spaces that are ignored
by the inserter operator. Instead of the inserter operator, you need to use the getline
function. This function reads up to a specified number of characters.

S
yn

ta
x

The getline Function
The general syntax for the overloaded getline function is

istream& getline(signed char* buffer,
                 int size,
                 char delimiter = ‘\n’);

istream& getline(unsigned char* buffer,
                 int size,
                 char delimiter = ‘\n’);

istream& getline(char* buffer,
                 int size,
                 char delimiter = ‘\n’);



256

Strings
M

T
W

R
F

S
S

DAYDAY

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

The parameter buffer is a pointer to the string receiving the characters from the
stream. The parameter size specifies the maximum number of characters to read. The
parameter delimiter specifies the delimiting character that causes the string input to
stop before reaching the number of characters specified by parameter size. The
parameter delimiter has the default argument of ‘\n’.

Example:

#include <iostream.h>
main()
{
  char name[80];
  cout << “Enter your name: “;
  cin.getline(name, sizeof(name)-1);
  cout << “Hello “ << name << “, how are you”;
  return 0;
}

Using the STRING.H Library
The community of C programmers has developed the standard string library
STRING.H, which contains the most frequently used string-manipulation func-
tions. The STDIO.H and IOSTREAM.H header file prototype functions also
support string I/O. The different C++ compiler vendors have also developed C++-
style string libraries. These libraries use classes to model strings. (You will learn more
about classes in Day 11.) However, these string libraries are not yet standard, whereas
the C-style string routines in STRING.H are part of the ANSI C standard. In the next
sections, we present several (but not all) of the functions that are prototyped in the
STRING.H header file.

Some of the string functions in STRING.H have more than one version. The extra
versions that append the characters _f, f, or _ work with strings that are accessed using
far pointers.

Assigning Strings
C++ supports two methods for assigning strings. You can assign a string literal to a
string variable when you initialize it. This method is simple and requires using the =
operator and the assigning string.



257

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

S
yn

ta
x

Initializing a String
The general syntax for initializing a string is

char stringVar[stringSize] = stringLiteral;

Example:

char aString[81] = “Borland C++ 4.0 in 21 days”;
char name[] = “Namir Shammas”;

The second method for assigning one ASCIIZ string to another uses the function
strcpy. This function assumes that the copied string ends with the null character.

S
yn

ta
x

The strcpy Function
The prototype for the function strcpy is

char* strcpy(char* target, const char* source)

The function copies the characters from string source to string target. The function
assumes that the target string accesses enough space to contain the source string.

Example:

char name[41];
strcpy(name,”Borland C++ 4.0");

The variable name contains the string “Borland C++ 4.0”.

The function strdup enables you to copy the characters to another string and allocate
required space in the target string.

S
yn

ta
x

The strdup Function
The prototype for the function strdup is

char* strdup(const char* source)

The function copies the characters in the source string and returns a pointer to the
duplicate string.

Example:

char* string1 = “The reign in Spain”;
char* string2;

string2 = strdup(string1);



258

Strings
M

T
W

R
F

S
S

DAYDAY

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

This example copies the contents of string1 into string2 after allocating the memory
space for string2.

The string library also offers the function strncpy to support copying a specified
number of characters from one string to another.

S
yn

ta
x

The strncpy Function
The prototype for the function strncpy is

char* strncpy(char* target, const char* source, size_t num);

The function copies num characters from the source string to the target string. The
function performs character truncation or padding, if necessary.

Example:

char str1[] = “Pascal”;
char str2[] = “Hello there”;

strncpy(str1, str2, 6);

The variable str1 now contains the string “Hello “.

Note: Using pointers to manipulate strings is a new idea to many novice
C++ programmers. In fact, you can use pointers to manipulate the trailing
parts of a string by assigning the address of the first character to manipu-
late. For example, if we declare the string str1 as follows

char str1[41] = “Hello World”;

char str2[41];

char* p = str1;

p += 6; // p now points to substring “World” in str

strcpy(str2, p);

cout << str2 << “\n”;

the output statement displays the string “World”. This example shows
how using pointers can incorporate an offset number of characters.



259

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

The Length of a String
Many string operations require information about the number of characters in a
string. The STRING.H library offers the function strlen to return the number of
characters, excluding the null terminator, in a string.

S
yn

ta
x

The strlen Function
The prototype for the function strlen is

size_t strlen(const char* string)

The function strlen returns the number of characters in the parameter string. The
result type size_t represents a general integer type.

Example:

char str[] = “1234567890”;
unsigned i;
i = strlen(str);

These statements assign 10 to the variable i.

Concatenating Strings
Often, you build a string by concatenating two or more strings. The function strcat
enables you to concatenate one string to another.

☛ New Term: When you concatenate strings, you join or link them
together.

S
yn

ta
x

The strcat Function
The prototype for the function strcat is

char* strcat(char* target, const char* source)

The function appends the contents of the source string to the target string and returns
the pointer to the target string. The function assumes that the target string can
accommodate the characters of the source string.



260

Strings
M

T
W

R
F

S
S

DAYDAY

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

Example:

char string[81];
strcpy(string, “Borland”);
strcat(string,” C++ 4.0")

The variable string now contains “Borland C++ 4.0”.

The function strncat concatenates a specified number of characters from the source
string to the target strings.

S
yn

ta
x

The strncat Function
The prototype for the function strncat is

char* strncat(char* target, const char* source, size_t num)

The function appends num characters of the source string to the target string and
returns the pointer to the target string.

Example:

char str1[81] = “Hello I am “;
char str2[41] = “Thomas Jones”;

strncat(str1, str2, 6);

The variable str1 now contains “Hello I am Thomas”.

DO DON’T
DO use the function strncat to control the number of concatenated
characters, when you are unsure of the capacity of the target string.

DON’T assume that the target string is always adequate to store the charac-
ters in the source string.

Let’s look at a program that uses the getline, strlen, and strcat functions. Listing
9.1 contains the source code for the program STRING1.CPP. The program performs
the following tasks:

■■ Prompts you to enter a string; your input should not exceed 40 characters.

■■ Prompts you to enter a second string; your input should not exceed 40
characters.



261

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

Type

■■ Displays the number of characters in each of the strings you enter.

■■ Concatenates the second string to the first one.

■■ Displays the concatenated strings.

■■ Displays the number of characters in the concatenated strings.

■■ Prompts you to enter a search character.

■■ Prompts you to enter a replacement character.

■■ Displays the concatenated string after translating all the occurrences of the
search character with the replacement character.

Listing 9.1. Source code for the program STRING1.CPP.

1:  /*
2:    C++ program that demonstrates C-style strings
3:  */
4:
5:  #include <iostream.h>
6:  #include <string.h>
7:
8:  const unsigned MAX1 = 40;
9:  const unsigned MAX2 = 80;
10:
11: main()
12: {
13:
14:     char smallStr[MAX1+1];
15:     char bigStr[MAX2+1];
16:     char findChar, replChar;
17:
18:     cout << “Enter first string:\n”;
19:     cin.getline(bigStr, MAX2);
20:     cout << “Enter second string:\n”;
21:     cin.getline(smallStr, MAX1);
22:     cout << “String 1 has “ << strlen(bigStr)
23:          << “ characters\n”;
24:     cout << “String 2 has “ << strlen(smallStr)
25:          << “ characters\n”;
26:     // concatenate bigStr to smallStr
27:     strcat(bigStr, smallStr);
28:     cout << “Concatenated strings are:\n”
29:          << bigStr << “\n”;
30:     cout << “New string has “ << strlen(bigStr)
31:          << “ characters\n”;

continues



262

Strings
M

T
W

R
F

S
S

DAYDAY

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

32:     // get the search and replacement characters
33:     cout << “Enter search character : “;
34:     cin >> findChar;
35:     cout << “Enter replacement character : “;
36:     cin >> replChar;
37:     // replace characters in string bigStr
38:     for (unsigned i = 0; i < strlen(bigStr); i++)
39:       if (bigStr[i] == findChar)
40:         bigStr[i] = replChar;
41:     // display the updated string bigStr
42:     cout << “New string is:\n”
43:          << bigStr;
44:     return 0;
45: }

Here is a sample session with the program in Listing 9.1:

Enter first string:
The rain in Spain stays
Enter second string:
 mainly in the plain
String 1 has 23 characters
String 2 has 20 characters
Concatenated strings are:
The rain in Spain stays mainly in the plain
New string has 43 characters
Enter search character : a
Enter replacement character : A
New string is:
The rAin in SpAin stAys mAinly in the plAin

The program in Listing 9.1 includes the STRING.H header file for the string
manipulation functions. Lines 8 and 9 declare the global constants MAX1 and
MAX2, which are used to size a small string and a big string, respectively. The

function main declares two strings, smallStr and bigStr. Line 14 declares the variable
smallStr to store MAX1+1 characters. (The extra space is for the null character.) Line
15 declares the variable bigStr to store MAX2+1 characters. Line 16 declares the char-
typed variable findChar and replChar.

The output statement in line 18 prompts you to enter the first string. The statement
in line 19 uses the stream input function getline to obtain your input and to store
it in variable bigStr. The function call specifies that you can enter up to MAX2
characters. The output statement in line 20 prompts you to enter the second string.

Listing 9.1. continued

Analysis

Output



263

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

The statement in line 21 uses the stream input function getline to obtain your input
and to store it in the variable smallStr. The function call specifies that you can enter
up to MAX1 characters.

The output statements in lines 22 through 25 display the number of characters in
variables bigStr and smallStr, respectively. Each output statement calls function
strlen and passes it a string variable.

The statement in line 27 concatenates the string in the variable smallStr to the
variable bigStr. The output statement in lines 28 and 29 displays the updated string
bigStr. The output statement in lines 30 and 31 displays the number of characters in
the updated string variable bigStr. This statement also uses the function strlen to
obtain the number of characters.

The statement in line 33 prompts you to enter the search character. The statement in
line 34 obtains your input and stores it in variable findChar. The statement in line 35
prompts you to enter the replacement character. The statement in line 36 obtains your
input and stores it in variable replChar.

The for loop in lines 38 to 40 translates the characters in string bigStr. The loop uses
the control variable i and iterates, in increments of 1, from 0 to strlen(bigstr)-1.
The if statement in line 39 determines whether character number i in bigStr matches
the character in variable findChar. If this condition is true, the program executes the
statement in line 40. This statement assigns the character in variable replChar to
character number i in variable bigStr. This loop shows how you can manipulate the
contents of a string variable by accessing each character in that string.

The output statement in lines 42 and 43 displays the updated string bigStr.

String Comparison
Because strings are arrays of characters, the STRING.H library provides a set of
functions to compare strings. These functions compare the characters of two strings
using the ASCII value of each character. The functions are strcmp, stricmp, strncmp,
and strnicmp.

The function strcmp performs a case-sensitive comparison of two strings, using every
character possible.



264

Strings
M

T
W

R
F

S
S

DAYDAY

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

S
yn

ta
x

The strcmp Function
The prototype for the function strcmp is

int strcmp(const char* str1, const char* str2);

The function compares strings str1 and str2. The integer result indicates the
outcome of the comparison.

< 0  when str1 is less than str2
= 0  when str1 is equal to str2
> 0  when str1 is greater than str2

Example:

char string1[] = “Borland C++ 4.0”;
char string2[] = “BORLAND C++ 4.0”;
int i;

i = strcmp(string1, string2);

The last statement assigns a positive number to the variable i, because the string in
variable string1 is less than the string in variable string2.

The function stricmp performs a case-insensitive comparison between two strings,
using every character possible.

S
yn

ta
x

The stricmp Function
The prototype for the function stricmp is

int stricmp(const char* str1, const char* str2);

The function compares strings str1 and str2 without making a distinction between
upper- and lowercase characters. The integer result indicates the outcome of the
comparison.

< 0  when str1 is less than str2
= 0  when str1 is equal to str2
> 0  when str1 is greater than str2

Example:

char string1[] = “Borland C++ 4.0”;
char string2[] = “BORLAND C++ 4.0”;
int i;

i = stricmp(string1, string2);



265

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

The last statement assigns 0 to the variable i because the strings in variables string1
and string2 differ only in their cases.

The function strncmp performs a case-sensitive comparison on specified leading
characters in two strings.

S
yn

ta
x

The strncmp Function
The prototype for the function strncmp is

int strncmp(const char* str1, const char* str2, size_t num);

The function compares the num leading characters in two strings, str1 and str2. The
integer result indicates the outcome of the comparison, as follows:

< 0  when str1 is less than str2
= 0  when str1 is equal to str2
> 0  when str1 is greater than str2

Example:

char string1[] = “Borland C++ 4.0”;
char string2[] = “Borland Pascal”;
int i;

i = strncmp(string1, string2, 9);

This assigns a negative number to the variable i because “Borland C” is less than
“Borland P”.

The function strnicmp performs a case-insensitive comparison on specified leading
characters in two strings.

S
yn

ta
x

The strnicmp Function
The prototype for the function strnicmp is

int strnicmp(const char* str1, const char* str2, size_t num);

The function compares the num leading characters in two strings, str1 and str2,
regardless of the character case. The integer result indicates the outcome of the
comparison, as follows:

< 0  when str1 is less than str2
= 0  when str1 is equal to str2
> 0  when str1 is greater than str2



266

Strings
M

T
W

R
F

S
S

DAYDAY

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

Type

Example:

char string1[] = “Borland C++ 4.0”;
char string2[] = “BORLAND Pascal”;
int i;

i = strnicmp(string1, string2, 7);

This assigns 0 to the variable i because the strings “Borland” and “BORLAND” differ only
in the case of their characters.

Let’s look at an example that compares strings. Listing 9.2 creates an array of strings
and initializes it with data. Then the program displays the unordered array of strings,
sorts the array, and displays the sorted array.

Listing 9.2. Source code for the program STRING2.CPP.

1:  /*
2:    C++ program that demonstrates comparing strings
3:  */
4:
5:  #include <iostream.h>
6:  #include <string.h>
7:
8:  const unsigned STR_SIZE = 40;
9:  const unsigned ARRAY_SIZE = 11;
10: const int TRUE = 1;
11: const int FALSE = 0;
12:
13: main()
14: {
15:
16:     char strArr[STR_SIZE][ARRAY_SIZE] =
17:        { “California”, “Virginia”, “Alaska”, “New York”,
18:          “Michigan”, “Nevada”, “Ohio”, “Florida”,
19:          “Washington”, “Oregon”, “Arizona” };
20:     char temp[STR_SIZE];
21:     unsigned n = ARRAY_SIZE;
22:     unsigned offset;
23:     int inOrder;
24:
25:     cout << “Unordered array of strings is:\n”;
26:     for (unsigned i = 0; i < ARRAY_SIZE; i++)
27:       cout << strArr[i] << “\n”;
28:
29:     cout << “\nEnter a non-space character and press Enter”;
30:     cin >> temp[0];
31:     cout << “\n”;
32:



267

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

33:     offset = n;
34:     do {
35:       offset = (8 * offset) / 11;
36:       offset = (offset == 0) ? 1 : offset;
37:       inOrder = TRUE;
38:       for (unsigned i = 0, j = offset;
39:            i < n - offset; i++, j++)
40:         if (strcmp(strArr[i], strArr[j]) > 0) {
41:           strcpy(temp, strArr[i]);
42:           strcpy(strArr[i], strArr[j]);
43:           strcpy(strArr[j], temp);
44:           inOrder = FALSE;
45:         }
46:     } while (!(offset == 1 && inOrder));
47:
48:     cout << “Sorted array of strings is:\n”;
49:     for (i = 0; i < ARRAY_SIZE; i++)
50:       cout << strArr[i] << “\n”;
51:     return 0;
52: }

Here is a sample session with the program in Listing 9.2:

Unordered array of strings is:
California
Virginia
Alaska
New York
Michigan
Nevada
Ohio
Florida
Washington
Oregon
Arizona
Enter a non-space character and press Enterc
Sorted array of strings is:
Alaska
Arizona
California
Florida
Michigan
Nevada
New York
Ohio
Oregon
Virginia
Washington

Output



268

Strings
M

T
W

R
F

S
S

DAYDAY

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

The program in Listing 9.2 declares the global constants STR_SIZE, ARRAY_SIZE,
TRUE, and FALSE in lines 8 through 11. The constant STR_SIZE specifies the size
of each string. The constant ARRAY_SIZE indicates the number of strings in the

array used by the program. The constants TRUE and FALSE represent the Boolean values
employed in sorting the array of strings. The function main declares the array strArr
(actually, the variable strArr is a matrix of characters) to have ARRAY_SIZE elements
and STR_SIZE characters per elements. Notice that the declaration states the size of
each string in the first dimension and the size of the array in the second dimension.
The function also initializes the array strArr. The function also declares the variable
temp as a swap buffer. Lines 21 through 23 declare miscellaneous variables.

The output statement in line 25 shows the title before showing the elements of the
unordered array strArr. The for loop in lines 26 and 27 displays the elements. The
loop uses the control variable i and iterates, in increments of 1, from 0 to ARRAY_SIZE-
1. The output statement in line 27 displays the string at element i, using the expression
strArr[i].

The output and input statements in lines 29 and 30 prompt you to enter a nonspace
character. This input enables you to examine the unordered array before the program
sorts the array and displays its ordered elements.

The statements in lines 33 through 46 implement the Comb sort method. Notice that
the if statement in line 40 uses the function strcmp to compare elements number i
and j, accessed using the expressions strArr[i] and strArr[j], respectively. The
statements in lines 41 through 43 swap the elements i and j, using the function strcpy
and the swap buffer temp.

The output statement in line 48 displays the title before showing the elements of the
sorted array. The for loop in lines 49 and 50 displays these elements. The loop utilizes
the control variable i and iterates, in increments of 1, from 0 to ARRAY_SIZE-1. The
output statement in line 50 displays the string at element i, using the expression
strArr[i].

Converting Strings
The STRING.H library offers the functions _strlwr and _strupr to convert the
characters of a string to lowercase and uppercase, respectively. Note that these
functions are more commonly called strlwr and strupr (without the leading
underscore character) in C textbooks.

Analysis



269

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

S
y
n
ta

x

The _strlwr Function
The prototype for the function _strlwr is

char* _strlwr(char* source)

The function converts the uppercase characters in the string source to lowercase.
Other characters are not affected. The function also returns the pointer to the string
source.

Example:

char str[] = “HELLO THERE”;

_strlwr(str);

The variable str now contains the string “hello there”.

S
yn

ta
x

The _strupr Function
The prototype for the function _strupr is

char* _strupr(char* source)

The function converts the lowercase characters in the string source to uppercase.
Other characters are not affected. The function also returns the pointer to the string
source.

Example:

char str[] = “Borland C++ 4.0”;
_strupr(str);

The variable str now contains the string “BORLAND C++ 4.0”.

DO DON’T
DO make copies for the arguments of functions _strlwr and _strupr if you
need the original arguments later in a program.

DON’T always assume that applying the function _strlwr and then the
function _strupr (or vice versa) to the same variable will succeed in restoring
the original characters in that variable.



270

Strings
M

T
W

R
F

S
S

DAYDAY

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

Type

Reversing Strings
The STRING.H library offers the function strrev to reverse the characters in a string.

S
yn

ta
x

The strrev Function
The prototype for the function strrev is

char* strrev(char* str)

The function reverses the order of the characters in string str and returns the pointer
to the string str.

Example:

char string[] = “Hello”;

strrev(string);
cout << string;

This displays “olleH”.

Let’s look at a program that manipulates the characters in a string. Listing 9.3 shows
the source code for the program STRING3.CPP. The program performs the
following tasks:

■■ Prompts you to enter a string.

■■ Displays your input.

■■ Displays the lowercase version of your input.

■■ Displays the uppercase version of your input.

■■ Displays the character you typed, in reverse order.

■■ Displays a message that your input has no uppercase character, if this is true.

■■ Displays a message that your input has no lowercase character, if this is true.

■■ Displays a message that your input has symmetrical characters, if this is true.

Listing 9.3. Source code for the program STRING3.CPP.

 1: /*
 2:   C++ program that demonstrates manipulating the
 3:   characters in a string
 4: */
 5:
 6: #include <iostream.h>
 7: #include <string.h>



271

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

8:
9:  const unsigned STR_SIZE = 40;
10: const int TRUE = 1;
11: const int FALSE = 0;
12:
13: main()
14: {
15:     char str1[STR_SIZE+1];
16:     char str2[STR_SIZE+1];
17:     int isLowerCase;
18:     int isUpperCase;
19:     int isSymmetrical;
20:
21:
22:     cout << “Enter a string : “;
23:     cin.getline(str1, STR_SIZE);
24:     cout << “Input: “ << str1 << “\n”;
25:     // copy str1 to str2
26:     strcpy(str2, str1);
27:     // convert to lowercase
28:     strlwr(str2);
29:     isLowerCase = (strcmp(str1, str2) == 0) ? TRUE : FALSE;
30:     cout << “Lowercase: “ << str2 << “\n”;
31:     // convert to uppercase
32:     strupr(str2);
33:     isUpperCase = (strcmp(str1, str2) == 0) ? TRUE : FALSE;
34:     cout << “Uppercase: “ << str2 << “\n”;
35:     // copy str1 to str2
36:     strcpy(str2, str1);
37:     // reverse characters
38:     strrev(str2);
39:     isSymmetrical = (strcmp(str1, str2) == 0) ? TRUE : FALSE;
40:     cout << “Reversed: “ << str2 << “\n”;
41:     if (isLowerCase)
42:       cout << “Your input has no uppercase letters\n”;
43:     if (isUpperCase)
44:       cout << “Your input has no lowercase letters\n”;
45:     if (isSymmetrical)
46:       cout << “Your input has symmetrical characters\n”;
47:     return 0;
48: }

Here is a sample session with the program in Listing 9.3:

Enter a string : level
Input: level
Lowercase: level
Uppercase: LEVEL
Reversed: level
Your input has no uppercase letters
Your input has symmetrical characters

Output



272

Strings
M

T
W

R
F

S
S

DAYDAY

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

The program in Listing 9.3 declares the string variables str1 and str2 in the
function main. Each string stores STR_SIZE + 1 characters (including the null
terminator). The function also declares the flags isLowerCase, isUpperCase, and

isSymmetrical.

The output statement in line 22 prompts you to enter a string. The statement in line
23 uses the string input function getline to store your input in variable str1. The
output statement in line 24 echoes your input.

The statement in line 26 copies the characters in variable str1 to variable str2. The
statement in line 26 calls the function strlwr to convert the characters in variable
str2. The program manipulates the characters of variable str2, while maintaining the
original input in variable str1. The statement in line 29 calls the function strcmp to
compare the characters in str1 and str2. The two strings can be equal only if your
input has no uppercase characters. The statement uses the conditional operator to
assign the constant TRUE to the flag isLowerCase if the above condition is true.
Otherwise, the statement assigns FALSE to the flag isLowerCase. The output statement
in line 30 displays the characters in variable str2.

The statement in line 32 calls the function strupr and supplies it the argument str2.
This function call converts any lowercase character in variable str2 into uppercase.
The statement in line 33 calls the function strcmp to compare the characters in str1
and str2. The two strings can be equal only if your input has no lowercase characters.
The statement uses the conditional operator to assign the constant TRUE to the flag
isUpperCase if that is true. Otherwise, the statement assigns FALSE to the flag
isUpperCase. The output statement in line 34 displays the characters in variable str2.

To display the original input in reverse order, the program calls the function strcpy
to copy the characters of variable str1 to variable str2 once more. The statement in
line 38 calls the function strrev and passes it the argument str2. The statement in
line 39 calls the function strcmp to compare the characters in str1 and str2. The two
strings can be equal only if your input has symmetrical characters. The statement uses
the conditional operator to assign the constant TRUE to the flag isSymmetrical if the
characters in str1 and str2 match. Otherwise, the statement assigns FALSE to the flag
isSymmetrical. The output statement in line 40 displays the characters in variable
str2.

The program uses the if statements in lines 41, 43, and 45 to indicate that your input
has special characteristics. The if statement in line 41 comments on the fact that your
input has no uppercase letter when the value in variable isLowerCase is TRUE. The if
statement in line 43 comments on the fact that your input has no lowercase letter when

Analysis



273

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

the value in variable isUpperCase is TRUE. The if statement in line 45 comments on
the fact that your input has symmetrical characters when the value in variable
isSymmetrical is TRUE.

Locating Characters
The STRING.H library offers a number of functions for locating characters in strings.
These functions include strchr, strrchr, strspn, strcspn, and strpbrk. These
functions enable you to search for characters and simple character patterns in strings.

The function strchr locates the first occurrence of a character in a string.

S
yn

ta
x

The strchr Function
The prototype for the function strchr is

char* strchr(const char* target, int c)

The function locates the first occurrence of pattern c in the string target. The
function returns the pointer to the character in string target that matches the
specified pattern c. If character c does not occur in the string target, the function
yields a NULL.

Example:

char str[81] = “Borland C++ 4.0”;
char* strPtr;

strPtr = strchr(str, ‘+’);

The pointer strPtr points to the substring “++ 4.0” in string str.

The function strrchr locates the last occurrence of a character in a string.

S
yn

ta
x

The strrchr Function
The prototype for the function strrchr is

char* strrchr(const char* target, int c)

The function locates the last occurrence of pattern c in the string target. The function
returns the pointer to the character in string target that matches the specified pattern
c. If character c does not occur in the string target, the function yields a NULL.



274

Strings
M

T
W

R
F

S
S

DAYDAY

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

Example:

char str[81] = “Borland C++ 4.0 is here”;
char* strPtr;

strPtr = strrchr(str, ‘+’);

The pointer strPtr points to the substring “+ 4.0 is here” in string str.

The function strspn yields the number of characters in the leading part of a string that
matches any character in a pattern of characters.

S
yn

ta
x

The strspn Function
The prototype for the function strspn is

size_t strspn(const char* target, const char* pattern)

The function returns the number of characters in the leading part of the string target
that matches any character in the string pattern.

Example:

char str[] = “Borland C++ 4.0”;
char substr[] = “danrolB “;
int index;

index = strspn(str, substr);

This statement assigns 7 to the variable index because the characters in substr found
a match in each of the first seven characters of str.

The function strcspn scans a string and yields the number of leading characters in a
string that is totally void of the characters in a substring.

S
yn

ta
x

The strcspn Function
The prototype for the function strcspn is

size_t strcspn(const char* str1, const char* str2)

The function scans str1 and returns the length of the leftmost substring that is totally
void of the characters of the substring str2.

Example:

char strng[] = “The rain in Spain”;
int i;

i = strcspn(strng,” in”);



275

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

This example assigns 8 (the length of “The rain”) to the variable i.

The function strpbrk searches a string for the first occurrence of any character in a
pattern of characters.

S
yn

ta
x

The strpbrk Function
The prototype for the function strpbrk is

char* strpbrk(const char* target, const char* pattern)

The function searches the target string for the first occurrence of any character among
the characters of the string pattern. If the characters in the pattern do not occur in
the string target, the function yields a NULL.

Example:

char* str = “Hello there how are you”;
char* substr = “hr”;
char* ptr;

ptr = strpbrk(str, substr);
cout << ptr << “\n”;

This displays “here how are you”, because the ‘h’ is encountered in the string before
the ‘r’.

Locating Strings
The STRING.H library offers the function strstr to locate a substring in a string.

S
yn

ta
x

The strstr Function
The prototype for the function strstr is

char* strstr(const char* str, const char* substr);

The function scans the string str for the first occurrence of a string substr. The
function yields the pointer to the first character in string str that matches the
parameter substr. If the string substr does not occur in the string str, the function
yields a NULL.

Example:

char str[] = “Hello there! how are you”;
char substr[] = “how”;
char* ptr;



276

Strings
M

T
W

R
F

S
S

DAYDAY

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

ptr = strstr(str, substr);
cout << ptr << “\n”;

This displays “how are you” because the string search matched “how”. The pointer ptr
points to the rest of the original string, starting with “how”.

DO DON’T
DO use the function strrev before calling the function strstr if you want
to search for the last occurrence of a string.

DON’T forget to reverse both the main and the search strings when using
the strrev function to locate the last occurrence of the search string.

The string library also provides the function strtok, which enables you to break down
a string into substrings based on a specified set of delimiting characters.

☛ New Term: Substrings are sometimes called tokens.

S
yn

ta
x

The strtok Function
The prototype for the function strtok is

char* strtok(char* target, const char* delimiters);

The function searches the target string for tokens. A string supplies the set of delimiter
characters. The following example shows how this function works in returning the
tokens in a string. The function strtok modifies the string target by inserting ‘\0’
characters after each token. (Make sure that you store a copy of the original target
string in another string variable.)

Example:

#include <stdio.h>
#include <string.h>

main()
{



277

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

   char* str = “(Base_Cost+Profit) * Margin”;
   char* tkn = “+* ()”;
   char* ptr = str;

   printf(“%s\n”, str);
   // the first call looks normal
   ptr = strtok(str, tkn);
   printf(“\n\nThis is broken into: %s”,ptr);
   while (ptr) {
       printf(“ ,%s”,ptr);
       // must make first argument a NULL character
       ptr = strtok(NULL, tkn);
   }
   printf(“\n\n”);
}

This example displays the following when the program is run:

(Base_Cost+Profit) * Margin

This is broken into Base_Cost, Profit, Margin.

DO DON’T
DO remember to supply NULL as the first argument to the function strtok in
order to locate the next token.

DON’T forget to store a copy of the target string in the function strtok.

Let’s look at an example that searches for characters and strings. Listing 9.4 shows the
source code for the program STRING4.CPP. The program performs the following
tasks:

■■ Prompts you to enter the main string.

■■ Prompts you to enter the search string.

■■ Prompts you to enter the search character.

■■ Displays a character ruler and the main string.

■■ Displays the indices where the search string occurs in the main string.

■■ Displays the indices where the search character occurs in the main string.



278

Strings
M

T
W

R
F

S
S

DAYDAY

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

Type Listing 9.4. Source code for the program STRING4.CPP.

1:  /*
2:    C++ program that demonstrates searching for the
3:    characters and strings
4:  */
5:
6:  #include <iostream.h>
7:  #include <string.h>
8:
9:  const unsigned STR_SIZE = 40;
10:
11: main()
12: {
13:     char mainStr[STR_SIZE+1];
14:     char subStr[STR_SIZE+1];
15:     char findChar;
16:     char *p;
17:     int index;
18:     int count;
19:
20:     cout << “Enter a string : “;
21:     cin.getline(mainStr, STR_SIZE);
22:     cout << “Enter a search string : “;
23:     cin.getline(subStr, STR_SIZE);
24:     cout << “Enter a search character : “;
25:     cin >> findChar;
26:
27:     cout << “          1         2         3         4\n”;
28:     cout << “01234567890123456789012345678901234567890\n”;
29:     cout << mainStr << “\n”;
30:     cout << “Searching for string “ << subStr << “\n”;
31:     p = strstr(mainStr, subStr);
32:     count = 0;
33:     while (p) {
34:       count++;
35:       index = p - mainStr;
36:       cout << “Match at index “ << index << “\n”;
37:       p = strstr(++p, subStr);
38:     }
39:     if (count == 0)
40:       cout << “No match for substring in main string\n”;
41:
42:     cout << “Searching for character “ << findChar << “\n”;
43:     p = strchr(mainStr, findChar);
44:     count = 0;
45:     while (p) {
46:       count++;
47:       index = p - mainStr;



279

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

48:       cout << “Match at index “ << index << “\n”;
49:       p = strchr(++p, findChar);
50:     }
51:     if (count == 0)
52:       cout << “No match for search character in main string\n”;
53:     return 0;
54: }

Here is a sample session with the program in Listing 9.4:

Enter a string : here, there, and everywhere
Enter a search string : here
Enter a search character : e
          1         2         3         4
01234567890123456789012345678901234567890
here, there, and everywhere
Searching for string here
Match at index 0
Match at index 7
Match at index 23
Searching for character e
Match at index 1
Match at index 3
Match at index 8
Match at index 10
Match at index 17
Match at index 19
Match at index 24
Match at index 26

The program in Listing 9.4 declares the strings mainStr and subStr to represent
the main and search strings, respectively. The program also declares the variable
findChar to store the search character. In addition, the program declares the

character pointer p and the int-typed variables index and count.

The output statement in line 20 prompts you to enter a string. The statement in line
21 calls the stream input function getline and stores your input in variable mainStr.
The output statement in line 22 prompts you to enter the search string. The statement
in line 23 calls the stream input function getline and saves your input in variable
subStr. The output statement in line 24 prompts you to enter the search character.
The statement in line 25 obtains your input and stores it in the variable findChar.

The output statements in lines 27 through 29 display a ruler, along with your input
aligned under the ruler. The output statement in line 30 informs you that the program
is searching for the substring you entered. The search begins at the statement in line
31. This statement calls the function strstr to locate the first occurrence of string

Analysis

Output



280

Strings
M

T
W

R
F

S
S

DAYDAY

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

subStr in the string mainStr. The statement in line 32 assigns 0 to the variable count,
which keeps track of the number of times the string mainStr contains the string
subStr.

The program uses the while loop in lines 33 through 38 to locate all the occurrences
of subStr in mainStr. The condition of the while loop examines the address of pointer
p. If that pointer is not NULL, the loop iterates. The first statement inside the loop
increments the variable count. The statement in line 35 calculates the index of the
string mainStr where the last match occurs. The statement obtains the sought index
by subtracting the address of pointer p from the address of the first character in the
variable mainStr. (Remember that the expression &mainStr[0] is equivalent to the
simpler expression mainStr.) The statement assigns the result to the variable index.
The output statement in line 36 displays the value in variable index.

The statement in line 37 searches for the next occurrence of the string subStr in
mainStr. Notice that this statement calls strstr and supplies it the pointer p as the first
argument. The statement also applies the pre-increment operator to pointer p to store
the address of the next character. This action ensures that the call to function strstr
finds the next occurrence, if any, and is not stuck at the last occurrence. The if
statement outside the while loop examines the value in variable count. If it contains
zero, the program executes the output statement in line 40 to inform you that no
match was found for the search string.

The output statement in line 42 informs you that the program is now searching for
the character you specified in the main string. The process of searching for the
character in findChar is very similar to searching for the string subStr. The main
difference is that searching for a character involves the function strchr.

Summary
Today’s lesson presented C++ strings and discussed string manipulation functions
that are exported by the STRING.H header file. You learned about the following
topics:

■■ Strings in C++ are arrays of characters that end with the null character (the
ASCII 0 character).

■■ String input requires the use of the getline stream input function. This
function requires that you specify the input variable, the maximum number
of input characters, and the optional line delimiter.



281

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

■■ The STRING.H header file contains the standard string library for the C
language. This library contains many versatile functions that support
copying, concatenating, converting, reversing, and searching for strings.

■■ C++ supports two methods for assigning strings. The first method assigns a
string to another when you declare the latter string. The second method uses
the function strcpy to assign one string to another at any stage in the
program. The string library also offers the function strdup to copy a string
and allocate the needed space.

■■ The function strlen returns the length of a string.

■■ The strcat and strncat functions enable you to concatenate two strings.
The function strncat enables you to specify the number of characters to
concatenate.

■■ The functions strcmp, stricmp, strncmp, and strnicmp enable you to
perform various types of string comparisons. The function strcmp performs
a case-insensitive comparison of two strings, using every character possible.
The function stricmp is a version of the function strcmp that performs a
case-insensitive comparison. The function strncmp is a variant of function
strcmp that uses a specified number of characters in comparing the strings.
The function strnicmp is a version of function strncmp that also performs a
case-insensitive comparison.

■■ The functions strlwr and strupr convert the characters of a string into
lowercase and uppercase, respectively.

■■ The function strrev reverses the order of characters in a string.

■■ The functions strchr, strrchr, strspn, strcspn, and strpbrk enable you to
search for characters and simple character patterns in strings.

■■ The function strstr searches for a string in another string. The function
strtok enables you to break down a string into smaller strings that are
delimited by a set of characters that you specify.

Q&A
Q Can a statement initialize a pointer using a string literal?

A Yes. The compiler stores the characters of the string literal in memory and
assigns its address to that pointer. Here is an example:

char* p = “I am a small string”;



282

Strings
M

T
W

R
F

S
S

DAYDAY

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

Also, you can overwrite the characters of the string literal using their point-
ers. However, keep in mind that the pointer p accesses a string with a fixed
number of characters.

Q Can a statement declare a constant pointer to a literal string?

A Yes. This kind of declaration resembles the one we mentioned previously.
However, because the statement declares a constant pointer, you cannot
overwrite the characters of the initializing string literal (you will get a
compile-time error). Here is an example:

const char* p = “Version 1.0”;

Use the const char* pointer to store fixed messages and titles.

Q Can a statement declare an array of pointers to a set of string literals?

A Yes. This is the easiest method of using an array of pointers to access a
collection of messages, titles, or other kinds of fixed strings. Here is an
example:

char* mainMenu[] = { “File”, “Edit”, “Search”, “View”,

                   “Debug”, “Options”, “Windows”, “Help”};

Thus, the element mainMenu[0] accesses the first string, mainMenu[1] accesses
the second string, and so on.

Q How can I use strcmp to compare strings, starting at a specific number
of characters?

A Add the offset value to the arguments of the function strcmp. Here is an
example:

char s1[41] = “Borland C++ 4.0”;

char s2[41] = “BORLAND Pascal”;

int offset = 7;

int i;

i = strcmp(str1 + offset, str2 + offset);

Q How can I use strncmp to compare a specific number of characters in
two strings, starting at a specific character?

A Add the offset value to the arguments of the function strcmp. Here is an
example:



283

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

char s1[41] = “Borland C++ 4.0”;

char s2[41] = “BORLAND Pascal”;

int offset = 7;

int num = 3;

int i;

i = strncmp(str1 + offset, str2 + offset, num);

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing on to the
next day’s lesson. (Answers are provided in Appendix A, “Answers.”)

Quiz
1. Where is the error in the following program?

#include <iostream.h>

#include <string.h>

const int MAX = 10;

main()

{

  char s1[MAX+1];

  char s2[] = “123456789012345678901234567890”;

  strcpy(s1, s2);

  cout << “String 1 is “ << s1

       << “\nString 2 is “ << s2;

  return 0;

}

2. How can you fix the program in the last question using the function strncpy
instead of strcpy?

3. What is the value assigned to variable i in the following statements?

char s1[] = “Borland C++”;

char s2[] = “Borland Pascal”;

int i;

i = strcmp(s1, s2);



284

Strings
M

T
W

R
F

S
S

DAYDAY

9

A/ns6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH9   LP#4(sp 4/12 folio)

4. What is the value assigned to variable i in the following statements?

char s1[] = “Borland C++”;

char s2[] = “Borland Pascal”;

int offset = strlen(“Borland “);

int i;

i = strcmp(s1 + offset, s2 + offset);

5. True or false? The following function correctly returns 1 if a string does not
contain lowercase characters, and yields 0 if otherwise.

int hasNoLowerCase(const char* s)

{

  char s2[strlen(s)+1];

  strcpy(s2, s);

  strupr(s2);

  return (strcmp(s, s2) == 0) ? 1 : 0);

}

Exercises
1. Write your own version of the function strlen. Use a while loop and a

character-counting variable to obtain the function result.

2. Write another version of the function strlen. This time use a while loop
and a local pointer to obtain the function result.

3. Write the program STRING5.CPP, which uses the function strtok to break
down the string “2*(X+Y)/(X+Z) - (X+10)/(Y-5)” into three sets of tokens,
using the token delimiter strings “+-*/ ()”, “( )”, and “+-*/ “.



285

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

M
T

W
R

F
S

S

WEEK

1010
Advanced
Function

22



286

Advanced Function Parameters
M

T
W

R
F

S
S

DAYDAY

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

Parameters
Functions are the basic building blocks that conceptually extend the C++ language to
fit your custom applications. C, the parent language of C++, is more function-
oriented than C++. This difference is due to the fact that C++ supports classes,
inheritance, and other object-oriented programming features. (More about these in
tomorrow’s lesson.) Nevertheless, functions still play an important role in C++. In
today’s lesson, you will learn about the following advanced aspects of C++ functions:

■■ Passing arrays as function arguments

■■ Passing strings as function arguments

■■ Passing structures by value

■■ Passing structures by reference

■■ Passing structures by pointer

■■ Recursive functions

■■ Passing pointers to dynamic structures

■■ Pointers to functions

Passing Arrays as Arguments
When you write a C++ function that passes an array parameter, you can declare that
parameter as a pointer to the basic type of the array.

S
yn

ta
x

A Pointer-to-Array Parameter
The general syntax for prototyping a function with a pointer-to-array parameter is

returnType function(basicType*, <other parameter types>);

The general syntax for defining this function is

returnType function(basicType *arrParam, <other parameters>)

Example:

// prototypes
void ShellSort(unsigned *doubleArray, unsigned arraySize);



287

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

Type

continues

void QuickSort(unsigned *intArray, unsigned arraySize);

On Day 7, we stated that C++ enables you to declare open array parameters using a
pair of empty brackets. This kind of declaration is equivalent to using a pointer
parameter. C++ programmers use the open array form less frequently than the explicit
pointer form, even though using the brackets shows the intent of the parameter more
clearly.

DO DON’T
DO use const parameters to prevent the host function from altering the
arguments.

DON’T forget to include a parameter that specifies the number of array
elements to manipulate (when the array-typed arguments are only partially
filled with meaningful data).

Let’s look at an example. Listing 10.1 shows the source code for the program
ADVFUN1.CPP. We created this program by performing minor edits to the program
ARRAY5.CPP (found in Listing 7.5 of Day 7). The program performs the following
tasks:

■■ Prompts you to enter the number of data points

■■ Prompts you to enter the integer values for the array

■■ Displays the elements of the unordered array

■■ Displays the elements of the sorted array

Listing 10.1. Source code for the program
ADVFUN1.CPP.

1:  // C++ program that sorts arrays using the Comb sort method
2:
3:  #include <iostream.h>
4:
5:  const int MAX = 10;
6:  const int TRUE = 1;
7:  const int FALSE = 0;
8:
9:  int obtainNumData()
10: {



288

Advanced Function Parameters
M

T
W

R
F

S
S

DAYDAY

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

11:   int m;
12:   do { // obtain number of data points
13:     cout << “Enter number of data points [2 to “
14:         << MAX << “] : “;
15:     cin >> m;
16:     cout << “\n”;
17:   } while (m < 2 || m > MAX);
18:   return m;
19: }
20:
21: void inputArray(int *intArr, int n)
22: {
23:   // prompt user for data
24:   for (int i = 0; i < n; i++) {
25:     cout << “arr[“ << i << “] : “;
26:     cin >> *(intArr + i);
27:   }
28: }
29:
30: void showArray(const int *intArr, int n)
31: {
32:   for (int i = 0; i < n; i++) {
33:     cout.width(5);
34:     cout << *(intArr + i) << “ “;
35:   }
36:   cout << “\n”;
37: }
38:
39: void sortArray(int *intArr, int n)
40: {
41:   int offset, temp, inOrder;
42:
43:   offset = n;
44:   do {
45:     offset = (8 * offset) / 11;
46:     offset = (offset == 0) ? 1 : offset;
47:     inOrder = TRUE;
48:     for (int i = 0, j = offset; i < (n - offset); i++, j++) {
49:       if (intArr[i] > intArr[j]) {
50:         inOrder = FALSE;
51:         temp = intArr[i];
52:         intArr[i] = intArr[j];
53:         intArr[j] = temp;
54:       }
55:     }
56:   } while (!(offset = 1 && inOrder == TRUE));
57: }
58:
59: main()
60: {
61:   int arr[MAX];

Listing 10.1. continued



289

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

Type

62:   int n;
63:
64:   n = obtainNumData();
65:   inputArray(arr, n);
66:   cout << “Unordered array is:\n”;
67:   showArray(arr, n);
68:   sortArray(arr, n);
69:   cout << “\nSorted array is:\n”;
70:   showArray(arr, n);
71:   return 0;
72: }

Here is a sample session with the program in Listing 10.1:

Enter number of data points [2 to 10] : 5

arr[0] : 55
arr[1] : 22
arr[2] : 78
arr[3] : 35
arr[4] : 45
Unordered array is:
   55    22    78    35    45

Sorted array is:
   22    35    45    55    78

The program in Listing 10.1 is almost identical to that in Listing 7.5 of Day 7. The
new program uses slightly different parameters in the functions inputArray, showArray,
and sortArray. The first parameter in these functions is a pointer to the int type. The
function showArray prefixes the pointer type with const. Such a declaration tells the
compiler that the function showArray cannot alter the elements of the arguments for
the parameter intArray.

Using Strings as Arguments
Because C++ treats strings as arrays of characters, the rules for passing arrays as
arguments to functions also apply to strings. The following program contains
functions that manipulate strings. Listing 10.2 shows the source code for the program
ADVFUN2.CPP. The program prompts you to enter a string, then displays the
number of characters you typed (the size of the input string) and the uppercase
version of your input.

Output

Analysis

continues



290

Advanced Function Parameters
M

T
W

R
F

S
S

DAYDAY

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

Listing 10.2. Source code for the program
ADVFUN2.CPP.

1:  /*
2:    C++ program that declares functions with string parameters
3:  */
4:
5:  #include <iostream.h>
6:
7:  const unsigned MAX = 40;
8:
9:  char* upperCase(char* str)
10: {
11:    int ascii_shift = ‘A’ - ‘a’;
12:    char* p = str;
13:
14:    // loop to convert each character to uppercase
15:    while ( *p != ‘\0’) {
16:        if ((*p  >= ‘a’ && *p <= ‘z’))
17:           *p += ascii_shift;
18:        p++;
19:    }
20:    return str;
21: }
22:
23: int strlen(char* str)
24: {
25:   char *p = str;
26:   while (*p++ != ‘\0’);
27:   return --p - str;
28: }
29:
30: main()
31: {
32:     char aString[MAX+1];

33:
34:     cout << “Enter a string: “;
35:     cin.getline(aString, MAX);
36:     cout << “Your string has “ << strlen(aString)
37:          << “ characters\n”;
38:     // concatenate bigStr to aString
39:     upperCase(aString);
40:     cout << “The uppercase version of your input is: “

41:          << aString;
42:     return 0;
43: }

Here is a sample session with the program in Listing 10.2:

Enter a string: Borland C++

Listing 10.2. continued

Output

Analysis



291

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

Your string has 11 characters
The uppercase version of your input is: BORLAND C++

The program in Listing 10.2 declares its own string-manipulating functions: upperCase
and strlen. The function upperCase has a single parameter, str, which is a pointer
to the char type. This parameter passes the address of an array of characters. The
function converts the characters accessed by the pointer string to uppercase and
returns the pointer to the string. The function declares the local variable ascii_shift
and the local char-pointer p. The function also initializes the variable ascii_shift
with the difference between the ASCII values of the letters A and a. Thus, the ascii-
shift variable contains the difference in ASCII codes needed to convert a lowercase
character into an uppercase character. The function also initializes the local pointer
p with the address in parameter str.

The upperCase function uses the while loop in line 15 to traverse the characters of the
string argument. The while clause determines whether the pointer p does not access
the null terminator. The if statement in line 16 determines if the character accessed
by pointer p is a lowercase letter. If this condition is true, the function executes the
statement in line 17. This statement adds the value in variable ascii_shift to the
character currently accessed by pointer p. This action converts a lowercase character
into uppercase. The statement in line 18 increments the address of pointer p to access
the next character. The function returns the address of pointer str.

The function strlen returns the number of characters in the string accessed by the
char-pointer parameter str. The function declares the local char-pointer p and
initializes it with the address of parameter str. The function uses a while loop with
an empty loop statement to locate the null terminator in the string accessed by pointer
p. The return statement yields the sought value by taking the difference between the
addresses of pointers p and str. The return statement first applies the pre-decrement
operator to pointer p to adjust the address of that pointer.

The function main declares the string variable aString. The output statement in line
34 prompts you to enter a string. The statement in line 35 calls the stream input
function getline to obtain your input and to store it in variable aString. The output
statement in line 36 displays the number of characters you typed. The statement calls
the function strlen and passes it the argument aString. The statement in line 39 calls
the function upperCase and also passes it the argument aString. The output
statement in line 40 displays the uppercase version of your input, which is now stored
in variable aString.

Using Structures as Arguments



292

Advanced Function Parameters
M

T
W

R
F

S
S

DAYDAY

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

TypeC++ enables you to pass structures either by value or by reference. In this section, we
demonstrate passing structures by value. In the next sections, we show you how to pass
structures by reference. The structure’s type appears in the function prototype and
heading in a manner similar to that of predefined types.

Listing 10.3 shows the source code for the program ADVFUN3.CPP. The program
performs the following tasks:

■■ Prompts you for the x and y coordinates of a first point

■■ Prompts you for the x and y coordinates of a second point

■■ Calculates the coordinates of the median point between the two points that
you entered

■■ Displays the coordinates of the median point

Listing 10.3. Source code for the program
ADVFUN3.CPP.

1:  // C++ program that uses a function that passes
2:  // a structure by value
3:
4:  #include <iostream.h>
5:
6:  struct point {
7:    double x;
8:    double y;
9:  };
10:
11: // declare the prototype of function getMedian
12: point getMedian(point, point);
13:
14: main()
15: {
16:   point pt1;
17:   point pt2;
18:   point median;
19:
20:   cout << “Enter the X and Y coordinates for point # 1 : “;
21:   cin >> pt1.x >> pt1.y;
22:   cout << “Enter the X and Y coordinates for point # 2 : “;

23:   cin >> pt2.x >> pt2.y;
24:   // get the coordinates for the median point
25:   median = getMedian(pt1, pt2);
26:   // get the median point
27:   cout << “Mid point is (“ << median.x
28:        << “, “ << median.y << “)\n”;
29:   return 0;
30: }

31:

Output

Analysis



293

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

32: point getMedian(point p1, point p2)
33: {
34:   point result;
35:   result.x = (p1.x + p2.x) / 2;
36:   result.y = (p1.y + p2.y) / 2;
37:   return result;
38: };

Here is a sample session with the program in Listing 10.3:

Enter the X and Y coordinates for point # 1 : 1 1
Enter the X and Y coordinates for point # 2 : 5 5
Mid point is (3, 3)

The program in Listing 10.3 declares the structure point, which models a two-
dimensional point. This structure has two double-typed members, x and y. Line 12
declares the prototype for the function getMedian. The function takes two point-
typed parameters that are passed by value.

The function main declares the point-typed variables pt1, pt2, and median in lines 16
through 18, respectively. The output statement in line 20 prompts you to enter the
x and y coordinates for the first point. The statement in line 21 obtains your input
and stores the coordinates in the members pt1.x and pt1.y. Lines 22 and 23 repeat
the same prompting and input process for the second point. The input statement in
line 23 stores the values for the second point in members pt2.x and pt2.y. The
statement in line 25 calls function getMedian and passes it the arguments pt1 and pt2.
The function receives a copy of the arguments pt1 and pt2. The statement assigns the
point-typed function result to the variable median. The output statement in lines 27
and 28 displays the x and y coordinates of the median point (by displaying the x and
y members of the variable median).

The function getMedian declares two point-typed parameters, p1 and p2. In addition,
the function declares the local point-typed variable result. The statement in line 35
assigns the average of members p1.x and p2.x to member result.x. The statement
in line 36 assigns the average of members p1.y and p2.y to member result.y. Notice
that these statements use the dot operator to access members x and y of the structures
p1, p2, and result. This syntax is used when the function passes a copy or a reference
of a structure. The return statement yields the value in the local structure result.

Passing Arguments by Reference
C++ enables you to write functions with parameters that pass arguments by reference.
This kind of parameter enables you to change the value of the argument beyond the
scope of the function. C++ offers two ways to implement such parameters: with
pointers and with formal reference parameters. The following sections present



294

Advanced Function Parameters
M

T
W

R
F

S
S

DAYDAY

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

Type

functions that pass various kinds of data types by reference.

Passing Structures by Reference
You can pass structures to functions either by using pointers or by using formal
reference. Many C++ programmers consider either approach more efficient than
passing the structure parameters by copy—you save on the overhead of copying the
structure-typed arguments.

Note: Passing a structure by reference enables you to use the dot operator
with the reference parameters (as with passing by value). The added
advantage is that the reference parameters do not create copies of the

original arguments. Thus, they are faster and save memory resources. The
down side is that because reference parameters become aliases to their
arguments, any changes made to the parameters inside the function affect
their arguments. One method to prevent this change is to use const
reference parameters. Such parameters tell the compiler that the function
cannot assign new values to the reference parameters.

DO DON’T
DO pass structures either by formal reference or by pointers when both of
the following two circumstances apply: The host function does not alter the
arguments, and the function returns values through these structures.

DON’T pass structures by value unless you need to supply the host function
with a copy of the data that will be modified by the function.

Let’s look at an example. Listing 10.4 shows the source code for the program
ADVFUN4.CPP. The program performs the same tasks as the last program,
ADVFUN3.CPP. The new version differs only in its implementation.



295

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

Listing 10.4. Source code for the program
ADVFUN4.CPP.

1:  // C++ program which uses a function that passes
2:  // a structure by reference
3:
4:  #include <iostream.h>
5:
6:  struct point {
7:    double x;
8:    double y;
9:  };
10:
11: // declare the prototype of function getMedian
12: point getMedian(const point&, const point&);
13:
14: main()
15: {
16:   point pt1;
17:   point pt2;
18:   point median;
19:
20:   cout << “Enter the X and Y coordinates for point # 1 : “;
21:   cin >> pt1.x >> pt1.y;
22:   cout << “Enter the X and Y coordinates for point # 2 : “;

23:   cin >> pt2.x >> pt2.y;
24:   // get the coordinates for the median point
25:   median = getMedian(pt1, pt2);
26:   // get the median point
27:   cout << “Mid point is (“ << median.x
28:        << “, “ << median.y << “)\n”;
29:   return 0;
30: }

31:
32: point getMedian(const point& p1, const point& p2)
33: {
34:   point result;
35:   result.x = (p1.x + p2.x) / 2;
36:   result.y = (p1.y + p2.y) / 2;
37:   return result;
38: };

Here is a sample session with the program in Listing 10.4:

Enter the X and Y coordinates for point # 1 : 1 1
Enter the X and Y coordinates for point # 2 : 9 9
Mid point is (5, 5)

The program in Listing 10.4 is very similar to that in Listing 10.3. The new program
version uses reference parameters in the function getMedian. Thus, the prototype and

Output

Analysis



296

Advanced Function Parameters
M

T
W

R
F

S
S

DAYDAY

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

Typethe function’s declaration place the & character after the structure type point. Using
reference parameters, the call to function getMedian looks very much like the call to
the version in Listing 10.3. Likewise, the implementation of function getMedian is
similar to the one in Listing 10.3. Both versions use the dot operator to access the
members x and y in the structure point.

Passing Structures by Pointers
Using pointers is another efficient way to pass structures. As with the reference
parameter types, you can use the const declaration to prevent the implementation
from changing the structured variables accessed by the pointer parameters.

The next example is, as you might expect, the version of program ADVFUN3.CPP
that uses pointer parameters. Listing 10.5 shows the source code for the new version,
program ADVFUN5.CPP.

Listing 10.5. Source code for the program
ADVFUN5.CPP.

1:  // C++ program that uses a function that passes
2:  // a structure by pointer
3:
4:  #include <iostream.h>
5:
6:  struct point {
7:    double x;
8:    double y;
9:  };
10:
11: // declare the prototype of function getMedian
12: point getMedian(const point*, const point*);
13:
14: main()
15: {
16:   point pt1;
17:   point pt2;
18:   point median;
19:
20:   cout << “Enter the X and Y coordinates for point # 1 : “;
21:   cin >> pt1.x >> pt1.y;

22:   cout << “Enter the X and Y coordinates for point # 2 : “;
23:   cin >> pt2.x >> pt2.y;
24:   // get the coordinates for the median point

25:   median = getMedian(&pt1, &pt2);

Output



297

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

26:   // get the median point
27:   cout << “Mid point is (“ << median.x
28:        << “, “ << median.y << “)\n”;
29:   return 0;

30: }
31:
32: point getMedian(const point* p1, const point* p2)
33: {
34:   point result;
35:   result.x = (p1->x + p2->x) / 2;
36:   result.y = (p1->y + p2->y) / 2;
37:   return result;
38: };

Here is a sample session with the program in Listing 10.5:

Enter the X and Y coordinates for point # 1 : 2 2
Enter the X and Y coordinates for point # 2 : 8 8
Mid point is (5, 5)

The program in Listing 10.5 uses pointer parameters in the function getMedian. The
prototype and the implementation of the function uses the const point* type for both
parameters. The statement in line 25, which calls the function getMedian, passes the
address of the variable pt1 and pt2, using the address-of operator &. The implemen-
tation of the function getMedian uses the -> operator to access the members x and y
for the pointer parameters p1 and p2.

Recursive Functions
There are many problems that can be solved by breaking them down into simpler and
similar problems. Such problems are solved using recursion.

☛ New Term: Recursive functions are functions that obtain a result and/or
perform a task by calling themselves. These recursive calls must be limited
in order to avoid exhausting the memory resources of the computer.
Consequently, every recursive function must examine a condition that
determines the end of the recursion.

Analysis



298

Advanced Function Parameters
M

T
W

R
F

S
S

DAYDAY

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

Type

☛ New Term: A common example of a recursive function is the factorial
function. A factorial of a number N is the product of all the integers from
1 to N, with the exclamation point (!) as the mathematical symbol for the
factorial function.

The mathematical equation for a factorial is

N! = 1 * 2 * 3 * ... * (N-2) * (N-1) * N

The recursive version of this equation is

N! = N * (N-1)!

(N-1)! = (N-1) * (N-2)!

(N-2)! = (N-2) * (N-3)!

...

2! = 2 * 1!

1! = 1

Recursion entails looping to obtain a result. Most recursive solutions have
alternate nonrecursive solutions. In some cases, the recursive solutions are
more elegant than the nonrecursive ones. The factorial function is an
example of a mathematical function that can be implemented using either
recursion or a nonrecursive straightforward loop.

DO DON’T
DO include a decision-making statement in a recursive function to end the
recursion.

DON’T use recursion unless its advantages significantly outweigh the
alternate nonrecursive solution.

Let us present an example that implements the recursive factorial function. Listing
10.6 shows the source code for the program ADVFUN6.CPP. The program prompts
you to enter two positive integers; the first one must be greater than or equal to the
second one. The program displays the number of combinations and permutations
obtained from the two integers. The number of combinations is given by the following



299

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

equation:

m
C
n
 = m! / ((m - n)! * n!)

The number of permutations is given by the following equation:

mPn = m! / (m - n)!

Listing 10.6. Source code for the program
ADVFUN6.CPP.

1:  // C++ program that uses a recursive function
2:
3:  #include <iostream.h>
4:
5:  const int MIN = 4;
6:  const int MAX = 30;
7:
8:  double factorial(int i)
9:  {
10:   if (i > 1)
11:     return double(i) * factorial(i - 1);
12:   else
13:     return 1;
14: }
15:
16: double permutation(int m, int n)
17: {
18:   return factorial(m) / factorial(m - n);
19: }
20:
21: double combination(int m, int n)
22: {
23:   return permutation(m, n) / factorial(n);
24: }
25:
26: main()
27: {
28:   int m, n;
29:
30:   do {

31:     cout << “Enter an integer between “
32:          << MIN << “ and “ << MAX << “ : “;
33:     cin >> m;
34:   } while (m < MIN || m > MAX);

35:
36:   do {
37:     cout << “Enter an integer between “
38:          << MIN << “ and “ << m << “: “;
39:     cin >> n;

40:   } while (n < MIN || n > m);

Output

Analysis



300

Advanced Function Parameters
M

T
W

R
F

S
S

DAYDAY

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

41:
42:   cout << “Permutations(“ << m << “, “ << n
43:        << “) = “ << permutation(m, n) << “\n”;
44:   cout << “Combinations(“ << m << “, “ << n
45:        << “) = “ << combination(m, n) << “\n”;
46:
47:   return 0;
48: }

Here is a sample session with the program in Listing 10.6:

Enter an integer between 4 and 30 : 10
Enter an integer between 4 and 10 : 5
Permutations(10, 5) = 30240
Combinations(10, 5) = 252

The program in Listing 10.6 declares the recursive function factorial and the
functions permutation, combination, and main. The program also declares the global
constants MIN and MAX, which specify the limits of the first integer you enter.

The function factorial has a single parameter, the int-typed parameter i. The
function returns a double-typed value. The if statement in line 10 compares the value
of parameter i with 1. This comparison determines whether to make a recursive call,
in line 11, or to return the value 1, in line 13. The recursive call in line 11 invokes the
function factorial with the argument i - 1. Thus, the recursive call supplies the
function with a smaller (or simpler, if you prefer) argument.

The function permutation takes two int-typed parameters, m and n. The function
calls the recursive function factorial twice—once with the argument m and once with
the argument m - n. The function permutation returns the ratio of the two calls to the
function factorial.

The function combination also takes two int-typed parameters, m and n. The function
calls the function permutation and passes it the arguments m and n. The function also
calls the function factorial and passes it the argument n. The function combination
returns the ratio of the values returned by the functions permutation and factorial.

The function main declares the int-typed variable m and n. The function uses two do-
while loops to prompt you for integer values. The output statement in the first loop
prompts you to enter an integer between MIN and MAX. The statement in line 33 stores
your input in variable m. The while clause of the do-while loop validates your input.
The clause determines if your input is less than MIN or greater than MAX. If this
condition is true, the loop iterates again.

The output statement in the second do-while loop prompts you to enter an integer



301

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

Type

between m and MAX. The statement in line 39 saves your input in variable n. The while
clause validates your input. The clause determines if your input is less than MIN or
greater than m. If this condition is true, the loop iterates again.

The output statement in lines 42 and 43 displays the permutations of the values in
variables m and n. The statement calls the function permutation and passes it the
argument m and n. The output statement in lines 44 and 45 displays the combinations
of the values in variables m and n. The statement calls function combination and passes
it the argument m and n.

Passing Pointers to
Dynamic Structures

Implementing a binary tree requires functions that—at the very least—insert, search,
delete, and traverse the tree. All these functions access the binary tree through the
pointer of its root. Interestingly, operations such as tree insertion and deletion may
affect the root itself. In such cases, the address of the root node changes. Consequently,
you need to pass a reference to the pointer of the root node. Using a reference to a
pointer guarantees that you maintain an updated address of the tree root.

☛ New Term: The binary tree is among the popular dynamic data struc-
tures. Such structures enable you to build ordered collections of data
without prior knowledge of the number of data items. The basic building
block for a binary tree is a node. Every node in a binary tree is the root of
all subtrees below it. Terminal nodes are the roots of empty subtrees. The
binary tree has a special node that is the root of all other nodes. Each
node has a field (used as a sorting key), optional additional data (called
non-key data), and two pointers to establish a link with other tree nodes.
Dynamic memory allocation enables you to create space for each node
and to set up the links between the various nodes dynamically. To learn
more about binary tree structure, consult a textbook on data structure.

DO DON’T
DO declare the parameters handling critical pointers to a data structure

continues



302

Advanced Function Parameters
M

T
W

R
F

S
S

DAYDAY

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

using the reference to these pointers. This declaration ensures that the
addresses of these parameters are updated outside the scope of the function.

DON’T assume that when a function alters the address of a nonreference
pointer parameter, the change also affects the address of the argument.

Let’s look at an example that inserts and displays dynamic data in a binary tree. Listing
10.7 shows the source code for the program ADVFUN7.CPP. The program supplies
its own set of data (a list of names), inserts the data in a binary tree, and then displays
the data in ascending order.

Listing 10.7. Source code for the program
ADVFUN7.CPP.

 1: // C++ program that passes parameter to dynamic data
 2:
 3: #include <iostream.h>
 4: #include <string.h>
5:
6:  const unsigned MAX = 30;
7:
8:  typedef struct node* nodeptr;
9:
10: struct node {
11:    char value[MAX+1];
12:    nodeptr left;
13:    nodeptr right;
14: };
15:
16: void insert(nodeptr& root, const char* item)
17: // Recursively insert element in binary tree
18: {
19:   if (!root)  {
20:     root = new node;
21:     strncpy(root->value, item, MAX);
22:     root->left = NULL;
23:     root->right = NULL;
24:   }
25:   else {
26:     if (strcmp(item, root->value) < 0)
27:       insert(root->left, item);
28:     else
29:       insert(root->right, item);
30:   }
31: }

Listing 10.7. continued



303

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

32:
33: void showTree(nodeptr& root)
34: {
35:   if (!root)
36:     return;
37:
38:   showTree(root->left);
39:   cout << root->value << “\n”;
40:   showTree(root->right);

41: }
42:
43: main()
44: {
45:   char *names[] = { “Virginia”, “California”, “Maine”, “Michi-
gan”,
46:                     “New York”, “Florida”, “Ohio”, “Illinois”,
47:                     “Alaska”, “Arizona”, “Oregon”, “Vermont”,
48:                     “Maryland”, “Delaware”, “NULL” };
49:   nodeptr treeRoot = NULL;
50:   int i = 0;
51:
52:   // insert the names in the binary tree
53:   while (strcmp(names[i], “NULL”) != 0)
54:     insert(treeRoot, names[i++]);
55:
56:   showTree(treeRoot);
57:   return 0;
58: }

Here is a sample session with the program in Listing 10.7:

Alaska
Arizona
California
Delaware
Florida
Illinois
Maine
Maryland
Michigan
New York
Ohio
Oregon
Vermont
Virginia

The program in Listing 10.7 declares the global constant MAX to specify the maximum
number of characters stored by each node in the binary tree. The declaration in line
8 defines the pointer-type nodeptr based on the structure node. The program defines

Output

Analysis



304

Advanced Function Parameters
M

T
W

R
F

S
S

DAYDAY

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

the structure node in lines 10 through 14. The structure contains the member value
(which stores a string), the pointer to the left node, left, and the pointer to the right
node, right. Both pointers have the nodeptr type.

The program declares the recursive function insert in order to insert a string in the
binary tree. The function has two parameters: root and item. The parameter root is
a reference to a nodeptr-typed pointer. This parameter keeps track of the various nodes
of the binary tree and updates their addresses as needed. This update occurs when the
binary tree inserts a data item.

The if statement in line 19 determines whether or not the parameter root is NULL. If
this condition is true, the function executes the statement in lines 20 through 23.
The statement in line 20 allocates a new node by employing the operator new. In
line 21, the statement uses the function strncpy to copy up to MAX characters from the
parameter item to the member value. The statements in lines 22 and 23 assign NULLs
to the left and right node pointers of the newly created node. The statements in line
20 to 24 not only affect the actual root of the tree, but also alter the pointers to the
various nodes. The condition in the if statement helps to end the recursive calls.

The else clause in line 25 handles the case when the parameter root is not NULL. The
if statement in line 26 determines if the string accessed by pointer item is less than
the string in the value member of the currently accessed tree node. If this condition
is true, the function makes a recursive call passing the argument root->left and item.
This call inserts the new string in the left subtree, whose root is the current node.
Otherwise, the function makes a recursive call passing the argument root->right and
item. This call inserts the new string in the right subtree, whose root is the current
node.

The recursive function showTree traverses, in order, the nodes of the tree and subtree
whose root is the reference parameter root. The function quickly exits if the current
value of the parameter root is NULL. This condition indicates that the argument for
parameter root is a terminal node. Therefore, this condition ends the recursive call.
If the argument for parameter root is not NULL, the function makes a recursive call
passing the argument root->left. This call allows the function to visit the left subtree
whose root is the current node. Once the left subtree of the current node is visited, the
function displays the string stored in the member value of the current node. Then the
function makes another recursive call, this time passing the argument root->right.
This call allows the function to visit the right subtree whose root is the current node.
Once the right subtree of the current node is visited, the function exits.

The function main declares an array of pointers to the internal data, shown in lines 45
through 48. The function also declares the variable treeRoot as the root of the binary



305

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

tree. The declaration of this variable also initializes the variable to NULL. The function
also declares the int-typed variable i and initializes it with 0.

The function main uses the while loop in line 53 to insert the strings in the list of state
names. The loop iterates until the current name matches the string “NULL”. This string
is a special name that we use to track the end of the list. If you modify the program
and add more state names, be sure to make the string “NULL” the last item in the list.
The statement in line 54 calls the function insert to insert the element names[i] in
the binary tree whose root is the pointer treeRoot.

The statement in line 56 calls the function showTree and supplies it the argument
treeRoot. The call to this recursive function displays the names of the states in
ascending order.

Pointers to Functions
The program compilation process translates the names of variables into memory
addresses where data are stored and retrieved. Pointers to addresses can also access
these addresses. This translation step holds true for variables and functions alike. The
compiler translates the name of a function into the address of executable code. C++
extends the strategy of manipulating variables by using pointers to include functions.

S
yn

ta
x

A Pointer to a Function
The general syntax for declaring a pointer to a function is

returnType (*functionPointer)(<list of parameters>);

This form tells the compiler that the functionPointer is a pointer to a function that
has the returnType return type and a list of parameters.

Examples:

double (*fx)(int n);
void (*sort)(int* intArray, unsigned n);
unsigned (*search)(int searchKey, int* intArray, unsigned n);

The first identifier, fx, points to a function that returns a double and has a single int-
typed parameter. The second identifier, sort, is a pointer to a function that returns
a void type and takes two parameters: a pointer to int and an unsigned. The third
identifier, search, is a pointer to a function that returns an unsigned and has three



306

Advanced Function Parameters
M

T
W

R
F

S
S

DAYDAY

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

parameters: an int, a pointer to an int, and an unsigned.
S
yn

ta
x

An Array of Function Pointers
C++ enables you to declare an array of function pointers. The general syntax is

returnType (*functionPointer[arraySize])(<list of parameters>);

Examples:

double (*fx[3])(int n);
void (*sort[MAX_SORT])(int* intArray, unsigned n);
unsigned (*search[MAX_SEARCH])(int searchKey,
                              int* intArray, unsigned n);

The first identifier, fx, points to an array of functions. Each member returns a double
and has a single int-typed parameter. The second identifier, sort, is a pointer to an
array of functions. Each member returns a void type and takes two parameters: a
pointer to int and an unsigned. The third identifier, search, is a pointer to an array
of functions. Each member returns an unsigned and has three parameters: an int, a
pointer to an int, and an unsigned.

As with any pointer, you need to initialize a function pointer before using it. This step
is very simple. You merely assign the bare name of a function to the function pointer.

S
yn

ta
x

Initializing a Function Pointer
The general syntax for initializing a pointer to a function is

functionPointer = aFunction;

The assigned function must have the same return type and parameter list as the
function pointer. Otherwise, the compiler flags an error.

Example:

void (*sort)(int* intArray, unsigned n);
sort = qsort;

S
yn

ta
x

Assigning a Function to an Element
The general syntax for assigning a function to an element in an array of function
pointers is



307

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

functionPointer[index] = aFunction;

Once you assign a function name to a function pointer, you can use the pointer to
invoke its associated function. (Now it should be evident why the function pointer
must have the same return type and parameter list as the accessed function.)

Example:

void (*sort[2])(int* intArray, unsigned n);
sort[0] = shellSort;
sort[1] = CombSort;

S
yn

ta
x

The Function Pointer Expression
The general syntax for the expression that invokes function pointers is

(*functionPointer)(<argument list>);
(*functionPointer[index])(<argument list>);

Examples:

(*sort)(&intArray, n);
(*sort[0])(&intArray, n);

Let’s look at an example. Listing 10.8 shows the source code for the program
ADVFUN8.CPP. The program performs linearized regression on two observed
variables: the independent variable X, and the dependent variable Y. The model that
relates these two variables is

f(Y) = intercept + slope * g(X)

The function f(Y) transforms the data for the Y variable. The function g(X)
transforms the data for the X variable. The functions f(Y) and g(X) can be linear,
logarithmic, exponential, square root, square, or any other mathematical function.
When both f(Y) = Y and g(X) = X, the model becomes this linear regression model:

Y = intercept + slope * X

The linearized regression (back to the general model) calculates the best values for the
slope and intercept for the values of f(Y) and g(X). The regression also provides the
correlation coefficient statistic, which represents the percent (as a fractional number)
of the f(Y) data that is explained by the variation in g(X). A value of 1 represents a
perfect fit, and 0 represents a total lack of any correlation between f(Y) and g(X) data.

Listing 10.8 performs linear regression and carries out the following tasks:

■■ Prompts you to enter the number of data. (Your input must be in the limit



308

Advanced Function Parameters
M

T
W

R
F

S
S

DAYDAY

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

Type indicated by the program.)

■■ Prompts you to enter the observed values of X and Y.

■■ Prompts you to select the function that transforms the observations for
variable X. (The program displays a small itemized menu that shows your
options, indicating the linear, logarithmic, square, square root, and recipro-
cal functions.)

■■ Prompts you to select the function that transforms the observations for
variable Y. (The program displays a small itemized menu that shows your
options, indicating the linear, logarithmic, square, square root, and recipro-
cal functions.)

■■ Performs the regression calculations.

■■ Displays the intercept, slope, and correlation coefficient for the linearized
regression.

■■ Prompts you to select another set of transformation functions. (If you choose
to use another set of functions, the program resumes at step 3.)

Listing 10.8. Source code for the program
ADVFUN8.CPP.

 1:  /*
 2:     C++ program that uses pointers to functions to implement
 3:     a linear regression program that supports temporary
 4:     mathematical transformations.
 5:  */
 6:
 7:  #include <iostream.h>
 8:  #include <math.h>
 9:
 10: const unsigned MAX_SIZE = 100;
 11:
 12: typedef double vector[MAX_SIZE];
 13:
 14: struct regression {
 15:    double Rsqr;
 16:    double slope;
 17:    double intercept;
 18: };
 19:
 20: // declare function pointer
 21: double (*fx)(double);
 22: double (*fy)(double);
 23:
 24: // declare function prototypes



309

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

 25: void initArray(double*, double*, unsigned);
 26: double linear(double);
 27: double sqr(double);
 28: double reciprocal(double);
 29: void calcRegression(double*, double*, unsigned, regression&,
 30:                     double (*fx)(double), double (*fy)(double));
 31: int select_transf(const char*);
 32:
 33: main()
 34: {
 35:     char ans;
 36:     unsigned count;
 37:     vector x, y;
 38:     regression stat;
 39:     int trnsfx, trnsfy;
 40:
 41:     do {
 42:         cout << “Enter array size [2..”
 43:              << MAX_SIZE << “] : “;
 44:         cin >> count;
 45:     } while (count <= 1 || count > MAX_SIZE);
 46:
 47:     // initialize array
 48:     initArray(x, y, count);
 49:     // transform data
 50:     do {
 51:       // set the transformation functions
 52:       trnsfx = select_transf(“X”);
 53:       trnsfy = select_transf(“Y”);
 54:       // set function pointer fx
 55:       switch (trnsfx) {
 56:        case 0 :
 57:           fx = linear;
 58:           break;
 59:        case 1 :
 60:           fx = log;
 61:           break;
 62:        case 2 :
 63:           fx = sqrt;
 64:           break;
 65:        case 3 :
 66:           fx = sqr;
 67:           break;
 68:        case 4 :
 69:           fx = reciprocal;
 70:           break;
 71:        default :
 72:           fx = linear;
 73:           break;
 74:       }

continues



310

Advanced Function Parameters
M

T
W

R
F

S
S

DAYDAY

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

 75:       // set function pointer fy
 76:       switch (trnsfy) {
 77:        case 0 :
 78:           fy = linear;
 79:           break;
 80:        case 1 :
 81:           fy = log;
 82:           break;
 83:        case 2 :
 84:           fy = sqrt;
 85:           break;
 86:        case 3 :
 87:           fy = sqr;
 88:           break;
 89:        case 4 :
 90:           fy = reciprocal;
 91:           break;
 92:        default :
 93:           fy = linear;
 94:           break;
 95:      }
 96:
 97:      /*  call function with functional arguments
 98:                                        |    |
 99:                                        V    V */
100:      calcRegression(x, y, count, stat, fx, fy);
101:
102:      cout << “\n\n”
103:           << “R-square = “ << stat.Rsqr << “\n”
104:           << “Slope = “ << stat.slope << “\n”
105:           << “Intercept = “ << stat.intercept << “\n\n\n”;
106:      cout << “Want to use other transformations? (Y/N) “;
107:      cin >> ans;
108:     } while (ans == ‘Y’ || ans == ‘y’);
109:   return 0;
110: }
111:
112: void initArray(double* x, double* y, unsigned count)
113: // read data for array from the keyboard
114: {
115:     for (unsigned i = 0; i < count; i++, x++, y++) {
116:        cout << “X[“ << i << “] : “;
117:        cin >> *x;
118:        cout << “Y[“ << i << “] : “;
119:        cin >> *y;
120:    }
121: }
122:
123: int select_transf(const char* var_name)
124: // select choice of transformation

Listing 10.8. continued



311

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

125: {
126:
127:    int choice = -1;
128:    cout << “\n”;
129:    cout << “select transformation for variable “ << var_name
130:         << “\n”
131:         << “0) No transformation\n”
132:         << “1) Logarithmic transformation\n”
133:         << “2) Square root transformation\n”
134:         << “3) Square  transformation\n”
135:         << “4) Reciprocal transformation\n”;
136:    while (choice < 0 || choice > 4) {
137:       cout << “\nSelect choice by number : “;
138:       cin >> choice;
139:    }
140:    return choice;
141: }
142:
143: double linear(double x)
144: { return x; }
145:
146: double sqr(double x)
147: { return x * x; }
148:
149: double reciprocal(double x)
150: { return 1.0 / x; }
151:
152: void calcRegression(double* x,
153:                     double* y,
154:                     unsigned count,
155:                     regression &stat,
156:                     double (*fx)(double),
157:                     double (*fy)(double))
158:
159: {
160:      double meanx, meany, sdevx, sdevy;
161:      double sum = (double) count, sumx = 0, sumy = 0;
162:      double sumxx = 0, sumyy = 0, sumxy = 0;
163:      double xdata, ydata;

164:
165:      for (unsigned i = 0; i < count; i++) {
166:          xdata = (*fx)(*(x+i));
167:          ydata = (*fy)(*(y+i));
168:          sumx += xdata;
169:          sumy += ydata;
170:          sumxx += sqr(xdata);
171:          sumyy += sqr(ydata);
172:          sumxy += xdata * ydata;
173:      }
174:

175:      meanx = sumx / sum;

Output



312

Advanced Function Parameters
M

T
W

R
F

S
S

DAYDAY

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

176:      meany = sumy / sum;
177:      sdevx = sqrt((sumxx - sqr(sumx) / sum)/(sum-1.0));
178:      sdevy = sqrt((sumyy - sqr(sumy) / sum)/(sum-1.0));
179:      stat.slope = (sumxy - meanx * meany * sum) /
180:                     sqr(sdevx)/(sum-1);
181:      stat.intercept = meany - stat.slope * meanx;
182:      stat.Rsqr = sqr(sdevx / sdevy * stat.slope);
183:
184: }

Here is a sample session with the program in Listing 10.8:

Enter array size [2..100] : 5
X[0] : 10
Y[0] : 50
X[1] : 25
Y[1] : 78
X[2] : 30
Y[2] : 85
X[3] : 35
Y[3] : 95
X[4] : 100
Y[4] : 212

select transformation for variable X
0) No transformation
1) Logarithmic transformation
2) Square root transformation
3) Square  transformation
4) Reciprocal transformation

Select choice by number : 1

select transformation for variable Y
0) No transformation
1) Logarithmic transformation
2) Square root transformation
3) Square  transformation
4) Reciprocal transformation

Select choice by number : 1

R-square = 0.977011
Slope = 0.63039
Intercept = 2.37056

Want to use other transformations? (Y/N) y

select transformation for variable X

Output



313

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

0) No transformation
1) Logarithmic transformation
2) Square root transformation
3) Square  transformation

4) Reciprocal transformation

Select choice by number : 0

select transformation for variable Y

0) No transformation
1) Logarithmic transformation
2) Square root transformation
3) Square  transformation
4) Reciprocal transformation

Select choice by number : 0

R-square = 0.999873
Slope = 1.79897
Intercept = 32.0412

Want to use other transformations? (Y/N) n

The program in Listing 10.8 declares the global constant MAX_SIZE, which determines
the maximum size of the arrays. The program also declares the type vector in line 12.
In addition, the program defines the structure regression in lines 14 through 18. This
structure stores the statistics of a regression. Lines 21 and 22 define the global function
pointers fx and fy. Each pointer deals with a function that takes a double-typed
argument and returns a double-typed value. The program uses these global pointers
to store the mathematical transformations that you select.

The program also declares the functions initArray, linear, sqr, reciprocal,
calcRegression, select_transf, and main. The function initArray prompts you to
enter the data for the arrays x and y. The functions linear, sqr, and reciprocal are
simple functions that provide the transformations for the data. These functions
supplement the mathematical functions, such as sqrt and log, which are prototyped
in the MATH.H header file. Each one of these functions has the same parameter and
return type as the function pointers fx and fy.

The function calcRegression calculates the regression statistics based on the arrays
passed by its array parameters x and y. The function uses the function pointer
parameters fx and fy to transform the data in arrays x and y. The statements in lines
166 and 167 use the pointers fx and fy to transform the elements of arrays x and y,
respectively.

Analysis



314

Advanced Function Parameters
M

T
W

R
F

S
S

DAYDAY

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

The function select_transf prompts with a simple itemized menu to select the
transformation functions by number. The function returns the value for the transfor-
mation code number that you select.

The function main declares the arrays x and y, using the type vector. The function also
declares the structure stat, which stores the regression statistics. The function main
prompts you to enter the number of data points that you want to process. Then, the
function calls function initArray to obtain the data for the arrays x and y. Next, the
function invokes the function select_trans twice, to select the transformation
functions for the data in arrays x and y. The switch statement in line 55 examines the
value in variable trnsfx, which contains the index of the transformation value for the
array x. The various case labels assign the proper function to the pointer fx. Some of
these functions, such as log and sqrt, are prototyped in the MATH.H header file. The
switch statement in line 76 performs a similar task to assign the proper function to
pointer fy.

The function main then calls the function calcRegression and passes the arguments
x, y, count, stat, the function pointer fx, and the function pointer fy. The output
statement in lines 102 through 105 displays the regression statistics for the current set
of transformation functions. The statement in line 106 asks you if you wish to select
another set of transformation functions. The statement in line 107 stores your input
in variable ans. The while clause in line 108 determines if the program repeats the
process of selecting the transformation functions and calculating the corresponding
regression statistics.

Summary
Today’s lesson presented simple C++ functions. You learned about the following
topics:

■■ You can pass arrays as function arguments using pointers to the basic types.
C++ enables you to declare array parameters using explicit pointer types or
using the empty brackets. Such parameters enable you to write general-
purpose functions that work with arrays of different sizes. In addition, these
pointers access the array by using its address, instead of making a copy of the
entire array.

■■ Passing strings as function arguments follows the same rules as passing
arrays, because C++ strings are arrays of characters.

■■ Passing structures as function arguments enables you to shorten the param-
eter list by encapsulating various related information in C++ structures. C++



315

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

supports passing structures by value. Such parameters pass a copy of their
arguments to the host function. Consequently, the changes made to the
structure members do not affect the arguments outside the scope of the
function.

■■ Passing reference parameters may use pointers or formal references. The
formal references become aliases of their arguments. Any changes made to
the parameters affect their arguments outside the function. You can declare a
constant reference parameter to ensure that the function does not alter the
arguments for the reference parameter. Accessing the members of a struc-
tured reference parameter uses the dot operator.

■■ Passing structures by pointer gives the host function the address of the
structure. The pointer parameter needs to use the -> operator to access the
various members of the structure. You can use the const prefix with the
pointer parameter to prevent the function from changing the members of
the structure, which is accessed by the pointer parameters.

■■ Recursive functions are functions that obtain a result and/or perform a task
by calling themselves. These recursive calls must be limited to avoid exhaust-
ing the memory resources of the computer. Consequently, every recursive
function must examine a condition that determines the end of the recursion.

■■ Passing pointers to dynamic structures often requires passing the reference to
the root or head pointers that manage such structures. Today’s lesson
illustrates how to create functions to insert data in a binary tree and display
its data.

■■ Pointers to functions store the address of functions. Such pointers need to
have the parameter list and return type defined, in order to access functions
with the same prototype. Pointers to functions enable you to select which
function you wish to invoke at runtime.

Q&A
Q How does using a reference parameter impact the design of a function,

compared to a value parameter?

A The reference parameter can also update the argument (unless it is declared
as a const parameter). Thus, the function can use reference parameters as an
input data conduit and also as an output data conduit.



316

Advanced Function Parameters
M

T
W

R
F

S
S

DAYDAY

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

Q How can I distinguish between a pointer that passes an array of value
and one used to pass back a value through its argument?

A You need to read the declaration of the function in context. However, you
can use a reference parameter to declare a parameter that passes a value back
to the caller.

Q What is the memory resource used in managing calls to recursive
functions?

A The runtime system uses the stack to store intermediate values, including the
ones generated by calls to recursive functions. As with other memory
resources, stacks have a limited space. Consequently, recursive calls with long
sequence or memory-consuming arguments drain the stack space and cause
runtime errors.

☛ New Term: A stack is a memory location where information is inserted
and removed on a last-in-first-out (LIFO) priority.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing on to the
next day’s lesson. (Answers are provided in Appendix A, “Answers.”)

Quiz
1. Can you use the conditional operator to write the recursive factorial

function?

2. What is wrong with the following recursive function?

double factorial(int i)

{

  switch (i) {



317

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

    case 0:

    case 1:

         return 1;

         break;

    case 2:

         return 2;

         break;

    case 3:

         return 6;

         break;

    case 4:

         return 24;

         break;

    default:

         return double(i) * factorial(i-1);

  }

}

3. Convert the following recursive Fibonacci function (this function has the
sequence Fib(0) = 0, Fib(1) = 1, Fib(2) = 1, Fib(3) = 2, Fib(4) = 3, and so
on) into a nonrecursive version:

double Fibonacci(int n)

{

  if (n == 0)

    return 0;

  else if (n == 1 || n == 2)

    return 1;

  else

    return Fibonacci(n - 1) + Fibonacci(n - 2);

}

4. True or false? The two versions of the following functions are equivalent:

struct stringStruct {

     char source[MAX+1];

     char uprStr[MAX+1];

     char lwrStr[MAX+];

     char revStr[MAX+1];

};



318

Advanced Function Parameters
M

T
W

R
F

S
S

DAYDAY

10

A/ns6  TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch10   LP#3(sp 4/12 folio)

void convertStr2(const char* str, stringStruct& s)

{

  strncpy(s.source, str, MAX);

  strncpy(s.uprStr, str, MAX);

  strncpy(s.lwrStr, str, MAX);

  strncpy(s.revStr, str, MAX);

  _strlwr(s.lwrStr);

  _strupr(s.uprStr);

  strrev(s.revStr);

}

void convertStr2(const char* str, stringStruct* s)

{

  strncpy(s->source, str, MAX);

  strncpy(s->uprStr, str, MAX);

  strncpy(s->lwrStr, str, MAX);

  strncpy(s->revStr, str, MAX);

  _strlwr(s->lwrStr);

  _strupr(s->uprStr);

  strrev(s->revStr);

}

Exercise
Create the program ADVFUN9.CPP from ADVFUN8.CPP by replacing the
individual function pointers fx and fy with the array of function pointers f. In
addition, replace the two function pointer parameters of function calcRegression
with a parameter that is an array of function pointers.



319

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

M
T

W
R

F
S

S

WEEK

22

1111
Object-Oriented
Programming and
C++ Classes



320

Object-Oriented Programming and C++ Classes
M

T
W

R
F

S
S

DAYDAY

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

Classes provide C++ with object-oriented programming (OOP) constructs. Today’s
lesson, which marks an important milestone for learning C++, introduces you to
building individual classes as well as class hierarchy. You learn about the following
topics:

■■ The basics of object-oriented programming

■■ Declaring base classes

■■ Constructors

■■ Destructors

■■ Declaring a class hierarchy

■■ Virtual functions

■■ Friend functions

■■ Operators and friend operators

Basics of Object-Oriented
Programming

We live in a world of objects. Each object has its attributes and operations. Some
objects are more animated than others. You can categorize objects into classes. For
example, a CASIO Data Bank watch is an object that belongs to the class of the CASIO
Data Bank watches.

☛ New Term: Object-oriented programming (OOP) uses the notions of real-
world objects to develop applications.

You can also relate individual classes in a class hierarchy. The class of CASIO Data
Bank watches is part of the watch class hierarchy. The basics of OOP include classes,
objects, messages, methods, inheritance, and polymorphism.

☛
New Term: A class defines a category of objects. Each object is an
instance of a class.



321

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

Classes and Objects
An object shares the same attributes and functionality of other objects in the same
class. Typically, an object has a unique state, defined by the current values of its
attributes. The functionality of a class determines the operations that are possible for
the class instances. C++ calls the attributes of the class data members and calls the
operations of the class member functions. Classes encapsulate data members and
member functions.

Going back to the CASIO watch example, you can note that the buttons in the watch
represent the member functions of the class of CASIO watches, whereas the display
represents a data member. We can press certain buttons to edit the date and/or time.
In OOP terms, the member functions alter the state of the object by changing its data
members.

Messages and Methods
Object-oriented programming models the interaction with objects as events where
messages are sent to an object or between objects. The object receiving a message
responds by invoking the appropriate method (that’s the member function in C++).
C++ does not explicitly foster the notion of messages and methods as do other OOP
languages, such as SmallTalk. However, we find it easier to discuss invoking member
functions using the term “message.” The terms methods and member functions are
equivalent.

☛ New Term: The message is what is done to an object. The method is how
the object responds to the incoming message.

Inheritance
In object-oriented languages, you can derive a class from another one.

☛ New Term: With inheritance, the derived class (also called the descendant
class) inherits the data members and member functions of its parent and
ancestor classes.



322

Object-Oriented Programming and C++ Classes
M

T
W

R
F

S
S

DAYDAY

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

Deriving a class refines the parent class by appending new attributes and new
operations. The derived class typically declares new data members and new member
functions. In addition, the derived class can also override inherited member functions
when the operations of these functions are not suitable for the derived class.

To apply the concept of inheritance to the CASIO Data Bank watch, consider the
following possible scenario. Suppose that the watch manufacturer decides to create a
CASIO Data Comm watch that offers the same features of the CASIO Data Bank plus
a beeper! Rather than redesigning the new model (that is the new class, in OOP terms)
from scratch, the CASIO engineers start with the existing design of the CASIO Data
Bank and build on it. This process may well add new attributes and operations to the
existing design and alter some existing operations to fit the new design. Thus, the
CASIO Data Comm model inherits the attributes and the operations of the CASIO
Data Bank model. In OOP terms, the class of CASIO Data Comm watches is a
descendant of the class of CASIO Data Bank watches.

Polymorphism
The OOP feature of polymorphism allows the instances of different classes to react
in a particular way to a message (or function invocation, in C++ terms). For example,
in a hierarchy of graphical shapes (point, line, square, rectangle, circle, ellipse, and so
on), each shape has a Draw function that is responsible for properly responding to a
request to draw that shape.

☛ New Term: Polymorphism enables the instances of different classes to
respond to the same function in ways that are appropriate to each class.

Declaring Base Classes
C++ enables you to declare a class that encapsulates data members and member
functions. These functions alter and/or retrieve the values of the data members as well
as perform related tasks.



323

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

S
yn

ta
x

A Base Class
The general syntax for declaring a base class is

class className
{
     private:
          <private data members>
          <private constructors>
          <private member functions>
     protected:
          <protected data members>
          <protected constructors>
          <protected member functions>
     public:
          <public data members>
          <public constructors>
          <public destructor>
          <public member functions>
};

Example:

class point
{
     protected:
          double x;
          double y;
     public:
          point(double xVal, double yVal);
          double getX();
          double getY();
          void assign(double xVal, double yVal);
          point& assign(point& pt);
};

The Sections of a Class
The previous syntax shows that the declaration involves the keyword class. C++
classes offer three levels of visibility for the various members (that is, both data
members and member functions):

■■ The private section

■■ The protected section

■■ The public section



324

Object-Oriented Programming and C++ Classes
M

T
W

R
F

S
S

DAYDAY

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

☛ New Term: In the private section, only the member functions of the class
can access the private members. The class instances are denied access to
private members. In the protected section, only the member functions of
the class and its descendant classes can access protected members. The
class instances are denied access to protected members. The public section
specifies members that are visible to the member functions of the class,
class instances, member functions of descendant classes, and their in-
stances.

The following rules apply to the various class sections:

1. The class sections can appear in any order.

2. The class sections may appear more than once.

3. If no class section is specified, the C++ compiler treats the members as
protected.

4. You should avoid placing data members in the public section unless such a
declaration significantly simplifies your design. Data members are typically
placed in the protected section to allow their access by member functions of
descendant classes.

5. Use member functions to set and/or query the values of data members. The
members that set the data members assist in performing validation and
updating other data members, if need be.

6. The class may have multiple constructors, which are typically located in the
public section.

7. The class can have only one destructor, which must be declared in the public
section.

8. The member functions (as well as the constructors and destructors) that have
multiple statements are defined outside the class declaration. The definition
may reside in the same file that declares the class.

☛ New Term: Constructors are special members that must have the same
name as the host class. Destructors automatically remove class instances.



325

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

Type

In software libraries, the definition of the member functions referred to in rule 8
typically resides in a separate source file (.H and .CPP files). When you define a
member function, you must qualify the function name with the class name. The
syntax of such a qualification involves using the class name followed by two colons (::)
and then the name of a function. For example, consider the following class:

class point
{
     protected:
          double x;
          double y;
     public:
          point(double xVal, double yVal);
          double getX();
          // other member functions
};

The definitions of the constructor and member functions are

point::point(double xVal, double yVal)
{
  // statements
}

double point::getX()
{
  // statements
}

After you declare a class, you can use the class name as a type identifier to declare
class instances. The syntax resembles declaring variables.

Let’s look at an example. Listing 11.1 shows the source code for the program
CLASS1.CPP. The program prompts you to enter the length and width of a rectangle
(which is an object). The program then displays the length, width, and area of the
rectangle you specified.

Listing 11.1. Source code for the program CLASS1.CPP.

1:  // C++ program that illustrates a class
2:
3:  #include <iostream.h>
4:
5:  class rectangle
6:  {
7:    protected:
8:      double length;
9:      double width;

continues



326

Object-Oriented Programming and C++ Classes
M

T
W

R
F

S
S

DAYDAY

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

Listing 11.1. continued
10:   public:
11:     rectangle() { assign(0, 0); }
12:     rectangle(double len, double wide) { assign(len, wide); }
13:     double getLength() { return length; }
14:     double getWidth() { return width; }
15:     double getArea() { return length * width; }
16:     void assign(double len, double wide);
17: };
18:
19: void rectangle::assign(double len, double wide)
20: {
21:   length = len;
22:   width = wide;
23: }
24:
25: main()
26: {
27:   rectangle rect;
28:   double len, wide;
29:
30:   cout << “Enter length of rectangle : “;
31:   cin >> len;
32:   cout << “Enter width of rectangle : “;
33:   cin >> wide;
34:   rect.assign(len, wide);
35:   cout << “Rectangle length = “ << rect.getLength() << “\n”
36:        << “          width  = “ << rect.getWidth() << “\n”
37:        << “          area   = “ << rect.getArea() << “\n”;
38:   return 0;
39: }

Here is a sample session with the program in Listing 11.1:

Enter length of rectangle : 10
Enter width of rectangle : 12
Rectangle length = 10
          width  = 12
          area   = 120

The program in Listing 11.1 declares the class rectangle, which models a
rectangle. The class has two double-typed data members, length and width,
which store the dimensions of a rectangle. In addition, the class has two

constructors: the default constructor and the nondefault constructor. The class also
defines the member functions getLength, getWidth, getArea, and assign.

Output

Analysis



327

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

☛ New Term: The default constructor creates an instance with 0 dimensions,
and the nondefault constructor creates an instance with nonzero dimen-
sions.

The function getLength, defined in the class declaration, simply returns the value in
member length. The function getWidth, also defined in the class declaration, merely
returns the value in member width. The function getArea, defined in the class
declaration, simply returns the value of the result of multiplying the members length
and width.

The member function assign, defined outside the class declaration, assigns the
arguments for its parameters len and wide to the data members length and width,
respectively. We simplify the implementation of this function by not checking for
negative values.

The function main declares rect as the instance of class rectangle and declares the
double-typed variables len and wide. The output statement in line 30 prompts you
to enter the length of the rectangle. The statement in line 31 obtains your input and
stores it in variable len. The output statement in line 32 prompts you to enter the
width of the rectangle. The statement in line 33 obtains your input and stores it in
variable wide.

The function main assigns the input values to the instance rect using the assign
member function. In OOP terms, we can say that the function main sends the assign
message to the object rect. The arguments of the message are variables len and wide.
The object rect responds by invoking the method (the member function)
rectangle::assign(double, double).

The output statement in lines 35 through 37 displays the length, width, and area of
the object rect. This statement sends the messages getLength, getWidth, and getArea
to the object rect. In turn, the object rect invokes the appropriate methods (or
member functions, if you prefer) to respond to each one of these messages.

Constructors
C++ constructors and destructors work automatically to guarantee the appropriate
creation and removal of class instances.



328

Object-Oriented Programming and C++ Classes
M

T
W

R
F

S
S

DAYDAY

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

S
yn

ta
x

Constructors
The general syntax for constructors is

class className
{
     public:
          className(); // default constructor
          className(className& c); // copy constructor
          className(<parameter list>); // another constructor
};

Example:

class point
{
     protected:
          double x;
          double y;
     public:
          point();
          point(double xVal, double yVal);
          point(point& pt);
          double getX();
          double getY();
          void assign(double xVal, double yVal);
          point& assign(point& pt);
};
main()
{
  point p1;
  point p2(10, 20);
  point p3(2);
  p1.assign(p2));
  cout << p1.getX() << “ “ << p1.getY() << “\n”;
  cout << p2.getX() << “ “ << p2.getY() << “\n”;
  cout << p3.getX() << “ “ << p3.getY() << “\n”;
  return 0;
}

☛ New Term: A copy constructor enables you to create class instances by
copying the data from existing instances.

C++ has the following features and rules regarding constructors:

1. The name of the constructor must be identical to the name of its class.

2. You must not include any return type, not even void.



329

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

3. A class can have any number of constructors, including none. In the latter
case, the compiler automatically creates one for that class.

4. The default constructor is the one that either has no parameters or possesses
a parameter list where all the parameters use default arguments. Here are two
examples:

// class use parameterless constructor

class point1

{

    protected:

         double x;

         double y;

    public:

         point1();

         // other member functions

};

// class use constructor with default arguments

class point2

{

    protected:

         double x;

         double y;

    public:

         point(double xVal = 0, double yVal = 0);

         // other member functions

};

5. The copy constructor enables you to create a class instance using an existing
instance. Here is an example:

class point

{

    protected:

         double x;

         double y;

    public:

         point();

         point(double xVal, double yVal);

         point(point& pt);

         // other member functions

};



330

Object-Oriented Programming and C++ Classes
M

T
W

R
F

S
S

DAYDAY

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

6. The declaration of a class instance (which includes function parameters and
local instances) involves a constructor. Which constructor is called? The
answer depends on how many constructors you have declared for the class
and how you declared the class instance. For example, consider the following
instances of the last version of the class point:

point p1; // involves the default constructor

point p2(1.1, 1.3); // uses the second constructor

point p3(p2); // uses the copy constructor

Because instance p1 specifies no arguments, the compiler uses the default
constructor. The instance p2 specifies two floating-point arguments. Conse-
quently, the compiler uses the second constructor. The instance p3 has the
instance p2 as an argument. Therefore, the compiler uses the copy construc-
tor to create instance p3 from instance p2.

DO DON’T
DO declare copy constructors, especially for classes that model dynamic data
structures. These constructors perform what is called a deep copy, which
includes the dynamic data. By default, the compiler creates what are called
shallow copy constructors, which copy the data members only.

DON’T rely on the shallow copy constructor to copy instances for classes
that have members that are pointers.

Destructors
C++ classes may contain destructors that automatically remove class instances.

S
yn

ta
x

Destructors
The general syntax for destructors is

class className
{
     public:
          className(); // default constructor
          // other constructors
          ~className();
          // other member function
};



331

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

Example:

class String
{
     protected:
          char *str;
          int len;

     public:
          String();
          String(String& s);
          ~String();
          // other member functions
};

C++ has the following features and rules regarding destructors:

1. The name of the destructor must begin with a tilde (~). The rest of the
destructor name must be identical to the name of its class.

2. You must not include any return type, not even void.

3. A class can have no more than one destructor. In addition, if you omit the
destructor, the compiler automatically creates one for you.

4. The destructor cannot have any parameters.

5. The runtime system automatically invokes a class destructor when the
instance of that class is out of scope, or when the instance is explicitly
deleted.

Examples of Constructors and
Destructors

Let’s look at a program that typifies the use of constructors and destructors. List-
ing 11.2 contains the source code for the CLASS2.CPP program. The program
performs the following tasks:

■■ Creates a dynamic array (the object)

■■ Assigns values to the elements of the dynamic array

■■ Displays the values in the dynamic array

■■ Removes the dynamic array



332

Object-Oriented Programming and C++ Classes
M

T
W

R
F

S
S

DAYDAY

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

Type Listing 11.2. Source code for the CLASS2.CPP program.

1:  // Program demonstrates constructors and destructors
2:
3:  #include <iostream.h>
4:
5:  const unsigned MIN_SIZE = 4;
6:
7:  class Array
8:  {
9:     protected:
10:      double *dataPtr;
11:      unsigned size;
12:
13:    public:
14:      Array(unsigned Size = MIN_SIZE);
15:      ~Array()
16:        { delete [] dataPtr; }
17:      unsigned getSize() const
18:        { return size; }
19:      void store(double x, unsigned index)
20:        { dataPtr[index] = x; }
21:      double recall(unsigned index)
22:        { return dataPtr[index]; }
23: };
24:
25: Array::Array(unsigned Size)
26: {
27:   size = (Size < MIN_SIZE) ? MIN_SIZE : Size;
28:   dataPtr = new double[size];
29: }
30:
31: main()
32: {
33:   Array Arr(10);
34:   double x;
35:   // assign data to array elements
36:   for (unsigned i = 0; i < Arr.getSize(); i++) {
37:     x = double(i);
38:     x = x * x - 5 * x + 10;
39:     Arr.store(x, i);
40:   }
41:   // display data in the array element
42:   cout << “Array Arr has the following values:\n\n”;
43:   for (i = 0; i < Arr.getSize(); i++)
44:     cout << “Arr[“ << i << “] = “ << Arr.recall(i) << “\n”;
45:   return 0;
46: }



333

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

Here is a sample session with the program in Listing 11.2:

Array Arr has the following values:

Arr[0] = 10
Arr[1] = 6
Arr[2] = 4
Arr[3] = 4
Arr[4] = 6
Arr[5] = 10
Arr[6] = 16
Arr[7] = 24
Arr[8] = 34
Arr[9] = 46

The program in Listing 11.2 declares the global constant MIN_SIZE in line 5,
which specifies the minimum size of dynamic arrays. The program also declares
the class Array in line 7. The class has two data members, dataPtr and size. The

member dataPtr is the pointer to the array’s dynamically allocated elements. The
member size stores the number of elements in an instance of class Array.

The class declares a default constructor. (The constructor actually has a parameter
with the default value MIN_SIZE.) The program defines the constructor in lines 25
through 29. The arguments for the parameter Size specify the number of array
elements. The statement in line 27 assigns the greater value of parameter Size and the
constant MIN_SIZE to the data member size. The statement in line 28 allocates the
dynamic space for the array by using the operator new. The statement assigns the base
address of the dynamic array to the member dataPtr.

The destructor ~Array removes the dynamic space of the array by applying the
operator delete to the member dataPtr.

The member function getSize, defined in the class declaration, returns the value in
data member size.

The function store, defined in the class declaration, stores the value passed by
parameter x at the element number specified by the parameter index. We simplify the
implementation of this function by eliminating the out-of-range index check.

The function recall, defined in the class declaration, returns the value in the element
specified by the parameter index. We simplify the implementation of this function by
eliminating the out-of-range index check.

The function main declares the object Arr as an instance of class Array. The
declaration, located in line 33, specifies that the instance has 10 elements. The
function also declares the double-typed variable x. The for loop in lines 36 through

Output

Analysis



334

Object-Oriented Programming and C++ Classes
M

T
W

R
F

S
S

DAYDAY

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

40 stores values in the instance Arr. The loop uses control variable i and iterates from
0 to Arr.getSize()-1, in increments of 1. The loop continuation condition sends the
getSize message to instance Arr to obtain the number of elements in the array. The
statements in lines 37 and 38 calculate the value to store in an element of instance Arr.
The statement in line 39 sends the message store to instance Arr and passes the
arguments x and i. The object Arr saves the value in variable x at the element number
i.

The output statement in line 42 comments on the output of the for loop in lines 43
and 44. The loop uses the control variable i and iterates from 0 to Arr.getSize()
-1, in increments of 1. The output statement in line 44 displays the element in
instance Arr by sending the message recall to that instance. The message has the
argument i.

Declaring a Class Hierarchy
The power of the OOP features of C++ comes from the fact that you can derive classes
from existing ones. A descendant class inherits the members of its ancestor classes (that
is, parent class, grandparent class, and so on) and can also override some of the
inherited functions. Inheritance enables you to reuse code in descendant classes.

S
yn

ta
x

A Derived Class
The general syntax for declaring a derived class is

class className : [public] parentClass
{
     <friend classes>

     private:
          <private data members>
          <private constructors>
          <private member functions>

     protected:
          <protected data members>
          <protected constructors>
          <protected member functions>

     public:
          <public data members>
          <public constructors>
          <public destructor>
          <public member functions>



335

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

          <friend functions and friend operators>
};

Example:

The following example shows the class cRectangle and its descendant, the class cBox:

class cRectangle
{
     protected:
          double length;
          double width;
     public:
          cRectangle(double len, double wide);
          double getLength() const;
          double getWidth(); const;
          double assign(double len, double wide);
          double calcArea();
};

class cBox : public cRectangle
{
     protected:
          double height;

     public:
          cBox(double len, double wide, double height);
          double getHeight() const;
          assign(double len, double wide, double height);
          double calcVolume();
};

The class lineage is indicated by a colon followed by the optional keyword public and
then the name of the parent class. When you include the keyword public, you allow
the instances of the descendant class to access the public members of the parent and
other ancestor classes. By contrast, when you omit the keyword public or use the
private keyword, you deprive the instance of the descendant class from accessing the
members of the ancestor classes.

A descendant class inherits the data members of its ancestor classes. C++ has no
mechanism for removing unwanted inherited data members—you are basically stuck
with them. By contrast, C++ enables you to override inherited member functions. You
will see more about this topic later in today’s lesson. The descendant class declares new
data members, new member functions, and overriding member functions. Again, you
can place these members in the private, protected, or public sections, as you see fit in



336

Object-Oriented Programming and C++ Classes
M

T
W

R
F

S
S

DAYDAY

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

Type

your class design.

DO DON’T
DO reduce the number of constructors by using default argument param-
eters.

DO use member functions to access the values in the data members. These
member functions enable you to control and validate the values in the data
members.

DON’T declare all the constructors of a class protected unless you want to
force the client programmers (that is, those programs that use the class) to
use the class by declaring its descendants with public constructors.

DON’T declare the data members in the public section.

Let’s look at an example that declares a small class hierarchy. Listing 11.3 shows the
source code for the CLASS3.CPP program. This program declares classes that contain
a hierarchy of two simple geometric shapes: a circle and a cylinder. The program
requires no input. Instead, it uses internal data to create the geometric shapes and to
display their dimensions, areas, and volume.

Listing 11.3. Source code for the CLASS3.CPP program.

1:  // Program that demonstrates a small hierarchy of classes
2:
3:  #include <iostream.h>
4:  #include <math.h>
5:
6:  const double pi = 4 * atan(1);
7:
8:  inline double sqr(double x)
9:  { return x * x; }
10:
11: class cCircle
12: {
13:   protected:
14:     double radius;
15:
16:   public:



337

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

17:     cCircle(double radiusVal = 0) : radius(radiusVal) {}
18:     void setRadius(double radiusVal)
19:       { radius = radiusVal; }
20:     double getRadius() const
21:       { return radius; }
22:     double area() const
23:       { return pi * sqr(radius); }
24:     void showData();
25: };
26:
27: class cCylinder : public cCircle
28: {
29:   protected:
30:     double height;
31:
32:   public:
33:      cCylinder(double heightVal = 0, double radiusVal = 0)
34:        : height(heightVal), cCircle(radiusVal) {}
35:      void setHeight(double heightVal)
36:        { height = heightVal; }
37:      double getHeight() const
38:        { return height; }
39:      double area() const
40:        { return 2 * cCircle::area() +
41:                 2 * pi * radius * height; }
42:      void showData();
43: };
44:
45: void cCircle::showData()
46: {
47:    cout << “Circle radius        = “ << getRadius() << “\n”
48:         << “Circle area          = “ << area() << “\n\n”;
49: }
50:
51: void cCylinder::showData()
52: {
53:    cout << “Cylinder radius      = “ << getRadius() << “\n”
54:         << “Cylinder height      = “ << getHeight() << “\n”
55:         << “Cylinder area        = “ << area() << “\n\n”;
56: }
57:
58: main()
59: {
60:    cCircle Circle(1);
61:    cCylinder Cylinder(10, 1);
62:
63:    Circle.showData();
64:    Cylinder.showData();



338

Object-Oriented Programming and C++ Classes
M

T
W

R
F

S
S

DAYDAY

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

Analysis

65:    return 0;
66: }

Here is a sample session with the program in Listing 11.3:

Circle radius        = 1
Circle area          = 3.14159

Cylinder radius      = 1
Cylinder height      = 10
Cylinder area        = 69.115

The program in Listing 11.3 declares the classes cCircle and cCylinder. The class
cCircle models a circle, whereas the class cCylinder models a cylinder.

The cCircle class declares a single data member, radius, to store the radius of the
circle. The class also declares a constructor and a number of member functions. The
constructor assigns a value to the data member radius when you declare a class
instance. Notice that the constructor uses a new syntax to initialize the member
radius. The functions setRadius and getRadius serve to set and query the value in
member radius, respectively. The function area returns the area of the circle. The
function showData displays the radius and area of a class instance.

The class cCylinder, a descendant of cCircle, declares a single data member, height,
to store the height of the cylinder. The class inherits the member radius needed to store
the radius of the cylinder. The cCylinder class declares a constructor and a number
of member functions. The constructor assigns values to the radius and height
members when creating a class instance. Notice the use of a new syntax to initialize
the members—member height is initialized, and member radius is initialized by
invoking the constructor of class cCircle with the argument radiusVal. The
functions getHeight and setHeight serve to set and query the value in member
height, respectively. The class uses the inherited functions setRadius and getRadius
to manipulate the inherited member radius. The function area, which overrides the
inherited function cCircle::area(), returns the surface area of the cylinder. Notice
that this function explicitly invokes the inherited function cCircle::area(). The
function showData displays the radius, height, and area of a class instance.

We also would like to point out that the declarations of the functions area, getHeight,
and area in lines 22, 37, and 39 end with the keyword const. Using the keyword const
in this way tells the compiler that the member function cannot change any data
member. This feature is aimed mainly at teams of programmers where the team
manager sets the specifications for the class and determines which member functions

Output



339

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

can alter the values of data members.

The function main declares the instance Circle, of class cCircle, and assigns 1 to the
circle’s radius. In addition, the function also declares the instance Cylinder, of class
cCylinder, and assigns 10 and 1 to the circle’s height and radius, respectively. The
function then sends the showData message to the instances Circle and Cylinder. Each
object responds to this message by invoking the appropriate member function.

Virtual Functions
As we mentioned previously, polymorphism is an important object-oriented pro-
gramming feature. Consider the following simple classes and the function main:

#include <iostream.h>
class cA
{
     public:
          double A(double x) { return x * x; }
          double B(double x) { return A(x) / 2; }
};

class cB : public cA
{
     public:
          double A(double x) { return x * x * x; }
};

main()
{
     cB aB;
     cout << aB.B(3) << “\n”;
     return 0;
}

Class cA contains functions A and B, where function B calls function A. Class cB, a
descendant of class cA, inherits function B, but overrides function A. The intent here
is to have the inherited function cA::B call function cB::A in order to support
polymorphic behavior. What is the program output? The answer is 4.5 and not 13.5!
Why? The answer lies in the fact that the compiler resolves the expression aB.B(3) by
using the inherited function cA::B, which in turn calls function cA::A. Therefore,
function cB:A is left out and the program fails to support polymorphic behavior.

C++ supports polymorphic behavior by offering virtual functions.

☛



340

Object-Oriented Programming and C++ Classes
M

T
W

R
F

S
S

DAYDAY

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

New Term: Virtual functions, which are bound at runtime, are declared
by placing the keyword virtual before the function’s return type.

After you declare a function virtual, you can override it only with virtual functions
in descendant classes. These overriding functions must have the same parameter list.
Virtual functions can override nonvirtual functions in ancestor classes.

S
yn

ta
x

Virtual Functions
The general syntax for declaring virtual functions is

class className1
{
     // member functions
     virtual returnType functionName(<parameter list>);
};

class className2 : public className1
{
     // member functions
     virtual returnType functionName(<parameter list>);
};

Example:

This example shows how virtual functions can successfully implement polymorphic
behavior in classes cA and cB:

#include <iostream.h>
class cA
{
     public:
          virtual double A(double x) { return x * x; }
          double B(double x) { return A(x) / 2; }
};

class cB : public cA
{
     public:
         virtual double A(double x) { return x * x * x; }
};

main()
{
     cB aB;
     cout << aB.B(3) << “\n”;
     return 0;
}



341

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

Type

This example displays 13.5, the correct result, because the call to the inherited
function cA::B is resolved at runtime by calling cB::A.

DO DON’T
DO use virtual functions when you have a callable function that implements
a class-specific behavior. Declaring such a function as virtual ensures that it
provides the correct response that is relevant to the associated class.

DON’T declare a member function as virtual by default. Virtual functions
have some additional overhead.

Let’s look at an example. Listing 11.4 shows the source code for the program
CLASS4.CPP. The program creates a square and a rectangle and displays their
dimensions and areas. No input is required.

Listing 11.4. Source code for the program CLASS4.CPP.

1:  // Program that demonstrates virtual functions
2:
3:  #include <iostream.h>
4:
5:  class cSquare
6:  {
7:    protected:
8:      double length;
9:
10:   public:
11:     cSquare(double len) { length = len; }
12:     double getLength() { return length; }
13:     virtual double getWidth() { return length; }
14:     double getArea() { return getLength() * getWidth(); }
15: };
16:
17: class cRectangle : public cSquare
18: {
19:   protected:
20:     double width;
21:
22:   public:
23:     cRectangle(double len, double wide) :
24:        cSquare(len), width(wide) {}
25:     virtual double getWidth() { return width; }

continues



342

Object-Oriented Programming and C++ Classes
M

T
W

R
F

S
S

DAYDAY

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

26: };
27:
28: main()
29: {
30:    cSquare square(10);
31:    cRectangle rectangle(10, 12);
32:
33:    cout << “Square has length = “ << square.getLength() << “\n”
34:         << “       and area   = “ << square.getArea() << “\n”;
35:    cout << “Rectangle has length = “
36:         << rectangle.getLength() << “\n”
37:         << “          and width  = “
38:         << rectangle.getWidth() << “\n”
39:         << “          and area   = “
40:         << rectangle.getArea() << “\n”;

41:    return 0;
42: }

Here is a sample session with the program in Listing 11.4:

Square has length = 10
       and area   = 100
Rectangle has length = 10
          and width  = 12

          and area   = 120

The program in Listing 11.4 declares the classes cSquare and cRectangle to model
squares and rectangles, respectively. The class cSquare declares a single data member,
length, to store the length (and width) of the square. The class declares a constructor
with the parameter len, which passes arguments to the member length. The class also
declares the functions getLength, getWidth, and getArea. Both functions getLength
and getWidth return the value in member length. Notice that the class declares
function getWidth as virtual. The function getArea returns the area of the rectangle,
calculated by calling the functions getLength and getWidth. We choose to invoke
these functions rather than use the data member length in order to demonstrate how
the virtual function getWidth works.

The program declares class cRectangle as a descendant of class cSquare. The class
cRectangle declares the data member width and inherits the member length. These
members enable the class to store the basic dimensions of a rectangle. The class
constructor has the parameters len and wide, which pass values to the members len
and wide. Notice that the constructor invokes the constructor cSquare and supplies
it with the argument len. The constructor initializes the data member width with the
value of parameter wide.

Listing 11.4. continued

Output

Analysis



343

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

The class cRectangle declares the virtual function getWidth. This version returns the
value in data member width. The class inherits the member functions getLength and
getArea, because their implementation is adequate for the cRectangle.

The function main declares the object square as an instance of class cSquare. The
instance square has a length of 10. The function main also declares the object
rectangle as an instance of class cRectangle. The instance rectangle has the length
of 10 and the width of 12.

The output statement in lines 33 and 34 displays the length and area of the instance
square. The statement sends the messages getLength and getArea to the preceding
instance in order to obtain the sought values. The instance square invokes the
function getArea, which in turn calls the functions cSquare::getLength and
cSquare::getWidth.

The output statement in lines 35 through 40 displays the length, width, and area of
the instance rectangle. The statement sends the messages getLength, getWidth, and
getArea to this instance. The instance responds by calling the inherited function
cSquare::getLength, the virtual function cRectangle::getWidth, and the inherited
function cSquare::getArea. The latter function calls the inherited function
cSquare::getLength and the virtual function cRectangle::getWidth to correctly
calculate the area of the rectangle.

DO DON’T
DO declare your destructor as virtual. This ensures polymorphic behavior in
destroying class instances. In addition, we highly recommend that you
declare a copy constructor and an assignment operator for each class.

DON’T forget that you can inherit virtual functions and destructors when
appropriate for the descendant class. You need not declare shell functions
and destructors that simply call the corresponding member of the parent
class.

Rules for Virtual Functions
The rule for declaring a virtual function is “once virtual, always virtual.” In other
words, after you declare a function to be virtual in a class, any subclass that overrides
the virtual function must do so using another virtual function (that has the same



344

Object-Oriented Programming and C++ Classes
M

T
W

R
F

S
S

DAYDAY

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

parameter list). The virtual declaration is mandatory for the descendant classes. At
first, this rule seems to lock you in. This limitation is certainly true for object-oriented
programming languages that support virtual functions but not overloaded functions.
In the case of C++, the work-around is interesting. You can declare nonvirtual and
overloaded functions that have the same name as the virtual function, but bear a
different parameter list. Moreover, you cannot inherit nonvirtual member functions
that share the same name with a virtual function. Here is a simple example that
illustrates the point:

#include <iostream.h>
class cA
{
  public:
    cA() {}
    virtual void foo(char c)
      { cout << “virtual cA::foo() returns “ << c << ‘\n’; }
};

class cB : public cA
{
  public:
    cB() {}
    void foo(const char* s)
      { cout << “cB::foo() returns “ << s << ‘\n’; }
    void foo(int i)
      { cout << “cB::foo() returns “ << i << ‘\n’; }
    virtual void foo(char c)
      { cout << “virtual cB::foo() returns “ << c << ‘\n’; }
};

class cC : public cB
{
  public:
    cC() {}
    void foo(const char* s)
      { cout << “cC::foo() returns “ << s << ‘\n’; }
    void foo(double x)
      { cout << “cC::foo() returns “ << x << ‘\n’; }
    virtual void foo(char c)
      { cout << “virtual cC::foo() returns “ << c << ‘\n’; }
};

main()
{
  int n = 100;
  cA Aobj;



345

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

  cB Bobj;
  cC Cobj;

  Aobj.foo(‘A’);
  Bobj.foo(‘B’);
  Bobj.foo(10);
  Bobj.foo(“Bobj”);
  Cobj.foo(‘C’);
  // if you uncomment the next statement, program does not compile
  // Cobj.foo(n);
  Cobj.foo(144.123);
  Cobj.foo(“Cobj”);
  return 0;
}

This code declares three classes—cA, cB, and cC—to form a linear hierarchy of classes.
Class cA declares function foo(char) as virtual. Class cB also declares its own version
of the virtual function foo(char). In addition, class cB declares the nonvirtual
overloaded functions foo(const char* s) and foo(int). Class cC, the descendant of
class cB, declares the virtual function foo(char) and the nonvirtual and overloaded
functions foo(const char*) and foo(double). Notice that class cC must declare the
foo(const char*) function if it needs the function, because it cannot inherit the
member function cB::foo(const char*). C++ supports a different function inherit-
ance scheme when an overloaded function and virtual function are involved. The
function main creates an instance for each of the three classes and involves the various
versions of the member function foo.

Friend Functions
C++ allows member functions to access all the data members of a class. In addition,
C++ grants the same privileged access to friend functions. The declaration of friend
functions appears in the class and begins with the keyword friend. Other than using
the special keyword, friend functions look very much like member functions, except
they cannot return a reference to the befriended class because this requires returning
the self-reference *this. However, when you define friend functions outside the
declaration of their befriended class, you need not qualify the function names with the
name of the class.

☛



346

Object-Oriented Programming and C++ Classes
M

T
W

R
F

S
S

DAYDAY

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

Type

New Term: Friend functions are ordinary functions that have access to all
data members of one or more classes.

S
yn

ta
x

Friend Functions
The general form of friend functions is

class className
{
     public:
          className();
          // other constructors

          friend returnType friendFunction(<parameter list>);
};

Example:

class String
{
     protected:
          char *str;
          int len;

     public:
          String();
          ~String();
          // other member functions
          friend String& append(String& str1, String& str2);
          friend String& append(const char* str1, String& str2);
          friend String& append(String& str1, const char* str2);
};

Friend classes can accomplish tasks that are awkward, difficult, and even impossible
with member functions.

Let’s look at a simple example for using friend functions. Listing 11.5 contains the
source code for the CLASS5.CPP program. This program internally creates two
complex numbers, adds them, stores the result in another complex number, and then
displays the operands and resulting complex numbers.

Listing 11.5. Source code for the CLASS5.CPP program.

1:  // Program that demonstrates friend functions
2:
3:  #include <iostream.h>



347

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

4:
5:  class Complex
6:  {
7:     protected:
8:       double x;
9:       double y;
10:
11:    public:
12:      Complex(double real = 0, double imag = 0);
13:      Complex(Complex& c) { assign(c); }
14:      void assign(Complex& c);
15:      double getReal() const { return x; }
16:      double getImag() const { return y; }
17:      friend Complex add(Complex& c1, Complex& c2);
18: };
19:
20: Complex::Complex(double real, double imag)
21: {
22:   x = real;
23:   y = imag;
24: }
25:
26: void Complex::assign(Complex& c)
27: {
28:   x = c.x;
29:   y = c.y;
30: }
31:
32: Complex add(Complex& c1, Complex& c2)
33: {
34:   Complex result(c1);
35:
36:   result.x += c2.x;
37:   result.y += c2.y;
38:   return result;
39: }
40:
41: main()
42: {
43:   Complex c1(2, 3);
44:   Complex c2(5, 7);
45:   Complex c3;
46:
47:   c3.assign(add(c1, c2));
48:   cout << “(“ << c1.getReal() << “ + i” << c1.getImag() << “)”
49:        << “ + “
50:        << “(“ << c2.getReal() << “ + i” << c2.getImag() << “)”
51:        << “ = “
52:        << “(“ << c3.getReal() << “ + i” << c3.getImag() << “)”



348

Object-Oriented Programming and C++ Classes
M

T
W

R
F

S
S

DAYDAY

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

53:        << “\n\n”;
54:   return 0;

55: }

Here is a sample session with the program in Listing 11.5:

(2 + i3) + (5 + i7) = (7 + i10)

The program in Listing 11.5 declares the class Complex, which models complex
numbers. This class declares two data members, two constructors, a friend function
(the highlight of this example), and a set of member functions. The data members x
and y store the real and imaginary components of a complex number, respectively.

The class has two constructors. The first constructor has two parameters (with default
arguments) that enable you to build a class instance using the real and imaginary
components of a complex number. Because the two parameters have default argu-
ments, the constructor doubles up as the default constructor. The second constructor,
complex(complex&), is the copy constructor.

The Complex class declares three member functions. The function assign copies a class
instance into another one. The functions getReal and getImag return the value stored
in the members real and imag, respectively.

The Complex class declares the friend function add to add two complex numbers. To
make the program short, we do not implement complementary friend functions that
subtract, multiply, and divide class instances. What is so special about the friend
function add? Why not use an ordinary member function to add a class instance? The
following declaration of the alternate add member function answers these questions:

complex& add(complex& c)

This declaration states that the function treats the parameter c as a second operand.
Here is how the member function add works:

complex c1(3, 4), c2(1.2, 4.5);
c1.add(c2); // adds c2 to c1

First, the member function add works as an increment and not as an addition function.
Second, the targeted class instance is always the first operand. This is not a problem
for operations like addition and multiplication, but it is a problem for subtraction and
division. That is why the friend function add works better by giving you the freedom
of choosing how to add the class instances.

The friend function add returns a class instance. The function creates a local instance

Output

Analysis



349

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

of class Complex and returns that instance.

The function main uses the member function assign and the friend function add
to perform  basic complex operations. In addition, the function main invokes the
functions getReal and getImag with the various instances of class Complex to display
the components of each instance.

Operators and Friend Operators
The last program used a member function and a friend function to implement
complex math operations. The approach is typical in C and Pascal, because these
languages do not support user-defined operators. By contrast, C++ enables you to
declare operators and friend operators. These operators include +, -, *, /, %, ==, !=, <=,
<, >=, >, +=, -=, *=, /=, %=, [], (), <<, and >>. Consult a C++ language reference book
for more details on the rules of using these operators. C++ treats operators and friend
operators as special member functions and friend functions.

S
yn

ta
x

Operators and Friend Operators
The general syntax for declaring operators and friend operators is

class className
{
     public:
          // constructors and destructor
          // member functions

          // unary operator
          returnType operator operatorSymbol(operand);
          // binary operator
          returnType operator operatorSymbol(firstOperand,
                                             secondOperand);
          // unary friend operator
          friend returnType operator operatorSymbol(operand);
          // binary operator
          friend returnType operator operatorSymbol(firstOperand,
                                                  secondOperand);
};

Example:

class String
{
     protected:
          char *str;



350

Object-Oriented Programming and C++ Classes
M

T
W

R
F

S
S

DAYDAY

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

Type

          int len;

     public:
          String();
          ~String();

          // other member functions
          // assignment operator
          String& operator =(String& s);
          String& operator +=(String& s);
          // concatenation operators
          friend String& operator +(String& s1, String& s2);
          friend String& operator +(const char* s1, String& s2);
          friend String& operator +(String& s1, const char* s2);
          // relational operators
          friend int operator >(String& s1, String& s2);
          friend int operator =>(String& s1, String& s2);
          friend int operator <(String& s1, String& s2);
          friend int operator <=(String& s1, String& s2);
          friend int operator ==(String& s1, String& s2);
          friend int operator !=(String& s1, String& s2);
};

The functions you write use the operators and friend operators just like predefined
operators. Therefore, you can create operators to support the operations of classes that
model, for example, complex numbers, strings, arrays, and matrices. These operators
enable you to write expressions that are far more readable than expressions that use
named functions.

Let’s look at an example. Listing 11.6 contains the source code for the CLASS6.CPP
program. We created this program by modifying and expanding Listing 11.5. The
new program performs more additions and displays two sets of operands and results.

Listing 11.6. Source code for the CLASS6.CPP program.

1:  // Program that demonstrates operators and friend operators
2:
3:  #include <iostream.h>
4:
5:  class Complex
6:  {
7:     protected:
8:       double x;
9:       double y;
10:
11:    public:
12:      Complex(double real = 0, double imag = 0)
13:        { assign(real, imag); }
14:      Complex(Complex& c);
15:      void assign(double real = 0, double imag = 0);



351

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

16:      double getReal() const { return x; }
17:      double getImag() const { return y; }
18:      Complex& operator =(Complex& c);
19:      Complex& operator +=(Complex& c);
20:      friend Complex operator +(Complex& c1, Complex& c2);
21:      friend ostream& operator <<(ostream& os, Complex& c);
22: };
23:
24: Complex::Complex(Complex& c)
25: {
26:   x = c.x;
27:   y = c.y;
28: }
29:
30: void Complex::assign(double real, double imag)
31: {
32:   x = real;
33:   y = imag;
34: }
35:
36: Complex& Complex::operator =(Complex& c)
37: {
38:   x = c.x;
39:   y = c.y;
40:   return *this;
41: }
42:
43: Complex& Complex::operator +=(Complex& c)
44: {
45:   x += c.x;
46:   y += c.y;
47:   return *this;
48: }
49:
50: Complex operator +(Complex& c1, Complex& c2)
51: {
52:   Complex result(c1);
53:
54:   result.x += c2.x;
55:   result.y += c2.y;
56:   return result;
57: }
58:
59: ostream& operator <<(ostream& os, Complex& c)
60: {
61:   os << “(“ << c.x << “ + i” << c.y << “)”;
62:   return os;
63: }
64:
65: main()
66: {

continues



352

Object-Oriented Programming and C++ Classes
M

T
W

R
F

S
S

DAYDAY

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

67:   Complex c1(3, 5);
68:   Complex c2(7, 5);
69:   Complex c3;
70:   Complex c4(2, 3);
71:
72:   c3 = c1 + c2;
73:   cout << c1 << “ + “ << c2 << “ = “ << c3 << “\n”;
74:   cout << c3 << “ + “ << c4 << “ = “;
75:   c3 += c4;
76:   cout << c3 << “\n”;
77:   return 0;

78: }

Here is a sample session with the program in Listing 11.6:

(3 + i5) + (7 + i5) = (10 + i10)
(10 + i10) + (2 + i3) = (12 + i13)

The new class Complex replaces the assign(Complex&) member function with the
operator =. The class also replaces the friend function add with the friend operator +:

Complex& operator =(Complex& c);
friend Complex operator +(Complex& c1, Complex& c2);

The operator = has one parameter, a reference to an instance of class Complex, and also
returns a reference to the same class. The friend operator + has two parameters (both
are references to instances of class Complex) and yields a complex class type.

We also took the opportunity to add two new operators:

complex& operator +=(complex& c);
friend ostream& operator <<(ostream& os, complex& c);

The operator += is a member of class Complex. It takes one parameter, a reference to
an instance of class Complex, and yields a reference to the same class. The other new
operator is the friend operator <<, which illustrates how to write a stream extractor
operator for a class. The friend operator has two parameters: a reference to class
ostream (the output stream class) and a reference to class Complex. The operator <<
returns a reference to class ostream. This type of value enables you to chain stream
output with other predefined types or other classes (assuming these classes have a
friend operator <<). The definition of friend operator << has two statements. The first
one outputs strings and the data members of class Complex to the output stream
parameter os. The friendship status of operator << allows it to access the real and imag
data members of its Complex-typed parameter c. The second statement in the operator

Listing 11.6. continued

Output

Analysis



353

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

definition returns the first parameter os.

The function main declares four instances of class Complex, c1, c2, c3, and c4. The
instances c1, c2, and c4 are created with nondefault values assigned to the data
members real and imag. The function tests use the operators =, +, <<, +=. The program
illustrates that you can use operators and friend operators to write code that is more
readable and supports a higher level of abstraction.

Summary
Today’s lesson introduced you to C++ classes and discussed the following topics:

■■ The basics of object-oriented programming include classes, objects, mes-
sages, methods, inheritance, and polymorphism.

■■ You declare base classes to specify the various private, protected, and public
members. C++ classes contain data members and member functions. The
data members store the state of a class instance, and the member functions
query and manipulate that state.

■■ Constructors and destructors support the automatic creation and removal of
class instances. Constructors are special members that must have the same
name as the host class. You may declare any number of constructors, or none
at all. In the latter case, the compiler creates one for you. Each constructor
enables you to create a class instance in a different way. There are two special
kinds of constructors: the default constructor and the copy constructor. In
contrast with constructors, C++ enables you to declare only one
parameterless destructor. Destructors automatically remove class instances.
The runtime system automatically invokes the constructor and destructor
when a class instance comes into and goes out of its scope.

■■ Declaring a class hierarchy enables you to derive classes from existing ones.
The descendant classes inherit the members of their ancestor classes. C++
classes are able to override inherited member functions by defining their own
versions. If you override a nonvirtual function, you may declare the new
version using a different parameter list. By contrast, you cannot alter the
parameter list of an inherited virtual function.

■■ Virtual member functions enable your classes to support polymorphic
behavior. Such behavior offers a response that is suitable for each class in a
hierarchy. After you declare a function virtual, you can override it only with
a virtual function in a descendant class. All versions of a virtual function in a
class hierarchy must have the same signature.



354

Object-Oriented Programming and C++ Classes
M

T
W

R
F

S
S

DAYDAY

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

■■ Friend functions are special nonmember functions that may access protected
and private data members. These functions enable you to implement
operations that are more flexible than those offered by member functions.

■■ Operators and friend operators enable you to support various operations,
such as addition, assignment, and indexing. These operators enable you to
offer a level of abstraction for your classes. In addition, they assist in making
the expressions that manipulate class instances more readable and more
intuitive.

Q&A
Q What happens if I declare the default, copy, and other constructors as

protected?

A Client programs are unable to create instances of that class. However, client
programs can use that class by declaring descendant classes with public
constructors.

Q Can I use the constructor for typecasting?

A Yes, you can incorporate this kind of typecasting in the creation of a class
instance. For example, if the class Complex has the constructor
Complex(double real, double imag), you can declare the instance c of class
Complex as follows:

Complex c = Complex(1.7, 2.4);

Q Can I chain messages to an instance?

A Yes, you can as long as the chained messages invoke member functions that
return a reference to the same class that receives the message. For example, if
you have a class String with the following member functions

String& upperCase();

string& reverse();

String& mapChars(char find, char replace);

you can write the following statement for the instance of class String s:

s.upperCase().reverse().mapChar(‘ ‘, ‘+’);

Q What happens if a class relies on the copy constructor, which is created
by the compiler, to copy instances of a class that has pointers?



355

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

A These constructors perform a bit-by-bit copy. Consequently, the corre-
sponding pointer members in both instances end up with the address to the
same dynamic data. This kind of duplication is a recipe for trouble!

Q Can I create an array of instances?

A Yes, you can; however, the accompanying class must have a default construc-
tor. The instantiation of the array uses the constructor mentioned previ-
ously.

Q Can I use a pointer to create an instance of class?

A Yes, you need to use the operators new and delete to allocate and deallocate
the dynamic space for the instance. Here is an example using the class
Complex:

Complex* pC;

pC = new Complex;

// manipulate the instance accessed by pointer pC

delete pC;

or

Complex* pC = new Complex;

// manipulate the instance accessed by pointer pC

delete pC;

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing on to the
next day’s lesson. Answers are provided in Appendix A, “Answers.”

Quiz
1. Where is the error in the following class declaration?

class String {

       char *str;

       unsigned len;

       String();

       String(String& s);



356

Object-Oriented Programming and C++ Classes
M

T
W

R
F

S
S

DAYDAY

11

A/ns6TYS Borland C++ 21 Days  #30483  Lisa D  4.14.94    Ch11LP#3(sp 4/12 folio)

       String(unsigned size, char = ‘ ‘);

       String(unsigned size);

       String& assign(String& s);

       ~String();

       unsigned getLen() const;

       char* getString();

       // other member functions

};

2. Where is the error in the following class declaration?

class String {

     protected:

       char *str;

       unsigned len;

     public:

       String();

       String(const char* s);

       String(String& s);

       String(unsigned size, char = ‘ ‘);

       String(unsigned size);

       ~String();

       // other member functions

};

3. True or false? The following statement, which creates the instance s based
on the preceding declaration of class String, is correct:

s = String(“Hello Borland C++”);

4. Looking at the program CLASS6.CPP, if you change the declarations of the
instances in function main to the following, will the program still compile?

Complex c1 = Complex(3, 5);

Complex c2 = Complex(7, 5);

Complex c3 = c1;

Complex c4 = Complex(2, 3);

Exercise
Create the program CLASS7.CPP from CLASS6.CPP by replacing the individual
instances c1 to c4 with c, an array of instances.



357

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

M
T

W
R

F
S

S

WEEK

1212

22

Basic Stream
File I/O



358

Basic Stream File I/O
M

T
W

R
F

S
S

DAYDAY

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

Today’s lesson introduces you to file I/O (input/output) operations using the C++
stream library. Although the STDIO.H library in C has been standardized by the
ANSI C committee, the C++ stream library has not. You have a choice of using file
I/O functions in the STDIO.H file or in the C++ stream library. Each of these two
I/O libraries offers a lot of power and flexibility. Today’s lesson presents basic and
practical operations that enable you to read and write data to files. You learn about the
following topics:

■■ Common stream I/O functions

■■ Sequential stream I/O for text

■■ Sequential stream I/O for binary data

■■ Random access stream I/O for binary data

■■ The new Borland C++ exception handling

To learn more about the C++ stream library, consult a C++ language reference book,
such as Tom Swan’s C++ Primer (Sams Publishing, 1992).

The C++ Stream Library
The C++ stream I/O library (also known as the iostream library) is made up of a
hierarchy of classes that are declared in several header files. The IOSTREAM.H
header file that we have used thus far is only one of these. Others include IO.H,
ISTREAM.H, OSTREAM.H, IFSTREAM.H, OFSTREAM.H, and FSTREAM.H.
The IO.H header file declares low-level classes and identifiers. The ISTREAM.H and
OSTREAM.H files support the basic input and output stream classes. The
IOSTREAM.H combines the operations of the classes in the previous two header
files. Similarly, the IFSTREAM.H and OFSTREAM.H files support the basic file
input and output stream classes. The FSTREAM.H file combines the operations of
the classes in the previous two header files. There are additional stream library files that
offer even more specialized stream I/O. The C++ ANSI committee will define the
standard stream I/O library, and the committee’s work will end any confusion
regarding which classes and header files are part of the standard stream library and
which ones are not.



359

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

Common Stream I/O Functions
In this section, we present stream I/O functions that are common to both sequential
and random access I/O. These functions include open, close, good, and fail, in
addition to the operator !.

The open function enables you to open a file stream for input, output, append, and
both input and output. The function also permits you to specify whether the related
I/O is binary or text.

S
yn

ta
x

The open Function
The prototype for the open function is

void open(const char* filename,
          int mode,
          int m = filebuf::openprot);

The parameter filename specifies the name of the file to open. The parameter mode
indicates the I/O mode. Here is a list of arguments for parameter mode that are
exported by the IO.H header file:

in Open stream for input.
out Open stream for output.
ate Set stream pointer to the end of the file.
app Open stream for append mode.
trunc Truncate file size to 0 if it already exists.
nocreate Raise an error if the file does not already exist.
noreplace Raise an error if the file already exists.
binary Open in binary mode.

Examples:

// open stream for input
fstream f;
f.open(“\\AUTOEXEC.BAT”, ios::in);

// open stream for output
fstream f;
f.open(“\\AUTOEXEC.OLD”, ios:out);

// open stream for binary input and output
fstream f;
f.open(“INCOME.DAT”, ios::in | ios::out | ios::binary);



360

Basic Stream File I/O
M

T
W

R
F

S
S

DAYDAY

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

Note: The file stream classes offer constructors that include the action
(and have the same parameters) of the function open.

The close function closes the stream and recuperates the resources involved. These
resources include the memory buffer used in the stream I/O operations.

S
yn

ta
x

The close Function
The prototype for the close function is

void close();

Example:

fstream f;
// open stream
f.open(“\\AUTOEXEC.BAT”, ios::in);
// process file
// now close stream
f.close();

The C++ stream library includes a set of basic functions that check the error status of
a stream operation. These functions include the following:

1. The good() function returns a nonzero value if there is no error in a stream
operation. The declaration of function good is

int good();

2. The fail() function returns a nonzero value if there is an error in a stream
operation. The declaration of function fail is

int fail();

3. The overloaded operator ! is applied to a stream instance to determine the
error status.

The C++ stream libraries offer additional functions to set and query other aspects and
types of stream errors.



361

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

Sequential Text Stream I/O
The functions and operators involved in sequential text I/O are simple. You have
already been exposed to most of them in earlier lessons. The functions and operators
include the following:

1. The stream extractor operator << writes strings and characters to a stream.

2. The stream inserter operator >> reads characters from a stream.

3. The getline function reads strings from a stream.

S
yn

ta
x

The getline Function
The prototype for the function getline is

istream& getline(char* buffer,
                 int size,
                 char delimiter = ‘\n’);

istream& getline(signed char* buffer,
                 int size,
                 char delimiter = ‘\n’);

istream& getline(unsigned char* buffer,
                 int size,
                 char delimiter = ‘\n’);

The parameter buffer is a pointer to the string receiving the characters from the
stream. The parameter size specifies the maximum number of characters to read. The
parameter delimiter specifies the delimiting character, which causes the string input
to stop before reaching the number of characters specified by parameter size. The
parameter delimiter has the default argument of ‘\n’.

Example:

fstream f;
char textLine[MAX];
f.open(“\\CONFIG.SYS”, ios::in);
while (!f.eof()) {
  f.getline(textLine, MAX);
  cout << textLine << “\n”;
}
f.close();



362

Basic Stream File I/O
M

T
W

R
F

S
S

DAYDAY

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

Type

Let’s look at an example. Listing 12.1 shows the source code for the program
IO1.CPP. The program performs the following tasks:

■■ Prompts you to enter the name of an input text file.

■■ Prompts you to enter the name of an output text file. (The program detects
if the names of the input and output files are the same, and if so, reprompts
you for a different output filename.)

■■ Reads the lines from the input files and removes any trailing spaces in these
lines.

■■ Writes the lines to the output file and also to the standard output window.

Listing 12.1. Source code for the IO1.CPP program.

1:  // C++ program that demonstrates sequential file I/O
2:
3:  #include <iostream.h>
4:  #include <fstream.h>
5:  #include <string.h>
6:
7:  enum boolean { false, true };
8:
9:  const unsigned LINE_SIZE = 128;
10: const unsigned NAME_SIZE = 64;
11:
12: void trimStr(char* s)
13: {
14:   int i = strlen(s) - 1;
15:   // locate the character where the trailing spaces begin
16:   while (i >= 0 && s[i] == ‘ ‘)
17:     i--;
18:   // truncate string
19:   s[i+1] = ‘\0’;
20: }
21:
22: void getInputFilename(char* inFile, fstream& f)
23: {
24:   boolean ok;
25:
26:   do {
27:     ok = true;
28:     cout << “Enter input file : “;
29:     cin.getline(inFile, NAME_SIZE);
30:     f.open(inFile, ios::in);
31:     if (!f) {
32:       cout << “Cannot open file “ << inFile << “\n\n”;
33:       ok = false;



363

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

34:     }
35:   } while (!ok);
36:
37: }
38:
39: void getOutputFilename(char* outFile, const char* inFile,
40:                        fstream& f)
41: {
42:   boolean ok;
43:
44:   do {
45:     ok = true;
46:     cout << “Enter output file : “;
47:     cin.getline(outFile, NAME_SIZE);
48:     if (stricmp(inFile, outFile) != 0) {
49:       f.open(outFile, ios::out);
50:       if (!f) {
51:         cout << “File “ << outFile << “ is invalid\n\n”;
52:         ok = false;
53:       }
54:     }
55:     else {
56:       cout << “Input and output files must be different!\n”;
57:       ok = false;
58:     }
59:   } while (!ok);
60: }
61:
62: void processLines(fstream& fin, fstream& fout)
63: {
64:   char line[LINE_SIZE + 1];
65:
66:   // loop to trim trailing spaces
67:   while (fin.getline(line, LINE_SIZE)) {
68:     trimStr(line);
69:     // write line to the output file
70:     fout << line << “\n”;
71:     // echo updated line to the output window
72:     cout << line << “\n”;
73:   }
74:
75: }
76: main()
77: {
78:
79:   fstream fin, fout;
80:   char inFile[NAME_SIZE + 1], outFile[NAME_SIZE + 1];
81:
82:   getInputFilename(inFile, fin);
83:   getOutputFilename(outFile, inFile, fout);

continues



364

Basic Stream File I/O
M

T
W

R
F

S
S

DAYDAY

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

Listing 12.1. continued

84:   processLines(fin, fout);
85:   // close streams
86:   fin.close();
87:   fout.close();
88:   return 0;
89: }

Here is a sample session with the program in Listing 12.1:

Enter input file : sample.txt
Enter output file : sample.out
This is line 1
This is line 2
This is line 3
This is line 4

The program in Listing 12.1 declares no classes and instead focuses on using file
streams to input and output text. The program declares the functions trimStr,
getInputFilename, getOutputFilename, processLines, and main.

The function trimStr shaves the trailing spaces in the strings passed by parameter s.
The function declares the local variable i and assigns it the index of the character just
before the null terminator. The function uses the while loop in line 13 to perform a
backward scan of the characters in string s for the first nonspace character. The
statement at line 16 assigns the null terminator character to the character located right
after the last nonspace character in the string s.

The function getInputFilename obtains the input filename and opens its correspond-
ing input file stream. The parameter inFile passes the name of the input file to the
function caller. The reference parameter f passes the opened input stream to the
function caller. The function getInputFilename declares the local flag ok. The
function uses the do-while loop in lines 26 through 35 to obtain a valid filename and
to open that file for input. Line 27 contains the first statement inside the loop, which
assigns the enumerated value true to the local variable ok. The output statement in
line 28 prompts you for the input filename. The statement in line 29 calls the stream
input function getline to obtain your input and to store it in the parameter inFile.
The statement in line 30 opens the input file using the stream parameter f. The open
statement uses the ios::in value to indicate that the stream is opened for text input.
The if statement in line 31 determines whether or not the stream f is successfully
opened. If not, the function executes the statements in lines 32 and 33. These
statements display an error message and assign the enumerated value false to the local

Output

Analysis



365

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

variable ok. The loop’s while clause in line 35 examines the condition !ok. The loop
iterates until you supply it a valid filename, which must successfully be opened for
input.

The function getOutputFilename complements the function getInputFilename and
has three parameters. The parameter outFile passes the output filename of the
function caller. The parameter inFile supplies the function with the input filename.
The function uses this parameter to ensure that the input and output filenames are not
the same. The parameter f passes the output stream to the function caller. The
implementation of function getOutputFilename is very similar to that of function
getInputFilename. The main difference is that the function getOutputFilename calls
the function stricmp to compare the values in parameter inFile and outFile. The
function uses the result of stricmp to determine whether the names of the input and
output files are identical. If so, the function executes the statements in the else clause
at lines 57 and 58. These statements display an error message and assign false to the
local variable ok.

The function processLines reads the lines from the input file stream, trims them, and
writes them to the output file stream. The parameters fin and fout pass the input and
output file streams, respectively. The function declares the local string variable line
and uses the while loop in lines 67 through 73 to process the text lines. The while
clause contains the call to function getline, which reads the next line in the input
stream fin and assigns the input line to variable line. The result of function getline
causes the while loop to stop iterating when there are no more input lines. The first
statement inside the loop, located at line 68, calls the function trimStr and passes it
the argument line. This function call prunes any existing trailing spaces in the local
variable line. The statement in line 70 writes the string in variable line to the output
file stream. The statement in line 72 echoes the string in line to the standard output
window. (We placed this statement in the program so that you can monitor the
progress of the program.)

The function main declares the file streams fin and fout, and the string variables
inFile and outFile. The statement in line 82 calls function getInputFilename and
passes it the arguments inFile and fin. This call obtains the name of the input file
and the input stream through the arguments inFile and fin, respectively. The
statement in line 83 calls the function getOutputFilename and passes it the arguments
outFile, inFile, and fout. This call obtains the name of the output file and the output
stream through the arguments outFile and fout, respectively. The statement in line
84 calls function processLines and passes it the arguments fin and fout. This call



366

Basic Stream File I/O
M

T
W

R
F

S
S

DAYDAY

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

processes the lines in the input file stream fin and writes the results to the output file
stream fout. The statements in lines 86 and 87 close the input and output file streams,
respectively.

Sequential Binary File Stream I/
O

The C++ stream library offers the overloaded stream functions write and read for
sequential binary file stream I/O. The function write sends multiple bytes to an
output stream. This function can write any variable or instance to a stream.

S
yn

ta
x

The write Function
The prototype for the overloaded function write is

ostream& write(const char* buff, int num);
ostream& write(const signed char* buff, int num);
ostream& write(const unsigned char* buff, int num);

The parameter buff is the pointer to the buffer that contains the data to be sent to the
output stream. The parameter num indicates the number of bytes in the buffer that are
sent to the stream.

Example:

const MAX = 80;
char buff[MAX+1] = “Hello World!”;
int len = strlen(buffer) + 1;
fstream f;
f.open(“CALC.DAT”, ios::out | ios::binary);
f.write((const unsigned char*)*len, sizeof(len));
f.write((const unsigned char*)buff, len);
f.close();

The function read receives multiple bytes from an input stream. This function can
read any variable or can read from a stream.

S
yn

ta
x

The read Function
The prototype for the overloaded function read is

istream& read(char* buff, int num);
istream& read(signed char* buff, int num);
istream& read(unsigned char* buff, int num);



367

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

Type

The parameter buff is the pointer to the buffer that receives the data from the input
stream. The parameter num indicates the number of bytes to read from the stream.

Example:

const MAX = 80;
char buff[MAX+1];
int len;
fstream f;
f.open(“CALC.DAT”, ios::in | ios::binary);
f.read((const unsigned char*)*len, sizeof(len));
f.read((const unsigned char*)buff, len);
f.close();

Let’s look at an example that performs sequential binary stream I/O. Listing 12.2
shows the source code for the program IO2.CPP. The program declares a class that
models dynamic numerical arrays. The stream I/O operations enable the program to
read and write both the individual array elements and an entire array in binary files.
The program creates the arrays arr1, arr2, and arr3 and then performs the following
tasks:

■■ Assigns values to the elements of array arr1. (This array has 10 elements.)

■■ Assigns values to the elements of array arr3. (This array has 20 elements.)

■■ Displays the values in array arr1.

■■ Writes the elements of array arr1 to the file ARR1.DAT, one element at a
time.

■■ Reads the elements of arr1 from the file into the array arr2. (The array arr2
has 10 elements—the same size as array arr1.)

■■ Displays the values in array arr2.

■■ Displays the values in array arr3.

■■ Writes the elements of array arr3 to file ARR3.DAT in one swoop.

■■ Reads, in one swoop, the data in file ARR3.DAT and stores them in array
arr1.

■■ Displays the values in array arr1. (The output shows that array arr1 has the
same size and data as array arr3.)

Listing 12.2. Source code for the IO2.CPP program.

 1:  /*

continues



368

Basic Stream File I/O
M

T
W

R
F

S
S

DAYDAY

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

Listing 12.2. continued

 2:     C++ program that demonstrates sequential binary file I/O
 3:  */
 4:
 5:  #include <iostream.h>
 6:  #include <fstream.h>
 7:
 8:  const unsigned MIN_SIZE = 10;
 9:  const double BAD_VALUE = -1.0e+30;
 10: enum boolean { false, true };
 11:
 12: class Array
 13: {
 14:    protected:
 15:      double *dataPtr;
 16:      unsigned size;
 17:      double badIndex;
 18:
 19:    public:
 20:      Array(unsigned Size = MIN_SIZE);
 21:      ~Array()
 22:        { delete [] dataPtr; }
 23:      unsigned getSize() const { return size; }
 24:      double& operator [](unsigned index)
 25:      { return (index < size) ? *(dataPtr + index) : badIndex; }
 26:      boolean writeElem(fstream& os, unsigned index);
 27:      boolean readElem(fstream& is, unsigned index);
 28:      boolean writeArray(const char* filename);
 29:      boolean readArray(const char* filename);
 30: };
 31:
 32: Array::Array(unsigned Size)
 33: {
 34:   size = (Size < MIN_SIZE) ? MIN_SIZE : Size;
 35:   badIndex = BAD_VALUE;
 36:   dataPtr = new double[size];
 37: }
 38:
 39: boolean Array::writeElem(fstream& os, unsigned index)
 40: {
 41:    if (index < size) {
 42:      os.write((unsigned char*)(dataPtr + index), sizeof(double));
 43:      return (os.good()) ? true : false;
 44:    }
 45:    else
 46:      return false;
 47: }
 48:
 49: boolean Array::readElem(fstream& is, unsigned index)
 50: {



369

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

 51:    if (index < size) {
 52:      is.read((unsigned char*)(dataPtr + index), sizeof(double));
 53:      return (is.good()) ? true : false;
54:     }
55:     else
56:       return false;
57:  }
58:
59:  boolean Array::writeArray(const char* filename)
60:  {
61:     fstream f(filename, ios::out | ios::binary);
62:
63:     if (f.fail())
64:       return false;
65:     f.write((unsigned char*) &size, sizeof(size));
66:     f.write((unsigned char*)dataPtr, size * sizeof(double));
67:     f.close();
68:     return (f.good()) ? true : false;
69:  }
70:
71:  boolean Array::readArray(const char* filename)
72:  {
73:     fstream f(filename, ios::in | ios::binary);
74:     unsigned sz;
75:
76:     if (f.fail())
77:       return false;
78:     f.read((unsigned char*) &sz, sizeof(sz));
79:     // need to expand the array
80:     if (sz != size) {
81:       delete [] dataPtr;
82:       dataPtr = new double[sz];
83:       size = sz;
84:     }
85:     f.read((unsigned char*)dataPtr, size * sizeof(double));
86:     f.close();
87:     return (f.good()) ? true : false;
88:  }
89:
90:  main()
91:  {
92:    const unsigned SIZE1 = 10;
93:    const unsigned SIZE2 = 20;
94:    char* filename1 = “array1.dat”;
95:    char* filename2 = “array3.dat”;
96:    Array arr1(SIZE1), arr2(SIZE1), arr3(SIZE2);
97:    fstream f(filename1, ios::out | ios::binary);
98:
99:    // assign values to array arr1
100:   for (unsigned i = 0; i < arr1.getSize(); i++)

continues



370

Basic Stream File I/O
M

T
W

R
F

S
S

DAYDAY

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

Listing 12.2. continued
101:     arr1[i] = 10 * i;
102:
103:   // assign values to array arr3
104:   for (i = 0; i < SIZE2; i++)
105:     arr3[i] = i;
106:
107:   cout << “Array arr1 has the following values:\n”;
108:   for (i = 0; i < arr1.getSize(); i++)
109:     cout << arr1[i] << “  “;
110:   cout << “\n\n”;
111:
112:   // write elements of array arr1 to the stream
113:   for (i = 0; i < arr1.getSize(); i++)
114:     arr1.writeElem(f, i);
115:   f.close();
116:
117:   // reopen the stream for input
118:   f.open(filename1, ios::in | ios::binary);
119:
120:   for (i = 0; i < arr1.getSize(); i++)
121:     arr2.readElem(f, i);
122:   f.close();
123:
124:   // display the elements of array arr2
125:   cout << “Array arr2 has the following values:\n”;
126:   for (i = 0; i < arr2.getSize(); i++)
127:     cout << arr2[i] << “  “;
128:   cout << “\n\n”;
129:
130:   // display the elements of array arr3
131:   cout << “Array arr3 has the following values:\n”;
132:   for (i = 0; i < arr3.getSize(); i++)
133:     cout << arr3[i] << “  “;
134:   cout << “\n\n”;
135:
136:   // write the array arr3 to file ARRAY3.DAT
137:   arr3.writeArray(filename2);
138:   // read the array arr1 from file ARRAY3.DAT
139:   arr1.readArray(filename2);
140:
141:     // display the elements of array arr1
142:   cout << “Array arr1 now has the following values:\n”;
143:   for (i = 0; i < arr1.getSize(); i++)
144:     cout << arr1[i] << “  “;
145:   cout << “\n\n”;
146:   return 0;



371

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

147: }

Here is a sample session with the program in Listing 12.2:

Array arr1 has the following values:
0  10  20  30  40  50  60  70  80  90

Array arr2 has the following values:
0  10  20  30  40  50  60  70  80  90

Array arr3 has the following values:
0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19

Array arr1 now has the following values:
0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19

The program in Listing 12.2 declares a version of class Array that resembles the
one in Day 11, Listing 11.2. The main difference is that here we use the operator []
to replace both the member functions store and recall. This operator checks for
valid indices and returns the value in member badIndex if the argument is out of range.
In addition to operator [], we added the member functions writeElem, readElem,
writeArray, and readArray to perform sequential binary file stream I/O.

The function writeElem, defined in lines 39 through 47, writes a single array element
to an output stream. The parameter os represents the output stream. The parameter
index specifies the array element to write. The function writeElem yields true if the
argument for the index is valid and if the stream output proceeds without any error.
After writeElem writes an array element, the internal stream pointer advances to the
next location.

The function readElem, defined in lines 49 through 57, reads a single array element
from an input stream. The parameter is represents the input stream. The parameter
index specifies the array element to read. The function readElem returns true if the
argument for the index is valid and if the stream input proceeds without any error.
After the readElem reads an array element, the internal stream pointer advances to the
next location.

The functions writeElem and readElem permit the same class instance to write and
read data elements, respectively, from multiple streams.

The function writeArray, defined in lines 59 through 69, writes the entire elements
of the array to a binary file. The parameter filename specifies the name of the output
file. The function opens an output stream and writes the value of the data member

Output

Analysis



372

Basic Stream File I/O
M

T
W

R
F

S
S

DAYDAY

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

size and then writes the elements of the dynamic array. The writeArray function
returns true if it successfully writes the array to the stream. Otherwise, it  yields false.
The function opens a local output stream by using the stream function open and
supplying it with the filename and I/O mode arguments. The I/O mode argument is
the expression ios::out | ios::binary, which specifies that the stream is opened for
binary output only. The function makes two calls to the stream function write—the
first to write the data member size, and the second to write the elements of the
dynamic array.

The function readArray, defined in lines 71 through 88, reads the entire elements of
the array from a binary file. The parameter filename specifies the name of the input
file. The function opens an input stream and reads the value of the data member size
and then reads the elements of the dynamic array. The readArray function returns
true if it successfully reads the array to the stream. Otherwise, the function yields false.
The function opens a local input stream by using the stream function open and
supplying it the filename and I/O mode arguments. The I/O mode argument is the
expression ios::in | ios::binary, which specifies that the stream is opened for
binary input only. The function makes two calls to the stream function read—the first
to read the data member size, and the second to read the elements of the dynamic
array. Another feature of function readArray is that it resizes the instance of class Array
to accommodate the data from the binary file. This means that a dynamic array
accessed by the class instance may either shrink or expand, depending on the size of
the array stored on file.

The member functions in Listing 12.2 indicate that the program performs two types
of sequential binary stream I/O. The first type of I/O, implemented in functions
readElem and writeElem, involves items that have the same data type. The second type
of I/O, implemented in the functions readArray and writeArray, involves items that
have different data types.

In Listing 12.2, the function main performs the following relevant tasks:

■■ Declares, in line 96, three instances of class Array, namely, arr1, arr2, and
arr3. (The first two instances have the same dynamic array size, specified by
the constant SIZE1, whereas instance arr3 has a larger size, specified by the
constant SIZE2.)

■■ Declares, in line 97, the file stream f and opens it (using a stream construc-
tor) to access file ARR1.DAT in binary output mode.

■■ Uses the for loops in lines 100 and 104 to arbitrarily assign values to the



373

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

instance arr1 and arr3, respectively.

■■ Displays the elements of instance arr1 using the for loop in line 108.

■■ Writes the elements of array arr1 to the output file stream f, using the for
loop in line 113 to send the writeElem message to instance arr1 and to
supply the message with the output file stream f and the loop control
variable i.

■■ Closes the output file stream by sending the close message to the output file
stream f.

■■ Opens, in line 118, the file stream f to access the data file ARR1.DAT.
(This time, the message open specifies a binary input mode.)

■■ Reads the elements of instance arr2 (which has not yet been assigned any
values) from the input file stream f, using the for loop in line 120 to send
the message readElem to instance arr2 and to supply the message with the
arguments f, the file stream, and i, the loop control variable.

■■ Closes the input file stream, in line 122, by sending the message close to the
input file stream f.

■■ Displays the elements of instance arr2 using the for loop in line 126. (These
elements match those of instance arr1.)

■■ Displays the elements of instance arr3 by using the for loop in line 132.

■■ Writes the entire instance arr3 by sending the message writeArray to
instance arr3. (The message writeArray has the filename argument of
ARR3.DAT.)

■■ Reads the array in file ARR3.DAT into instance arr1, sending the message
readArray to instance arr1 and supplying the message with the filename
argument of ARR3.DAT.

■■ Displays the new elements of instance arr1 using the for loop in line 143.

Random Access File Stream I/O
Random access file stream operations also use the stream functions read and write



374

Basic Stream File I/O
M

T
W

R
F

S
S

DAYDAY

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

that were presented in the preceding section. The stream library offers a number of
stream-seeking functions to enable you to move the stream pointer to any valid
location. The function seekg is one of such functions.

S
yn

ta
x

The seekg Function
The prototype for the overloaded function seekg is

istream& seekg(long pos);
istream& seekg(long pos, seek_dir dir);

The parameter pos in the first version specifies the absolute byte position in the stream.
In the second version, the parameter pos specifies a relative offset, based on the
argument for parameter dir. Here are the arguments for the latter parameter:

ios::beg From the beginning of the file

ios::cur From the current position of the file

ios::end From the end of the file

Example:

const BLOCK_SIZE = 80;
char buff[BLOCK_SIZE] = “Hello World!”;
fstream f(“CALC.DAT”, ios::in | ios::out | ios::binary);
f.seekg(3 * BLOCK_SIZE); // seek block # 4
f.read((const unsigned char*)buff, BLOCK_SIZE);
cout << buff <<< “\n”;
f.close();

☛ New Term: A virtual array is a disk-based array that stores fixed-size
strings on disk.

Let’s look at an example that uses random access file stream I/O. Listing 12.3 shows
the source code for the program IO3.CPP and implements a virtual array. The
program performs the following tasks:

■■ Uses an internal list of names to create a virtual array object.

■■ Displays the elements in the unordered virtual array object.

■■ Prompts you to enter a character and press the Return key.

■■ Sorts the elements of the virtual array object; this process requires random



375

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

Type access I/O.

■■ Displays the elements in the sorted virtual array object.

Listing 12.3. Source code for the IO3.CPP program.

 1:  /*
 2:     C++ program that demonstrates random-access binary file I/O
 3:  */
 4:
 5:  #include <iostream.h>
 6:  #include <fstream.h>
 7:  #include <stdlib.h>
 8:  #include <string.h>
 9:
 10: const unsigned MIN_SIZE = 5;
 11: const unsigned STR_SIZE = 31;
 12: const double BAD_VALUE = -1.0e+30;
 13: enum boolean { false, true };
 14:
 15: class VmArray
 16: {
 17:    protected:
 18:      fstream f;
 19:      unsigned size;
 20:      double badIndex;
 21:
 22:    public:
 23:      VmArray(unsigned Size, const char* filename);
 24:      ~VmArray()
 25:        { f.close(); }
 26:      unsigned getSize() const
 27:        { return size; }
 28:      boolean writeElem(const char* str, unsigned index);
 29:      boolean readElem(char* str, unsigned index);
 30:      void Combsort();
 31: };
 32:
 33: VmArray::VmArray(unsigned Size, const char* filename)
 34: {
 35:   char s[STR_SIZE+1];
 36:   size = (Size < MIN_SIZE) ? MIN_SIZE : Size;
 37:   badIndex = BAD_VALUE;
 38:   f.open(filename, ios::in | ios::out | ios::binary);
 39:   if (f.good()) {
 40:     // fill the file stream with empty strings
 41:     strcpy(s, “”);;
 42:     f.seekg(0);

continues



376

Basic Stream File I/O
M

T
W

R
F

S
S

DAYDAY

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

Listing 12.3. continued

 43:     for (unsigned i = 0; i < size; i++)
 44:       f.write((unsigned char*)s, sizeof(s));
 45:   }
 46: }
 47:
 48: boolean VmArray::writeElem(const char* str, unsigned index)
 49: {
 50:    if (index < size) {
 51:      f.seekg(index * (STR_SIZE+1));
 52:      f.write((unsigned char*)str, (STR_SIZE+1));
 53:      return (f.good()) ? true : false;
 54:    }
 55:    else
 56:      return false;
 57: }
 58:
 59: boolean VmArray::readElem(char* str, unsigned index)
 60: {
 61:    if (index < size) {
 62:      f.seekg(index * (STR_SIZE+1));
 63:      f.read((unsigned char*)str, (STR_SIZE+1));
 64:      return (f.good()) ? true : false;
 65:    }
 66:    else
 67:      return false;
 68: }
 69:
 70: void VmArray::Combsort()
 71: {
 72:    unsigned i, j, gap = size;
 73:    boolean inOrder;
 74:    char strI[STR_SIZE+1], strJ[STR_SIZE+1];
 75:
 76:    do {
 77:      gap = (gap * 8) / 11;
 78:      if (gap < 1)
 79:        gap = 1;
 80:      inOrder = true;
 81:      for (i = 0, j = gap; i < (size - gap); i++, j++) {
 82:        readElem(strI, i);
 83:        readElem(strJ, j);
 84:        if (strcmp(strI, strJ) > 0) {
 85:          inOrder = false;
 86:          writeElem(strI, j);
 87:          writeElem(strJ, i);
 88:        }
 89:      }
 90:    } while (!(inOrder && gap == 1));
 91: }
 92:



377

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

 93: main()
 94: {
 95:   char* data[] = { “Michigan”, “California”, “Virginia”, “Maine”,
 96:                    “New York”, “Florida”, “Nevada”, “Alaska”,
 97:                    “Ohio”, “Maryland” };
98:    VmArray arr(10, “arr.dat”);
99:    char str[STR_SIZE+1];
100:   char c;
101:
102:   // assign values to array arr
103:   for (unsigned i = 0; i < arr.getSize(); i++) {
104:     strcpy(str, data[i]);
105:     arr.writeElem(str, i);
106:   }
107:   // display unordered array
108:   cout << “Unsorted arrays is:\n”;
109:   for (i = 0; i < arr.getSize(); i++) {
110:     arr.readElem(str, i);
111:     cout << str << “\n”;
112:   }
113:   // pause
114:   cout << “\nPress any key and then Return to sort the array...”;
115:   cin >> c;
116:   // sort the array
117:   arr.Combsort();
118:   // display sorted array
119:   cout << “Sorted arrays is:\n”;
120:   for (i = 0; i < arr.getSize(); i++) {
121:     arr.readElem(str, i);
122:     cout << str << “\n”;
123:   }
124:   return 0;

125: }

Here is a sample session with the program in Listing 12.3:

Unsorted arrays is:
Michigan
California
Virginia
Maine
New York
Florida
Nevada
Alaska
Ohio
Maryland

Press any key and then Return to sort the array...d
Sorted arrays is:

Output



378

Basic Stream File I/O
M

T
W

R
F

S
S

DAYDAY

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

Alaska
California
Florida
Maine
Maryland
Michigan
Nevada
New York
Ohio
Virginia

The program in Listing 12.3 declares the class VmArray. This class models a disk-based
dynamic array that stores all its elements in a random access binary file. Notice that
the class declares an instance of class fstream and that there is no pointer to a dynamic
array. The class declares a constructor, a destructor, and a number of member
functions.

The class constructor has two parameters, namely, Size and filename. The parameter
Size specifies the size of the virtual array. The parameter filename names the binary
file that stores the elements of a class instance. The constructor opens the stream f
using the stream function open and supplies it the argument of parameter filename
and the I/O mode expression ios::in | ios::out | ios::binary. This expression
specifies that the stream is opened for binary input and output mode (that is, random
access mode). If the constructor successfully opens the file stream, it proceeds to fill
the file with zeros. The class destructor performs the simple task of closing the file
stream f.

The functions writeElem and readElem support the random access of array elements.
These functions use the stream function seekg to position the stream pointer at the
appropriate array element. The writeElem then calls the stream function write to
store an array element (supplied by the parameter str). By contrast, the function
readElem calls the stream function read to retrieve an array element (returned by the
parameter str). Both functions return Boolean results that indicate the success of the
I/O operation.

The VmArray class also declares the Combsort function to sort the elements of the virtual
array. This function uses the readElem and writeElem member functions to access and
swap the array elements.

The function main performs the following relevant tasks:

■■ Declares the instance arr, of class VmArray. (This instance stores 10 strings in
the binary file ARR.DAT.)

■■ Assigns random values to the elements of instance arr, using the for loop in

Output

Analysis



379

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

lines 103 through 106, to assign strings accessed by data[i] to the variable
str and then to write the value in str to the instance arr by sending it the
message writeElem. (The arguments for the message writeElem are the string
variable, str and the loop control variable, i.)

■■ Displays the unsorted elements of instance arr using the for loop in line
109. (The statement in line 110 sends the message readElem to the instance
arr to obtain an element in the virtual array.)

■■ Sorts the array by sending the message Combsort to the instance arr.

■■ Displays the sorted elements of instance arr using the for loop in line 120.
(The statement in line 121 sends the message readElem to the instance arr to
obtain an element in the virtual array.)

Exception Handling
The evolution of the C++ language has resulted in language extensions, some of which
still await the approval by the ANSI Standard Committee for C++. One of these new
extensions is a set of extensions that allow C++ programs to offer a more sophisticated
mechanism for triggering, identifying, and dealing with runtime errors. This section
offers you a brief introduction to the syntax of exception handling and provides you
with an example.

The proposed exception mechanism revolves around placing the statements that
might generate a runtime error in a special block, the try block. This block is followed
by one or more catch blocks that identify and handle the errors generated in the try
block.

S
yn

ta
x

The try and catch Blocks
The syntax for the try and catch blocks is

try {
  // place code that may generate an exception
}
catch(T1 [X1]) {
  // handle exception type T1
}
[catch(T2 [X2]) {
  // handle exception type T2



380

Basic Stream File I/O
M

T
W

R
F

S
S

DAYDAY

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

}]
[other catch blocks]
[catch(...) {
  // handle remaining types of exceptions
}]

The types T1 and T2 are structures or classes that support user-defined exceptions. The
parameter X1 can have the type T1, T1&, const T1, and const T1&. The parameter X2
can have the same variations for type T2. The last catch block uses the ellipsis (three
dots) to indicate that it is a catch-all block.

try {
  // open stream for input
  fstream f;
  f.myOpen(“CALC.TXT”, ios::in);
}
catch(TFileError e) {
  cout << “Cannot open file for input\n”
}

The preceding example has a try block that attempts to open the file CALC.TXT
using a user-defined member function myOpen. This function throws (that is, gener-
ates) an exception of the type TFileError (a user-defined exception type). The catch
block handles the TFileError exception type by displaying an error message.

☛ New Term: An exception is runtime error.

☛ New Term: To throw an exception means to generate a runtime error.

Borland C++ enables you to define your own exception types, using structures or
classes. An exception type can be an empty structure or class if you only need the name
of the structure or class type. In case you want to provide more information related
to the nature of the exception, the exception type may include data members and
member functions that support manipulating the exception state.

Once you define the exception type, you can then declare normal functions and
member functions of class to throw these exceptions.

S
yn

ta
x

The Declaration of Exceptions Thrown by a



381

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

Function
The syntax for declaring functions that can or cannot throw exceptions is

[returnType] functionName([parameterList]) throw();

The preceding syntax declares that the function functionName should not throw an
exception.

[returnType] functionName([parameterList]);

The preceding syntax declares that the function functionName can throw any type of
exceptions.

[returnType] functionName([parameterList])
   throw(exceptionTypeList)

The preceding syntax declares that the function functionName can only throw an
exception in the comma-delimited exception type list, exceptionTypeList.

Examples:

void calc() throw();
void parse();
void input() throw(TFileErr, TMemoryErr);

The declaration of function calc states that the function cannot throw any kind of
exception. By contrast, the declaration of function parse states that the function can
throw any kind of exception. The declaration of function input states that the
function can only throw the exceptions of type TFileErr, TMemoryErr, or their
descendant classes. This function throws an exception of type TFileError (a user-
defined exception type). The catch block handles the TFileError exception type by
displaying an error message.

Borland C++ requires that you declare the throw clause in both the declaration and
the definition of a function and a member function.

The last component of handling exceptions deals with throwing them. Borland C++
supplies the keyword throw, which throws an exception.

S
yn

ta
x

The throw Keyword
The syntax for the throw keyword is

throw(exceptionInstance);

The exceptionInstance is an instance of an exception structure or class.

Example:



382

Basic Stream File I/O
M

T
W

R
F

S
S

DAYDAY

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

Type

class TFileErr
{};

// declare an exception instance
TFileErr BadIO;

void input()
  throw(TFileErr)
{
  MyStream f;
  try {
    if (!f.MyOpen(“calc.dat”))
       throw(badIO);
    // process input
  }
  catch(TFileErr e) {
    cout << “Failed to open file CALC.DAT\n”;
  }
}

The preceding function throws the exception instance BadIO (an instance of the
exception type class TFileErr).

Let’s look at an example. Listing 12.4 shows the source code for the program
IOERR1.CPP. This program is derived from program IO2.CPP in Listing 12.2. The
program IOERR1.CPP performs the same tasks as program IO2.CPP and addition-
ally attempts to access array elements at the out-of-range indices of 100, 1000, and
10000.

Listing 12.4. Source code for the IOERR1.CPP program.

 1:   /*
 2:     C++ program that demonstrates sequential binary file I/O
 3:   */
 4:
 5:   #include <iostream.h>
 6:   #include <fstream.h>
 7:
 8:   const unsigned MIN_SIZE = 10;
 9:   const double BAD_VALUE = -1.0e+30;
 10:  enum boolean { false, true };
 11:
 12:  class TErrIO
 13:  {};
 14:
 15:  class TErrIndex
 16:  {};
 17:
 18:  class Array
 19:  {



383

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

 20:      protected:
 21:        double *dataPtr;
 22:        unsigned size;
 23:        double badIndex;
 24:        TErrIO ErrIO;
 25:        TErrIndex ErrIndex;
 26:
 27:      public:
 28:        Array(unsigned Size = MIN_SIZE);
 29:        ~Array()
 30:            { delete [] dataPtr; }
 31:        unsigned getSize() const { return size; }
 32:        double& operator [](unsigned index)
 33:        { return (index < size) ? *(dataPtr + index) : badIndex; }
 34:        void writeElem(fstream& os, unsigned index)
 35:             throw(TErrIO, TErrIndex);
 36:        void readElem(fstream& is, unsigned index)
 37:             throw(TErrIO, TErrIndex);
 38:        void writeArray(const char* filename)
 39:             throw(TErrIO);
 40:        void readArray(const char* filename)
 41:             throw(TErrIO);
 42:  };
 43:
 44:  Array::Array(unsigned Size)
 45:  {
 46:    size = (Size < MIN_SIZE) ? MIN_SIZE : Size;
 47:    badIndex = BAD_VALUE;
 48:    dataPtr = new double[size];
 49:  }
 50:
 51:  void Array::writeElem(fstream& os, unsigned index)
 52:    throw(TErrIO, TErrIndex)
 53:  {
 54:      if (index < size) {
 55:        os.write((unsigned char*)(dataPtr + index), sizeof(double));
 56:        if(!os.good())
 57:            throw(ErrIO);
 58:      }
 59:      else
 60:        throw(ErrIndex);
 61:  }
 62:
 63:  void Array::readElem(fstream& is, unsigned index)
 64:    throw(TErrIO, TErrIndex)
 65:  {
 66:      if (index < size) {
 67:        is.read((unsigned char*)(dataPtr + index), sizeof(double));
 68:        if (!is.good())

continues



384

Basic Stream File I/O
M

T
W

R
F

S
S

DAYDAY

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

Listing 12.4. continued

 69:            throw(ErrIO);
 70:      }
 71:      else
 72:        throw(ErrIndex);
 73:  }
 74:
75:   void Array::writeArray(const char* filename)
76:     throw(TErrIO)
77:   {
78:       fstream f(filename, ios::out | ios::binary);
79:
80:       if (f.fail())
81:         throw(ErrIO);
82:       f.write((unsigned char*) &size, sizeof(size));
83:       f.write((unsigned char*)dataPtr, size * sizeof(double));
84:       f.close();
85:       if (!f.good())
86:         throw(ErrIO);
87:   }
88:
89:   void Array::readArray(const char* filename)
90:     throw(TErrIO)
91:   {
92:       fstream f(filename, ios::in | ios::binary);
93:       unsigned sz;
94:
95:       if (f.fail())
96:         throw(ErrIO);
97:       f.read((unsigned char*) &sz, sizeof(sz));
98:       // need to expand the array
99:       if (sz != size) {
100:        delete [] dataPtr;
101:        dataPtr = new double[sz];
102:        size = sz;
103:      }
104:      f.read((unsigned char*)dataPtr, size * sizeof(double));
105:      f.close();
106:      if (!f.good())
107:        throw(ErrIO);
108:  }
109:
110:  main()
111:  {
112:    const unsigned SIZE1 = 10;
113:    const unsigned SIZE2 = 20;
114:    char* filename1 = “array1.dat”;
115:    char* filename2 = “array3.dat”;
116:    int hiIndex = 10;
117:    Array arr1(SIZE1), arr2(SIZE1), arr3(SIZE2);



385

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

118:    fstream f(filename1, ios::out | ios::binary);
119:
120:    // assign values to array arr1
121:    for (unsigned i = 0; i < arr1.getSize(); i++)
122:       arr1[i] = 10 * i;
123:
124:    // assign values to array arr3
125:    for (i = 0; i < SIZE2; i++)
126:       arr3[i] = i;
127:
128:    cout << “Array arr1 has the following values:\n”;
129:    for (i = 0; i < arr1.getSize(); i++)
130:       cout << arr1[i] << “  “;
131:    cout << “\n\n”;
132:
133:    try {
134:       // write elements of array arr1 to the stream
135:       for (i = 0; i < arr1.getSize(); i++)
136:           arr1.writeElem(f, i);
137:    }
138:    catch(TErrIO e) {
139:       cout << “Bad stream output\n”;
140:    }
141:    catch(TErrIndex e) {
142:       cout << “Error in writing element “ << i << “\n”;
143:    }
144:    f.close();
145:
146:    // reopen the stream for input
147:    f.open(filename1, ios::in | ios::binary);
148:
149:    try {
150:       for (i = 0; i < arr1.getSize(); i++)
151:            arr2.readElem(f, i);
152:    }
153:    catch(TErrIO e) {
154:       cout << “Bad stream output\n”;
155:    }
156:    catch(TErrIndex e) {
157:       cout << “Error in writing element “ << i << “\n”;
158:    }
159:    f.close();
160:
161:    // display the elements of array arr2
162:    cout << “Array arr2 has the following values:\n”;
163:    for (i = 0; i < arr2.getSize(); i++)
164:       cout << arr2[i] << “  “;
165:    cout << “\n\n”;
166:
167:    // display the elements of array arr3

continues



386

Basic Stream File I/O
M

T
W

R
F

S
S

DAYDAY

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

Listing 12.4. continued

168:    cout << “Array arr3 has the following values:\n”;
169:    for (i = 0; i < arr3.getSize(); i++)
170:       cout << arr3[i] << “  “;
171:    cout << “\n\n”;
172:
173:    // write the array arr3 to file ARRAY3.DAT
174:    try {
175:       arr3.writeArray(filename2);
176:    }
177:    catch(TErrIO e) {
178:       cout << “Cannot write the entire array\n”;
179:    }
180:
181:    try {
182:       // read the array arr1 from file ARRAY3.DAT
183:       arr1.readArray(filename2);
184:    }
185:    catch(TErrIO e) {
186:       cout << “Cannot read the entire array\n”;
187:    }
188:
189:    // display the elements of array arr1
190:    cout << “Array arr1 now has the following values:\n”;
191:    for (i = 0; i < arr1.getSize(); i++)
192:       cout << arr1[i] << “  “;
193:    cout << “\n\n”;
194:
195:    // reopen the stream for input
196:    f.open(filename1, ios::in | ios::binary);
197:
198:    for (i = 0; i < 3; i++) {
199:       hiIndex *= 10;
200:       // attempt to read an element at index hiIndex
201:       try {
202:           arr1.readElem(f, hiIndex);
203:           cout << “Element at index “ << hiIndex << “ = “
204:                  << arr1[hiIndex] << “\n”;
205:       }
206:       catch(TErrIndex) {
207:           cout << “Failed to read element at index “
208:                << hiIndex << “\n”;
209:       }
210:    }
211:    f.close();

212:    return 0;
213:  }

Here is a sample session with the program in Listing 12.4:

Output



387

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

Array arr1 has the following values:
0  10  20  30  40  50  60  70  80  90

Array arr2 has the following values:
0  10  20  30  40  50  60  70  80  90

Array arr3 has the following values:
0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19

Array arr1 now has the following values:
0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19

Failed to read element at index 100
Failed to read element at index 1000
Failed to read element at index 10000

Because the program in Listing 12.4 is similar to the one in Listing 12.2, we will focus
here on the differences in the code. First, you will notice that lines 12 and 15 declare
the exception types TErrIO and TErrIndex. The class TErrIO supports file I/O
exceptions. The class TErrIndex supports out-of-range index exceptions involved in
storing or recalling an array element from a file. Both exception classes have no
members, because the program only needs the name of the classes.

The class Array declares two new data members, ErrIO and ErrIndex, at lines 24 and
25, respectively. These data members are instances of the exception classes TErrIO and
TErrIndex.

The class Array has different declarations for the member functions writeElem,
readElem, writeArray, and readArray. First, all of these functions have the void return
type, instead of the type boolean. Second, each of these member functions has a throw
clause that states the kinds of exception that function can throw. The member
functions writeElem and readElem can throw the TErrIO and TErrIndex exceptions.
The member function writeArray and readArray can only throw the TErrIO
exception.

The definitions of the preceding member functions are also different from those in
program IO2.CPP. Let’s look at member functions writeElem and writeArray—the
other two are similar to these functions. The member function writeElem throws the
member ErrIndex (an instance of class TErrIndex) at line 60, when the argument for
the parameter index is not less than the value in the data member size. The function
also throws the member ErrIO (an instance of class TErrIO) at line 57, when the
expression os.good() is false.

The member function writeArray throws the member ErrIO at lines 81 and 86 when
a stream I/O error is detected by the if statements at lines 80 and 85.

Analysis



388

Basic Stream File I/O
M

T
W

R
F

S
S

DAYDAY

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

The function main uses several pairs of try and catch blocks to conduct various stream
I/O operations. The code in most of these try blocks executes without a hitch. We
inserted the statements at lines 195 through 211 to explicitly test the handling of
generated exceptions by attempting to access an out-of-range element from the input
stream f. The for loop at line 198 performs three attempts to access an element at
indices 100, 1000, and 10000—all of which are out of range. The loop uses the
variable hiIndex to access the array element stored in the stream object f. Line 202
contains the call to function readElem that uses the out-of-range index of variable
hiIndex. The stream input statement is inside the try block in lines 201 to 205. Lines
206 to 209 contain the catch block that handles the TErrIndex exception type. The
block displays an error message.

Summary
Today’s lesson gave you a brief introduction to the C++ stream I/O library and
discussed the following topics:

■■ Common stream functions include open, close, good, fail, and the operator
!. The function open opens a file for stream I/O and supports alternate and
multiple I/O modes. The function close shuts down a file stream. The
functions good and fail indicate the success or failure, respectively, of a
stream I/O operation.

■■ C++ enables you to perform sequential stream I/O for text, using the
operators << and >> as well as the stream function getline. The operator <<
is able to write characters and strings (as well as the other predefined data
types). The operator >> is suitable for obtaining characters. The function
getline enables your applications to read strings from the keyboard or from
a text file.

■■ Sequential stream I/O for binary data uses the stream functions write and
read to write and read data from any kind of variables.

■■ Random access stream I/O for binary data uses the seekg function in
conjunction with the functions read and write. The seekg function enables
you to move the stream pointer to either absolute or relative byte locations
in the stream.

■■ Exception handling involves declaring exception types, declaring lists of
exceptions that various function can throw, throwing the exceptions, and
using the try and catch blocks to detect and manage the exceptions. The



389

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

Borland C++ 4.0 compiler supports new keywords that relate to the excep-
tions mechanism.

Q&A
Q How can I emulate the random access of lines in a text file?

A First, read the lines in the file as text, obtain the length of the lines (plus the
two characters for the end of each line), and store the cumulative length in a
special array. (Call it lineIndex.) This array stores the byte location where
each line starts. The last array element should store the size of the file. To
access line number i, use the seek or seekg function to locate the offset
value in lineIndex[i]. The size of line number i is equal to
lineIndex[i+1]-lineIndex[i].

Q How do I write a general-purpose routine to copy between an input and
an output file stream?

A You need to use the stream function gcount() to obtain the number of bytes
actually read in the last unformatted stream input. The following is the
function copyStream:

void copyStream(fstream& fin, fstream& fout,

               unsigned char* buffer, int buffSize)

{

  int n;

  while (fin.read(buffer, buffSize) {

    n = fin.gcount();

    fout.write(buffer, n);

  }

}

Q Why declare data members in classes that support exceptions?

A These data members help the catch blocks to pass information related to the
cause and state that lead to the exception. The simplest example is that the
exception class has a string-typed data member that passes the error message
text.

Q Can I include nested try and catch blocks in a catch block?

A Yes. You can implement a nested exception handler inside a catch block.



390

Basic Stream File I/O
M

T
W

R
F

S
S

DAYDAY

12

A/NS6  TYS Borland C++ 21 Days  #30483  Lisa D   4-14-94    CH12   LP#4(sp 4/12 folio)

The nested handler enables you to deal with new errors than may spring
from dealing with current ones.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing on to the
next day’s lesson. (Answers are provided in Appendix A, “Answers.”)

Quiz
1. True or false? The stream I/O functions read and write are able to correctly

read and write any data type.

2. True or false? The stream I/O functions read and write are able to correctly
read and write any data type, as long as the type has no pointer members.

3. True or false? The seek and seekg functions expand the file when you
supply them an index that is one byte beyond the current end of file.

4. True or false? The arguments of the functions seek and seekg require no
range checking.

Exercise
Create the program IO4.CPP by modifying the program IO3.CPP. The class VmArray
in IO4.CPP should have the function binSearch, which conducts a binary search on
the members of the sorted array. Add a loop at the end of the function main to search
in the array arr, using the unordered data of the initializing list. (The members of this
list are accessed using the pointer data.)



391

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

M
T

W
R

F
S

S

WEEK

22

1313
The C++ string



392

The C++ string Class
M

T
W

R
F

S
S

DAYDAY

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

Class
On Day 9, we covered strings and the functions in STRING.H that work with them.
Borland C++ 4 provides a more powerful method of dealing with strings, the string
class. This class conforms to the preliminary string class from the ANSI C++
committee and is prototyped in the header file CSTRING.H.

Note: ANSI is American National Standards Institute. ANSI is
developing a standard for the C++ language.

C style strings are powerful but require control of many low-level items such as
allocation sizes and pointer offsets. The C++ string class is designed to increase the
power available above that of C strings, but without need for low-level concerns.

At the end of today’s lesson, you will be familiar with the following:

■■ Benefits of the C++ string class

■■ I/O with the C++ string class

■■ Comparing strings

■■ Searching for “tokens”

■■ Controlling how string class comparisons are done

■■ Searching for substrings inside of larger strings

■■ Mixed operations with C/C++ style strings and the string class

Benefits of the C++ string Class
The programmer can design a class that inherits from the string class. The newly



393

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

designed class can use all the power of the string class, as well as whatever else needs
to be added.

The result is an object-oriented program design, one that is easier to write and easier
to maintain. The following shows how the C++ string class provides solutions to C
string difficulties.

C String Difficulty C++ string Class Solution

C string functions have obscure Operators such as != or =
names, which makes it difficult are used when possible.
to find the function you want. When function names are used,

they sound like what they do,
for instance:
strcmp  versus   ==

strcpy  versus   =

strstr  versus   find

strlwr  versus   to_lower

No variable or function reports The C++ string class handles
the allocated size of a C string. allocations and knows the
When copying to a string, the allowed size. Operations are
programmer must remember the checked against the current
allocated size or allocate a size, and the allocated size
new string large enough to hold is increased when necessary.
the string or strings that he
wishes to store.
When allocating memory for a String terminating characters
string, an additional byte must are automatically provided.
be allocated for the terminating
'\0' character. Forgetting to
do this is a common error.
Comparisons using C-style strings Source code to compare C++
must be done with a call to a strings can be written just as
function such as strcmp. A if comparing integers, because
frequent error is for the familiar comparison operators
programmer to use logical ==, !=, >= and >= are provided.



394

The C++ string Class
M

T
W

R
F

S
S

DAYDAY

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

C String Difficulty C++ string Class Solution

operators such as == or < for C An explicit function call is not
strings, receiving a result which needed to do a comparison.
tells of the relationship between
the address of the strings in
memory rather than of the
the strings themselves.
Parsing strings into words or This work and the consequent
finding substrings in C-style debugging are now unnecessary.
strings  involves many lines of Powerful functions are in the
code with calls to functions such string class to do such common
as strtok, the use of which are tasks. For instance, reading the
complicated and detail-intensive. next word (token) from the keyboard,

a file, or from another string is
done with a call to read_token. It
can be set to skip leading spaces or
leave them in the string.

When an allocation error is made, Exception handling is done by the
other memory outside the string class. It traps allocation failures
array is altered. When that and errors, terminating the program
memory is a critical area, it safely.
often will cause the program to
crash or the computer to lock up.

The string Class Header File
CSTRING.H

The string class uses three other classes. Those classes are as follows:

TStringRef The string class uses this class in reserving and managing
memory. Normally the programmer need not access or use
anything from this class. The string class is declared a friend
within TStringRef. The string class declares TStringRef as a
friend as well.

TSubString This is a class that handles the operations on substrings. Both
the string and TSubString classes declare each other as
friends. Many of the operations done with a string class
actually are performed by TSubString.



395

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

TReference A base class used in copy and access operations, TReference is
shown in the header file REF.H.

Note: All programs that use the string class must include the header file
CSTRING.H.

☛ New Term: NPOS is used as a value to indicate that no position is
specified. It is declared as follows:

const size_t NPOS = size_t(-1);

Constructors and Copy Constructors
What follows is a list of the public constructors for the string class that can be used
to create a new string object instance:

string();
string( const string& s);
string( const string& s,  size_t startIndex,
        size_t numChars = NPOS);

string( const char   *cp);
string( const char   *cp, size_t startIndex,
        size_t numChars = NPOS);

string( char          c);
string( char          c,  size_t numChars);
string( signed char   c);
string( signed char   c,  size_t numChars);
string( unsigned char c);
string( unsigned char c,  size_t numChars);

string( const TSubString& ss);

string copy() const; // Note: There are other copy() functions below

string&     operator = (const string& s);
TSubString& operator = (const string& s);

The following constructor is only valid for Windows applications. It creates a string
object that is loaded directly from the application’s string resources:



396

The C++ string Class
M

T
W

R
F

S
S

DAYDAY

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

string( HINSTANCE instance, UINT id, int numChars = 255);

Comparing
As stated earlier, the string class provides easier methods of comparison than the
strcmp style functions. The following are the comparison operators defined by the
string class:

friend int operator == ( const string& s1, const string& s2 );
friend int operator == ( const string& s,  const char   *cp );
friend int operator == ( const char   *cp, const string& s );
       int operator == ( const char   *cp );
       int operator == ( const string& s );

friend int operator != ( const string& s1, const string& s2 );
friend int operator != ( const string& s,  const char   *cp );
friend int operator != ( const char   *cp, const string& s );
       int operator != ( const char   *cp );
       int operator != ( const string& s );

friend int operator >  ( const string& s1, const string& s2 );
friend int operator >  ( const string& s,  const char   *cp );
friend int operator >  ( const char   *cp, const string& s );

friend int operator <  ( const string& s1, const string& s2 );
friend int operator <  ( const string& s,  const char   *cp );
friend int operator <  ( const char   *cp, const string& s );

friend int operator <= ( const string& s1, const string& s2 );
friend int operator <= ( const string& s,  const char   *cp );
friend int operator <= ( const char   *cp, const string& s );

friend int operator >= ( const string& s1, const string& s2 );
friend int operator >= ( const string& s,  const char   *cp );
friend int operator >= ( const char   *cp, const string& s );

int compare ( const string& s) const;
int compare ( const string& s, size_t startIndex,
                        size_t numChars = NPOS ) const;

Concatenating Strings
The string class provides simpler methods of concatenating strings than using the
strcat style of functions. Several of these are implemented as operators, whereas
others are implemented with the append member function for adding on to the end
of a string and the prepend member function for adding on to the beginning of a string:

friend string operator + (  const string& s, const char *cp );



397

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

       string& operator += ( const string& s );
       string& operator += ( const char   *cp );

       string& append( const string& s );
       string& append( const string&& s, size_t startIndex,
                       size_t numChars = NPOS );

       string& prepend( const string& s );
       string& prepend( const string& s, size_t startIndex,
                        size_t numChars = NPOS )

       string& prepend( const char *cp );
       string& prepend( const char *cp, size_t startIndex,
                        size_t numChars = NPOS );

Inserting Characters into a String
The insert member function enables you to insert other strings into the middle of
a string object:

string& insert( size_t startInsertAt, const string& s );
string& insert( size_t startInsertAt, const string& s,
                size_t startFrom, size_t numChars = NPOS );

Removing Characters from Within a String
There are two member functions for removing characters from within a string. The
replace member function replaces characters in a string with the contents of another
string. The strip member function removes characters from either the beginning, the
ending, or both sides of a string.

string& replace( size_t removeFrom, size_t removeCount,
                 const string& s );
string& replace( size_t removeFrom, size_t removeCount,
                 const string& s,   size_t startReplacePosition,
                 size_t replaceCount = NPOS );

TSubString strip( StripType s = Trailing, char c = ‘ ‘ );

// Note: strip uses this enum which is defined within the class
//       enum StripType { Leading, Trailing, Both };
//
//       The programmer accesses it as one of
//         string::Leading  string::Trailing  string::Both

Addressing Individual Characters in a String
When dealing with regular C string arrays, it’s possible to manipulate single characters
within the string by using the array operators []. The C++ string object defines the



398

The C++ string Class
M

T
W

R
F

S
S

DAYDAY

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

bracket operators to perform the same function, as well as supplying parentheses
operators.

Note in the following that these operators return a reference to the specified character
rather than just the character itself. This means that you can assign new characters to
that position in the string in the same way you would with a C string array.

In addition to the bracket and parentheses operators, get_at and put_at are provided
for a more primitive method of getting and changing characters in a string object.

char& operator [] ( size_t index ); // Note: [] and () both
char& operator () ( size_t index ); //       do the same thing

char operator  [] ( size_t index ) const;
char operator  () ( size_t index ) const;

char get_at( size_t index ) const;
void put_at( size_t index, char c ) const;

Getting a Substring from Within a String
The string class provides methods for obtaining substrings from a string. There are
two sets of these functions, ones that return results that can be modified and ones that
can only be examined. For a result that can be examined, but won’t be modified, see
the following:

const TSubString operator()( size_t startIndex, size_t numChars );

const TSubString substring( const char *cp ) const;
const TSubString substring( const char *cp, size_t start ) const;

For a copy that can be both examined and modified, see this:

string substr( size_t startIndex ) const;
string substr( size_t startIndex, size_t numChars ) const;

TSubString substring( const char *cp );
TSubString substring( const char *cp, size_t startIndex );

Searching Within a String
One of the more useful features of the string class are its member functions that
enable you to search the contents of a string. The basic member functions are
find_first_of, find_first_not_of, find_last_of, and find_last_not_of. One of
the most powerful searching functions, however, is in the overloaded parentheses
operators, which allow you to supply a regular expression as the search parameter.

const TSubString operator()( const TRegexp& pattern ) const;



399

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

const TSubString operator()( const TRegexp& pattern,
                             size_t startIndex );

size_t find_first_of     ( const string& s ) const;
size_t find_first_of     ( const string& s, size_t startIndex ) const;
size_t find_first_not_of ( const string& s ) const;
size_t find_first_not_of ( const string& s, size_t startIndex ) const;
size_t find_last_of      ( const string& s ) const;
size_t find_last_of      ( const string& s, size_t startIndex ) const;
size_t find_last_not_of  ( const string& s ) const;
size_t find_last_not_of  ( const string& s, size_t startIndex );

Reading the Length
In order to get the length of a C-style string, you use the strlen function. The string
class supplies the length member function to obtain the length of the string:

size_t length() const;

Copying to a C-Style String
Though using the string class is very useful, it may still be necessary to use a C-style
string array from time to time. The copy member function copies the contents of a
string object into a standard character array.

size_t copy( char *cb, size_t numChars );
size_t copy( char *cb, size_t numChars, size_t startIndex );

Reading and Setting Parameters
for a Single String
A number of internal parameters affect how the string class acts. The reserve
member function alternately sets or returns the number of characters reserved for the
string; hash returns a hash value that can be used during sorting. The is_null member
function can be used to inquire as to whether or not the string is empty, and resize
can either contract or expand a string, appending spaces as necessary.

size_t   reserve();
void     reserve( size_t numChars );
unsigned hash() const;
int      is_null() const;
void     resize( size_t numChars );

I/O Operations
There are a number of functions for getting strings to interact with input and output



400

The C++ string Class
M

T
W

R
F

S
S

DAYDAY

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

streams. Some of these are member functions of the string class (read_token,
read_file, read_string, read_line, and read_to_delim), whereas others are just
globally declared (operator >>, operator <<, and getline).

istream& read_token( istream& is );
istream& read_file( istream& is );
istream& read_string( istream& is );
istream& read_line( istream& is );
istream& read_to_delim( istream& is, char delim = ‘\n’ );

ostream& operator << ( ostream& os, const string& s );
istream& operator >> ( istream& is, string& s );

istream& getline( istream& is, string& s );
istream& getline( istream& is, string& s, char c ); **check**

Character Set Conversion
Several functions are available for manipulating such things as the case or the character
set of a string. The case manipulators are to_lower and to_upper. There are two
versions of these functions: member functions and globally declared functions. The
globally declared functions return a copy of the converted string, whereas the member
functions modify the string itself.

string to_lower( const string &s );
string to_upper( const string &s );

void to_lower();
void to_upper();

In the Windows environment, the string can be represented in either the ANSI
character set or an OEM character set. The ansi_to_oem and oem_to_ansi member
functions convert the string between the two sets.

void _RTLENTRY ansi_to_oem();
void _RTLENTRY oem_to_ansi();

Reading and Setting Parameters
for the Whole Class
The following member functions set internal parameters that affect all string objects
as opposed to just a particular instance. Most of the parameters affect such things as
how searches are undertaken and the initial space reserved for characters when strings
are created.

static int    set_case_sensitive ( int onOff = 1 );



401

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

static int    set_paranoid_check ( int onOff = 1 );
static int    skip_whitespace    ( int onOff = 1 );
static size_t initial_capacity   ( size_t numChars = 63 );
static size_t resize_increment   ( size_t numChars = 64 );
static size_t max_waste          ( size_t numChars = 63 );

static int    get_case_sensitive_flag();
static int    get_paranoid_check_flag();
static int    get_skip_whitespace_flag();
static size_t get_initial_capacity();
static size_t get_resize_increment();
static size_t get_max_waste();

Protected Items (Accessible Only in
an Inherited Class)
The following member functions are declared as protected, which means that they
can only be accessed from friends or from derived classes.

int  valid_element  ( size_t pos ) const;
int  valid_index    ( size_t pos ) const;

void assert_element ( size_t pos ) const;
void assert_index   ( size_t pos ) const;

string( const string& s, const char *cb );

void cow();    // Note: “cow” = “copy on write”

S
yn

ta
x

Declaring a String
You can declare variables of string class type (called “instances of the class” or class
instances). You can also declare pointers or references to a class instance. Any of these
can be initialized in the same statement that declares the variable. A string can be
declared with an optional initial value:

string Str1;
string Str2 = “String 2”;
string Str3(“String 3”);

A string pointer or reference can also be allocated with an optional initial value:

string *pStr4 = new string;
string *pStr5 = new string(“String 5”);
string *pStr6;
string &rStr7 = * new string(“String Reference”);

pStr6 = new string(“A New String Is Constructed”);



402

The C++ string Class
M

T
W

R
F

S
S

DAYDAY

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

Str1, Str2, and Str3 are strings. Str1 has not been given an initial value so it begins
as an empty string (as “”). Str2 is set to a value, but the initialization is done with an
assignment statement on the same line; it also begins life as an empty string, but that
is immediately changed. Str3 takes advantage of the class constructor argument to set
the initial value without the additional step of assigning it.

The pStr4, pStr5, and pStr6 are not strings. They are pointers to strings; they each
can hold the address of a string.

The pStr4 and pStr5 are each assigned the address of a string by a call to the function
new. The string to which pStr4 points is empty, and the one to which pStr5 points
contains “String 5”.

The pStr6 begins as pointing to nothing in particular. The assignment statement
creates a string with new, initializes it to the given value, and places the address into
pStr6.

Bug Busters
Be careful to not use items such as pStr6 until they have been assigned a valid address.
Forgetting this is a common programming mistake that can be difficult to track down.
Always check that all pointers have been initialized before being used.

The rStr7 is a reference to a string. It can be thought of as a pointer to a string, which
can be handled in source code as if it were a string.

When new is called to initialize pStr7, a * is placed before it. As new returns a pointer
and a reference is treated as an actual string, the * indicates to use the item at the address
contained in the pointer.

Reading and Comparing Strings
In C, to copy the contents of one string to another, one places the addresses of the
source and destination C strings as calling arguments to the strcpy() function. The
string class defines an = operator, so you need only do an assignment, just as is done
with an integer.

S
yn

ta
x

Assigning Strings



403

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

You can assign one string to another using the equals sign (=):

Example:

string string_1 = “First String”;
string string_2 = “Second String”;

string_2 = string_1;

This places the characters “First String” into string_2. The old contents of
string_2 are lost.

As was the case with an assignment statement, the class provides familiar operators for
use in doing comparisons. Operators such as == and < free you from calling and
interpreting the results of the strcmp function used for C-style strings. For cases where
you would like to save the comparison results, a strcmp-like function is available that
returns the same kind of positive integer, zero, or negative integer. The name is a bit
easier to remember than strcmp. It’s called compare.

S
y
n
ta

x

Comparing Strings
Strings can be compared directly as if comparing an integer. Old-style strings can also
be compared to C++ strings in this fashion.

The following comparison operators are supplied for strings:

==  <=  >=  <  >  !=

Examples:

char oldstyle[] = “OLD STYLE STRING”;
string newstyle = “new style string”;

if (oldstyle < newstyle)
  cout << “oldstyle is lower in value than newstyle” << endl;

The message will be displayed because capital letters have smaller values than lower-
case letters. The line

int compare(const string &compareTo);

returns a positive value if the string is greater than compareTo, and a negative value if
it is less. If the two strings are equal, zero is returned. Although using < > and == to
compare strings is easy, compare provides a value that can be saved for use later.

Another version of the same function enables you to say at what position from the start
of the string the comparison should start, and to specify a maximum number of



404

The C++ string Class
M

T
W

R
F

S
S

DAYDAY

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

characters to compare. Although these extra features are more specialized, it is not
uncommon to need them.

int compare(const string& s,
            size_t startIndex, size_t numChars = NPOS);

The familiar cin >>, getline, and cout << syntax works well with C++ strings. Because
the streams classes also handle file I/O, this works with disk files as well.

S
yn

ta
x

Reading and Writing Strings
Normal iostreams functions are provided for the C++ string class. The cin, cout, and
file I/O are supported.

Examples:

string textLine;

cin >> textLine;   // Get input from stdin.
// If “the word” is entered, textLine will become “the”

getline(cin, textLine);
// If “the word” is entered, textLine will become “the word”

ifstream inputFile;
ostream outputFile;

inputFile.open(“FileName.Txt”);
outputFile.open(“FileName.Out”);

getline(inputFile, textLine);
// textLine now contains the first line from the file

outputFile << textLine << endl;
// the string is now stored in the output disk file

Just as with C style strings, a C++ string can be addressed as if it were an array with
an index within square brackets. You readers who have migrated from BASIC or
FORTRAN may be pleased to learn that parentheses may also be used.

Examining Individual Characters
C++ strings can be accessed as arrays just as is done with C strings. Remember that the
first element is stringName[0]. If the value contained in stringVar is “0123456789”,



405

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

Typethen cout << stringVar[7]; will print a 7 to the screen.

For those of you whose first love was FORTRAN or another language that uses
parentheses for array subscripts, you can use them as well: cout << stringVar(7);
would also print a 7.

This example is a small program using some of the syntax mentioned above.
References are used so that the code is more readable.

Three references to string are created. The program reads strings from the keyboard
and reports on how they compare. Entering a string of end ends the program. Because
comparison defaults to being case-sensitive, a value of END will not end the program.

Listing 13.1 contains a program that reads and compares C++ string class strings.

Listing 13.1. Source code for the program
CSTRING1.CPP.

1:  #include <iostream.h>
2:  #include <cstring.h>
3:
4:  int main()
5:    {
6:    int result;
7:
8:    string &s1 = * new string; // create 2 references to string
9:    string &s2 = * new string;
10:   string message;            // create an instance of a string
11:
12:   while (1)     // run this loop forever
13:     {
14:     cout << “Enter two lines of text, \”end\” to end program\n”;
15:     getline(cin, s1);    // read a line into s1 from the keyboard
16:
17:     if (s1 == “end”)     // If ending the program is requested
18:       break;             // break out of the loop
19:
20:     getline(cin, s2);    // read a line into s2
21:
22:     if (s2 == “end”)     // If ending the program is requested
23:       break;             // break out of the loop
24:
25:     result = s1.compare(s2); // get and save comparison result

26:
27:     if (result == 0)         // save what we’ve found in “mes-
sage”
28:       message = “The strings are equal”;
29:     else if (result > 0)

Output



406

The C++ string Class
M

T
W

R
F

S
S

DAYDAY

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

30:       message = “The first string is greater”;
31:     else
32:       message = “The second string is greater”;
33:
34:     cout << message << endl << endl; // report the result
35:     }
36:
37:  delete &s1;  // References are handled in source code as if they
38:  delete &s2;  // were actual items. This is why the ‘&’ operator
39:  return 0;         // is used to get their address for use by
40:  }                 // delete.

The following shows a sample session with the example program:

Enter two lines of text, “end” to end program
this
that
The first string is greater

Enter two lines of text, “end” to end program
that
this
The second string is greater

Enter two lines of text, “end” to end program
those
those
The strings are equal

Enter two lines of text, “end” to end program
end

In lines 8, 9, and 10, the string reference variables s1, s2, and the string variable
message are declared, and instances of two of them are allocated by the call to new. The
* in front of the new is said to “dereference the pointer.” This means that it refers to
the value at the address returned by new rather than the address itself. By using
reference variables instead of pointers, the variables can be used in the following source
lines without the special handling needed when using pointers.

On each of lines 15 and 20, a full line of text is read into a string. Remember that the
getline function removes the end of line character from the input.

On line 22, a string is compared to another with only the == operator. With C-style

Analysis



407

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

Type

strings, a call to strcmp would have been necessary. Line 25 uses the string class
compare member function to return a value that will be tested on lines 27 and 29.
Because it is done this way, the computer only examines the variable result instead
of doing a second full-string comparison.

Assigning a new value to a string class item need not call strcpy or strdup. Lines 28,
30, and 32 show message being assigned a value with a simple assignment statement.

Lines 37 through 39 discard the strings that we have allocated. Although this program
will end and the memory be recovered by the operating system, in a true application
program memory management is of great concern, and objects that have been
allocated should be discarded when they are no longer of use. The string variable
message is not deleted because it was not created with new. When main ends, message
will automatically be destroyed by the compiler’s code.

String Search, Substitution,
and File I/O

The string class provides powerful tools for searching within strings and substituting
parts of strings (substrings). CSTRING2.CPP manipulates the text in a file, substi-
tuting alternative text for words and placing this new text in an output file. Listing
13.2 contains the source code for the program CSTRING2.CPP.

Listing 13.2. Source code for the program
CSTRING2.CPP.

1:  #include <fstream.h>
2:  #include <cstring.h>
3:
4:  const short True = 1;
5:  const short False = 0;
6:
7:  string    toFind;
8:  string    replaceWith;
9:  char      lineBuf[81];
10: ifstream  inFile;
11: ofstream  outFile;
12:
13: short GetFindReplace()
14:   {
15:   char caseFlag;
16:

continues



408

The C++ string Class
M

T
W

R
F

S
S

DAYDAY

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

17:   cout << “Enter the word to find: “;
18:   cin >> toFind;
19:
20:   cout << endl << “Enter replacement word: “;
21:   cin >> replaceWith;
22:
23:   while (1)
24:     {
25:     cout  << “Case sensitive [Y/N]? “;
26:     cin >> caseFlag;
27:     caseFlag = toupper(caseFlag);
28:
29:     if ((caseFlag == ‘Y’) || (caseFlag == ‘N’))
30:       {
31:       string::set_case_sensitive(caseFlag == ‘Y’);
32:       break;
33:       }
34:     }
35:
36:   return (toFind != replaceWith) ? True : False;
37:   } // end GetFindReplace()
38:
39: short ProcessFile()
40:   {
41:   short  findLen;      // Number of characters to find
42:   size_t foundPos;     // Position in string where found
43:   string buffer;       // Holds a line of input data from the file
44:   short  startPos;     // Position in string to start search
45:   short  replaced;     // Set to True if replacement has been done
46:   short  numFound = 0; // Number of replacements that were made
47:
48:   inFile.open(“\\BC4\\README.TXT”);
49:   outFile.open(“README.NEW”);
50:   findLen = toFind.length();     // get # char’s in string to find
51:   buffer.skip_whitespace(False); // don’t skip leading spaces
52:
53:   while (inFile)                 // while data left in input file
54:     {
55:     getline(inFile, buffer);     // read one line
56:     replaced = False;            // init flag and position
57:     startPos = 0;
58:
59:     do
60:       {
61:       foundPos = buffer.find(toFind, startPos);
62:
63:       if (foundPos != NPOS)      // if a match is found
64:         {

Listing 13.2. continued



409

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

65:         buffer.replace(foundPos, findLen, replaceWith);
66:         ++numFound;
67:         replaced = True;
68:         startPos = foundPos + replaceWith.length();
69:         }
70:       } while (foundPos != NPOS);
71:
72:     outFile << buffer << endl;   // copy line to the output file
73:
74:     if (replaced)
75:       cout << buffer << endl;    // show modified lines on screen

76:     }
77:
78:   inFile.close();
79:   outFile.close();
80:   cout << endl;
81:   return numFound;
82:   } // end ProcessFile()
83:
84: int main()
85:   {
86:   if (GetFindReplace())
87:     cout << ProcessFile() << “ words were replaced\n”;
88:   else
89:     cout << “Error: Find and Replace words are the same\n”;
90:

91:   return 0;
92:   }

The following is an example session with the CSTRING2 application:

Enter the word to find: important

Enter replacement word: unimportant
Case sensitive [Y/N]? y
  This README file contains unimportant information about
  Borland C++.

1 words were replaced

This program uses the C++ string class to take the README.TXT file, which came
with Borland C++ 4, and to create a new file, README.NEW, in which it has
substituted some words. When run, it asks for the word to find, the word to replace
it, and whether the search is to be case-sensitive.

Constants are declared for True and False to make the program more readable.

Output

Analysis



410

The C++ string Class
M

T
W

R
F

S
S

DAYDAY

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

Note: Windows declares #define macros for TRUE and FALSE in its header
file WINDOWS.H. If you declare constants with these names, they will
be replaced with 1 and 0 respectively and could generate an error. True
and False are used here instead of TRUE and FALSE to avoid this.

The main program is small. It calls GetFindReplace on line 86, and if the user’s input
is valid calls ProcessFile on line 87, printing out the number of changes that were
made. If the find and replace words are the same, no substitutions would be made, so
GetFindReplace returns False, the program prints an error message, and ends.

GetFindReplace, starting on line 13, uses two instances of the C++ string class,
toFind and replaceWith. The string class provides overloaded input >> and output
>> operators, so values to and from the console are handled on lines 18 and 21 just as
is done with C-style strings. On line 31, the case-sensitive flag for the string class is
adjusted to control what kind of comparisons are to be made. In line 36, the function
returns True if the two words compare differently.

S
yn

ta
x

Case Sensitivity
The following is a member function of the string class. It sets how comparisons will
be done.

static string::set_case_sensitive(int tf = 1);

The calling argument defaults to true. If called with a 0 or false value, this causes all
comparisons to ignore uppercase versus lowercase.

Example:

string s1(“THIS IS A STRING”)
string s2(“this is a string”)

string::set_case_sensitive(0);

if (s1 == s2)
  cout << “the strings are equal\n”; /* this is printed */



411

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

string::set_case_sensitive();

if (s1 != s2)
  cout << “the strings are not equal\n”; /* this is printed */

Note: There is only one case-sensitive flag for the entire string class.
When you change it, all instances of the class will have their style of
comparisons changed.

If GetFindReplace returns True, then on line 87 main calls ProcessFile and prints the
returned count of replaced words. That function opens the README.TXT file in the
\BC4 directory and creates a README.NEW file in the current directory to receive
the program output. On line 50, the ProcessFile function uses the length member
function to have toFind report how many characters long the string is.

S
yn

ta
x

Number of Characters in a String
Each string class variable has a member function called length that reports the length
of the string in characters. The return value is an unsigned. The name size_t is defined
by the language standards groups, so that it can be set to whatever is appropriate for
the current machine. With Borland C++ 4, size_t is defined as an unsigned. The
stringVar.length(); returns the same value as strlen(stringVar.c_str());.

The loop that starts on line 53 and ends on line 76 is where the real work of
ProcessFile is done. With each pass through the loop, a line of text is read from the
input file into the string variable buffer (line 55).

Because the string class skip-whitespace flag was cleared on line 51, leading spaces are
preserved. The variable replaced acts as a detector to remember if any words have been
replaced on a line and is set to False. The startPos is the starting position for
searching the line, and is set to the beginning of the line (to zero).

S
yn

ta
x

Searching Within a String
The following string member functions search for a match with the toFind string.
The return value is the index of where the match occurred, or NPOS if no match is
found.

size_t find(const string &toFind);



412

The C++ string Class
M

T
W

R
F

S
S

DAYDAY

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

size_t find(const string &toFind, size_t startAt);

The second version of the function specifies that, instead of beginning at the start of
the string, the search will begin at position startAt in the string. Remember that the
first character of an array in C or C++ is array index zero. Because of that, if startAt
were 2, then the third character is where the search would begin.

The do-while loop from lines 59 through 70 processes a single line of text from the
input file. Starting in character position startPos, it searches the string for a match
with the toFind string. If successful, the find function returns the starting character
position in buffer of the matching characters. In line 63, the position found is
compared against the predefined symbol NPOS, whose value is used to indicate no
position in the string matches the search string.

Lines 64 through 69 only execute if a match is found. The call to replace causes
findLen characters beginning at position foundPos to be deleted and the contents of
the string replaceWith to be inserted in their place.

S
yn

ta
x

String Class I/O
The getline member functions using the C++ string class are declared for input and
output file streams. The >> and << input and output operators are also provided for
file operations with this class:

istream &getline(istream &is, string &s);
ostream &getline(istream &is, string &s);
operators >> and <<

S
yn

ta
x

Controlling Whether Spaces Are Skipped
The following two functions enable you to modify the skip-whitespace flag internal
to the string class:

static int skip_whitespace(int skip = 1);
static int get_skip_whitespace_flag();

The skip_whitespace determines if whitespace will be skipped during read opera-
tions. The default value is to skip spaces and tabs on input operations such as getline,
>>, and read_token. By calling get_skip_whitespace, you can read what the current
setting of the flag is.

Example:

string   myString;
ifstream myFile(“\\BC4\\DOC\\UTILS.TXT”);



413

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

myString.skip_whitespace(0);
getline(myFile, myString);

The string myString will contain “                        UTILS.TXT”

The string myString would have been “UTILS.TXT” had skip_whitespace not been
called. There is only one whitespace setting for the entire string class. Any call to
skip_whitespace changes the setting for all.

S
yn

ta
x

Changing Part of a C++ String
The replace function, a member function of the C++ string class, is overloaded to
have two forms:

string &replace(size_t        startPos,
                size_t        deleteLen,
                const string &replaceWith);

string &replace(size_t        startPos,
                size_t        deleteLength,
                const string &replaceWith,
                size_t        replaceFrom,
                size_t        replaceLength);

The first form will search the string, starting at the index given in startPos, until it
finds a match to the string replaceWith. It will then delete deleteLen characters from
the string, and insert the characters from replaceWith in that position.

If the string to be modified is too short to remove the requested number of characters,
then the characters from startPos to the end of the string are removed.

The second form adds two additional arguments, replaceFrom and replaceLength.
The replaceLength indicates how many characters from the replacement string will
be inserted into the modified one.

For instance, “Steven Smith” could be searched for and “Steven” replaced with
“George” from the string “George Jones”.

The replaceFrom argument specifies the starting position in the replacement string to
begin in substituting characters. If there are no replaceLength characters in the
replacement string, the number found in the string is used.

The replaceLength can be given the value NPOS and will use all remaining characters
in the string if that value is given.

For instance, the following two lines perform the same function:



414

The C++ string Class
M

T
W

R
F

S
S

DAYDAY

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

replace(startPos, deleteLen, replaceWith, 0, NPOS);
replace(startPos, deleteLen, replaceWith);

Line 72 executes independently of having done any replacements and writes the
possibly altered string to the new file. Lines 74 and 75 detect whether any replace-
ments have been done and, if so, writes the changed string to the console.

Lines 78 through 81 perform the clean-up actions of closing files and returning the
number of replacements that have been made.

There are more useful functions in the string class.

Other C++ string Class Functions
The following append member function adds characters to the end of a string:

?string &append(const string &fromStr);

This places the characters from fromStr to the end of the string.

Example:

string firstString(“ABC”);
string secondString(“DEF”);

firstString.append(secondString); // firstString is now “ABCDEF”

Note that another way to append characters to the end of a string is to use the +=
operator. The same appending operations could have been done with the following:

firstString += secondString;

Often it will be necessary to just pass a string object as if it were a C-style string array.
The string class provides the c_str member function, which simply returns a const
char* to a C-style version of the string.

The contains member function is used to determine whether or not a particular
substring can be found in a string object:

int contains(const char *cStyleStr);

The member function returns either 1 or 0 if cStyleStr is or is not found in the string.



415

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

Once you’ve determined that a substring exists within a string object, it can be useful
to determine where in that string the substring can be found. This is done with the
find_first_of function:

size_t find_first_of(const string &s);
size_t find_first_of(const string &s, size_t startAt);

These return the position of the first character found in the string, which is one of the
characters in the string s passed to the function. The second overloaded form starts
the search at startAt. If nothing is found, these return NPOS.

In addition to finding the first position in a string at which another string begins, it
is also possible to find the first position which isn’t a part of another string. This is done
with the find_first_not_of member function:

xsize_t find_first_not_of(const string &s);
size_t find_first_not_of(const string &s, size_t startAt);

These  return the first character not in the calling argument or NPOS if nothing is found.

The find_last_of and find_last_not_of member functions are very similar to their
find_first equivalents, only they search starting at the end of the string and work
backward.

size_t find_last_of(const string &s);
size_t find_last_of(const string &s, size_t startAt);
size_t find_last_not_of(const string &s);
size_t find_last_not_of(const string &s, size_t startAt);

These are called in exactly the same manner as the corresponding find_first type
functions, and they return the same type of information, except that they work
backward.

When you want to delete characters from a string, you use the remove member
function.

string &remove(size_t startAt);
string &remove(size_t startAt, size_t howMany);

These delete howMany characters from a string starting at position startAt. The version
with only one argument removes all the remaining characters in the string. The
stringVar.remove(4); statement is the same as stringVar[4] = ‘\0’;.

Summary
This chapter presented the C++ string class. This class handles allocation and
manipulation of strings without need for the low-level issues necessary when working



416

The C++ string Class
M

T
W

R
F

S
S

DAYDAY

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

with C-style strings.

When declaring a string variable, the initial value can be placed in parentheses
immediately after (as in string myStr(“Init Value”);). When you assign a new value
to it, any necessary size adjustment is handled for you.

Simple comparison operators can be used with this class. There is no need to call
functions such as strcmp or strncmp.

Q&A
Q Can I get the value of a character in a string the way I can do it in C?

A Yes, and in the same way. If strC is a C-style array and strCpp is a C++
string class and both are set to “ABC”, then both strC[1] and strCpp[1] are
equal to the character ‘B’.

Q What happens if I assign a char to a string index that is beyond the end
of an array?

A In C, when you write to a character that is past the end of an array, the
character is stored in the position where it would have been, had the array
been large enough. If that memory contains critical information, then the
computer could lock up, but only after it has run further, destroying the
symptoms of where the problem occurred.

With a C++ string when you write past the end of the array, the over-write is
detected and the exception handling system is called. If running a DOS
program, the program ends with an “Abnormal program termination” error.
If you were stepping through the program with Turbo Debugger, the error
would be displayed at the line where it occurred, not somewhere else.

Q What happens if I copy to a string and the size is larger than has been
allocated?

A The C++ string class detects that and expands the array to fit. Were you
using C-style strings, a DOS Abnormal Termination would be presented or
an equivalent complaint would be shown by Windows. If debugging, Turbo
Debugger would stop at the line where the problem occurred, telling you of
the problem.

Q I found a function that operates on C-style strings and that does what I
want. How can I use it with C++ string class items?



417

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

13

A/ns6   TYS Borland C++ 21 Days  #30483    Lisa D   4-14-94    CH13   LP#3(sp 4/12 folio)

A Use the c_str function. For instance, if strCpp is a C++ string, then
strlen(strCpp.c_str()); will find the length of the string.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing on to the
next day’s lesson. (Answers are provided in Appendix A, “Answers.”)

Quiz
1. What header file must be included to use the C++ string class?

2. How is a C++ string class variable declared?

3. How do you compare a string to a C-style string?

4. What string class function will find and replace text in one call?

5. To read the second character in a string, what array index is used?

6. Declare a string named myString with an initial value of “12”.

7. Assuming that you have two string class variables, s1 and s2, and that s1
contains “11” and that s2 contains “2112”, what is the result of the follow-
ing code lines?

a. s1 + s2;

b. s2.contains(s1);

c. s1 > s2

d. s2.find(s1, 0);

Exercises
1. Write a line of code that declares a C-style string of value “12”, and another

that declares a C++ string class variable with the same value.

2. Write a function that accepts a reference to a string as its calling argument
and writes that string to the computer screen.

3. Modify the function written for Exercise 2 to perform a loop, writing all the
characters from the string, one per pass through the loop, and to return the
size of the string.

4. Write a line of code that uses the function strrev, which reverses the



419

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

M
T

W
R

F
S

S

WEEK

1414
Programming
Windows with
OWL 2.0

22



420

Programming Windows with OWL 2.0
M

T
W

R
F

S
S

DAYDAY

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

ObjectWindows version 2.0 (or OWL 2.0) is included with Borland C++ 4.0. It is a
C++ library that shortens the time and effort needed to develop a Windows program.
OWL uses a feature of the C++ language called templates. Today, you will learn about
the following:

■■ Templates

■■ OWL and basic Windows issues

■■ Hungarian notation

■■ The basic structure of OWL

■■ Windows messages and OWL

■■ Developing a real OWL program, complete with resources, menus, screen
writing

Templates
It’s common for a language to have many functions, each of which does the same thing
but for different data types. Wouldn’t it be nice if you could tell the compiler “Here’s
what I want to do; you figure out how to do it”? C++ has a feature that can do this.
It’s called a template.

Note: AT&T, the original developers of C++, originally added templates
to version 2.0 of the C++ specification. That specification is currently at
version 3.0 and this is the version used by Borland C++ 4.0.

☛ New Term: A template is a method for telling the compiler the algorithm
to use for performing a function.

The compiler handles the details of the function for whatever data type is used. Both
global functions and classes can be programmed as templates.

When programming a template, you provide a name to use as the symbol for the
unknown data type and write the code using that symbol.



421

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

Here is a function defined as a template:

// return the lowest of 3 values
template <class T> const T& Low(const T& a, const T& b, const T& c)
  {
  if (a < b)
    {
    if (a < c)
        return a;
    }
  else if (b < c)
    return b;
  return c;
  }

The first line of the function is what identifies it as a template. (See Figure 14.1.)

template <class T> const T& Low(const T& a, const T& b, const T& c) 

Using this data type

The symbol that represents the unknown data type

Tells the compiler that this is a template

Figure 14.1. A template function’s declaration.

The word template in the function definition is followed by the characters <class,
then a symbol to use for the type that this is a template for, and then by a >. Although
a single character is most often used for the symbol, it can be any legal C++ name.

This template function is used as any other function would be. For instance, this
returns the lowest of three C++ string items.

string s1(“6543”);
string s2(“5432”);
string s3(“4321”);
cout << Low(s1, s2, s3) << endl;

Although use of the word class is required when defining a template, templates are
not limited to having classes as arguments. They can be used as fundamental data types
also. For instance, Low(1, 2, 3); uses integers and is a valid call of the Low function.



422

Programming Windows with OWL 2.0
M

T
W

R
F

S
S

DAYDAY

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

Type

A class can be defined in terms of templates. The syntax for doing this is the same as
with the preceding function, but some changes are required when declaring instances
of the class, as follows:

template <class TypeSymbol> class ArrayType
   {
protected:
   TypeSymbol *items;
   int        numItems;
public:
   ArrayType(const TypeSymbol& firstItem);
   ~ArrayType();
   int AddItem(TypeSymbol& toAdd);
   TypeSymbol& operator [] (int index);
   }
ArrayType<int> iArray(1);

When you declare an instance of this class, the compiler must know what data type
is to be used with this class. The declaration for iArray shows this, as the angle brackets
enclose the type to use, as follows:

ArrayType<int> iArray(1);

Listing 14.1 is an example of using templates. It implements a template class that can
hold up to five items, gives them values, and prints them to the screen. Versions of the
class are used for float and integer types. It also uses a template function that is not in
a class. That function reports the size of the data type.

Listing 14.1. An example that uses templates.

1:  #include <iostream.h>
2:
3:
4:  const int True = 1;
5:  const int False = 0;
6:
7:
8:  template <class X> class ArrayType
9:     {
10: protected:
11:   int maxItems; // maximum number of items this will hold
12:   int numItems; // number of items it is holding now
13:   X  *items;    // array of items
14:
15: public:
16:   ArrayType(int capacity);
17:   ~ArrayType()       { delete [] items; }
18:
19:   int InRange(int n) { return((n >= 0) && (n < numItems)); }



423

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

20:   int Capacity()     { return maxItems; }
21:   int AddItem(X& toAdd);
22:   X& operator [] (int index) { return items[index]; }
23:   }
24:
25:
26: template <class X> ArrayType<X>::ArrayType(int capacity)
27:   {
28:   maxItems = capacity;
29:   items = new X[capacity];
30:   numItems = 0;
31:   } // end ArrayType::ArrayType()
32:
33:
34: template <class a> int ArrayType<a>::AddItem(a& toAdd)
35:   {
36:   if (numItems < maxItems)
37:     {
38:     items[numItems++] = toAdd;
39:     return True;
40:     }
41:
42:   return False;
43:   } // end ArrayType::AddItem()
44:
45:
46: template <class SomeType> size_t Size(const SomeType&)
47:   {
48:   return sizeof(SomeType);
49:   } // end Size()
50:
51:
52: template <class D, class X> void Report(const char *s, D& d, X& x)
53:   {
54:   cout << endl << s << “has space for “ << d.Capacity()
55:        << “ items.  Each item uses “ << Size(x) << “ bytes.\n”;
56:
57:   for (int i = 0; d.InRange(i); i++)
58:     cout << “\t” << s << “[“ << i << “] “ << d[i] << endl;
59:   } // end Report()
60:
61:
62: int main()
63:   {
64:   int               iVal;
65:   float             fVal;
66:   ArrayType <int>   iArray(3);
67:   ArrayType <float> fArray(5);
68:

continues



424

Programming Windows with OWL 2.0
M

T
W

R
F

S
S

DAYDAY

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

Listing 14.1. continued

69:   for (iVal = 0, fVal = 0.0; iVal < 10; ++iVal, fVal += 1.11)
70:     {
71:     iArray.AddItem(iVal);
72:     fArray.AddItem(fVal);
73:     }
74:
75:   Report(“iArray: “, iArray, iArray[0]);
76:   Report(“fArray: “, fArray, fArray[0]);
77:
78:   return 0;
79:   }

When you run this example, the results are as follows:

iArray: has space for 3 items. Each item uses 2 bytes.
        iArray: [0] 0
        iArray: [1] 1
        iArray: [2] 2

fArray: has space for 5 items. Each item uses 4 bytes.
        fArray: [0] 0
        fArray: [1] 1.11
        fArray: [2] 2.22
        fArray: [3] 3.33
        fArray: [4] 4.44

Beginning with line 8, the template class is defined. The symbol X is declared to
be used for the type and is used within the body of the definition wherever the
type name is needed.

The X is only valid within the block to which the template word refers. It is not related
to what is used in other blocks. In line 34, a is used as the symbol for the type, and
although the AddItem() function with which it is used is a member of the ArrayType
class that uses an X in its template, there is no confusion. The compiler is content to
use a for the function block.

The inline functions InRange(), Capacity(), operator [], and ~ArrayType() don’t
need a separate template word applied to them, because they are contained in the same
one that is used for the class.

Both ArrayType() (line 26) and AddItem() (line 34) need template in their definition,
because the lines of code for them are not located within the class and are not covered
by the class use of the word template.

Output

Analysis



425

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

Line 46 has a template function that is neither a class nor a class member. The syntax
of C++ still requires the word class in the function header. SomeType is used as the type
symbol, but X or any other valid C++ name would have worked as well. The calling
argument to Size() is described as a type without a variable name applied to it. Unlike
C, C++ does not require that a variable name be placed there; the Size() function only
needs to know the type, not an actual variable.

The function Report() (line 52) has an interesting variation on the template system.
Two dummy type names are provided, and both types are used by the function. When
called from lines 75 and 76, the function makes calls to Capacity() and InRange().
If the data type for the d calling argument in Report() did not have functions with
those names, an error would be generated.

The main() function is in line 62. In lines 66 and 67 it declares two instances of
ArrayType, one that will hold up to three items of type int and one that will hold up
to three items of type float.

Between lines 69 and 73, the items in the two classes are initialized. Ten initializations
are done for each, relying on the AddItem() function to detect and ignore initializations
following those that have already filled the class to capacity.

Lines 75 and 76 call the Report() function to tell some things about the classes.
Report() uses the Capacity() member function of the class to print the maximum
number of items it can hold. It also calls Size() (line 55) to show the number of bytes
used for each member.

Lines 57 through 59 then perform a for loop to display the data members of each class,
stopping when the InRange() function returns False.

This example is a bit contrived in order to illustrate using templates. For a strong
container class that you can use for general arrays, the TArrayAsVector class (which is
part of the Borland C++ 4 class library) is a better choice.

OWL and Windows Issues
Although using OWL means that you need not worry about many of the details of
Windows, you still need some knowledge of how Windows does things and especially
of some of the symbols used in Windows programs.

Under DOS, there can only be one program running at a time (with the exception of
TSR programs, such as Print). That program owns the screen, keyboard, and mouse.
Under Windows, several programs can be running at a time, and normally each one



426

Programming Windows with OWL 2.0
M

T
W

R
F

S
S

DAYDAY

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

has screen, keyboard and mouse I/O capability. To force these programs to cooperate,
Windows enforces strict conditions on program structure, handling each task almost
as if it were a function in a larger application of which Windows itself is the main
program.

Windows administers a communication channel called the message loop, which acts
as a type of “party line” by which it communicates to all the executing tasks. When
a task writes to the screen or the user provides some keyboard or mouse input,
Windows gathers up the information and calls a function in whichever task it has
decided should receive the appropriate message.

The complexity of having independently executing functions for each of your
program’s screen windows, along with a main program that never calls any of them
directly, is what OWL addresses. The problem is that no interface library can totally
hide what is underneath. Windows uses an extensive set of macros that substitute for
data types and other items. Table 14.1 is a list of some of the more important ones.
You might want to put a bookmark on this page so that you can refer back to it.

Table 14.1. Some common Windows MACRO names.

Macro Meaning Equivalent

TRUE Used for function return values 1

FALSE Used for function return values 0

NULL A null pointer, as in the C language 0

UINT An unsigned 16-bit integer value unsigned

int

BYTE An unsigned 8-bit value unsigned char

WORD An unsigned 16-bit value unsigned short

DWORD An unsigned 32-bit value unsigned long

LONG A signed 32-bit value long

VOID As a function return, it means that it void

returns nothing; as a pointer, it means
that the data type it points to is not
specified

LPSTR Long pointer to a string char far *



427

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

Type Meaning Equivalent

HANDLE A generic handle to some form of Windows item

HWND A handle to a window

PASCAL Specifies that the function it applies to uses a calling method
common in Windows

WPARAM A word parameter, used to define a data type as a calling argument
to a function; defined as a UINT

LPARAM A long parameter, used to define a data type as a calling argument
to a function; defined as a LONG LRESULT used to define the data
type a function returns

HINSTANCE Handle to the instance or copy of the program that is currently
running

Hungarian Notation
Microsoft has been developing Windows since the early 1980s. At its inception, the
ANSI standard for C compilers did not exist and type-checking was minimal.
Microsoft programmers adopted a naming convention for variables that had the data
type indicated as the first few characters of the variable name. It was called “Hungarian
notation” because its inventor was from Hungary.

With the introduction of the ANSI C standard with its stronger type checking, and
especially with C++, a strongly typed language, Hungarian notation is no longer
needed; still, it is not uncommon.

In a variable name such as lpszFilename, the lpsz means long pointer to zero-
terminated string. Many programmers feel confident that they would know a variable
called Filename is a string without having to add lpsz to the name. However, because
Windows documentation uses Hungarian notation, it is important to have some feel
for what the leading characters in the names are. Nonetheless, your program will run
as well without them as with them.



428

Programming Windows with OWL 2.0
M

T
W

R
F

S
S

DAYDAY

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

The Basic Structure of OWL
OWL has groups of classes, each of which addresses a certain phase of Windows
programming. The structure uses multiple inheritance to allow classes to encapsulate
those combinations of functionality they need.

Event Handling, TEventHandler
The programmer does little with this directly. The functions it provides are available
in many of the other program groups because of C++ inheritance. It manages the
messages that constantly flow in a Windows program.

Streamable or Persistent Objects,
TStreamableBase

This is actually part of the regular class library and not an OWL class. It allows a class
to be viewed as a stream and saved to memory or disk for later use in the current run
of the program or at another time that the program is run. This is exotic for small
programs but is of great value in more advanced programs, such as those using the
document-view architecture.

Module Management—
TModule and TApplication

TModule and TApplication are in the module management group. TModule is
responsible for loading and unloading DLLs while TApplication is responsible for
initializing the program, managing it while it runs, and handling the tasks that are
needed when the program ends.

Window Management, TWindow
TWindow is the base window class and inherits from TEventHandler and TStreamableBase.
There are various kinds of windows that you might want to use in your program, and
they all build on TWindow.

■■ TFrameWindow is a simple framed window with menu capability.

■■ TDecoratedFrame adds abilities to use other items, such as status bars and
tool bars.



429

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

Type

■■ TMDIFrame, TMDIChild and TDecoratedMDIFrame are Multiple Document
Interface (MDI) classes used to present multiple windows in a single app-
lication.

Other functional groups are provided for the graphics, menu handling, dialog boxes,
printing, and exception handling.

A Sample OWL Program
Our first OWL program only displays a window with a title. You have to press Alt+F4
or click the system menu and select Close to end it.

This program has two elements: a class to manage the window and a class to manage
the application.

A class called MainApp is derived from TApplication, the class that manages the startup,
the continuing message handling, and the ending tasks. TApplication has a virtual
function called InitMainWindow(). In MainApp we overload that function and provide
our own. Within the function, we make a call setting the main window to a frame
window with our window title.

Windows applications do not normally start with a function called main(). Instead
they use a function that is declared as follows:

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpszCmdLine, int cmdShow);

OWL allows a main() function similar to what you’re used to with other C and C++
programs, as follows:

int OwlMain(int argc, char *argv[]);

For those with a taste for antacids, WinMain() can be used instead of OwlMain() in an
OWL program.

Listing 14.2. FIRST.CPP, a first OWL program.

1:  #include <owl\framewin.h>
2:  #include <owl\applicat.h>
3:
4:  class MainApp : public TApplication
5:     {
6:  public:
7:     MainApp() : TApplication() {}

continues



430

Programming Windows with OWL 2.0
M

T
W

R
F

S
S

DAYDAY

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

Listing 14.2. continued

8:     void InitMainWindow();       // overload TApplication function
9:     };
10:
11: void MainApp::InitMainWindow()
12:    {
13:    SetMainWindow(new TFrameWindow(0, “First OWL Program”));
14:    }
15:
16: int OwlMain(int, char **)
17:    {
18:    return MainApp().Run();
19:    }

Figure 14.2 shows what the first OWL program does.

Figure 14.2. The minimalist OWL program.

OwlMain begins in line 16. It calls the Run() function, and OWL’s default
processing does the rest. (Run() is a function within TApplication.)

The “magic” of how this operates is hidden in how the classes are set up. MainApp
calls the constructor for TApplication on line 7, inside of its own constructor. That
triggers default processing for all maintenance functions except the InitMainWindow()
function, which we have overloaded by declaring a member function of the same name
in line 8.

Analysis



431

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

In line 13, the InitMainWindow() function calls SetMainWindow() to allocate a
TFrameWindow and link the application with this window object. The same line
allocates the TFrameWindow by calling new for it and passes the window caption to it in
the constructor call.

The two header files that are included are for TFrameWindow (framewin.H) and
TApplication (applicat.H). A Windows program should have a .DEF file to tell the
linker what to do with the segments and stack. Borland C++ supplies one for us,
\BC4\LIB\DEFAULT.DEF, and that was used for this program. It should be added
to the list in your project file.

Windows Messages and OWL
The Windows system calls the function in your program that it has logged as the
handling function for an open window. Several calling arguments are passed to the
function, one of which is called the message. The other calling parameters are WPARAM
and an LPARAM. What they mean varies depending upon what the message was.

Messages are all named with #define macros. Two of the more common ones are:

WM_CHAR, which reports a normal key is pressed. WPARAM argument contains
the value of the key. LPARAM argument contains the number of time it has
been pressed in the lower 16 bits, and has an array of bit flags in the upper
16 bits to indicate other data about the keyboard.

WM_SIZE, which says window size has changed. WPARAM argument contains a
value defining the type of size change, minimized into an icon for instance.
LPARAM argument has the new width in the lower 16 bits and the new height
in the upper 16 bits.

OWL provides two macros and an array of functions that know about Windows
messages. When an event occurs for which Windows calls the OWL window
procedure, OWL parses the information from the calling arguments and calls any
function you may have provided to handle that event. You know the name to use for
the function because it is derived from the name of the message, for instance:

Windows Message Event-handler Function Name

WM_CHAR void EvChar(UINT key, UINT repeat, UINT flags);

WM_SIZE void EvSize(UINT sizeType, TSize& newSize);
TSize is a structure with an x and a y member
called cx and cy respectively. It holds the
new dimensions of the window.



432

Programming Windows with OWL 2.0
M

T
W

R
F

S
S

DAYDAY

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

In the OWL handlers, the other calling parameters are said to be “cracked”—broken
down into more easily understood parameters and not buried into the middle of a
parameter value. The cracking of messages avoids many common code bugs. OWL’s
handling of the repetitive overhead needed by each message avoids many more bugs.

The way you tell OWL that you have supplied an event handler is done with two
macros and a declaration. Within your class derived from TWindow, you declare the
function itself. Also within the class definition, you place a macro to tell it that the
overloading of functions is being done. In a typical class definition, those lines would
look like this:

class BaseWindow : public TWindow
  {
protected:
  void EvChar(UINT key, UINT repeatCount, UINT flags);
    :
public:
    :
  DECLARE_RESPONSE_TABLE(BaseWindow);
  };

Later in the code, you define the response table with one entry for each function that
you need, for instance:

DEFINE_RESPONSE_TABLE1(BaseWindow, TWindow)
  EV_WM_CHAR,
  EV_WM_SIZE,
END_RESPONSE_TABLE;

The macro used here is DEFINE_RESPONSE_TABLE1 because there is only one immediate
class from which BaseWindow inherits. Were there to be two classes, then
DEFINE_RESPONSE_TABLE2 would be used and the second class would also be listed as
an argument to the macro. Macros are available for up to three inherited classes.

The Windows message name has EV_ placed in front of it to help in the macro parsing,
but otherwise it is the same name as the message.

A helpful feature of the Borland C++ IDE is that if the cursor is placed on a name such
as EvChar and Ctrl+F1 is pressed, the online Help will display the function, its calling
arguments, and an explanation of what each argument means.



433

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

Type

A Real OWL Program:
Resources, Menus, Screen
Writing

A demo that only puts a window on the screen is not very useful. Menus and screen
writing have been added to our next example. It demonstrates techniques for handling
normal Windows messages and messages from menus.

Menus are a feature that you can add to a window. The Windows system runs them
for you, returning a number corresponding to the user selection. The message that
Windows sends in response to a menu selection is WM_COMMAND, with the WPARAM
parameter set to the value of the selected item. Because the selections in a menu that
we create would not be part of the operating system, OWL has no built-in detection
for them. What it does have is an EV_COMMAND macro that enables us to specify response
functions for nonstandard events.

There are three source files involved in adding a menu to an application. The source
file for the program is involved, but we also need a resource file.

Resources are predefined items that will be added to the executable as a last step. As
the program is already compiled and linked when they are added, this arrangement
enables resources to be more easily changed—a great advantage when changing a
menu from English to German, for instance. Because a resource file normally has the
file extension .RC, they are often called RC files.

The third file involved is a header file listing the macros used for menu selections,
along with their number equivalents. By including the same header file in the source
code and the RC file, any changes in the selection numbers will track through to the
C++ compilation as well as to the resource compiler’s handling of the RC file. As you
did with DEFAULT.DEF, add the name REAL.RC to the IDE project file list. Listing
14.3 shows a resource file.

Listing 14.3. REAL.RC, a resource file.

1:  #include “real.rh”
2:
3:  MENU_1 MENU
4:    {

continues



434

Programming Windows with OWL 2.0
M

T
W

R
F

S
S

DAYDAY

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

Listing 14.3. continued

5:    POPUP “&File”
6:      {
7:      MENUITEM “&Clear”, CM_CLEAR
8:      MENUITEM “E&xit”,  CM_FILEEXIT
9:      }
10:
11:   MENUITEM “&About”,  CM_ABOUT
12:   }

Figure 14.3. From REAL.RC, a resource file.

Later you will use Resource Workshop to create RC files containing menus and
other items. For now, there is little value in using that tool unless you have some
feel for what is being created with it, so this text file is what we will use instead.

On line 3, the MENU_1 item is not referenced in the header file or the source file. With
the available information, the resource compiler will make it a text string. We take
advantage of this name string in the program when we load a menu identified as
“MENU_1”.

Line 5 starts defining a pop-up menu. A pop-up is a menu that when selected opens
to display more menu selections. It does not return a value, although the newly shown
selections often do. The pop-up first item in the menu is given the name “&File”. The
‘&’ character flags the ‘F’ as special. In the menu it will be shown underlined, and
pressing Alt+F will cause it to be selected.

The pop-up contains two menu items on lines 7 and 8. A menu item does return a
value to the program. In this case the displayed names for the menu items are “Clear”

Analysis



435

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

and “Exit” with the ‘C’ and ‘x’ underlined. Alt+C and Alt+X can be used to select these
items when the pop-up is opened. If Clear is selected, CM_CLEAR is returned. The
following header file assigns the number 1125 to CM_CLEAR, but the program doesn’t
care what that number is. All it cares about is if it receives a message with the WPARAM
set equal to whatever the macro CM_CLEAR stands for.

On line 9, the curly brace after “E&xit” ends the pop-up. Following that on line 10
is another menu item selection for About. If selected, the value CM_ABOUT will be sent
to the program, which will display an About box that tells the name of the program.

When the program is running, OWL doesn’t have any knowledge of what the
CM_CLEAR, CM_FILEEXIT or CM_ABOUT values accompanying a WM_COMMAND message are,
so it ignores them. We can change this with additions to the response table, which tells
OWL what to do with those messages.

Along with predefined messages such as WM_SIZE and WM_CHAR, we can use the
EV_COMMAND macro to say that we have a command message that we want OWL to
handle. It is used as follows:

DEFINE_RESPONSE_TABLE1(BaseWindow, TWindow)
  EV_WM_CHAR,
  EV_WM_SIZE,
  EV_COMMAND( CM_ABOUT, CmAbout),
END_RESPONSE_TABLE;

The function is expected to take no parameters and return no value—in other words,
void CmAbout(); OWL programmers commonly use a certain way of naming such
functions, and if you follow that convention, your code will be more understandable
to others and you will be getting used to the same kind of naming that is used in the
documentation that came with Borland C++. To name the function, delete any
underscores and capitalize the first letter of each word. For example, CM_ABOUT
becomes CmAbout(). Windows event handlers drop the WM_ entirely and put Ev at the
beginning of the name; thus WM_CHAR becomes EvChar. Remember that event handlers
usually take some parameters. When you use one, look it up in the online Help to
check that you have the arguments correct.

REAL.CPP writes what you have typed to the screen. OWL provides an entire class,
called TEdit, which can edit and capture your input far better than REAL.CPP does.
This and other controls will be covered in later chapters. This example’s writing to the
screen is meant to illustrate how one paints a window under Windows—which is very
different than under DOS.

Windows uses an item called a device context, also called a DC. A DC is a structure
containing information about a device such as a screen, a printer, or a block of



436

Programming Windows with OWL 2.0
M

T
W

R
F

S
S

DAYDAY

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

Type

Type

memory. You can write to anything for which you have asked Windows to provide
a DC. Windows only has a limited number of DC blocks, so they are handled by
requesting one, using it, and then calling Windows to free it for other uses. Forgetting
to release DCs can result in Windows apparently stopping. With OWL, you needn’t
worry unless requesting a DC yourself. OWL automatically checks out a DC when
it’s time to paint the screen and returns it afterward. OWL expands upon this by
placing the device context into a class called TDC along with functions that use DCs.
Those functions already know what device you are writing to when you call them.
Listing 14.4 shows a header file.

Listing 14.4. REAL.RH, a header file.

1: #define CM_CLEAR    1125
2: #define CM_FILEEXIT 1126
3: #define CM_ABOUT    1127

REAL.RH does not get listed in the compiler’s project file. The compiler will discover
what header files are used by itself.

Listing 14.5 shows a program that uses a menu, accepts keyboard input, and writes
the input to the screen.

Listing 14.5. REAL.CPP, a real OWL program.

 1:  #include <owl\framewin.h>
 2:  #include <owl\applicat.h>
 3:  #include <owl\dc.h>
 4:  #include <mem.h>
 5:
 6:  #pragma hdrstop
 7:
 8:  #include “real.rh”
 9:
 10: const int maxLines = 25;
 11: const int maxWidth = 80;
 12: const int maxData = maxLines * (maxWidth + 1);
 13:
 14: class BaseWindow : public TWindow
 15:   {
 16: protected:
 17:   int   currentLine;         // line being typed in now
 18:   int   lineLen[maxLines];   // length of each line
 19:   char *linePtrs[maxLines];  // string for each line
 20:   BOOL  isMinimized;         // TRUE if window is an icon
 21:   TSize windowSize;          // structure with size in pixels
 22:



437

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

 23:   void EvChar(UINT key, UINT repeatCount, UINT flags);
 24:   void Paint(TDC& dc, BOOL, TRect&);
 25:   void EvSize(UINT sizeType, TSize& size);
 26:
 27:   void CmAbout();
 28:   void CmClear();
 29:
 30:   // Menu choice, end the program
 31:   void CmFileExit() { PostQuitMessage(0); }
 32:
 33: public:
 34:   BaseWindow(TWindow *parent = 0);
 35:   ~BaseWindow() {}
 36:   DECLARE_RESPONSE_TABLE(BaseWindow); // says we’ll have a
 37:   };                                  // response table
 38:
 39: DEFINE_RESPONSE_TABLE1(BaseWindow, TWindow)
 40:   EV_WM_CHAR,
 41:   EV_WM_SIZE,
 42:   EV_COMMAND( CM_ABOUT,    CmAbout),
 43:   EV_COMMAND( CM_FILEEXIT, CmFileExit),
 44:   EV_COMMAND( CM_CLEAR,    CmClear),
 45: END_RESPONSE_TABLE;
 46:
 47: class MyApp : public TApplication
 48:   {
 49: public:
 50:   MyApp() : TApplication() {}
 51:
 52:   void InitMainWindow();
 53:   };
 54:
 55: BaseWindow::BaseWindow(TWindow *parent)
 56:   {
 57:   int lineNum;
 58:
 59:   Init(parent, 0, 0);
 60:   linePtrs[0] = new char[maxData]; // allocate edit buffer
 61:   lineLen[0] = currentLine = 0;
 62:
 63:   // apportion the buffer out to the line pointer array
 64:   for (lineNum = 1; lineNum < maxLines; ++lineNum)
 65:      {
 66:      linePtrs[lineNum] = linePtrs[lineNum - 1] + maxWidth;
 67:      lineLen[lineNum] = 0;
 68:      }
 69:   }
 70:
 71: // Menu choice, display an About box, use a message box to do it
 72: void BaseWindow::CmAbout()

continues



438

Programming Windows with OWL 2.0
M

T
W

R
F

S
S

DAYDAY

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

Listing 14.5. continued

73:    {
74:    MessageBox(“Teach Yourself BC++ 4 in 21 Days”, “About”);
75:    }
76:
77:  // Menu choice, clear the display
78:  void BaseWindow::CmClear()
79:    {
80:    for (int lineNum = 0; lineNum < maxLines; ++lineNum)
81:       lineLen[lineNum] = 0;    // empty all lines
82:
83:    currentLine = 0;           // move back to top line
84:    Invalidate();              // window is invalid, repaint
85:    }
86:
87:  // this is called whenever the window changes size
88:  void BaseWindow::EvSize(UINT sizeType, TSize& size)
89:    {
90:    if (sizeType == SIZE_MINIMIZED) // if shrunk to icon
91:       isMinimized = TRUE;
92:    else
93:       {
94:       windowSize = size;            // save window size
95:       isMinimized = FALSE;
96:       }
97:    }
98:
99:  // called when time to update (paint) the screen
100: void BaseWindow::Paint(TDC& dc, BOOL, TRect&)
101:   {
102:   int   lineNum;         // line number to write
103:   int   yPos;            // vertical position on screen
104:   int   displayedLines;  // number of linePtrs in this window
105:   TSize textSize;        // used to get char height in pixels
106:
107:   if (isMinimized)       // don’t write to an icon
108:      return;
109:
110:   // get char sizes so that height is saved
111:   textSize = dc.GetTextExtent(“W”, 1);
112:   displayedLines = windowSize.cy / textSize.cy;
113:
114:   if (displayedLines > maxLines)
115:      displayedLines = maxLines;
116:
117:   for (lineNum = yPos = 0; lineNum < displayedLines; ++lineNum)
118:      {
119:      if (lineLen[lineNum] > 0)  // if any text on the line
120:         dc.TextOut(0, yPos, linePtrs[lineNum], lineLen[lineNum]);
121:
122:      yPos += textSize.cy;   // adjust screen line position



439

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

123:      }
124:   }
125:
126: // called when a normal key is pressed
127: void BaseWindow::EvChar(UINT key, UINT repeatCount, UINT)
128:   {
129:   BOOL invalidDisplay = FALSE;
130:   BOOL eraseBackground = FALSE;
131:
132:   while (repeatCount--)
133:      {
134:      if ((key >= ‘ ‘) && (key <= ‘~’)) // if a printable key
135:         {
136:         if (currentLine >= maxLines) // if buffer full
137:            {
138:            MessageBeep(-1);           //   complain
139:            break;
140:            }
141:         else                         // else
142:            {                          //   add char
143:            linePtrs[currentLine][lineLen[currentLine]] = (char)
                        key;
144:
145:            if (++lineLen[currentLine] >= maxWidth)
146:              ++currentLine;
147:
148:            invalidDisplay = TRUE;
149:            }
150:         }
151:      else if (key == ‘\b’)  // rubout, delete char
152:         {
153:         if (currentLine >= maxLines)
154:            break;
155:         else if (lineLen[currentLine] == 0)
156:            {
157:            if (currentLine > 0)
158:              --currentLine;
159:            }
160:         else
161:            --lineLen[currentLine];
162:
163:         invalidDisplay = eraseBackground = TRUE;
164:         }
165:      else if (key == ‘\r’) // if carriage return (Enter key)
166:         ++currentLine;
167:      }
168:
169:   if (currentLine >= maxLines)
170:      currentLine = maxLines - 1;
171:

continues



440

Programming Windows with OWL 2.0
M

T
W

R
F

S
S

DAYDAY

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

172:   if (invalidDisplay)            // if buffer has changed
173:      Invalidate(eraseBackground); //   force window repaint
174:    }
175:
176: void MyApp::InitMainWindow()
177:   {
178:   SetMainWindow(new TFrameWindow(0, “Program 14.2”,
179:                                  new BaseWindow()));
180:   GetMainWindow()->AssignMenu(“MENU_1”);
181:   }
182:
183:
184: int OwlMain(int, char **)
185:   {
186:   return MyApp().Run();
187:   }

Before running this application, you may wish to get a feel for how it looks by
examining Figure 14.2 and Figure 14.3. Three instances of this program are shown
on the screen, one each for an About box displayed, data typed in, and the pop-up
menu opened.

As with the first program, this begins in OwlMain(). Line 186 calls the construc-
tor for MyApp, and then calls Run().

The constructor is declared on line 52. It in turn calls the constructor for
TApplication. Line 54 has a function called InitMainWindow() that overloads the
virtual function of the same name in the inherited class.

TApplication’s constructor calls InitMainWindow() (lines 176 through 181). That
function makes two calls to new, creating a base window and then a frame window
to handle the items on the base window’s borders. The GetMainWindow() call on the
next line assigns the menu to the main window. From then on, the application runs
on its own, with Windows driving it by way of messages about menu selections and
keyboard events.

The response table on lines 39 through 45 declared response functions for a character
being entered, a window size change, and any of the three menu selections. Also,
BaseWindow’s inheritance chain includes a virtual function called Paint(), which
we’ve overloaded.

The data in the BaseWindow class is for keyboard input. Such input causes EvChar()
on line 127 to be called. The calling arguments are the value of the key, the number
of times it has been entered since we were last called, and a flags variable that we don’t

Listing 14.5. continued

Analysis



441

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

use. The repeat count is important because a long process such as saving a disk file
could allow the keyboard to insert several keys into the keyboard buffer.

This function passes through a loop as many times as the repeat count directs, adding
keys to the keyboard buffer. When a line is full, it skips to the next line and begins
entering there. If the buffer is full, it beeps at you (line 138).

If the user presses the backspace button, it deletes the last character entered (if one
exists). The end of the function calls Invalidate(), a function that tells Windows that
the whole window must be updated. The eraseBackground variable is only set to TRUE
if a character is deleted. This minimizes screen blinking.

In response to the Invalidate() call, Windows sends the window procedure a
message to paint the window. In the process, it sets things up and calls Paint().

Paint() gets the text size. Fonts in Windows are often of variable width, but the
measurement we are interested in is the vertical, which doesn’t vary. We also calculate
the number of displayable lines. It’s a waste of time to paint more than that, because
additional lines won’t be placed on the screen.

A loop starting on line 118 passes through each line, writing any data in it to the screen.
Note that linePtrs[lineNum] is an array of characters, not a string. No ‘\0’ has been
placed at the end. It relies on the lineLen array to handle how long the string is.

Note the TDC argument to Paint(). That is the device context we are to use in writing
the screen. OWL has assigned it and will delete it after our function ends.

If you grab the corner of the window with the mouse cursor and resize it, EvSize()
from line 88 will be called. If the application is minimized (shrunk to an icon), it
merely sets a flag and returns. If it is not minimized, it captures the window
dimensions into the TSize structure called windowSize for later use by the Paint()
function.

Menu operation is straightforward. Select any menu item and OWL calls the
corresponding function. The CMClear() function (starting on line 78) sets the line
length for all strings to zero and moves the current line number to point at the first
line (linePtrs[0]). It then invalidates the window so that Paint() will be called.
When called with no arguments, Invalidate() defaults to TRUE so the background
will also be erased.

CmAbout calls a message box, a built-in Windows function, to show the name of the
book.



442

Programming Windows with OWL 2.0
M

T
W

R
F

S
S

DAYDAY

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

CmFileExit() on line 31 calls a true Windows function, PostQuitMessage(). This
function ends the program, and the return value (which Windows ignores in version
3.1) is the function argument.

Summary
Today’s lesson introduced you to C++ templates and Borland’s ObjectWindows
application framework/class library and discussed the following topics:

■■ C++ templates can be used with functions and classes to work with any kind
of data type. You define a template with “generic” arguments and use a
template giving specific arguments. The compiler generates code appropriate
to the actual argument types.

■■ Creating an instance of a template class requires that you specify the type(s)
as part of the class name.

■■ Windows requires special programming techniques because it allows mul-
tiple programs to run at the same time (unlike DOS).

■■ Windows communicates with programs via messages, and programs receive
and process these messages in their message loop.

■■ Windows defines several shorthand names for common types of variables.

■■ Hungarian notation is a style of naming variables to indicate the type of data
they hold and help in preventing bugs caused by mixing incompatible types.
It’s somewhat old-fashioned, as Borland C++ implements very strong C++
type checking, but Windows still uses some of its notations.

■■ OWL consists of groups of classes used to represent Windows structures,
including event handling, module management, and window management.

■■ OWL processes Windows messages by executing the appropriate functions
found in a window object’s response table. OWL also “cracks” the param-
eters that Windows sends into more meaningful values.

■■ Adding a menu to a window requires that you create a menu resource, tell
OWL to load it, and process the menu items using the EV_COMMAND
macro.



443

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

Q&A
Q Can I use templates with my own structures and classes, or am I limited

to using C++’s built-in types?

A Templates can use any type, for example:

template <class T> const T& Dump(const T& objectToDump);

int a = 100;

struct {

  int p;

  long q;

  double r;

} b;

Dump(a);

Dump(b);

Q Can I create a template with more than one type?

A Yes. Just separate the types with commas, For example:

template <class Form, class Printer> class SpecialFormPrinter

{

  ...

};

InsuranceFormLaserPrinter = new SpecialFormPrinter<InsuranceForm,

LaserPrinter>;

Q I have a DOS program I’d like to port to Windows. Do I have to rewrite
it to use Windows techniques like message loops?

A Yes. It won’t be a Windows program if it doesn’t follow Windows’ rules.
However, you can use Borland C++’s EasyWin library, which lets you use
DOS-style input and output functions. The result is a Windows program
that looks like a DOS program.



444

Programming Windows with OWL 2.0
M

T
W

R
F

S
S

DAYDAY

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

Q The shorthand type names like DWORD and LPCSTR are confusing;
can’t I just use the normal C++ types?

A Yes, you can, but you have to make sure you do everything exactly the same.
For example, everywhere you would normally use LPCSTR, make sure you
use const char far *. Although learning the types takes some time, it’s
usually worth the extra effort, if only in saving the time it takes to type!

Q What function in my program is called first?

A DOS programs start at the main() function, which has arguments for the
command-line parameters. Windows instead looks for a WinMain() func-
tion, with several arguments for instance handles, command-line parameters,
and main window sizes. OWL simplifies it by providing an OwlMain()
function that takes the same parameters as main() does.

Q Do I have to use a resource editor like Resource Workshop to create my
resources?

A No. Resource files (with a .RC extension) are text files, so you can create and
edit them with any text editor. However, Resource Workshop greatly
simplifies editing resources, especially graphical ones.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the answers before continuing on to the next day’s lesson.
Answers are provided in Appendix A, “Answers.”

Quiz
1. True or false? Templates let you use any type, including your own classes,

without ever having to provide any extra code.

2. True or false? The underlying types of Windows types like WORD and
UINT will never change.

3. True or false? Even though an OWL program is quite different from a
program written in C, it’s still a normal Windows program.



445

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

14

A/NS6   TYS Borland C++ 21 Days  #30483   Lisa D  4-14-94   CH14  LP#3(sp 4/12 folio)

Exercise
Create the program REAL2.CPP by using the TWindow::MessageBox function to
display a message when the user types an invalid key.



Sa
m

s
Le

a
rn

in
g

Ce
nt

er

abcd

447447

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A/ns6  TY Borland C++ in 21 Days #30483   Lisa D   4-14-94   Rev2    LP#2(sp 4/12 folio)\

M
T

W
R

F
S

S
8

9

10

11

12

13

14

2
WEEK

IN
 

R
E

V
IE

W

As you end the second week of learning to program with
Borland C++ 4.0, let’s look at an enhanced version of the
number-guessing game. Listing R2.1 shows the source
code for the GAME2.CPP program. Although this ver-
sion interacts with you in the same way GAME1.CPP
does, it uses a class and an enumerated type.



448

A/ns6  TY Borland C++ in 21 Days #30483   Lisa D   4-14-94   Rev2    LP#2(sp 4/12 folio)\

448

Week 2 in Review
M

T
W

R
F

S
S

WEEKWEEK

2

Type Listing R2.1. Source code for program GAME2.CPP.

1:  #include <stdlib.h>

2:  #include <iostream.h>

3:  #include <time.h>

4:

5:  enum boolean { false, true };

6:

7:  // declare a global random number generating function

8:  int random(int maxVal)

9:  { return rand() % maxVal; }

10:

11: class game

12: {

13:   protected:

14:     int n;

15:     int m;

16:     int MaxIter;

17:     int iter;

18:     boolean ok;

19:     void prompt();

20:     void examineInput();

21:

22:   public:

23:     game();

24:     void play();

25: };

26:

27: game::game()

28: {

29:   MaxIter = 11;

30:   iter = 0;

31:   ok = true;

32:

33:   // reseed random-number generator

34:   srand((unsigned)time(NULL));

35:   n = random(1001);

36:   m = -1;

37: }

38:

39: void game::prompt()



Sa
m

s
Le

a
rn

in
g

Ce
nt

er

abcd

449449

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A/ns6  TY Borland C++ in 21 Days #30483   Lisa D   4-14-94   Rev2    LP#2(sp 4/12 folio)\

40: {

41:   cout << “Enter a number between 0 and 1000 : “;

42:   cin >> m;

43:   ok = (m < 0) ? false : true;

44: }

45:

46: void game::examineInput()

47: {

48:   // is the user’s guess higher?

49:   if (m > n)

50:     cout << “Enter a lower guess\n\n”;

51:   else if (m < n)

52:     cout << “Enter a higher guess\n\n”;

53:   else

54:     cout << “You guessed it! Congratulations.”;

55: }

56:

57: void game::play()

58: {

59:   // loop to obtain the other guesses

60:   while (m != n && iter < MaxIter && ok) {

61:     prompt();

62:     iter++;

63:     examineInput();

64:   }

65:   // did the user guess the secret number

66:   if (iter >= MaxIter || ok == 0)

67:     cout << “The secret number is “ << n << “\n”;

68: }

69:

70: main()

71: {

72:   game g;

73:

74:   g.play();

75:   return 0;

76: }



450

A/ns6  TY Borland C++ in 21 Days #30483   Lisa D   4-14-94   Rev2    LP#2(sp 4/12 folio)\

450

Week 2 in Review
M

T
W

R
F

S
S

WEEKWEEK

2

Here is a sample session with the program in Listing R2.1:

Enter a number between 0 and 1000 : 500

Enter a lower guess

Enter a number between 0 and 1000 : 250

Enter a higher guess

Enter a number between 0 and 1000 : -1

Enter a higher guess

The secret number is 324

The program in Listing R2.1 declares the enumerated type boolean to
model Boolean values. The program also declares the class game, which
models the number-guessing game. The class has a number of data

members, including the Boolean variable ok. In addition, the class declares the
protected member functions prompt and examineInput, and the public con-
structor and member function play.

The constructor initializes the data members and reseeds the random-number
generator. The member function prompt, defined in lines 39 through 44,
prompts you for input, obtains your input, and assigns a true/false value to the
variable ok, based on your input.

The function examineInput, defined in lines 46 through 55, compares your
guess (stored in the data member m) with the secret number (stored in the data
member n) and displays the appropriate message.

The member function play, defined in lines 57 through 68, contains the while
loop that plays the game. The loop statements invoke the member functions
prompt and examineInput and also increment the data member iter. In
addition, the function contains the if statement that displays the secret number
if you fail to guess it or if you quit the game.

The function main declares the instance g of class game and sends the message
play to that instance.

Output

Analysis



453

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

15

a/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94    CH15   LP#3(sp 4/12 folio)

M
T

W
R

F
S

S

WEEK

33

1515
Basic Windows



454

Basic Windows
M

T
W

R
F

S
S

DAYDAY

15

a/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94    CH15   LP#3(sp 4/12 folio)

The most relevant aspect of the Windows environment, as the name suggests, is the
use of windows. Windows are the holders of information. The application is
responsible for maintaining information when you resize, move, or use existing scroll
bars. In today’s lesson, you learn about the following:

■■ Creating read-only text windows

■■ Scrolling through text using scroll bars

■■ Changing the scroll bar metrics (units, line size, page size, and ranges)

■■ Optimizing the Paint member function

Creating a Read-Only
Text Window

In Day 14, we presented a number of menu-driven OWL applications. However,
these programs did not display any information inside their windows. In this section,
we present an OWL application that displays read-only text in its windows. The basic
notion of the application is similar to that of the read-only online Help windows.

The purpose of the program is to demonstrate how to display text and maintain that
text after one or more of the following has occurred:

■■ Resizing the window

■■ Minimizing, restoring, or maximizing the window

■■ Moving a window or dialog box over the text area

The main tools to implement the application’s features are the member functions
TDC::TextOut and TWindow::Paint. The function TDC::TextOut draws a character
string on the specified display. The text appears in the currently selected font and at
the specified window coordinates.

S
yn

ta
x

The TextOut Function
The declarations for the overloaded TDC member function TextOut are

BOOL TextOut(int x, int y, const char far* str, int count = -1);
BOOL TextOut(const TPoint& p, const char far* str, int count = -1);

The x and y parameters identify the window location where the first character appears.
The str parameter points to the string to be displayed in the window. The count



455

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

15

a/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94    CH15   LP#3(sp 4/12 folio)

parameter indicates the leading number of characters of str to display. The argument
for the last parameter is usually the size of the displayed string argument. Note that
this has a default of 1, which means to display all the characters of str. In the second
version of the function TextOut, the x and y parameters are replaced by a reference to
a TPoint structure. The function returns a nonzero value when successful and zero
when it fails.

Examples:

char s[81] = “Hello”;
string str(“Guten Tag!”);
TPoint pt(10, 20);
TextOut(20, 10, s);
TextOut(pt, str.c_str());

As expected, the function TDC::TextOut displays text once. This means that altering
the viewing area of the window or moving another window over the displayed text
erases that text. What is needed is a mechanism that updates the display of text in the
window. Enter the member function TWindow::Paint. This function enables you to
display and maintain the contents of a window (both text and graphics). The
versatility of the function TWindow::Paint comes from the fact that it responds to a
WM_PAINT message whenever Windows determines that the window needs repainting.
This repainting feature includes the initial creation of the window. Consequently,
the versatility of TWindow::Paint includes setting the initial display as well as
maintaining it.

Note: You need to declare your own version of the Paint member
function in your derived window class. The code you place inside your
version of the Paint function determines what information appears,
remains, and disappears.

In the case of this OWL application, the same information is displayed from start to
finish. The general form of the Paint member function is

void MyWindow::Paint(TDC& dc, BOOL erase, TRect& rect)
{
   // declarations

   // statements using the TextOut member function
   // e.g.
   //      dc.TextOut(x, y, s, strlen(s));
}



456

Basic Windows
M

T
W

R
F

S
S

DAYDAY

15

a/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94    CH15   LP#3(sp 4/12 folio)

Type

The parameter dc that is passed to the Paint member function is referred to as the
device context, and it’s the link to the display of the window. The dc.TextOut function
can be used as needed to place text on the window. Interestingly, if you come across
a C-coded Windows application that uses the TextOut API function, you note that a
similar text output requires initializing the device-context object and then promptly
releasing it once it has finished its task. These steps are automatically performed by
the TWindow::EvPaint function, which in turn calls the Paint function.

☛ New Term: A device context (or DC for short) is the place in which all
output goes. Anything that needs to be painted, such as text or graphics,
must go onto DCs. These DCs can directly represent physical pixels on
the screen, or they can be memory DCs. These memory DCs are typically
used as temporary space in which to create such things as bitmaps before
actually putting them on the screen by copying to another DC.

Let’s now look at the code for the OWL application. Listing 15.1 contains the script
for the resource file WINDOW1.RC. This resource file defines a menu with a single
menu item, Exit, to exit the application. Listing 15.2 shows the source code for the
WINDOW1.CPP program.

Create the directory WINDOW1 as a subdirectory of \BC4\BC21DAY and store all
the project’s files in the new directory. The project’s IDE file should contain the files
WINDOW1.CPP and WINDOW1.RC.

Compile and run the application. Notice that the lines of text appear when the
window is created. Alter the window by resizing it, minimizing it, and then restoring
it to normal. The lines of text are always visible (or at least a portion of them) as long
as the upper-left portion of the screen is not obscured by another window. You can
also click the left mouse button to display a message box. Drag that message box over
the text lines and release the mouse. Then, drag the message box away from the text
location. What do you see? The text lines reappear; Paint is constantly at work.

Listing 15.1. Script code for WINDOW1.RC.

1: #include <windows.h>
2: #include <owl\window.rh>
3:
4: EXITMENU MENU LOADONCALL MOVEABLE PURE DISCARDABLE
5: BEGIN
6:    MENUITEM “E&xit”, CM_EXIT
7: END



457

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

15

a/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94    CH15   LP#3(sp 4/12 folio)

Type Listing 15.2. Source code for WINDOW1.CPP.

 1:  #include <owl\applicat.h>
 2:  #include <owl\dc.h>
 3:  #include <owl\framewin.h>
 4:  #include <owl\window.h>
 5:  #include <owl\window.rh>
 6:  #include <stdio.h>
 7:
 8:  const MAX_LINES = 30;
 9:
 10: class TMyWindow : public TWindow
 11: {
 12: public:
 13:    TMyWindow(TWindow* parent = 0);
 14:
 15: protected:
 16:    BOOL CanClose();
 17:
 18:    void CmExit();
 19:    void EvLButtonDown(UINT, TPoint &);
 20:
 21:    void Paint(TDC &, BOOL, TRect &);
 22:
 23:    DECLARE_RESPONSE_TABLE(TMyWindow);
 24: };
 25: DEFINE_RESPONSE_TABLE1(TMyWindow, TWindow)
 26:    EV_WM_LBUTTONDOWN,
 27:    EV_COMMAND(CM_EXIT, CmExit),
 28: END_RESPONSE_TABLE;
 29:
 30: class TMyApp : public TApplication
 31: {
 32: public:
 33:    TMyApp() : TApplication() {}
 34:
 35:    void InitMainWindow()
 36:       {
 37:       SetMainWindow(new TFrameWindow(  0,
 38:                            “A Simple Read-Only Text Window”,
 39:                            new TMyWindow ));
 40:       GetMainWindow()->AssignMenu(“EXITMENU”);
 41:       }
 42: };
 43:
 44: TMyWindow::TMyWindow(TWindow* parent)
 45: {
 46:    Init(parent, 0, 0);
 47: }
 48:

continues



458

Basic Windows
M

T
W

R
F

S
S

DAYDAY

15

a/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94    CH15   LP#3(sp 4/12 folio)

 49: BOOL TMyWindow::CanClose()
 50: {
 51:    return IDYES == MessageBox(“Want to close this application?”,
 52:                               “Query”,
 53:                               MB_YESNO | MB_ICONQUESTION );
 54: }
 55:
 56: void TMyWindow::CmExit()
 57: {
 58:    SendMessage(WM_CLOSE);
 59: }
 60:
 61: void TMyWindow::EvLButtonDown(UINT, TPoint &)
 62: {
 63:    MessageBox( “You clicked the left button!”,
 64:                “Mouse Click Event”,
 65:                MB_OK );
 66: }
 67:
 68: void TMyWindow::Paint(TDC& dc, BOOL /*erase*/, TRect& /*rect*/)
 69: {
 70:    char s[81];
 71:    BOOL ok = TRUE;
 72:    int y = 0;
 73:
 74:    for (int i = 0; i < MAX_LINES && ok; ++i)
 75:       {
 76:       sprintf(s, “This is line number %d”, i);
 77:       ok = dc.TextOut(0, y, s);
 78:       y += dc.GetTextExtent(s, lstrlen(s)).cy;
 79:       }
 80: }
 81:
 82: int OwlMain(int, char *[])
 83: {
 84:    return TMyApp().Run();
 85: }

Listing 15.2 shows the source code for the WINDOW1.CPP program file. The
part of the program that is relevant to this application is the TMyWindow class and
its member functions, declared on lines 10 through 28. The window class

declares a constructor and three member functions, namely EvLButtonDown, CmClose,
and Paint. The constructor creates a window on line 37 with the title “A Simple Read-
Only Text Window” that has default size and location, and that uses the EXITMENU
menu resource.

Listing 15.2. continued

Analysis



459

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

15

a/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94    CH15   LP#3(sp 4/12 folio)

Figure 15.1 shows a sample session with the program WINDOW1.EXE.

Figure 15.1. A sample session with the program WINDOW1.EXE.

The main point of interest is the Paint function that starts on line 68. The function
declares the constant MAX_LINES, the string variable s, and the BOOL-typed variable ok.
The Paint function displays the lines using the for loop on lines 74 through 79. Each
loop iteration executes two statements. The first statement calls the sprintf function
(prototyped in the STDIO.H header file) to create the image of a formatted output
and store it in the variable s. The next statement calls the dc’s TextOut member
function, which places the formatted output on the window. Notice the first two
arguments of the TextOut function. They are 0 (for parameter X) and y. These values
result in displaying the text, starting with the left margin of the window. The next
function called is the dc’s GetTextExtent member function. This is used to determine
the height of the text and any line spacing and to use that information by adding it
to the y variable so that the next time through the loop, the next line is placed
appropriately below the previous line.

Scrolling Through Text
One of the versatile features of windows is the ability to scroll information, if that
information cannot be contained in the current viewing portion of the window. The



460

Basic Windows
M

T
W

R
F

S
S

DAYDAY

15

a/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94    CH15   LP#3(sp 4/12 folio)

scroll bars are the visual components of a window that assist in scrolling through the
window’s contents. Recall that a window can have a vertical scroll bar, horizontal scroll
bar, or both. A scroll bar has an arrow box at each end and a scroll thumb. The arrow
boxes enable you to scroll the window’s contents to either end or to either side. In
today’s lesson, you learn about scrolling windows that contain text drawn using
device-context objects.

☛ New Term: The scroll thumb serves two purposes. First, it shows where
you are relative to the entire width or length of the viewed information.
Second, when you drag the thumb with the mouse, you can move to a
specific portion of the viewed information.

The scrolling effect that we mentioned at the beginning of today’s lesson is supported
by a visual interface and an internal “engine.” You can easily include the visual scroll
bars in a window by incorporating the WS_VSCROLL and WS_HSCROLL styles in the
Attr.Style member data from the window’s constructor. For example, to create a
window with both vertical and horizontal scroll bars, use the following statement:

// both vertical and horizontal scroll bars
Attr.Style |= WS_VSCROLL | WS_HSCROLL;

The WS_VSCROLL and WS_HSCROLL constants add the visual aspect of the scroll bars. The
functionality is supported by overriding the EvVScroll, EvHScroll, and EvSize
functions, then adjusting your Paint function to take advantage of any scrolling
changes. OWL provides an integrated class that does just this, called TScroller. An
object of this class, when assigned the TWindow’s Scroller member function, provides
scrolling by working with the TWindow class to automatically sense the setting of the
scroll bars and adjust the window’s viewport accordingly.

☛ New Term: The viewport is that portion of the window that is visible at
any one time. It is possible to paint on a window outside of the visible
portion, but that will be clipped from view. By adjusting the viewport’s
origin, the clipped region will change, and offsets within the window will
be adjusted accordingly. For example, given a standard window, when a
string of text is drawn at (10,10), the text will appear offset down and to
the right of the upper left-hand corner of the window. By adjusting the
viewport origin to begin at (10,10), drawing that same text at the same
location will now make it appear in the upper left-hand corner.



461

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

15

a/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94    CH15   LP#3(sp 4/12 folio)

The constructor for the TScroller class looks like this:

TScroller(TWindow* window, int xUnit, int yUnit,
          long xRange, long yRange);

The window parameter is a pointer to the window for which the TScroller object is
being created. The xUnit and yUnit parameters specify how many device units to scroll
in each direction. In the case of textual information, this is usually going to be the size
of a single character, so that scrolling goes by lines. Note, however, that since most
fonts in Windows are variable (each of the characters are of differing widths), the
horizontal unit tends to be the average width of all the characters. Finally, the xRange
and yRange parameters specify how many scrolling positions exist. For example, a
yRange of 20 would mean that the down arrow on the scroll bar could be pressed 20
times.

It would be an easy thing to add an additional include file at the top,

#include <owl\scroller.h>

and the following two lines to the constructor of the TMyWindow class from the last
example:

Attr.Style |= WS_VSCROLL | WS_HSCROLL;
Scroller = new TScroller(7, 16, 20, MAX_LINES - 1);

If you add those two lines and recompile, you’ll find your window now has scroll bars
on its bottom and right side, and you can scroll to the right 20 columns and down as
many lines as are drawn (minus one, so at least one of the lines stays on the screen).
The two more interesting functions of the TScroller class are the VScroll and HScroll
member functions.

S
yn

ta
x

Manually Scrolling with TScroller
The declarations of TScroller’s VScroll and HScroll member functions are

void VScroll(UINT scrollEvent, int thumbPos);
void HScroll(UINT scrollEvent, int thumbPos);

The scrollEvent specifies the scrolling request. Table 15.1 shows the predefined
constants for the various scrolling requests. The thumbPos parameter specifies the
position of the thumb box when the argument for scrollEvent is either
SB_THUMBPOSITION or SB_THUMBTRACK.

Examples:

Scroller->VScroll(SB_LINEDOWN, 0);
Scroller->HScroll(SB_THUMBPOSITION, 23);



462

Basic Windows
M

T
W

R
F

S
S

DAYDAY

15

a/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94    CH15   LP#3(sp 4/12 folio)

Table 15.1. Predefined constants for vertical scrolling requests.

Value Meaning

SB_BOTTOM Scroll to the bottom

SB_ENDSCROLL End scroll

SB_LINEDOWN Scroll one line down

SB_LINEUP Scroll one line up

SB_PAGEDOWN Scroll one page down

SB_PAGEUP Scroll one page up

SB_THUMBPOSITION Scroll to the nPos position

SB_THUMBTRACK Drag the scroll thumb box to the nPos position

SB_TOP Scroll to the top

In the preceding short example, the 7 and 16 are approximations of a character’s width
and height. They will work when using the default font on most standard VGA
screens, but you will run into problems when you try to use different fonts or when
you run on screens that use a smaller font (like an 800×600 or 1024×768 screen). The
solution to this is to figure out the size of the font beforehand and set the scroll units
accordingly.

A Scrolling Window
This section presents a program that defines general scrollable windows.
WINDOW2.EXE has two main menu items, Exit and Char Sets. The second menu
item is a pop-up menu that has three selections: Set 1, Set 2, and Set 3. These options
produce text lines that have a different line spacing and different maximum number
of lines. The text fonts are the same for all three sets. Initially, the client area of the
application window is clear. Therefore, you must select one of the three character sets.
The application also supports the cursor movement keys to scroll the text. The
<Home> and <End> keys scroll vertically to the top and bottom, respectively.
Similarly, the <PgUp> and <PgDn> keys scroll one page up and down. The up and
down arrow keys scroll one line at a time. The left and right arrow keys scroll
horizontally by pages.



463

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

15

a/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94    CH15   LP#3(sp 4/12 folio)

Type

Type

This program illustrates two main aspects of scrolling windows:

1. Declaring a scrolling window class with additional member functions that
manage the assignment, access, and use of scrolling-related data.

2. Using assigned values to control vertical scrolling, and relying on the current
window metrics to control the horizontal scrolling.

Let’s look at the code for the general text scroller window application. Listings 15.3
and 15.4 show the header file WINDOW2.H and the resource file WINDOW2.RC,
respectively. Listing 15.5 contains the source code for the WINDOW2.CPP pro-
gram.

Create the directory WINDOW2 as a subdirectory of \BC4\BC21DAY and store all
the project’s files in the new directory. The project should contain the files
WINDOW2.CPP and WINDOW2.RC.

Listing 15.3. Source code for WINDOW2.H.

 1:  #define  CM_HEIGHT8     (WM_USER + 100)
 2:  #define  CM_HEIGHT10    (WM_USER + 101)
 3:  #define  CM_HEIGHT14    (WM_USER + 102)
 4:  #define  CM_HEIGHT20    (WM_USER + 103)
 5:  #define  CM_HEIGHT26    (WM_USER + 104)

Listing 15.4. Script code for WINDOW2.RC.

 1:  #include <windows.h>
 2:  #include <owl\window.rh>
 3:  #include “window2.h”
 4:
 5:  EXITMENU MENU LOADONCALL MOVEABLE PURE DISCARDABLE
 6:  BEGIN
 7:     MENUITEM “E&xit”, CM_EXIT
 8:     POPUP “&Char Heights”
 9:     BEGIN
 10:       MENUITEM “&8”, CM_HEIGHT8
 11:       MENUITEM “1&0”, CM_HEIGHT10
 12:       MENUITEM “1&4”, CM_HEIGHT14
 13:       MENUITEM “&20”, CM_HEIGHT20
 14:       MENUITEM “2&6”, CM_HEIGHT26
 15:    END
 16: END



464

Basic Windows
M

T
W

R
F

S
S

DAYDAY

15

a/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94    CH15   LP#3(sp 4/12 folio)

Type Listing 15.5. Source code for WINDOW2.CPP.

 1:  #include <owl\applicat.h>
 2:  #include <owl\dc.h>
 3:  #include <owl\framewin.h>
 4:  #include <owl\scroller.h>
 5:  #include <owl\window.h>
 6:  #include <owl\window.rh>
 7:  #include <stdio.h>
 8:
 9:  #include “window2.h”
 10:
 11: const MAX_LINES = 30;
 12:
 13: class TMyWindow : public TWindow
 14: {
 15: public:
 16:    TMyWindow(TWindow* parent = 0);
 17:    ~TMyWindow();
 18:
 19: protected:
 20:    virtual void SetupWindow();
 21:
 22:    BOOL CanClose();
 23:
 24:    void CmExit();
 25:    void CmHeight8();
 26:    void CmHeight10();
 27:    void CmHeight14();
 28:    void CmHeight20();
 29:    void CmHeight26();
 30:    void EvKeyDown(UINT, UINT, UINT);
 31:    void EvLButtonDown(UINT, TPoint &);
 32:
 33:    void Paint(TDC &, BOOL, TRect &);
 34:
 35: private:
 36:    TFont* pFont;
 37:
 38:    void NewFont(int);
 39:
 40:    DECLARE_RESPONSE_TABLE(TMyWindow);
 41: };
 42: DEFINE_RESPONSE_TABLE1(TMyWindow, TWindow)
 43:    EV_WM_KEYDOWN,
 44:    EV_WM_LBUTTONDOWN,
 45:    EV_COMMAND(CM_EXIT, CmExit),
 46:    EV_COMMAND(CM_HEIGHT8, CmHeight8),
 47:    EV_COMMAND(CM_HEIGHT10, CmHeight10),
 48:    EV_COMMAND(CM_HEIGHT14, CmHeight14),



465

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

15

a/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94    CH15   LP#3(sp 4/12 folio)

 49:    EV_COMMAND(CM_HEIGHT20, CmHeight20),
 50:    EV_COMMAND(CM_HEIGHT26, CmHeight26),
 51: END_RESPONSE_TABLE;
 52:
 53: class TMyApp : public TApplication
 54: {
 55: public:
 56:    TMyApp() : TApplication() {}
 57:
 58:    void InitMainWindow()
 59:       {
 60:       SetMainWindow(new TFrameWindow(  0,
 61:                            “A Simple Read-Only Text Window”,
 62:                            new TMyWindow ));
 63:       GetMainWindow()->AssignMenu(“EXITMENU”);
 64:       }
 65: };
 66:
 67: TMyWindow::TMyWindow(TWindow* parent)
 68: {
 69:    Init(parent, 0, 0);
 70:    Attr.Style |= WS_VSCROLL | WS_HSCROLL;    // Add scroll bars
 71:    pFont = NULL;
 72: }
 73:
 74: TMyWindow::~TMyWindow()
 75: {
 76:    if (pFont)
 77:       delete pFont;
 78: }
 79:
 80: void TMyWindow::SetupWindow()
 81: {
 82:    TWindow::SetupWindow();
 83:
 84:    // Set up the scroller and font.  Note that
 85:    // dummy values of 7 and 16 are used for the
 86:    // scroll bar’s units, but they’ll be reset
 87:    // as soon as the font is set.
 88:    //
 89:    Scroller = new TScroller(this, 7, 16, 20, MAX_LINES - 1);
 90:    NewFont(8);                            // Initialize our font
 91: }
 92:
 93: BOOL TMyWindow::CanClose()
 94: {
 95:    return IDYES == MessageBox(“Want to close this application?”,
 96:                               “Query”,
 97:                               MB_YESNO | MB_ICONQUESTION );
 98: }
 99:

continues



466

Basic Windows
M

T
W

R
F

S
S

DAYDAY

15

a/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94    CH15   LP#3(sp 4/12 folio)

 100: void TMyWindow::CmExit()
 101: {
 102:    SendMessage(WM_CLOSE);
 103: }
 104:
 105: void TMyWindow::CmHeight8()
 106: {
 107:    NewFont(8);
 108: }
 109:
 110: void TMyWindow::CmHeight10()
 111: {
 112:    NewFont(10);
 113: }
 114:
 115: void TMyWindow::CmHeight14()
 116: {
 117:    NewFont(14);
 118: }
 119:
 120: void TMyWindow::CmHeight20()
 121: {
 122:    NewFont(20);
 123: }
 124:
 125: void TMyWindow::CmHeight26()
 126: {
 127:    NewFont(26);
 128: }
 129:
 130: void TMyWindow::EvKeyDown( UINT key,
 131:                            UINT /*repeatCount*/,
 132:                            UINT /*flags*/ )
 133: {
 134:    if (Scroller)        // Can’t scroll if it ain’t there!
 135:       switch (key)
 136:          {
 137:          case VK_HOME:
 138:             Scroller->VScroll(SB_TOP, 0);
 139:             break;
 140:          case VK_END:
 141:             Scroller->VScroll(SB_BOTTOM, 0);
 142:             break;
 143:          case VK_PRIOR:
 144:             Scroller->VScroll(SB_PAGEUP, 0);
 145:             break;
 146:          case VK_NEXT:
 147:             Scroller->VScroll(SB_PAGEDOWN, 0);
 148:             break;

Listing 15.5. continued



467

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

15

a/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94    CH15   LP#3(sp 4/12 folio)

 149:          case VK_UP:
 150:             Scroller->VScroll(SB_LINEUP, 0);
 151:             break;
 152:          case VK_DOWN:
 153:             Scroller->VScroll(SB_LINEDOWN, 0);
 154:             break;
 155:          }
 156: }
 157:
 158: void TMyWindow::EvLButtonDown(UINT, TPoint &)
 159: {
 160:    MessageBox( “You clicked the left button!”,
 161:                “Mouse Click Event”,
 162:                MB_OK );
 163: }
 164:
 165: void TMyWindow::Paint(TDC& dc, BOOL /*erase*/, TRect& /*rect*/)
 166: {
 167:    char s[81];
 168:    BOOL ok = TRUE;
 169:    int y = 0;
 170:
 171:    for (int i = 0; i < MAX_LINES && ok; ++i)
 172:       {
 173:       if (pFont)
 174:          dc.SelectObject(*pFont);
 175:       sprintf(s, “This is line number %d”, i);
 176:       ok = dc.TextOut(0, y, s);
 177:       y += dc.GetTextExtent(s, lstrlen(s)).cy;
 178:       if (pFont)
 179:          dc.RestoreFont();
 180:       }
 181: }
 182:
 183: void TMyWindow::NewFont(int nHeight)
 184: {
 185:    if (pFont)
 186:       delete pFont;
 187:    pFont = new TFont(“Arial”, nHeight);
 188:
 189:    // Now reset the scroller’s units
 190:    if (pFont && Scroller)
 191:       {
 192:       TClientDC dc(*this);
 193:       TEXTMETRIC tm;
 194:
 195:       dc.SelectObject(*pFont);
 196:       dc.GetTextMetrics(tm);
 197:       dc.RestoreFont();
 198:

continues



468

Basic Windows
M

T
W

R
F

S
S

DAYDAY

15

a/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94    CH15   LP#3(sp 4/12 folio)

 199:       Scroller->SetUnits(  tm.tmAveCharWidth,
 200:                            tm.tmHeight + tm.tmExternalLeading );
 201:
 202:       Invalidate();
 203:       }
 204: }
 205:
 206: int OwlMain(int, char *[])
 207: {
 208:    return TMyApp().Run();
 209: }

Figure 15.2 shows a sample session with the program WINDOW2.EXE.

Listing 15.5. continued

Figure 15.2. A sample session with the program WINDOW2.EXE.

This program is very similar to the first one presented in this chapter. The major
differences are the addition of the scroll bars on the right and bottom of the
window and the new menu item allowing the user to change the font as it is

displayed on the screen.

Analysis



469

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

15

a/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94    CH15   LP#3(sp 4/12 folio)

☛ New Term: A font is a description of the type of characters used to
display text. This description includes what the characters look like, called
the typeface, as well as their size, referred to as their point size. Some
common typefaces are Arial and Times New Roman, both of which come
with Windows. Also, such things as italics and bold characters are de-
scribed by fonts.

The TMyWindow class on lines 13 through 51 declares a new data member and a new
function member, both private, for use in displaying using different point-sized fonts:

■■ The pFont member on line 36 stores a pointer to the font used to display the
text. This variable is preset to NULL in the class’s constructor on line 71 and
initialized in the SetupWindow function on line 90. It is then reset by the user
via the menus.

■■ The NewFont function starting on line 183 is used to change the font. It takes
an integer value that is used as the point size, and it then creates a TFont
object, assigning it to the pFont data member.

■■ The Paint function starting on line 165 first selects the pFont object into the
device context before writing to the window. After it’s done, it reselects the
original font back into the window.

Note: When dealing with windows and selecting objects into device
contexts like fonts or text colors, it’s always a good idea to make sure you
leave the DC in the same condition as when you found it. If you change
the font, make sure you change it back to whatever it might have been
before you messed with it.

Note that the pFont is only preset to NULL in the constructor, but the real initialization
occurs in the SetupWindow member function. This is a very important distinction, as
creating the font requires the existence of a window.



470

Basic Windows
M

T
W

R
F

S
S

DAYDAY

15

a/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94    CH15   LP#3(sp 4/12 folio)

The SetupWindow Member
Function

Although the TWindow class has the usual constructor where things can get initialized
as in any other class, it also has the member function SetupWindow for all initializations
that rely on an actual window to be there. The SetupWindow function looks like this:

void SetupWindow(void);

When the TWindow class is first created, all that exists is the interface object or C++
object. For many initializations, an actual interface element or Windows object (a
window) may need to exist. During the course of the window’s initialization, the
SetupWindow will be called. This function does the actual creation of the Windows
object to which the C++ object is to be connected. That is why it’s vitally important
for any derived versions of SetupWindow to call the parent’s version. Until the actual
TWindow::SetupWindow function is called, there will be no Windows object.

This program enables the user to use the keyboard to scroll the window. It does this
through a single member function EvKeyDown starting on line 130. In this function is
a switch statement that checks for the keys on the keypad. For each of these, it sends
the Scroller object the appropriate command (refer to Table 15.1) to scroll the
window. The Scroller object is closely tied to the TWindow object, of which TMyWindow
is directly descended, so it handles all the dirty work of changing the scroll bars and
telling the window to update itself, which then calls Paint to paint the right portions
of the screen.

In order to let the user change the font, the “Char Heights” pop-up menu item has
been added with various selections enabling the user to select specific point sizes for
the fonts. The program responds to these menu selections through the various
CmHeightXX member functions on lines 105 through 128. These functions serve only
to call the NewFont member function with the appropriate point size, as specified by
the user.

Finally, the NewFont member function, starting on line 183, handles the creation of
the fonts used in painting the window:

■■ First, it checks to see if the pFont data member has been set yet. If so, it
deletes the old one in preparation for replacing the old one with a new
version, which it does immediately. It allocates a new TFont object with the
typeface Arial and a point size of nHeight.



471

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

15

a/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94    CH15   LP#3(sp 4/12 folio)

Note: Although it is safe to delete a NULL pointer in Borland C++ 4.0, it’s
still a good idea to check first, because not all compilers are as safe.

■■ Assuming the Scroller object exists and the creation of pFont succeeded, the
function proceeds to set the Scroller with new values to let it know how big
the characters are now. To do this, it first gets a device context from the
window and selects the new pFont into it. The font’s attributes are placed
into the TEXTMETRIC object and that information is used in the TScroller’s
SetUnits function.

■■ Finally, because the font we use to paint the window has changed, we need
to tell the window to update itself with the new font. This is done with the
Invalidate function, which tells the window that its contents are no longer
valid and need repainting. Windows will automatically tell the window to
repaint itself, at which time the Paint function will be entered.

Summary
Today’s lesson discussed the mechanics of creating windows that show fixed and
scrollable text. The lesson included the following topics:

■■ Read-only text windows that display information are the basis of help
screens.

■■ You can write text in a window using the versatile TDC::TextOut member
function.

■■ Scrollable windows can be created with vertical and horizontal scroll bars.
These windows scroll using either the mouse or the cursor control keys. The
classes of scrollable windows use the TScroller class assigned to the
TWindow’s Scroller data member, as well as other functions to manage the
text metrics.



472

Basic Windows
M

T
W

R
F

S
S

DAYDAY

15

a/s&n3  TYS Borland C++ 21 Days  #30483  tullis  4-13-94    CH15   LP#3(sp 4/12 folio)

Q&A
Q Is the member function Paint needed to maintain windows with visual

controls such as command buttons?

A No. You need only to write the function Paint to maintain windows that
draw text and graphics. In the case of windows with controls, you need not
declare your own version of function Paint.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing on to the
next day’s lesson. Answers are provided in Appendix A, “Answers.”

Quiz
1. True or false? The member function Paint redraws the window only when

needed.

2. True or false? The TWindow::Scroller data member offers default scrolling
features.

3. True or false? Omitting the EvKeyDown member function in program
WINDOW2.CPP disables the vertical scrolling feature altogether.

Exercise
Experiment with modifying the WINDOW2.CPP program by adding cases to the
EvKeyDown function that will allow the window to scroll horizontally in response to the
right arrow and left arrow keys being pressed. In addition, you can experiment with
adding more CmHeightXX member functions and the corresponding menu selections.



473

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

M
T

W
R

F
S

S

WEEK

33

1616
OWL Controls



474

OWL Controls
M

T
W

R
F

S
S

DAYDAY

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

Interacting with Windows applications often involves dialog boxes that contain
various types of controls, such as the list box, the edit control (also called edit box),
and the pushbutton. These controls can be included in windows or, more frequently,
in dialog boxes. Today’s lesson and the next three look at the controls as they appear
in windows and focus on the basic properties of these controls. Day 20 presents dialog
boxes and views how the controls work with these boxes. Today, you learn about the
following topics:

■■ The TControl object

■■ Static text control

■■ Edit control

■■ Pushbutton control

Understanding the various controls and mastering how they behave and interact
enables you to implement highly interactive Windows applications. Today’s lesson
and the two that follow discuss the constructors and relevant member functions for
the control classes.

The TControl Object
To learn about OWL controls, it’s best to start with the TControl object. This object
is the base from which all other control objects are derived. Note that you will never
have any need to create a TControl object directly, but a discussion of it here helps you
to understand the control objects derived from it.

The TControl object is derived from the TWindow class, which means that it has much
of the same functionality as the TWindow class. This is actually a direct mapping of the
Windows environment where controls are, indeed, just specialized child windows.
Because the TControl class is meant merely as a common base class for the rest of the
control classes, the only public function is the constructor.

S
y
n
ta

x The TControl Constructor
The constructor of the TControl class is

TControl(TWindow*        parent,
         int             id,
         const char far* title,
         int             x,



475

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

         int             y,
         int             w,
         int             h,
         TModule*        module = 0);

The parent parameter is a pointer to the parent window in which the control will be
placed. The id represents the control’s ID, which is used in communication between
the parent window and the control itself (more on this later, when specific controls
are discussed). Next comes the title of the control. This parameter isn’t always
displayed by the particular control created, but it’s always set. The four parameters x,
y, w, and h describe the position and size of the control to be created. Finally, the module
parameter specifies the DLL with which the control is associated. This has a default
value of 0, and you will rarely find a need to override that.

You will see the parameters to this class duplicated again and again in the various
control classes derived from TControl. Added on to these standard parameters will be
other parameters specific to the particular class being created.

The Static Text Control
The static text control provides a window or a dialog box with static text. The TStatic
class implements the static text control. Let’s look at the class constructor and
members.

☛ New Term: Static text is text that the application user cannot easily and
readily change. Static text does not necessarily mean text etched in stone!
In fact, static text controls allow your OWL applications to alter the text
at any time, or you can still specify that the text be permanent and
unchangeable. The choice is ultimately yours.

The TStatic class, a descendant of TControl (which, in turn, is descended from
TWindow), offers static text that is defined by a display area, text to display, and text
attributes. Of these three components, you can alter only the displayed text during
runtime.



476

OWL Controls
M

T
W

R
F

S
S

DAYDAY

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

S
yn

ta
x

The TStatic Constructor
The constructor of the TStatic control is

TStatic(TWindow*       parent,
        int            id,
        const char far *title,
        int            x,
        int            y,
        int            w,
        int            h,
        UINT           textLen = 0,
        TModule*       module = 0 );

Example:

pText = new TStatic(this, -1, “Sample Text”, 10, 10, 75, 25);
pText->Attr.Style &=~SS_LEFT;
pText->Attr.Style 1=SS_SIMPLE;

The parent parameter specifies the parent window into which the static control will
be placed. The id is used to give the static control a unique identifier. A control’s ID
is typically used when the control needs to send notification messages to its parent
window or the static text needs to be changed by the application. In the case of a static
control, this is a very rare occasion, so the id parameter is usually set to -1. The title
sets an initial text string that will appear within the control. The next four param-
eters—x, y, w, and h—describe the location and size of the control as it will appear
within its parent window. The textLen parameter is used for advanced transfer and
streaming capabilities, and the module pointer is used for specifying the DLL with
which the static control is associated. Note that these last two both have default values
of 0, and you will rarely find a need to override that.

In addition to the usual WS_CHILD and WS_VISIBLE styles that go along with all controls,
static controls have their own special set of SS_XXX styles, as shown in Table 16.1. Note
that the TStatic class automatically includes the SS_LEFT style.

Table 16.1. Values for static text styles.

Value Meaning

SS_BLACKFRAME Designates a box with a frame drawn with the color
matching that of the window frame (black, in the default
Windows color scheme).



477

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

Value Meaning

SS_BLACKRECT Specifies a rectangle filled with the color matching that
of the window frame (black, in the default Windows
color scheme).

SS_CENTER Centers the static text characters; text is wrappable.

SS_GRAYFRAME Specifies a box with a frame that has the same color as
the screen background (gray, in the default Windows
color scheme).

SS_GRAYRECT Selects a rectangle filled with the same color as the screen
background (gray, in the default Windows color
scheme).

SS_ICON Specifies an icon that is to be displayed in the control.
The text is interpreted as the resource name of the icon.
(Note that the width and height of the control are
ignored as the icon is automatically sized.)

SS_LEFT Indicates left-justified text; text is wrappable.

SS_LEFTNOWORDWRAP Indicates left-justified text that cannot be wrapped.

SS_NOPREFIX Specifies that the ampersand character (&) in the static
text string should not be a hot key designator character,
but rather part of the static text character.

SS_RIGHT Selects right-justified text that is wrappable.

SS_SIMPLE Indicates that the static text characters cannot be altered
at runtime and that the static text is displayed on a single
line with line breaks ignored.

SS_WHITEFRAME Specifies a box with a frame that has the same color as
the window background (white, in the default Windows
color scheme).

SS_WHITERECT Selects a rectangle filled with the same color as the
window background (white, in the default Windows
color scheme).



478

OWL Controls
M

T
W

R
F

S
S

DAYDAY

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

The string accessed by the title pointer in the constructor may include the
ampersand (&) character to visually specify a hot key to actually support the hot key
your application needs to load accelerator keys. The hot-key character appears as an
underlined character. The ampersand should be placed before the hot key character.
If the string contains more than one ampersand characters, only the last occurrence
is effective. The other occurrences of the ampersand are not displayed and are ignored.
To display the & character, you need to specify the SS_NOPREFIX style. The price you
pay for using this style is the inability to display a hot key character.

Now, let’s focus on the component of the static text control that you can change
during runtime, namely, the text itself. If you specify the SS_SIMPLE style in the
control’s Attr.Style data member, you cannot alter its text. In this sense, the instance
of TStatic is, indeed, etched in stone. The TStatic class enables you to set, query, and
clear the characters of the static text using the GetTextLen, GetText, SetText, and
Clear functions.

S
yn

ta
x

The GetTextLen Function
The parameterless GetTextLen member function returns the length of the control’s
text:

int GetTextLen()

Example:

int nLen = pText->GetTextLen();

S
yn

ta
x

The GetText Function
The GetText member function enables you to access the static text characters. The
declaration of the function is

int GetText(char far* text, int maxChars);

The text parameter is a pointer to the string that receives a copy of the static text
characters. The maxChars parameter specifies the maximum number of static text
characters to copy. The function result returns the actual number of characters copied
to the string accessed by the pointer text.

Example:

char s[128];
pText->GetText(s, sizeof(s) - 1);



479

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

S
yn

ta
x

The SetText Function
The SetText member function overwrites the current static text characters with those
of a new string. The declaration of the function is

void SetText(const char far* str);

The str parameter is the pointer to the new text for the control. If the new text is an
empty string, the SetText function call simply clears the text in the static text control
instance.

Example:

pText->SetText(“New Text”);

S
yn

ta
x

The Clear Function
The Clear member function is simply a wrapper that passes an empty string to the
SetText member function. The declaration of the function is

void Clear();

Its existence is there to make code look a little cleaner by enabling you to call the Clear
function rather than SetText(“”);.

The Edit Control
The ObjectWindows Library offers the TEdit class that implements an edit control.
You have encountered this control in some of the earlier programs that use the input
dialog box. The edit control enables the user to type in and edit the text in the input
dialog box. In this section, we discuss the functionality of class TEdit in more detail,
because implementing customized text editors in your OWL application requires you
to become quite familiar with the TEdit member functions.

The TEdit Class
The TEdit class is derived from the TStatic class and implements a versatile edit
control that supports single-line and multiline text, as well as the ability to cut, paste,
copy, delete, and clear text. The edit control can also undo the last text changes and
exchange text with the Clipboard.



480

OWL Controls
M

T
W

R
F

S
S

DAYDAY

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

S
yn

ta
x

The TEdit Constructor
The declaration of the TEdit constructor is

TEdit(TWindow*       parent,
      int            id,
      const char far* text,
      int            x,
      int            y,
      int            w,
      int            h,
      UINT           textLen = 0,
      BOOL           multiline = FALSE,
      TModule*       module = 0 );

The parameters to the first constructor are almost identical to the ones for the TStatic
constructor. The only difference is the addition of a multiline parameter. This tells
whether the edit control should have more than one input line, like a text editor.
Unlike the TStatic control, however, it never makes sense to use an invalid number
in the id parameter of the TEdit control, as the TEdit control will need to send
notification messages back to its parent window.

The second constructor is identical in usage to the second constructor for the TStatic
control. It is used to associate a C++ class object with a control loaded with a dialog
resource.

Example:

const IDE_INPUT = 101;
pInput = new TEdit(this, IDE_INPUT, “”, 10, 10, 100, 25);

The TEdit control also has its own set of special styles, ES_XXX, that can be used to
modify its behavior (see Table 16.2). When you create a TEdit object, the ES_LEFT and
ES_AUTOHSCROLL are automatically added in. If the multiline parameter is set, then the
ES_MULTILINE and ES_AUTOVSCROLL are also automatically set.

Table 16.2. Values for edit control styles.

Value Meaning

ES_AUTOHSCROLL Allows the text to automatically scroll to the right by 10
characters when the user enters a character at the end of
the line; when the user presses the Enter key, text scrolls
back to the left.



481

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

Value Meaning

ES_AUTOVSCROLL Permits the text to scroll up by one page when the user
presses the Enter key on the last visible line.

ES_CENTER Centers the text in a multiline edit control.

ES_LEFT Justifies the text to the left.

ES_LOWERCASE Converts into lowercase all the letters that the user types.

ES_MULTILINE Specifies a multiline edit control that recognizes line
breaks (designated by the sequence of carriage return and
line feed characters).

ES_NOHIDESEL By default, hides the selected text when it loses focus and
shows the selection when it gains focus again; prevents
edit control from restoring the selected text.

ES_OEMCONVERT Converts the entered text from the Windows character
set to the OEM character set and back again. This is
useful for controls that receive filenames.

ES_PASSWORD Displays all characters as asterisks (*) as they are typed.
Note that this only affects the display; what the user
types is stored accurately in the control.

ES_READONLY Prevents the user from modifying the contents of the
control, although it is still possible to select text in the
control.

ES_RIGHT Justifies the text to the right in multiline edit controls.

ES_UPPERCASE Converts into uppercase all the letters that the user types.

ES_WANTRETURN Normally, the Enter key will click the default button.
When this style is set in an edit control, however,
pressing Enter while editing text will insert a new line.
This applies only to multiline edit controls.



482

OWL Controls
M

T
W

R
F

S
S

DAYDAY

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

Clipboard-Related Editing Functions
The TEdit class includes a set of member functions that handle Clipboard-related text
editing commands. These commands are available in typical menu options: Cut,
Copy, Paste, Clear, Undo, and Delete. Table 16.3 shows the TEdit member functions
and their purpose. These functions work with the Clipboard in the CF_TEXT format.

Table 16.3. TEdit member functions that support
Clipboard-related editing menu commands.

Member Function Purpose

CanUndo Returns whether or not an undo operation is possible
at the moment. It’s used to enable and disable the
Undo menu item accordingly.

Cut Deletes the current selection in the edit control and
copies the text to the Clipboard.

Copy Copies the current selection to the Clipboard.

Paste Inserts the text from the Clipboard to the current
cursor position in the edit control.

Clear Deletes the current selection; does not affect the
Clipboard.

Undo Undoes the last change made to the text of the edit
control.

Query of Edit Controls
The TEdit class has a family of text query member functions. These functions enable
you to retrieve either the entire control text or parts of it, or they permit you to obtain
information on the text statistics (number of lines, length of lines, and so on). Two
of these functions are inherited directly from the TStatic class. They are GetTextLen
and GetText. They are used to retrieve the contents of edit controls and are declared
and used in the same way as they are in the TStatic class.

Because edit controls allow for both multiple lines and user manipulation, additional
functions are used to get text from different lines and for manipulating the selection.



483

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

S
yn

ta
x

'The GetNumLines Function
The GetNumLines member function returns the number of lines in the edit control.
The declaration is

int GetNumLines() const;

Example:

nLineCount = pEdit->GetNumLines();

Note: In the case of multiline edit controls, you should take into account
the characters involved in either the soft or hard line breaks.

Hard line breaks use pairs of carriage return and line feed characters
(“\r\n”) at the end of each line. Soft line breaks use two carriage returns
and a line feed at line breaks (“\r\r\n”).

This information is relevant when you are counting the number of
characters to process.

S
yn

ta
x

The GetLineFromPos Function
The GetLineFromPos member function returns the line number of a specified
character index. Its declaration is

int GetLineFromPos(UINT charPos) const;

If the charPos argument is -1, then the function will return either of these two values:

■■ If there is selected text, the function yields the line number where the first
selected character is located.

■■ If there is no selected text, the function returns the line number where the
caret is, where character insertion occurs.

Example:

nLineNum = pEdit->GetLineFromPos(-1);



484

OWL Controls
M

T
W

R
F

S
S

DAYDAY

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

S
yn

ta
x

The GetLineIndex Function
The GetLineIndex member function returns the character index of a specific line. The
character index is also the size of the text in the edit control up to the specified line
number. Its declaration is

UINT GetLineIndex(int lineNumber) const;

The lineNumber parameter specifies the line index. If it is -1, it represents the current
line as represented by the caret, which marks the user’s current position. The function
returns the number of characters from the first line through to the specified line. If the
argument of lineNumber is greater than the actual number of lines, the function will
return -1.

Example:

nCharIndex = pEdit->GetLineIndex(-1);

S
yn

ta
x

The GetLineLength Function
The GetLineLength member function returns the length of a line for a specific line
number. Its declaration is

int GetLineLength(int lineNumber) const;

The lineNumber parameter specifies the line number from which to get the length. If
lineNumber is -1, then the function will return one of the following:

■■ If no text is selected, the length of the current line is returned.

■■ If text is selected, the length of the line, minus the length of the currently
selected text, is returned.

Example:

nLen = pEdit->GetLineLength(1);

S
yn

ta
x

The GetSelection Function
The GetSelection member function returns the starting and ending character
positions of the selected text. The starting character position is the index of the first
selected character. The ending position is the index of the first character after the
selected text. The declaration of the function is



485

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

void GetSelection(UINT& startPos, UINT& endPos) const;

The function fills in the passed startPos and endPos with the corresponding selection
locations. If these two values are equal, there is no selected text, because both UINTs
are the character indices to the current position.

Example:

pEdit->GetSelection(start, end);

S
yn

ta
x

The GetLine Function
The GetLine member function returns a line from a multiline edit control. Its
declaration is

BOOL GetLine(char far* str, int strSize, int lineNumber) const;

The str parameter points to a buffer that is to receive the text of the line; strSize is
the number of characters to receive; and lineNumber is the line to retrieve. If there is
a problem copying the line or if the line is longer than strSize, the function will return
FALSE. Otherwise it will return TRUE.

Example:

char s[128];
pEdit->GetLine(s, sizeof(s) - 1, 22);

Altering the Edit Controls
Let’s now focus on the member functions of TEdit that alter the edit control text. The
operations of these member functions include writing new text to the control,
selecting text, and replacing the selected text:

■■ The SetText member function that is inherited from the parent TStatic
class acts in the same manner; it overwrites the current edit control charac-
ters with those of a new string.

■■ The SetSelection member function defines a block of characters as the new
selected text.

■■ The Insert member function replaces the selected text with new characters.



486

OWL Controls
M

T
W

R
F

S
S

DAYDAY

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

S
yn

ta
x

The SetSelection Function
The declaration of the SetSelection function is

BOOL SetSelection(UINT startPos, UINT endPos);

The startPos and endPos parameters define the range of characters that make up the
new selected text. If the starting and ending positions are 0 and -1 respectively, the
entire text in the edit control is selected. If startPos is -1, any selection is removed.
The current position is placed at the greater of the two parameters.

Example:

pEdit->SetSelection(0, -1);

S
yn

ta
x

The Insert Function
The declaration of the Insert function is

void Insert(const char far* str);

The str parameter is the pointer to the new selected text that replaces the current
selection. If there is no selected text, the function simply inserts the text accessed by
str at the current insertion point.

Example:

pEdit->Insert(“New Text”);

Note: You can use the Insert function to delete parts of the edit control
text by first selecting that part and then replacing it with an empty string.

The Pushbutton Control
The pushbutton control is perhaps psychologically the most powerful control (you
never hear about the nuclear list box or the nuclear check box). In a sense, the
pushbutton control represents the fundamental notion of a control—you click on the
control and something happens. The rest of today’s lesson focuses on the aspects of
the class TButton that deal with the pushbutton controls.



487

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

☛ New Term: There are basically two types of pushbutton controls: default
buttons and nondefault buttons. Default buttons have slightly thicker edges
than nondefault buttons. Pressing the Enter key is equivalent to clicking
the default button in a dialog box. There can be only one default button
in a dialog box. You can select a new default button by pressing the Tab
key. This feature works only when the buttons are in a dialog box. If a
nondialog box window owns a pushbutton control, it can only visually
display a default button—the functionality is not supported.

The TButton Class
The TButton class, a descendant of TControl, doesn’t declare any public member
functions other than its constructors.

S
yn

ta
x

The TButton Constructor
The declaration for the TButton constructor is

TButton(TWindow*       parent,
        int            id,
        const char far* text,
        int            X,
        int            Y,
        int            W,
        int            H,
        BOOL           isDefault = FALSE,
        TModule*       module = 0 );
TButton(TWindow* parent, int resourceId, TModule* module = 0);

The first seven parameters to this function should be relatively familiar to you now,
as they’re identical to the ones in both the TStatic and TEdit controls. In fact, you’ll
find that most of these controls are descendants of the TControl class; the parameters
will be virtually the same across the control classes. In this case, the difference is the
addition of an isDefault parameter. This parameter specifies whether or not the
button is default.

Examples:

pOk = new TButton(this, IDOK, “&OK”, 10, 10, 50, 25, TRUE);
pCancel = new TButton(this, IDCANCEL, “&Cancel”, 70, 10, 50, 25);



488

OWL Controls
M

T
W

R
F

S
S

DAYDAY

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

Handling Button Messages
When you click a button, the control sends the BN_CLICKED notification message to
its parent window. The parent window responds to this message by invoking a
message response member function based on the ID of the button. For example, if you
have a button that was created with an ID of IDB_EXIT, the message handler function
is

// Other declarations
void HandleExitBtn();
// Other declarations

DEFINE_RESPONSE_TABLE1(TMyWindow, TWindow)
   // Other possible message mapping macros
   EV_BN_CLICKED(IDB_EXIT, HandleExitBtn),
   // Other possible message mapping macros
END_RESPONSE_TABLE;

This example shows that the message map macro EV_BN_CLICKED is used to map the
IDB_EXIT notification message with the HandleExitBtn member function.

Manipulating Buttons
You can disable and enable a button by using the EnableWindow function, which is
inherited from the TWindow ancestor. A disabled button has a faded gray caption and
does not respond to mouse clicks or keyboard input. The TWindow::EnableWindow
function enables you to enable or disable a button. The function accepts a single
argument, a Boolean argument that specifies whether the button is enabled (when the
argument is TRUE) or disabled (when the argument is FALSE). Sample calls to the
EnableWindow member function are

pOk->EnableWindow(FALSE);
pCalculate->EnableWindow(TRUE);

You can query the enabled state of a button by using the Boolean IsWindowEnabled
function, which takes no arguments. A sample call to IsWindowEnabled is

// Toggle the enabled state of a button
pButton->EnableWindow(!pButton->IsWindowEnabled());

You can also hide and show a button using the ShowWindow function. The function
takes one argument, either the SW_HIDE constant to hide the button or the SW_SHOW
constant to show the button. Other constant values are defined for this function, but
the SW_HIDE and SW_SHOW are the only two that apply to pushbuttons. The Boolean



489

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

IsWindowVisible function queries the visibility of a button. This function takes no
arguments. A sample call to the ShowWindow and IsWindowVisible functions is

// Toggle the visibility of a button
pButton->ShowWindow(pButton->IsWindowVisible() ? SW_HIDE : SW_SHOW);

Mr. Calculator
Let’s look at an application that uses static text, single-line edit controls, multiline edit
controls, and pushbuttons—Mr. Calculator. This nontrivial application implements
a floating-point calculator that uses edit controls instead of buttons. This type of
interface is somewhat visually inferior to the typical button-populated calculator
Windows applications. However, this interface can support more mathematical
functions without requiring the addition of the buttons for those extra functions. In
Mr. Calculator, the calculator is made up of the following controls:

■■ Two edit controls for the first and second operands to accept integers,
floating-point numbers, and the names of single-letter variables, A to Z.

■■ One edit control for the operator supports the calculator’s four basic math
operations and the exponentiation (using a caret, ^).

■■ One edit control displays the result of the math operation.

■■ One edit control displays any error messages.

■■ One multiline edit control enables you to store a number in the Result edit
control in one of 26 single-letter variables, A to Z. The multiline edit
displays the current values stored in these variables and enables you to view
and edit these numbers. You can use the vertical scroll bar to inspect the
values in the different variables.

■■ Multiple static text controls serve to label the various edit controls. Of
particular interest is the static control for the Error Message box. If you click
the accompanying static text, the Error Message is cleared of any text.

■■ A menu has the single Exit option.

■■ A pushbutton with the caption “Calc” performs the operation specified in
the Operator edit control, using the operands in the operand edit controls.

■■ A pushbutton with the caption “Store” stores the contents of the result edit
control in the currently selected line of the multiline edit control.

■■ A pushbutton with the caption “Exit” exits the application.



490

OWL Controls
M

T
W

R
F

S
S

DAYDAY

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

The program supports the following special features for the Store button control:

■■ The Store pushbutton is disabled if the application attempts to execute an
invalid operator. This feature illustrates an example of disabling a
pushbutton when a certain condition arises (in this case, a specific calcula-
tion error).

■■ The Store pushbutton is enabled if you click the Error Message static text.
The same button is enabled when you successfully execute a math operation.

The calculator application demonstrates the following tasks:

■■ Using single-line edit controls for simple input

■■ Using a multiline edit control to view and edit information

■■ Accessing and editing line-oriented text

■■ Simulating static text that responds to mouse clicks

■■ Using pushbuttons

■■ Disabling and enabling pushbuttons

Create the directory MRCALC as a subdirectory of \BC4\BC21DAY and store all the
project’s files in the new directory. The project’s .IDE file should contain the files
MRCALC.CPP and MRCALC.RC.

First, compile and run the application to get a good sense for how the calculator
application works. Experiment with typing different numeric operands and the
supported operators and click the Calc button. Each time, the result appears in the
Result box, overwriting the previous result. Try dividing a number by zero to
experiment with the error handling features.

Using the single-letter variables is easy. All these variables are initialized with 0.
Therefore, the first step to using them is to store a nonzero value. Perform an operation
and then click inside the Variables edit box. Select the first line that contains the
variable A. Now click the Store button and watch the number in the Result box appear
in the first line of the Variables edit box. The name of the variable and the colon and
space characters that follow reappear with the new text line. Now replace the contents
of the Operand1 edit box with the variable A, and then click the Calc button. The
Result edit box displays the result of the latest operation.

Listing 16.1 shows the source code for the MRCALC.H header file. The header file
declares the command constants for the menu item and the various controls. Listing
16.2 contains the script for the MRCALC.RC resource file. Listing 16.3 contains the
source code for the MRCALC.CPP program file.



491

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

Type

Type

Type Listing 16.1. Source code for the MRCALC.H header file.

1:  #define IDB_CALC     101
2:  #define IDB_STORE    102
3:  #define IDB_EXIT     103
4:  #define IDE_OPERAND1 104
5:  #define IDE_OPERATOR 105
6:  #define IDE_OPERAND2 106
7:  #define IDE_RESULT   107
8:  #define IDE_ERRMSG   108
9:  #define IDE_VARIABLE 109

Listing 16.2. Script for the MRCALC.RC resource file.

1:  #include <windows.h>
2:  #include <owl\window.rh>
3:
4:  EXITMENU MENU LOADONCALL MOVEABLE PURE DISCARDABLE
5:  BEGIN
6:     MENUITEM “E&xit”, CM_EXIT
7:  END

Listing 16.3. Source code for the MRCALC.CPP program
file.

1:  #include <ctype.h>
2:  #include <math.h>
3:  #include <stdio.h>
4:  #include <owl\applicat.h>
5:  #include <owl\button.h>
6:  #include <owl\edit.h>
7:  #include <owl\framewin.h>
8:  #include <owl\static.h>
9:  #include <owl\window.h>
10: #include <owl\window.rh>
11:
12: #include “mrcalc.h”
13:
14: class TCalcWindow : public TWindow
15: {
16: public:
17:    TCalcWindow(TWindow* parent = 0);
18:    ~TCalcWindow();
19:
20: protected:

continues



492

OWL Controls
M

T
W

R
F

S
S

DAYDAY

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

Listing 16.3. continued
21:    virtual void SetupWindow();
22:    virtual void EvLButtonDown(UINT modKeys, TPoint &point);
23:
24:    void CmCalc();
25:    void CmStore();
26:    void CmExit();
27:
28: private:
29:    TStatic  *ErrMsgLabel;
30:    TEdit    *Operand1, *Operator, *Operand2, *Result,
31:             *ErrMsg, *Variable;
32:    TButton  *Store;
33:
34:    double get_number(TEdit* edit);
35:    double get_var(int line);
36:    void put_var(double val);
37:
38:    DECLARE_RESPONSE_TABLE(TCalcWindow);
39: };
40: DEFINE_RESPONSE_TABLE1(TCalcWindow, TWindow)
41:    EV_WM_LBUTTONDOWN,
42:    EV_COMMAND(CM_EXIT, CmExit),
43:    EV_BN_CLICKED(IDB_CALC, CmCalc),
44:    EV_BN_CLICKED(IDB_STORE, CmStore),
45:    EV_BN_CLICKED(IDB_EXIT, CmExit),
46: END_RESPONSE_TABLE;
47:
48: TCalcWindow::TCalcWindow(TWindow* parent)
49: {
50:    Init(parent, 0, 0);
51:
52:    int   wlblspacing = 40,
53:          hlblspacing = 5,
54:          wlbl = 100,
55:          hlbl = 20,
56:          wbox = 100,
57:          hbox = 30,
58:          wboxspacing = 40,
59:          hboxspacing = 40,
60:          wbtn = 80,
61:          hbtn = 30,
62:          wbtnspacing = 30;
63:    int   wlongbox = 4 * (wbox + wboxspacing);
64:    int   wvarbox = 2 * wbox,
65:          hvarbox = 3 * hbox;
66:    int   x0 = 20, y0 = 30;
67:    int   x, y;
68:
69:    // First, create the labels for the edit text boxes.
70:    //
71:    x = x0;



493

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

72:    y = y0;
73:    new TStatic(this, -1, “Operand1”, x, y, wlbl, hlbl);
74:    x += wlbl + wlblspacing;
75:    new TStatic(this, -1, “Operator”, x, y, wlbl, hlbl);
76:    x += wlbl + wlblspacing;
77:    new TStatic(this, -1, “Operand2”, x, y, wlbl, hlbl);
78:    x += wlbl + wlblspacing;
79:    new TStatic(this, -1, “Result”, x, y, wlbl, hlbl);
80:    x += wlbl + wlblspacing;
81:
82:    // Now create the edit text boxes
83:    //
84:    x = x0;
85:    y += hlbl + hlblspacing;
86:    if (NULL != (Operand1 = new TEdit(this, IDE_OPERAND1, “”,
87:                                              x, y, wbox, hbox)))
88:       Operand1->Attr.Style |= ES_UPPERCASE;
89:    x += wbox + wboxspacing;
90:    if (NULL != (Operator = new TEdit(this, IDE_OPERATOR, “”,
91:                                              x, y, wbox, hbox)))
92:       Operator->Attr.Style |= ES_UPPERCASE;
93:    x += wbox + wboxspacing;
94:    if (NULL != (Operand2 = new TEdit(this, IDE_OPERAND2, “”,
95:                                              x, y, wbox, hbox)))
96:       Operand2->Attr.Style |= ES_UPPERCASE;
97:    x += wbox + wboxspacing;
98:    Result = new TEdit(this, IDE_RESULT, “”, x, y, wbox, hbox);
99:    x += wbox + wboxspacing;
100:
101:    // Now create the label and box for the error message
102:    //
103:    x = x0;
104:    y += hbox + hboxspacing;
105:    ErrMsgLabel = new TStatic( this, -1, “Error Message”, x, y,
106:                               wlbl, hlbl );
107:    y += hlbl + hlblspacing;
108:    ErrMsg = new TEdit(this, IDE_ERRMSG, “”, x, y, wlongbox, hbox);
109:
110:    // Create the label and box for the single-letter
111:    // variable selection
112:    //
113:    y += hbox + hboxspacing;
114:    new TStatic(this, -1, “Variables”, x, y, wlbl, hlbl);
115:    y += hlbl + hlblspacing;
116:    char str[6 * (‘Z’ - ‘A’ + 1) + 1];
117:    char *p = str;
118:    for (char ch = ‘A’; ch <= ‘Z’; ++ch)
119:       p += sprintf(p, “%c: 0\r\n”, ch);
120:    Variable = new TEdit(this, IDE_VARIABLE, str, x, y,
121:                         wvarbox, hvarbox, 0, TRUE );

continues



494

OWL Controls
M

T
W

R
F

S
S

DAYDAY

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

122:
123:    // Finally create some buttons
124:    //
125:    x += wvarbox + wbtnspacing;
126:    new TButton(this, IDB_CALC, “Calc”, x, y, wbtn, hbtn);
127:    x += wbtn + wbtnspacing;
128:    Store = new TButton(this, IDB_STORE, “Store”, x, y, wbtn, hbtn);
129:    x += wbtn + wbtnspacing;
130:    new TButton(this, IDB_EXIT, “Exit”, x, y, wbtn, hbtn);
131: }
132:
133: TCalcWindow::~TCalcWindow()
134: {
135: }
136:
137: void TCalcWindow::SetupWindow()
138: {
139:    TWindow::SetupWindow();    // Initialize the visual element
140:
141:    // Keep the users out of the destination areas.
142:    //
143:    if (Result)
144:       Result->SetReadOnly(TRUE);
145:    if (ErrMsg)
146:       ErrMsg->SetReadOnly(TRUE);
147:    if (Variable)
148:       Variable->SetReadOnly(TRUE);
149: }
150:
151: void TCalcWindow::EvLButtonDown(UINT /*modKeys*/, TPoint& point)
152: {
153:    if (     ErrMsgLabel
154:          && (ErrMsgLabel->HWindow == ChildWindowFromPoint(point)) )
155:       {
156:       if (ErrMsg)
157:          ErrMsg->Clear();
158:       if (Store)
159:          Store->EnableWindow(TRUE);
160:       }
161: }
162:
163: double TCalcWindow::get_number(TEdit *edit)
164: {
165:    double rslt;
166:    char *str;
167:    int size;
168:
169:    if (edit)
170:       {
171:       str = new char[size = edit->GetWindowTextLength() + 1];

Listing 16.3. continued



495

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

172:       if (str)
173:          {
174:          edit->GetWindowText(str, size);
175:          if (isalpha(str[0]))
176:             rslt = get_var(tolower(str[0]) - ‘a’);
177:          else
178:             rslt = atof(str);
179:          delete str;
180:          }
181:       }
182:    return rslt;
183: }
184:
185: double TCalcWindow::get_var(int line)
186: {
187:    double rslt = 0;
188:
189:    if (Variable)
190:       {
191:       int size = Variable->GetLineLength(line) + 1;
192:       char *str = new char[size];
193:       if (str)
194:          {
195:          Variable->GetLine(str, size, line);
196:          rslt = atof(str + 3);      // Don’t want first 3 chars
197:          delete str;
198:          }
199:       }
200:    return rslt;
201: }
202:
203: void TCalcWindow::put_var(double var)
204: {
205:    if (Variable)
206:       {
207:       UINT start, end;
208:       Variable->GetSelection(start, end);
209:       if (start != end)
210:          Variable->SetSelection(start, start);
211:       int line = Variable->GetLineFromPos(-1);
212:       int size = Variable->GetLineLength(line) + 1;
213:       char *str = new char[size];
214:       if (str)
215:          {
216:          Variable->GetLine(str, size, line);
217:          sprintf(str, “%c: %g”, str[0], var);
218:          start = Variable->GetLineIndex(-1);
219:          end = start + Variable->GetLineLength(-1);
220:          Variable->SetSelection(start, end);
221:          Variable->Insert(str);

continues



496

OWL Controls
M

T
W

R
F

S
S

DAYDAY

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

222:          delete str;
223:          }
224:       }
225:
226: }
227:
228: void TCalcWindow::CmCalc()
229: {
230:    double x, y, z = 0;
231:    char  *str, *err = NULL;
232:    int   size;
233:
234:    x = get_number(Operand1);
235:    y = get_number(Operand2);
236:
237:    if (Operator)
238:       {
239:       str = new char[size = Operator->GetWindowTextLength() + 1];
240:       if (str)
241:          {
242:          Operator->GetWindowText(str, size);
243:          if (str[1] != ‘\0’)
244:             err = “Invalid operator”;
245:          else
246:             switch (str[0])
247:                {
248:                case ‘+’:
249:                   z = x + y;
250:                   break;
251:                case ‘-’:
252:                   z = x - y;
253:                   break;
254:                case ‘*’:
255:                   z = x * y;
256:                   break;
257:                case ‘/’:
258:                   if (y)
259:                      z = x / y;
260:                   else
261:                      err = “Division by zero error”;
262:                   break;
263:                case ‘^’:
264:                   if (x > 0)
265:                      z = exp(y * log(x));
266:                   else
267:                      err = “Can’t raise power of negative numbers”;
268:                   break;
269:                default:
270:                   err = “Invalid operator”;
271:                   break;

Listing 16.3. continued



497

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

272:                }
273:             if (ErrMsg)
274:                if (!err)
275:                   ErrMsg->Clear();
276:                else
277:                   ErrMsg->SetWindowText(err);
278:             if (Store)
279:                Store->EnableWindow(!err);
280:             if (!err && Result)
281:                {
282:                char dest[81];
283:                sprintf(dest, “%g”, z);
284:                Result->SetWindowText(dest);
285:                }
286:          delete str;
287:          }
288:       }
289: }
290:
291: void TCalcWindow::CmStore()
292: {
293:    if (Result)
294:       {
295:       int size = Result->GetWindowTextLength() + 1;
296:       char *str = new char[size];
297:       if (str)
298:          {
299:          Result->GetWindowText(str, size);
300:          put_var(atof(str));
301:          delete str;
302:          }
303:       }
304: }
305:
306: void TCalcWindow::CmExit()
307: {
308:    SendMessage(WM_CLOSE);
309: }
310:
311: class TCalcApp : public TApplication
312: {
313: public:
314:    TCalcApp() : TApplication()
315:       { nCmdShow = SW_SHOWMAXIMIZED; }
316:
317:    void InitMainWindow()
318:       {
319:       SetMainWindow(new TFrameWindow(  0,
320:                            “Mr. Calculator”,

continues



498

OWL Controls
M

T
W

R
F

S
S

DAYDAY

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

321:                            new TCalcWindow ));
322:       GetMainWindow()->AssignMenu(“EXITMENU”);
323:       }
324: };
325:
326: int OwlMain(int, char *[])
327: {
328:    return TCalcApp().Run();
329: }
330:

Figure 16.1 shows a sample session with the Mr. Calculator program.

Listing 16.3. continued

Figure 16.1. A sample session with MRCALC.EXE.

The program in Listing 16.3 contains a number of data members in the
TCalcWindow class, each of which is a pointer to a control class. These are the
TStatic, TEdit, and TButton controls declared on lines 29 through 32. In

general, there is no real need to keep track of these controls because OWL will
automatically take care of deleting these controls when their corresponding Windows
elements are destroyed. However, if you may have some need to access them during
the duration of their existence, you will need a pointer in order to affect them.

Analysis



499

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

Note that as the operand and operator edit boxes are created on lines 82 through 96,
they are given the style of ES_UPPERCASE. This style results in automatically converting
into uppercase the single-letter variable names that you type in these edit controls.

Usually, such controls as TButton and especially TStatic can be created without
bothering to keep a pointer to them; a button will automatically send notifications to
its parent and, because static text controls are usually used as labels, there is rarely a
need to keep track of them. In this case, however, you need to keep track of the Store
button so you can enable and disable it according to error conditions, and you also
need to keep track of the Error Message label so you can tell when the user has clicked
it, at which point you need to clear the error message and re-enable the Store button.

In the constructor of TCalcWindow are a number of declarations between lines 52 and
57. These are used when placing the controls as they are created. The declarations
define the various widths and heights of the controls as well as the space in between
them. As the controls are created, the local variables x and y are updated to the location
of the next control.

In the SetupWindow member function of TCalcWindow starting on line 37, the Result,
ErrMsg, and Variable edit controls are set to read-only by calling the TEdit::SetReadOnly
member function. This is done to prevent the user from modifying the parts of the
screen that should be updated only by the program itself. The user can still place the
caret in these edit controls, even select text and scroll around in them, but Windows
will prevent the user from changing any of the contents.

The Variable edit box is created on lines 110 through 121 somewhat differently from
the other edit boxes. First, a somewhat elaborate initializing string is made up for it.
This string consists of 26 letters (‘A’ through ‘Z’), each followed by a colon, a space,
the number 0, and finally the characters “\r\n”. This makes up the format of the list
box and will be changed dynamically later by the user pressing the Store button.

Secondly, the Variable edit box constructor receives two extra parameters on lines
120 through 121. The first of the two extra parameters, 0, is the same as the default
parameter that is used whenever the constructor is called without passing anything for
that argument. The next parameter, however, is the one stating that you want a
multiline edit control. This automatically sets the control to allowing for multiple
lines, as well as adding the horizontal and vertical scroll bars.

The EvLButtonDown member function starting on line 151 performs a simple task. It
checks whether or not the mouse click occurs in the rectangle occupied by the error
message static text control. If this condition is true, the function performs the
following tasks:



500

OWL Controls
M

T
W

R
F

S
S

DAYDAY

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

■■ Uses the ChildWindowFromPoint function starting on line 154 to determine
in which window the mouse was clicked, then checks that against the
window of ErrMsgLabel

■■ Clears the error message box by invoking the function Clear on line 157

■■ Enables the Store button by invoking the function EnableWindow on line 159

Because you will have two edit boxes from which you will want to get either a number
or a value associated with a variable, it makes sense to have only one function that
performs this action and is called for each edit box. This is the purpose of the
get_number private member function starting on line 163. Its single parameter is a
pointer to a TEdit object. From this, the function obtains the text that’s stored in that
edit box on line 174. If the first character in that edit box is an alphabetic character
(checked through the ANSI C function isalpha on line 175), then the private get_var
function is called on line 176; otherwise the contents are converted to a floating point
number with the atof function on line 178.

The get_var function starting on line 185 is used to obtain the value associated with
a specific variable in the Variable edit control. Given a line number, it gets the text
from that line in the edit control, then passes that line, skipping the first three
characters (the variable letter, the colon, and the space), to the atof function for
conversion to a floating point number.

The put_var function starting on line 203 changes a variable in the Variable edit box.
It does so with the following steps:

■■ You check for a selection in the Variable edit box on lines 208 and 209. If
there is one, you remove that selection and set the current insertion point to
the beginning of the selection.

■■ Using the GetLineFromPos function, you get the line of the insertion point
on line 211.

■■ After creating a string large enough to hold the line, you get the line and
then change it to include the new value on lines 212 through 217.

■■ By passing -1 to the GetLineIndex function on line 218, you obtain the
character location of the start of the current line. Adding the length of the
line, you get the start of the next line.

■■ Using the SetSelection function on line 220, you select the current line.
Then you Insert the new string on line 221, replacing the current selection.



501

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

The CmCalc member function starting on line 228 responds to the notification
message emitted by the Calc button. You told the window to have the function called
by using the EV_BN_CLICKED macro during the TCalcWindow’s response table declara-
tion on line 43. The function performs the following tasks:

■■ Obtains the two operands from the Operand1 and Operand2 edit boxes
with the get_number private member function on lines 234 and 235.

■■ Copies the text in the Operator edit box into the local variable str on line
242.

■■ Determines and performs the requested operation by using a switch state-
ment on lines 246 through 272, checking the first character of the string for
the supported operators +, –, *, / and ^ (power).

■■ If at any time an error is detected, the err local variable is set to a string
describing the error, and at the end on line 273, if this variable is non-NULL,
its value is placed in the Error Message edit box, and the Store button is
disabled.

The CmStore member function starting on line 291 stores the contents of the Result
box in a single-letter variable. The function first obtains the string from the Result edit
box by calling the GetWindowText function on line 299. Then, the function invokes
the private member function put_var on line 300 to actually store the result string at
the current insertion point in the Variables edit box.

The CmExit member function starting on line 306 responds to the notification
message of both the Exit button and the Exit menu item. It sends a WM_CLOSE message
to the window, which effectively terminates the program.

Summary
Today’s lesson looked at the static text, edit box, and pushbutton controls. Using these
and other controls animates the Windows applications and provides a more consistent
user interface. You learned about the following topics:

■■ You can create static text controls and manipulate their text at runtime.

■■ Single-line and multiline edit box controls enable you to type in and edit the
text in the input dialog box.

In Day 17, we will present the grouped controls, the classes for group, check box, and
radio controls. These controls are used to fine-tune the execution of a specified task,
such as searching and replacing text in a text editor.



502

OWL Controls
M

T
W

R
F

S
S

DAYDAY

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

Q&A
Q How do I create a string for a multiline static text control?

A You build a multiline string, such as “This is\r\na multiline” (notice the
embedded \r\n characters, which break the line) and pass it as the third
argument to the TStatic class’s constructor.

Q Why does program MRCALC.CPP use local variables such as x and y to
specify the location of a control? Why not replace these variables with
numeric constants?

A Using variables, such as x and y, enables you to specify the location of the
controls relative to one another. This method enables you to shift controls
very easily. By contrast, using numeric constants specifies the absolute values
for the control locations. Shifting controls, in this case, means plugging in a
new set of numbers.

Q What do .RC resource files compile into?

A The .RC resource files are compiled into .RES files. Also, you should note
that the Resource Workshop is quite capable of saving your various dialog
boxes and other resources in an .RES file as well as an .RC file. This
precompiled file could then be included in your .IDE file instead of the .RC.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing on to the
next day’s lesson. Answers are provided in Appendix A, “Answers.”

Quiz
1. True or false? The text for all static text controls are unchangeable.

2. True or false? The SS_CENTER style centers each line of a multiline static text
control.

3. True or false? A static text control needs an accompanying pointer for access
only when the program needs to set or query the text in the control.



503

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

16

two/NS7   TYS Borland C++ 21 Days  #3048 sdavis 4-13-94 CH16LP#3(sp 4/12 folio)

4. True or false? Every edit control needs an accompanying pointer for access.

5. True or false? The API Windows function EnableWindow can disable any
control.

6. True or false? The Windows messages emitted by a pushbutton can be
mapped using the EV_COMMAND map.

Exercises
1. Experiment with the program MRCALC.CPP to add trigonometric func-

tions, inverse trigonometric functions, hyperbolic functions, and inverse
hyperbolic functions.

2. Experiment with a copy of the program MRCALC.CPP by changing values
assigned to the constants that specify the size and spacing of the various
controls.



505

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

17

A—ns8   TYS Borland C++ 21 Days  #30483  kim  4-13-94    CH17   LP#3(sp 4/12 folio)

M
T

W
R

F
S

S

WEEK

33

1717
Grouped Controls



506

Grouped Controls
M

T
W

R
F

S
S

DAYDAY

17

A—ns8   TYS Borland C++ 21 Days  #30483  kim  4-13-94    CH17   LP#3(sp 4/12 folio)

Windows supports check box and radio button controls that act as software switches.
These controls appear in typical Search and Replace dialog boxes and influence certain
aspects of the text search or replacement. These aspects include the scope, direction,
and case-sensitivity of searching or replacing text. In today’s lesson, you learn about
the following topics:

■■ The check box control

■■ The radio button control

■■ The group control

Today’s lesson also shows you how to respond to the messages emitted by these
controls as well as how to use the ForEach iterators to manipulate the check box and
radio button controls.

☛ New Term: The group box control is a special control that visually and
logically groups the check box and radio button controls.

The Check Box Control
The check box control is a special button that toggles a check mark. The control
instances appear with a small rectangular button and a title that appears, by default,
to the right side of the square. When you click the square, you toggle the control’s
check mark. Think of the check box as a binary digit that can be either set or cleared.
The instances of a check box can appear inside or outside a group box and are not
mutually exclusive—toggling any check box does not affect the check state of other
check boxes.

Note: Placing check boxes inside groups (inside a dialog box) serves two
purposes. First, the group box provides a visual grouping that clarifies the
purpose of the check boxes to the application user. Second, you can
streamline the notification messages emitted by the check boxes in a
group to detect any change in the checked state of the check boxes.



507

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

17

A—ns8   TYS Borland C++ 21 Days  #30483  kim  4-13-94    CH17   LP#3(sp 4/12 folio)

☛ New Term: Windows enables you to specify a check box that can have
one of three states: checked, unchecked, and grayed. The grayed state fills
the control’s rectangular button with a gray color. This third state can
serve to indicate that the check box control is in an indeterminate (or
“don’t care”) state.

The TCheckBox Class
The ObjectWindows Library offers the TCheckBox class, a descendant of TButton, as
the class that provides the instances of check box controls. Day 16 introduces you to
the TButton class and discusses the aspects of that class that are related to the
pushbutton controls. Because check boxes are really just specialized buttons, much of
what applies to buttons also applies to check boxes. By deriving the TCheckBox class
from the TButton class, we ensure that TCheckBox inherits much of the parent’s
functionality. The check box styles shown in Table 17.1 indicate that there are two
basic modes for managing the check state of a check box control: automatic and
nonautomatic (manual, if you prefer). In automatic mode (specified by BS_AUTOCHECKBOX
and BS_AUTO3STATE), Windows toggles the check state when you click the control. In
manual mode, your application code is responsible for managing the check state of the
check box.

Table 17.1. Check box control styles.

Style Meaning

BS_CHECKBOX Specifies a check box with the title to the right of the
rectangular button.

BS_AUTOCHECKBOX Same as BS_CHECKBOX, except the button is automatically
toggled when you click it. This is the default setting for
the TCheckBox class.

BS_3STATE Same as BS_CHECKBOX, except that the control has three
states: checked, unchecked, and grayed.

BS_AUTO3STATE Same as BS_3STATE, except the button is automatically
toggled when you click it.

BS_LEFTTEXT Sets the control’s title to the left of the button. Note that
this is the only style that can be ORed into the style.



508

Grouped Controls
M

T
W

R
F

S
S

DAYDAY

17

A—ns8   TYS Borland C++ 21 Days  #30483  kim  4-13-94    CH17   LP#3(sp 4/12 folio)

The TCheckBox class provides member functions to set and query the state of the check
box. The GetCheck member function returns a state of the check box control and is
declared as follows:

UINT GetCheck() const;

The function returns a UINT-typed value that represents the check state. A value of
BF_UNCHECKED indicates that the control is not checked. A value of BF_CHECKED signals
that the control is checked. A value of BF_GRAYED indicates that the control is in an
indeterminate state. The latter value is valid for the BS_3STATE and BS_AUTO3STATE
styles.

The SetCheck member function enables you to set the check state of a check box
control. The declaration of the SetCheck function is

void SetCheck(UINT check);

The check parameter specifies the new state of the check box control and should be
one of the BF_XXX values.

Responding to Check Box Messages
Because check boxes are descendants of TButton with a BS_CHECKBOX or BS_AUTOCHECKBOX
style, your OWL application responds to the messages emitted by check boxes in a
manner similar to the pushbuttons. The EV_BN_CLICKED macro maps the message sent
by the check box control with the member function that responds to that message.

The Radio Button Control
Radio buttons typically enable you to select an option from two or more options. This
kind of control comes with a circular button and a title that appears, by default, to the
right of the button. When you check a radio button, a tiny, filled circle appears inside
the circular button. Radio buttons need to be placed in group boxes that visually and
logically group them. In each group of radio buttons, only one button can be selected.
Therefore, radio buttons are mutually exclusive.

The TRadioButton Class
OWL applications use the TRadioButton class, a descendant of TCheckBox, to create
radio button controls by specifying BS_RADIOBUTTON or BS_AUTORADIOBUTTON.



509

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

17

A—ns8   TYS Borland C++ 21 Days  #30483  kim  4-13-94    CH17   LP#3(sp 4/12 folio)

Table 17.2 contains the radio button styles. The constructor creates a radio button
with the BS_AUTORADIOBUTTON style. Like the check box controls, the radio buttons use
the GetCheck and SetCheck member functions to query and set the state. Unlike the
check box, the radio button has only two states: checked and unchecked.

Table 17.2. Radio button control styles.

Style Meaning

BS_RADIOBUTTON Specifies a radio button with the title to the right of
the circular button.

BS_AUTORADIOBUTTON Same as BS_RADIOBUTTON, except the button is auto-
matically toggled when you click it. This is the default
style for the TRadioButton class.

BS_LEFTTEXT Sets the control’s title to the left of the button. This is
the only style that can be ORed into the style.

The radio button controls send the same type of notification messages to their parent
windows as do the check box controls. Handling these messages for radio buttons is
identical to that of check box and pushbutton controls.

The Group Control
The group box control encloses radio buttons and check boxes. The group box
performs the following tasks:

■■ Visually groups radio buttons or check boxes, which makes relating these
controls to each other clearer for the application user, by placing a box
around them. Note that you don’t necessarily need controls in a box to get
the visual effect.

■■ Logically groups multiple radio buttons so that when you select one radio
button, the other buttons in the same group are automatically deselected.

☛ New Term: The group box control is a special type of control known as a
container control.



510

Grouped Controls
M

T
W

R
F

S
S

DAYDAY

17

A—ns8   TYS Borland C++ 21 Days  #30483  kim  4-13-94    CH17   LP#3(sp 4/12 folio)

You can code your OWL application so that the controls inside a group box notify the
parent of the group box that you have changed the state of its controls.

The TGroupBox Class
Your OWL applications can create group boxes with the TGroupBox class, descended
from TControl. This automatically creates the visual element and provides access via
its SelectionChanged member function. The declaration of the SelectionChanged
function is

void SelectionChanged(int controlId);

When an item in the group is changed, this function gets called. By default, the
SelectionChanged function checks the TGroupBox’s NotifyParent data member. If it’s
TRUE, then the function notifies the parent window of the group box that one of its
selections has changed by sending it a child-ID-based message. By deriving your own
version of TGroupBox and redefining SelectionChanged, you can handle selection
changes from the group box itself.

The Widget Selection Application
Here’s a short application that demonstrates a possible use for the controls introduced
in this chapter. The program shows a sample order form for the World-Wide Widget
Weilders company. On it, the user can select one each of Type A, Type B, and Type
C widgets. For each of those widget types, there are several different models from
which the user can choose. In each case, the different models are disabled so long as
the widget type is not checked.

This program illustrates the following:

■■ The basic use of check box controls

■■ The basic use of radio buttons

■■ Responding to check box notification messages

■■ Overriding a group box to keep track of changes in radio button selections

■■ Making initial radio button selections

Listing 17.1 contains the source code for the WIDGETS.H header file. Listing 17.2
shows the source code for the WIDGETS.CPP program file. Create the directory
WIDGETS as a subdirectory of \BC4\BC21DAY and store all the project’s files in the
new directory. The project’s .IDE file should contain the file WIDGETS.CPP.



511

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

17

A—ns8   TYS Borland C++ 21 Days  #30483  kim  4-13-94    CH17   LP#3(sp 4/12 folio)

Type

Type Listing 17.1. Source code for the WIDGETS.H header
file.

1:  #define IDC_TYPEA       101
2:  #define IDC_TYPEB       102
3:  #define IDC_TYPEC       103
4:  #define IDR_ETCHED      104
5:  #define IDR_POLISHED    105
6:  #define IDR_WOODGRAIN   106
7:  #define IDR_VARNISHED   107
8:  #define IDR_ENGRAVED    108
9:  #define IDR_MEDIOCRE    109
10: #define IDR_DELUXE      110
11: #define IDG_TYPEA       111
12: #define IDG_TYPEB       112
13: #define IDG_TYPEC       113

Listing 17.2. Source code for the WIDGETS.CPP
program file.

1:  #include <stdio.h>
2:  #include <owl\applicat.h>
3:  #include <owl\button.h>
4:  #include <owl\checkbox.h>
5:  #include <owl\framewin.h>
6:  #include <owl\groupbox.h>
7:  #include <owl\radiobut.h>
8:  #include <owl\window.h>
9:  #include <owl\window.rh>
10:
11: #include “widgets.h”
12:
13: class TMyGroup : public TGroupBox
14: {
15: public:
16:    TMyGroup(TWindow*       parent,
17:             int            id,
18:             const char far* text,
19:             int X, int Y, int W, int H,
20:             TModule*        module = 0 )
21:       : TGroupBox(parent, id, text, X, Y, W, H, module), cur(-1)
22:       { }
23:
24:    LPCSTR GetCurCheck();
25:
26:    virtual void SelectionChanged(int controlId)
27:       { TGroupBox::SelectionChanged(cur = controlId); }
28:

continues



512

Grouped Controls
M

T
W

R
F

S
S

DAYDAY

17

A—ns8   TYS Borland C++ 21 Days  #30483  kim  4-13-94    CH17   LP#3(sp 4/12 folio)

29: private:
30:    int cur;
31: };
32:
33: LPCSTR TMyGroup::GetCurCheck()
34: {
35:    TWindow* w = Parent->ChildWithId(cur);
36:    return w ? w->Title : NULL;
37: }
38:
39: class TWidgetWindow : public TWindow
40: {
41: public:
42:    TWidgetWindow(TWindow* parent = 0);
43:
44: protected:
45:    virtual void SetupWindow();
46:
47:    void EnableGroupA(BOOL enable);
48:    void EnableGroupB(BOOL enable);
49:    void EnableGroupC(BOOL enable);
50:
51:    BOOL BuildStr( LPSTR str,
52:                   LPCSTR name,
53:                   TCheckBox* check,
54:                   TMyGroup* group );
55:
56:    void CmDone();
57:    void CmCancel();
58:    void CmTypeA();
59:    void CmTypeB();
60:    void CmTypeC();
61: private:
62:    TCheckBox      *TypeA, *TypeB, *TypeC;
63:    TMyGroup       *GroupA, *GroupB, *GroupC;
64:    TRadioButton   *Etched, *Polished,
65:                   *WoodGrain, *Varnished, *Engraved,
66:                   *Mediocre, *Deluxe;
67:
68:   DECLARE_RESPONSE_TABLE(TWidgetWindow);
69: };
70: DEFINE_RESPONSE_TABLE1(TWidgetWindow, TWindow)
71:    EV_BN_CLICKED(IDOK, CmDone),
72:    EV_BN_CLICKED(IDCANCEL, CmCancel),
73:    EV_BN_CLICKED(IDC_TYPEA, CmTypeA),
74:    EV_BN_CLICKED(IDC_TYPEB, CmTypeB),
75:    EV_BN_CLICKED(IDC_TYPEC, CmTypeC),
76: END_RESPONSE_TABLE;
77:

Listing 17.2. continued



513

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

17

A—ns8   TYS Borland C++ 21 Days  #30483  kim  4-13-94    CH17   LP#3(sp 4/12 folio)

78: TWidgetWindow::TWidgetWindow(TWindow* parent)
79: {
80:    Init(parent, 0, 0);
81:
82:    new TButton(this, IDOK, “Done”, 175, 350, 100, 30);
83:    new TButton(this, IDCANCEL, “Cancel”, 400, 350, 100, 30);
84:
85:    TypeA = new TCheckBox(this, IDC_TYPEA, “Type A”,
86:                                     70, 40, 100, 20);
87:    GroupA = new TMyGroup(this, IDG_TYPEA, NULL,
88:                                     192, 15, 280, 75);
89:    Etched = new TRadioButton(this, IDR_ETCHED, “Etched”,
90:                                     203, 42, 100, 20, GroupA);
91:    Polished = new TRadioButton(this, IDR_POLISHED, “Polished”,
92:                                     332, 42, 100, 20, GroupA);
93:
94:    TypeB = new TCheckBox(this, IDC_TYPEB, “Type B”,
95:                                     70, 153, 100, 20);
96:    GroupB = new TMyGroup(this, IDG_TYPEB, NULL,
97:                                     192, 123, 280, 75);
98:    WoodGrain = new TRadioButton(this, IDR_WOODGRAIN, “Wood-Grain”,
99:                                     203, 138, 100, 20, GroupB);
100:    Varnished = new TRadioButton(this, IDR_VARNISHED, “Varnished”,
101:                                     332, 138, 100, 20, GroupB);
102:    Engraved = new TRadioButton(this, IDR_ENGRAVED, “Engraved”,
103:                                     203, 172, 100, 20, GroupB);
104:
105:    TypeC = new TCheckBox(this, IDC_TYPEC, “Type C”,
106:                                     70, 272, 100, 20);
107:    GroupC = new TMyGroup(this, IDG_TYPEC, NULL,
108:                                     192, 247, 280, 75);
109:    Mediocre = new TRadioButton(this, IDR_MEDIOCRE, “Mediocre”,
110:                                     203, 273, 100, 20, GroupC);
111:    Deluxe = new TRadioButton(this, IDR_DELUXE, “Deluxe”,
112:                                     332, 273, 100, 20, GroupC);
113: }
114:
115: void TWidgetWindow::SetupWindow()
116: {
117:    TWindow::SetupWindow();    // Initialize the visual element
118:
119:    EnableGroupA(FALSE);
120:    EnableGroupB(FALSE);
121:    EnableGroupC(FALSE);
122: }
123:
124: void TWidgetWindow::EnableGroupA(BOOL enable)
125: {
126:    if (Etched)
127:       Etched->EnableWindow(enable);

continues



514

Grouped Controls
M

T
W

R
F

S
S

DAYDAY

17

A—ns8   TYS Borland C++ 21 Days  #30483  kim  4-13-94    CH17   LP#3(sp 4/12 folio)

128:    if (Polished)
129:       Polished->EnableWindow(enable);
130: }
131:
132: void TWidgetWindow::EnableGroupB(BOOL enable)
133: {
134:    if (WoodGrain)
135:       WoodGrain->EnableWindow(enable);
136:    if (Varnished)
137:       Varnished->EnableWindow(enable);
138:    if (Engraved)
139:       Engraved->EnableWindow(enable);
140: }
141:
142: void TWidgetWindow::EnableGroupC(BOOL enable)
143: {
144:    if (Mediocre)
145:       Mediocre->EnableWindow(enable);
146:    if (Deluxe)
147:       Deluxe->EnableWindow(enable);
148: }
149:
150: BOOL TWidgetWindow::BuildStr( LPSTR str,
151:                               LPCSTR name,
152:                               TCheckBox* check,
153:                               TMyGroup* group )
154: {
155:    BOOL rslt = FALSE;
156:    if (str && check && check->GetCheck())
157:       {
158:       rslt = TRUE;
159:       LPCSTR groupname;
160:
161:       str += lstrlen(str);    // point to end of str
162:       sprintf(str, “\n   %s: “, name);
163:       if (group && (NULL != (groupname = group->GetCurCheck())))
164:          strcat(str, groupname);
165:       }
166:    return rslt;
167: }
168:
169:
170: void TWidgetWindow::CmDone()
171: {
172:    char           str[256] = “”;
173:    int            sels = 0;
174:
175:    strcpy(str, “You have selected the following:”);
176:    sels += BuildStr(str, “Widget A”, TypeA, GroupA);
177:    sels += BuildStr(str, “Widget B”, TypeB, GroupB);

Listing 17.2. continued



515

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

17

A—ns8   TYS Borland C++ 21 Days  #30483  kim  4-13-94    CH17   LP#3(sp 4/12 folio)

178:    sels += BuildStr(str, “Widget C”, TypeC, GroupC);
179:    if (!sels)
180:       strcat(str, “\n   << No selections >>”);
181:    MessageBox(str, “Widget Selection”, MB_OK);
182:    SendMessage(WM_CLOSE);
183: }
184:
185: void TWidgetWindow::CmCancel()
186: {
187:    SendMessage(WM_CLOSE);
188: }
189:
190: void TWidgetWindow::CmTypeA()
191: {
192:    if (TypeA)
193:       EnableGroupA(TypeA->GetCheck());
194:    if (GroupA && !GroupA->GetCurCheck() && Etched)
195:       Etched->Check();
196: }
197:
198: void TWidgetWindow::CmTypeB()
199: {
200:    if (TypeB)
201:       EnableGroupB(TypeB->GetCheck());
202:    if (GroupB && !GroupB->GetCurCheck() && WoodGrain)
203:       WoodGrain->Check();
204: }
205:
206: void TWidgetWindow::CmTypeC()
207: {
208:    if (TypeC)
209:       EnableGroupC(TypeC->GetCheck());
210:    if (GroupC && !GroupC->GetCurCheck() && Mediocre)
211:       Mediocre->Check();
212: }
213:
214:
215: class TWidgetApp : public TApplication
216: {
217: public:
218:    TWidgetApp() : TApplication()
219:       { nCmdShow = SW_SHOWMAXIMIZED; }
220:
221:    void InitMainWindow()
222:       {
223:       SetMainWindow(new TFrameWindow(  0,
224:                            “World-Wide Widget Weilders”,
225:                            new TWidgetWindow ));
226:       }
227: };
228

continues



516

Grouped Controls
M

T
W

R
F

S
S

DAYDAY

17

A—ns8   TYS Borland C++ 21 Days  #30483  kim  4-13-94    CH17   LP#3(sp 4/12 folio)

229: int OwlMain(int, char *[])
230: {
231:    return TWidgetApp().Run();
232: }

Figure 17.1 shows a sample session with the WIDGETS.EXE program.

Listing 17.2. continued

Figure 17.1. A sample session with program WIDGETS.EXE.

The program starts off on line 13 by declaring a descendant of TGroupBox called
TMyGroup. The purpose of this is to keep track of the selections made by the
controls contained within it. The class initializes its cur data member to –1 in

the constructor on line 21. This signifies that no control has yet been selected inside
the group. This value is changed in the overridden SelectionChanged member
function on line 27. This function, as described earlier, is called whenever a control
inside the group is selected. Our version of the function simply passes the single
parameter along to the parent’s version of the function while assigning the value of that
parameter to our cur data member. Finally, the TMyGroup class defines the GetCurCheck
member function starting on line 33. This function uses the parent window’s
ChildWithId function to obtain a TWindow pointer to the control with the ID recorded
in cur. If a control was found, then its Title data member is returned.

Analysis



517

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

17

A—ns8   TYS Borland C++ 21 Days  #30483  kim  4-13-94    CH17   LP#3(sp 4/12 folio)

The main window TWidgetWindow is then declared, starting on line 39. As usual, there
is a constructor and a SetupWindow member function. The constructor creates all the
various controls that are to appear on the screen, starting on line 78: three check boxes,
each with a group next to it, then between two and three radio buttons inside that
group. At the bottom of the window are two buttons, “Done” and “Cancel.” The
SetupWindow member function that starts on line 115, after calling its parent’s version
of the function, makes calls to three functions to initially disable the various groups
of radio buttons.

Next are the helper functions EnableGroupA, EnableGroupB, and EnableGroupC on
lines 124 through 148. These are used to enable and disable whole groups of controls
via TWindow’s EnableWindow member function. They each take a single BOOL-typed
enable parameter that determines whether the controls are to be enabled or disabled.
This parameter is passed directly on to the individual control’s EnableWindow
function.

The two functions CmDone and CmCancel on lines 170 through 188 come next. They
respond to the two buttons “Done” and “Cancel,” respectively. In both cases, they
send the WM_CLOSE message to the main window in order to shut the application down,
but the CmDone function first creates and displays a message box informing the user of
the selections made. It builds this string by doing the following:

■■ First, it fills in the str variable on line 175 with an initial string, letting the
user know what information follows.

■■ Next, the BuildStr member function (discussed next) is called for each of
the three check boxes and group boxes on lines 176 through 178. The
return values of these calls are added to the sels variable and BuildStr
modifies str.

■■ After filling up the string with results of the user’s selections, the sels
variable is checked. If it’s still 0, then nothing was selected, and the str
variable is filled to reflect that on lines 179 and 180. This bit of code works
because TRUE is defined to be 1 and FALSE to be 0. So, when the BOOL return
values from multiple calls to BuildStr are added together in sels, we’re
checking to see if any of the return values were TRUE without actually caring
about which one.

■■ The str variable is then sent to the MessageBox function on line 181 for
display to the user.

■■ Finally, the WM_CLOSE message is sent to the window via the SendMessage
function on line 182 to effectively terminate the window and, thus, the
program.



518

Grouped Controls
M

T
W

R
F

S
S

DAYDAY

17

A—ns8   TYS Borland C++ 21 Days  #30483  kim  4-13-94    CH17   LP#3(sp 4/12 folio)

The BuildStr member function, starting on line 150, works by taking a destination
string in its str parameter, the name of the check box to be reported to the user in the
name parameter, and the pointers to the check box and group box controls in the check
and group parameters, respectively. The function does the following things:

■■ First, it checks on line 156 to make sure it received valid str and check
parameters. It’s always a good idea to check parameters before trying to use
them to help prevent unwanted bugs in the program. In the same statement,
it also calls check’s GetCheck function. If that returns TRUE, then the check
box has been checked, and we need to start filling in the str parameter.

■■ In order to keep from overwriting the previous contents of the str param-
eter, str is made to point at its end by adding the value obtained from the
lstrlen function on line 161.

■■ The name of the check box is printed into the str, along with some format-
ting characters on line 162.

■■ If we have a valid group parameter and we’re able to get the title of its
selected radio button, then that title is concatenated to the str parameter on
line 164.

■■ Finally, the result of whether or not anything was actually added to str is
returned on line 166.

The last functions of interest are the CmTypeA, CmTypeB, and CmTypeC member functions
on lines 190 through 212. These each respond, in turn, to the Type A, Type B, and
Type C check boxes respectively. In each one, first the appropriate EnableGroupX is
called with the check box’s check state to either enable or disable the appropriate
group’s radio buttons. Then, the function attempts to find out the title of the currently
selected radio button. If this value isn’t set, then we know this is the first time the check
box has been set, so we initialize the radio buttons by setting the first one with its Check
member function.

Summary
Today’s lesson discussed the special switch controls: group box, check box, and radio
button. You learned about the following:

■■ Check box and radio button controls act as software switches.

■■ You can set and query the check state for the check box and radio button
controls.



519

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

17

A—ns8   TYS Borland C++ 21 Days  #30483  kim  4-13-94    CH17   LP#3(sp 4/12 folio)

■■ Notification messages can be sent by these controls to their parent window.

■■ Group box controls enclose radio buttons and check boxes.

■■ Switch controls can be selectively manipulated.

Day 18 presents the scroll bar, list box, and combo box controls. These controls are
value selectors because they enable you to select from a list or range of values.

Q&A
Q The check box has the states BF_UNCHECKED, BF_CHECKED, and BF_GRAYED.

What can I use the third state for?

A You can use the BF_GRAYED state as a “don’t care” or as an undetermined
state.

Q Does it make any difference if I place check box controls in a group
control?

A Placing check box controls in a group control affects the logical grouping of
such controls as the user sees it. Consequently, this can enhance the interface
for the user.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing on to the
next day’s lesson. Answers are provided in Appendix A, “Answers.”

Quiz
1. True or false? A check box can replace any two radio buttons in a group

control.

2. True or false? You should use radio buttons in a group control when you
have three or more options.

3. True or false? A set of check boxes parallels the bits in a byte or word.

4. True or false? Radio buttons, in a group control, are mutually nonexclusive.



520

Grouped Controls
M

T
W

R
F

S
S

DAYDAY

17

A—ns8   TYS Borland C++ 21 Days  #30483  kim  4-13-94    CH17   LP#3(sp 4/12 folio)

Exercise
Expand on program WIDGETS.CPP by adding more widget types and more design
types for each widget.



521

Sa
m

s
Le

a
rn

in
g

Ce
nt

er PUBLISHING
S  MS

18

M
T W

R
F S S

WEEK

1818

33

List Box Controls



522

List Box Controls
M

T W
R

F S S

DAYDAY

18

List box controls are input tools that conveniently provide you with the items to
choose. This feature makes list box controls popular because they absolve you from
remembering the list members—especially when computer programs expect exact
spelling. Experience with DOS programs has shown that the various DOS utilities
that display lists of files and directories are far easier and friendlier to use than their
counterparts that assume the user knows all the names of the files and directories.
Using list box controls has gradually become a routine method for retrieving
information. Today’s lesson discusses the single-selection and multiple-selection list
boxes. You learn about the following topics:

■■ The list box control

■■ Handling single-selection list boxes

■■ Handling multiple-selection list boxes

The List Box Control
List boxes typically are framed and include a vertical scroll bar. When you select an
item by clicking it, the selection is highlighted. Microsoft suggests the following
guidelines for making a selection:

■■ Use a single mouse click to select a new or an additional item. A separate
button control retrieves the selected item.

■■ Use a double-click as a shortcut for selecting an item and retrieving it.

☛ New Term: The list box is an input control that permits the application
user to select from a list of items.

A list box control supports multiple selections only if you specify the multiple-
selection style when you create the control. Making multiple selections is convenient
when you want to process the selected items in a similar manner. For example,
selecting multiple files for deletion speeds up the process and reduces the effort you
have to make.

The TListBox Class
The Borland ObjectWindows Library offers the TListBox class, a descendant of
TControl, to implement list box controls. The TListBox class has a set of member



523

Sa
m

s
Le

a
rn

in
g

Ce
nt

er PUBLISHING
S  MS

18

functions that enable you to easily manipulate and query both the contents of the list
box and the selected item. As with many other classes in OWL, the class TListBox uses
a default constructor to create list box instances.

S
yn

ta
x

The TListBox Constructor
The declaration of the TListBox constructor is

TListBox(TWindow* parent,
         int     Id,
         int     x,
         int     y,
         int     w,
         int     h,
         TModule* module = 0 );

You will notice that the TListBox class constructor looks very much like the other
controls descended from TControl (such as TEdit, TButton, and so on). You specify
the control’s parent window, its control ID, and its dimensions within that window.

Example:

TListBox* pList = new TListBox(this, IDL_FILES, 10, 10, 75, 250);

Along with the regular WS_XXX styles, the list box makes use of the special LBS_XXX styles
(see Table 18.1). The TListBox class, by default, sets the LBS_STANDARD style. This is
equivalent to the WS_BORDER, WS_VSCROLL, LBS_SORT, and LBS_NOTIFY styles. You can
remove the LBS_SORT style from the list box controls to maintain a list of items that
is not automatically sorted. Such a list enables you to maintain items in a chronological
fashion. You can also use this type of list to maintain the items sorted in descending
order. Of course, you are responsible for maintaining the list items in that order.
Removing the WS_VSCROLL style gives you a list box without the vertical scroll bar. The
next section presents a demonstration program that uses this type of list box to
implement the synchronized scrolling of multiple list boxes.

Table 18.1. List box control styles.

Style Meaning

LBS_DISABLENOSCROLL Specifies that the list box is to always have a scroll
bar that is gray when there is nothing to scroll.
Normally, the scroll bar disappears when not
needed.

LBS_EXTENDEDSEL Allows the extension of multiple-selections in the

continues



524

List Box Controls
M

T W
R

F S S

DAYDAY

18

list box by using the Shift key.

LBS_HASSTRINGS Used in owner-drawn list boxes to have the control
maintain a copy of the strings added.

LBS_MULTICOLUMN Designates a multicolumn list box that scrolls
horizontally.

LBS_MULTIPLESEL Supports multiple selections in a list box.

LBS_NOINTEGRALHEIGHT Suppresses showing parts of an item.

LBS_NOREDRAW Prevents the list box from being updated when the
selection is changed (you can use the SetRedraw
member function to change this at will).

LBS_NOTIFY Notifies the parent window when you click or
double-click in the list box.

LBS_OWNERDRAWFIXED Used to specify an owner-drawn list box (a list box
for which the application is responsible for draw-
ing, instead of the automatic Windows functions).
Specifies that the list box items all will be the same
height.

LBS_OWNERDRAWVARIABLE Specifies an owner-drawn list box that contains
items of differing heights.

LBS_SORT Specifies that the items inserted in the list box be
automatically sorted in ascending alphanumeric
order.

LBS_STANDARD Sets the WS_BORDER, WS_VSCROLL, LBS_SORT, and
LBS_NOTIFY styles.

LBS_USETABSTOPS Allows the tab character to be expanded within the
list box control.

LBS_WANTKEYBOARDINPUT Permits the list box owner to receive
WM_VKEYTOITEM or WM_CHARTOITEM messages when a
key is pressed while the list box has the focus
(allows the application to manipulate the items in
the list box).

Table 18.1. continued

Style Meaning



525

Sa
m

s
Le

a
rn

in
g

Ce
nt

er PUBLISHING
S  MS

18

The TListBox class enables you to refer to the items in a list box by index. The index
of the first item is 0. The TListBox class offers the following member functions to set
and query ordinary and selected list members:

■■ The AddString member function adds a string to the list box.

■■ The DeleteString member function removes a list member from a specified
position.

■■ The parameterless ClearList member function clears the list of strings in the
list box control in one swoop. This function serves to reset the contents of a
list box before building up a new list.

■■ The FindExactString and FindString member functions perform case-
insensitive searches for items in the list box. The first searches the list box for
an exact match to a string, whereas the second searches for a list box entry
that begins with a string.

■■ The parameterless GetCount member function returns the number of items
in the list box. The function returns a negative number if there is an error.

■■ The parameterless GetSelIndex member function returns the position of the
selected item in a single-selection list box. If there is no selected item, the
function yields a negative value. This function is aimed at single-selection list
boxes only.

■■ The GetSel member function returns the selection state of a list box item,
specified by an index.

■■ The parameterless GetSelCount member function returns the number of
selected items in the list box. For single-selection list boxes, the number will
be either 0 or 1.

■■ The GetSelIndexes member function returns the number and positions of
the selected items in a multiple-selection list box.

■■ The GetString member function obtains an item in a list box by specifying
its index.

■■ The GetStringLen member function returns the length of a list item speci-
fied by its position in the list.

■■ The GetTopIndex member function returns the index of the first visible list
box item.



526

List Box Controls
M

T W
R

F S S

DAYDAY

18

■■ The InsertString member function inserts a string in a list box.

■■ The SetSelString member function selects a list box item that matches a
search string.

■■ The SetSelItemRange member function enables you to select a range of
items in one call.

■■ The SetSelIndex member function chooses a list item as the new selection
in a single-selection list box.

■■ The SetSel member function makes or clears a selection in a multiple-
selection list box.

■■ The SetTopIndex member function selects the list box entry that becomes
the first visible item in the list box control.

■■ The DirectoryList member function is a special member function that
enables you to automatically insert filenames in a list box.

Note: Many of the TListBox functions return either LB_ERR or
LB_ERRSPACE. It should be noted that both of these values are negative, so
just checking a return value to see if it’s less than 0 is often enough.

S
yn

ta
x

The AddString Function
The declaration of the AddString member function is

int AddString(const char far* str);

The str parameter is the pointer to the added string. The function returns the position
of the added string in the control. If there is any error in adding the string, the function
yields an LB_ERR or LB_ERRSPACE value (out-of-memory error). If the LBS_SORT style is
set, the string is inserted so that the list order is maintained. If the LBS_SORT style is not
set, the added string is inserted at the end of the list.

Example:

pList->AddString(“MS-DOS”);



527

Sa
m

s
Le

a
rn

in
g

Ce
nt

er PUBLISHING
S  MS

18

S
yn

ta
x

The DeleteString Function
The declaration of the DeleteString member function is

int DeleteString(int index);

The index parameter specifies the position of the item to delete. The function returns
the number of remaining list members. If errors occur, DeleteString yields the value
LB_ERR.

Example:

pList->DeleteString(0); //Deletes item 0

S
yn

ta
x

The FindExactString and FindString Functions
The declarations of the FindExactString and FindString functions are

int FindExactString(const char far* str, int searchIndex) const;
int FindString(const char far* str, int searchIndex) const;

In both cases, the searchIndex parameter specifies the index of the first list box
member to be searched, and the str parameter is the pointer to the searched string.
The functions search the entire  list, beginning with position searchIndex and
resuming at the beginning of the list, if needed. The search stops when either a list
member matches the search string or the entire list is searched. Passing an argument
of –1 to searchIndex forces the functions to start searching from the beginning. The
functions return the position of the matching list item, or they yield the LB_ERR value
if no match is found or when an error occurs.

The difference between the two functions is that, although FindExactString looks for
an exact match of the parameter str to an entry in the list box, FindString will stop
as soon as it finds an entry that begins with str.

Example:

int msdos = pList->FindString(“MS-DOS”, -1);
int anti = pList->FindString(“anti”, -1);

Note: The interesting search method used by FindExactString and
FindString enables you to speed up the search by specifying a position
that comes closely before the most likely location for a match. For
example, if you happen to know where the first item starting with an s is



528

List Box Controls
M

T W
R

F S S

DAYDAY

18

located, and you’re searching for something that begins with the same
character, you can specify that initial index in an attempt to speed up the
search.

The beauty of this method is that if you specify a position that is actually
beyond that of the string you seek, you cannot miss finding that string
because the function resumes searching at the beginning of the list.
Another benefit of FindExactString and FindString is their ability to
find duplicate strings.

S
yn

ta
x

The GetSel Function
The declaration of the function GetSel is

BOOL GetSel(int index) const;

The index parameter specifies the index of the queried list box item. The function
returns a TRUE if the item is selected, FALSE if the item is not selected.

Example:

pList->SetSel(0, !pList->GetSel(0)); //toggles sel state of item 0

S
yn

ta
x

The GetSelIndexes Function
The declaration of the GetSelIndexes function is

int GetSelIndexes(int* indexes, int maxCount) const;

The maxCount parameter specifies the size of the array accessed by the indexes pointer.
The indexes parameter is the pointer to an array of integers that stores the positions
of the selected items. The function returns the current number of selections. The
function yields LB_ERR with single-selection list boxes.

Example:

int num_items = pList->GetSelCount();
int* items = new int[num_items];
pList->GetSelIndexes(items, num_items);

S
yn

ta
x

The GetString Function



529

Sa
m

s
Le

a
rn

in
g

Ce
nt

er PUBLISHING
S  MS

18

The declaration for the GetString function is

int GetString(char far* str, int index) const;

The index parameter specifies the index of the retrieved item. The first list box item
has the index of 0. The str parameter points to a buffer that receives the retrieved item.

You are responsible for ensuring that the buffer has enough space for the retrieved item
(for example, using GetStringLen when allocating a receiving buffer). The function
returns the number of characters retrieved from the list box.

Example:

char* s = NULL;
int size = pList->GetStringLen(ix);
if ((size > 0) && (NULL != (s = new char[size + 1])))
   pList->GetString(s, ix);

S
yn

ta
x

The GetStringLen Function
The declaration of the GetStringLen function is

int GetStringLen(int index) const;

The parameter index specifies the index of the target list item. The function returns
the length of the target item, or the LB_ERR result if an error occurs.

Example:

See GetString’s example.

S
yn

ta
x

The InsertString Function
The declaration of the InsertString function is

int InsertString(const char far* str, int index);

The index parameter specifies the requested insertion position. The str parameter is
the pointer to the inserted string. The function returns the actual insertion position,
or it yields the LB_ERR value if an error occurs. If the argument for index is –1, the string
is simply appended to the end of the list.

Example:

pList->InsertString(“Windows”, 0);



530

List Box Controls
M

T W
R

F S S

DAYDAY

18

!! Warning: In general, do not use the InsertString member function with
list boxes that have the LBS_SORT style set. Using this function with
ordered list boxes will most likely corrupt the sort order of the list.

S
yn

ta
x

The SetSelString Function
The declaration of the SetSelString function is

int SetSelString(const char far* str, int searchIndex);

The parameters and search mechanism of SetSelString are identical to those of
FindString. The difference is that SetSelString selects the list box item that matches
the string accessed by parameter str.

Example:

int ix = pList->SetSelString(“MS-DOS”, -1);

S
yn

ta
x

The SetSelItemRange Function
The declaration of the SetSelItemRange function is

int SetSelItemRange(BOOL select, int first, int last);

The select parameter acts as a switch used to select or deselect the range of list box
items defined by parameters of first and last. The number returned is the number
of items actually selected between and including first and last.

Example:

pList->SetSelItemRange(TRUE, 0, 10);

S
yn

ta
x

The SetSelIndex Function
The declaration of the SetSelIndex function is

int SetSelIndex(int index);



531

Sa
m

s
Le

a
rn

in
g

Ce
nt

er PUBLISHING
S  MS

18

The parameter index specifies the position of the new selection. To clear a list box
from any selection, pass a –1 argument as the select parameter. The function returns
LB_ERR if an error occurs. This is used for single-selection list boxes.

Example:

pList-SetSelIndex(-1);      // clear current selection

S
yn

ta
x

The SetSel Function
The declaration of the SetSel function is

int SetSel(int index, BOOL select);

The index parameter specifies the list box item to either select, if select is TRUE, or
deselect, if select is FALSE. The function returns LB_ERR if an error occurs. The
function result serves only to flag a selection/deselection error. You can use the SetSel
function to toggle the selection of multiple items in a multiple-selection list box, one
at a time.

Example:

pList->SetSel(0, TRUE);      // select first item in list

S
yn

ta
x

The SetTopIndex Function
The declaration of the function SetTopIndex is

int SetTopIndex(int index);

The index parameter specifies the index of the list box item that becomes the first
visible item. This selection scrolls the list box, unless item index is already the first
visible item. The function returns LB_ERR if an error occurs. Otherwise, the result is
meaningless.

Example:

pList->SetTopIndex(10);

S
yn

ta
x

The DirectoryList Function
The declaration of the DirectoryList function is

int DirectoryList(UINT attrs, const char far* fileSpec);

The attrs parameter specifies the combination of attributes, as shown in Table 18.2.
The table also shows the equivalent file attribute constants that are declared in the



532

List Box Controls
M

T W
R

F S S

DAYDAY

18

DOS.H header file. The fileSpec parameter is the pointer to the filename specifica-
tion, such as *.*, L*.EXE, or A???.CPP. The return value is the number of files added
to the list box.

Example:

int numFiles = pList->DirectoryList(DDL_ARCHIVE, “CTL*.CPP”);

Table 18.2. Attributes for the attrs parameter in the
TListbox::DirectoryList member function.

Equivalent Constant
Attribute Value in DOS.H Header File Meaning

DDL_READWRITE FA_NORMAL or _A_NORMAL File can be used for input and
output.

DDL_READONLY FA_RDONLY or _A_RDONLY File is read only.

DDL_HIDDEN FA_HIDDEN or _A_HIDDEN File is hidden.

DDL_SYSTEM FA_SYSTEM or _A_SYSTEM File is system file.

DDL_DIRECTORY FA_DIREC or _A_SUBDIR Name indicated by parameter
fileSpec also supplies the
directory.

DDL_ARCHIVE FA_ARCH or _A_ARCH File has the archive bit set.

DDL_POSTMSGS Posts messages to the applica-
tion instead of sending them
directly to the list box.

DDL_DRIVES Includes all the drives that
match the filename supplied
by fileSpec.

DDL_EXCLUSIVE Exclusive flag (prevents
normal files from being
included with specified files).

Note that in the preceding table, there are two constants defined in the DOS.H header
file for each item. The first is the value defined by Borland. The second is the one
defined for the Microsoft compiler. Borland defines these to help with compatibility,
to make programs more easily portable between the two compilers.



533

Sa
m

s
Le

a
rn

in
g

Ce
nt

er PUBLISHING
S  MS

18

Responding to List Box
Notification Messages

The list box control emits various types of messages, as shown in Table 18.3. The table
also shows the message-mapping macros that are associated with the various com-
mand and notification messages. Each type of command or notification message
requires a separate member function declared in the control’s parent window class.

Table 18.3. List box notification messages.

Message Macro Meaning

WM_COMMAND EV_COMMAND A Windows command message.

LBN_DBLCLK EV_LBN_DBLCLK A list item is selected with a mouse
double-click.

LBN_ERRSPACE EV_LBN_ERRSPACE The list box cannot allocate more
dynamic memory to accommodate
new list items.

LBN_KILLFOCUS EV_LBN_KILLFOCUS The list box has lost focus.

LBN_SELCHANGE EV_LBN_SELCHANGE A list item is selected with a mouse
click.

LBN_SETFOCUS EV_LBN_SETFOCUS The list box has gained focus.

The List Manipulation Tester
The next program demonstrates how to set and query normal and selected strings, and
how to set and query the current selection in a single-selection list box—a simple list
manipulation tester. This program focuses on illustrating how to use most of the
TListBox member functions presented earlier in this section. The program contains
the following controls, which offer the indicated test features:

■■ A list box control.

■■ A String Box edit control that enables you to type in and retrieve a list
member.

■■ An Index Box edit control that enables you to key in and retrieve the
position of the current selection.

■■ An Add String pushbutton to add the contents of the String Box to the list



534

List Box Controls
M

T W
R

F S S

DAYDAY

18

Type

box (the program does not enable you to add duplicate names, and, if you
attempt to do so, the program displays a warning message).

■■ A Delete String pushbutton to delete the current selection in the list box
(the program automatically selects another list member).

■■ The Get Selected String pushbutton that copies the current list selection to
the String Box.

■■ The Set Selected String pushbutton that overwrites the current selection
with the string in the String Box.

■■ The Get Selected Index pushbutton that writes the position of the current
selection in the Index Box.

■■ The Set Selected Index pushbutton that uses the integer value in the Index
Box as the position of the new list box selection.

■■ The Get String button that copies the string whose position appears in the
Index Box into the String Box.

■■ The Exit pushbutton.

These controls exercise various aspects of manipulating a sorted list box and its
members. The program is coded to retain a current selection and to prevent the
insertion of duplicate names.

Listings 18.1, 18.2, and 18.3 show the header file CTLLST.H, the script for the
CTLLST.RC resource file, and the source code for the CTLLST.CPP program file,
respectively. The resource file contains a single-item menu resource.

Create the directory CTLLST as a subdirectory of BC4\BC21DAY and store all the
project’s files in the new directory. The project’s IDE file should contain the files
CTLLST.CPP and the CTLLST.RC.

Compile and run the program. When the program starts running, it places a set of
names in the list box. Experiment with the various pushbutton controls to add, delete,
and obtain strings. The program is straightforward and easy to run.

Listing 18.1. Source code for the
CTLLST.H header file.

1:  #define IDL_STRINGS     101
2:  #define IDE_STRING      102
3:  #define IDE_INDEX       103
4:  #define IDB_ADD         104
5:  #define IDB_DEL         105



535

Sa
m

s
Le

a
rn

in
g

Ce
nt

er PUBLISHING
S  MS

18

Type

Type
6:  #define IDB_GETSELSTR   106
7:  #define IDB_SETSELSTR   107
8:  #define IDB_GETSELIDX   108
9:  #define IDB_SETSELIDX   109
10: #define IDB_GETSTR      110
11: #define IDB_EXIT        111

Listing 18.2. Script for the
CTLLST.RC resource file.

1: #include <windows.h>
2: #include <owl\window.rh>
3:
4: EXITMENU MENU LOADONCALL MOVEABLE PURE DISCARDABLE
5: BEGIN
6:    MENUITEM “E&xit”, CM_EXIT
7: END

Listing 18.3. Source code for the
CTLLST.CPP program file.

 1:  #include <stdio.h>
 2:  #include <windows.h>
 3:  #include <owl\applicat.h>
 4:  #include <owl\button.h>
 5:  #include <owl\edit.h>
 6:  #include <owl\framewin.h>
 7:  #include <owl\listbox.h>
 8:  #include <owl\static.h>
 9:  #include <owl\window.h>
 10: #include <owl\window.rh>
 11:
 12: #include “ctllst1.h”
 13:
 14: class TMyWindow : public TWindow
 15: {
 16: public:
 17:    TMyWindow(TWindow* parent = 0);
 18:    virtual ~TMyWindow();
 19:
 20: protected:
 21:    virtual void SetupWindow();
 22:
 23:    void CbAdd();
 24:    void CbDel();
 25:    void CbGetSelStr();

continues



536

List Box Controls
M

T W
R

F S S

DAYDAY

18

 26:    void CbSetSelStr();
 27:    void CbGetSelIdx();
 28:    void CbSetSelIdx();
 29:    void CbGetStr();
 30:    void CmExit();
 31:
 32: private:
 33:    TListBox* list;
 34:    TEdit* strbox,* idxbox;
 35:
 36:    DECLARE_RESPONSE_TABLE(TMyWindow);
 37: };
 38: DEFINE_RESPONSE_TABLE1(TMyWindow, TWindow)
 39:    EV_COMMAND(CM_EXIT, CmExit),
 40:    EV_BN_CLICKED(IDB_ADD, CbAdd),
 41:    EV_BN_CLICKED(IDB_DEL, CbDel),
 42:    EV_BN_CLICKED(IDB_GETSELSTR, CbGetSelStr),
 43:    EV_BN_CLICKED(IDB_SETSELSTR, CbSetSelStr),
 44:    EV_BN_CLICKED(IDB_GETSELIDX, CbGetSelIdx),
 45:    EV_BN_CLICKED(IDB_SETSELIDX, CbSetSelIdx),
 46:    EV_BN_CLICKED(IDB_GETSTR, CbGetStr),
 47:    EV_BN_CLICKED(IDB_EXIT, CmExit),
 48: END_RESPONSE_TABLE;
 49:
 50: TMyWindow::TMyWindow(TWindow* parent)
 51: {
 52:    Init(parent, 0, 0);
 53:
 54:    int   lowvspacing = 5,
 55:          hivspacing = 25,
 56:          hspacing = 50,
 57:          wctl = 150,
 58:          hctl = 30,
 59:          x0 = 30,
 60:          y0 = 50,
 61:          y1;
 62:    int   wbox = 2 * wctl + hspacing;
 63:    int   hlist = hctl + lowvspacing + 4 * (hctl + hivspacing);
 64:
 65:    int   x = x0, y = y0;
 66:
 67:    // Create the listbox and its label
 68:    //
 69:    new TStatic(this, -1, “List Box”, x, y, wctl, hctl);
 70:    y += hctl + lowvspacing;
 71:    list = new TListBox(this, IDL_STRINGS, x, y, wctl, hlist);
 72:
 73:    // Create the edit boxes and their labels
 74:    //
 75:    x += wctl + hspacing;

Listing 18.3. continued



537

Sa
m

s
Le

a
rn

in
g

Ce
nt

er PUBLISHING
S  MS

18

 76:    y = y0;
 77:    new TStatic(this, -1, “String Box”, x, y, wctl, hctl);
 78:    y += hctl + lowvspacing;
 79:    strbox = new TEdit(this, IDE_STRING, “”, x, y, wbox, hctl);
 80:    y += hctl + hivspacing;
 81:    new TStatic(this, -1, “Index Box”, x, y, wctl, hctl);
 82:    y += hctl + lowvspacing;
 83:    idxbox = new TEdit(this, IDE_INDEX, “”, x, y, wbox, hctl);
 84:
 85:    // Create first column of buttons
 86:    //
 87:    y1 = y += hctl + hivspacing;
 88:    new TButton(this, IDB_ADD, “Add String”, x, y, wctl, hctl);
 89:    y += hctl + hivspacing;
 90:    new TButton(this, IDB_DEL, “Delete String”, x, y, wctl, hctl);
 91:    y += hctl + hivspacing;
 92:    new TButton(this, IDB_GETSELSTR, “Get Selected String”, x, y,
                                           wctl, hctl);
 93:    y += hctl + hivspacing;
 94:    new TButton(this, IDB_SETSELSTR, “Set Selected String”, x, y,
                                           wctl, hctl);
 95:
 96:    // Create the second column of buttons
 97:    y = y1;
 98:    x += wctl + hspacing;
 99:    new TButton(this, IDB_GETSELIDX, “Get Selected Index”, x, y,
                                           wctl, hctl);
100:   y += hctl + hivspacing;
101:   new TButton(this, IDB_SETSELIDX, “Set Selected Index”, x, y,
                                           wctl, hctl);
102:   y += hctl + hivspacing;
103:   new TButton(this, IDB_GETSTR, “Get String by Index”, x, y,
wctl,
                                           hctl);
104:   y += hctl + hivspacing;
105:   new TButton(this, IDB_EXIT, “Exit”, x, y, wctl, hctl);
106: }
107:
108: TMyWindow::~TMyWindow()
109: {
110: }
111:
112: void TMyWindow::SetupWindow()
113: {
114:   TWindow::SetupWindow();    // Initialize the visual element
115:
116:   // Initialize the list box with some data and
117:   // select the second item
118:   //
119:   if (list)

continues



538

List Box Controls
M

T W
R

F S S

DAYDAY

18

120:      {
121:      list->AddString(“Keith”);
122:      list->AddString(“Kevin”);
123:      list->AddString(“Ingrid”);
124:      list->AddString(“Roger”);
125:      list->AddString(“Rick”);
126:      list->AddString(“Beth”);
127:      list->AddString(“Kate”);
128:      list->AddString(“James”);
129:      list->SetSelIndex(1);

130:       }
131: }
132:
133: void TMyWindow::CbAdd()
134: {
135:    if (strbox && list)
136:       {
137:       char *str;
138:       int size = strbox->GetWindowTextLength() + 1;
139:       if ((size > 1) && (NULL != (str = new char[size])))
140:          {
141:          strbox->GetWindowText(str, size);
142:          if (list->FindExactString(str, -1) >= 0)
143:             MessageBox(“Cannot add duplicate names”, “Bad Data”);
144:          else
145:             {
146:             int ix = list->AddString(str);
147:             list->SetSelIndex(ix);
148:             }
149:          delete str;
150:          }
151:       }
152: }
153:
154: void TMyWindow::CbDel()
155: {
156:    if (list)
157:       {
158:       int ix = list->GetSelIndex();
159:       list->DeleteString(ix);
160:       list->SetSelIndex((ix > 0) ? (ix - 1) : 0);
161:       }
162: }
163:
164: void TMyWindow::CbGetSelStr()
165: {
166:    if (list && strbox)
167:       {
168:       char *str;

Listing 18.3. continued



539

Sa
m

s
Le

a
rn

in
g

Ce
nt

er PUBLISHING
S  MS

18

169:       int ix = list->GetSelIndex();
170:       if (ix >= 0)
171:          {
172:          if (NULL != (str = new char[list->GetStringLen(ix) + 1]))
173:             {
174:             list->GetString(str, ix);
175:             strbox->SetWindowText(str);
176:             delete str;
177:             }
178:          }
179:       }
180: }
181:
182: void TMyWindow::CbSetSelStr()
183: {
184:    if (list && strbox)
185:       {
186:       int ix = list->GetSelIndex();
187:
188:       char *str;
189:       int size = strbox->GetWindowTextLength() + 1;
190:       if ((size > 1) && (NULL != (str = new char[size])))
191:          {
192:          strbox->GetWindowText(str, size);
193:          if (list->FindExactString(str, -1) >= 0)
194:             MessageBox(“Cannot add duplicate names”, “Bad Data”);
195:          else
196:             {
197:             list->DeleteString(ix);
198:             ix = list->AddString(str);
199:             list->SetSelIndex(ix);
200:             }
201:          delete str;
202:          }
203:       }
204: }
205:
206: void TMyWindow::CbGetSelIdx()
207: {
208:    if (list && idxbox)
209:       {
210:       char str[15];
211:       sprintf(str, “%d”, list->GetSelIndex());
212:       idxbox->SetWindowText(str);
213:       }
214: }
215:
216: void TMyWindow::CbSetSelIdx()
217: {
218:    if (list && idxbox)

continues



540

List Box Controls
M

T W
R

F S S

DAYDAY

18

219:       {
220:       char *str;
221:       int size = idxbox->GetWindowTextLength() + 1;
222:       if ((size > 1) && (NULL != (str = new char[size])))
223:          {
224:          idxbox->GetWindowText(str, size);
225:          list->SetSelIndex(atoi(str));
226:          delete str;
227:          }
228:       }
229: }
230:
231: void TMyWindow::CbGetStr()
232: {
233:    if (list && idxbox && strbox)
234:       {
235:       char *str;
236:       int ix = -1;
237:       int size = idxbox->GetWindowTextLength() + 1;
238:       if ((size > 1) && (NULL != (str = new char[size])))
239:          {
240:          idxbox->GetWindowText(str, size);
241:          ix = atoi(str);
242:          delete str;
243:          }
244:       if ((ix >= 0) && (NULL != (str = new char[list
            ->GetStringLen(ix) + 1])))
245:          {
246:          list->GetString(str, ix);
247:          strbox->SetWindowText(str);
248:          delete str;
249:          }
250:       }
251: }
252:
253:
254: void TMyWindow::CmExit()
255: {
256:    SendMessage(WM_CLOSE);
257: }
258:
259: class TListApp : public TApplication
260: {
261: public:
262:    TListApp() : TApplication()
263:       { nCmdShow = SW_SHOWMAXIMIZED; }
264:
265:    void InitMainWindow()
266:       {
267:       SetMainWindow(new TFrameWindow(  0,
268:                            “Simple List Box Tester Application”,

Listing 18.3. continued



541

Sa
m

s
Le

a
rn

in
g

Ce
nt

er PUBLISHING
S  MS

18

269:                            new TMyWindow ));
270:       GetMainWindow()->AssignMenu(“EXITMENU”);

271:       }
272: };
273:
274: int OwlMain(int, char *[])
275: {
276:    return TListApp().Run();
277: }

Figure 18.1 shows a sample session with the CTLLST.EXE application.

Figure 18.1. A sample session with the CTLLST.EXE application.

The program in Listing 18.3 declares the window class TMyWindow, starting on line 14,
which contains a number of data members that are pointers to the controls owned by
the main window. The class also declares a SetupWindow member function and several
member functions that respond to the notification messages emitted by the various
pushbutton controls.

The TMyWindow constructor, starting on line 50, performs the creation of all the
controls in the window. It makes use of the control classes’ default settings, which
include an automatic scroll bar on the list box when it gets enough entries, as well as
automatic sorting of the listbox. Then the SetupWindow member function initializes



542

List Box Controls
M

T W
R

F S S

DAYDAY

18

the listbox, starting on line 112.

The member function CbAdd, starting on line 133, adds the string of the String Box
in the list box control. The function performs the following tasks:

■■ Ensures that the list box and edit box were created properly on line 135.

■■ If the String Box edit control isn’t empty, the function creates room for
copying the contents of the edit control and then places those contents in
the str variable on lines 137 through 141.

■■ Verifies that the added string does not already exist in the list box, using the
FindExactString function on line 142 to detect an attempt to add duplicate
strings, and complains with a message box on line 143 if a duplicate is
found.

■■ Adds the string in str to the list box and assigns the position of the string to
the local variable ix using the AddString function on line 146.

■■ Makes the added string the current selection by invoking the SetSelIndex
function with the argument ix on line 147.

The member function CbDel, starting on line 154, deletes the current selection by
carrying out the following tasks:

■■ After ensuring the list pointer was created properly on line 156, obtains the
position of the current selection by invoking the GetSelIndex function on
line 158, and stores the selection position in the local variable ix.

■■ Deletes the selection by calling the DeleteString function and supplying it
the argument ix on line 159.

■■ Selects another list item on line 160 as the new selection at position ix - 1
(if the variable ix already contains 0, the new first list item becomes the new
selection).

The member function CbGetSelStr starting on line 164 copies the current selection
to the String Box edit control. The function performs the following tasks:

■■ Creates room for and copies the contents of the list box’s current selection
using the GetSelIndex, GetStringLen, and GetString functions on lines 168
through 174.

■■ Overwrites the contents of the String Box with the characters retrieved from
the list box on line 175.

The member function CbSetSelStr, starting on line 182, overwrites the current



543

Sa
m

s
Le

a
rn

in
g

Ce
nt

er PUBLISHING
S  MS

18

selection with the string in the String Box edit control. Because the list maintains
sorted items, the replacement string likely has a different position from the original
selection. The function performs the following tasks:

■■ Obtains the position of the current selection, using the GetSelIndex func-
tion, and assigns that value to the local variable ix on line 186.

■■ Copies the text in the String Box to the newly allocated str variable on
line 192.

■■ Verifies that the string in str does not already exist in the list box, using the
FindExactString function on line 193, displaying a message box if the string
already exists on line 194.

■■ If the string is new to the list, the function uses the DeleteString function to
delete the current selection on line 197, uses the AddString function to add
the string on line 198, and then uses SetSelIndex to select the added string
on line 199.

If the string has a matching list item, the function displays a message informing you
that you cannot add duplicate strings in the list box. This warning also appears if you
attempt to overwrite the current selection with the same string.

The member function CbGetSelIdx, starting on line 206, writes the position of the
current selection to the Index Box edit box on line 212. The function uses the
GetSelIndex function to obtain the sought position on line 211.

The member function CbSetSelIdx, starting on line 216, reads the value in the Index
Box edit control and uses that value to set the new current selection. The function uses
the SetSelIndex function to make the new selection on line 225.

The member function CbGetStr, starting on line 231, enables you to retrieve the list
item whose position appears in the Index Box edit control. The function performs the
following tasks:

■■ Copies the characters of the Index Box to an allocated string in the str data
member on line 240.

■■ Converts the string in str to the int-typed local variable ix on line 241.

■■ Copies the characters of the list item at position ix to a reallocated str on
line 246.

■■ Writes the characters of str to the String Box edit control on line 247.



544

List Box Controls
M

T W
R

F S S

DAYDAY

18

Handling Multiple-Selection Lists
This section demonstrates the use of multiple-selection lists and focuses on getting
and setting the selection strings and their indices. There are two modes for making
multiple selections in a list box. These modes depend on whether or not you set the
LBS_EXTENDEDSEL style when you create a TListBox instance. Setting this style enables
you to quickly extend the range of selected items by holding down the Shift key and
clicking the mouse. The disadvantage for this style is that you are committed to
selecting blocks of contiguous items in the list box manually (that is, using the mouse
or cursor keys). Using the SetSel or SetSelItemRange member functions, you can
make your program select noncontiguous items. However, this approach requires
extra effort on behalf of the application user and a few extra controls. By contrast, if
you do not set the LBS_EXTENDEDSEL style, you can make dispersed selections easily by
clicking the mouse button on the individual items that you want to select. The
disadvantage of this selection mode is that you must click every item to select it,
including neighboring items. Choose the selection mode that you feel best meets the
user-interface requirements for your OWL applications.

The Multiple-Selection List Tester
Figure 18.2 shows a sample session with the XFERLIST.EXE application—a pro-
gram that demonstrates how to query multiple selections in a list box—and also shows

the controls used by that application. The controls used by the test program and the



545

Sa
m

s
Le

a
rn

in
g

Ce
nt

er PUBLISHING
S  MS

18

Type

Type

Type

operations they support are the following:

■■ Two multiple-selection list boxes that have the LBS_MULTIPLESEL style
selected, but not the LBS_EXTENDEDSEL style.

■■ Two pushbuttons, one with the caption “<--” and the other with the caption
“-->”, that transfer the selected items of one list box to the other.

■■ Static text controls that label the list boxes.

Figure 18.2. A sample session with the XFERLIST.EXE application.

The multiple-selection list tester application basically enables the user to transfer the
contents of one list box to the other and back again. Listings 18.4, 18.5, and 18.6
contain the source code for the XFERLIST.H, XFERLIST.RC, and XFERLIST.CPP
files, respectively.

Create the directory XFERLIST as a subdirectory of \BC4\BC21DAY and store all
the project’s files in the new directory. As before, the project’s IDE file should contain
the files XFERLIST.CPP and XFERLIST.RC.

Compile and run the program. The application initializes the list box with many
names. Select a few list items in the Source list box and click the -- > pushbutton. The
selected strings appear in the Destination list box and disappear from the Source list
box. Now select on a few names in the Destination list box and click the <--
pushbutton. The names move over to the Source list box. When you have finished
experimenting with the program, click the Exit menu item or press the Alt+X keys.

Listing 18.4. Source code for the XFERLIST.H
header file.

1: #define IDL_SRC   101
2: #define IDL_DST   102
3: #define IDB_TOSRC 103
4: #define IDB_TODST 104

Listing 18.5. Script for the XFERLIST.RC resource file.

1: #include <windows.h>
2: #include <owl\window.rh>
3:
4: EXITMENU MENU LOADONCALL MOVEABLE PURE DISCARDABLE
5: BEGIN

continues



546

List Box Controls
M

T W
R

F S S

DAYDAY

18

6:    MENUITEM “E&xit”, CM_EXIT
7: END

Listing 18.6. Source code for the XFERLIST.CPP
program file.

 1:  #include <windows.h>
 2:  #include <owl\applicat.h>
 3:  #include <owl\button.h>
 4:  #include <owl\framewin.h>
 5:  #include <owl\listbox.h>
 6:  #include <owl\static.h>
 7:  #include <owl\window.h>
 8:  #include <owl\window.rh>
 9:

 10: #include “xferlist.h”
 11:
 12: class TMyWindow : public TWindow
 13: {
 14: public:
 15:    TMyWindow(TWindow* parent = 0);
 16:    virtual ~TMyWindow();
 17:
 18: protected:
 19:    virtual void SetupWindow();
 20:
 21:    void CbToDst();
 22:    void CbToSrc();
 23:    void CmExit();
 24:
 25: private:
 26:    TListBox *src, *dst;
 27:
 28:    void MoveSels(TListBox* src, TListBox* dst);
 29:
 30:    DECLARE_RESPONSE_TABLE(TMyWindow);
 31: };
 32: DEFINE_RESPONSE_TABLE1(TMyWindow, TWindow)
 33:    EV_COMMAND(CM_EXIT, CmExit),
 34:    EV_BN_CLICKED(IDB_TODST, CbToDst),
 35:    EV_BN_CLICKED(IDB_TOSRC, CbToSrc),
 36: END_RESPONSE_TABLE;
 37:
 38: TMyWindow::TMyWindow(TWindow* parent)
 39: {
 40:    Init(parent, 0, 0);
 41:
 42:    int   wbtn = 80,

Listin 18.6. continued



547

Sa
m

s
Le

a
rn

in
g

Ce
nt

er PUBLISHING
S  MS

18

 43:          hbtn = 30,
 44:          wlist = 150,
 45:          hlist = 250,
 46:          wspace = 30,
 47:          hspace = 50,
 48:          x0 = 30,
 49:          y0 = 50;
 50:    int   x = x0, y = y0;
 51:
 52:    new TStatic(this, -1, “Source”, x, y, wlist, hbtn);
 53:    y += hbtn;
 54:    if (NULL != (src = new TListBox(this, IDL_SRC, x, y, wlist,

      hlist)))
 55:       src->Attr.Style |= LBS_MULTIPLESEL;
 56:
 57:    x += wlist + wspace;
 58:    y += hspace;
 59:    new TButton(this, IDB_TODST, “-->”, x, y, wbtn, hbtn);
 60:    y += hbtn + hspace;
 61:    new TButton(this, IDB_TOSRC, “<--”, x, y, wbtn, hbtn);
 62:
 63:    x += wbtn + wspace;
 64:    y = y0;
 65:    new TStatic(this, -1, “Destination”, x, y, wlist, hbtn);
 66:    y += hbtn;
 67:    if (NULL != (dst = new TListBox(this, IDL_DST, x, y, wlist,

                                      hlist)))
 68:       dst->Attr.Style |= LBS_MULTIPLESEL;
 69: }
 70:
 71: TMyWindow::~TMyWindow()
 72: {
 73: }
 74:
 75: void TMyWindow::SetupWindow()
 76: {
 77:    static char* names[] =
 78:       {  “Keith”, “Bruce”, “Kevin”, “Bridget”, “Kate”,
 79:          “Kay”, “Roger”, “Marie”, “Kathleen”, “Liz”,
 80:          “Ingrid”, “Craig”, “George”, “Janet”, “Gary”,
 81:          “Helen”, “Candace”,
 82:          NULL };
 83:
 84:    TWindow::SetupWindow();
 85:
 86:    if (src)
 87:       for (int ix = 0; names[ix]; ++ix)
 88:          src->AddString(names[ix]);
 89: }
 90:

continues



548

List Box Controls
M

T W
R

F S S

DAYDAY

18

 91: void TMyWindow::MoveSels(TListBox* src, TListBox* dst)
 92: {
 93:    if (src && dst)
 94:       {
 95:       int* sels, numsels = src->GetSelCount();
 96:       if ((numsels > 0) && (NULL != (sels = new int[numsels])))
 97:          {
 98:          int ix;
 99:
100:          src->GetSelIndexes(sels, numsels);
101:          for (ix = 0; ix < numsels; ++ix)
102:             {
103:             char *str;

104:             int size = src->GetStringLen(sels[ix]) + 1;
105:             if ((size > 1) && (NULL != (str = new char[size])))
106:                {
107:                src->GetString(str, sels[ix]);
108:                dst->AddString(str);
109:                delete str;
110:                }
111:             }
112:          for (ix = numsels - 1; ix >= 0; --ix)
113:             src->DeleteString(sels[ix]);
114:
115:          delete sels;
116:          }
117:       }
118: }
119:
120: void TMyWindow::CbToDst()
121: {
122:    MoveSels(src, dst);
123: }
124:
125: void TMyWindow::CbToSrc()
126: {
127:    MoveSels(dst, src);
128: }
129:
130: void TMyWindow::CmExit()
131: {
132:    SendMessage(WM_CLOSE);
133: }
134:
135: class TXferApp : public TApplication
136: {
137: public:
138:    TXferApp() : TApplication()
139:       { nCmdShow = SW_SHOWMAXIMIZED; }
140:
141:    void InitMainWindow()

Listing 18.6. continued



549

Sa
m

s
Le

a
rn

in
g

Ce
nt

er PUBLISHING
S  MS

18

142:       {
143:       SetMainWindow(new TFrameWindow(  0,
144:                            “Multiple Selection List Tester”,
145:                            new TMyWindow ));

146:       GetMainWindow()->AssignMenu(“EXITMENU”);
147:       }
148: };
149:
150: int OwlMain(int, char *[])
151: {
152:    return TXferApp().Run();
153: }

The program in Listing 18.6 works similarly to the other programs presented so far.
It declares an application class TXferApp on line 135 and a window class TMyWindow on
line 12. The window class creates a number of controls in its constructor and then does
its initialization in the SetupWindow member function.

The TMyWindow window class declares two data members, src and dst on line 26,
which are pointers to class objects of type TListBox. These are used to access the source
and destination list boxes after they are created. When they are created in the
constructor on lines 54 through 55 and 67 through 68, their Attr.Style members are
modified to include the LBS_MULTIPLESEL style, allowing the list boxes to allow
multiple selections.

The function MoveSels, starting on line 91, is the main workhorse of the program. It
does the following:

■■ It takes two parameters, the source list box src and the destination list
box dst.

■■ After making sure it was given valid TListBox pointers, it obtains the
number of selections from the source list box on line 95 and creates an array
to hold those indices on line 96. Then, it retrieves those indices and stores
them in the newly created sels array on line 100.

■■ The function then iterates through the list of selections on lines 101 through
111 and gets a string for each entry with the GetString function on line 107.
It then adds this string to the destination list box with the AddString
function on line 108.

■■ Finally, the function iterates through the list of selections again, this time
backwards, and deletes them from the source list box with the DeleteString
function on lines 112 and 113.

Analysis



550

List Box Controls
M

T W
R

F S S

DAYDAY

18

Note that when the MoveSels function deletes the selections from the source list box,
it does so in reverse order. The reason for this is that, as the function deletes an entry,
every item after the now-deleted one in the list box has its index decreased by one. If
the function were to delete the strings forwards, then all but the first selection would
be incorrect, because the retrieved list became out of synch with the list box itself.

The two functions that respond to the buttons, CbToDst on line 120 and CbToSrc on
line 125, both call the MoveSels function, and they both pass the same arguments. But
they each pass them in a different order. By doing this, you can use the MoveSels
function for both buttons, but have it move the selections between opposite list boxes
as the parameters are switched.

Summary
Today’s lesson presented the list box control, which enables an application user to
choose from a collection of values. You learned about the following topics:

■■ The single-selection list box control provides you with a list of items from
which to select. This kind of list box enables you to select only one item at a
time.

■■ The multiple-selection list box permits you to select multiple items in a list
box for collective processing. Setting the LBS_EXTENDEDSEL style when you
create the list box enables you to quickly extend the range of selected items
by holding down the Shift key and clicking the mouse.

Q&A
Q Can the argument for the fileSpec parameter in function

TListBox::DirectoryList contain multiple wildcards, such as
“*.CPP *.H”?

A No, the argument list for fileSpec is limited to one filename wildcard.

Q Does OWL support intercepting the messages related to the movement
of the thumb box in a list box control?

A No. Windows doesn’t send any messages for OWL to intercept.

Q What is the general approach to implementing a program with two list
boxes that scroll simultaneously?



551

Sa
m

s
Le

a
rn

in
g

Ce
nt

er PUBLISHING
S  MS

18

A The general approach is to create the two list boxes with hidden scroll bars
and then add a scroll bar control (see Day 19). The list boxes then are made
to scroll in synch with the scroll bar control, because you can handle the
messages emitted by this control and scroll the lists accordingly. You cannot
intercept the messages sent by the scroll bars that are part of the list box
itself.

Q Should I use InsertString in a list box created with the LBS_SORT style?

A No, you shouldn’t because the LBS_SORT style maintains the list box items in
order. Using InsertString corrupts the order in the list box. Instead, use the
AddString member function.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing on to the
next day’s lesson. Answers are provided in Appendix A, “Answers.”

Quiz
1. True or false? The list box notification message LBN_SETFOCUS is suitable for

optional initializing related to selecting a list box control.

2. True or false? The list box notification message LBN_KILLFOCUS is suitable for
optional validation after you deselect a list box control.

3. True or false? The list box enables you to detect only the final selection,
using the LBN_KILLFOCUS notification.

4. True or false? You should use LBN_SELCHANGE with a special flag to detect
mouse double-clicks on a list box item.

5. True or false? LBS_STANDARD creates a list box control with unordered items.

Exercise
Modify the XFERLIST program to initialize the source list box with a directory
listing, and then have it enable and disable the appropriate push buttons depending
upon whether or not there is anything selected in the corresponding list boxes.



553

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

M
T

W
R

F
S

S

WEEK

1919
Scroll Bars and
Combo Boxes

33



554

Scroll Bars and Combo Boxes
M

T
W

R
F

S
S

DAYDAY

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

Day 18 presented list box controls. Today’s lesson presents two somewhat similar
controls: the scroll bar and the combo box. The scroll bar control enables you to select
a numeric value quickly, usually in a wide range of values. The combo box control
combines the edit control and the list box, enabling the user to select a value from the
list box component or to enter a new value in the edit control part. You learn about
the following topics:

■■ The scroll bar control

■■ The combo box control in its various styles

The Scroll Bar Control
Windows allows the scroll bar to exist as a separate control as well as to be incorporated
in windows, lists, and combo boxes. The scroll bar control appears and behaves much
like the scroll bar of a window. The control has a thumb box that keeps track of the
current value; the thumb box moves, either by single lines or by pages, when the user
clicks it. This thumb box mechanism is supported by the EvVScroll or EvHScroll
member functions. In addition, the scroll bar responds to cursor control keys, such
as Home, End, PageUp, and PageDown. This feature is supported by the EvKeyDown
member function. The main purpose of the scroll bar control is to enable you to
quickly and efficiently select an integer value in a predefined range of values.
Windows, for example, uses scroll bars to fine-tune the color palette, the keyboard
rate, and the mouse sensitivity.

The TScrollBar Class
The ObjectWindows Library offers the TScrollBar class, a descendant of TControl,
as the class that models the scroll bar controls. The TScrollBar class declares a class
constructor and a number of member functions to set and query the control’s current
position and range of values.

The class constructor appears similar to all the other classes derived from TControl.

S
yn

ta
x

The TScrollBar Constructor
The declaration of the TScrollBar constructor is

TScrollBar( TWindow* parent,
            int id,
            int x,
            int y,



555

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

            int w,
            int h,
            BOOL isHScrollBar,
            TModule* module = 0 );

As with the other control class constructors, the parent refers to the parent window
that contains the control, and id is the identifier used in differentiating the control
from others. The x, y, w, and h parameters describe the location and size of the scroll
bar control. The isHScrollBar parameter is used to specify in which direction the
scroll bar will be. If the parameter is TRUE, the scroll bar will extend horizontally; FALSE
will mean a vertical scroll bar.

Note that type of scroll bar that appears will be the same regardless of the values
specified in the w and h parameters. If you specify a width and height for a vertical scroll
bar, but specify TRUE for the isHScrollBar parameter, you’ll end up with a very oddly
shaped horizontal scroll bar. For this reason, the constructor will automatically set
either the width or height of the control if the appropriate parameter is set to 0. For
example, when creating a horizontal scroll bar, specifying 0 for the h parameter will
give the control a standard height.

There are several styles, described in Table 19.1, that can be used to control the display
of the scroll bar with respect to the rectangle you define in the constructor. Only two
of them, the SBS_HORZ and SBS_VERT styles, are automatically set, depending upon the
state of the isHScrollBar parameter.

Example:

TScrollBar* pThermometer = TScrollBar( this,
                                       IDSB_THERMOMETER,
                                       10, 10, 180, 0,
                                       TRUE );

Table 19.1. SBS_XXX styles for the scroll bar control.

Value Meaning

SBS_BOTTOMALIGN Specifies a style used with SBS_HORZ to align
the bottom of the scroll bar with the
bottom edge of the rectangle specified in
the TScrollBar constructor.

SBS_HORZ Specifies a horizontal scroll bar whose
location, width, and height are specified by
the parameters in the constructor, if neither
SBS_BOTTOMALIGN nor SBS_TOPALIGN.

continues



556

Scroll Bars and Combo Boxes
M

T
W

R
F

S
S

DAYDAY

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

SBS_LEFTALIGN Specifies a style used with the SBS_VERT to
align the left edge of the scroll bar with the
left edge of the rectangle specified in the
constructor.

SBS_RIGHTALIGN Specifies a style used with SBS_VERT to align
the right edge of the scroll bar with the
right edge of the rectangle specified in the
constructor.

SBS_SIZEBOX Specifies a size box whose location, width,
and height are specified by the parameters
in the constructor, if neither one of the
next two SBS_XXX styles is specified.

SBS_SIZEBOXBOTTOMRIGHTALIGN Specifies a style used with SBS_SIZEBOX to
align the lower-right corner of the size box
with the lower-right corner of the rectangle
specified in the constructor.

SBS_SIZEBOXTOPLEFTALIGN Specifies a style used with the SBS_SIZEBOX
style to align the upper-left corner of the
size box with the upper-left corner of the
rectangle specified in the constructor.

SBS_TOPALIGN Specifies a style used with SBS_HORZ to
align the top of the scroll bar with the
top edge of the rectangle specified in the
constructor.

SBS_VERT Specifies a vertical scroll bar whose loca-
tion, width, and height are specified by the
parameters in the constructor, if neither
SBS_RIGHTALIGN nor SBS_LEFTALIGN is
specified.

Table 19.1. continued

Value Meaning



557

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

The TScrollBar class declares a number of member functions. The following are some
of the more useful functions:

■■ The first member function that you will most likely use after creating a
TScrollBar instance is SetRange. This function enables you to set the range
of values for the scroll bar.

■■ The GetRange member function enables you to query the current range of
values for the scroll bar.

■■ The parameterless GetPosition member function returns the current
position of the thumb box.

■■ The SetPosition member function moves the thumb box to the specified
position. You are responsible for ensuring that the new thumb position is
within the current scroll bar range.

S
yn

ta
x

The SetRange Function
The declaration of the SetRange function is

void SetRange(int min, int max);

The arguments for the min and max parameters designate the new range of values for
the scroll bar control.

Example:

pThermometer->SetRange(32,212);     // Freezing to boiling

S
yn

ta
x

The GetRange Function
The declaration of the GetRange function is

void GetRange(int& min, int& max) const;

The parameters min and max are filled in by the GetRange member function with the
minimum and maximum of the current range values for the scroll bar control.

Example:

int freezing, boiling;
pThermometer->GetRange(freezing, boiling);



558

Scroll Bars and Combo Boxes
M

T
W

R
F

S
S

DAYDAY

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

S
yn

ta
x

The SetPosition Function
The declaration of the member function SetPosition is

void SetPosition(int thumbPos);

The parameter thumbPos specifies the new thumb box position.

Example:

pThermometer->SetPosition(72);    // a comfortable temp

Responding to Scroll Bar
Notification Messages

There are several methods by which a program can handle scroll bar notifications. The
first is by creating a descendant class of the TScrollBar class, then overriding the
various member functions that are called in response to the SB_XXX notification
messages as listed in Day 15’s lesson. The following table associates the notification
messages with their corresponding TScrollBar member functions:

Table 19.2. SBS_XXX and TScrollBar member functions.

Notification Message TScrollBar member function

SB_LINEUP SBLineUp

SB_LINEDOWN SBLineDown

SB_PAGEUP SBPageUp

SB_PAGEDOWN SBPageDown

SB_THUMBPOSITION SBThumbPosition

SB_THUMBTRACK SBThumbTrack

SB_TOP SBTop

SB_BOTTOM SBBottom

One must remember, however, that when overriding a descendant class’s version of
a response function, the parent’s version must be called first. It is that version that
keeps the scroll bar updated. Consider the following example:



559

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

void TMyScrollBar::SBTop()
{
   TScrollBar::SBTop();     // Make sure our parent gets a chance
   sndPlaySound(“TOP.WAV”, SND_ASYNC);   // Play a sound
}

Another method of responding to scroll bar notification messages is by intercepting
the EvHScroll or EvVScroll member functions in the scroll bar’s parent class. There,
you can interrogate the scroll bar as to its current position and then act accordingly.

void TMyWindow::EvVScroll(UINT code, UINT pos, HWND hwnd)
{
   TWindow::EvVScroll(code, pos, hwnd);  // Give our parent a chance
   int newpos = scrollbar->GetPosition(); // get the updated position
   switch (code)
      {
      case SB_TOP:
         sndPlaySound(“TOP.WAV”, SND_ASYNC);
         break;
      }
}

Finally, if one uses the EV_CHILD_NOTIFY_ALL_CODES macro when defining the
response table to assign a function response to the scroll bar’s ID, the assigned function
will be called for all notification messages coming from the scroll bar. The response
function looks and acts similarly to the EvXScroll functions, but in this case it isn’t
necessary to call the parent’s version of the function.

DEFINE_RESPONSE_TABLE1(TMyWindow, TWindow)
   EV_CHILD_NOTIFY_ALL_CODES(IDSC_THERMOMETER, EvScrollBar),
END_RESPONSE_TABLE;

void TMyWindow::EvScrollBar(UINT code)
{
   switch (code)
      {
      case SB_TOP:
         sndPlaySound(“TOP.WAV”, SND_ASYNC);
         break;
      }
}

The Countdown Timer
The countdown timer application contains the following controls:

■■ A timer scroll bar control that has a default range of 0 to 60 seconds



560

Scroll Bars and Combo Boxes
M

T
W

R
F

S
S

DAYDAY

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

Type

Type

■■ Two static text controls that label the range of values for the timer scroll bar

■■ A static text control to show the current setting of the scroll bar

■■ Start and Exit buttons

You can set the number of seconds by using the scroll bar. When you move the scroll
bar thumb box, the current thumb position appears in a static box. To trigger the
countdown process, click the Start button. During the countdown, the application
decrements the number of seconds in the edit box and moves the scroll bar’s thumb
box upward. When the countdown ends, the program sounds a beep and restores the
scroll bar to its starting value.

The countdown timer application illustrates the following scroll bar manipulations:

■■ Setting and altering the scroll bar range of values

■■ Moving and changing the scroll bar thumb box position (the program
illustrates how these tasks are performed internally or with the mouse)

■■ Using the scroll bar to supply a value

Listing 19.1 shows the source code for the COUNTDN.H header file. Listing 19.2
shows the source code for the COUNTDN.CPP program file.

Listing 19.1. Source code for the COUNTDN.H
header file.

1:   #define IDB_START    101
2:   #define IDB_EXIT     102
3:   #define IDS_STATUS   103
4:   #define IDSC_TIMER   104

Listing 19.2. Source code for the COUNTDN.CPP
program file.

1:   #include <stdio.h>
2:   #include <windows.h>
3:   #include <owl\applicat.h>
4:   #include <owl\button.h>
5:   #include <owl\framewin.h>
6:   #include <owl\scrollba.h>
7:   #include <owl\static.h>
8:   #include <owl\window.h>
9:   #include <owl\window.rh>
10:



561

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

11:  #include “countdn.h”
12:
13:  class TMyWindow : public TWindow
14:  {
15:  public:
16:     TMyWindow(TWindow* parent = 0);
17:
18:  protected:
19:     virtual void SetupWindow();
20:
21:     void EvTimerBar(UINT code);
22:     void CbStart();
23:     void CbExit();
24:
25:  private:
26:     TScrollBar*  timerbar;
27:     TStatic*     status;
28:
29:     DECLARE_RESPONSE_TABLE(TMyWindow);
30:  };
31:  DEFINE_RESPONSE_TABLE1(TMyWindow, TWindow)
32:     EV_CHILD_NOTIFY_ALL_CODES(IDSC_TIMER, EvTimerBar),
33:     EV_BN_CLICKED(IDB_START, CbStart),
34:     EV_BN_CLICKED(IDB_EXIT, CbExit),
35:  END_RESPONSE_TABLE;
36:
37:  TMyWindow::TMyWindow(TWindow* parent)
38:  {
39:     Init(parent, 0, 0);
40:
41:     TStatic *st = new TStatic(this, -1, “Countdown: “,
42:                                                  50, 50, 150, 30);
43:     if (st)
44:        {
45:        st->Attr.Style &= ~SS_LEFT;
46:        st->Attr.Style |= SS_RIGHT;
47:        }
48:     status = new TStatic(this, IDS_STATUS, “”, 200, 50, 100, 30);
49:     new TButton(this, IDB_START, “Start”, 50, 135, 60, 40);
50:     new TButton(this, IDB_EXIT, “Exit”, 130, 135, 60, 40);
51:     timerbar = new TScrollBar(this, IDSC_TIMER,
52:                                            300, 100, 0, 150, FALSE);
53:     new TStatic(this, -1, “0”, 330, 100, 80, 20);
54:     new TStatic(this, -1, “60”, 330, 230, 80, 20);
55:  }
56:
57:  void TMyWindow::SetupWindow()
58:  {
59:     TWindow::SetupWindow();    // Initialize the visual element
60:

continues



562

Scroll Bars and Combo Boxes
M

T
W

R
F

S
S

DAYDAY

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

61:     if (timerbar)
62:        {
63:        timerbar->SetRange(0, 60);
64:        timerbar->SetPosition(15);
65:        EvTimerBar(SB_THUMBPOSITION);
66:        }
67:  }
68:
69:  void TMyWindow::EvTimerBar(UINT /*code*/)
70:  {
71:     if (status)
72:        {
73:        char text[25];
74:        sprintf(text, “%d”, timerbar ? timerbar->GetPosition() : 0);
75:        status->SetText(text);
76:        }
77:  }
78:
79:  void DelaySecs(DWORD dwSecs)
80:  {
81:     DWORD dwTime = GetTickCount() + (dwSecs * 1000L);
82:     while (GetTickCount() < dwTime)
83:        /* Just wait a while. */;
84:  }
85:
86:  void TMyWindow::CbStart()
87:  {
88:     if (timerbar)
89:        {
90:        // First, let the user know that we’re stopping the
91:        // system for a time.
92:        //
93:        ::SetCursor(::LoadCursor(NULL, IDC_WAIT));
94:
95:        int start = timerbar->GetPosition();
96:        for (int ix = start - 1; ix >= 0; --ix)
97:           {
98:           timerbar->SetPosition(ix);
99:           EvTimerBar(SB_THUMBPOSITION);
100:          DelaySecs(1);
101:          }
102:       timerbar->SetPosition(start);
103:       EvTimerBar(SB_THUMBPOSITION);
104:       }
105: }
106:
107: void TMyWindow::CbExit()
108: {

Listing 19.2. continued



563

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

109:    SendMessage(WM_CLOSE);
110: }
111:
112: class TCountDownApp : public TApplication
113: {
114: public:
115:    TCountDownApp() : TApplication()
116:       { nCmdShow = SW_SHOWMAXIMIZED; }
117:
118:    void InitMainWindow()
119:       {
120:       SetMainWindow(new TFrameWindow(  0,
121:                            “Count Down Timer”,
122:                            new TMyWindow ));
123:       }
124: };
125:
126: int OwlMain(int, char *[])
127: {
128:    return TCountDownApp().Run();
129: }

Figure 19.1 shows a sample session with the COUNTDN.EXE application.

Figure 19.1. A sample session with the COUNTDN.EXE application.



564

Scroll Bars and Combo Boxes
M

T
W

R
F

S
S

DAYDAY

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

The interesting parts of the program in Listing 19.2 on line 92 start with
TMyWindow’s constructor, where it creates the “Countdown” static text control.
Normally, that control would just be created, but in order to make a better

appearance on the screen, we change its style on lines 45 and 46 so that it’s right-
aligned. This means that we can then create another static text box just to its right on
line 48, into which we will be able to place the current position of the scroll bar.

Next, in the SetupWindow member function starting on line 57, we first make sure to
call the parent’s version to create the actual visual elements. After making sure we
were able to create the timerbar object, its range and position are initialized on lines
63 and 64, and the EvTimerBar member function is called with the parameter
SB_THUMBPOSITION on line 65. Although EvTimerBar doesn’t actually make use of the
parameter it’s passed, we should be sure that we send an accurate value, just in case
some future version of this program does make use of the parameter.

The EvTimerBar member function that starts on line 69 responds to any notification
message that might be sent by the scroll bar, as well as the various times it’s called
explicitly by the program itself. Its sole purpose at this point is to keep the status static
text box updated with the current position of the scrollbar.

The next function is the nonmember function DelaySecs starting on line 79. This
simply sits on its laurels for the number of seconds specified in the dwSecs parameter.
It does this by calling the Windows GetTickCount function. This function returns the
number of milliseconds elapsed since Windows was started. By multiplying dwSecs by
1000L and then adding that to the result of the GetTickCount call on line 81, we get
the end time. From there, all that’s needed is a small loop that keeps calling the
GetTickCount function so long as its result is less than the end time.

It’s the CbStart function that provides the real meat of the program starting on line
86. After ensuring on line 88 that we have a valid pointer to the timerbar object, we
set the cursor to the hourglass on line 93. Because we’ll be delaying the entire Windows
system for the duration of the countdown, it’s polite to let the user know that we’re
taking over for a while by changing the cursor to the hourglass. As soon as we exit the
loop and go back to Windows, the cursor will automatically be changed back to the
regular arrow. Note the use of the scope modifier on the calls to SetCursor and
LoadCursor. This is used to make sure we get the original Windows functions instead
of the TWindow member functions, which behave slightly differently.

Then on line 95 we initialize the start variable with the current position of the scroll
bar and start a countdown to 0 from there. As we count down, we set the scroll bar’s
position, update the static text box, and then call the DelaySecs function on lines 98
through 100. Once the loop is finished, we reset the scroll bar to its original position
on line 102 and update the static text control on line 103.

Analysis



565

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

The Combo Box Control
Windows supports the combo box control, which combines an edit box with a list box.
Thus, a combo box enables you either to select an item in the list box component (or
part, if you prefer) or to type in your own input. In a sense, the list box part of the
combo box contains convenient or frequently used selections. A combo box, unlike
a list box, does not confine you to choosing items in the list box. There are three kinds
of combo boxes: simple, drop-down, and drop-down list.

☛ New Term: The simple combo box includes the edit box and the list box
that are always displayed. The drop-down combo box differs from the
simple type by the fact that the list box appears only when you click the
down scroll arrow. The drop-down list combo box provides a drop-down
list that appears when you click the down scroll arrow. There is no edit
box in this kind of combo box.

S
yn

ta
x

The TComboBox Class
OWL offers the TComboBox class, a descendant of TListBox, to support the combo box
controls. The TComboBox class declares a constructor and a rich set of member
functions to support both the edit control components, in addition to all the inherited
list box member functions.

The declaration of the constructor is

TComboBox( TWindow* parent,
           int     id,
           int x, int y, int w, in h,
           DWORD   style,
           UINT    textLen,
           TModule* module = 0 );

The new parameters to this control class are the style and textLen parameter. The
TComboBox control is the only control class whose constructor takes a parameter for
specifying the style. This is because it is the one class in which you will most often want
to modify the style. These styles are described in Table 19.3, and only the CBS_SORT
and CBS_AUTOHSCROLL styles are set automatically; anything else you might want must
be passed via the style parameter. The textLen parameter works similarly to the one
sent to the TEdit class from Day 16. When the combo box has an edit box at the top,
this parameter specifies the text length for that box.



566

Scroll Bars and Combo Boxes
M

T
W

R
F

S
S

DAYDAY

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

Example:

pcb = new TComboBox(this, 101, 10, 10, 100, 150, CBS_DROPDOWN, 0);

The style parameter may include either CBS_SIMPLE for a simple combo box,
CBS_DROPDOWN for a drop-down combo box, or CBS_DROPDOWNLIST for a drop-down list
combo box.

Table 19.3. Combo box control styles.

Style Meaning

CBS_AUTOHSCROLL Automatically scrolls the text in the edit control
to the right when you enter a character at the end
of the line (removing this style limits the text to
the characters that fit inside the rectangular
boundary of the edit control).

CBS_DISABLENOSCROLL Causes the scroll bar of the dropped-down list
box portion of the combo box to simply become
disabled and gray when scrolling is not allowed.
By default, the scroll bar disappears.

CBS_DROPDOWN Specifies a drop-down combo box.

CBS_DROPDOWNLIST Specifies a drop-down list combo box.

CBS_HASSTRINGS When used with an owner-drawn combo box, it
causes the strings added to the combo box to be
copied internally by the standard Windows
routines. This is always the case when Windows
does the drawing of the combo box.

CBS_NOINTEGRALHEIGHT Tells the combo box that its drop-down list box
portion need not be truncated to fit the height of
its items; partial displays of items may be dis-
played.

CBS_OEMCONVERT Allows Windows to convert the character sets as
appropriate (useful for filenames).

CBS_OWNERDRAWFIXED Creates an owner-drawn combo box; the pro-
grammer must create routines to display the items
in the combo box. All items in the drop-down list
box portion will be the same height.



567

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

CBS_OWNERDRAWVARIABLE Exactly the same as CBS_OWNERDRAWFIXED, except
the display items may be of differing heights.

CBS_SIMPLE Specifies a simple combo box.

CBS_SORT Automatically sorts the items in the list box.

The TComboBox class declares member functions to manage the edit box component
and overrides member functions to manage the list box components. Most of these
functions are similar to the corresponding members of the TEdit and TListBox classes.

In addition to the inherited TListBox member functions, the TComboBox class declares
some extra member functions to handle the drop-down specifics of the combo box
control. Among these are the following:

■■ The parameterless ShowList and HideList functions to drop down and roll
up the combo box, respectively. Note that these are just wrapper functions
that call the version of the ShowList function that takes a BOOL parameter,
ShowList passing TRUE and HideList passing FALSE.

■■ The GetDroppedControlRect member function to obtain the size of the
dropped-down control.

■■ The parameterless GetDroppedState member function that returns a BOOL to
tell whether the combo box is currently dropped down.

■■ The pair of member functions GetExtendedUI and SetExtendedUI that get
and set the extended user interface for the combo box.

S
yn

ta
x

The GetDroppedControlRect Function
The declaration of the GetDroppedControlRect function is

void GetDroppedControlRect(TRect& Rect) const;

When this function is called, the Rect parameter is filled with the screen coordinates
of the dropped-down list box.

Example:

TRect rct;
pcb->GetDroppedControlRect(rct);

Style Meaning



568

Scroll Bars and Combo Boxes
M

T
W

R
F

S
S

DAYDAY

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

Although the TComboBox class isn’t directly derived from the TEdit class, it has member
functions to manipulate the edit control that comes as part of the combo box:

■■ The parameterless GetTextLen member function that returns an integer
specifying the length of the text in the edit box.

■■ The GetText and SetText member functions for modifying the edit text.

■■ The GetEditSel and SetEditSel member functions that allow the manipula-
tion of the starting and ending character position (that is, the index of the
first selected character and the index of the first selected character that is not
in the selected text).

■■ The parameterless Clear member function that clears the selected text.

S
yn

ta
x

The GetText Function
The declaration of the GetText function is

int GetText(char far *str, int maxChars) const;

The parameter str is a pointer to a buffer into which GetText will copy the contents
of the edit box, and maxChars is the maximum number of characters to copy (the size
of the input buffer).

Example:

int len = pcb->GetTextLen() + 1;
char* str = new char[len];
if (str)
   pcb->GetText(str, len);

Responding to Combo Box
Notification Messages

The combo box control emits various types of messages, shown in Table 19.4. The
table also shows the message-mapping macros that are associated with the various
command and notification messages. Each type of command or notification message
requires a separate member function declared in the control’s parent window class.



569

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

Table 19.4. Combo box notification messages.

Message Macro Meaning

CBN_CLOSEUP EV_CBN_CLOSEUP The combo box has been closed
up.

CBN_DBLCLK EV_CBN_DBLCLK A combo item is selected with a
mouse double-click.

CBN_DROPDOWN EV_CBN_DROPDOWN The combo box has been
dropped down.

CBN_EDITCHANGE EV_CBN_EDITCHANGE The contents of the edit box are
changed.

CBN_EDITUPDATE EV_CBN_EDITUPDATE The contents of the edit box are
updated.

CBN_ERRSPACE EV_CBN_ERRSPACE The combo box cannot allocate
more dynamic memory to
accommodate new list items.

CBN_KILLFOCUS EV_CBN_KILLFOCUS The combo box has lost focus.

CBN_SELCHANGE EV_CBN_SELCHANGE A combo item is selected or
deselected with a mouse click.

CBN_SELENDCANCEL EV_CBN_SELENDCANCEL The user has just selected an
item and then selected another
control or closed the window.

CBN_SELENDOK EV_CBN_SELENDOK The user has just clicked a list
item or selected an item and
closed the list. This is sent
before every CBN_SELCHANGE
message.

CBN_SETFOCUS EV_CBN_SETFOCUS The combo box has gained
focus.



570

Scroll Bars and Combo Boxes
M

T
W

R
F

S
S

DAYDAY

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

Combo Boxes as History List Boxes
A combo box can also be a history list box. History list boxes typically follow these rules
of operation:

■■ The combo list box removes the CBS_SORT style to insert the list items in a
chronological fashion. New items are inserted at position 0, pushing the
older items farther down the list. The oldest item is the one at the bottom of
the list.

■■ History boxes usually have a limit on the number of items you can insert, to
prevent bleeding memory. This conservation scheme requires that oldest list
items be removed after the number of list items reaches a maximum limit.

■■ If the edit control contains a string that does not have an exact match in the
accompanying list box, the edit control string is inserted as a new member at
position 0.

■■ If the edit control contains a string that has an exact match in the accompa-
nying list box, the matching list member is moved to position 0, the top of
the list. Of course, this process involves first deleting the matching list
member from its current position and then reinserting it at position 0.

A history list box is really a combo box that manipulates its edit control and list box
items in a certain way. There is no need to derive a descendant of TComboBox to add
new member functions, although if you use a history list box enough, it might make
sense to create a descendant class that automates the functionality. Furthermore, for
additional functionality, the descendent class could save the history list to disk for
future invocations of the program.

The Son of Mister Calculator
Application

Let us present an updated version of the calculator application, Son of Mister
Calculator. This new version adds functionality to Day 16’s version by using history
combo boxes for the operands and result, instead of the standard edit boxes, and uses
a simple combo box that contains the list of supported operators and functions. Figure
19.2 shows a sample session with the CALCJR.EXE application and indicates the
controls that are used.



571

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

Type

Figure 19.2. A sample session with the CALCJR.EXE application.

Compile and run the program. Experiment with entering and executing numbers and
operators or functions. Notice that combo boxes for the operands and the result fill
in their accompanying list boxes in a chronological order. The Operand and Result
combo boxes remember the last 30 different operands you entered. In a way, the
Result combo box acts as temporary memory.

Listing 19.3 shows the source code for the CALCJR.H header file. Listing 19.4
contains the source code for the CALCJR.CPP program file. The resource file defines
the accelerator keys and menu resources.

Listing 19.3. Source code for the CALCJR.H header file.

1:   #define IDB_CALC     101
2:   #define IDB_EXIT     102
3:   #define IDC_OPERAND1 103
4:   #define IDC_OPERATOR 104
5:   #define IDC_OPERAND2 105
6:   #define IDC_RESULT   106
7:   #define IDE_ERRMSG   107



572

Scroll Bars and Combo Boxes
M

T
W

R
F

S
S

DAYDAY

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

Type Listing 19.4. Source code for the CALCJR.CPP
program file.

1:   #include <ctype.h>
2:   #include <math.h>
3:   #include <stdio.h>
4:   #include <owl\applicat.h>
5:   #include <owl\button.h>
6:   #include <owl\combobox.h>
7:   #include <owl\edit.h>
8:   #include <owl\framewin.h>
9:   #include <owl\static.h>
10:  #include <owl\window.h>
11:  #include <owl\window.rh>
12:
13:  #include “calcjr.h”
14:
15:  class THistoryBox : public TComboBox
16:  {
17:  public:
18:     THistoryBox(TWindow* parent,
19:                 int      id,
20:                 int x, int y, int w, int h,
21:                 UINT     textLen,
22:                 int      historyLen,
23:                 TModule* module = 0);
24:
25:     void EvKillFocus(HWND);
26:
27:  private:
28:     int history;
29:
30:     DECLARE_RESPONSE_TABLE(THistoryBox);
31:  };
32:  DEFINE_RESPONSE_TABLE1(THistoryBox, TComboBox)
33:     EV_WM_KILLFOCUS,
34:  END_RESPONSE_TABLE;
35:
36:  THistoryBox::THistoryBox(  TWindow* parent,
37:                             int id,
38:                             int x, int y, int w, int h,
39:                             UINT textLen,
40:                             int historyLen,
41:                             TModule* module )
42:     : TComboBox(parent, id, x, y, w, h, CBS_DROPDOWN, textLen,
                    module)
43:  {
44:     Attr.Style &= ~CBS_SORT;      // We don’t want to sort
45:     history = historyLen;
46:  }
47:



573

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

48:  void THistoryBox::EvKillFocus(HWND)
49:  {
50:     int len = GetTextLen() + 1;
51:     char *str = new char[len];
52:     if (str)
53:        {
54:        GetText(str, len);
55:        int ix = FindExactString(str, -1);
56:        if (ix < 0)
57:           {
58:           InsertString(str, 0);
59:           while (GetCount() >= history)
60:              DeleteString(GetCount() - 1);
61:           }
62:        else if (ix > 0)
63:           {
64:           DeleteString(ix);
65:           InsertString(str, 0);
66:           SetSelIndex(0);
67:           }
68:        delete str;
69:        }
70:  }
71:
72:  class TCalcJrWindow : public TWindow
73:  {
74:  public:
75:     TCalcJrWindow(TWindow* parent = 0);
76:
77:  protected:
78:     virtual void SetupWindow();
79:
80:     void CmCalc();
81:     void CmExit();
82:
83:  private:
84:     TComboBox*   Operator;
85:     THistoryBox* Operand1, *Operand2, *Result;
86:     TEdit*       ErrMsg;
87:
88:     DECLARE_RESPONSE_TABLE(TCalcJrWindow);
89:  };
90:  DEFINE_RESPONSE_TABLE1(TCalcJrWindow, TWindow)
91:     EV_BN_CLICKED(IDB_CALC, CmCalc),
92:     EV_BN_CLICKED(IDB_EXIT, CmExit),
93:  END_RESPONSE_TABLE;
94:
95:  TCalcJrWindow::TCalcJrWindow(TWindow* parent)
96:  {
97:     Init(parent, 0, 0);
98:

continues



574

Scroll Bars and Combo Boxes
M

T
W

R
F

S
S

DAYDAY

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

Listing 19.4. continued

99:     new TStatic(this, -1, “Operand1”, 20, 30, 100, 20);
100:    new TStatic(this, -1, “Operator”, 160, 30, 100, 20);
101:    new TStatic(this, -1, “Operand2”, 300, 30, 100, 20);
102:    new TStatic(this, -1, “Result”, 440, 30, 100, 20);
103:
104:    Operand1 = new THistoryBox(this, IDC_OPERAND1, 20, 55, 100, 150,
105:                                              0, 30);
106:    Operator = new TComboBox(this, IDC_OPERATOR, 160, 55, 100, 150,
107:                                              CBS_DROPDOWNLIST, 0);
108:    if (Operator)
109:       Operator->Attr.Style &= ~CBS_SORT;
110:    Operand2 = new THistoryBox(this, IDC_OPERAND2, 300, 55, 100,
111:                                             150, 0, 30);
112:    Result = new THistoryBox(this, IDC_RESULT, 440, 55, 100, 150,
113:                                              0, 30);
114:
115:    new TStatic(this, -1, “Error Message”, 20, 215, 100, 20);
116:    ErrMsg = new TEdit(this, IDE_ERRMSG, “”, 20, 240, 560, 30);
117:
118:    new TButton(this, IDB_CALC, “Calc”, 20, 290, 80, 30);
119:    new TButton(this, IDB_EXIT, “Exit”, 130, 290, 80, 30);
120: }
121:
122: void TCalcJrWindow::SetupWindow()
123: {
124:    TWindow::SetupWindow();    // Initialize the visual element
125:
126:    // Fill up out Operator combo box with a variety
127:    // of operators for our user’s computational pleasure.
128:    //
129:    if (Operator)
130:       {
131:       static char* p[] =
132:          { “+”, “-”, “*”, “/”, “^”, “log”, “exp”, “sqrt”, NULL };
133:       for (int ix = 0; p[ix]; ++ix)
134:          Operator->AddString(p[ix]);
135:       }
136:
137:    // Keep the users out of the error box.
138:    //
139:    if (ErrMsg)
140:       ErrMsg->SetReadOnly(TRUE);
141: }
142:
143: double get_number(TComboBox* numbox)
144: {
145:    double rslt = 0;        // default to 0
146:    char* str;



575

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

147:    int size;
148:
149:    if (numbox)
150:       {
151:       str = new char[size = numbox->GetTextLen() + 1];
152:       if (str)
153:          {
154:          numbox->GetText(str, size);
155:          rslt = atof(str);
156:          delete str;
157:          }
158:       }
159:    return rslt;
160: }
161:
162: void TCalcJrWindow::CmCalc()
163: {
164:    double x, y, z = 0;
165:
166:    x = get_number(Operand1);
167:    y = get_number(Operand2);
168:
169:    if (Operator)
170:       {
171:       int   ix = Operator->GetSelIndex();
172:       if (ix >= 0)
173:          {
174:          char* err = NULL;
175:
176:          switch (ix)
177:             {
178:             case 0:     // + operator
179:                z = x + y;
180:                break;
181:             case 1:     // - operator
182:                z = x - y;
183:                break;
184:             case 2:     // * operator
185:                z = x * y;
186:                break;
187:             case 3:     // / operator
188:                if (y)
189:                   z = x / y;
190:                else
191:                   err = “Can’t divide by zero.”;
192:                break;
193:             case 4:     // ^ operator
194:                if (x > 0)
195:                   z = exp(y * log(x));
196:                else
197:                   err = “Need positive number to raise power.”;

continues



576

Scroll Bars and Combo Boxes
M

T
W

R
F

S
S

DAYDAY

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

198:                break;
199:             case 5:     // log function
200:                if (x > 0)
201:                   z = log(x);
202:                else
203:                   err = “Need positive number for log.”;
204:                break;
205:             case 6:     // exp function
206:                if (x < 230)
207:                   z = exp(x);
208:                else
209:                   err = “Need a smaller number for exp.”;
210:                break;
211:             case 7:     // sqrt function
212:                if (x >= 0)
213:                   z = sqrt(x);
214:                else
215:                   err = “Can’t do sqrt of negative number.”;
216:                break;
217:             default:
218:                err = “Unknown operator”;
219:                break;
220:             }
221:
222:          if (ErrMsg)
223:             if (!err)
224:                ErrMsg->Clear();
225:             else
226:                ErrMsg->SetWindowText(err);
227:          if (!err && Result)
228:             {
229:             char dest[81];
230:             sprintf(dest, “%g”, z);
231:             Result->SetWindowText(dest);
232:             Result->EvKillFocus(NULL);    // Force history addition
233:             }
234:          }
235:       }
236: }
237:
238: void TCalcJrWindow::CmExit()
239: {
240:    SendMessage(WM_CLOSE);
241: }
242:
243: class TCalcJrApp : public TApplication
244: {
245: public:

Listing 19.4. continued



577

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

246:    TCalcJrApp() : TApplication()
247:       { nCmdShow = SW_SHOWMAXIMIZED; }
248:
249:    void InitMainWindow()
250:       {
251:       SetMainWindow(new TFrameWindow(  0,
252:                            “Son of Mr. Calculator”,
253:                            new TCalcJrWindow ));
254:       }
255: };
256:
257: int OwlMain(int, char *[])
258: {
259:    return TCalcJrApp().Run();
260: }

The program in Listing 19.4 begins by declaring, starting on line 15, a
descendant of TComboBox called THistoryBox. This descendant declares its
constructor, a single member function, and a single data member. The construc-

tor specifies the CBS_DROPDOWN style when calling the parent TComboBox constructor on
line 42, then turns off the CBS_SORT style and initializes the history member data with
the historyLen parameter on lines 44 and 45.

The EvKillFocus member function of THistoryBox that starts on line 48 is called in
response to the WM_KILLFOCUS Windows message. At this time, the function inserts the
string of the edit control part in the list box part. This insertion occurs only if the string
is not already in the list box part. In this case, the string is inserted at index 0 and
becomes the new top-of-the-list item. If the targeted string is already in the list box
part, the function deletes the existing item in the list box and reinserts it at index 0.
Thus, the targeted string appears to have moved up to the top of the list box part.

The TCalcJrWindow’s constructor that starts on line 95 does the usual creation of
controls. The SetupWindow member function then initializes the Operator combo box
by filling its list box component with the supported operators and functions on lines
129 through 135.

The get_number function, starting on line 143, is used, as in Day 16, to obtain a double
value from a control. This time, it receives a TComboBox pointer, gets the contents of
its edit box, then uses the atof function to obtain the double value that is returned.

The Calc button causes the CmCalc member function, starting on line 162, to be called.
This is the function that does all the following work of the application:

Analysis



578

Scroll Bars and Combo Boxes
M

T
W

R
F

S
S

DAYDAY

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

■■ Retrieves the values from the Operand1 and Operand2 combo boxes and
places their values in the x and y variables, respectively, on lines 166 and
167.

■■ Obtains the index of the selected operator in the Operator combo box on
line 171.

■■ If something is actually selected, a switch statement is used to determine the
requested operation or math function, then the case statement performs the
requested task and assigns the result to variable z, or sets the err pointer to
an appropriate error string.

■■ Sets the Error Message edit box if an error occurred or clears that same edit
box if no error was detected on lines 222 through 226.

■■ If no error occurred, displays the result of the operation or function evalua-
tion in the edit control box of the Result combo box, then calls its
EvKillFocus function directly to have that value inserted into its list box
component on lines 227 through 233.

Summary
Today’s lesson presented the scroll bar and combo box controls. These controls share
the common factor of being input objects. You learned about the following topics:

■■ The scroll bar control enables you to select quickly from a wide range of
integers.

■■ There are various types of combo box controls: simple, drop-down, and
drop-down list.

■■ You can make a history list box out of a drop-down combo box.

Q&A
Q Do the scroll bars strictly select integers?

A Yes. However, these integers can be indices to arrays, items in list box
controls, and other integer codes to various attributes such as colors. There-
fore, in a sense, the scroll bar can be used to select nonintegers.



579

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

19

A—s&n3  TYS Borland C++ 21 Days  #30483  tullis  4.13.94   Ch19   LP#3(sp 4/12 folio)

Q Can I create a scroll bar control with an excluded sub-range of values?

A No. You may want to use a list box control instead and have that control list
the value numbers.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing on to the
next day’s lesson. Answers are provided in Appendix A, “Answers.”

Quiz
1. True or false? If you do not include the CBS_AUTOHSCROLL style in creating a

combo list box, you limit the text to the characters that fit inside the rectan-
gular boundary of the edit control.

2. True or false? You can handle the CBN_SELCHANGE notification message to
monitor every keystroke in the edit control of a combo box.

3. True or false? Setting CBS_SORT creates a combo box whose list box items are
sorted and unique.

4. True or false? To emulate a history list box, a combo box must be created
without the CBS_SORT style.

5. True or false? A history list may have duplicate items.

6. True or false? COUNTDN.CPP demonstrates how to implement a two-way
connection between the current value of a scroll bar control and the numeric
value in a text box.

7. True or false? The range of values for a scroll bar control are fixed when you
create the control.

Exercise
Modify the CALCJR.CPP program by adding a Variables multiline box and a Store
pushbutton.



581

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

20

ns2/A   TYS Borland C++ 21 Days  #30483  sdavis 4-13-94    CH20   LP#3(sp 4/12 folio)

M
T

W
R

F
S

S

WEEK

33

2020
Dialog Boxes



582

Dialog Boxes
M

T
W

R
F

S
S

DAYDAY

20

ns2/A   TYS Borland C++ 21 Days  #30483  sdavis 4-13-94    CH20   LP#3(sp 4/12 folio)

Dialog boxes are special child windows that contain controls serving to display
information or to input data. Windows applications use dialog boxes to exchange
information with the user. Today’s lesson looks at the modal and modeless dialog
boxes supported by Windows.

☛ New Term: Modal dialog boxes require you to close them before you can
proceed any further with the application because they are meant to
perform a critical exchange of data. In fact, modal dialog boxes disable
their parent windows while they have the focus. Modeless dialog boxes do
not need to be closed to continue using the application. You need merely
to click on another of the application’s windows to continue.

Today you learn about the following topics:

■■ Constructing instances of the class TDialog

■■ Executing a modal dialog box

■■ Transferring control data

■■ Transferring data for modal dialog boxes

■■ Transferring data for modeless dialog boxes

Constructing Dialog Boxes
OWL declares the TDialog class to support both modeless and modal dialog boxes.
The TDialog class, a descendant of TWindow, has a class constructor and a number of
member functions, including the Create and Execute functions. The TDialog
constructor is declared as follows:

TDialog(TWindow* parent, TResId resId, TModule* module = 0);

The parent parameter is a pointer to the parent window. The resId parameter
describes the dialog box’s resource name or ID. The module parameter, which is
normally left out of calls to the constructor, can be used to specify different locations
from which to load the resource (for example, loading from a separate DLL).



583

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

20

ns2/A   TYS Borland C++ 21 Days  #30483  sdavis 4-13-94    CH20   LP#3(sp 4/12 folio)

The TResId class is a method used by OWL to encapsulate the different ways that a
resource can be named in an application’s resources. For example, one could specify
a dialog template as having either a number or a name. The useful TResId class has
three overloaded constructors. The first one, the default constructor, takes no
arguments and initializes the class to a 0 value. The other two constructors look like
this:

TResId(LPCSTR resString);
TResId(int resNum);

This means that you can easily create a TResId by simply passing the appropriate value
for the constructor. Also, if you use it as a temporary object, you can have TDialog
constructors that look something like this:

TDialog* errdlg = new TDialog(this, “ErrorDlg”);
TDialog* newdlg = new TDialog(this, 101);

Note: Using resources to define dialog boxes and their controls enables
you to define the location, dimensions, style, and caption of a control
outside the Windows application source code. Thus, you can change the
resource file, recompile it, and then incorporate it in the .EXE application
file without recompiling the source file itself. This approach enables you
to develop different resource versions with varying colors, styles, and even
languages while maintaining a single copy of the application code.
Furthermore, this approach does away with the need to write all that
complicated code for creating and placing controls in the constructor of a
TWindow class.

Note: The Borland C++ package includes the Resource Workshop, which
enables you to create dialog boxes by drawing the controls in the dialog
boxes. The Resource Workshop creates .RC resource files that are then
bound in your Windows applications. If you are a novice Windows
programmer, first learn about the .RC file and its script. Using the
Resource Workshop is very easy and intuitive. Knowing about the .RC
resource script makes working with the output of the Resource Workshop
even easier.



584

Dialog Boxes
M

T
W

R
F

S
S

DAYDAY

20

ns2/A   TYS Borland C++ 21 Days  #30483  sdavis 4-13-94    CH20   LP#3(sp 4/12 folio)

Creating Dialog Boxes
Typically, modal dialog boxes are created and removed more frequently than
modeless dialog boxes and much more frequently than windows. Executing modal
dialog boxes involves the following steps:

1. Create a dialog box object by using TDialog constructor.

2. Call the Execute member function, declared in the class TDialog, to bring up
the dialog box. Typically, dialog boxes contain the OK and Cancel
pushbuttons, with the OK button as the default button. The OK and
Cancel buttons have the predefined IDs of IDOK and IDCANCEL, respectively.
You may use pushbutton controls with different captions than OK and
Cancel. However, you should still use the IDOK and IDCANCEL with these
renamed buttons. Using these IDs enables you to take advantage of the
automatic response to IDOK and IDCANCEL provided by the CmOk and CmCancel
member functions defined in the TDialog class. Clicking OK or pressing the
Enter key usually signals your acceptance of the current (that is, the default
or edited) data in the dialog box. By contrast, clicking the Cancel button
signals your dissatisfaction with the current data. The declaration of the
Execute function is this:

int Execute();

The function returns an integer that represents the outcome. This is typically
the value of a pushbutton ID, like IDOK and IDCANCEL.

3. Compare the result of the Execute function with IDOK (or, less frequently,
IDCANCEL). The outcome of this comparison determines the steps to take.
Such steps usually involve accessing data that you entered in the dialog box
controls.

Creating modeless dialog boxes takes only a little more effort. First, they must be
created on the heap with a call to new. Then its Create and ShowWindow member
functions must be called, for example,

TDialog* pdlg = new TDialog(this, “My Dialog”);
pdlg -> Create();
pdlg -> ShowWindow(SW_SHOW);

The dialog object will be deleted automatically when the dialog box is closed. This can,
of course, cause problems if you attempt to use the dialog pointer after the dialog is
closed.



585

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

20

ns2/A   TYS Borland C++ 21 Days  #30483  sdavis 4-13-94    CH20   LP#3(sp 4/12 folio)

Like the TWindow class, from which much of TDialog’s functionality is inherited, the
SetupWindow, CanClose, and Destroy member functions support the execution of
both modal and modeless dialog boxes. The SetupWindow member function serves
to initialize the dialog box and its controls. The declaration of the SetupWindow
function is as follows:

virtual void SetupWindow();

Typically, the SetupWindow function initializes the controls of the dialog box. This
initialization usually involves copying data from buffers or data members.

The CanClose function is called whenever the user presses the OK button. The
declaration of the CanClose function is this:

virtual BOOL CanClose();

The CanClose acts to copy data from the dialog box controls to data members or
buffers after deciding whether or not it’s okay to close the dialog. This function returns
either TRUE or FALSE, depending upon whether or not the user is allowed to close the
dialog box, given the data entered.

The Destroy member function handles the closing of the dialog box. The declaration
of the Destroy is this:

virtual void Destroy(int retValue = IDCANCEL);

The Destroy function serves to clean up before the dialog box is closed, which may
involve closing data files, for example. Usually, the last statement in the Destroy
member function definition is a call to the Destroy function of its parent class.

The next example is a simple OWL program that uses a dialog box defined in resource
files. It also uses resource files to create alternate forms of the same dialog box; the first
uses modern English and the second uses old English. The application is simple and
is made up of an empty window with a single menu item, Exit. When you click the
Exit menu item (or press the Alt+X keys), you get a dialog box that asks you whether
or not you want to exit the application. The dialog box has a title, a message, and the
two buttons (in fact, we purposely made it to resemble the dialog boxes spawned by
the MessageBox function). The program alternates between the two versions of the
dialog box. When you first click the Exit menu, you get the modern English version
(with OK and Cancel buttons), shown in Figure 20.1. If you click the Cancel button
and then click the Exit menu again, you get the old English version of the dialog box
(with Yea and Nay buttons), shown in Figure 20.2. Every time you select the Cancel
or Nay button and then click the Exit menu, you toggle between the two versions of
the dialog box. To exit the application, click the OK or Yea button, depending on the
current dialog box version.



586

Dialog Boxes
M

T
W

R
F

S
S

DAYDAY

20

ns2/A   TYS Borland C++ 21 Days  #30483  sdavis 4-13-94    CH20   LP#3(sp 4/12 folio)

Type

Type

Listing 20.1 shows the DIALOG1.RC resource file. Listing 20.2 shows the source
code for the DIALOG1.CPP program.

Listing 20.1. Script for the DIALOG1.RC resource file.

1:  #include <windows.h>
2:  #include <owl\window.rh>
3:
4:  EXITMENU MENU LOADONCALL MOVEABLE PURE DISCARDABLE
5:  BEGIN
6:    MENUITEM “E&xit”, CM_EXIT
7:  END
8:
9:  ModernEnglish DIALOG DISCARDABLE LOADONCALL PURE MOVEABLE 20, 50,
      200, 100
10: STYLE WS_POPUP | DS_MODALFRAME
11: CAPTION “Message”
12: BEGIN
13:    CTEXT “Exit the application?”, -1, 10, 10, 170, 15
14:    DEFPUSHBUTTON “OK”, IDOK, 20, 50, 70, 15, WS_VISIBLE | WS_TABSTOP
15:    PUSHBUTTON “Cancel”, IDCANCEL, 110, 50, 70, 15, WS_VISIBLE |
         WS_TABSTOP
16: END
17:
18: OldeEnglish DIALOG DISCARDABLE LOADONCALL PURE MOVEABLE 20, 50, 200,
      100
19: STYLE WS_POPUP | DS_MODALFRAME
20: CAPTION “Message”
21: BEGIN
22:    CTEXT “Leavest thou now?”, -1, 10, 10, 170, 15
23:    DEFPUSHBUTTON “Yea”, IDOK, 20, 50, 70, 15, WS_VISIBLE |
         WS_TABSTOP
24:    PUSHBUTTON “Nay”, IDCANCEL, 110, 50, 70, 15, WS_VISIBLE |
         WS_TABSTOP
25: END

Listing 20.2. Source code for the DIALOG1.CPP
program file.

  1: #include <windows.h>
  2: #include <owl\applicat.h>
  3: #include <owl\dialog.h>
  4: #include <owl\framewin.h>
  5: #include <owl\window.h>
  6: #include <owl\window.rh>
  7:
  8: class TMyWindow : public TWindow
  9: {



587

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

20

ns2/A   TYS Borland C++ 21 Days  #30483  sdavis 4-13-94    CH20   LP#3(sp 4/12 folio)

 10: public:
 11:    TMyWindow(TWindow* parent = 0);
 12:
 13:    virtual BOOL CanClose();
 14:
 15: protected:
 16:    void CmExit();
 17:
 18:    DECLARE_RESPONSE_TABLE(TMyWindow);
 19: };
 20: DEFINE_RESPONSE_TABLE1(TMyWindow, TWindow)
 21:    EV_COMMAND(CM_EXIT, CmExit),
 22: END_RESPONSE_TABLE;
 23:
 24: TMyWindow::TMyWindow(TWindow* parent)
 25:    : TWindow(parent)
 26: {
 27: }
 28:
 29: BOOL TMyWindow::CanClose()
 30: {
 31:    static BOOL bFlag = FALSE;
 32:
 33:    bFlag = !bFlag;
 34:    if (bFlag)
 35:       return TDialog(this, “ModernEnglish”).Execute() == IDOK;
 36:    else
 37:       return TDialog(this, “OldeEnglish”).Execute() == IDOK;
 38: }
 39:
 40: void TMyWindow::CmExit()
 41: {
 42:    SendMessage(WM_CLOSE);
 43: }
 44:
 45: class TDialogApp : public TApplication
 46: {
 47: public:
 48:    TDialogApp() : TApplication()
 49:       { nCmdShow = SW_SHOWMAXIMIZED; }
 50:
 51:    void InitMainWindow()
 52:       {
 53:       SetMainWindow(new TFrameWindow(  0,
 54:                            “Simple Dialog Box Tester Application”,
 55:                            new TMyWindow ));
 56:       GetMainWindow()->AssignMenu(“EXITMENU”);
 57:       }
 58: };
 59:

continues



588

Dialog Boxes
M

T
W

R
F

S
S

DAYDAY

20

ns2/A   TYS Borland C++ 21 Days  #30483  sdavis 4-13-94    CH20   LP#3(sp 4/12 folio)

 60: int OwlMain(int, char *[])
 61: {
 62:    return TDialogApp().Run();
 63: }

Listing 20.2. continued

Figure 20.1. A sample session with the DIALOG1.EXE application showing the
dialog box with modern English wording.

Listing 20.1 shows the script for the DIALOG1.RC resource file, which defines
the following resources:

■■ The menu resource, EXITMENU, which displays a single menu with the single
item Exit.

■■ The dialog box resource starting on line 9, ModernEnglish, which has a
defined style, caption, and list of child controls. The specified style indicates
that the dialog box is a modal pop-up child window. The caption specified
on line 11 is the string Message. The dialog box contains three controls: a
centered static text (for the dialog box message), a default OK pushbutton,
and an ordinary Cancel button. The OK button has the resource ID of the
predefined IDOK constant, and the Cancel button has the resource ID of the
predefined IDCANCEL constant.

Analysis



589

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

20

ns2/A   TYS Borland C++ 21 Days  #30483  sdavis 4-13-94    CH20   LP#3(sp 4/12 folio)

Figure 20.2. A sample session with the DIALOG1.EXE application showing the
dialog box with the old English wording.

■■ The dialog box resource starting on line 18, OldeEnglish, which is similar to
the ModernEnglish dialog box resource, except that it uses an old English
wording. The Yea button has the resource ID of the predefined IDOK con-
stant. The Nay button has the resource ID of the predefined IDCANCEL
constant. These buttons are examples of exit buttons with atypical captions.

The CTEXT keyword specifies centered text. The DEFPUSHBUTTON keyword enables you
to define any control and requires the caption, ID, location, dimensions, and control
style of the control. The PUSHBUTTON definition is identical to the DEFPUSHBUTTON
keyword’s definition, but it describes an ordinary button instead of a default
pushbutton.

Up until now, you’ve been creating resources by manually creating the .RC file. When
making dialog boxes, it’s far easier to use the Resource Workshop. This provides an
easy interface by which dialog boxes can be painted on the screen exactly the way you
want them to appear when your application is run.

Listing 20.2 shows the source code for the DIALOG1.CPP program file. The source
code declares two classes: an application class starting on line 45 and a window class
starting on line 8. The application uses the standard TDialog class; it does not derive
a specialized descendant, because no additional dialog box functionality is required.



590

Dialog Boxes
M

T
W

R
F

S
S

DAYDAY

20

ns2/A   TYS Borland C++ 21 Days  #30483  sdavis 4-13-94    CH20   LP#3(sp 4/12 folio)

The most relevant member function is CanClose starting on line 29, which responds
to the user’s request to close the window (triggered by the CmExit function on line 40,
which in turn is triggered by the Exit menu choice). The function uses the Boolean
static local variable, bFlag, to toggle between the two dialog box resources ModernEnglish
and OldeEnglish. The new English dialog box is invoked in the following statement:

return TDialog(this, “ModernEnglish”).Execute() == IDOK;

The dialog box object is executed using the Execute function, disabling the parent
window until you click either pushbutton control. The value returned by the Execute
member function is compared with the IDOK constant, and the result is returned to the
caller to let it know what the user selected, and whether or not to close the application
window.

The instance of the old English version of the dialog box is similarly created, as shown
in the following statement:

return TDialog(this, “OldeEnglish”).Execute() == IDOK;

Connecting OWL Objects with
Windows Controls

Up until now, the constructors for the various controls you’ve learned all have had the
same general look of the constructor of the TControl class from which they’re all
descendants.

TControl( TWindow* parent,
          int id,
          const char far* title,
          int x,
          int y,
          int w,
          int h,
          TModule* module = 0 );

Occasionally, there have been additional parameters after the h and before the module
parameters, as the various controls needed. These all assume that the controls needed
to be created from scratch, including their positions in their parent window.

When creating a dialog box from a resource file, however, these controls will be created
automatically from the resource script at the same time as the dialog box. In order to
have access to the controls from an OWL object, there is a second constructor for each
control class that enables you to create an object that has a direct correspondence with
the actual Windows control.



591

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

20

ns2/A   TYS Borland C++ 21 Days  #30483  sdavis 4-13-94    CH20   LP#3(sp 4/12 folio)

The following are the constructors for creating the various controls:

TStatic( TWindow* parent, int resourceId, UINT textLen = 0,
         TModule* module = 0);
TEdit( TWindow* parent, int resourceId, UINT textLen = 0,
       TModule* module = 0 );
TButton(TWindow* parent, int resourceId, TModule* module = 0);
TCheckBox( TWindow* parent, int resourceId, TGroupBox* group = 0,
           TModule* module = 0 );
TRadioButton( TWindow* parent, int resourceId, TGroupBox* group = 0,
              TModule* module = 0 );
TGroupBox(TWindow* parent, int resourceId, TModule* module = 0);
TListBox(TWindow* parent, int resourceId, TModule* module = 0);
TComboBox( TWindow* parent, int resourceId, UINT textLen = 0,
           TModule* module = 0 );
TScrollBar(TWindow* parent, int resourceId, TModule* module = 0);

The control objects, as with the full versions, should be created in a dialog’s
constructor. The following is an example of creating an OWL object to interface with
a window’s Cancel button:

cancel = new TButton(this, IDCANCEL);

Transferring Control Data
Dialog boxes serve mainly as pop-up windows to request input from the application
user. This input often includes a variety of settings that use radio buttons, check boxes,
and edit boxes. Because dialog boxes are frequently created, it makes sense to preserve
the latest values in the dialog’s controls for the next time it appears. The Search and
Replace dialog boxes that are found in many Windows editors are typical examples.
These dialog boxes remember the settings of all or some of their controls from the last
time the dialog box was executed. You can also use the transfer mechanism as an easy
way to set and retrieve data in the dialog for simple initialization and retrieval
purposes.

To implement this feature in dialog boxes, you need a data transfer mechanism
between the dialog box and a buffer. This buffer is usually a data member of the parent
window. Therefore, the first step in supporting data transfer is to define a transfer
buffer type. The buffer declares the data fields to buffer the controls that transfer their
data. These controls typically include the edit box, list box, combo box, scroll bar,
check box, and radio button. The static text, group box, and pushbutton controls
usually have no data to transfer and therefore do not enter in the declaration of the
data transfer buffer type, because OWL has them disabled by default. A sample data
buffer type that includes a single instance of each allowable control is this:



592

Dialog Boxes
M

T
W

R
F

S
S

DAYDAY

20

ns2/A   TYS Borland C++ 21 Days  #30483  sdavis 4-13-94    CH20   LP#3(sp 4/12 folio)

struct TAppTransferBuffer
{
   char EditBox[MaxEditLen];
   TListBoxData ListBoxData;
   TComboBoxData ComboBoxData;
   TScrollBarData ScrollBarData;
   UINT CheckBox;
   UINT RadioButton;
};

The buffer structure needs only to include the controls that actually transfer data. You
do not need to declare the fields of the buffer structure in any particular order, so long
as the controls they match are created in the same order. This sample buffer type
includes three special classes that transfer data between dialog boxes and list boxes,
combo boxes, and scroll bars. You will see more about these classes later in this section.

Let’s look at the various members of the data transfer buffer type:

■■ The EditBox member assists in moving data between the edit control and
the data buffer. The data member defines a character array that should be
equal to or greater than the number of characters in the edit control.

■■ The ListBoxData member helps to transfer data between a list box control
and the data buffer. The ListBoxData is an instance of the TListBoxData
class that OWL provides for keeping track of the contents of a list box,
including any selections.

■■ The ComboBoxData member helps to move data between a combo box control
and the data buffer. The ComboBoxData is an instance of the TComboBoxData
class. This, too, is provided by OWL to keep track of the contents and state
of a combo box.

■■ The ScrollBarData member is an instance of the TScrollBarData class that
assists in transferring data between a scroll bar control and the data buffer.

■■ The CheckBox member stores the current check state of a check box in a UINT
type.

■■ The RadioButton member stores the current check state of a radio button in
a UINT type.



593

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

20

ns2/A   TYS Borland C++ 21 Days  #30483  sdavis 4-13-94    CH20   LP#3(sp 4/12 folio)

Data Transfer for Modal
Dialog Boxes

The next application is a simple example of transferring data between the controls of
a modal dialog box and a buffer. It creates a typical dialog box that is used in replacing
characters in a text editor. The dialog box contains the following controls:

■■ Find edit box

■■ Replace edit box

■■ Scope group box that contains the Global and Selected Text radio button
controls

■■ Case-Sensitive check box

■■ The Whole Word check box

■■ The OK pushbutton control

■■ The Cancel pushbutton control

The application has a main menu with the Exit and Dialog menu items. To invoke
the dialog box, click the Dialog menu item or press the Alt+D keys. When you invoke
the dialog box for the first time, the controls have the following initial values and
states:

■■ The Find edit box contains the string DOS.

■■ The Replace edit box has the string Windows.

■■ The Global radio button is checked.

■■ The Case-Sensitive check box is checked.

■■ The Whole Word check box is checked.

Type new strings in the edit box and alter the check states of the radio buttons and
check boxes. Now, click the OK button (or press the Alt+O keys) to close the dialog
box. Invoke the Dialog menu item again to pop up the dialog box. Notice that the
controls of the dialog box have the same values and states as when you last closed the
dialog box.



594

Dialog Boxes
M

T
W

R
F

S
S

DAYDAY

20

ns2/A   TYS Borland C++ 21 Days  #30483  sdavis 4-13-94    CH20   LP#3(sp 4/12 folio)

Type

Type

Listing 20.3 shows the source code for the DIALOG2.H header file. Listing 20.4
contains the script for the DIALOG2.RC resource file. Listing 20.5 shows the source
code for the DIALOG2.CPP program file.

Listing 20.3. Source code for the DIALOG2.H
header file.

1: #define CM_DIALOG (WM_USER + 100)
2:
3: #define IDE_FIND        101
4: #define IDE_REPLACE     102
5: #define IDR_GLOBAL      103
6: #define IDR_SELTEXT     104
7: #define IDC_CASE        105
8: #define IDC_WHOLEWORD   106

Listing 20.4. Script for the DIALOG2.RC resource file.

1:  #include <windows.h>
2:  #include <owl\window.rh>
3:  #include “dialog2.h”
4:
5:  Search DIALOG DISCARDABLE LOADONCALL PURE MOVEABLE 10, 10, 200, 150
6:  STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION |
      WS_SYSMENU
7:  CAPTION “Controls Demo”
8:  BEGIN
9:    LTEXT “Find”, -1, 20, 10, 100, 15, NOT WS_GROUP
10:    EDITTEXT IDE_FIND, 20, 25, 100, 15
11:    LTEXT “Replace”, -1, 20, 45, 100, 15, NOT WS_GROUP
12:    EDITTEXT IDE_REPLACE, 20, 60, 100, 15
13:    GROUPBOX “ Scope “, -1, 20, 80, 90, 50, BS_GROUPBOX
14:    RADIOBUTTON “Global”, IDR_GLOBAL, 30, 90, 50, 15,
          BS_AUTORADIOBUTTON
15:    RADIOBUTTON “Selected Text”, IDR_SELTEXT, 30, 105, 60, 15,
16:        BS_AUTORADIOBUTTON
17:    CHECKBOX “Case Sensitive”, IDC_CASE, 20, 130, 80, 15,
          BS_AUTOCHECKBOX |
18:        WS_TABSTOP
19:    CHECKBOX “Whole Word”, IDC_WHOLEWORD, 100, 130, 80, 15,
          BS_AUTOCHECKBOX
20:        | WS_TABSTOP
21:    DEFPUSHBUTTON “&OK”, IDOK, 120, 90, 30, 20
22:    PUSHBUTTON “&Cancel”, IDCANCEL, 160, 90, 30, 20
23: END
24:
25: MainMenu MENU LOADONCALL MOVEABLE PURE DISCARDABLE
26: BEGIN



595

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

20

ns2/A   TYS Borland C++ 21 Days  #30483  sdavis 4-13-94    CH20   LP#3(sp 4/12 folio)

Type

27:    MENUITEM “E&xit”, CM_EXIT
28:    MENUITEM “&Dialog”, CM_DIALOG
29: END

Listing 20.5. Source code for the DIALOG2.CPP
program file.

 1:  #include <cstring.h>
 2:  #include <windows.h>
 3:  #include <owl\applicat.h>
 4:  #include <owl\checkbox.h>
 5:  #include <owl\dialog.h>
 6:  #include <owl\edit.h>
 7:  #include <owl\framewin.h>
 8:  #include <owl\radiobut.h>
 9:  #include <owl\window.h>
 10: #include <owl\window.rh>
 11:
 12: #include “dialog2.h”
 13:
 14: const MaxEditLen = 30;
 15:
 16: struct TTransferBuffer
 17: {
 18:    char find[MaxEditLen];
 19:    char replace[MaxEditLen];
 20:    UINT global, seltext, csensitive, wholeword;
 21: };
 22:
 23: class TSearchDialog : public TDialog
 24: {
 25: public:
 26:    TSearchDialog( TWindow* parent,
 27:                   TTransferBuffer* xfer,
 28:                   TModule* module = 0);
 29:
 30: };
 31:
 32: TSearchDialog::TSearchDialog( TWindow* parent,
 33:                               TTransferBuffer* xfer,
 34:                               TModule* module)
 35:    : TDialog(parent, “Search”, module)
 36: {
 37:    new TEdit(this, IDE_FIND, MaxEditLen);
 38:    new TEdit(this, IDE_REPLACE, MaxEditLen);
 39:    new TRadioButton(this, IDR_GLOBAL);
 40:    new TRadioButton(this, IDR_SELTEXT);
 41:    new TCheckBox(this, IDC_CASE);

continues



596

Dialog Boxes
M

T
W

R
F

S
S

DAYDAY

20

ns2/A   TYS Borland C++ 21 Days  #30483  sdavis 4-13-94    CH20   LP#3(sp 4/12 folio)

 42:    new TCheckBox(this, IDC_WHOLEWORD);
 43:    SetTransferBuffer(xfer);
 44: }
 45:
 46: class TMyWindow : public TWindow
 47: {
 48: public:
 49:    TMyWindow(TWindow* parent = 0);
 50:
 51: protected:
 52:    void CmExit();
 53:    void CmDialog();
 54:
 55: private:
 56:    TTransferBuffer xfer;
 57:
 58:    DECLARE_RESPONSE_TABLE(TMyWindow);
 59: };
 60: DEFINE_RESPONSE_TABLE1(TMyWindow, TWindow)
 61:    EV_COMMAND(CM_EXIT, CmExit),
 62:    EV_COMMAND(CM_DIALOG, CmDialog),
 63: END_RESPONSE_TABLE;
 64:
 65: TMyWindow::TMyWindow(TWindow* parent)
 66:    : TWindow(parent)
 67: {
 68:    memset(&xfer, 0, sizeof(xfer));
 69:    lstrcpy(xfer.find, “DOS”);
 70:    lstrcpy(xfer.replace, “Replace”);
 71:    xfer.global = BF_CHECKED;
 72:    xfer.csensitive = BF_CHECKED;
 73:    xfer.wholeword = BF_CHECKED;
 74: }
 75:
 76: void TMyWindow::CmExit()
 77: {
 78:    SendMessage(WM_CLOSE);
 79: }
 80:
 81: void TMyWindow::CmDialog()
 82: {
 83:    if (TSearchDialog(this, &xfer).Execute() == IDOK)
 84:      {
 85:       string msg(“Find String: “);
 86:       msg += xfer.find;
 87:       msg += “\n\nReplace String: “;
 88:       msg += xfer.replace;
 89:       MessageBox(msg.c_str(), “Dialog Box Data”);
 90:       }

Listing 20.5. continued



597

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

20

ns2/A   TYS Borland C++ 21 Days  #30483  sdavis 4-13-94    CH20   LP#3(sp 4/12 folio)

91:  }
92:
93:  class TDialogApp : public TApplication
94:  {
95:  public:
96:     TDialogApp() : TApplication()
97:        { nCmdShow = SW_SHOWMAXIMIZED; }
98:
99:     void InitMainWindow()
100:       {
101:       SetMainWindow(new TFrameWindow(  0,
102:                            “Modal Dialog Box Data Transfer Tester”,
103:                            new TMyWindow ));
104:       GetMainWindow()->AssignMenu(“MainMenu”);
105:       }
106: };
107:
108: int OwlMain(int, char *[])
109: {
110:    return TDialogApp().Run();
111: }

Figure 20.3 shows a sample session with the DIALOG2.EXE application.

Figure 20.3. A sample session with the DIALOG2.EXE application.



598

Dialog Boxes
M

T
W

R
F

S
S

DAYDAY

20

ns2/A   TYS Borland C++ 21 Days  #30483  sdavis 4-13-94    CH20   LP#3(sp 4/12 folio)

Listing 20.4 contains the script for the DIALOG2.RC resource file. This file
defines the resources for the menu and the dialog box, including its controls. In
the dialog box resource definition, the OK and Cancel pushbuttons have the

predefined IDOK and IDCANCEL IDs, respectively.

Listing 20.5 shows the source code for the DIALOG2.CPP program file. The
program declares the data transfer type TTransferBuffer starting on line 16 and
includes members for the edit boxes, radio buttons, and check boxes.

The application declares the TSearchDialog class starting on line 23 as a descendant
of the TDialog class. You’ll notice that it doesn’t have any member data, and the only
function declared is its constructor. This constructor starts on line 32 and, in turn,
does nothing more than create some OWL interface objects to be associated with the
various controls created from the dialog resource. Then the constructor makes a call
to the SetTransferBuffer function on line 43, passing the xfer parameter along.
OWL will take over from here and automatically perform all the transfers between
xfer and the actual controls.

The TMyWindow class starting on line 43 declares its constructor, two functions to
respond to the menu, and a data member of type TTransferBuffer. This data member
is initialized in the constructor, first with a call to the memset function on line 68. This
call fills the xfer data member with zeros. We recommend that you systematically call
the memset function to perform a basic initialization of buffers and structures before
assigning specific values to them. Then the xfer’s data members are set to some initial
values. Another way to ensure an empty structure is to provide it with a default
constructor that clears all the data members.

The CmDialog function starting on line 81, which responds to the Dialog menu item,
creates a modal dialog of type TSearchDialog on line 83, passing the xfer data member
as a parameter. If the user presses the OK button to exit this dialog, it will return IDOK,
and the CmDialog function will then build and display a message string that reflects the
current Find and Replace text on lines 85 through 89.

Transferring Data for Modeless
Dialog Boxes

The method of transferring data from modeless dialog boxes is almost the same as that
used for modal dialog boxes. The main difference is that the mechanism that
automatically transfers the data between the controls, and the transfer buffer is only
called when the dialog window is modal. The programmer needs to make the call

Analysis



599

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

20

ns2/A   TYS Borland C++ 21 Days  #30483  sdavis 4-13-94    CH20   LP#3(sp 4/12 folio)

explicitly in the case of a modeless dialog box. This can be done by overriding the
CloseWindow member function in the dialog’s descendant class:

void TMyDialog::CloseWindow(int retValue)
{
   TransferData(tdGetData);
   TDialog::CloseWindow(retValue);
}

At this point, all the control data will be transferred to the buffer that was sent to the
SetTransferBuffer in the dialog’s constructor.

Another possible action might be to have a Send button in the dialog with a response
function that looks similar to this:

void TMyDialog::CmSend()
{
   TransferData(tdGetData);
   Parent->HandleMessage(WM_COMMAND, IDB_SEND);
}

Then, in the dialog parent’s window class, add a member function to handle the Send
button in the same way you did this for the dialog class. This function will be called
automatically when the dialog simulates the press of the Send button via the call to
its parent’s HandleMessage function.

Summary
Today’s lesson presented you with powerful dialog boxes that serve as input tools. You
learned about the following topics:

■■ You can construct instances of class TDialog to create modeless or modal
dialog boxes.

■■ You can construct instances of the various control classes that give access to
the controls created automatically from the dialog resource.

■■ Modal dialog boxes are executed with the Execute member function.

■■ The basics of transferring control data include declaring the data transfer
buffer type, declaring the buffer, creating the controls in a sequence that
matches their buffers, and establishing the buffer link with the
SetTransferBuffer member function.

■■ The first step in supporting data transfer is to define a transfer buffer type.
You can transfer data for modal dialog boxes and modeless dialog boxes.



600

Dialog Boxes
M

T
W

R
F

S
S

DAYDAY

20

ns2/A   TYS Borland C++ 21 Days  #30483  sdavis 4-13-94    CH20   LP#3(sp 4/12 folio)

Q&A
Q Does OWL support specialized dialog boxes?

A Yes. OWL has a set of classes that implement dialog boxes for selecting files,
selecting colors, selecting fonts, printing, and searching/replacing text. The
classes that model these dialog boxes are all descendants of the class TDialog
and bring up the common dialogs.

Q Is the data transfer buffer necessary for modeless dialog boxes?

A Not always. You can have an application that pops up multiple modeless
dialog boxes and have them communicate with each other directly, without
the need of a data transfer buffer.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing on to the
next day’s lesson. Answers are provided in Appendix A, “Answers.”

Quiz
1. True or false? You must compile all the .RC files into .RES before or during

the creation of the application.

2. True or false? The OK and Cancel buttons in a dialog box are optional.

3. True or false? You can create a dialog box with buttons labeled Yes and No.

4. True or false? Nested dialog boxes are not allowed by Windows.

5. True or false? Dialog boxes must always have a nondialog window parent.

Exercises
1. Create a version of the MrCalc application (from previous chapters) that

uses a dialog box as a stand-alone window.

2. Use the Resource Workshop to create the dialog box resource for the
DIALOG2 program.



601

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

M
T

W
R

F
S

S

WEEK

33

2121
MDI Windows



602

MDI Windows
M

T
W

R
F

S
S

DAYDAY

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

The Multiple Document Interface (MDI) is a standard Windows interface used by
many popular Windows applications and utilities, such as the Windows Program
Manager, the Windows File Manager, and even the Borland C++ IDE. The MDI
interface is also part of the Common User Access (CUA) standard set by IBM. Each
MDI-compliant application enables you to open child windows for file-specific tasks
such as editing text, managing a database, or working with a spreadsheet. In this
chapter, you will learn the following topics on managing MDI windows and objects:

■■ The basic features and components of an MDI-compliant application

■■ Basics of building an MDI-compliant application

■■ The class TMDIFrame

■■ The class TMDIClient

■■ Building MDI client windows

■■ The class TMDIChild

■■ Building MDI child windows

■■ Managing messages in an MDI-compliant application

The MDI Application Features
and Components

An MDI-compliant application is made up of the following objects:

■■ The visible MDI frame window that contains all other MDI objects. The
MDI frame window is an instance of the class TMDIFrame or its descendants.
Each MDI application has one MDI frame window.

■■ The invisible MDI client window that performs underlying management of
the MDI child windows that are dynamically created and removed. The
MDI client window is an instance of the class TMDIClient. Each MDI
application has one MDI client window.

■■ The dynamic and visible MDI child window. An MDI application dynami-
cally creates and removes multiple instances of MDI child windows. An
MDI child window is an instance of TMDIFrame or its descendant. These
windows are located, moved, resized, maximized, and minimized inside the



603

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

area defined by the MDI frame window. At any given time (and while there
is at least one MDI child window), there is only one active MDI child
window.

When you maximize an MDI child window, it occupies the area defined by the client
area of the MDI frame window. When you minimize an MDI child window, the icon
of that window appears at the bottom area of the MDI frame window.

Note: The MDI frame window has a menu that manipulates the MDI
child windows and their contents. The MDI child windows cannot have a
menu, but they may contain controls. In any other respect, you can think
of an MDI child window as an instance of TFrameWindow or its descen-
dants.

Basics of Building an MDI
Application

Before we discuss in more detail the creation of the various components that make up
an MDI application, let’s focus on the basic strategy involved. In the last section, you
learned that the basic ingredients for an MDI application are the TMDIFrame,
TMDIClient, and TMDIChild (or a TMDIChild descendant) classes. The TMDIFrame class
supports the following tasks:

■■ The creation and handling of the MDI client window

■■ The creation and handling of the MDI child windows

■■ Managing menus

The MDIClient class focuses on the underlying management of MDI child windows.
The TMDIChild class offers the functionality for the MDI child windows.

At this stage you might ask, Do I typically derive descendants for all three classes to
create MDI application? The answer is no. You normally need to derive descendants
only for the TMDIFrame and TWindow classes. The functionality of the TMDIClient class
is adequate for most MDI-compliant applications.



604

MDI Windows
M

T
W

R
F

S
S

DAYDAY

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

The TMDIFrame Class
ObjectWindows offers the TMDIFrame class, a descendant of TFrameWindow, to imple-
ment the MDI frame window of an MDI application. The declaration of the
TMDIFrame class is as follows:

class _OWLCLASS TMDIFrame : virtual public TFrameWindow {
  public:
    TMDIFrame(const char far* title,
              TResId          menuResId,
              TMDIClient&     clientWnd = *new TMDIClient,
              TModule*        module = 0);

    TMDIFrame(HWND hWindow, HWND clientHWnd, TModule* module = 0);

    //
    // override virtual functions defined by TFrameWindow
    //
    BOOL         SetMenu(HMENU);
    TMDIClient*  GetClientWindow();

    //
    // find & return the child menu of an MDI frame’s (or anyone’s) menu
    // bar.
    //
    static HMENU FindChildMenu(HMENU);

  protected:
    //
    // call ::DefFrameProc() instead of ::DefWindowProc()
    //
    LRESULT DefWindowProc(UINT message, WPARAM wParam, LPARAM lParam);

  private:
    //
    // hidden to prevent accidental copying or assignment
    //
    TMDIFrame(const TMDIFrame&);
    TMDIFrame& operator=(const TMDIFrame&);

  DECLARE_RESPONSE_TABLE(TMDIFrame);
  DECLARE_STREAMABLE(_OWLCLASS, TMDIFrame, 1);
};

The TMDIFrame class has public, protected, and private members. The MDI frame
window class has three constructors, one of which is private. The first constructor
creates a class instance by specifying the title, associated menu resource ID, and



605

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

reference to the associated MDI client window. The second constructor creates a class
instance from an existing non-OWL window. The third constructor, which is
declared private, creates an instance of class TMDIFrame using another existing instance.

The class TMDIFrame declares the public member functions SetMenu, GetClientWindow,
and FindChildMenu. The function SetMenu looks for the MDI submenu in the new
menu bar and updates member ChildMenuPos if the menu is found. The function
searches for the MDI submenu in the menu bar and updates the position in the MDI
window’s top-level menu of the child window submenu. The function GetClientWindow
returns  a pointer to the associated MDI client window. The function FindChildMenu
searches for the child menu of an MDI frame’s menu bar.

The class TMDIFrame declares the single protected member function DefWindowProc.
This function overrides the inherited function TWindow::DefWindowProc and invokes
the Windows API function DefFrameProc. The API function provides the default
processing for any incoming Windows message that is not handled by the MDI frame
window.

Building MDI Frame Windows
The usual approach for creating the objects that make up an ObjectWindows
application starts with creating the application instance and then its main window
instance. In the case of an MDI-compliant application, the application’s main
window is typically a descendant of class TMDIFrame. The InitMainWindow member
function of the application class creates this window. Looking at the first two
TMDIFrame constructors, you can tell that creating the main MDI window involves a
title and menu resource—there is no pointer to a parent window because MDI frame
windows have no parent windows. The MDI frame window, unlike most descendants
of class TWindow, must have a menu associated with it. This menu typically includes
the items shown in Table 21.1, needed to manipulate the MDI children. In addition,
the menu of the MDI frame window is dynamically and automatically updated to
include the current MDI children.

The constructor of the descendant of TMDIFrame (call it the application frame class)
can, in many cases, simply invoke the parent class constructor. This invocation occurs
if the steps taken by the parent class are adequate for creating the MDI frame window
instance. In the case where you want to modify the behavior of the application frame
class, you need to include the required statements. Such statements might assign
initial values to data members declared in the application frame class.



606

MDI Windows
M

T
W

R
F

S
S

DAYDAY

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

The SetupWindow member function invokes the InitClientWindow to create the
TMDIClient instance. You can modify the SetupWindow function to, for example,
automatically create the first child MDI window.

The TMDIClient Class
ObjectWindows offers the TMDIClient class, a descendant of TWindow, to implement
the invisible MDI client window. The declaration of the TMDIClient class is as follows:

class _OWLCLASS TMDIClient : public virtual TWindow {
  public:
    LPCLIENTCREATESTRUCT  ClientAttr;

    TMDIClient(TModule* module = 0);
   ~TMDIClient();

    virtual BOOL CloseChildren();

    TMDIChild* GetActiveMDIChild();

    //
    // member functions to arrange the MDI children
    //
    virtual void ArrangeIcons();
    virtual void CascadeChildren();
    virtual void TileChildren(int tile = MDITILE_VERTICAL);

    //
    // override member functions defined by TWindow
    //
    BOOL PreProcessMsg(MSG& msg);
    BOOL Create();

    virtual TWindow* CreateChild();

    //
    // constructs a new MDI child window object. By default, constructs
    // an instance of TWindow as an MDI child window object
    //
    // will almost always be overridden by derived classes to construct
    // an instance of a user-defined TWindow derived class as an MDI
    // child window object
    //
    virtual TMDIChild* InitChild();



607

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

  protected:
    char far* GetClassName();

    //
    // menu command handlers & enabler
    //
    void CmCreateChild()
           { CreateChild(); }  // CM_CREATECHILD
    void CmTileChildren()
           { TileChildren(); }  // CM_TILECHILDREN
    void CmTileChildrenHoriz()
           { TileChildren(MDITILE_HORIZONTAL); }  // CM_TILECHILDREN
    void CmCascadeChildren()
           { CascadeChildren(); }  // CM_CASCADECHILDREN
    void CmArrangeIcons()
           { ArrangeIcons(); }  // CM_ARRANGEICONS
    void CmCloseChildren()
           { CloseChildren(); }  // CM_CLOSECHILDREN
    void CmChildActionEnable(TCommandEnabler& commandEnabler);

    LRESULT EvMDICreate(MDICREATESTRUCT far& createStruct);

  private:
    friend class TMDIFrame;
    TMDIClient(HWND hWnd, TModule*   module = 0);

    //
    // hidden to prevent accidental copying or assignment
    //
    TMDIClient(const TMDIClient&);
    TMDIClient& operator =(const TMDIClient&);

  DECLARE_RESPONSE_TABLE(TMDIClient);
  DECLARE_STREAMABLE(_OWLCLASS, TMDIClient, 1);
};

The class TMDIClient declares a public constructor and destructor. The MDI client
class declares a number of member functions that handle Windows and menu
command messages for activating an MDI child window; arranging the MDI child
icons; cascading and tiling MDI children; closing MDI children; and creating an
MDI child window. These message response functions use sibling member functions.
Table 21.1 shows the predefined menu ID constants and the TMDIClient member
functions that respond to them.



608

MDI Windows
M

T
W

R
F

S
S

DAYDAY

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

Table 21.1. The predefined menu command messages for
manipulating MDI children.

Responding TMDIClient
Action Menu ID Constant Member Function

Tile CM_TILECHILDREN CmTileChildren

Tile Horizon CM_TILECHILDRENHORIZ CmTileChildrenHoriz

Cascade CM_CASCASDECHILDREN CmCascadeChildren

Arrange Icons CM_ARRANGEICONS CmArrangeIcons

Close All CM_CLOSECHILDREN CmCloseChildren

There are a number of member functions in the class TMDIClient that you may want
to modify when you create class descendants. The list of such member functions
includes CreateChild, SetupWindow, CanClose, and CloseChildren. These functions
enable you to modify how to create, set up, and close MDI children.

The MDI Child Window Class
The class TMDIChild models the basic operations of all MDI child windows. The
declaration for the class TMDIChild is as follows:

class _OWLCLASS TMDIChild : virtual public TFrameWindow {
  public:
    TMDIChild(TMDIClient&     parent,
              const char far* title = 0,
              TWindow*        clientWnd = 0,
              BOOL            shrinkToClient = FALSE,
              TModule*        module = 0);

    TMDIChild(HWND hWnd, TModule* module = 0);

   ~TMDIChild() {}

    //
    // override method defined by TWindow
    //
    BOOL PreProcessMsg(MSG& msg);

  protected:
    void Destroy(int retVal = 0);
    void PerformCreate(int menuOrId);



609

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

    LRESULT DefWindowProc(UINT msg, WPARAM wParam, LPARAM lParam);
    void EvMDIActivate(HWND hWndActivated,
                       HWND hWndDeactivated);

  private:
    //
    // hidden to prevent accidental copying or assignment
    //
    TMDIChild(const TMDIChild&);
    TMDIChild& operator =(const TMDIChild&);

  DECLARE_RESPONSE_TABLE(TMDIChild);
  DECLARE_STREAMABLE(_OWLCLASS, TMDIChild, 1);
};

The class TMDIChild declares three constructors (one of which is private) and a
destructor. The first constructor enables you to create a class instance by specifying the
parent MDI client window, MDI child window title, the client window, and whether
or not the MDI child window shrinks to fit the client area. The second constructor
creates a class instance using an existing non-OWL MDI child window. The third
constructor, which is declared private, creates a TMDIChild class instance using an
existing instance.

The MDI child window class declares the single public member function PreProcessMsg.
This function preprocesses the Windows messages sent to the MDI child windows.
The class TMDIChild offers a set of protected functions that create, destroy, and activate
MDI child windows. In addition, the class provides its own version of function
DefWindowProc to handle default Windows message processing.

Building MDI Child Windows
Building MDI child windows is very similar to building application windows in the
programs presented earlier. The differences are as follows:

■■ An MDI child window cannot have its own menu. The menu of the MDI
frame window is the one that manipulates the currently active MDI child
window or all of the MDI children.

Note: The keyboard handler must not be enabled. It actually causes the
reverse effect in the MDI children and antagonizes the proper operations
of the MDI application.



610

MDI Windows
M

T
W

R
F

S
S

DAYDAY

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

■■ An MDI child window can have controls—this is unusual but certainly
allowed.

Managing MDI Messages
The message loop directs the command messages first to the active MDI child window
to allow it to respond. If that window does not respond, the message is then sent to
the parent MDI frame window. Of course, the active MDI child window responds
to the notification messages sent by its controls, just as any window or dialog box
would.

Simple Text Viewer
Let’s look at a simple MDI-compliant application. Because MDI applications are
frequently used as text viewer and text editors, we present the next application that
emulates a simple text viewer. We say “emulates” because the application actually
displays random text, instead of text that you can retrieve from a file. This approach
keeps the program simple and helps you to focus on implementing the various MDI
objects. Figure 21.1 shows a sample session with the MDI1.EXE program. The MDI
application has a simple menu containing the Exit and MDI Children items.

Compile and run the application. Experiment with creating MDI children. Notice
that the text in odd-numbered MDI child windows is static, whereas the text in even-
numbered windows can be edited. We implemented this feature to illustrate how to
create a simple form of text viewer and text editor (with no Save option, to keep the
example short). Try to tile, cascade, maximize, and minimize these windows. Also test
closing individual MDI child windows as well as closing all of the MDI children.

Let’s examine the code that implements this simple MDI application. Listing 21.1
shows the contents of the MDI1.DEF definition file. Listing 21.2 shows the source
code for the MDI1.H header file. This file declares the command message constants
and a control ID constant. Listing 21.3 contains the script for the MDI1.RC resource
file. The file defines the menu resource required by the MDI frame window. The
menu has two menu items, Exit and MDI Children. The latter menu item is a pop-
up menu with several options. The commands, except the option Count Children, use
predefined command message constants. Listing 21.4 shows the source code for the
MDI1.CPP program file.



611

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

Type

Type

Figure 21.1. A sample session with the MDI1.EXE program.

Listing 21.1. The contents of the MDI1.DEF
definition file.

  1:  NAME         MDI1
  2:  DESCRIPTION  ‘An OWL Windows Application’
  3:  EXETYPE      WINDOWS
  4:  CODE         PRELOAD MOVEABLE DISCARDABLE
  5:  DATA         PRELOAD MOVEABLE MULTIPLE
  6:  HEAPSIZE     1024
  7:  STACKSIZE    8192

Listing 21.2. The source code for the MDI1.H
header file.

  1:  #define CM_COUNTCHILDREN 101
  2:  #define ID_TEXT_EDIT     102
  3:  #define IDM_COMMANDS     400



612

MDI Windows
M

T
W

R
F

S
S

DAYDAY

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

Type

Type Listing 21.3. The script for the MDI1.RC resource file.

  1:   #include <windows.h>
  2:   #include <owl\window.rh>
  3:   #include <owl\mdi.rh>
  4:   #include “mdi1.h”
  5:   IDM_COMMANDS MENU LOADONCALL MOVEABLE PURE DISCARDABLE
  6:   BEGIN
  7:     MENUITEM “E&xit”, CM_EXIT
  8:     POPUP “&MDI Children”
  9:     BEGIN
 10:      MENUITEM  “C&reate”, CM_CREATECHILD
 11:      MENUITEM  “&Cascade”, CM_CASCADECHILDREN
 12:      MENUITEM  “&Tile”, CM_TILECHILDREN
 13:      MENUITEM  “Arrange &Icons”, CM_ARRANGEICONS
 14:      MENUITEM  “C&lose All”, CM_CLOSECHILDREN
 15:      MENUITEM  “C&ount Children”, CM_COUNTCHILDREN
 16:    END
 17:  END

Listing 21.4. The source code for the MDI1.CPP
program file.

  1:   /*
  2:     Program to illustrate simple MDI windows
  3:   */
  4:   #include <owl\mdi.rh>
  5:   #include <owl\applicat.h>
  6:   #include <owl\framewin.h>
  7:   #include <owl\mdi.h>
  8:   #include <owl\static.h>
  9:   #include <owl\edit.h>
 10:  #include <owl\scroller.h>
 11:  #include “mdi1.h”
 12:  #include <stdio.h>
 13:  #include <string.h>
 14:
 15:  const MaxWords = 100;
 16:  const WordsPerLine = 12;
 17:  const NumWords = 10;
 18:  char* Words[NumWords] = { “The “, “friend “, “saw “, “the “,
 19:                  “girl “, “drink “, “milk “, “boy “,
 20:                  “cake “, “bread “ };
 21:
 22:  BOOL ExpressClose = FALSE;
 23:  int NumMDIChild = 0;
 24:  int HighMDIindex = 0;
 25:



613

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

 26:  class TWinApp : public TApplication
 27:  {
 28:  public:
 29:    TWinApp() : TApplication() {}
 30:
 31:  protected:
 32:    virtual void InitMainWindow();
 33:  };
 34:
 35:  class TAppMDIChild : public TMDIChild
 36:  {
 37:  public:
 38:    // pointer to the edit box control
 39:    TEdit* TextBox;
 40:    TStatic* TextTxt;
 41:
 42:    TAppMDIChild(TMDIClient& parent, int ChildNum);
 43:
 44:  protected:
 45:
 46:    // handle closing the MDI child window
 47:    virtual BOOL CanClose();
 48:  };
 49:
 50:  class TAppMDIClient : public TMDIClient
 51:  {
 52:  public:
 53:
 54:    TAppMDIClient() : TMDIClient() {}
 55:
 56:   protected:
 57:
 58:    // create a new child
 59:    virtual TMDIChild* InitChild();
 60:
 61:    // close all MDI children
 62:    virtual BOOL CloseChildren();
 63:
 64:    // handle the command for counting the MDI children
 65:    void CMCountChildren();
 66:
 67:    // handle closing the MDI frame window
 68:    virtual BOOL CanClose();
 69:
 70:    // declare response table
 71:    DECLARE_RESPONSE_TABLE(TAppMDIClient);
 72:  };
 73:
 74:  DEFINE_RESPONSE_TABLE1(TAppMDIClient, TMDIClient)
 75:    EV_COMMAND(CM_COUNTCHILDREN, CMCountChildren),

continues



614

MDI Windows
M

T
W

R
F

S
S

DAYDAY

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

 76:   END_RESPONSE_TABLE;
 77:
 78:   TAppMDIChild::TAppMDIChild(TMDIClient& parent, int ChildNum)
 79:     : TMDIChild(parent),
 80:        TFrameWindow(&parent),
 81:        TWindow(&parent)
 82:   {
 83:     char s[1024];
 84:
 85:     // set the scrollers in the window
 86:     Attr.Style |= WS_VSCROLL | WS_HSCROLL;
 87:     // create the TScroller instance
 88:     Scroller = new TScroller(this, 200, 15, 10, 50);
 89:
 90:     // set MDI child window title
 91:     sprintf(s, “%s%i”, “MDI Child #”, ChildNum);
 92:     Title = _fstrdup(s);
 93:
 94:     // randomize the seed for the random-number generator
 95:     randomize();
 96:
 97:     // assign a null string to the variable s
 98:     strcpy(s, “”);
 99:     // build the list of random words
100:    for (int i = 0; i < MaxWords; i++) {
101:        if (i > 0 && i % WordsPerLine == 0)
102:           strcat(s, “\r\n”);
103:        strcat(s, Words[random(NumWords)]);
104:    }
105:    // create a static text object in the child window if the
106:    // ChildNum variable stores an odd number. Otherwise,
107:    // create an edit box control
108:    if (ChildNum % 2 == 0) {
109:       // create the edit box
110:       TextBox = new TEdit(this, ID_TEXT_EDIT, s,
111:                10, 10, 300, 400, 0, TRUE);
112:       // remove borders and scroll bars
113:       TextBox->Attr.Style &= ~WS_BORDER;
114:       TextBox->Attr.Style &= ~WS_VSCROLL;
115:       TextBox->Attr.Style &= ~WS_HSCROLL;
116:    }
117:    else
118:       // create static text
119:       TextTxt = new TStatic(this, -1, s, 10, 10, 300, 400,
120:                             strlen(s));
121:  }
122:
123:  BOOL TAppMDIChild::CanClose()
124:  {
125:    // return TRUE if the ExpressClose member of the

Listing 21.4. continued



615

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

126:    // parent MDI frame window is TRUE
127:    if (ExpressClose == TRUE) {
128:      NumMDIChild--;
129:      return TRUE;
130:    }
131:    else
132:      // prompt the user and return the prompt result
133:       if (MessageBox(“Close this MDI window?”,
134:           “Query”, MB_YESNO | MB_ICONQUESTION) == IDYES) {
135:        NumMDIChild--;
136:        return TRUE;
137:      }
138:      else
139:        return FALSE;
140:  }
141:
142:  TMDIChild* TAppMDIClient::InitChild()
143:  {
144:    ++NumMDIChild;
145:    return new TAppMDIChild(*this, ++HighMDIindex);
146:  }
147:
148:  BOOL TAppMDIClient::CloseChildren()
149:  {
150:    BOOL result;
151:    // set the ExpressClose flag
152:    ExpressClose = TRUE;
153:    // invoke the parent class CloseChildren() member function
154:    result = TMDIClient::CloseChildren();
155:    // clear the ExpressClose flag
156:    ExpressClose = FALSE;
157:    NumMDIChild = 0;
158:    HighMDIindex = 0;
159:    return result;
160:  }
161:
162:  //  display a message box that shows the number of children
163:  void TAppMDIClient::CMCountChildren()
164:  {
165:    char msgStr[81];
166:
167:    sprintf(msgStr, “There are %i MDI child windows”, NumMDIChild);
168:    MessageBox(msgStr, “Information”, MB_OK | MB_ICONINFORMATION);
169:  }
170:
171:  BOOL TAppMDIClient::CanClose()
172:  {
173:    return MessageBox(“Close this application?”, “Query”,
174:                     MB_YESNO | MB_ICONQUESTION) == IDYES;
175:  }
176:

continues



616

MDI Windows
M

T
W

R
F

S
S

DAYDAY

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

177:  void TWinApp::InitMainWindow()
178:  {
179:    MainWindow = new TMDIFrame(“Simple MDI Text Viewer”,
180:                       TResID(IDM_COMMANDS),
181:                       *new TAppMDIClient);
182:  }
183:
184:  int OwlMain(int /* argc */, char** /*argv[] */)
185:  {
186:    TWinApp app;
187:    return app.Run();
188:  }
189:

The program in Listing 21.4 declares a set of global constants used in generating
the random text in each MDI child window. The global array of pointer Words
contains the program’s somewhat restricted vocabulary. The listing also declares

the global variables ExpressClose, NumMDIChild, and HighMDIindex. These variables
provide a simple solution for sharing information between the descendants of
branched-out OWL classes. The variable ExpressClose assists in closing all of the
child MDI windows in one swoop. The variable NumMDIChild maintains the actual
number of MDI child windows. The variable HighMDIindex stores the index of the last
MDI child window created.

The program listing declares three classes: the application class, TWinApp, in line 26;
the MDI client class, TAppMDIClient, in line 50; and the MDI child window class,
TAppMDIChild, in line 35. We will discuss these classes in order.

The code for the application class looks very much like the ones in previous programs,
with one exception. The InitMainWindow member function, defined in lines 177 to
182, creates an instance of the stock MDI frame class, TMDIFrame. The TMDIFrame
constructor call has the following arguments: title of the application; the name of the
menu resource, COMMANDS; and the pointer to the dynamically allocated instances of
TAppMDIClient.

The TAppMDIClient class declares a constructor and a group of protected member
functions. The member functions are as follows:

1. The member function InitChild (defined in lines 142 to 146) initializes an
MDI child window. The function increments the global variable
NumMDIChild and then returns a dynamically allocated instance of
TAppMDIChild. The arguments of creating this instance are *this (a reference

Listing 21.4. continued

Analysis



617

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

to the object itself) and ++HighMDIindex. The second argument pre-
increments the global variable HighMDIindex, which keeps track of the
highest index for an MDI child window.

2. The member function CloseChildren (defined in lines 148 to 160) alters the
behavior of the inherited CloseChildren function. The new version performs
the following tasks:

■■ Assigns TRUE to the global variable ExpressClose (see line 152).

■■ Invokes the parent class version of CloseChildren and stores the result
of that function call in the local variable result.

■■ Assigns FALSE to the variable ExpressClose in line 156.

■■ Assigns 0 to the global variable NumMDIChild in line 157.

■■ Assigns 0 to the global variable HighMDIindex in line 157. This task
resets the value in variable HighMDIindex when you close all of the
MDI child windows.

■■ Returns the value stored in the variable result.

3. The member function CMCountChildren (defined in lines 163 to 168)
responds to the Windows command message CM_COUNTCHILDREN generated
by the menu option Count Children. The function displays the number of
MDI child windows in a message dialog box. The function first builds the
string msgStr to contain the formatted image of the global variable
NumMDIChild. Then, the function invokes the member function MessageBox
to display the sought information.

4. The virtual member function CanClose (defined in lines 171 to 175)
prompts you to confirm closing the MDI-compliant application.

The MDI child window class, TAppMDIChild, declares the TextBox and TextTxt data
members, a constructor, and the CanClose member function. The member TextBox
is the pointer to the TEdit instance created to store the random text in one kind of the
MDI child windows. The member TextTxt is the pointer to the TStatic instance
created to store random text in the other kind of MDI child windows.

The TAppMDIChild constructor (defined in lines 78 to 121) performs a variety of tasks,
as follows:

■■ Sets the window style to include the vertical and horizontal scroll bars (see
line 86).



618

MDI Windows
M

T
W

R
F

S
S

DAYDAY

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

■■ Creates an instance of TScroller to animate the window’s scroll bars (see
line 88).

■■ Sets the window title to include the MDI child window number, using the
statements in lines 91 and 92.

■■ Randomizes the seed for the random-number generator function, random.

■■ Creates the random text and stores it in the local string variable s. This task
uses the for loop in lines 100 to 104.

■■ If the MDI child window number is even, creates a multiline instance of
TEdit in lines 110 and 111. This instance contains a copy of the text stored
in variable s. In addition, the constructor disables the border, vertical scroll
bar, and horizontal scroll bar styles (see the statements in lines 113 to 115).
These scroll bars are not needed because the MDI child window itself has
scroll bars. In the case of an odd-numbered MDI child window number, the
constructor creates static text using the characters in variable s (see the
statement in lines 119 and 120).

The CanClose member function regulates closing an MDI child window. When you
close such a window using the Close option in its own system menu, the function
requires your confirmation. If the request to close comes from the Close All menu
command in the parent window, the MDI child window closes without confirmation.
The function decrements the global variable NumMDIChild in two cases: first, when the
global variable ExpressClose is TRUE; and second, when the function MessageBox,
which prompts you to confirm closing the window, returns IDYES.

Revised Text Viewer
Let’s expand on the MDI1.EXE program to illustrate other aspects of managing MDI
windows. The next application also creates MDI children that contain edit box
controls with random text. However, each MDI child window has the following
additional controls:

■■ An ->UpperCase pushbutton control that converts the text in the MDI child
window into uppercase.

■■ A ->LowerCase pushbutton control that converts the text in the MDI child
window into lowercase.

■■ A Can Close check box. Using this box replaces using the confirmation
dialog box that appears when you want to close the MDI child window. The



619

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

check box enables you to predetermine whether or not the MDI child
window can be closed.

The application menu adds a new pop-up menu item, Current MDI Child. This
menu item has options that work on the current MDI child window. The commands
enable you to clear, convert to uppercase, convert to lowercase, or rewrite the
characters in the MDI child window. The new pop-up menu shows how you can
manipulate MDI children with custom menus.

Compile and run the application. Create a few MDI children and use their
pushbutton controls to toggle the case of characters in these windows. Also use the
Current MDI Child commands to further manipulate the text in the currently active
MDI child window. Try to close the MDI children with the Can Close check box
marked and unmarked. Only the MDI children with the Can Close control checked
close individually. Use the Close All option in the MDI Children pop-up menu and
watch all of the MDI children close, regardless of the check state of the Can Close
control. Figure 21.2 shows a sample session with the MDI2.EXE program.

Listing 21.5 shows the contents of the MDI2.DEF definition file. Listing 21.6 shows
the source code for the MDI2.H header file. The file contains the constants for the
menu commands and the control IDs. Listing 21.7 contains the script for the
MDI2.RC resource file and shows the resource for the expanded menu. Listing 21.8
contains the source code for the MDI2.CPP program file.

Figure 21.2. A sample session with the MDI2.EXE program.



620

MDI Windows
M

T
W

R
F

S
S

DAYDAY

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

Type

Type

Type Listing 21.5. The contents of the MDI2.DEF definition
file.

  1:  NAME         MDI2
  2:  DESCRIPTION  ‘An OWL Windows Application’
  3:  EXETYPE      WINDOWS
  4:  CODE         PRELOAD MOVEABLE DISCARDABLE
  5:  DATA         PRELOAD MOVEABLE MULTIPLE
  6:  HEAPSIZE     1024
  7:  STACKSIZE    8192

Listing 21.6. The source code for the MDI2.H header
file.

  1:   #define CM_COUNTCHILDREN 101
  2:   #define CM_CLEAR         102
  3:   #define CM_UPPERCASE     103
  4:   #define CM_LOWERCASE     104
  5:   #define CM_RESET         105
  6:   #define ID_TEXT_EDIT     106
  7:   #define ID_CANCLOSE_CHK  107
  8:   #define ID_UPPERCASE_BTN 108
  9:   #define ID_LOWERCASE_BTN 109
 10:  #define IDM_COMMANDS     400

Listing 21.7. The script for the MDI2.RC resource file.

  1:   #include <windows.h>
  2:   #include <owl\window.rh>
  3:   #include <owl\mdi.rh>
  4:   #include “mdi2.h”
  5:   IDM_COMMANDS MENU LOADONCALL MOVEABLE PURE DISCARDABLE
  6:   BEGIN
  7:     MENUITEM “E&xit”, CM_EXIT
  8:     POPUP “&MDI Children”
  9:     BEGIN
 10:      MENUITEM  “C&reate”, CM_CREATECHILD
 11:      MENUITEM  “&Cascade”, CM_CASCADECHILDREN
 12:      MENUITEM  “&Tile”, CM_TILECHILDREN
 13:      MENUITEM  “Arrange &Icons”, CM_ARRANGEICONS
 14:      MENUITEM  “C&lose All”, CM_CLOSECHILDREN
 15:      MENUITEM  “C&ount Children”, CM_COUNTCHILDREN
 16:    END
 17:    POPUP “&Current MDI Child”
 18:    BEGIN
 19:      MENUITEM  “&Clear”, CM_CLEAR
 20:      MENUITEM  “&Uppercase”, CM_UPPERCASE



621

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

 21:      MENUITEM  “&Lowercase”, CM_LOWERCASE
 22:      MENUITEM  “&Reset”, CM_RESET
 23:    END
 24:  END

Listing 21.8. The source code for the MDI2.CPP
program file.

  1:   /*
  2:     Program to demonstrate MDI windows with controls
  3:   */
  4:   #include <owl\mdi.rh>
  5:   #include <owl\applicat.h>
  6:   #include <owl\framewin.h>
  7:   #include <owl\button.h>
  8:   #include <owl\edit.h>
  9:   #include <owl\checkbox.h>
 10:  #include <owl\scroller.h>
 11:  #include <owl\mdi.h>
 12:  #include “mdi2.h”
 13:  #include <stdio.h>
 14:  #include <string.h>
 15:
 16:  // declare constants for sizing and spacing the controls
 17:  // in the MDI child window
 18:  const Wbtn = 50 * 3;
 19:  const Hbtn = 30;
 20:  const BtnHorzSpacing = 20;
 21:  const BtnVertSpacing = 10;
 22:  const Wchk = 200 * 3;
 23:  const Hchk = 20;
 24:  const ChkVertSpacing = 10;
 25:  const Wbox = 400 * 3;
 26:  const Hbox = 200 * 3;
 27:
 28:  // declare the constants for the random text that appears
 29:  // in the MDI child window
 30:  const MaxWords = 200;
 31:  const WordsPerLine = 10;
 32:  const NumWords = 10;
 33:  const BufferSize = 1024;
 34:  char AppBuffer[BufferSize];
 35:  char* Words[NumWords] = { “The “, “friend “, “saw “, “the “,
 36:                  “girl “, “drink “, “milk “, “boy “,
 37:                  “cake “, “bread “ };
 38:
 39:
 40:  BOOL ExpressClose = FALSE;
 41:  int NumMDIChild = 0;

Type

continues



622

MDI Windows
M

T
W

R
F

S
S

DAYDAY

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

 42:  int HighMDIindex = 0;
 43:
 44:  class TWinApp : public TApplication
 45:  {
 46:  public:
 47:    TWinApp() : TApplication() {}
 48:
 49:  protected:
 50:    virtual void InitMainWindow();
 51:  };
 52:
 53:  class TAppMDIChild : public TMDIChild
 54:  {
 55:  public:
 56:
 57:
 58:    TAppMDIChild(TMDIClient& parent, int ChildNum);
 59:
 60:  protected:
 61:
 62:    TEdit* TextBox;
 63:    TCheckBox* CanCloseChk;
 64:
 65:    // handle the UpperCase button
 66:    void HandleUpperCaseBtn()
 67:      { CMUpperCase(); }
 68:
 69:    // handle the LowerCase button
 70:    void HandleLowerCaseBtn()
 71:      { CMLowerCase(); }
 72:
 73:    // handle clear the active MDI child
 74:    void CMClear()
 75:      { TextBox->Clear(); }
 76:
 77:    // handle converting the text of the active
 78:    // MDI child to uppercase
 79:    void CMUpperCase();
 80:
 81:    // handle converting the text of the active
 82:    // MDI child to lowercase
 83:    void CMLowerCase();
 84:
 85:    // handle resetting the text of the active MDI child
 86:    void CMReset();
 87:
 88:    // reset the text in an MDI child window
 89:    void InitText();
 90:

Listing 21.8. continued



623

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

 91:     // handle closing the MDI child window
 92:     virtual BOOL CanClose();
 93:
 94:     // declare response table
 95:     DECLARE_RESPONSE_TABLE(TAppMDIChild);
 96:   };
 97:
 98:   DEFINE_RESPONSE_TABLE1(TAppMDIChild, TMDIChild)
 99:     EV_COMMAND(ID_UPPERCASE_BTN, HandleUpperCaseBtn),
100:    EV_COMMAND(ID_LOWERCASE_BTN, HandleLowerCaseBtn),
101:    EV_COMMAND(CM_CLEAR, CMClear),
102:    EV_COMMAND(CM_UPPERCASE, CMUpperCase),
103:    EV_COMMAND(CM_LOWERCASE, CMLowerCase),
104:    EV_COMMAND(CM_RESET, CMReset),
105:  END_RESPONSE_TABLE;
106:
107:  class TAppMDIClient : public TMDIClient
108:  {
109:  public:
110:
111:   TAppMDIClient() : TMDIClient() {}
112:
113:   protected:
114:
115:    // create a new child
116:    virtual TMDIChild* InitChild();
117:
118:    // close all MDI children
119:    virtual BOOL CloseChildren();
120:
121:    // handle the command for counting the MDI children
122:    void CMCountChildren();
123:
124:    // handle closing the MDI frame window
125:    virtual BOOL CanClose();
126:
127:    // declare response table
128:    DECLARE_RESPONSE_TABLE(TAppMDIClient);
129:  };
130:
131:  DEFINE_RESPONSE_TABLE1(TAppMDIClient, TMDIClient)
132:    EV_COMMAND(CM_COUNTCHILDREN, CMCountChildren),
133:  END_RESPONSE_TABLE;
134:
135:  TAppMDIChild::TAppMDIChild(TMDIClient& parent, int ChildNum)
136:    : TMDIChild(parent),
137:      TFrameWindow(&parent),
138:      TWindow(&parent)
139:  {
140:    char s[41];
141:    int x0 = 10;

continues



624

MDI Windows
M

T
W

R
F

S
S

DAYDAY

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

142:    int y0 = 10;
143:    int x = x0;
144:    int y = y0;
145:
146:    // set the scrollers in the window
147:    Attr.Style |= WS_VSCROLL | WS_HSCROLL;
148:    // create the TScroller instance
149:    Scroller = new TScroller(this, 200, 15, 10, 50);
150:
151:    // set MDI child window title
152:    sprintf(s, “%s%i”, “Child #”, ChildNum);
153:    Title = _fstrdup(s);
154:
155:    // create the push button controls
156:    new TButton(this, ID_UPPERCASE_BTN, “->UpperCase”,
157:                x, y, Wbtn, Hbtn, TRUE);
158:    x += Wbtn + BtnHorzSpacing;
159:    new TButton(this, ID_LOWERCASE_BTN, “->LowerCase”,
160:                x, y, Wbtn, Hbtn, FALSE);
161:
162:    x = x0;
163:    y += Hbtn + BtnVertSpacing;
164:    CanCloseChk = new TCheckBox(this, ID_CANCLOSE_CHK, “Can Close”,
165:                                x, y, Wchk, Hchk, NULL);
166:    y += Hchk + ChkVertSpacing;
167:    InitText();
168:    // create the edit box
169:    TextBox = new TEdit(this, ID_TEXT_EDIT, AppBuffer,
170:                        x, y, Wbox, Hbox, 0, TRUE);
171:    // remove borders and scroll bars
172:    TextBox->Attr.Style &= ~WS_BORDER;
173:    TextBox->Attr.Style &= ~WS_VSCROLL;
174:    TextBox->Attr.Style &= ~WS_HSCROLL;
175:  }
176:
177:  void TAppMDIChild::CMUpperCase()
178:  {
179:    TextBox->GetText(AppBuffer, BufferSize);
180:    strupr(AppBuffer);
181:    TextBox->SetText(AppBuffer);
182:  }
183:
184:  void TAppMDIChild::CMLowerCase()
185:  {
186:    TextBox->GetText(AppBuffer, BufferSize);
187:    strlwr(AppBuffer);
188:    TextBox->SetText(AppBuffer);
189:  }
190:

Listing 21.8. continued



625

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

191:  void TAppMDIChild::CMReset()
192:  {
193:    InitText();
194:    TextBox->SetText(AppBuffer);
195:  }
196:
197:  BOOL TAppMDIChild::CanClose()
198:  {
199:    // return TRUE if the ExpressClose member of the
200:    // parent MDI frame window is TRUE
201:    if (ExpressClose == TRUE) {
202:      NumMDIChild--;
203:      return TRUE;
204:    }
205:    else
206:    // do not close the MDi child window if the Can Close is
207:    // not checked
208:    if (CanCloseChk->GetCheck() == BF_UNCHECKED)
209:      return FALSE;
210:    else {
211:      NumMDIChild--;
212:       return TRUE;
213:    }
214:  }
215:
216:  void TAppMDIChild::InitText()
217:  {
218:    // randomize the seed for the random-number generator
219:    randomize();
220:
221:    // assign a null string to the buffer
222:    AppBuffer[0] = ‘\0’;
223:    // build the list of random words
224:    for (int i = 0;
225:         i < MaxWords && strlen(AppBuffer) <= (BufferSize - 10);
226:         i++) {
227:      if (i > 0 && i % WordsPerLine == 0)
228:        strcat(AppBuffer, “\r\n”);
229:      strcat(AppBuffer, Words[random(NumWords)]);
230:    }
231:  }
232:
233:  TMDIChild* TAppMDIClient::InitChild()
234:  {
235:    ++NumMDIChild;
236:    return new TAppMDIChild(*this, ++HighMDIindex);
237:  }
238:
239:  BOOL TAppMDIClient::CloseChildren()
240:  {
241:    BOOL result;

continues



626

MDI Windows
M

T
W

R
F

S
S

DAYDAY

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

242:    // set the ExpressClose flag
243:    ExpressClose = TRUE;
244:    // invoke the parent class CloseChildren() member function
245:    result = TMDIClient::CloseChildren();
246:    // clear the ExpressClose flag
247:    ExpressClose = FALSE;
248:    NumMDIChild = 0;
249:    HighMDIindex = 0;
250:    return result;
251:  }
252:
253:  //  display a message box that shows the number of children
254:  void TAppMDIClient::CMCountChildren()
255:  {
256:    char msgStr[81];
257:
258:    sprintf(msgStr, “There are %i MDI children”, NumMDIChild);
259:    MessageBox(msgStr, “Information”, MB_OK | MB_ICONINFORMATION);
260:  }
261:
262:  BOOL TAppMDIClient::CanClose()
263:  {
264:    return MessageBox(“Close this application?”,
265:               “Query”, MB_YESNO | MB_ICONQUESTION) == IDYES;
266:  }
267:
268:  void TWinApp::InitMainWindow()
269:  {
270:    MainWindow = new TMDIFrame(“Simple MDI Text Viewer (version 2)”,
271:                       TResID(IDM_COMMANDS),
272:                       *new TAppMDIClient);
273:  }
274:
275:  int OwlMain(int /* argc */, char** /*argv[] */)
276:  {
277:    TWinApp app;
278:    return app.Run();
279:  }

The program in Listing 21.8 declares two sets of constants. The first set is used
for sizing and spacing the controls of each MDI child window. The second set
of constants is used to manage the random text. The program also declares

variable AppBuffer as a single 1KB text buffer. We chose to make the buffer global
instead of a class data member mainly to reduce the buffer space—the application
classes need only one shared buffer at any time. The program listing also declares the

Listing 21.8. continued

Analysis



627

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

global variables ExpressClose, NumMDIChild, and HighMDIindex—another set of
components carried over from the program in file MDI1.CPP.

The new application maintains the same three classes described in the last program.
However, the MDI child class has different members in this program. The new
members manage the response to the control notification messages as well as the
Current MDI Child menu command messages.

The TAppMDIChild constructor (defined in lines 135 to 175) performs the following
tasks:

■■ Sets the window style to include the vertical and horizontal scroll bars, using
the statement in line 147.

■■ Creates an instance of TScroller to animate the window’s scroll bars, using
the statement in line 149.

■■ Sets the window title to include the MDI child window number using the
statements in lines 152 and 153.

■■ Creates the ->LowerCase and ->UpperCase pushbutton controls using the
statements in lines 156 to 160.

■■ Creates the Can Close check box control using the statements in lines 162
to 165.

■■ Calls the InitText member function to generate random text in the applica-
tion buffer AppBuffer.

■■ Creates a multiline instance of TEdit in statement located in lines 169
and 170. This instance contains a copy of the text stored in the application
buffer.

■■ Disables the border, vertical scroll bar, and horizontal scroll bar styles of the
edit control. This task uses the statements in lines 172 to 174.

The member function CMUpperCase (defined in 177 lines to 182) responds to the
command message emitted by the UpperCase command. The function copies the text
in the MDI child window to the application’s buffer, converts the characters in the
buffer to uppercase, and then writes the buffer back to the MDI child window.

The member function CMLowerCase (defined in lines 184 to 189) responds to the
command message emitted by the Lowercase command. The function performs
similar steps to those in CMUpperCase—except the text is converted into lowercase.



628

MDI Windows
M

T
W

R
F

S
S

DAYDAY

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

The member function CanClose (defined in lines 197 to 214) responds to the
WM_CLOSE message emitted by the Close option in the system menu available in each
MDI child window. If the MDI frame window’s ExpressClose variable is TRUE, the
function decrements the global variable NumMDIChild and then returns TRUE. Other-
wise, the function returns FALSE if the Can Close check box is unchecked, or it
decrements the global variable NumMDIChild and then returns FALSE if the control is
not checked.

The member function InitText (defined in lines 233 to 237) is an auxiliary routine
that fills the application buffer with random text. The function creates up to MaxWords
words or enough that the buffer limit is closely reached (within 10 bytes). Checking
the number of characters in the buffer ensures that the program does not corrupt the
memory while attempting to add MaxWords words to the buffer.

The member functions HandleUpperCaseBtn and HandleLowerCase respond to the
notification messages sent by the pushbuttons of an MDI child window. These
functions perform the same tasks of CMUpperCase and CMLowerCase, respectively.
Therefore, the notification response functions call their respective command-message
response member functions.

The member function CMClear (defined in lines 74 and 75) responds to the command
message emitted by the Clear command in the Current MDI Child menu item. The
function simply invokes the TextBox->Clear() function call.

The member function CMReset (defined in lines 191 to 195) responds to the command
message emitted by the Reset command in the Current MDI Child menu item. The
function calls the InitText member function to create a new batch of random text and
then copies the buffer’s text to the edit control of the MDI child window.

Note: The Current MDI Child pop-up menu has four options that
manipulate the currently active MDI child window. The command
messages emitted by these options are handled by the MDI child window
instances and not the MDI frame instance—which is what a window
instance normally does regarding its own menu commands. This order of
handling the command messages is preferred and makes use of the fact
that the menu-based messages do reach the currently active MDI child
window first. You can rewrite the program such that the functions
CMClear, CMUpperCase, CMLowerCase, and CMReset appear as member
functions of class TAppMDIFrame.



629

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

Summary
This chapter presented the Multiple Document Interface (MDI), which is an
interface standard in Windows. The chapter discussed the following subjects:

■■ The basic features and components of an MDI-compliant application. These
components include the MDI frame window, the invisible MDI client
window, and the dynamically created MDI child windows.

■■ Basics of building an MDI application.

■■ The TMDIFrame class, which manages the MDI client window, the MDI
child windows, and the execution of the menu commands.

■■ Building MDI frame windows as objects that are owned by the application
and that own the MDI client window.

■■ The TMDIClient class, which owns the MDI child windows.

■■ Building MDI child windows as an instance of a TWindow descendant and
using customized client windows.

■■ Managing messages in an MDI-compliant application. The currently active
MDI child window has a higher priority for handling menu-based command
message than its parent, the MDI frame window.

Q&A
Q Should each MDI child window have an ID?

A Yes. Associating each MDI child window with an ID gives you more control
over managing these windows, especially if they vary in relevance. Thus, you
can use the ID to exclude special MDI child windows from collective
operations.

Q Can I hide MDI child windows?

A Yes, you can use the inherited member function Twindow::ShowWindow to
show and hide one MDI child window or more.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve



630

MDI Windows
M

T
W

R
F

S
S

DAYDAY

21

A   TYS Borland C++ 21 Days  #30483  Casey    4-14-94    CH21   LP#3(sp 4/12 folio)

learned. Try to understand the quiz and exercise answers before continuing on to the
bonus chapters. Answers are provided in Appendix A, “Answers.”

Quiz
1. True or false? MDI child windows can have their own menus.

2. True or false? MDI child windows can be moved outside the area of the
frame window.

3. True or false? The MFC library supports nested MDI child windows.

4. True or false? This is the last quiz question in this book!

Exercises
1. Experiment with the expanding vocabulary of programs MDI1.EXE and

MDI2.EXE.

2. Add a control that inserts the date and time in MDI child windows of
program MDI1.EXE.



Sa
m

s
Le

a
rn

in
g

Ce
nt

er

abcd

631631

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A/ns6   TY Borland C++ in 21 Days #30483  Lisa D   4-14-94      Rev3     LP#2(sp 4/12 folio)

M
T

W
R

F
S

S
15

16

17

18

19

20

21

3
WEEK

IN
 

R
E

V
IE

W

You have come to the end of your last week of learning to
program and to create Windows applications using Borland
C++. Among other things, you have learned how to create
scrolling windows and how to use static text controls, edit
controls, pushbuttons, check boxes, radio buttons, group
controls, list boxes, combo boxes, dialog boxes, and
OWL-compliant windows. You will best review what you
have learned by examining the information and the
listings presented in the six extra-credit chapters.



633

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

ns2/A   TYS Borland C++ 21 Days  #30483    cAp  4-12-94   Credit1   LP#2(sp 4/12 folio)

M
T

W
R

F
S

S✓+
Extra Credit 
Bonus

11
Debugging



634

ns2/A   TYS Borland C++ 21 Days  #30483    cAp  4-12-94   Credit1   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 1+✓
No matter how well you may try to write a program, and no matter how good at
writing programs you ever become, you will always make mistakes and cause bugs to
appear in your program. The easiest bugs to locate and fix are those caught by the
compiler as it shows you your syntax and other related errors. However, it is quite
possible to have a program compile flawlessly, even without any warnings, and still fail
in some miserable ways. When a program fails, a debugger can be the best tool for
figuring out what went wrong. In today’s lesson, you learn about the following:

■■ The integrated debugger commands

■■ How to debug a simple program

■■ Other debugging tools

The Integrated Debugger
Built into the Integrated Development Environment (IDE) are several debugging
functions. You can use these to stop a running program in the middle of its execution,
to view the values of variables and member data, and to watch how programming
constructs are executed on a line-by-line basis.

In the IDE’s top-level menu are two submenus that can be used in debugging. The
first is the Debug menu. This menu provides a number of commands that control the
execution of programs and enable you to view individual variables and structures. The
second menu is the View menu. Inside this menu are, among other items, commands
to open various debugging windows.

The Debug Menu
The principal commands for debugging are located in the Debug menu. These are the
commands that enable you to execute your program on a line-by-line basis, to set
breakpoints, and evaluate individual expressions.

☛ New Term: A breakpoint is a point in a program at which execution will
stop or break. Once a breakpoint is set, you can go ahead and let the
program run. When the line of code where the breakpoint is set is
reached, the program will pause, and the debugger will come up with the
specified line highlighted. At this point, you can evaluate expressions and
execute the code one line at a time.



635

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

ns2/A   TYS Borland C++ 21 Days  #30483    cAp  4-12-94   Credit1   LP#2(sp 4/12 folio)

■■ The Run command starts a program’s execution. If the source code has
changed and the program isn’t already in a suspended state of execution, the
IDE goes through the rebuild process, compiling and linking as necessary.

■■ The Step over command is used to single-step through the program code on
a line-by-line basis. Each time you select Step over, the highlighted line is
executed. If that line contains a function call, the function is called, and
when it returns, the debugger will stop again on the next line.

■■ If you wish to actually go into the function instead of skipping over it, you
can use the Trace into command. This is the same as stepping over lines of
code, except that this will follow into function calls, enabling you to step
through them. If there is no function call, the trace acts exactly like a step.
Note, however, that some function calls aren’t as visible as others. For
example, when an object is created, its constructor function will be called,
even if there doesn’t appear to be any direct call to that function.

■■ The Toggle breakpoint command sets or clears a breakpoint on the line of
code with the cursor. If the program is executing freely when it reaches this
line of code (you aren’t stepping or tracing through the code), then the
program will pause and the debugger will come up with the cursor on this
line of code.

■■ If your program is paused and you move the cursor around, or perhaps you
look at some other files, you might lose track of the line of code at which the
program was paused. In this case, you can use the Find execution point
command to place the cursor on the current line of executing code.

■■ Sometimes, you might have started a program running, and then later
decided that you need to pause the program, but you didn’t set any
breakpoints. You can use the Pause program command to pause the program
at its current execution point. At this point, you will be able to evaluate
expressions and look at various global variables. Unfortunately, you will not
always be able to locate the current execution point in the code. Also, you
may not always be able to use the Pause program command to stop the
program if, say, it’s in an infinite loop. In these cases, you can sometimes use
the Ctrl+Alt+SysRq key sequence to pause the program and return to the
debugger.

■■ The Terminate program command stops the program’s execution and then
resets it to the beginning. This means that the next time you might try to
run or step into the program, it will be at the beginning.



636

ns2/A   TYS Borland C++ 21 Days  #30483    cAp  4-12-94   Credit1   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 1+✓
■■ There is a window in the debugger called the Watch window. When you use

the Add watch... command, you are given a dialog box, shown in Figure
X1.1, that enables you to add an expression. This expression will be placed
in the Watch window and will be updated as the program continues execu-
tion. The watch expressions are excellent ways to see how certain variables
change over the course of the program.

Figure X1.1. The dialog from which a watch expression may be added.

■■ Figure X1.2 shows the dialog box that is brought up when you select the Add
breakpoint... command. This sets a breakpoint on the current line in the
same way as Toggle breakpoint, except that you are allowed to add some
parameters to the breakpoint. For example, you can have the debugger break
out only when a certain condition is true (for example, a variable being equal
to a certain value).

Figure X1.2. The dialog on which breakpoint properties may be modified.



637

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

ns2/A   TYS Borland C++ 21 Days  #30483    cAp  4-12-94   Credit1   LP#2(sp 4/12 folio)

■■ The Evaluate/Modify... command opens a dialog box that enables you to
enter expressions and see what they evaluate to. It also enables you to change
the value of certain variables by first evaluating them and then changing
their contents.

■■ The Inspect... command yields a window for each item you inspect. This
window is customized to the type of variable being inspected. For example,
if you’re looking at a variable, you get simple information showing the name
of the variable, its location in memory, and its value. Classes, on the other
hand, display all the same data in addition to their member data, their
values, and the locations and names of their member functions. Figure X1.3
shows a sample inspection window.

Figure X1.3. A sample session in the IDE’s debugger with an inspection window.

■■ Finally, the Load symbol table... command enables you to load a symbol
table when you try to debug something like a DLL. In this case, the symbol
table for the application you debug will be loaded automatically, but you
will have to load the DLL’s symbols by hand.



638

ns2/A   TYS Borland C++ 21 Days  #30483    cAp  4-12-94   Credit1   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 1+✓
The View Menu

The View menu contains commands that bring up different windows. One section
of that menu enables you to bring up windows associated with debugging. These are
the Watch, Breakpoint, Call Stack, Register, and Event Log windows.

■■ The Watch window shows a list of expressions you’ve entered and their
evaluation. As the program runs and the variables mentioned in the expres-
sions change, so will the evaluations.

■■ The Breakpoint window shows a list of all the breakpoints set in the pro-
gram. Also, when you double-click a breakpoint entry in this window, you
are allowed to bring up the breakpoint properties window, enabling you to
modify the breakpoint’s settings.

■■ When you’ve stopped in the middle of a program, it’s often helpful to see
where you’ve come from. For example, if you find yourself in a function that
could be called by any of a number of other locations, it would be useful to
know which particular function called the current function and, in turn,
who called that. This progression of calls is in the Call Stack window, along
with the parameters of the functions for which debugging information is
available.

■■ Although you are using C++ here, the machine itself actually deals on a
much lower level, with machine code and assembly language. Basic to this
lower level are registers that act like a limited set of variables for assembly
language. Occasionally, it is useful to be able to view the contents of those
registers during the execution of a program, and these are displayed in the
Registers window. Note, however, that this is usually not very useful unless
you know how your program works on the lower-level translated assembly
language.

■■ The Event Log window displays a list of such things as when breakpoints
were reached, or debugging information is displayed by the program (with
the Windows OutputDebugString function).

In addition to all these menu commands, there is also the Locate function...

command found under the Search menu. This brings up a dialog box that prompts
you to enter a function name. The IDE’s debugger will then attempt to find the
requested function and place the cursor at that point. In order for the debugger to find
the function, it must be listed in the loaded debugging information.



639

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

ns2/A   TYS Borland C++ 21 Days  #30483    cAp  4-12-94   Credit1   LP#2(sp 4/12 folio)

Type

Debugging a Program
When debugging a program, you must first make sure that debugging information is
included when the program is compiled and built. With that done, you’ll be able to
step through the program a line at a time, view the contents of variables as you go, set
breakpoints, and so on.

Unfortunately, the standard libraries (the runtime library, the class library, and the
Object Windows Library) don’t come with debugging information included in them
by default. Because of this, you won’t be able to step or trace into its code, just as you
won’t be able to step or trace into the internal Windows code. You can, however,
rebuild the Borland libraries to include debugging information if you have the source
code. The class library and OWL source code is included with the standard Borland
package, but the runtime library source code is available only on the CD version or
at an extra cost.

The best way to learn how to debug a program is to sit down and do it. To start, type
in and compile the program in Listings X1.1 and X1.2. You’ll notice that it compiles
with no warnings or errors, but if you try to run it and select the Dialog menu item,
you’ll get either a GP fault or, barring that, an hourglass that doesn’t go away. In any
case, the program certainly isn’t doing what you would want it to do.

Listing X1.1. Script for the BUG.RC resource file.

 1:  #include <windows.h>
 2:  #include <owl\window.rh>
 3:
 4:  TheDialog DIALOG 6, 15, 207, 111
 5:  STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION |
              WS_SYSMENU
 6:  CAPTION “Dialog of the Century”
 7:  FONT 8, “MS Sans Serif”
 8:  BEGIN
 9:     LISTBOX 101, 27, 8, 49, 88, LBS_STANDARD | WS_TABSTOP
 10:    DEFPUSHBUTTON “OK”, IDOK, 148, 6, 50, 14
 11:    PUSHBUTTON “Cancel”, IDCANCEL, 148, 24, 50, 14
 12: END
 13:
 14: MainMenu MENU LOADONCALL MOVEABLE PURE DISCARDABLE
 15: BEGIN
 16:    MENUITEM “E&xit”, CM_EXIT
 17:    MENUITEM “&Dialog”, 100
 18: END



640

ns2/A   TYS Borland C++ 21 Days  #30483    cAp  4-12-94   Credit1   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 1+✓

Type Listing X1.2. Source code for the BUG.CPP program file.

 1:  #include <stdio.h>
 2:  #include <windows.h>
 3:  #include <owl\applicat.h>
 4:  #include <owl\dialog.h>
 5:  #include <owl\framewin.h>
 6:  #include <owl\listbox.h>
 7:  #include <owl\window.h>
 8:  #include <owl\window.rh>
 9:
 10: class TMyDialog : public TDialog
 11: {
 12: public:
 13:    TMyDialog(TWindow* parent, TModule* module = 0);
 14:
 15:    void SetupWindow();
 16:
 17: private:
 18:    TListBox* numbers;
 19: };
 20:
 21: TMyDialog::TMyDialog(TWindow* parent, TModule* module)
 22:    : TDialog(parent, “TheDialog”, module)
 23: {
 24: }
 25:
 26: void fill_lb(TListBox* plb, int count)
 27: {
 28:    for (int ix = 0; ix < count; ++count)
 29:       {
 30:       char str[25];
 31:       sprintf(str, “%d”, ix + 1);
 32:       plb->AddString(str);
 33:       }
 34: }
 35:
 36: void TMyDialog::SetupWindow()
 37: {
 38:    fill_lb(numbers, 20);
 39: }
 40:
 41: class TMyWindow : public TWindow
 42: {
 43: public:
 44:    TMyWindow(TWindow* parent = 0);
 45:
 46: protected:
 47:    void CmExit();
 48:    void CmDialog();



641

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

ns2/A   TYS Borland C++ 21 Days  #30483    cAp  4-12-94   Credit1   LP#2(sp 4/12 folio)

 49:
 50: private:
 51:    DECLARE_RESPONSE_TABLE(TMyWindow);
 52: };
 53: DEFINE_RESPONSE_TABLE1(TMyWindow, TWindow)
 54:    EV_COMMAND(CM_EXIT, CmExit),
 55:    EV_COMMAND(100, CmDialog),
 56: END_RESPONSE_TABLE;
 57:
 58: TMyWindow::TMyWindow(TWindow* parent)
 59:    : TWindow(parent)
 60: {
 61: }
 62:
 63: void TMyWindow::CmExit()
 64: {
 65:    SendMessage(WM_CLOSE);
 66: }
 67:
 68: void TMyWindow::CmDialog()
 69: {
 70:    TMyDialog(this).Execute();
 71: }
 72:
 73: class TDialogApp : public TApplication
 74: {
 75: public:
 76:    TDialogApp() : TApplication()
 77:       { nCmdShow = SW_SHOWMAXIMIZED; }
 78:
 79:    void InitMainWindow()
 80:       {
 81:       SetMainWindow(new TFrameWindow(  0,
 82:                            “Dialog Testers, Inc.”,
 83:                            new TMyWindow ));
 84:       GetMainWindow()->AssignMenu(“MainMenu”);
 85:       }
 86: };
 87:
 88: int OwlMain(int, char *[])
 89: {
 90:    return TDialogApp().Run();
 91: }

If you run the program from the IDE, and then select the Dialog menu item, you
are likely to get a dialog box that comes up entitled Unhandled Exception, with
the message that a General Protection Exception occurred in BUG.CPP on line

32. By clicking OK, the IDE will come back up and place you on line 32 of the
BUG.CPP file.

Analysis



642

ns2/A   TYS Borland C++ 21 Days  #30483    cAp  4-12-94   Credit1   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 1+✓

☛ New Term: A general protection violation or general protection fault occurs
when some code attempts to read or write to a part of memory that it
isn’t allowed. In C++, this usually means that a pointer is used that hasn’t
been initialized or is still pointing at memory that has been deleted and
no longer exists. When running under the IDE, a general protection fault,
which is Windows terminology, is reported as a general protection
exception in keeping with C++ terminology.

Line 32 of BUG.CPP contains the following code:

plb->AddString(str);

So, remembering that a general protection exception usually has something to do with
accessing memory that is off limits, you might think that the str variable is probably
at fault, because it’s a pointer. The only problem with that theory is that str is really
a pointer to a local area of memory that’s just been set up. We know that it still exists
because it’s still in scope.

The only other pointer here is the plb parameter. Considering, however, that we’re
just calling one of its member functions, how could it possibly be the problem? Let’s
take a look at the function it is calling, AddString. This function is declared in the
TListBox class in the following manner:

virtual int AddString(const char far* str);

Note that the function is declared as virtual. This means that when the code to call
it is compiled, a direct call to the member function isn’t generated; rather, code to look
up the location of the function is generated. The reason is that, since a derived class
could have written its own version of the function, the base class will need to be able
to access that new function, without necessarily knowing where this function resides.
So, when the pointer is used to call AddString, it really does use plb as a pointer, by
looking up the function’s address in the virtual table.

☛ New Term: The virtual table is a list of pointers to virtual functions. Each
class has a virtual table associated with it, in which all the virtual func-
tions have their addresses listed. Along with each object is a virtual table
pointer, which points to the virtual table for the appropriate class. When
some code attempts to call a virtual function, the generated assembly code
first looks up the virtual table, then the virtual function’s address, then
actually calls the function.



643

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

ns2/A   TYS Borland C++ 21 Days  #30483    cAp  4-12-94   Credit1   LP#2(sp 4/12 folio)

The only possibility at this point is the plb parameter. This pointer appears to be
invalid for some reason. The next step is to see who gave us this pointer. Let’s go into
the View menu and select Call Stack. A window comes up showing the current
function fill_lb at the top. The next function down is TMyDialog::SetupWindow.
Double-click that next line to position the cursor at the place where the fill_lb
function was called.

We are now placed directly into the middle of the SetupWindow function on the
following line:

fill_lb(numbers, 20);

It appears that the numbers member data is invalid, because that’s the parameter that
becomes plb in the fill_lb function. If you take a look around, you’ll notice that we
forgot to set numbers to anything. It’s declared in the class, but nobody ever assigns
it any value. Oops! This must be fixed before we can continue trying to run the
program. Obviously, we needed to initialize numbers in the constructor to connect
with the listbox interface element in the dialog box we load from the resource. Go up
to the constructor and add the following line:

numbers = new TListBox(this, 101, module);

Now if you take a look at the Debug menu, you’ll notice that the Run item is grayed
out. This is because you’ve changed the file and trying to continue running would
make little sense. So use the Terminate program option to stop the program and then
rebuild and run the application.

This time when you select the Dialog menu item, you get an hourglass that seems to
hang around forever. After a while you may be getting the idea that something is
wrong. The only way to stop the program now is to do the “three fingered salute” and
press the Ctrl+Alt+Del keys. Windows will give you a choice of going back and waiting
a little longer, or of ending the program, or of rebooting Windows. Because waiting
a little longer for the program to do something looks a little hopeless and restarting
Windows seems a bit drastic, let’s end the program. In this case, when you get back
to the IDE, the program will already have been terminated, and there will be no reason
to use the Terminate program menu item.

In finding this problem, we’re going to have to look at a bit of code to help narrow
down where the problem might be. We know the bug occurs after we select the Dialog
menu option but before the dialog actually makes it up onto the screen. At times like
this, it’s a good idea to set breakpoints on some likely areas and run through the code,
one line at a time, to see what happens.

Position the cursor on the TMyWindow::CmDialog function and select Toggle breakpoint



644

ns2/A   TYS Borland C++ 21 Days  #30483    cAp  4-12-94   Credit1   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 1+✓
from the Debug menu (or press Ctrl+F8). Note how the line changes color to reflect
the state of the breakpoint. Now set breakpoints on the TMyDialog constructor and its
SetupWindow function, and then run the program.

When you select the Dialog menu item now, you are returned to the IDE with the
cursor on the line where you set the breakpoint, the line where TMyWindow::CmDialog
is declared. Select the Step over command in the Debug menu. The screen flashes to
the application and then flashes back to the source code, with the cursor on the next
line, where the dialog is actually created and executed. This line looks okay, so let’s
step over it as well.

Now we’re looking at the TMyDialog constructor. Looking at the code, there doesn’t
seem to be anything out of the ordinary. Here we run into the nonlinearity of
Windows. If you simply keep stepping, you’ll end up running through the constructor
and then back to the TMyWindow::CmDialog function. We know we have a breakpoint
on the next bit of code we want to look at, so it’s a good idea to just continue running
from here.

When next we break into the source code, we’re on the TMyDialog::SetupWindow
function. There’s only one function call in here, and it’s something we wrote, so
there’s probably good reason to suspect that that might have inadvertently caused a
problem in there. So let’s use the Trace function in the Debug menu now. Your first
trace takes you onto the call to fill_lb, and your next trace takes you right inside it.

Inside here you will see a for loop. It might be a good idea to walk through that one
step at a time, watching the relevant variables plb, count, ix, and str. Place the cursor
on each of these variables and select the Add Watch item from the Debug menu. We’re
not particularly interested in any fancy displays right now, so just click OK on the
resultant Watch Properties dialog box. You may notice that some of the values are
weird or possibly even undefined, but that’s okay for right now. We’re not really in
the function yet, so the debugger hasn’t had a chance to figure out what those values
are. Also, because the str variable hasn’t even been declared yet, it will be listed as
undefined until we get where it is declared, at which point the Watch window will get
synchronized properly.

Step over the beginning of the function. The cursor is placed on the first line of the
for loop, and the count variable shows up as the number 20 in the watch window. This
is good. We specified 20 when we called this function. Step again and see that the ix
variable is now set to 0 and the str variable is now recognized.

Notice how str is uninitialized at this point, showing random data. Stepping once
more will fill str with what should be more reasonable data. Note, however, that the



645

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

ns2/A   TYS Borland C++ 21 Days  #30483    cAp  4-12-94   Credit1   LP#2(sp 4/12 folio)

data isn’t in a very readable format. It would be better if we could see it as a string. If
you double click the data item, you will bring back the Watch Properties dialog box.
If you take a look in the Display As section, you will see a radio button marked String.
Select this item and then click OK. When you get back to the Watch window, you’ll
see a string containing something a little more akin to what you expected.

Stepping again calls the AddString member function and brings us back to the line
with the sprintf. Let’s take another look at the Watch window and see how things
are doing.

Wait a minute!

Why is count now 21, and why ix is still 0? Let’s take a look at that for loop again:

for (int ix = 0; ix < count; ++count)

Oops, again! Incrementing the limit instead of the counter is a common mistake. No
wonder the program seemed to have stopped. It was never leaving the loop and was
trying to keep filling the list box with ever increasing numbers. Okay, let’s fix that by
changing the line to

for (int ix = 0; ix < count; ++ix)

Now terminate the application, remove the breakpoints, rebuild, and start over again.
When you select the Dialog menu item now, you at least get the dialog box up on the
screen. Unfortunately, the list box appears to be completely empty.

The question here comes down to figuring out from where the failure is coming. We
know that the pointer to the list box is valid; otherwise we would have had another
general protection exception. So the problem must be somewhere with the portion
that’s adding the string. So set a breakpoint on the line that reads

plb->AddString(str);

Start the program and select the Dialog menu item. When you reach the breakpoint,
take a closer look at the plb parameter. Place the cursor over the plb variable and select
the Inspect item from the Debug menu.

Looking at the inspection window, we can clearly see that, although we were obviously
capable of creating the class object, it doesn’t appear to be hooked up to the actual
Windows interface item. The TWindow::HWindow data member is NULL, and the
TWindow::Attr data member is mostly empty, except for the 101 that we passed to it
earlier.

If you remember, the SetupWindow function is the location where class objects get
associated with their Windows counterparts. Taking a look at the TMyDialog’s version



646

ns2/A   TYS Borland C++ 21 Days  #30483    cAp  4-12-94   Credit1   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 1+✓
of the function, we can see that we forgot to call the parent’s version of the SetupWindow
function. Without that call, the actual work never gets done that connects the class
with the interface element. To fix this, simply change the function to look like this:

void TMyDialog::SetupWindow()
{
   TDialog::SetupWindow();
   fill_lb(numbers, 20);
}

Now, when you next compile and run the program, you’ll see a fully functional, if
boring, application that enables you to bring up a dialog with a listbox containing the
numbers 1 to 20.

Other Debugging Tools
Along with the integrated debugger included in the IDE, a number of other tools are
useful in finding and fixing problems with your applications. The first are the stand-
alone versions of the debugger. There are two different ones: one for when you need
to debug an MS-DOS program and another for Windows. The advantages of the
stand-alone debuggers over the IDE include the following:

■■ They have the capability to view the CPU window, a lower-level listing of
the code in its generated assembly language. Sometimes it’s necessary to
follow program execution in the generated assembly language in order to
find out exactly what is going wrong.

■■ They allow for hardware debugging. This lets the debugger use the
computer’s built-in debugging capabilities to put breakpoints on changes in
memory as well as execution of code.

■■ By allowing you to use a secondary, monochrome monitor, the stand-alone
debuggers can reduce the annoyance of having the screen flicker every time
you step or trace through your program.

Another useful program is WinSight. This program can display a listing of all the
windows currently registered with Windows, whether those windows are visible or
not. You can even see the hierarchy of the windows—which windows are children of
which others. From there, you can select one or more windows and watch the messages
received by them.

Finally, one of the most useful programs is WinSpector. Normally, whenever you run
your application from outside the IDE, general-protection (GP) faults will simply
display a nasty error window and terminate your program. If you have WinSpector



647

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

ns2/A   TYS Borland C++ 21 Days  #30483    cAp  4-12-94   Credit1   LP#2(sp 4/12 folio)

running when that GP fault occurs, WinSpector will record the location in your
application that caused the GP fault. WinSpector will also attempt to figure out what
other sections of your application had been executed immediately prior to the fault
occurring, by performing a stack trace. The results of this can then be run through the
DFA program to match up the memory locations with the debugging information of
your program. The final results can often tell you exactly what line in your
application’s source code died and what functions had been called before.

Summary
Today’s lesson presented a short tutorial on some of the debugging techniques
provided by the IDE. You learned about the following subjects:

■■ The debugging commands available in the Integrated Development Envi-
ronment

■■ Examples of some of the more common programming mistakes

■■ Some of the techniques used to track down and exterminate bugs

Q&A
Q Do my watches need to be limited to variables?

A No. You may supply whole expressions, such as (count + 1) * 2.

Q If I set a breakpoint on a line of code, do I have to stop there every
single time the program comes to that line?

A No. You may set up conditions on the breakpoint so that, for example, if
you are in the middle of a loop, the debugger will break in only when the
iterator is equal to a certain value.



649

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

M
T

W
R

F
S

S✓+
Extra Credit 
Bonus

22
Visual
Programming



650

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓
Many PC users who worked with DOS applications have come to appreciate
Windows applications. Windows (along with the Apple Macintosh) has popularized
the graphical user interface (GUI). This interface is simpler to use and is more
compatible across diverse applications than the character-based user interface of
MS-DOS and PC-DOS. Also, software vendors such as Microsoft and Borland have
shaped the development of programming for the masses by incorporating visual
programming tools in their software-development packages. Although visual pro-
gramming did exist in the 1980s, it was restricted to special university projects. This
chapter looks at the visual programming aspects of Borland C++ 4.0 that are
signficantly supported by the Resource Workshop. Resource Workshop is a utility
that employs visual tools to help you create resources that can be used by all Windows-
compliant programming languages, not just Borland C++. In this extra-credit
chapter, you will learn about the following topics:

■■ General functions of the Resource Workshop

■■ Types of resources supported by the Resource Workshop

■■ Resource files

■■ Creating menu resources

■■ Creating accelerator resources

■■ Creating icon resources

■■ Creating a bare-bones dialog box resource

■■ Creating resources for a dialog box with nontrivial interfaces

■■ Creating a fully-functioning dialog box

Resource Workshop Overview
Resources are special ingredients of Windows applications. Using resources, you can
modify messages, menus, and icons, and even use different human languages without
having to change the source code, recompile it, or relink it. Thus, for example, you
can employ resources in different human languages with the same source code. This
kind of flexibility requires that resources have their own C-like script language. The
preceding chapter showed you how to use resource scripts to define menus. You can
develop resources by typing their script in .RC and .DLG files, in a manner that is
typical of any programming language.



651

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

The Resource Workshop is a powerful tool that enables you to develop resources using
visual programming techniques. In other words, you can “draw” the resources you
need using a mouse, visual tools, and a set of menus and dialog boxes. The Resource
Workshop then translates your drawings into the proper resource files, such as the
script resource .RC files.

This chapter does not discuss the Resource Workshop from A to Z. Instead, it serves
to illustrate how to use this graphical tool in creating significant (and generally visual)
ingredients of Windows programs.

Types of Resources
The Resource Workshop supports the following kinds of resources:

■■ Accelerators

■■ Bitmaps

■■ Cursors

■■ Dialog boxes

■■ Fonts

■■ Icons

■■ Menus

■■ String tables

■■ User-defined and rcdata resources

■■ VERSIONINFO

These resources are briefly defined in the following subsections.

Accelerators
Accelerators are basically “hot keys” that enable you to invoke a command without
first choosing its parent menus and options. Accelerators offer a quick and direct way
to perform a task and are very useful for invoking nested commands.



652

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓
Bitmaps

Bitmaps are binary representations of a graphical image. The popular Windows
controls—such as pushbuttons, radio buttons, and scroll bars—use bitmaps. The
Resource Workshop enables you to create bitmaps using the Paint editor. This editor
supports the drawing, coloring, and editing of bitmaps.

Cursors
Cursors are special small bitmaps, 32×32 pixels in size. A cursor displays the location
of the mouse on the screen. Windows supports using different cursor shapes to signal
various tasks. For example, the hourglass cursor indicates that a Windows application
is busy processing data. The Resource Workshop enables you to create cursors with
the Paint editor.

Dialog Boxes
Dialog boxes are special windows that interact with the application user. Typically,
dialog boxes prompt you to enter or confirm current data. The Resource Workshop
supports creating dialog box resources and visually drawing their controls. This
feature is the highlight of this chapter.

Fonts
Fonts are special bitmaps that represent the various typographic characters that appear
in a window or that are printed. The Resource Workshop enables you to edit existing
fonts and to create your own fonts.

Icons
Icons are special bitmaps, each being 16×32, 32×32, or 64×64 (for high-resolution
devices) pixels in size. Windows uses icons to represent minimized windows, and it
supports inserting icons in windows and dialog boxes to incorporate small visual
images.

Menus
Menus are resources that offer selections and options for the diverse operations of a
Windows application. Because menus are resources, you can create different menu



653

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

resources in different human languages. This enables you to distribute your applica-
tions to various countries.

String Tables
String tables are resources that contain text for various messages, prompts, and
descriptions. Like menu resources, you can create different string tables in different
human languages to support multinational versions of your software. This requires
that you avoid imbedding string literals in your source code and instead rely
completely on the string table resources.

User-Defined and rcdata Resources
The user-defined and rcdata resources support special information that is incorpo-
rated into the executable files. This kind of information provides read-only data used
by the host program to initialize itself.

VERSIONINFO
The VERSIONINFO resource is a special version-stamper resource for Windows 3.1
.EXE, .DLL, and .DRV files.

Resource Files
The Resource Workshop works with the following kinds of resource files:

■■ The resource script files with .RC extensions. These text files contain
resource statements, which define various kinds of resources, such as menus,
accelerators, string tables, and dialog boxes.

■■ The binary .RES files, which contain compiled resources. The Resource
Workshop can read and produce either .RC or .RES files. In other words,
you can ask the Resource Workshop to read a .RES, decompile it, and then
create a corresponding .RC file that you can edit.

■■ The bitmapped resource files .BMP, .ICO, .CUR, and .FON, which contain
bitmaps, icons, cursors, and fonts resources. The Resource Workshop also
supports font resource files with the .FNT extension.

■■ The dialog-box script resource files, with the extension .DLG. Typically,
these files contain resource script for reusable dialog boxes. You can include



654

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

Type

the .DLG files (and also other .RC files) in an .RC file using the special
directive #rcinclude.

■■ The executable .EXE and dynamic-link library .DLL files, which contain
executable code bound together with compiled resources. The Resource
Workshop enables you to read resources in .EXE and .DLL files, decompile
them, edit them, and then save the new resources back to the .EXE and
.DLL binary files.

■■ The device driver files, with the extension .DRV, which are special .DLL
files. As with ordinary .DLL files, the Resource Workshop enables you to
edit the resources in a .DRV file.

Creating Menu Resources
Let’s look at a hands-on example that illustrates the creation of a menu resource.
Listing X2.1 presents the resource file AMENU.RC as a map for creating the same
resource using the Resource Workshop. This file declares the LONGMENU and SHORTMENU
menu resources. You can think of these menus as novice and expert menus,
respectively.

Listing X2.1. The script for the AMENU.RC resource file.

  1:  #include <windows.h>
  2:  #include <owl\window.rh>
  3:  #include “amenu.h”
  4:  LONGMENU MENU LOADONCALL MOVEABLE PURE DISCARDABLE
  5:  BEGIN
  6:    POPUP “&File”
  7:    BEGIN
  8:      MENUITEM “&New”, CM_FILENEW, GRAYED
  9:      MENUITEM “&Open”, CM_FILEOPEN, GRAYED
 10:      MENUITEM “&Save”, CM_FILESAVE, GRAYED
 11:      MENUITEM “Save&As”, CM_FILESAVEAS, GRAYED
 12:      MENUITEM SEPARATOR
 13:      MENUITEM “Short &Menus”, CM_SHORTMENU
 14:      MENUITEM SEPARATOR
 15:      MENUITEM “E&xit”, CM_EXIT
 16:    END
 17:    POPUP “&Edit”
 18:    BEGIN
 19:      MENUITEM “&Undo”, CM_EDITUNDO, GRAYED
 20:      MENUITEM SEPARATOR
 21:      MENUITEM “C&ut”, CM_EDITCUT
 22:      MENUITEM “C&opy”, CM_EDITCOPY



655

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

 23:      MENUITEM “&Paste”, CM_EDITPASTE
 24:      MENUITEM “&Delete”, CM_EDITDELETE, GRAYED
 25:      MENUITEM “&Clear”, CM_EDITCLEAR, GRAYED
 26:    END
 27:    MENUITEM “&Help”, CM_HELP, HELP
 28:  END
 29:  SHORTMENU MENU LOADONCALL MOVEABLE PURE DISCARDABLE
 30:  BEGIN
 31:    POPUP “&File”
 32:    BEGIN
 33:      MENUITEM “&Open”, CM_FILEOPEN, GRAYED
 34:      MENUITEM “Save&As”, CM_FILESAVEAS, GRAYED
 35:      MENUITEM SEPARATOR
 36:      MENUITEM “&Long Menus”, CM_LONGMENU
 37:      MENUITEM SEPARATOR
 38:      MENUITEM “E&xit”, CM_EXIT
 39:    END
 40:    POPUP “&Edit”
 41:    BEGIN
 42:      MENUITEM “C&ut”, CM_EDITCUT
 43:      MENUITEM “C&opy”, CM_EDITCOPY
 44:      MENUITEM “&Paste”, CM_EDITPASTE
 45:    END
 46:    MENUITEM “&Help”, CM_HELP, HELP
 47:  END

Let’s proceed with creating the menu resource using the Resource Workshop. First,
you need to load the Borland C++ IDE and create the new project RWMENU1 with
the files RWMENU1.DEF, RWMENU1.CPP, and RWMENU1.RC. Listing X2.5
shows the contents of the RWMENU1.DEF definition file. Listing X2.6 contains the
source code for the RWMENU1.CPP implementation file. Let’s examine the process
of creating the menu resources. The general steps are as follows:

1. Invoke the Resource Workshop option from the Tool menu. The Resource
Workshop displays a window with a menu, a status bar, and a client area.
The client area contains an empty resource window, as shown in Figure
X2.1. The resource window has two panes. The first pane lists the current
resources. The second pane is the preview pane, which shows the contents of
the currently selected resource in the first pane.

2. Choose the Resource menu and invoke the New… command. This option
brings up the New Resource dialog box, shown in Figure X2.2, which
enables you to choose a new resource. Scroll down through the resource-type
list box until you find MENU. Click the OK pushbutton in the New
Resource dialog box.



656

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

Figure X2.1. The Resource Workshop showing an empty resource window.

Figure X2.2. A sample session with the New Resource dialog box.

3. The Resource Workshop invokes the MENU:MENU_1 dialog box, as
shown in Figure X2.3. The caption of the dialog box incorporates the



657

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

default name of the new menu resource. The dialog box is made up of three
panes: the attribute pane, the outline pane, and the test menu pane. The
attribute pane contains the following groups of controls:

■■ The set of edit boxes labeled Item Text, Item Help, and Item ID.
These controls enable you to enter the caption of a menu item, its
corresponding one-line help text (which appears in the status bar when
you select the item), and the identifier for the new menu item, respec-
tively.

■■ The diamond-shaped item-type radio buttons: Pop-up, Menu Item,
and Separator. If the Pop-up control is enabled, the other two buttons
are disabled, and vice versa. The last two controls, when enabled, allow
you to select between creating a menu item or a separator.

■■ The Checked check box and the diamond-shaped initial-state radio
buttons: Enabled, Disabled, and Grayed. These controls enable you to
specify the initial state of a menu item.

■■ The diamond-shaped Break-before radio buttons: No break, Menu bar
break, Menu break, and Help break. Use the last radio button to
display the Help menu to the right edge of the menu bar.

■■ The modifiers check boxes: Alt, Shift, Control, and Invert menu item.
These check boxes enable you to fine-tune the hot keys that respond to
the commands.

■■ The Key edit box and the key-type radio buttons: ASCII and Virtual
Key. These controls enable you to associate hot keys with commands.

4. Type in the menu items for the LONGMENU resource (which is currently being
created as the resource menu MENU_1) using the following tasks in their
appropriate sequence (Listing X2.1 should guide your input and selections):

■■ To add a new pop-up item as a menu, move to the bottom of the
menu outline and then invoke the Menu menu and select the New
pop-up item option. The hot-key combination for this option is
Ctrl+P.

■■ To add a new menu item, invoke the Menu menu and select the New
menu item option. The hot key for this option is the Insert key.

■■ To insert a selector, first insert a new menu item, click the Menu Item
radio button in the item-type control group, and then press Enter. You
can also use the Ctrl+S keys as hot keys for inserting a separator.



658

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

Figure X2.3. The MENU:MENU_1 dialog box, which creates the menu resource.

■■ To insert the Help menu, move to the end of the outline and press the
Insert key to insert an unnested menu item.

■■ To make a menu item gray, click the Grayed radio button in the
initial-state control group.

■■ Each menu item requires a caption. Place the & character before the
hot-key character if any. Use the same hot keys as shown in Listing
X2.1.

■■ Each command requires an ID. Enter CM_XXXX ID in the Item Id edit
box. Use the same CM_XXXX constants as in Listing X2.1.

■■ The menu Menu also has options that spawn standard file, edit, and
help selections (including standard options).

5. Repeat steps 2 through 4 to create the SHORTMENU menu resource (which is
initially created as the resource menu MENU_2). Use the Listing X2.1 as a
guide for your input. Keep in mind that the two menu resources have a few
CM_XXXX identifiers in common. Make sure that these common CM_XXXX
identifiers have the same values.



659

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

6. Rename the resources MENU_1 and MENU_2 as LONGMENU and SHORTMENU,
respectively. This task involves using the Identifiers… option in the Re-
source menu. The Resource Workshop displays the Identifiers dialog box,
shown in Figure X2.4, which enables you to select a resource, rename it, and
renumber it. Select each of the menu resources MENU_1 and MENU_2
and click the Rename pushbutton. The Resource Workshop displays a
simple input dialog box that enables you to enter the new name for the
currently selected resource. Click the Change pushbutton in the Identifiers
dialog box to assign numbers 101 and 102 to the menu resources LONGMENU
and SHORTMENU.

Figure X2.4. A sample session with the Identifiers dialog box.

7. Renumber the value of the identifier CM_SHORTMENU, changing its value from
1 to 9 (or any other integer that does not duplicate the values of the other
CM_XXXX identifiers). Use the Identifier dialog box for this task.

The Resource Workshop produces the resource file RWMENU1.RC, shown in
Listing X2.2.



660

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓
Listing X2.2. The script for the resource file RWMENU1.RC,
which is generated by the Resource Workshop.

 1:  /****************************************************************
 2:
 3:
 4:  RWMENU1.RC
 5:
 6:  produced by Borland Resource Workshop
 7:
 8:
 9:  ****************************************************************/
10:
11:  #define LONGMENU         101
12:  #define SHORTMENU        102
13:  #define CM_LONGMENU      1
14:  #define CM_POPUPITEM     101
15:  #define CM_HELP          8
16:  #define CM_EDITCLEAR     7
17:  #define CM_EDITDELETE    6
18:  #define CM_EDITPASTE     5
19:  #define CM_EDITCOPY      4
20:  #define CM_EDITCUT       3
21:  #define CM_EDITUNDO      105
22:  #define CM_EXIT          2
23:  #define CM_SHORTMENU     1
24:  #define CM_FILESAVEAS    104
25:  #define CM_FILESAVE      103
26:  #define CM_FILENEW       101
27:  #define CM_FILEOPEN      102
28:
29:  LONGMENU MENU
30:  {
31:   POPUP “&File”
32:   {
33:    MENUITEM “&New”, CM_FILENEW, GRAYED
34:    MENUITEM “&Open”, CM_FILEOPEN, GRAYED
35:    MENUITEM “&Save”, CM_FILESAVE, GRAYED
36:    MENUITEM “Save&As”, CM_FILESAVEAS, GRAYED
37:    MENUITEM SEPARATOR
38:    MENUITEM “Short &Menus”, CM_SHORTMENU
39:    MENUITEM SEPARATOR
40:    MENUITEM “E&xit”, CM_EXIT
41:   }
42:
43:   POPUP “&Edit”
44:   {
45:    MENUITEM “&Undo”, CM_EDITUNDO, GRAYED
46:    MENUITEM SEPARATOR



661

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

47:    MENUITEM “C&ut”, CM_EDITCUT
48:    MENUITEM “C&opy”, CM_EDITCOPY
49:    MENUITEM “&Paste”, CM_EDITPASTE
50:    MENUITEM “&Delete”, CM_EDITDELETE, GRAYED
51:    MENUITEM “&Clear”, CM_EDITCLEAR, GRAYED
52:   }
53:
54:   MENUITEM “&Help”, CM_HELP
55:  }
56:
57:
58:  SHORTMENU MENU
59:  {
60:   POPUP “&File”
61:   {
62:    MENUITEM “&Open”, CM_FILEOPEN, GRAYED
63:    MENUITEM “Save&AS”, CM_FILESAVEAS, GRAYED
64:    MENUITEM SEPARATOR
65:    MENUITEM “&Long Menus”, CM_LONGMENU
66:    MENUITEM SEPARATOR
67:    MENUITEM “E&xit”, CM_EXIT
68:   }
69:
70:   POPUP “&Edit”
71:   {
72:    MENUITEM “C&ut”, CM_EDITCUT
73:    MENUITEM “C&opy”, CM_EDITCOPY
74:    MENUITEM “&Paste”, CM_EDITPASTE
75:   }
76:
77:   MENUITEM “&Help”, CM_HELP
78:  }

Notice that Listing X2.2 includes the definitions of the CM_XXXX constant (in line
22) and other resource identifiers. The resource script in Listing X2.2 resembles
that in Listing X2.1, except that the keywords BEGIN and END (in Listing X2.1)

are replaced with the open and close brace.

Now, let’s focus on editing the projects files. The first task involves creating the empty
header file RWMENU1.H and moving the set of #define statements from the
resource file RWMENU1.RC to that header file. In addition, you need to delete the
definition of the identifier CM_EXIT because the program needs to use Windows’ own
definition found in the resource header file WINDOW.H. Listing X2.3 shows the
resulting source code for the RWMENU1.H header file.

Analysis



662

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

Type

Type Listing X2.3. The source code for the RWMENU1.H
header file.

 1:  #define LONGMENU         101
 2:  #define SHORTMENU        102
 3:  #define CM_LONGMENU      1
 4:  #define CM_POPUPITEM     101
 5:  #define CM_HELP          8
 6:  #define CM_EDITCLEAR     7
 7:  #define CM_EDITDELETE    6
 8:  #define CM_EDITPASTE     5
 9:  #define CM_EDITCOPY      4
10:  #define CM_EDITCUT       3
11:  #define CM_EDITUNDO      105
12:  #define CM_SHORTMENU     9
13:  #define CM_FILESAVEAS    104
14:  #define CM_FILESAVE      103
15:  #define CM_FILENEW       101
16:  #define CM_FILEOPEN      102

Let’s work on the resource file RWMEMU1.RC. After removing the set of #define
statements, you need to insert the following #include statements:

#include <windows.h>
#include <owl\window.rh>
#include “rwmenu1.h”

These statements enable the resource file to access the proper definitions of the various
identifiers. Listing X2.4 shows the script for the edited RWMENU1.RC resource file.

Listing X2.4. The script for the RWMENU1.RC resource
file.

  1:  #include <windows.h>
  2:  #include <owl\window.rh>
  3:  #include “rwmenu1.h”
  4:  LONGMENU MENU
  5:  {
  6:   POPUP “&File”
  7:   {
  8:    MENUITEM “&New”, CM_FILENEW, GRAYED
  9:    MENUITEM “&Open”, CM_FILEOPEN, GRAYED
 10:    MENUITEM “&Save”, CM_FILESAVE, GRAYED
 11:    MENUITEM “Save&As”, CM_FILESAVEAS, GRAYED



663

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

 12:    MENUITEM SEPARATOR
 13:    MENUITEM “Short &Menus”, CM_SHORTMENU
 14:    MENUITEM SEPARATOR
 15:    MENUITEM “E&xit”, CM_EXIT
 16:   }
 17:   POPUP “&Edit”
 18:   {
 19:    MENUITEM “&Undo”, CM_EDITUNDO, GRAYED
 20:    MENUITEM SEPARATOR
 21:    MENUITEM “C&ut”, CM_EDITCUT
 22:    MENUITEM “C&opy”, CM_EDITCOPY
 23:    MENUITEM “&Paste”, CM_EDITPASTE
 24:    MENUITEM “&Delete”, CM_EDITDELETE, GRAYED
 25:    MENUITEM “&Clear”, CM_EDITCLEAR, GRAYED
 26:   }
 27:   MENUITEM “&Help”, CM_HELP
 28:  }
 29:
 30:  SHORTMENU MENU
 31:  {
 32:   POPUP “&File”
 33:   {
 34:    MENUITEM “&Open”, CM_FILEOPEN, GRAYED
 35:    MENUITEM “Save&AS”, CM_FILESAVEAS, GRAYED
 36:    MENUITEM SEPARATOR
 37:    MENUITEM “&Long Menus”, CM_LONGMENU
 38:    MENUITEM SEPARATOR
 39:    MENUITEM “E&xit”, CM_EXIT
 40:   }
 41:   POPUP “&Edit”
 42:   {
 43:    MENUITEM “C&ut”, CM_EDITCUT
 44:    MENUITEM “C&opy”, CM_EDITCOPY
 45:    MENUITEM “&Paste”, CM_EDITPASTE
 46:   }
 47:   MENUITEM “&Help”, CM_HELP
 48:  }

Listing X2.5 shows the contents of the RWMENU1.DEF definition file. This file is
typical of the .DEF files presented in earlier chapters.



664

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

Type Listing X2.5. The contents of the RWMENU1.DEF
definition file.

  1:  NAME         RwMenu1
  2:  DESCRIPTION  ‘An OWL Windows Application’
  3:  EXETYPE      WINDOWS
  4:  CODE         PRELOAD MOVEABLE DISCARDABLE
  5:  DATA         PRELOAD MOVEABLE MULTIPLE
  6:  HEAPSIZE     1024
  7:  STACKSIZE    8192

Listing X2.6 shows the source code for the RWMENU1.CPP implementation file.
This program loads the menu resources LONGMENU and SHORTMENU. The program starts
with the LONGMENU resource and enables you to switch between the SHORTMENU and
LONGMENU resources using menu commands. Figure X2.5 shows a sample session with
the program RWMENU1.EXE while the long menu is loaded. Figure X2.6 shows a
sample session with the program RWMENU1.EXE while the short menu is loaded.

Figure X2.5. A sample session with the program RWMENU1.EXE while the long
menu is loaded.



665

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

Type

Figure X2.6. A sample session with the program RWMENU1.EXE while the short
menu is loaded.

Listing X2.6. The source code for the RWMENU1.CPP
implementation file.

  1:  /*
  2:    Program that uses alternate menus with minimal response
  3:  */
  4:
  5:  #include <owl\applicat.h>
  6:  #include <owl\framewin.h>
  7:  #include “rwmenu1.h”
  8:
  9:  // declare the custom application class as
 10:  // a subclass of TApplication
 11:
 12:  class TWinApp : public TApplication
 13:  {
 14:  public:
 15:    TWinApp() : TApplication() {}
 16:
 17:  protected:
 18:    virtual void InitMainWindow();
 19:  };
 20:

continues



666

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

 21:  // expand the functionality of TWindow by deriving class
      // TMainWindow
 22:  class TMainWindow : public TWindow
 23:  {
 24:   public:
 25:     TMainWindow()
 26:       : TWindow(0, 0, 0)
 27:       { LongMenuSelected = TRUE; }
 28:
 29:   protected:
 30:
 31:     BOOL LongMenuSelected;
 32:
 33:     // handle clicking the left mouse button
 34:     void EvLButtonDown(UINT, TPoint&);
 35:
 36:     // handle clicking the right mouse button
 37:     void EvRButtonDown(UINT, TPoint&);
 38:
 39:     // handle the long menu
 40:     void CMLongMenu();
 41:
 42:     // handle the short menu
 43:     void CMShortMenu();
 44:
 45:     // handle the help menu
 46:      void CMHelp();
 47:
 48:     // handle the Edit Copy menu
 49:     void CMEditCopy();
 50:
 51:     // handle the Edit Cut menu
 52:     void CMEditCut();
 53:
 54:     // handle the Edit Paste
 55:     void CMEditPaste();
 56:
 57:     // display a message “Feature not implemented”
 58:     void notImplemented();
 59:
 60:     // handle confirming closing the window
 61:     virtual BOOL CanClose();
 62:
 63:     // declare the response table
 64:     DECLARE_RESPONSE_TABLE(TMainWindow);
 65:
 66:  };
 67:

Listing X2.6. continued



667

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

 68:  DEFINE_RESPONSE_TABLE1(TMainWindow, TWindow)
 69:    EV_WM_LBUTTONDOWN,
 70:    EV_WM_RBUTTONDOWN,
 71:    EV_COMMAND(CM_LONGMENU, CMLongMenu),
 72:    EV_COMMAND(CM_SHORTMENU, CMShortMenu),
 73:    EV_COMMAND(CM_HELP, CMHelp),
 74:    EV_COMMAND(CM_EDITCOPY, CMEditCopy),
 75:    EV_COMMAND(CM_EDITCUT, CMEditCut),
 76:    EV_COMMAND(CM_EDITPASTE, CMEditPaste),
 77:  END_RESPONSE_TABLE;
 78:
 79:  void TMainWindow::EvLButtonDown(UINT, TPoint&)
 80:  {
 81:    MessageBox(“You clicked the left mouse!”, “Mouse Event”,
 82:               MB_OK | MB_ICONEXCLAMATION);
 83:  }
 84:
 85:  void TMainWindow::EvRButtonDown(UINT, TPoint&)
 86:  {
 87:    if (LongMenuSelected)
 88:      CMShortMenu();
 89:    else
 90:      CMLongMenu();
 91:  }
 92:
 93:  void TMainWindow::CMLongMenu()
 94:  {
 95:    GetApplication()->MainWindow->AssignMenu(TResID(LONGMENU));
 96:    LongMenuSelected = TRUE;
 97:    MessageBox(“The long menu is now active”, “Menu Change”,
 98:             MB_OK | MB_ICONINFORMATION);
 99:  }
100:
101:  // assign the short menu
102:  void TMainWindow::CMShortMenu()
103:  {
104:    GetApplication()->MainWindow->AssignMenu(TResID(SHORTMENU));
105:    LongMenuSelected = FALSE;
106:    MessageBox(“The short menu is now active”, “Menu Change”,
107:             MB_OK | MB_ICONINFORMATION);}
108:
109:  void TMainWindow::CMEditCut()
110:  {
111:    notImplemented();
112:  }
113:
114:  void TMainWindow::CMEditCopy()
115:  {
116:    notImplemented();
117:  }
118:

continues



668

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

119:  void TMainWindow::CMEditPaste()
120:  {
121:    notImplemented();
122:  }
123:
124:  void TMainWindow::CMHelp()
125:  {
126:    MessageBox(
127:     “This a sample online help (that leaves more to be desired)”,
128:     “Help”, MB_OK | MB_ICONINFORMATION);
129:  }
130:
131:  void TMainWindow::notImplemented()
132:  {
133:    MessageBox(“This feature is not implemented”,
134:             “Information”, MB_OK | MB_ICONEXCLAMATION);
135:  }
136:
137:  BOOL TMainWindow::CanClose()
138:  {
139:    return MessageBox(“Want to close this application?”,
140:                 “Query”, MB_YESNO | MB_ICONQUESTION) == IDYES;
141:  }
142:
143:  void TWinApp::InitMainWindow()
144:  {
145:    MainWindow = new TFrameWindow(0,
146:                     “Alternate Menus Demo Program (version 1)”,
147:                         new TMainWindow);
148:    // load the menu resource
149:    MainWindow->AssignMenu(TResID(LONGMENU));
150:  }
151:
152:  int OwlMain(int /* argc */, char** /*argv[] */)
153:  {
154:    TWinApp app;
155:    return app.Run();
156:  }

Creating Accelerator Resources
Let’s look at modifying the preceding project to offer accelerators for the Exit, Cut,
Copy, and Paste commands. This new program offers the accelerators Alt+X, Ctrl+X,
Ctrl+C, and Ctrl+V for the preceding commands, respectively. In addition, the

Listing X2.6. continued



669

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

program has extended menu text for these commands to remind you of the accelerator
keys (that is, the hot keys).

You can create the files of the new RWMENU2 from those of RMMENU1. Use the
files RWMENU1.IDE, RMENU1.DEF, RMENU1.H, RMENU1.RC, and
RMENU1.CPP to create the files RWMENU2.IDE, RMENU2.DEF, RMENU2.H,
RMENU2.RC, and RMENU2.CPP, respectively. You need to set up the project by
making the following changes:

1. In file RMENU2.DEF, change the project name from RwMenu1 to
RwMenu2.

2. In files RMENU2.RC and RWMENU2.CPP, change the name of the
header file RWMENU1.H to RWMENU2.H.

3. Delete the files for the target RWMENU1 in the project file
RWMENU2.IDE, and then insert the new target RWMENU2.

The preceding steps prepare the files for editing. Load the Resource Workshop by
double-clicking the RWMENU2.RC node in the Project window. The Resource
Workshop will load the resources in file RWMENU2.RC.

The Resource Workshop utility permits you to insert accelerators in two ways. First,
you can create a new accelerator resource that is not explicitly connected with any
menu resource. Second, you can incorporate the accelerator resources with the menu.
This seems the logical route for the task at hand. For each of the two menu resources,
perform the following tasks:

1. Select the targeted menu resource to bring up the MENU dialog box.

2. Select one of the targeted commands (Exit, Cut, Copy, or Paste).

3. Click the Item text edit box and expand the menu text by first adding a few
spaces and then typing in the characters for the corresponding accelerator
keys. This action enables the menu text to show the associated accelerator
keys.

4. Press the Tab key until you select the Key edit box.

5. The dialog box switches into accelerator-input mode and replaces the outline
pane with a message pane. This message tells you to enter the accelerator key
you want and then press Esc when you are done.

6. Enter the accelerator keys for the currently selected option. Press Esc when
you are done.



670

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓
7. Repeat steps 2 through 6 for the other targeted commands.

8. Invoke the Save project option in the menu File.

The RWMENU2.RC file now contains two accelerator resources, LONGMENU and
SHORTMENU. These resources have the same accelerator keys. In addition, the resource
file contains modified menu text for the targeted commands.

Compile and run the program RWMENU2.EXE. Press the Ctrl+X, Ctrl+C, or
Ctrl+V keys. Notice that the program responds by displaying the message dialog box
that tells you that the invoked feature is not implemented. These accelerator keys work
with either long or short menu versions. To exit the program, press the Alt+X keys.
The program offers a message dialog box to confirm the request to exit.

Listing X2.7 shows the contents of the RWMENU2.DEF definition file. Listing X2.8
shows the source code for the RWMENU2.H header file. Listing X2.9 shows the
script of the RWMENU2.RC resource file. Listing X2.10 shows the source code for
the RWMENU3.CPP implementation file. Figure X2.7 shows a sample session with
the RWMENU2.EXE program.

Figure X2.7. A sample session with the RWMENU2.EXE program.



671

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

Type

Type

Type Listing X2.7. The contents of the RWMENU2.DEF
definition file.

  1:  NAME         RwMenu2
  2:  DESCRIPTION  ‘An OWL Windows Application’
  3:  EXETYPE      WINDOWS
  4:  CODE         PRELOAD MOVEABLE DISCARDABLE
  5:  DATA         PRELOAD MOVEABLE MULTIPLE
  6:  HEAPSIZE     1024
  7:  STACKSIZE    8192

Listing X2.8. The source code for the RWMENU2.H
header file.

 1:  #define LONGMENU          101
 2:  #define SHORTMENU         102
 3:  #define CM_LONGMENU       1
 4:  #define CM_POPUPITEM      101
 5:  #define CM_HELP           8
 6:  #define CM_EDITCLEAR      7
 7:  #define CM_EDITDELETE     6
 8:  #define CM_EDITPASTE      5
 9:  #define CM_EDITCOPY       4
10:  #define CM_EDITCUT        3
11:  #define CM_EDITUNDO       105
12:  #define CM_SHORTMENU      9
13:  #define CM_FILENEW        106
14:  #define CM_FILESAVEAS     104
15:  #define CM_FILESAVE       103
16:  #define CM_FILEOPEN       102

Listing X2.9. The script of the RWMENU2.RC resource
file.

 1:  #include <windows.h>
 2:  #include <owl\window.rh>
 3:  #include “rwmenu2.h”
 4:
 5:  LONGMENU MENU
 6:  {
 7:   POPUP “&File”
 8:   {
 9:    MENUITEM “&New”, CM_FILENEW, GRAYED
10:    MENUITEM “&Open”, CM_FILEOPEN, GRAYED

continues



672

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

11:    MENUITEM “&Save”, CM_FILESAVE, GRAYED
12:    MENUITEM “Save&As”, CM_FILESAVEAS, GRAYED
13:    MENUITEM SEPARATOR
14:    MENUITEM “Short &Menus”, CM_SHORTMENU
15:    MENUITEM SEPARATOR
16:    MENUITEM “E&xit    ALT+X”, CM_EXIT
17:   }
18:
19:   POPUP “&Edit”
20:   {
21:    MENUITEM “&Undo”, CM_EDITUNDO, GRAYED
22:    MENUITEM SEPARATOR
23:    MENUITEM “C&ut       CTRL+X”, CM_EDITCUT
24:    MENUITEM “C&opy    CTRL+C”, CM_EDITCOPY
25:    MENUITEM “&Paste   CTRL+V”, CM_EDITPASTE
26:    MENUITEM “&Delete”, CM_EDITDELETE, GRAYED
27:    MENUITEM “&Clear”, CM_EDITCLEAR, GRAYED
28:   }
29:
30:   MENUITEM “&Help”, CM_HELP, HELP
31:  }
32:
33:
34:  SHORTMENU MENU
35:  {
36:   POPUP “&File”
37:   {
38:    MENUITEM “&Open”, CM_FILEOPEN, GRAYED
39:    MENUITEM “Save&AS”, CM_FILESAVEAS, GRAYED
40:    MENUITEM SEPARATOR
41:    MENUITEM “&Long Menus”, CM_LONGMENU
42:    MENUITEM SEPARATOR
43:    MENUITEM “E&xit   ALT+X”, CM_EXIT
44:   }
45:
46:   POPUP “&Edit”
47:   {
48:    MENUITEM “C&ut       CTRL+X”, CM_EDITCUT
49:    MENUITEM “C&opy    CTRL+C”, CM_EDITCOPY
50:    MENUITEM “&Paste   CTRL+V”, CM_EDITPASTE
51:   }
52:
53:   MENUITEM “&Help”, CM_HELP, HELP
54:  }
55:
56:
57:
58:  LONGMENU ACCELERATORS
59:  {

Listing X2.9. continued



673

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

Type

60:   “^X”, CM_EDITCUT
61:   “^C”, CM_EDITCOPY
62:   “^V”, CM_EDITPASTE
63:   “x”, CM_EXIT, ASCII, ALT
64:  }
65:
66:  SHORTMENU ACCELERATORS
67:  {
68:   “x”, CM_EXIT, ASCII, ALT
69:   “^X”, CM_EDITCUT
70:   “^C”, CM_EDITCOPY
71:   “^V”, CM_EDITPASTE, ASCII
72:  }

Listing X2.10. The source code for the RWMENU2.CPP
implementation file.

  1:  /*
  2:    Program which uses alternate menus with minimal response
  3:  */
  4:
  5:  #include <owl\applicat.h>
  6:  #include <owl\framewin.h>
  7:  #include “rwmenu2.h”
  8:
  9:  // declare the custom application class as
 10:  // a subclass of TApplication
 11:  class TWinApp : public TApplication
 12:  {
 13:  public:
 14:    TWinApp() : TApplication() {}
 15:
 16:  protected:
 17:    virtual void InitMainWindow();
 18:  };
 19:
 20:  // expand the functionality of TWindow by deriving
 21:  // class TMainWindow
 22:  class TMainWindow : public TWindow
 23:  {
 24:   public:
 25:     TMainWindow()
 26:       : TWindow(0, 0, 0)
 27:       { LongMenuSelected = TRUE; }
 28:
 29:   protected:
 30:

continues



674

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

 31:     BOOL LongMenuSelected;
 32:
 33:     // handle clicking the left mouse button
 34:     void EvLButtonDown(UINT, TPoint&);
 35:
 36:     // handle clicking the right mouse button
 37:     void EvRButtonDown(UINT, TPoint&);
 38:
 39:     // handle the long menu
 40:     void CMLongMenu();
 41:
 42:     // handle the short menu
 43:     void CMShortMenu();
 44:
 45:     // handle the help menu
 46:      void CMHelp();
 47:
 48:     // handle the Edit Copy menu
 49:     void CMEditCopy();
 50:
 51:     // handle the Edit Cut menu
 52:     void CMEditCut();
 53:
 54:     // handle the Edit Paste
 55:     void CMEditPaste();
 56:
 57:     // display a message “Feature not implemented”
 58:     void notImplemented();
 59:
 60:     // handle confirming closing the window
 61:     virtual BOOL CanClose();
 62:
 63:     // declare the response table
 64:     DECLARE_RESPONSE_TABLE(TMainWindow);
 65:
 66:  };
 67:
 68:  DEFINE_RESPONSE_TABLE1(TMainWindow, TWindow)
 69:    EV_WM_LBUTTONDOWN,
 70:    EV_WM_RBUTTONDOWN,
 71:    EV_COMMAND(CM_LONGMENU, CMLongMenu),
 72:    EV_COMMAND(CM_SHORTMENU, CMShortMenu),
 73:    EV_COMMAND(CM_HELP, CMHelp),
 74:    EV_COMMAND(CM_EDITCOPY, CMEditCopy),
 75:    EV_COMMAND(CM_EDITCUT, CMEditCut),
 76:    EV_COMMAND(CM_EDITPASTE, CMEditPaste),
 77:  END_RESPONSE_TABLE;
 78:

Listing X2.10. continued



675

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

 79:  void TMainWindow::EvLButtonDown(UINT, TPoint&)
 80:  {
 81:    MessageBox(“You clicked the left mouse!”, “Mouse Event”,
 82:               MB_OK | MB_ICONEXCLAMATION);
 83:  }
 84:
 85:  void TMainWindow::EvRButtonDown(UINT, TPoint&)
 86:  {
 87:    if (LongMenuSelected)
 88:      CMShortMenu();
 89:    else
 90:      CMLongMenu();
 91:  }
 92:
 93:  void TMainWindow::CMLongMenu()
 94:  {
 95:    GetApplication()->MainWindow->AssignMenu(TResID(LONGMENU));
 96:    GetApplication()->MainWindow->Attr.AccelTable =
 97:                                              TResID(LONGMENU);
 98:    LongMenuSelected = TRUE;
 99:    MessageBox(“The long menu is now active”, “Menu Change”,
100:             MB_OK | MB_ICONINFORMATION);
101:  }
102:
103:  // assign the short menu
104:  void TMainWindow::CMShortMenu()
105:  {
106:    GetApplication()->MainWindow->AssignMenu(TResID(SHORTMENU));
107:    GetApplication()->MainWindow->Attr.AccelTable =
108:                                                TResID(SHORTMENU);
109:    LongMenuSelected = FALSE;
110:    MessageBox(“The short menu is now active”, “Menu Change”,
111:             MB_OK | MB_ICONINFORMATION);}
112:
113:  void TMainWindow::CMEditCut()
114:  {
115:    notImplemented();
116:  }
117:
118:  void TMainWindow::CMEditCopy()
119:  {
120:    notImplemented();
121:  }
122:
123:  void TMainWindow::CMEditPaste()
124:  {
125:    notImplemented();
126:  }
127:
128:  void TMainWindow::CMHelp()
129:  {

continues



676

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

130:    MessageBox(
131:     “This a sample online help (that leaves more to be desired)”,
132:     “Help”, MB_OK | MB_ICONINFORMATION);
133:  }
134:
135:  void TMainWindow::notImplemented()
136:  {
137:    MessageBox(“This feature is not implemented”,
138:             “Information”, MB_OK | MB_ICONEXCLAMATION);
139:  }
140:
141:  BOOL TMainWindow::CanClose()
142:  {
143:    return MessageBox(“Want to close this application?”,
144:                 “Query”, MB_YESNO | MB_ICONQUESTION) == IDYES;
145:  }
146:
147:  void TWinApp::InitMainWindow()
148:  {
149:    MainWindow = new TFrameWindow(0,
150:                “Alternate Menus Demo Program (version 2)”,
151:                new TMainWindow);
152:    // load the menu resource
153:    MainWindow->AssignMenu(TResID(LONGMENU));
154:    MainWindow->Attr.AccelTable = TResID(LONGMENU);
155:  }
156:
157:  int OwlMain(int /* argc */, char** /*argv[] */)
158:  {
159:    TWinApp app;
160:    return app.Run();
161:  }

The header file RWMENU2.H has the same declarations as the file
RWMENU1.H, because the menu systems in the projects RWMENU1 and
RWMENU2 are the same. The resource file RWMENU2.RC differs from the

file RWMENU1.RC in the following ways:

1. The new resource file includes the header file RWMENU2.H, instead of the
file RWMENU1.H.

2. The commands Exit, Cut, Copy, and Paste in the new resource file have
extended menu text.

3. The LONGMENU accelerators resource defines the accelerator keys for the
commands CM_EDITCUT, CM_EDITCOPY, CM_EDITPASTE, and CM_EXIT.

Listing X2.10. continued

Analysis



677

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

4. The SHORTMENU accelerators resource defines the accelerator keys for the
commands CM_EDITCUT, CM_EDITCOPY, CM_EDITPASTE, and CM_EXIT.

The implementation file RWMENU2.CPP contains the C++ source code for the
program. The statements in this file are similar to those in the file RWMENU1.CPP.
The relevant differences between the two implementation files are as follows:

1. The statement at line 96 in member function CMLongMenu is new. This
statement loads the accelerator-key resource LONGMENU. This statement keeps
the selection of the menu and the accelerators resource in sync with each
other.

2. The statement at line 107 in member function CMShortMenu is new. This
statement loads the accelerator-key resource SHORTMENU. This statement keeps
the selection of the menu and the accelerators resource in sync with each
other.

3. The statement at line 149 in the member function InitMainWindow has a
different window title.

4. The statement at line 154 in the member function InitMainWindow is new.
The function LoadAccelerators loads the accelerator-key resource LONGMENU.

Creating Icon Resources
The Resource Workshop enables you to create icon resources using the following
steps:

1. Select the New… command in the Resource menu. This command brings
up the New resource dialog box.

2. Choose the ICON item in the Resource-type list box of the New resource
dialog box.

3. Click the OK button in the New resource dialog box.

4. The Resource Workshop displays a message box asking you whether you
want to create the resource in readable source or binary form. To create the
icon resource in source form, click the Source pushbutton. To create the
icon resource in binary form, click the Binary pushbutton control. The
remaining steps focus on the binary form.

5. The Resource Workshop displays the New File Resource dialog box (see
Figure X2.8), which enables you to select the following items:



678

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓
■■ The resource filename.

■■ The resource file type. Select the .RC file type.

■■ The filename that contains the reference to the resource you are creating.

■■ The host drive and directory.

Figure X2.8. A sample session with Resource Workshop showing the New file resource
dialog box.

6. When you finish working with the New file resource dialog box, click its
OK pushbutton.

7. The Resource Workshop displays a relatively small New icon image dialog
box, which contains two sets of radio buttons. The first set enables you to
specify the size of the icon (a choice between 32×32, 32×16, or 64×64
pixels). The normal size is 32×32 pixels. The set of radio buttons enable you
to choose a palette of 2, 8, 16, or 256 colors. (The latter option may be
disabled for your system). Select the size and color settings, then click the
OK pushbutton.

8. The Resource Workshop displays the Paint editor. Figure X2.9 shows a
sample session with the Paint editor. The editor has two panes. The edit
pane is located to the left and displays the icon at different zoom levels.



679

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

From the View menu, you can use the Zoom In, Zoom Out, and Actual
Size commands, to magnify the icon, demagnify the icon, or view the icon in
its actual size. The preview pane, which is located to the right, always shows
the icon in its actual size. Initially, the Resource Workshop displays the
Colors and Tools palettes in the preview pane. The Colors palette displays
the available colors and enables you to select the foreground and background
colors. To select the foreground color, move the mouse over the color you
want to select and click the left mouse button. To select the background
color, move the mouse over the color you want to select and click the right
mouse button. The Colors palette displays the following color-selection
indicators:

■■ The letters FG appear inside the foreground color.

■■ The letters BK appear inside the background color.

■■ The letters BF appear inside the color that is both the foreground and
background colors.

Figure X2.9. A sample session with the Paint editor.

The Tools palette resembles those in Paintbrush and includes the following:

■■ Tools to cut and move bitmaps.

■■ A tool to erase bitmaps.



680

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓
■■ Tools to draw pixels, lines, empty rectangles (both sharp and rounded-

edge rectangles), empty circles, full rectangles (both sharp and
rounded-edge rectangles), and full circles.

■■ Airbrush, paintbrush, and paint-can tools.

■■ A tool to enter text.

■■ A zoom tool.

9. Draw the icon using the various colors and tools.

10. Save the icon by saving the project.

Creating Dialog Box Resources
The ability of the Resource Workshop to create dialog boxes containing various
controls represents an important aspect of visual programming. Although creating
menus and accelerator resources involves working with special dialog boxes, creating
dialog box resources involves the actual drawing of the controls pasted onto the dialog
box.

To create a new dialog box resource in the Resource Workshop, you begin as with any
new resource—by selecting the command New… from the Resource menu. Then
you select the DIALOG resource type from Resource-type list box in the New
resource dialog box. After you click the OK pushbutton of this dialog box, the
Resource Workshop brings up the DialogExpert dialog box. This dialog box enables
you to select one of the following kinds of dialog box resources:

■■ Windows dialog box with standard buttons at the bottom

■■ Windows dialog box with standard buttons near the right edge

■■ Borland dialog box with standard buttons at the bottom

■■ Borland dialog box with standard buttons near the right edge

■■ Child dialog box with no buttons

■■ Standard window with no buttons

When you click the OK button of the DialogExpert dialog box, the Resource
Workshop brings up the Dialog editor. Figure X2.10 shows a sample session with the
Dialog editor.



681

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

Figure X2.10. A sample session with the Dialog editor.

The Dialog editor displays the dialog box resource in its initial state (this includes the
default buttons, location, and size) along with the Alignment palette and the Tools
palette. You can move and resize the dialog box using the mouse to accommodate the
required size and location.

To rename a resource dialog box (or any other resource), use the Rename… command
in the Resource menu. This option brings up an input dialog box that enables you to
enter the new resource name.

The Tools Palette
The Tools palette offers the tools to draw and manage the various controls in the
dialog-box resource. The Tools palette supports the following controls:

■■ Windows static text

■■ Borland static text

■■ Iconic static control

■■ Black frame static (text) control

■■ Black rectangle static (text) control



682

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓
■■ Windows pushbutton

■■ Borland pushbutton

■■ Edit text control

■■ Group box

■■ Check box

■■ Radio button

■■ Vertical scroll bar

■■ Horizontal scroll bar

■■ List box

■■ Combo box

■■ Custom controls

■■ Vertical dip

■■ Horizontal dip

Other tools enable you to manage the creating of the dialog box resources by
supporting the following operations:

■■ Setting the tab order of the controls

■■ Enabling and disabling tabbing to a control

■■ Group selection and shading

■■ Duplicating controls

■■ Undoing the last action

■■ Testing the dialog box

Using the Dialog editor is fairly intuitive.

The Alignment Palette
The Alignment palette contains a set of tools that enable you to align the controls in
the dialog box. In order to align multiple controls, you need to select them. This
process involves clicking each of the controls while holding down the Shift key. This
process creates a red selection frame that defines metrics for the aligned controls. The
Alignment tools support the following operations:



683

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

■■ Aligning the selected controls so their left sides are on the left side of the
selection frame.

■■ Aligning the selected controls so their right sides are on the left side of the
selection frame.

■■ Aligning the selected controls so their horizontal centers are in the center of
the selection frame.

■■ Moving the selection frame horizontally to center it in the dialog box. This
operation maintains the relative position of the selected controls in the
frame.

■■ Aligning the selected controls so their tops are at the top of the selection
frame.

■■ Aligning the selected controls so their bottoms are at the bottom of the
selection frame.

■■ Aligning the selected controls so their vertical centers are in the center of the
selection frame.

■■ Moving the selection frame vertically to center it in the dialog box. This
operation maintains the relative position of the selected controls in the
frame.

Creating a Bare-Bones
Dialog Box Resource

Let’s look at a simple program that brings up bare-bones dialog boxes. The next
project, RWDLG1, implements a simple Windows program that responds to the left
and right mouse clicks by displaying custom message dialog boxes created by the
Resource Workshop.

First, let’s peek at the listings to make setting up the project a bit easier. Listing X2.11
shows the contents of the RWDLG1.DEF definition file. Listing X2.12 shows the
source code for the RWDLG1.H header file. Listing X2.13 shows the script of the
RWDLG1.RC resource file. Listing X2.14 shows the source code for the
RWDLG1.CPP implementation file.

Prepare the files RWDLG1.DEF, RWDLG1.H, and RWDLG1.CPP by typing the
contents shown in their respective listings. By contrast, type only the #include
directive and the menu resource in the RWDLG1.RC; do not type the dialog box



684

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

Type

resources. Create the new RWDLG1 project and include the preceding files. Now
you are ready to invoke the Resource Workshop.

Use the Resource Workshop to create the resource IDD_LCKICK_DLG. (This resource
starts out with the default name DIALOG_1, which you need to change.) Create a
Windows dialog box with the buttons located near the bottom edge. The Dialog
editor brings up the initial dialog box with the default set of buttons OK, Cancel, and
Help. Delete the latter two, first by clicking them with the mouse and then pressing
the Delete key.  You can use the Shift key to obtain multiple selections that can be
deleted in one swoop.

Create the new dialog box with the Modal frame, Pop-up, Visible, Caption, and
System menu styles. The caption of the dialog box is Mouse Event. The dialog box
has two controls, as follows:

1. The OK pushbutton, which the Resource Workshop inserts by default.

2. The static text control, which features the centered text “You clicked the left
button!”

Figure X2.11 shows a session with the Dialog editor while the IDD_LCLICK_DLG
dialog-box resource is created.

Now create the other dialog-box resource, IDD_RCLICK_DLG, in a manner similar to the
resource IDD_LCLICK_DLG. The second dialog box differs from the first in its name and
in the static text message. When you are done, save both new dialog-box resources (by
saving the project). Compile and run the program. Click in the client window area
with the left or right mouse buttons. Observe how the program displays the dialog
boxes you created in the Resource Workshop. Figure X2.12 shows a sample session
with the RWDLG1.EXE program.

Listing X2.11. The contents of the RWDLG1.DEF
definition file.

  1:  NAME         RwDlg1
  2:  DESCRIPTION  ‘An OWL Windows Application’
  3:  EXETYPE      WINDOWS
  4:  CODE         PRELOAD MOVEABLE DISCARDABLE
  5:  DATA         PRELOAD MOVEABLE MULTIPLE
  6:  HEAPSIZE     1024
  7:  STACKSIZE    8192



685

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

Figure X2.11. A session with the Dialog editor while creating the
IDD_LCLICK_DLG dialog-box resource.

Figure X2.12. A sample session with the RWDLG1.EXE program.



686

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

Type

Type

Type Listing X2.12. The source code for the RWDLG1.H
header file.

  1:  #define IDD_LCLICK_DLG  100
  2:  #define IDD_RCLICK_DLG  101
  3:  #define EXITMENU        102

Listing X2.13. The script of the RWDLG1.RC resource
file.

 1:  #include <windows.h>
 2:  #include <owl\window.rh>
 3:  #include “rwdlg1.h”
 4:
 5:  IDD_LCLICK_DLG DIALOG 63, 76, 191, 65
 6:  STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE |
 7:        WS_CAPTION | WS_SYSMENU
 8:  CAPTION “Mouse Event”
 9:  FONT 8, “MS Sans Serif”
10:  {
11:   DEFPUSHBUTTON “OK”, IDOK, 70, 37, 50, 14
12:   CTEXT “You clicked the left button!”, -1, 18, 13, 154, 10
13:  }
14:
15:  IDD_RCLICK_DLG DIALOG 63, 76, 191, 65
16:  STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE |
17:        WS_CAPTION | WS_SYSMENU
18:  CAPTION “Mouse Event”
19:  FONT 8, “MS Sans Serif”
20:  {
21:   DEFPUSHBUTTON “OK”, IDOK, 70, 37, 50, 14
22:   CTEXT “You clicked the right button!”, -1, 18, 13, 154, 10
23:  }
24:
25:  EXITMENU MENU
26:  {
27:   MENUITEM “&Exit”, CM_EXIT
28:  }

Listing X2.14. The source code for the RWDLG1.CPP
implementation file.

 1:  /*
 2:    Program that tests simple dialog resources
 3:  */
 4:
 5:  #include <owl\applicat.h>
 6:  #include <owl\framewin.h>



687

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

 7:  #include <owl\dialog.h>
 8:  #include “rwdlg1.h”
 9:
10:  // declare the custom application class as
11:  // a subclass of TApplication
12:
13:  class TWinApp : public TApplication
14:  {
15:  public:
16:    TWinApp() : TApplication() {}
17:
18:  protected:
19:    virtual void InitMainWindow();
20:  };
21:
22:  // expand the functionality of TWindow by deriving
23:  // class TMainWindow
24:  class TMainWindow : public TWindow
25:  {
26:   public:
27:     TMainWindow() : TWindow(0, 0, 0) {}
28:
29:   protected:
30:
31:     // handle clicking the left mouse button
32:     void EvLButtonDown(UINT, TPoint&);
33:
34:     // handle clicking the right mouse button
35:     void EvRButtonDown(UINT, TPoint&);
36:
37:     // handle confirming closing the window
38:     virtual BOOL CanClose();
39:
40:     // declare the response table
41:     DECLARE_RESPONSE_TABLE(TMainWindow);
42:
43:  };
44:
45:  DEFINE_RESPONSE_TABLE1(TMainWindow, TWindow)
46:    EV_WM_LBUTTONDOWN,
47:    EV_WM_RBUTTONDOWN,
48:  END_RESPONSE_TABLE;
49:
50:  void TMainWindow::EvLButtonDown(UINT, TPoint&)
51:  {
52:    TDialog* pDlg = new TDialog(this, TResID(IDD_LCLICK_DLG));
53:
54:    pDlg->Execute();
55:  }
56:

continues



688

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

57:  void TMainWindow::EvRButtonDown(UINT, TPoint&)
58:  {
59:    TDialog* pDlg = new TDialog(this, TResID(IDD_RCLICK_DLG));
60:
61:    pDlg->Execute();
62:  }
63:
64:  BOOL TMainWindow::CanClose()
65:  {
66:    return MessageBox(“Want to close this application?”,
67:                 “Query”, MB_YESNO | MB_ICONQUESTION) == IDYES;
68:  }
69:
70:  void TWinApp::InitMainWindow()
71:  {
72:    MainWindow = new TFrameWindow(0,
73:                      “Simple Dialog Box Resource Tester”,
74:                      new TMainWindow);
75:    // load the menu resource
76:    MainWindow->AssignMenu(TResID(EXITMENU));
77:  }
78:
79:  int OwlMain(int /* argc */, char** /*argv[] */)
80:  {
81:    TWinApp app;
82:    return app.Run();
83:  }

Listing X2.13 shows the script for the resource file RWDLG1.RC. This file
contains the script for the two dialog box resources, IDD_LCLICK_DLG and
IDD_RCLICK_DLG. The coordinates, widths, and heights of the two dialog boxes

and their controls may not match. (In Listing X2.13, they do.) To make them match,
you can edit the resource script to duplicate the locations and dimensions of the dialog
boxes and their controls. This little trick enables you to smooth the visual design of
dialog boxes and their controls.

The implementation source code in Listing X2.14 is simple. The main window class,
TMainWindow, responds to the left and right mouse clicks using the member functions
EvLButtonDown and EvRButtonDown, respectively. The member function EvLButtonDown
creates a dialog box using the OWL class TDialog and the resource IDD_LCLICK_DLG.
To invoke the dialog box, the member function sends the C++ message Execute
(which invokes a modal dialog box) to the dialog box object, accessed using the local
pointer pDlg. The member function EvRButtonDown performs a similar task to invoke
the dialog box resource IDD_RCLICK_DLG.

Listing X2.14. continued

Analysis



689

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

Creating Dialog Box Resources
with Basic Controls

Let’s look at another example of a dialog-box resource. The next project, RWDLG2,
creates and displays a dialog box that represents a dummy simple calculator. We say
dummy because the implementation program does not animate the custom dialog box
class. This means that clicking the buttons of the calculator does not perform the
anticipated operations. (What a letdown!) This does not mean that the calculator
dialog box is doing absolutely nothing. The dialog box is reacting minimally by
emulating the button-down action when you click a button. You can also enter, edit,
and select text in the edit box control that emulates the calculator’s display. Figure
X2.13 shows a sample session with the RWDLG2.EXE program. As the figure shows,
the calculator dialog box has the digits, decimal, clear, change of sign, basic math
operations, and Close buttons. (The latter button is really the OK button appearing
with a different caption.) To close the dialog box, click the Close button.

First, let’s peek at the listings to make setting up the project a bit easier. Listing X2.15
shows the contents of the RWDLG2.DEF definition file. Listing X2.16 contains the
source code for the RWDLG2.H header file. Listing X2.17 contains the script of
the RWDLG2.RC resource file. Listing X2.18 contains the source code for the
RWDLG2.CPP implementation file.

Prepare the files RWDLG2.DEF, RWDLG2.H, and RWDLG2.CPP by typing the
contents shown in their respective listings. By contrast, type only the #include

directive and the menu resource in the RWDLG2.RC; do not type the dialog-box
resources. Create the new RWDLG2 project and include the preceding files. Now you
are ready to invoke the Resource Workshop.

Use the Resource Workshop to create the resource IDD_CALC_DLG. (This resource starts
out with the default name DIALOG_1, which you need to change.) Create a Windows
dialog box with the buttons located near the bottom edge. The Dialog edit brings up
the initial dialog box with the default set of buttons OK, Cancel, and Help. Delete
the latter two by clicking them with the mouse and then pressing the Delete key.

Create the new dialog box with the Modal frame, Pop-up, Visible, Caption, and
System menu styles. The caption of the dialog box is Dummy Calculator. The dialog
box has the following sets of controls:

1. The Close pushbutton, which is really the OK button renamed. This button
is the default pushbutton.



690

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓
2. The edit box control with the text “Major Malfunction!” This control has

the style options Tab stop, Border, and Automatic horizontal scroll.

3. The pushbutton controls for the digits and operators. Make each of these
buttons ordinary pushbuttons (and not the default pushbutton). Use the
identifiers in the file RWDLG2.H for the various controls. For example, the
digit button 1 has the identifier IDC_1.

The process of creating the above controls involves selecting them from the Tools
palette and then drawing them. Because there are many pushbutton controls, you can
use the Copy and Paste commands (in the Edit menu) to create these controls. You
will probably need to use the Alignment palette to align the rows and columns of the
buttons. Figure X2.13 shows a session with the Dialog editor while creating the
IDD_LCLICK_DLG dialog box resource. The figure shows the configuration and location
of the various controls. When you are done, save the new dialog-box resource (by
saving the project). Compile and run the program. Click the Calc menu to bring up
the calculator resource dialog box. Click the digit and operators pushbuttons and
observe how they simulate pushing these buttons down. You can also type and edit
text in the edit text control. When you are done, click the Close pushbutton to close
the dialog box. Figure X2.14 shows a sample session with the RWDLG2.EXE
program.

Figure X2.13. A sample session with the Dialog editor while creating the calculator
dialog box resource.



691

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

Type

Type

Figure X2.14. A sample session with the RWDLG2.EXE program.

Listing X2.15. The contents of the RWDLG2.DEF
definition file.

  1:  NAME         RwDlg2
  2:  DESCRIPTION  ‘An OWL Windows Application’
  3:  EXETYPE      WINDOWS
  4:  CODE         PRELOAD MOVEABLE DISCARDABLE
  5:  DATA         PRELOAD MOVEABLE MULTIPLE
  6:  HEAPSIZE     1024
  7:  STACKSIZE    8192

Listing X2.16. The source code for the RWDLG2.H
header file.

 1:  #define IDC_0             100
 2:  #define IDC_1             101
 3:  #define IDC_2             102
 4:  #define IDC_3             103
 5:  #define IDC_4             104
 6:  #define IDC_5             105
 7:  #define IDC_6             106
 8:  #define IDC_7             107

continues



692

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

 9:  #define IDC_8             108
10:  #define IDC_9             109
11:  #define IDC_CLEAR         110
12:  #define IDC_ADD           111
13:  #define IDC_CHS           112
14:  #define IDC_DOT           113
15:  #define IDC_SUB           114
16:  #define IDC_MUL           115
17:  #define IDC_DIV           116
18:  #define IDC_EQL           117
19:  #define IDC_EDIT1         118
20:  #define CM_CALC           200
21:  #define EXITMENU          201
22:  #define IDD_CALC_DLG      202

Listing X2.17. The script of the RWDLG2.RC resource file.

 1:  #include <windows.h>
 2:  #include <owl\window.rh>
 3:  #include “rwdlg2.h”
 4:
 5:  IDD_CALC_DLG DIALOG 6, 15, 194, 189
 6:  STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION |
           WS_SYSMENU
 7:  CAPTION “Dummy Calculator”
 8:  FONT 8, “MS Sans Serif”
 9:  {
10:   DEFPUSHBUTTON “Close”, IDOK, 135, 169, 25, 15
11:   PUSHBUTTON “7”, IDC_7, 17, 49, 25, 15
12:   PUSHBUTTON “8”, IDC_8, 57, 49, 25, 15
13:   PUSHBUTTON “9”, IDC_9, 97, 49, 25, 15
14:   PUSHBUTTON “/”, IDC_DIV, 135, 49, 25, 15
15:   PUSHBUTTON “4”, IDC_4, 17, 81, 25, 15
16:   PUSHBUTTON “5”, IDC_5, 57, 81, 25, 15
17:   PUSHBUTTON “6”, IDC_6, 97, 81, 25, 15
18:   PUSHBUTTON “*”, IDC_MUL, 135, 81, 25, 15
19:   PUSHBUTTON “1”, IDC_1, 17, 114, 25, 15
20:   PUSHBUTTON “2”, IDC_2, 57, 114, 25, 15
21:   PUSHBUTTON “3”, IDC_3, 97, 114, 25, 15
22:   PUSHBUTTON “-”, IDC_SUB, 135, 114, 25, 15
23:   PUSHBUTTON “0”, IDC_0, 17, 144, 25, 15
24:   PUSHBUTTON “.”, IDC_DOT, 57, 144, 25, 15
25:   PUSHBUTTON “+/-”, IDC_CHS, 97, 144, 25, 15
26:   PUSHBUTTON “+”, IDC_ADD, 135, 144, 25, 15
27:   PUSHBUTTON “C”, IDC_CLEAR, 18, 169, 25, 15
28:   PUSHBUTTON “=”, IDC_EQL, 58, 169, 25, 15
29:   CONTROL “Major Malfunction!”, IDC_EDIT1, “EDIT”,

Listing X2.16. continued



693

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

Type

30:           ES_AUTOHSCROLL | WS_BORDER | WS_TABSTOP,
31:           16, 24, 146, 16
32:  }
33:
34:  EXITMENU MENU
35:  {
36:   MENUITEM “&Exit”, CM_EXIT
37:   MENUITEM “&Calc”, CM_CALC
38:  }

Listing X2.18. The source code for the RWDLG2.CPP
implementation file.

 1:  /*
 2:    Program that tests simple dialog resources
 3:  */
 4:
 5:  #include <owl\applicat.h>
 6:  #include <owl\framewin.h>
 7:  #include <owl\dialog.h>
 8:  #include “rwdlg2.h”
 9:
10:  // declare the custom application class as
11:  // a subclass of TApplication
12:
13:  class TWinApp : public TApplication
14:  {
15:  public:
16:    TWinApp() : TApplication() {}
17:
18:  protected:
19:    virtual void InitMainWindow();
20:  };
21:
22:  // expand the functionality of TWindow by deriving
23:  //  class TMainWindow
24:  class TMainWindow : public TWindow
25:  {
26:   public:
27:     TMainWindow() : TWindow(0, 0, 0) {}
28:
29:   protected:
30:
31:     // handle the Calc menu
32:     void CMCalc();
33:
34:     // handle confirming closing the window
35:     virtual BOOL CanClose();
36:

continues



694

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

37:     // declare the response table
38:     DECLARE_RESPONSE_TABLE(TMainWindow);
39:
40:  };
41:
42:  DEFINE_RESPONSE_TABLE1(TMainWindow, TWindow)
43:    EV_COMMAND(CM_CALC, CMCalc),
44:  END_RESPONSE_TABLE;
45:
46:  void TMainWindow::CMCalc()
47:  {
48:    TDialog* pDlg = new TDialog(this, TResID(IDD_CALC_DLG));
49:
50:    pDlg->Execute();
51:  }
52:
53:  BOOL TMainWindow::CanClose()
54:  {
55:    return MessageBox(“Want to close this application?”,
56:             “Query”, MB_YESNO | MB_ICONQUESTION) == IDYES;
57:  }
58:
59:  void TWinApp::InitMainWindow()
60:  {
61:    MainWindow = new TFrameWindow(0,
62:                      “Dummy Dialog Box Calculator Tester”,
63:                      new TMainWindow);
64:    // load the menu resource
65:    MainWindow->AssignMenu(TResID(EXITMENU));
66:  }
67:
68:  int OwlMain(int /* argc */, char** /*argv[] */)
69:  {
70:    TWinApp app;
71:    return app.Run();
72:  }

Listing X2.16 shows the RWDLG2.H header file, which contains the defini-
tions of the identifiers for the dialog box, its controls, and the menu resources.

Listing X2.17 contains the RWDLG2.RC resource file, which contains the
dialog box and menu resources. The dialog-box resource shows that there is one
default pushbutton with the label Close and the ID OK. The other pushbutton controls
are declared as nondefault controls and have the appropriate labels and IDs.

Listing X2.18. continued

Analysis



695

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

Listing X2.18 shows the source code for the implementation file RWDLG2.CPP.
The file declares the application class, TWinApp, and the main window class, TMainWindow.
The most relevant member function of the latter class is the function CMCalc, which
responds to the CM_CALC Windows command message sent by the menu Calc. The
function creates a dynamic instance of the dialog class TDialog and specifies the
dialog-box resource IDD_CALC_DLG. The function then invokes this dialog box by
sending the C++ message Execute to the dialog-box instance (accessed using the local
pointer pDlg).

Creating Dialog Box Resources
with Grouped Controls

Let’s look at an example of a dialog-box resource that contains grouped controls—
group boxes, check boxes, and radio buttons. The next project, RWDLG3, creates
resource dialog boxes for typical Find and Replace dialog boxes. Such dialog boxes are
available in typical Windows text editors, including the IDE’s editor. The Find dialog
box that is implemented in project RWDLG3 contains the following controls:

■■ The edit text control, which holds the search string

■■ The static text control, which labels the edit control

■■ The Options group box, which contains the following check boxes:

■■ The Whole Word check box

■■ The Case Sensitive check box

■■ The Prompt check box

■■ The Directions group box, which contains the following radio buttons:

■■ The Forward radio button

■■ The Backward radio button

■■ The Entire radio button

■■ The Find Next pushbutton (which is the OK button renamed)

■■ The Cancel pushbutton

■■ The Help button



696

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓
The Replace dialog box has these controls plus the following ones:

■■ The edit text control, to enter the replacement string

■■ The static text control, which labels the preceding control

■■ The Replace pushbutton

■■ The Replace All pushbutton

Let’s look at the listings to make setting up the project a bit easier. Listing X2.19 shows
the contents of the RWDLG3.DEF definition file. Listing X2.20 shows the source
code for the RWDLG3.H header file. Listing X2.21 shows the script of the
RWDLG3.RC resource file. Listing X2.22 shows the source code for the
RWDLG3.CPP implementation file.

Prepare the files RWDLG3.DEF, RWDLG3.H, and RWDLG3.CPP by typing the
contents shown in their respective listings. By contrast, type in only the #include
directive and the menu resource in the RWDLG3.RC; do not type the dialog-box
resources. Create the new RWDLG3 project and include the above files. Now you are
ready to invoke the Resource Workshop.

Use the Resource Workshop to create the resource IDD_FIND_DLG. (This resource starts
out with the default name DIALOG_1, which you need to change.) Create a Windows
dialog box with the buttons located near the bottom edge. The Dialog edit brings up
the initial dialog box with the default set of buttons OK, Cancel, and Help. Select the
OK button and make its caption Find Next.

Create the new Find dialog box with the Modal frame, Pop-up, Visible, Caption, and
System menu styles. The caption of the dialog box is Find. The dialog box has controls
that were mentioned earlier. Figure X2.15 shows a sample session with the Dialog
editor while creating the Find dialog box. Use this figure to guide you in placing the
various controls.

The process of creating the preceding controls involves selecting them from the Tools
palette and then drawing them. You can use the Copy and Paste commands (in the
Edit menu) to create additional check boxes and radio buttons. You will most likely
need to use the Alignment palette to align each set of these controls in the same
column. Use the default setting for the group boxes, check boxes, and radio buttons.
In the case of the latter two kinds of controls, the default setting enables automatic
checking and selection of the controls.



697

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

Figure X2.15. A sample session with the Dialog editor while creating the Find dialog
box.

When you are finished with the Find dialog box, close the Dialog editor and move
on to create the Replace dialog-box resource. This new resource has the ID of
IDD_REPLACE_DLG and the caption Replace. Make this new dialog box a Borland-style
dialog box, with the Modal frame, Pop-up, Visible, Caption, and System menu styles.
The dialog box has controls that were mentioned earlier. Figure X2.16 shows a sample
session with the Dialog editor while creating the Replace dialog box. Use this figure
to guide you in placing the various controls. Include the Borland dips inside the dialog
box and inside the group boxes.

When you are done, save the dialog-box resources (by saving the project). Compile
and run the program. Invoke the Find… command in the Search menu to bring up
the Find dialog box. Experiment with clicking the check boxes, radio buttons, and
Find Next button. Notice that the dialog box selects only one radio button at a time.
Also, type text in the edit box control. When you are done, click the Cancel
pushbutton to close the dialog box. Invoke the Replace… command to bring up the
Replace dialog box. Experiment with this Borland-style dialog box as you did with the
Find dialog box. When you are done, click the Cancel pushbutton to close the dialog
box. Figures X2.17 and X2.18 show sessions with the RWDLG3.EXE program.



698

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

Figure X2.16. A sample session with the Dialog editor while creating the Replace
dialog box.

Figure X2.17. A sample session with the RWDLG3.EXE program showing the Find
dialog box.



699

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

Type

Type

Figure X2.18. A sample session with the RWDLG3.EXE program showing the
Replace dialog box.

Listing X2.19. The contents of the RWDLG3.DEF
definition file.

 1:  NAME         RwMenu3
 2:  DESCRIPTION  ‘An OWL Windows Application’
 3:  EXETYPE      WINDOWS
 4:  CODE         PRELOAD MOVEABLE DISCARDABLE
 5:  DATA         PRELOAD MOVEABLE MULTIPLE
 6:  HEAPSIZE     1024
 7:  STACKSIZE    8192

Listing X2.20. The source code for the RWDLG3.H
header file.

 1:  #define IDC_FIND_BOX        100
 2:  #define IDC_OPTIONS_GRP     101
 3:  #define IDC_WHOLE_CHK       102
 4:  #define IDC_CASE_CHK        103
 5:  #define IDC_REPLACE_BOX     104
 6:  #define IDC_UP_RBT          105

continues



700

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

Type

 7:  #define IDC_FIND_BTN        106
 8:  #define IDC_REPLACE_BTN     107
 9:  #define IDC_WHOLEWORD_CHK   108
10:  #define IDC_CASESENSE_CHK   109
11:  #define IDC_CHECKBOX2       110
12:  #define IDC_DIRECTION_GRP   111
13:  #define IDC_PROMPT_CHK      112
14:  #define IDC_DOWN_RBT        113
15:  #define IDC_ALL_RBT         114
16:  #define IDC_DIRECTIONS_GRP  115
17:  #define IDC_REPLACEALL_BTN  116
18:  #define CM_FIND             10
19:  #define CM_REPLACE          11
20:  #define EXITMENU            200
21:  #define IDD_FIND_DLG        301
22:  #define IDD_REPLACE_DLG     302

Listing X2.21. The script of the RWDLG3.RC
resource file.

 1:  #include <windows.h>
 2:  #include <owl\window.rh>
 3:  #include “rwdlg3.h”
 4:
 5:  EXITMENU MENU
 6:  {
 7:   MENUITEM “&Exit”, CM_EXIT
 8:   POPUP “&Search”
 9:   {
10:     MENUITEM “&Find...”, CM_FIND
11:     MENUITEM “&Replace...”, CM_REPLACE
12:   }
13:  }
14:
15:  IDD_FIND_DLG DIALOG 21, -129, 194, 199
16:  STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE |
17:        WS_CAPTION | WS_SYSMENU
18:  CAPTION “Find”
19:  FONT 8, “MS Sans Serif”
20:  {
21:   CONTROL “Find string”, IDC_FIND_BOX, “EDIT”, ES_AUTOHSCROLL |
22:           WS_BORDER | WS_TABSTOP, 10, 19, 155, 22
23:   LTEXT “Find what:”, -1, 9, 4, 51, 13
24:   DEFPUSHBUTTON “&Find Next”, IDC_FIND_BTN, 143, 56, 41, 15
25:   PUSHBUTTON “Cancel”, IDCANCEL, 143, 84, 41, 15
26:   PUSHBUTTON “&Help”, IDHELP, 143, 111, 41, 15
27:   GROUPBOX “ Options “, IDC_OPTIONS_GRP, 14, 47, 80, 64,
28:            BS_GROUPBOX

Listing X2.20. continued



701

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

29:   CHECKBOX “&Whole word”, IDC_WHOLEWORD_CHK, 20, 76, 60, 12,
30:             BS_AUTOCHECKBOX | WS_TABSTOP
31:   CHECKBOX “&Prompt”, IDC_PROMPT_CHK, 20, 92, 60, 12,
32:             BS_AUTOCHECKBOX | WS_TABSTOP
33:   CHECKBOX “&Case sensitive”, IDC_CHECKBOX2, 20, 60, 60, 12,
34:             BS_AUTOCHECKBOX | WS_TABSTOP
35:   GROUPBOX “ Direction “, IDC_DIRECTION_GRP, 16, 118, 86, 73,
36:            BS_GROUPBOX
37:   CONTROL “&Forward”, IDC_DOWN_RBT, “BUTTON”, BS_AUTORADIOBUTTON,
38:            26, 135, 50, 15
39:   CONTROL “&Backward”, IDC_DOWN_RBT, “BUTTON”, BS_AUTORADIOBUTTON,
40:            26, 150, 50, 15
41:   CONTROL “&Entire”, IDC_ALL_RBT, “BUTTON”, BS_AUTORADIOBUTTON,
42:            26, 166, 50, 15
43:  }
44:
45:  IDD_REPLACE_DLG DIALOG 6, 15, 236, 195
46:  STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE |
47:        WS_CAPTION | WS_SYSMENU
48:  CLASS “bordlg”
49:  CAPTION “Replace”
50:  FONT 8, “MS Sans Serif”
51:  {
52:   CONTROL “Replace &All”, IDC_REPLACEALL_BTN, “BorBtn”,
53:           BS_DEFPUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_TABSTOP,
54:           187, 92, 37, 25
55:   CONTROL “”, IDCANCEL, “BorBtn”, BS_PUSHBUTTON | WS_CHILD |
56:           WS_VISIBLE | WS_TABSTOP, 187, 124, 37, 25
57:   CONTROL “”, IDHELP, “BorBtn”, BS_PUSHBUTTON | WS_CHILD |
58:           WS_VISIBLE | WS_TABSTOP, 187, 156, 37, 25
59:   CONTROL “&Find Next”, IDC_FIND_BTN, “BorBtn”, BS_PUSHBUTTON |
60:           WS_CHILD | WS_VISIBLE | WS_TABSTOP, 187, 28, 37, 25
61:   CONTROL “&Replace”, IDC_REPLACE_BTN, “BorBtn”, BS_PUSHBUTTON |
62:           WS_CHILD | WS_VISIBLE | WS_TABSTOP, 187, 60, 37, 25
63:   CONTROL “Find what:”, -1, “BorStatic”, SS_LEFT | WS_CHILD |
64:           WS_VISIBLE | WS_GROUP, 6, 7, 73, 10
65:   CONTROL “Replace with:”, -1, “BorStatic”, SS_LEFT | WS_CHILD |
66:            WS_VISIBLE | WS_GROUP, 6, 46, 73, 10
67:   CONTROL “Find string”, IDC_FIND_BOX, “EDIT”, ES_AUTOHSCROLL |
68:           WS_BORDER | WS_TABSTOP, 6, 23, 133, 16
69:   CONTROL “Replace string”, IDC_REPLACE_BOX, “EDIT”,
70:           ES_AUTOHSCROLL | WS_BORDER | WS_TABSTOP, 6, 65, 133, 16
71:   GROUPBOX “ Options”, IDC_OPTIONS_GRP, 13, 98, 74, 82, BS_GROUPBOX
72:   CHECKBOX “&Whole word”, IDC_WHOLE_CHK, 19, 117, 61, 12,
73:            BS_AUTOCHECKBOX | WS_TABSTOP
74:   CHECKBOX “&Case sensitive”, IDC_CASE_CHK, 19, 140, 61, 12,
75:             BS_AUTOCHECKBOX | WS_TABSTOP
76:   CHECKBOX “&Prompt”, IDC_PROMPT_CHK, 18, 161, 61, 12,
77:            BS_AUTOCHECKBOX | WS_TABSTOP
78:   GROUPBOX “ Directions”, IDC_DIRECTIONS_GRP, 98, 99, 74, 82,
79:            BS_GROUPBOX

continues



702

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

Type

80:   CONTROL “&Forward”, IDC_DOWN_RBT, “BorRadio”,
81:           BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE | WS_TABSTOP,
82:           106, 115, 59, 12
83:   CONTROL “&Backward”, IDC_UP_RBT, “BorRadio”, BS_AUTORADIOBUTTON |
84:           WS_CHILD | WS_VISIBLE | WS_TABSTOP, 106, 139, 59, 12
85:   CONTROL “&Entire”, IDC_ALL_RBT, “BorRadio”, BS_AUTORADIOBUTTON |
86:           WS_CHILD | WS_VISIBLE | WS_TABSTOP, 105, 161, 59, 12
87:   CONTROL “”, -1, “BorShade”, BSS_GROUP | BSS_CAPTION | BSS_LEFT |
88:           WS_CHILD | WS_VISIBLE, 2, 3, 231, 187
89:   CONTROL “”, -1, “BorShade”, BSS_GROUP | BSS_CAPTION | BSS_LEFT |
90:           WS_CHILD | WS_VISIBLE, 17, 108, 68, 69
91:   CONTROL “”, -1, “BorShade”, BSS_GROUP | BSS_CAPTION | BSS_LEFT |
92:           WS_CHILD | WS_VISIBLE, 101, 108, 69, 69
93:  }

Listing X2.22. The source code for the RWDLG3.CPP
implementation file.

 1:  /*
 2:    Program that tests dialog resources with grouped controls
 3:  */
 4:
 5:  #include <owl\applicat.h>
 6:  #include <owl\framewin.h>
 7:  #include <owl\dialog.h>
 8:  #include “rwdlg3.h”
 9:
10:  // declare the custom application class as
11:  // a subclass of TApplication
12:
13:  class TWinApp : public TApplication
14:  {
15:  public:
16:    TWinApp() : TApplication() {}
17:
18:  protected:
19:    virtual void InitMainWindow();
20:  };
21:
22:  // expand the functionality of TWindow by deriving class
     // TMainWindow
23:  class TMainWindow : public TWindow
24:  {
25:   public:
26:     TMainWindow() : TWindow(0, 0, 0) {}
27:

Listing X2.21. continued



703

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

28:   protected:
29:
30:     // handle the Find command
31:     void CMFind();
32:
33:     // handle the Replace command
34:     void CMReplace();
35:
36:     // handle confirming closing the window
37:     virtual BOOL CanClose();
38:
39:     // declare the response table
40:     DECLARE_RESPONSE_TABLE(TMainWindow);
41:
42:  };
43:
44:  DEFINE_RESPONSE_TABLE1(TMainWindow, TWindow)
45:    EV_COMMAND(CM_FIND, CMFind),
46:    EV_COMMAND(CM_REPLACE, CMReplace),
47:  END_RESPONSE_TABLE;
48:
49:  void TMainWindow::CMFind()
50:  {
51:    TDialog* pDlg = new TDialog(this, TResID(IDD_FIND_DLG));
52:
53:    pDlg->Execute();
54:  }
55:
56:  void TMainWindow::CMReplace()
57:  {
58:    TDialog* pDlg = new TDialog(this, TResID(IDD_REPLACE_DLG));
59:
60:    pDlg->Execute();
61:  }
62:
63:  BOOL TMainWindow::CanClose()
64:  {
65:    return MessageBox(“Want to close this application?”,
66:                      “Query”, MB_YESNO | MB_ICONQUESTION) == IDYES;
67:  }
68:
69:  void TWinApp::InitMainWindow()
70:  {
71:    MainWindow = new TFrameWindow(0,
72:                      “Grouped Controls Tester”,
73:                      new TMainWindow);
74:    // load the menu resource
75:    MainWindow->AssignMenu(TResID(EXITMENU));
76:  EnableVWCC(); // enable Borland controls
77:  }

continues



704

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

78:  int OwlMain(int /* argc */, char** /*argv[] */)
79:  {
80:    TWinApp app;
81:    return app.Run();
82:  }

Listing X2.20 shows the RWDLG3.H header file, which contains the defini-
tions of the identifiers for the dialog box, its controls, and the menu resources.

Listing X2.21 contains the RWDLG3.RC resource file, which contains the
dialog box and menu resources. The dialog box resource IDD_FIND_DLG contains the
resource statements for the various controls. The dialog box resource IDD_REPLACE_DLG
is similar to the IDD_FIND_DLG dialog box resource. Notice the following new
declarations in the IDD_REPLACE_DLG dialog box resources:

1. The CLASS “borldlg” statement specifies that the dialog box is a Borland-
style dialog box.

2. The static text controls are of the type BorStatic.

3. The pushbutton controls are of the type BorBtn.

4. The radio button controls are of type BorRadio.

These BorXXXX control types support the various Borland controls.

Listing X2.22 shows the source code for the implementation file RWDLG3.CPP.
The file declares the application class, TWinApp, and the main window class, TMainWindow.
The most relevant member functions of the latter class are CMFind and CMReplace,
which respond, respectively, to the CM_FIND and CM_REPLACE Windows command
messages sent by the commands Find… and Replace….

The member function CMFind (defined in lines 49 to 54) creates a dynamic instance
of the dialog class TDialog and specifies the dialog-box resource IDD_FIND_DLG. The
function then invokes this dialog box by sending the C++ message Execute to the
dialog box instance (accessed using the local pointer pDlg).

The member function CMReplace (defined in lines 56 to 61) creates a dynamic instance
of the dialog class TDialog and specifies the dialog-box resource IDD_REPLACE_DLG.
The function then invokes this dialog box by sending the C++ message Execute to the
dialog box instance (accessed using the local pointer pDlg).

Listing X2.22. continued

Analysis



705

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

Creating a Fully Operational
Dialog Box

The mock dialog boxes that we presented in the preceding two sections lack the
interaction you expect from dialog boxes. If you have grown somewhat disappointed
(or just completely bored), we have some good news for you—this section presents a
simple, yet fully functional dialog box.

The next project, RWDLG4, presents a dialog box that supports a command-line,
oriented floating-point calculator that contains the following controls:

■■ The Operand 1 edit box, in which you type the first operand.

■■ The Operator edit box, in which you type an operator. The program
supports the operators +, –, /, *, and ^ (raising to powers).

■■ The Operand 2 edit box, in which you type the second operand.

■■ The Result edit box, which displays the results of a mathematical operation.
This control has the read-only style.

■■ The Error Message edit box, which displays any error messages. This control
has the read-only style.

■■ The Calc pushbutton, which executes the sought operation using the
operands you have entered in the two operands edit boxes.

■■ The Exit pushbutton, which closes the dialog box.

■■ A set of static text controls, which label the preceding edit-box controls.

Create the project file and the calculator resource dialog box (with an ID of
IDD_CALC_DLG) in a manner similar to the steps mentioned in the preceding two
sections. Figure X2.19 shows a sample session with the RWMENU4.EXE program.
Use this figure to guide you in creating the calculator dialog-box resource.

Compile and run the program. Click the Calc menu to invoke the operational
command-oriented calculator dialog box. Enter valid operands and the operator in
their respective edit boxes and click the Calc pushbutton. Observe the result in the
read-only Result edit box. If you enter an invalid operator or attempt to divide by zero,
the dialog box displays an error message in the read-only Error Message edit box.
When you are finished experimenting with the calculator dialog box, click the Exit
button.



706

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

Type

Listing X2.23 shows the contents of the RWDLG4.DEF definition file. Listing X2.24
shows the source code for the RWDLG4.H header file. Listing X2.25 shows the script
of the RWDLG4.RC resource file. Listing X2.26 shows the source code for the
RWDLG4.CPP implementation file.

Figure X2.19. A sample session with the RWDLG4.EXE program.

Listing X2.23. The contents of the RWDLG4.DEF
definition file.

  1:  NAME         RwDlg4
  2:  DESCRIPTION  ‘An OWL Windows Application’
  3:  EXETYPE      WINDOWS
  4:  CODE         PRELOAD MOVEABLE DISCARDABLE
  5:  DATA         PRELOAD MOVEABLE MULTIPLE
  6:  HEAPSIZE     1024
  7:  STACKSIZE    8192



707

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

Type

Type Listing X2.24. The source code for the RWDLG4.H
header file.

  1:  #define IDC_OPERAND1_BOX 100
  2:  #define IDC_OPERATOR_BOX 101
  3:  #define IDC_OPERAND2_BOX 102
  4:  #define IDC_RESULT_BOX   103
  5:  #define IDC_ERRMSG_BOX   104
  6:  #define IDC_CALC_BTN     105
  7:  #define CM_CALC          110
  8:  #define EXITMENU         201
  9:  #define IDD_CALC_DLG     202

Listing X2.25. The script of the RWDLG4.RC resource
file.

 1:  #include <windows.h>
 2:  #include <owl\window.rh>
 3:  #include “rwdlg4.h”
 4:
 5:  EXITMENU MENU
 6:  {
 7:   MENUITEM “&Exit”, CM_EXIT
 8:   MENUITEM “&Calc”, CM_CALC
 9:  }
10:
11:  IDD_CALC_DLG DIALOG 20, 100, 335, 133
12:  STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION |
13:        WS_SYSMENU
14:  CAPTION “Command-Oriented Calculator”
15:  FONT 8, “MS Sans Serif”
16:  {
17:   DEFPUSHBUTTON “&Calc”, IDC_CALC_BTN, 197, 105, 50, 14
18:   PUSHBUTTON “&Exit”, IDOK, 262, 105, 50, 14
19:   LTEXT “Operand 1”, -1, 13, 32, 58, 13
20:   LTEXT “Operator”, -1, 85, 32, 58, 13
21:   LTEXT “Operand 2”, -1, 168, 32, 58, 13
22:   LTEXT “Result”, -1, 250, 32, 58, 13
23:   EDITTEXT IDC_OPERAND1_BOX, 13, 51, 56, 14
24:   EDITTEXT IDC_OPERATOR_BOX, 86, 51, 56, 14
25:   EDITTEXT IDC_OPERAND2_BOX, 166, 51, 56, 14
26:   EDITTEXT IDC_RESULT_BOX, 247, 51, 56, 14, ES_READONLY |
27:            WS_BORDER | WS_TABSTOP
28:   LTEXT “Error Message”, -1, 13, 91, 74, 14
29:   EDITTEXT IDC_ERRMSG_BOX, 14, 105, 171, 14, ES_READONLY |
30:            WS_BORDER | WS_TABSTOP
31:  }



708

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

Type Listing X2.26. The source code for the RWDLG4.CPP
implementation file.

  1:  /*
  2:    Program to test the resources for the static text, edit box,
  3:    and push button controls.
  4:    The program uses these controls to implement a command-line
  5:    oriented calculator application (COCA)
  6:  */
  7:
  8:  #include <owl\applicat.h>
  9:  #include <owl\framewin.h>
 10:  #include <owl\dialog.h>
 11:  #include <owl\window.rh>
 12:  #include “rwdlg4.h”
 13:  #include <stdlib.h>
 14:  #include <stdio.h>
 15:  #include <math.h>
 16:  #include <string.h>
 17:
 18:  const MaxEditLen = 40;
 19:
 20:  // declare the custom application class as
 21:  // a subclass of TApplication
 22:  class TWinApp : public TApplication
 23:  {
 24:  public:
 25:    TWinApp() : TApplication() {}
 26:
 27:  protected:
 28:    virtual void InitMainWindow();
 29:  };
 30:
 31:  // expand the functionality of TWindow by
 32:  // deriving class TMainWindow
 33:  class TMainWindow : public TWindow
 34:  {
 35:  public:
 36:
 37:    TMainWindow() : TWindow(0, 0, 0) {}
 38:
 39:  protected:
 40:    //---------------- member functions ------------------
 41:
 42:    // handle Calc command
 43:    void CMCalc();
 44:
 45:    void CMExit()
 46:      { Parent->SendMessage(WM_CLOSE); }
 47:



709

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

 48:    // handle closing the window
 49:    virtual BOOL CanClose();
 50:
 51:    // declare the message map macro
 52:    DECLARE_RESPONSE_TABLE(TMainWindow);
 53:
 54:  };
 55:
 56:  class TCalcDialog : public TDialog
 57:  {
 58:  public:
 59:
 60:    TCalcDialog(TWindow* parent, TResID resID) :
 61:       TWindow(0, 0, 0), TDialog(parent, resID) {}
 62:
 63:  protected:
 64:
 65:    // math error flag
 66:    BOOL InError;
 67:
 68:    //------------------- member functions --------------------
 69:
 70:    // handle the calculation
 71:    void HandleCalcBtn();
 72:
 73:    // declare the message map macro
 74:    DECLARE_RESPONSE_TABLE(TCalcDialog);
 75:  };
 76:
 77:  DEFINE_RESPONSE_TABLE1(TMainWindow, TWindow)
 78:    EV_COMMAND(CM_CALC, CMCalc),
 79:  END_RESPONSE_TABLE;
 80:
 81:
 82:  DEFINE_RESPONSE_TABLE1(TCalcDialog, TDialog)
 83:    EV_COMMAND(IDC_CALC_BTN, HandleCalcBtn),
 84:  END_RESPONSE_TABLE;
 85:
 86:  void TCalcDialog::HandleCalcBtn()
 87:  {
 88:    double x, y, z;
 89:    char opStr[MaxEditLen+1];
 90:    char s[MaxEditLen+1];
 91:
 92:    // obtain the string in the Operand1 edit box
 93:    GetDlgItemText(IDC_OPERAND1_BOX, s, MaxEditLen);
 94:    // convert the string in the edit box
 95:    x = atof(s);
 96:

continues



710

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓

 97:    // obtain the string in the Operand2 edit box
 98:    GetDlgItemText(IDC_OPERAND2_BOX, s, MaxEditLen);
 99:    // convert the string in the edit box
100:    y = atof(s);
101:
102:    // obtain the string in the Operator edit box
103:    GetDlgItemText(IDC_OPERATOR_BOX, opStr, MaxEditLen);
104:
105:    // clear the error message box
106:    SetDlgItemText(IDC_ERRMSG_BOX, “”);
107:    InError = FALSE;
108:
109:    // determine the requested operation
110:    if (strcmp(opStr, “+”) == 0)
111:      z = x + y;
112:    else if (strcmp(opStr, “-”) == 0)
113:      z = x - y;
114:    else if (strcmp(opStr, “*”) == 0)
115:      z = x * y;
116:    else if (strcmp(opStr, “/”) == 0) {
117:      if (y != 0)
118:           z = x / y;
119:      else {
120:        z = 0;
121:        InError = TRUE;
122:        SetDlgItemText(IDC_ERRMSG_BOX, “Division-by-zero error”);
123:      }
124:    }
125:    else if (strcmp(opStr, “^”) == 0) {
126:      if (x > 0)
127:        z = exp(y * log(x));
128:      else {
129:        InError = TRUE;
130:           SetDlgItemText(IDC_ERRMSG_BOX,
131:             “Cannot raise the power of a negative number”);
132:      }
133:    }
134:    else {
135:      InError = TRUE;
136:      SetDlgItemText(IDC_ERRMSG_BOX, “Invalid operator”);
137:    }
138:    // display the result if no error has occurred
139:    if (!InError) {
140:      sprintf(s, “%g”, z);
141:      SetDlgItemText(IDC_RESULT_BOX, s);
142:    }
143:  }
144:

Listing X2.26. continued



711

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

145:  void TMainWindow::CMCalc()
146:  {
147:    TCalcDialog* pDlg = new TCalcDialog(this, TResID(IDD_CALC_DLG));
148:    pDlg->Execute();
149:  }
150:
151:  BOOL TMainWindow::CanClose()
152:  {
153:    return MessageBox(“Want to close this application?”,
154:                      “Query”, MB_YESNO | MB_ICONQUESTION) == IDYES;
155:  }
156:
157:  void TWinApp::InitMainWindow()
158:  {
159:    MainWindow = new TFrameWindow(0,
160:            “Command-Oriented Calculator Application”,
161:            new TMainWindow);
162:    // load the menu resource
163:    MainWindow->AssignMenu(TResID(EXITMENU));
164:    // enable the keyboard handler
165:    MainWindow->EnableKBHandler();
166:  }
167:
168:  int OwlMain(int /* argc */, char** /*argv[] */)
169:  {
170:    TWinApp app;
171:    return app.Run();
172:  }

Listing X2.25 contains the script of the RWDLG4.RC resource file. This
resource file defines the IDD_CALC_DLG dialog box resource. This resource is a
Windows dialog-box resource that contains LTEXT, EDITTEXT, DEFPUSHBUTTON,

and PUSHBUTTON statements.

Listing X2.26 shows the source code for the RWDLG4.CPP implementation file.
This file declares the application class, TWinApp; the main window class, TMainWindow;
and the calculator dialog-box class, TCalcDialog.

The TMainWindow Class
The class TMainWindow declares a constructor and a set of member functions. The most
relevant member function is CMCalc. This function creates a dynamic instance of the
class TCalcDialog and specifies the dialog-box resource IDD_CALC_DLG. The function
pops up the dialog box by sending the C++ message Execute to the dialog-box
instance. The function accesses this instance using the local pointer pDlg.

Analysis



712

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓
The TCalcDialog Class

The class TCalcDialog, which is a descendant of the class TDialog, supports the
operations of the calculator dialog box. The class declares a constructor, the data
member InError, and the member function HandleCalcBtn. The constructor creates
the dialog-box instance by invoking the ancestors’ constructors (both classes TDialog
and TWindow). The member function HandleCalcBtn responds to the command
message sent by the Calc pushbutton. The member function performs the following
tasks:

■■ Obtains the first operand from the Operand 1 edit box. This task involves
the function GetDlgItemText, which obtains the text from the targeted
dialog-box control. The arguments for calling the function GetDlgItemText
are IDC_OPERAND1_BOX, s, and MaxEditLen. The function HandleCalcBtn also
uses the function atof to convert the contents of variable s into a double-
typed number, and stores that number in the local variable x.

■■ Obtains the second operand in a manner identical to the first one. The
function stores the actual (numeric) second operand in variable y.

■■ Copies the text in the Operator edit box into the local variable opStr. This
task also uses the function GetDlgItemText and specifies the control ID of
IDC_OPERATOR_BOX.

■■ Clears the error-message text box and sets the InError data member to
FALSE. Clearing the error-message edit box involves the function
SetDlgItemText, which sets the text for the targeted dialog-box control. The
arguments for calling the function SetDlgItemText are IDC_ERRMSG_BOX and
the empty literal string.

■■ Determines the requested operation by using a series of if and if-else
statements. The operators supported are +, –, *, /, and ^ (power.) If the
function detects an error, it sets the InError data member to TRUE and
displays a message in the error-message box.

■■ Displays the result in the Result box if the InError data member is FALSE.
The function first converts the result from double to a string and then writes
to the Result box using the function SetDlgItemText. The arguments for
calling function SetDlgItemText are IDC_RESULT_BOX and the local string
variable s.



713

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

Summary
This extra-credit chapter discussed visual programming using Resource Workshop.
You learned the following:

■■ An overview of Resource Workshop and its support for visual programming
techniques in creating various resources.

■■ The Resource Workshop supports accelerator, bitmap, cursor, dialog box,
font, icon, menu, string table, user-defined, rcdata, and VERSIONINFO
resources.

■■ The Resource Workshop works with various kinds of files, including the
.RC and .DLG script resource files; the .RES compiled resource files; the
.BMP, .ICO, .CUR, .FON, and .FNT bitmapped resource files; and the
.EXE, .DLL, .DRV binary files, which contain bound resources.

■■ The Resource Workshop supports creating menu resources using commands
and a special dialog box that enables you to define each menu item and fine-
tune its appearance and operations.

■■ The Resource Workshop enables you to create accelerator resources that are
either closely associated with a menu resource or more independent. These
resources differ only in the steps used to create them. The final script is of
the same nature.

■■ The Resource Workshop enables you to create and edit icon resources using
the Paint editor. This editor contains Colors and Tools palettes, which
enable you to select different drawing colors and tools.

■■ The chapter showed you how to create a message dialog-box resource and
use it to respond to the left and right mouse-button clicks. The example
used the custom message dialog box in place of the standard message dialog
box.

■■ The chapter showed you how to create resources for dialog boxes with
nontrivial interfaces. These interfaces include pushbuttons, edit boxes,
grouped boxes, check boxes, and radio buttons. The chapter illustrated these
controls in creating dialog boxes resources for a simple calculator, a Find
dialog box, and a Replace dialog box.



714

A   TYS Borland C++ 21 Days  #30483    nick  4-12-94   Credit 2  LP#2(sp 4/12 folio)

2 Extra Credit Bonus 2+✓
■■ The chapter showed you how to create a fully-functioning dialog box

resource. The example offered an operational command-oriented calculator
that supports the four basic math operations as well as exponentiation. The
example demonstrated the use of a dialog box class to animate the calculator
dialog box resource.

Q&A
Q How can I fine-tune the location and dimensions of related controls?

A The Resource Workshop provides the alignment tools for this task. Another
way to fine-tune the location and dimensions of related controls is by
massaging the numbers for the coordinates and dimensions that appear in
the .RC file. This action enables you to create sets of controls that are
perfectly aligned and have the exact dimensions you specify.

Q Does the Resource Workshop support custom Visual Basic controls
(also called VBX controls)?

A Yes. The Resource Workshop enables you to install VBX controls, adding
them to the palette.

Q How can I access and manipulate the text of an edit box defined in a
resource file?

A Use the function GetDlgItem to obtain the address of a control defined in a
dialog-box resource. This function works with all controls and not just edit
boxes. To store and recall text in an edit box, use the function
SetDlgItemText and GetDlgItemText.

Exercises
1. Use the Workshop Resource to create a dialog box with two sets of grouped

controls. The first set offers the choice between the MM/DD/YY, DD/MM/
YY, and YY/MM/DD time formats. The second group offers the choice
between AM/PM and 24-hour time format.

2. Modify the resources of the RWDLG4.EXE program to replace the edit
boxes for the operands, the operator, and the result with combo boxes that
act as history list boxes (which store the most recent input).



715

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

M
T

W
R

F
S

S✓+
Extra Credit 
Bonus

33
Using the
Application Expert



716

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓
The AppExpert utility is a versatile tool that helps you create project source code files
quickly and systematically. The utility generates functioning skeleton-code that you
can customize to meet the needs of your Windows applications. Thus, rather than
starting from scratch or from adapting similar existing code, you can rely on the
AppExpert utility to do much of the systematic work for you, freeing you to
concentrate on implementing the code that supports your application’s special
features. It’s like having a consultant inside Borland C++! A guide to using the
AppExpert along with the ClassExpert utility (which is covered in extra-credit
Chapter 5, “Using the ClassExpert”) is worthy of a small book—there is a lot to learn.
This chapter focuses on the following topics:

■■ Using the AppExpert utility

■■ Examining the different source code output that is generated by selecting
various project options in AppExpert

Note: The listings generated by AppExpert were edited to better fit the
pages in this book.

Using the AppExpert Utility
To use the AppExpert utility, invoke the AppExpert option in the Project menu. The
IDE brings up the project file-selection dialog box. This dialog box is very similar to
the Open A File dialog box. Select an .IDE filename or type in the name of a new .IDE
file and then click the OK button. If you type in the name of a new .IDE file, the
AppExpert utility creates a new project file. On the other hand, if you choose an
existing .IDE file, the AppExpert utility merely adds the new target to that project file.
Next, the AppExpert utility displays the AppExpert Application Generation Options
dialog box (called the AppExpert dialog box for short), as shown in Figure X3.1. This
dialog box has three topics: Application, Main Window, and MDI Child/View.

Note: It is important to know that the AppExpert dialog box hides and
shows different controls based on the currently selected topic or subtopic.



717

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

The Application Topic
Figure X3.1 shows the options of the Application topic. You will be working with
these options in this chapter and the following chapter to generate projects with the
AppExpert utility. The options of the Application topic are as follows:

■■ The choice between an application that supports SDI or MDI child
windows

■■ The use of document and view classes in the text editor

■■ The inclusion of a speed bar

■■ The inclusion of a status line

■■ The support for drag-and-drop features

■■ The support for printing and print-previewing features

Figure X3.1. The AppExpert Application Generation Options dialog box.

If you click the + sign located to the left of the Application topic (or double-click the
Application topic itself), you expand the Application subtopics. Figure X3.2 shows
the options offered by the Application subtopics:

■■ Basic Options

■■ Advanced Options



718

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓
■■ Code Gen Control

■■ Admin Options

The Basic Options Subtopic
Figure X3.2 shows the options offered by the Basic Options subtopic. The option
choices include the following:

■■ The name of the target

■■ The base directory for the target

■■ The option to provide online help

■■ The name of the help file

The dialog box offers three edit box controls for you to enter the preceding
information. In addition, the dialog box shows a Browse pushbutton, which enables
you to invoke a dialog box to select a new base directory. As for the help file, the
AppExpert dialog box contains a check box that enables you to either support or
prevent the creation of the help file.

Figure X3.2. The AppExpert dialog box showing the Basic Options subtopic in the
Application topic.



719

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

The Advanced Options Subtopic
If you click the Advanced Options subtopic, the AppExpert dialog box changes to the
version that appears in Figure X3.3. There are two kinds of options in this subtopic:
startup and control style. The dialog box offers a set of radio buttons for the startup
options. These options are Normal, Minimized, and Maximized. The default
selection is the Normal setting. The dialog box offers a set of radio buttons for the
control-style options. These options are Windows, BWCC, and 3D. The default
option is the Windows setting. If you wish to use Borland custom control or the
Microsoft 3D controls, select the appropriate radio button.

Figure X3.3. The AppExpert dialog box showing the Advanced Options subtopic.

The Code Gen Control Subtopic
The Code Gen Control subtopic offers the options shown in Figure X3.4. When you
select this subtopic, the AppExpert dialog box displays the target name and the base
directory. In addition, the dialog box offers edit-box controls to select the following:

■■ The source directory

■■ The header directory

■■ The main source file



720

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓
■■ The main header file

■■ The application class

■■ The About dialog class

The dialog box offers browse buttons for the preceding source and header directory
options. In addition, the dialog box presents a frame with two radio buttons that
enable you to select between verbose or terse comments. The default setting enables
verbose comments.

Figure X3.4. The AppExpert dialog box showing the Code Generation Control
subtopic.

The Admin Options Subtopic
The Admin Options subtopic, shown in Figure X3.5, handles the administrative side
of the project. The AppExpert dialog box provides you with edit-box controls to enter
the following information:

■■ The version number. The default is 1.0.

■■ The copyright notice. The dialog box offers a default wording for the
copyright notice.



721

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

■■ The description. The default description is the target name.

■■ The name of the target author.

■■ The name of the company.

Figure X3.5. The AppExpert dialog box showing the Administration Options sub-
topic.

The Main Window Topic
The Main Window topic alters the AppExpert dialog box (see Figure X3.6) to offer
you options that set the window title and background. The dialog box also presents
a Background Color pushbutton for altering the background color.

The Main Window topic has the following subtopics:

■■ Basic Options

■■ SDI Client

■■ MDI Client



722

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓

Figure X3.6. The AppExpert dialog box showing the Main Window topic.

The Basic Options Subtopic
The Basic Options subtopic in the Main Window topic permits you to select the
window style. Figure X3.7 shows the options offered by this subtopic, as follows:

■■ Caption: Creates a single thin border and a title bar that can display a
caption.

■■ Border: Creates a single thin border that has no title bar.

■■ Max box: Adds a maximize button to the right side of the title bar that
belongs to the application’s main window.

■■ Min box: Adds a minimize button to the right side of the title bar that
belongs to the application’s main window.

■■ Vertical scroll: Includes a vertical scroll on the right side of the main win-
dow.

■■ Horizontal scroll: Includes a horizontal scroll on the bottom of the main
window.

■■ System menu: Includes the system-menu button located to the left side of
the title bar in the main window. The Caption option must be selected to
make this option available.



723

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

■■ Visible: Makes the main window visible.

■■ Disabled: Disables the main window.

■■ Thick frame: Displays the main window as a dialog box, with a double
border. Consequently, you cannot resize the main window.

■■ Clip siblings: Protects the sibling windows of the main window.

■■ Clip children: Ensures that the main window is not painted over by the
child windows.

Figure X3.7. The AppExpert dialog box showing the Basic Options subtopic in the
Main Window topic.

The SDI Client Subtopic
The SDI Client subtopic offers options that define the class, which in turn models the
client area of an SDI-compliant main window. These options are effective only if you
select the Single Document Interface option in the opening AppExpert dialog box.
Figure X3.8 shows the AppExpert dialog box displaying the SDI Client subtopic with
the following options:

■■ The drop-down combo box that enables you to select the Client/View class.

■■ The drop-down combo box that permits you to select the Document class.



724

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓
■■ The three edit boxes to enter the file-type filters. These controls accept the

file description, filters, and default extensions.

Figure X3.8. The AppExpert dialog box showing the SDI Client subtopic.

The MDI Client Subtopic
The MDI Client subtopic offers options to define the class that models the client area
of an MDI-compliant frame window. These options are effective only if you select the
Multiple Document Interface option in the opening AppExpert dialog box. Figure
X3.9 shows the AppExpert dialog box displaying the MDI Client subtopic with the
following options:

■■ The name of the MDI client window class

■■ The source (which we are calling implementation in this book, because we
mean source in a broad sense) filename

■■ The header filename

The MDI Child/View Topic
The MDI Child/View topic, shown in Figure X3.10, has options that enable you to
specify the following:



725

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

Figure X3.9. The AppExpert dialog box showing the MDI Client subtopic.

■■ The name of the MDI child-window class

■■ The source file that contains the implementation of the MDI child-window
class

■■ The header file that contains the declaration of the MDI child-window class

The AppExpert dialog box offers the Customize child and view pushbutton control,
which simply invokes the Basic Options subtopic that is discussed next.

The Basic Options Subtopic
The Basic Options subtopic offers options to define the class that models the client
area of an MDI child window. These options are effective only if you select the
Multiple Document Interface option in the opening AppExpert dialog box. Figure
X3.11 shows the AppExpert dialog box displaying the Basic Options subtopic with
the following options:

■■ The drop-down combo box that enables you to select the MDI Client/view
class.

■■ The drop-down combo box that enables you to select the Document class.

■■ The three edit boxes to enter the file-type filters. These controls accept the
file description, filters, and default extensions.



726

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓

Figure X3.10. The AppExpert dialog box showing the MDI Child/View topic.

Figure X3.11. The AppExpert dialog box showing the Basic Options subtopic in the
MDI Child/View topic.



727

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

Studying the AppExpert Output
The preceding section indicates that the AppExpert utility offers many options that
determine the kind of source code files to generate. In the next sections, we present
two different versions of SDI-compliant projects generated by altering the AppExpert
options. In the next extra-credit chapter, we present three different versions of MDI-
compliant projects created by changing the AppExpert options. Because the total
number of possible source-code listings is rather large, we will focus on a selection of
source-code files generated by AppExpert. Table X3.1 shows the SDI-compliant text-
editor projects that we generate using AppExpert, as well as the options influencing
them.

Note: Although the AppExpert creates a sizable amount of source code
very quickly, you should nonetheless study the output. Acquainting
yourself with the output enables you to quickly and efficiently customize
the AppExpert output. This approach shortens the overall process of
developing your applications. By contrast, not becoming familiar with the
emitted source code will cost you extra time in debugging your programs.

The ideal study of the source-code files generated by AppExpert would include
varying each of the AppExpert options, one at a time, and covering all of the possible
combinations. Because the total number of these combinations is relatively large, we
will examine the output source-code that is generated by sometimes changing two
options at a time. In addition, we will select a total of seven output cases in both this
chapter and in the next one. In each case, the AppExpert generates a minimally
functioning text editor. Please do not interpret the words minimally functioning to
mean that it’s a real dud. In fact, the generated text editors offer an acceptable level
of operations, because the various OWL classes used in these editors support these
operations. We would like to point out that working with all the different combina-
tions is a good independent exercise. We suggest that you experiment with these
various combinations to see what kind of program each combination generates.

Note: Keep in mind the following points regarding the source-code files
presented both in this chapter and in the next one:



728

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓

1. The projects of Table X3.1 are generated by changing only the
options in the opening AppExpert dialog box. The other settings of
AppExpert use the default values. Changing these settings would
lead to an even greater variation in the different kinds of project files
generated by AppExpert.

2. Use a separate directory for each project.

3. The output source code listings have been edited to fit the page
layout of this book, as well as to shorten the listings.

Table X3.1. The various projects generated by AppExpert for this
chapter’s case studies.

Project SDI? Doc/View? SpeedBar? Status Drag Print?
Line? & Drop?

XPED1 Yes No No No No No

XPED2 Yes No Yes Yes No No

The XPED1 Project
The first project, the ground-zero project, is XPED1. This project generates an SDI-
compliant text editor with no speed bar, no status bar, no drag-and-drop feature
support, and no printing-related features. In other words, the XPED1 project is the
simplest text editor generated by AppExpert.

When you invoke the AppExpert utility from the IDE Project menu, select the SDI
option and turn off the other options in the opening dialog box of AppExpert. In
addition, select the Code Gen Control subtopic (in the Application topic of the
AppExpert dialog box) to make the application and dialog box class names XpEd1App
and XpEd1AboutDlg, respectively. The utility generates the following set of files. (The
date/time stamps reflect the file instances generated in our system.)

Filename Size Date/Time Stamp

XPED1    APX 10,204 02-12-94 9:40a
XPED1APP RC 12,971 02-12-94 9:40a



729

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

Type

XPED1APP RH 4,236 02-12-94 9:40a
XPED1APP DEF 505 02-12-94 9:40a
XPED1APP CPP 3,923 02-12-94 9:40a
XPED1APP H 1,333 02-12-94 9:40a
XPED1ABD CPP 4,735 02-12-94 9:40a
XPED1ABD H 900 02-12-94 9:40a
APPLSDI  ICO 1,086 02-12-94 9:40a
XPED1    IDE 53,180 02-12-94 9:42a

The preceding files contains icon, header, definition, resource header, resource,
implementation, and IDE files. Let’s look at the .DEF, .H. .RH. .RC, and .CPP files.
Listing X3.1 shows the contents of the XPED1APP.DEF definition file. The .DEF
definition files for the other projects are very similar and differ mainly in the name of
the project. Because showing the other .DEF files will not reveal any significant new
information, the XPED1APP.DEF serves here as a representative sample for the other
XPEDxAPP.DEF files.

Build the XPED1 project and experiment with its text-editing features.

Listing X3.1. The contents of the XPED1APP.DEF
definition file.

1:   ;------------------------------------------------
2:   ;   Main xped1
3:   ;
4:   ;   Copyright  1993. All Rights Reserved.
5:   ;
6:   ;   SUBSYSTEM:    xped1.exe Module Definition File
7:   ;   FILE:         xped1app.def
8:   ;   AUTHOR:
9:   ;
10:  ;------------------------------------------------
11:
12:  NAME xped1
13:
14:  DESCRIPTION ‘xped1 Application - Copyright  1993. All Rights
                  Reserved.’
15:  EXETYPE     WINDOWS
16:  CODE        PRELOAD MOVEABLE DISCARDABLE
17:  DATA        PRELOAD MOVEABLE MULTIPLE
18:  HEAPSIZE    4096
19:  STACKSIZE   8192



730

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓

Type Listing X3.2. The source code for the XPED1APP.RH
resource header file.

 1:   //#if !defined(__xped1app_rh)   // Sentry use file only if it’s
 2:                                    // not already included.
 3:   //#define __xped1app_rh
 4:
 5:   /*  Main xped1
 6:
 7:       Copyright  1993. All Rights Reserved.
 8:
 9:       SUBSYSTEM:    xped1.exe Application
 10:      FILE:         xped1app.h
 11:      AUTHOR:
 12:
 13:
 14:      OVERVIEW
 15:      ========
 16:      Constant definitions for all resources defined in xped1app.rc.
 17:  */
 18:
 19:
 20:  //
 21:  // IDHELP BorButton for BWCC dialogs.
 22:  //
 23:  #define IDHELP                  998       // Id of help button
 24:
 25:
 26:  //
 27:  // Application specific definitions:
 28:  //
 29:  #define IDI_SDIAPPLICATION      1001      // Application icon
 30:
 31:  #define SDI_MENU                100       // Menu resource ID
 32:                                            // and Accelerator IDs
 33:
 34:  //
 35:  // CM_FILEnnnn commands (include\owl\editfile.rh except for
 36:  // CM_FILEPRINTPREVIEW)
 37:  //
 38:  #define CM_FILENEW              24331           // SDI New
 39:  #define CM_FILEOPEN             24332           // SDI Open
 40:  #define CM_FILECLOSE            24339
 41:  #define CM_FILESAVE             24333
 42:  #define CM_FILESAVEAS           24334
 43:
 44:
 45:  //
 46:  // Window commands (include\owl\windows.rh)
 47:  //
 48:  #define CM_EXIT                 24310



731

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

 49:
 50:
 51:  //
 52:  // CM_EDITnnnn commands (include\owl\edit.rh)
 53:  //
 54:  #define CM_EDITUNDO             24321
 55:  #define CM_EDITCUT              24322
 56:  #define CM_EDITCOPY             24323
 57:  #define CM_EDITPASTE            24324
 58:  #define CM_EDITDELETE           24325
 59:  #define CM_EDITCLEAR            24326
 60:
 61:
 62:  //
 63:  // Search menu commands (include\owl\editsear.rh)
 64:  //
 65:  #define CM_EDITFIND             24351
 66:  #define CM_EDITREPLACE          24352
 67:  #define CM_EDITFINDNEXT         24353
 68:
 69:
 70:  //
 71:  // Help menu commands.
 72:  //
 73:  #define CM_HELPABOUT            24389
 74:
 75:
 76:  //
 77:  // About Dialogs
 78:  //
 79:  #define IDD_ABOUT               22000
 80:  #define IDC_VERSION             22001
 81:  #define IDC_COPYRIGHT           22002
 82:  #define IDC_DEBUG               22003
 83:
 84:  //
 85:  // OWL defined strings
 86:  //
 87:
 88:  // Statusbar
 89:  #define IDS_MODES               32530
 90:
 91:  // EditFile
 92:  #define IDS_UNTITLED            32550
 93:  #define IDS_UNABLEREAD          32551
 94:  #define IDS_UNABLEWRITE         32552
 95:  #define IDS_FILECHANGED         32553
 96:  #define IDS_FILEFILTER          32554
 97:
 98:  // EditSearch

continues



732

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓

99:   #define IDS_CANNOTFIND          32540
100:
101:
102:  //
103:  // General & application exception messages
104:  // (include\owl\except.rh)
105:  //
106:  #define IDS_UNKNOWNEXCEPTION    32767
107:  #define IDS_OWLEXCEPTION        32766
108:  #define IDS_OKTORESUME          32765
109:  #define IDS_UNHANDLEDXMSG       32764
110:  #define IDS_UNKNOWNERROR        32763
111:  #define IDS_NOAPP               32762
112:  #define IDS_OUTOFMEMORY         32761
113:  #define IDS_INVALIDMODULE       32760
114:  #define IDS_INVALIDMAINWINDOW   32759
115:
116:  //
117:  // Owl 1 compatibility messages
118:  //
119:  #define IDS_INVALIDWINDOW       32756
120:  #define IDS_INVALIDCHILDWINDOW  32755
121:  #define IDS_INVALIDCLIENTWINDOW 32754
122:
123:  //
124:  // TXWindow messages
125:  //
126:  #define IDS_CLASSREGISTERFAIL   32749
127:  #define IDS_CHILDREGISTERFAIL   32748
128:  #define IDS_WINDOWCREATEFAIL    32747
129:  #define IDS_WINDOWEXECUTEFAIL   32746
130:  #define IDS_CHILDCREATEFAIL     32745
131:
132:  #define IDS_MENUFAILURE         32744
133:  #define IDS_VALIDATORSYNTAX     32743
134:  #define IDS_PRINTERERROR        32742
135:
136:  #define IDS_LAYOUTINCOMPLETE    32741
137:  #define IDS_LAYOUTBADRELWIN     32740
138:
139:  //
140:  // TXGdi messages
141:  //
142:  #define IDS_GDIFAILURE          32739
143:  #define IDS_GDIALLOCFAIL        32738
144:  #define IDS_GDICREATEFAIL       32737
145:  #define IDS_GDIRESLOADFAIL      32736
146:  #define IDS_GDIFILEREADFAIL     32735
147:  #define IDS_GDIDELETEFAIL       32734
148:  #define IDS_GDIDESTROYFAIL      32733

Listing X3.2. continued



733

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

149:  #define IDS_INVALIDDIBHANDLE    32732
150:
151:
152:  // TInputDialog DIALOG resource (include\owl\inputdia.rh)
153:  #define IDD_INPUTDIALOG         32514
154:  #define ID_PROMPT               4091
155:  #define ID_INPUT                4090
156:
157:
158:  // TSlider bitmaps (horizontal and vertical)
159:  // (include\owl\slider.rh)
160:  #define IDB_HSLIDERTHUMB        32000
161:  #define IDB_VSLIDERTHUMB        32001
162:
163:
164:  // Validation messages (include\owl\validate.rh)
165:  #define IDS_VALPXPCONFORM       32520
166:  #define IDS_VALINVALIDCHAR      32521
167:  #define IDS_VALNOTINRANGE       32522
168:  #define IDS_VALNOTINLIST        32523
169:
170:
171:  //#endif         // __xped1app_rh sentry.

Figure X3.12 shows a sample session with the XPED1.EXE application.

Figure X3.12. A sample session with the XPED1.EXE application.



734

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓

Type

Listing X3.2 shows the source code for the XPED1APP.RH resource header file.
The file contains the definitions of constants used to manage the following menu
commands and resources:

■■ The File menu options (lines 38 to 42)

■■ The Edit menu options (lines 54 to 59, and 65 to 67))

■■ The Help menu options (line 73)

■■ The About dialog box (lines 79 to 82)

■■ The edit file messages (lines 92 to 96)

■■ The general and application exception messages (lines 106 to 114)

■■ The GDI messages (lines 142 to 149)

■■ The input dialog box resources (lines 153 to 155)

■■ The slider bitmaps (lines 160 and 161)

■■ The validation messages (lines 165 to 168)

Listing X3.3. The source code for the XPED1APP.H
header file.

1:   #if !defined(__xped1app_h)    // Sentry, use file only if
2:                                 // it’s not already included.
3:   #define __xped1app_h
4:
5:   /*  Project xped1
6:
7:       Copyright  1993. All Rights Reserved.
8:
9:       SUBSYSTEM:    xped1.exe Application
10:      FILE:         xped1app.h
11:      AUTHOR:
12:
13:
14:      OVERVIEW
15:      ========
16:      Class definition for XpEd1App (TApplication).
17:  */
18:
19:
20:  #include <owl\owlpch.h>
21:  #pragma hdrstop
22:
23:  #include <owl\editfile.h>
24:  #include <owl\opensave.h>

Analysis



735

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

25:
26:  #include “xped1app.rh”            // Definition of all resources.
27:
28:
29:  //{{TApplication = XpEd1App}}
30:  class XpEd1App : public TApplication {
31:  private:
32:      TEditFile *Client;             // Client window for the frame.
33:      TOpenSaveDialog::TData FileData;   // Data to control open/
                                            // saveas
34:                                         // standard dialog.
35:
36:  public:
37:      XpEd1App ();
38:      virtual ~XpEd1App ();
39:
40:      void OpenFile (const char *fileName = 0);
41:  //{{XpEd1AppVIRTUAL_BEGIN}}
42:  public:
43:      virtual void InitMainWindow();
44:  //{{XpEd1AppVIRTUAL_END}}
45:
46:  //{{XpEd1AppRSP_TBL_BEGIN}}
47:  protected:
48:      void CmFileNew ();
49:      void CmFileOpen ();
50:      void CmFileClose ();
51:      void CmHelpAbout ();
52:  //{{XpEd1AppRSP_TBL_END}}
53:    DECLARE_RESPONSE_TABLE(XpEd1App);
54:  };    //{{XpEd1App}}
55:
56:
57:  #endif                                   // __xped1app_h sentry.

Listing X3.3 shows the source code for the XPED1APP.H header file. This file
declares the text-editor application class txted1App as a descendant of
TApplication. The class has public, protected, and private members. The public

members include the constructor, destructor, and member function InitMainWindow.
The protected members include the CmXXXX functions that respond to various menu
commands. The private members include the following:

■■ The data member Client (declared in line 32), which is a pointer to the
OWL class TEditFile. The class TEditFile models the client area for the
frame window.

Analysis



736

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓

Type

■■ The data member FileData (declared in line 33), an instance of class
TOpenSaveDialog::TData, which stores the data for the File Open and File
Save dialog boxes.

Listing X3.4. The source code for the XPED1ABD.H
header file.

1:   #if !defined(__xped1abd_h)      // Sentry, use file only if
2:                                   // it’s not already included.
3:   #define __xped1abd_h
4:
5:   /*  Project xped1
6:
7:       Copyright  1993. All Rights Reserved.
8:
9:       SUBSYSTEM:    xped1.exe Application
10:      FILE:         xped1abd.h
11:      AUTHOR:
12:
13:
14:      OVERVIEW
15:      ========
16:      Class definition for XpEd1AboutDlg (TDialog).
17:  */
18:
19:
20:  #include <owl\owlpch.h>
21:  #pragma hdrstop
22:
23:  #include “xped1app.rh”         // Definition of all resources.
24:
25:
26:  //{{TDialog = XpEd1AboutDlg}}
27:  class XpEd1AboutDlg : public TDialog {
28:  public:
29:      XpEd1AboutDlg (TWindow *parent, TResId resId = IDD_ABOUT,
30:                     TModule *module = 0);
31:      virtual ~XpEd1AboutDlg ();
32:
33:  //{{XpEd1AboutDlgVIRTUAL_BEGIN}}
34:  public:
35:      void SetupWindow ();
36:  //{{XpEd1AboutDlgVIRTUAL_END}}
37:  };    //{{XpEd1AboutDlg}}
38:
39:
40:  #endif                                  // __xped1abd_h sentry.



737

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

Type

Listing X3.4. shows the source code for the XPED1ABD.H header file. This
header file contains the declaration of the About dialog box class, txted1AboutDlg.
This class is a descendant of the class TDialog and declares a constructor,

destructor, and the member function SetupWindow. Because the other text-editor
projects use the same kind of About dialog box, the file XPED1ABD.H is represen-
tative of the other XPEDxABD.H header files. These files differ only in the name of
the dialog box class, which is derived from the project name.

Listing X3.5. The script for the XPED1APP.RC
resource file.

 1:   /*  Main xped1
 2:
 3:       Copyright  1993. All Rights Reserved.
 4:
 5:       SUBSYSTEM:    xped1.exe Application
 6:       FILE:         xped1app.rc
 7:       AUTHOR:
 8:
 9:
 10:      OVERVIEW
 11:      ========
 12:      All resources defined here.
 13:  */
 14:
 15:  #if !defined(WORKSHOP_INVOKED)
 16:  #include <windows.h>
 17:  #endif
 18:  #include “xped1app.rh”
 19:
 20:  SDI_MENU MENU
 21:  BEGIN
 22:      POPUP “&File”
 23:      BEGIN
 24:          MENUITEM “&New”, CM_FILENEW
 25:          MENUITEM “&Open...”, CM_FILEOPEN
 26:          MENUITEM “&Close”, CM_FILECLOSE
 27:          MENUITEM SEPARATOR
 28:          MENUITEM “&Save”, CM_FILESAVE, GRAYED
 29:          MENUITEM “Save &As...”, CM_FILESAVEAS, GRAYED
 30:          MENUITEM SEPARATOR
 31:          MENUITEM “E&xit\tAlt+F4”, CM_EXIT
 32:      END
 33:
 34:      POPUP “&Edit”
 35:      BEGIN

Analysis

continues



738

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓

 36:          MENUITEM “&Undo\tAlt+BkSp”, CM_EDITUNDO, GRAYED
 37:          MENUITEM SEPARATOR
 38:          MENUITEM “Cu&t\tShift+Del”, CM_EDITCUT, GRAYED
 39:          MENUITEM “&Copy\tCtrl+Ins”, CM_EDITCOPY, GRAYED
 40:          MENUITEM “&Paste\tShift+Ins”, CM_EDITPASTE, GRAYED
 41:          MENUITEM SEPARATOR
 42:          MENUITEM “Clear &All\tCtrl+Del”, CM_EDITCLEAR, GRAYED
 43:          MENUITEM “&Delete\tDel”, CM_EDITDELETE, GRAYED
 44:      END
 45:
 46:      POPUP “&Search”
 47:      BEGIN
 48:          MENUITEM “&Find...”, CM_EDITFIND, GRAYED
 49:          MENUITEM “&Replace...”, CM_EDITREPLACE, GRAYED
 50:          MENUITEM “&Next\aF3”, CM_EDITFINDNEXT, GRAYED
 51:      END
 52:
 53:      POPUP “&Help”
 54:      BEGIN
 55:          MENUITEM “&About...”, CM_HELPABOUT
 56:      END
 57:
 58:  END
 59:
 60:
 61:  // Accelerator table for short-cut to menu commands.
 62:  // (include\owl\editfile.rc)
 63:  SDI_MENU ACCELERATORS
 64:  BEGIN
 65:    VK_DELETE, CM_EDITCUT, VIRTKEY, SHIFT
 66:    VK_INSERT, CM_EDITCOPY, VIRTKEY, CONTROL
 67:    VK_INSERT, CM_EDITPASTE, VIRTKEY, SHIFT
 68:    VK_DELETE, CM_EDITCLEAR, VIRTKEY, CONTROL
 69:    VK_BACK,   CM_EDITUNDO, VIRTKEY, ALT
 70:    VK_F3,     CM_EDITFINDNEXT, VIRTKEY
 71:  END
 72:
 73:
 74:  //
 75:  // Table of help hints displayed in the status bar.
 76:  //
 77:  STRINGTABLE
 78:  BEGIN
 79:      -1,                     “File/document operations”
 80:      CM_FILENEW,             “Creates a new window”
 81:      CM_FILEOPEN,            “Opens a window”
 82:      CM_FILECLOSE,           “Close this document”

Listing X3.5. continued



739

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

83:     CM_FILESAVE,     “Saves this document”
84:     CM_FILESAVEAS,   “Saves this document with a new name”
85:     CM_EXIT,         “Quits XpEd1App and prompts to save the documents”
86:     CM_EDITUNDO-1,   “Edit operations”
87:     CM_EDITUNDO,     “Reverses the last operation”
88:     CM_EDITCUT,      “Cuts the selection and puts it on the Clipboard”
89:     CM_EDITCOPY,     “Copies the selection and puts it on the Clipboard”
90:     CM_EDITPASTE,    “Inserts the clipboard contents at the insertion point”
91:     CM_EDITDELETE,   “Deletes the selection”
92:     CM_EDITCLEAR,    “Clear the document”
93:     CM_EDITFIND-1,   “Search/replace operations”
94:     CM_EDITFIND,     “Finds the specified text”
95:     CM_EDITREPLACE,  “Finds the specified text and changes it”
96:     CM_EDITFINDNEXT, “Finds the next match”
97:     CM_HELPABOUT-1,  “Access About”
98:     CM_HELPABOUT,    “About the xped1 application”
99:   END
100:
101:
102:  //
103:  // OWL string table
104:  //
105:
106:  // EditFile (include\owl\editfile.rc and include\owl\editsear.rc)
107:  STRINGTABLE LOADONCALL MOVEABLE DISCARDABLE
108:  BEGIN
109:    IDS_CANNOTFIND, “Cannot find “”%s””.”
110:    IDS_UNTITLED,   “Untitled”
111:    IDS_UNABLEREAD, “Unable to read file %s from disk.”
112:    IDS_UNABLEWRITE,“Unable to write file %s to disk.”
113:    IDS_FILECHANGED,“The text in the %s file has changed.\n\nDo you want to
                        save the changes?”
114:    IDS_FILEFILTER, “Text files (*.TXT)|*.TXT|AllFiles (*.*)|*.*|”
115:  END
116:
117:
118:  // Exception string resources (include\owl\except.rc)
119:  STRINGTABLE LOADONCALL MOVEABLE DISCARDABLE
120:  BEGIN
121:      IDS_OWLEXCEPTION,           “ObjectWindows Exception”
122:      IDS_UNHANDLEDXMSG,          “Unhandled Exception”
123:      IDS_OKTORESUME,             “OK to resume?”
124:      IDS_UNKNOWNEXCEPTION,       “Unknown exception”
125:
126:      IDS_UNKNOWNERROR,           “Unknown error”
127:      IDS_NOAPP,                  “No application object”
128:      IDS_OUTOFMEMORY,            “Out of memory”
129:      IDS_INVALIDMODULE,          “Invalid module specified for window”
130:      IDS_INVALIDMAINWINDOW,      “Invalid MainWindow”

continues



740

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓
Listing X3.5. continued

131:
132: IDS_INVALIDWINDOW,      “Invalid window %s”
133: IDS_INVALIDCHILDWINDOW, “Invalid child window %s”
134: IDS_INVALIDCLIENTWINDOW,“Invalid client window %s”
135:
136: IDS_CLASSREGISTERFAIL,  “Class registration fail for window %s”
137: IDS_CHILDREGISTERFAIL,  “Child class registration fail for window %s”
138: IDS_WINDOWCREATEFAIL,   “Create fail for window %s”
139: IDS_WINDOWEXECUTEFAIL,  “Execute fail for window %s”
140: IDS_CHILDCREATEFAIL,    “Child create fail for window %s”
141:
142: IDS_MENUFAILURE,        “Menu creation failure”
143: IDS_VALIDATORSYNTAX,    “Validator syntax error”
144: IDS_PRINTERERROR,       “Printer error”
145:
146: IDS_LAYOUTINCOMPLETE,   “Incomplete layout constraints specified in window %s”
147: IDS_LAYOUTBADRELWIN,    “Invalid relative window specified in layout
                              constraint in window %s”
148:
149: IDS_GDIFAILURE,         “GDI failure”
150: IDS_GDIALLOCFAIL,       “GDI allocate failure”
151: IDS_GDICREATEFAIL,      “GDI creation failure”
152: IDS_GDIRESLOADFAIL,     “GDI resource load failure”
153: IDS_GDIFILEREADFAIL,    “GDI file read failure”
154: IDS_GDIDELETEFAIL,      “GDI object %X delete failure”
155: IDS_GDIDESTROYFAIL,     “GDI object %X destroy failure”
156: IDS_INVALIDDIBHANDLE,   “Invalid DIB handle %X”
157:  END
158:
159:
160:  // General Window’s status bar messages. (include\owl\statusba.rc)
161:  STRINGTABLE
162:  BEGIN
163:      IDS_MODES                   “EXT|CAPS|NUM|SCRL|OVR|REC”
164:      SC_SIZE,                    “Changes the size of the window”
165:      SC_MOVE,                    “Moves the window to another position”
166:      SC_MINIMIZE,                “Reduces the window to an icon”
167:      SC_MAXIMIZE,                “Enlarges the window to it maximum size”
168:      SC_RESTORE,                 “Restores the window to its previous size”
169:      SC_CLOSE,                   “Closes the window”
170:      SC_TASKLIST,                “Opens task list”
171:      SC_NEXTWINDOW,              “Switches to next window”
172:  END
173:
174:
175:  // Validator messages (include\owl\validate.rc)



741

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

176:  STRINGTABLE LOADONCALL MOVEABLE DISCARDABLE
177:  BEGIN
178:      IDS_VALPXPCONFORM          “Input does not conform to picture:\n””%s”””
179:      IDS_VALINVALIDCHAR         “Invalid character in input”
180:      IDS_VALNOTINRANGE          “Value is not in the range %ld to %ld.”
181:      IDS_VALNOTINLIST           “Input is not in valid-list”
182:  END
183:
184:
185:  //
186:  // Misc application definitions
187:  //
188:
189:  // Application ICON
190:  IDI_SDIAPPLICATION ICON “applsdi.ico”
191:
192:
193:  // About box.
194:  IDD_ABOUT DIALOG 12, 17, 204, 65
195:  STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
196:  CAPTION “About xped1”
197:  FONT 8, “MS Sans Serif”
198:  BEGIN
199:      CTEXT “Version”, IDC_VERSION, 2, 14, 200, 8, SS_NOPREFIX
200:      CTEXT “My Application”, -1, 2, 4, 200, 8, SS_NOPREFIX
201:      CTEXT “”, IDC_COPYRIGHT, 2, 27, 200, 17, SS_NOPREFIX
202:      RTEXT “”, IDC_DEBUG, 136, 55, 66, 8, SS_NOPREFIX
203:      ICON IDI_SDIAPPLICATION, -1, 2, 2, 16, 16
204:      DEFPUSHBUTTON “OK”, IDOK, 88, 48, 28, 12
205:  END
206:
207:
208:  // TInputDialog class dialog box.
209:  IDD_INPUTDIALOG DIALOG 20, 24, 180, 64
210:  STYLE WS_POPUP | WS_CAPTION | DS_SETFONT
211:  FONT 8, “Helv”
212:  BEGIN
213:      LTEXT “”, ID_PROMPT, 10, 8, 160, 10, SS_NOPREFIX
214:      CONTROL “”, ID_INPUT, “EDIT”, WS_CHILD | WS_VISIBLE |
215:       WS_BORDER | WS_TABSTOP | ES_AUTOHSCROLL, 10, 20, 160, 12
216:      DEFPUSHBUTTON “&OK”, IDOK, 47, 42, 40, 14
217:      PUSHBUTTON “&Cancel”, IDCANCEL, 93, 42, 40, 14
218:  END
219:
220:
221:  // Horizontal slider thumb bitmap for TSlider and VSlider
222:  // (include\owl\slider.rc)

continues



742

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓

223:  IDB_HSLIDERTHUMB BITMAP PRELOAD MOVEABLE DISCARDABLE
224:  BEGIN
225:      ’42 4D 66 01 00 00 00 00 00 00 76 00 00 00 28 00'
226:      ’00 00 12 00 00 00 14 00 00 00 01 00 04 00 00 00'
227:      ’00 00 F0 00 00 00 00 00 00 00 00 00 00 00 00 00'
228:      ’00 00 10 00 00 00 00 00 00 00 00 00 C0 00 00 C0'
229:      ’00 00 00 C0 C0 00 C0 00 00 00 C0 00 C0 00 C0 C0'
230:      ’00 00 C0 C0 C0 00 80 80 80 00 00 00 FF 00 00 FF’
231:      ’00 00 00 FF FF 00 FF 00 00 00 FF 00 FF 00 FF FF’
232:      ’00 00 FF FF FF 00 BB BB 0B BB BB BB B0 BB BB 00'
233:      ’00 00 BB B0 80 BB BB BB 08 0B BB 00 00 00 BB 08'
234:      ‘F8 0B BB B0 87 70 BB 00 00 00 B0 8F F8 80 BB 08’
235:      ’77 77 0B 00 00 00 08 F8 88 88 00 88 88 87 70 00'
236:      ’00 00 0F F7 77 88 00 88 77 77 70 00 00 00 0F F8'
237:      ’88 88 00 88 88 87 70 00 00 00 0F F7 77 88 00 88'
238:      ’77 77 70 00 00 00 0F F8 88 88 00 88 88 87 70 00'
239:      ’00 00 0F F7 77 88 00 88 77 77 70 00 00 00 0F F8'
240:      ’88 88 00 88 88 87 70 00 00 00 0F F7 77 88 00 88'
241:      ’77 77 70 00 00 00 0F F8 88 88 00 88 88 87 70 00'
242:      ’00 00 0F F7 77 88 00 88 77 77 70 00 00 00 0F F8'
243:      ’88 88 00 88 88 87 70 00 00 00 0F F7 77 88 00 88'
244:      ’77 77 70 00 00 00 0F F8 88 88 00 88 88 87 70 00'
245:      ’00 00 0F F7 77 78 00 88 77 77 70 00 00 00 0F FF’
246:      ‘FF FF 00 88 88 88 80 00 00 00 B0 00 00 00 BB 00’
247:      ’00 00 0B 00 00 00'
248:  END
249:
250:
251:  // Vertical slider thumb bitmap for TSlider and HSlider
252:  // (include\owl\slider.rc)
253:  IDB_VSLIDERTHUMB BITMAP PRELOAD MOVEABLE DISCARDABLE
254:  BEGIN
255:      ’42 4D 2A 01 00 00 00 00 00 00 76 00 00 00 28 00'
256:      ’00 00 28 00 00 00 09 00 00 00 01 00 04 00 00 00'
257:      ’00 00 B4 00 00 00 00 00 00 00 00 00 00 00 00 00'
258:      ’00 00 10 00 00 00 00 00 00 00 00 00 C0 00 00 C0'
259:      ’00 00 00 C0 C0 00 C0 00 00 00 C0 00 C0 00 C0 C0'
260:      ’00 00 C0 C0 C0 00 80 80 80 00 00 00 FF 00 00 FF’
261:      ’00 00 00 FF FF 00 FF 00 00 00 FF 00 FF 00 FF FF’
262:      ’00 00 FF FF FF 00 B0 00 00 00 00 00 00 00 00 0B’
263:      ‘B0 00 00 00 00 00 00 00 00 0B 0F 88 88 88 88 88’
264:      ’88 88 88 80 08 88 88 88 88 88 88 88 88 80 0F 77'
265:      ’77 77 77 77 77 77 77 80 08 77 77 77 77 77 77 77'
266:      ’77 80 0F 77 FF FF FF FF FF FF F7 80 08 77 FF FF’
267:      ‘FF FF FF FF F7 80 0F 70 00 00 00 00 00 00 77 80’
268:      ’08 70 00 00 00 00 00 00 77 80 0F 77 77 77 77 77'

Listing X3.5. continued



743

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

269:      ’77 77 77 80 08 77 77 77 77 77 77 77 77 80 0F 77'
270:      ’77 77 77 77 77 77 77 80 08 77 77 77 77 77 77 77'
271:      ’77 80 0F FF FF FF FF FF FF FF FF F0 08 88 88 88'
272:      ’88 88 88 88 88 80 B0 00 00 00 00 00 00 00 00 0B’
273:      ‘B0 00 00 00 00 00 00 00 00 0B’
274:  END
275:
276:
277:  // Version info.
278:  //
279:  #if !defined(__DEBUG_)
280:  // Non-Debug VERSIONINFO
281:  1 VERSIONINFO LOADONCALL MOVEABLE
282:  FILEVERSION 1, 0, 0, 0
283:  PRODUCTVERSION 1, 0, 0, 0
284:  FILEFLAGSMASK 0
285:  FILEFLAGS VS_FFI_FILEFLAGSMASK
286:  FILEOS VOS__WINDOWS16
287:  FILETYPE VFT_APP
288:  BEGIN
289:      BLOCK “StringFileInfo”
290:      BEGIN
291:          // Language type = U.S. English (0x0409) and Character Set = Windows,
              Multilingual(0x04e4)
292:          BLOCK “040904E4”
                                    // Matches VarFileInfo Translation hex value.
293:          BEGIN
294:              VALUE “CompanyName”, “\000”
295:              VALUE “FileDescription”, “xped1 for Windows\000”
296:              VALUE “FileVersion”, “1.0\000”
297:              VALUE “InternalName”, “xped1\000”
298:              VALUE “LegalCopyright”,
                        “Copyright  1993. All Rights Reserved.\000”
299:              VALUE “LegalTrademarks”,
                        “Windows /231 is a trademark of Microsoft Corporation\000”
300:              VALUE “OriginalFilename”, “xped1.EXE\000”
301:              VALUE “ProductName”, “xped1\000”
302:              VALUE “ProductVersion”, “1.0\000”
303:          END
304:      END
305:
306:      BLOCK “VarFileInfo”
307:      BEGIN
308:          VALUE “Translation”, 0x04e4, 0x0409
              // U.S. English(0x0409) & Windows Multilingual(0x04e4) 1252
309:      END
310:
311:  END

continues



744

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓

312:  #else
313:
314:  // Debug VERSIONINFO
315:  1 VERSIONINFO LOADONCALL MOVEABLE
316:  FILEVERSION 1, 0, 0, 0
317:  PRODUCTVERSION 1, 0, 0, 0
318:  FILEFLAGSMASK VS_FF_DEBUG | VS_FF_PRERELEASE | VS_FF_PATCHED |
        VS_FF_PRIVATEBUILD | VS_FF_SPECIALBUILD
319:  FILEFLAGS VS_FFI_FILEFLAGSMASK
320:  FILEOS VOS__WINDOWS16
321:  FILETYPE VFT_APP
322:  BEGIN
323:      BLOCK “StringFileInfo”
324:      BEGIN
325:          // Language type = U.S. English (0x0409) and Character Set = Windows,
              // Multilingual(0x04e4)
326:          BLOCK “040904E4”
              // Matches VarFileInfo Translation hex value.
327:          BEGIN
328:              VALUE “CompanyName”, “\000”
329:              VALUE “FileDescription”, “xped1 for Windows\000”
330:              VALUE “FileVersion”, “1.0\000”
331:              VALUE “InternalName”, “xped1\000”
332:              VALUE “LegalCopyright”,
                        “Copyright  1993. All Rights Reserved.\000”
333:              VALUE “LegalTrademarks”,
                        “Windows \231 is a trademark of Microsoft Corporation\000”
334:              VALUE “OriginalFilename”, “xped1.EXE\000”
335:              VALUE “ProductName”, “xped1\000”
336:              VALUE “ProductVersion”, “1.0\000”
337:              VALUE “SpecialBuild”, “Debug Version\000”
338:              VALUE “PrivateBuild”, “Built by \000”
339:          END
340:      END
341:
342:      BLOCK “VarFileInfo”
343:      BEGIN
344:          VALUE “Translation”, 0x04e4, 0x0409
              // U.S. English(0x0409) & Windows Multilingual(0x04e4) 1252
345:      END
346:
347:  END
348:  #endif

Listing X3.5 contains the script for the XPED1APP.RC resource file. This file
contains the definition of the various menu, accelerator, string, icon, and dialog
box resources. The resource files for the other text-editor projects contain script

Listing X3.5. continued

Analysis



745

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

Type

that varies somewhat from the one in Listing X3.7. Because the variation is not major,
we will not list the .RC files for the other text-editor projects. You are encouraged to
browse through the other .RC files and compare them with file XPED1APP.RC.

Listing X3.6. The source code for the XPED1ABD.CPP
implementation file.

 1:   /*  Project xped1
 2:
 3:       Copyright  1993. All Rights Reserved.
 4:
 5:       SUBSYSTEM:    xped1.exe Application
 6:       FILE:         xped1abd.cpp
 7:       AUTHOR:
 8:
 9:
 10:      OVERVIEW
 11:      ========
 12:      Source file for implementation of XpEd1AboutDlg (TDialog).
 13:  */
 14:
 15:
 16:  #include <owl\owlpch.h>
 17:  #pragma hdrstop
 18:
 19:  #include <owl\static.h>
 20:
 21:  #include <ver.h>
 22:
 23:  #include “xped1app.h”
 24:  #include “xped1abd.h”
 25:
 26:
 27:  // Reading the VERSIONINFO resource.
 28:  class ProjectRCVersion {
 29:  public:
 30:      ProjectRCVersion (TModule *module);
 31:      virtual ~ProjectRCVersion ();
 32:
 33:      BOOL GetProductName (LPSTR &prodName);
 34:      BOOL GetProductVersion (LPSTR &prodVersion);
 35:      BOOL GetCopyright (LPSTR &copyright);
 36:      BOOL GetDebug (LPSTR &debug);
 37:
 38:  protected:
 39:      LPBYTE      TransBlock;
 40:      void FAR    *FVData;
 41:
 42:  private:

continues



746

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓

 43:      // Don’t allow this object to be copied.
 44:      ProjectRCVersion (const ProjectRCVersion &);
 45:      ProjectRCVersion & operator =(const ProjectRCVersion &);
 46:  };
 47:
 48:
 49:  ProjectRCVersion::ProjectRCVersion (TModule *module)
 50:  {
 51:      char    appFName[255];
 52:      DWORD   fvHandle;
 53:      UINT    vSize;
 54:
 55:      FVData = 0;
 56:
 57:      module->GetModuleFileName(appFName, sizeof(appFName));
 58:      DWORD dwSize = GetFileVersionInfoSize(appFName, &fvHandle);
 59:      if (dwSize) {
 60:          FVData  = (void FAR *)new char[(UINT)dwSize];
 61:          if (GetFileVersionInfo(appFName, fvHandle, dwSize,
 62:              FVData))
 63:              if (!VerQueryValue(FVData,
 64:                   “\\VarFileInfo\\Translation”,
 65:                  (void FAR* FAR*)&TransBlock, &vSize)) {
 66:                  delete FVData;
 67:                  FVData = 0;
 68:              }
 69:      }
 70:  }
 71:
 72:
 73:  ProjectRCVersion::~ProjectRCVersion ()
 74:  {
 75:      if (FVData)
 76:          delete FVData;
 77:  }
 78:
 79:
 80:  BOOL ProjectRCVersion::GetProductName (LPSTR &prodName)
 81:  {
 82:      UINT    vSize;
 83:      char    subBlockName[255];
 84:
 85:      wsprintf(subBlockName, “\\StringFileInfo\\%08lx\\%s”,
 86:               *(DWORD *)TransBlock, (LPSTR)”ProductName”);
 87:      return FVData ? VerQueryValue(FVData, subBlockName,
 88:                (void FAR* FAR*)&prodName, &vSize) : FALSE;
 89:  }
 90:
 91:
 92:  BOOL ProjectRCVersion::GetProductVersion (LPSTR &prodVersion)

Listing X3.6. continued



747

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

93:   {
94:       UINT    vSize;
95:       char    subBlockName[255];
96:
97:       wsprintf(subBlockName, “\\StringFileInfo\\%08lx\\%s”,
98:                *(DWORD *)TransBlock, (LPSTR)”ProductVersion”);
99:       return FVData ? VerQueryValue(FVData, subBlockName,
100:              (void FAR* FAR*)&prodVersion, &vSize) : FALSE;
101:  }
102:
103:
104:  BOOL ProjectRCVersion::GetCopyright (LPSTR &copyright)
105:  {
106:      UINT    vSize;
107:      char    subBlockName[255];
108:
109:      wsprintf(subBlockName, “\\StringFileInfo\\%08lx\\%s”,
110:              *(DWORD *)TransBlock, (LPSTR)”LegalCopyright”);
111:      return FVData ? VerQueryValue(FVData, subBlockName,
112:              (void FAR* FAR*)&copyright, &vSize) : FALSE;
113:  }
114:
115:
116:  BOOL ProjectRCVersion::GetDebug (LPSTR &debug)
117:  {
118:      UINT    vSize;
119:      char    subBlockName[255];
120:
121:      wsprintf(subBlockName, “\\StringFileInfo\\%08lx\\%s”,
122:             *(DWORD *)TransBlock, (LPSTR)”SpecialBuild”);
123:      return FVData ? VerQueryValue(FVData, subBlockName,
124:             (void FAR* FAR*)&debug, &vSize) : FALSE;
125:  }
126:
127:
128:  //{{XpEd1AboutDlg Implementation}}
129:
130:
131:  //////////////////////////////////////////////////////////
132:  // XpEd1AboutDlg
133:  // ==========
134:  // Construction/Destruction handling.
135:  XpEd1AboutDlg::XpEd1AboutDlg (TWindow *parent, TResId resId,
136:                                TModule *module)
137:      : TDialog(parent, resId, module)
138:  {
139:      // INSERT>> Your constructor code here.
140:  }
141:
142:

continues



748

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓

143:  XpEd1AboutDlg::~XpEd1AboutDlg ()
144:  {
145:      Destroy();
146:
147:      // INSERT>> Your destructor code here.
148:  }
149:
150:
151:  void XpEd1AboutDlg::SetupWindow ()
152:  {
153:      LPSTR prodName, prodVersion, copyright, debug;
154:
155:      // Get the static text whose value is based on VERSIONINFO.
156:      TStatic *versionCtrl = new TStatic(this, IDC_VERSION, 255);
157:      TStatic *copyrightCtrl = new TStatic(this, IDC_COPYRIGHT,
158:                                           255);
159:      TStatic *debugCtrl = new TStatic(this, IDC_DEBUG, 255);
160:
161:      TDialog::SetupWindow();
162:
163:      // Process the VERSIONINFO.
164:      ProjectRCVersion applVersion(GetModule());
165:
166:      // Get the product name, product version and legal
167:      // copyright strings.
168:      applVersion.GetProductName(prodName);
169:      applVersion.GetProductVersion(prodVersion);
170:      applVersion.GetCopyright(copyright);
171:
172:      // IDC_VERSION is the product name and version number, the
173:      // initial value of IDC_VERSION is the word Version
174:      // (in whatever language) product name VERSION product
175:      // version.
176:      char    buffer[255];
177:      char    versionName[128];
178:      versionCtrl->GetText(versionName, sizeof(versionName));
179:      wsprintf(buffer, “%s %s %s”, prodName, versionName,
180:               prodVersion);
181:      versionCtrl->SetText(buffer);
182:
183:      copyrightCtrl->SetText(copyright);
184:
185:      // Only get the SpecialBuild text if the VERSIONINFO
186:      // resource is there.
187:      if (applVersion.GetDebug(debug))
188:          debugCtrl->SetText(debug);
189:  }

Listing X3.6. continued



749

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

Listing X3.6 shows the source code for the XPED1ABD.CPP implementation
file. This file defines the class txted1AboutDlg, which implements the About
dialog box. In addition, the file declares and defines the project resource version

class, ProjectRCVersion. Let’s briefly look at this class first. The class declares a
constructor, destructor, a set of public member functions, and two protected data
members. The class ProjectRCVersion supports operations that extract the informa-
tion about the product name, version, and copyright.

The About dialog box class defines the following members:

1. The constructor (defined in lines 135 to 140) simply invokes the constructor
of the parent class TDialog. The constructor has no executable statements
and contains a comment that indicates where to place your code to support
additional initialization.

2. The destructor (defined in lines 143 to 148) simply calls the inherited
member function Destroy. The definition contains a comment that indicates
where to place your code to support additional cleanup.

3. The member function SetupWindow (defined in lines 151 to 189) sets up the
About dialog box by carrying out the following tasks:

■■ Creates three static text control objects for the version, copyright, and
debug information. The function assigns the addresses of these controls
to the local pointers versionCtrl, copyrightCtrl, and debugCtrl.
These objects are surrogate objects for the statics created in the dialog
resource.

■■ Invokes the SetupWindow member function of the parent dialog box
class.

■■ Creates the instance applVersion of the class ProjectRCVersion.

■■ Sends the C++ message GetProductName to the object applVersion in
order to obtain the product name from the dialog box resource.

■■ Sends the C++ message GetProductVersion to the object applVersion
in order to obtain the product version from the dialog box resource.

■■ Sends the C++ message GetCopyright to the object applVersion in
order to obtain the copyright information from the dialog box re-
source.

Analysis



750

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓

Type

■■ Assigns the product name, version name, and version number to the
static text control accessed by pointer versionCtrl. This task invokes
sending the C++ messages GetText and SetText to the version static
text control. In addition, this task involves calling the function
wsprintf.

■■ Assigns the copyright to the copyright static text control. This task
involves sending the C++ message SetText to the copyright static text
control.

■■ Assigns the debug information to the debug static text control if the
C++ message GetDebug, sent to object applVersion, returns a nonzero
value. This task involves sending the C++ message SetText to the
debug static text control.

Listing X3.7. The source code for the XPED1APP.CPP
implementation file.

 1:   /*  Project xped1
 2:
 3:       Copyright  1993. All Rights Reserved.
 4:
 5:       SUBSYSTEM:    xped1.exe Application
 6:       FILE:         xped1app.cpp
 7:       AUTHOR:
 8:
 9:
 10:      OVERVIEW
 11:      ========
 12:      Source file for implementation of XpEd1App (TApplication).
 13:  */
 14:
 15:
 16:  #include <owl\owlpch.h>
 17:  #pragma hdrstop
 18:
 19:
 20:  #include “xped1app.h”
 21:  #include “xped1abd.h”        // Definition of about dialog.
 22:
 23:
 24:  //{{XpEd1App Implementation}}
 25:
 26:
 27:  //
 28:  // Build a response table for all messages/commands handled
 29:  // by the application.
 30:  //



751

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

 31:  DEFINE_RESPONSE_TABLE1(XpEd1App, TApplication)
 32:  //{{XpEd1AppRSP_TBL_BEGIN}}
 33:      EV_COMMAND(CM_FILENEW, CmFileNew),
 34:      EV_COMMAND(CM_FILEOPEN, CmFileOpen),
 35:      EV_COMMAND(CM_FILECLOSE, CmFileClose),
 36:      EV_COMMAND(CM_HELPABOUT, CmHelpAbout),
 37:  //{{XpEd1AppRSP_TBL_END}}
 38:  END_RESPONSE_TABLE;
 39:
 40:
 41:  //
 42:  // FrameWindow must be derived to override Paint for Preview
 43:  // and Print.
 44:  //
 45:  class SDIDecFrame : public TDecoratedFrame {
 46:  public:
 47:      SDIDecFrame (TWindow *parent, const char far *title,
 48:                   TWindow *clientWnd,
 49:                   BOOL trackMenuSelection = FALSE,
 50:                   TModule *module = 0) :
 51:              TDecoratedFrame(parent, title, clientWnd,
 52:                              trackMenuSelection, module)
 53:        {  }
 54:      ~SDIDecFrame ()
 55:        {  }
 56:  };
 57:
 58:
 59:  //////////////////////////////////////////////////////////
 60:  // XpEd1App
 61:  // =====
 62:  //
 63:  XpEd1App::XpEd1App () : TApplication(“xped1”)
 64:  {
 65:
 66:    // Common file flags and filters for Open/Save As dialogs.
 67:    //  Filename and directory are computed in the member functions
 68:    // CmFileOpen, and CmFileSaveAs.
 69:      FileData.Flags = OFN_FILEMUSTEXIST | OFN_HIDEREADONLY |
 70:                       OFN_OVERWRITEPROMPT;
 71:      FileData.SetFilter(“All Files (*.*)|*.*|”);
 72:
 73:      // INSERT>> Your constructor code here.
 74:
 75:  }
 76:
 77:
 78:  XpEd1App::~XpEd1App ()
 79:  {
 80:      // INSERT>> Your destructor code here.

continues



752

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓

81:
82:   }
83:
84:
85:   //////////////////////////////////////////////////////////
86:   // XpEd1App
87:   // =====
88:   // Application initialization.
89:   //
90:   void XpEd1App::InitMainWindow ()
91:   {
92:       Client = new TEditFile(0, 0, 0);
93:       SDIDecFrame *frame = new SDIDecFrame(0, GetName(),
94:                                           Client, FALSE);
95:
96:       nCmdShow = nCmdShow != SW_SHOWMINIMIZED ?
97:                                SW_SHOWNORMAL : nCmdShow;
98:
99:       //
100:      // Assign ICON w/ this application.
101:      //
102:      frame->SetIcon(this, IDI_SDIAPPLICATION);
103:
104:      //
105:      // Menu associated with window and accelerator table
106:      // associated with table.
107:      //
108:      frame->AssignMenu(SDI_MENU);
109:
110:      //
111:      // Associate with the accelerator table.
112:      //
113:      frame->Attr.AccelTable = SDI_MENU;
114:
115:
116:      MainWindow = frame;
117:
118:  }
119:
120:
121:  //////////////////////////////////////////////////////////
122:  // XpEd1App
123:  // ===========
124:  // Menu File New command
125:  void XpEd1App::CmFileNew ()
126:  {
127:      Client->NewFile();
128:  }
129:
130:

Listing X3.7. continued



753

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

131:  //////////////////////////////////////////////////////////
132:  // XpEd1App
133:  // ===========
134:  // Menu File Open command
135:  void XpEd1App::CmFileOpen ()
136:  {
137:      //
138:      // Display standard Open dialog box to select a file name.
139:      //
140:      *FileData.FileName = 0;
141:      if (Client->CanClose())
142:        if (TFileOpenDialog(MainWindow, FileData).Execute() == IDOK)
143:            OpenFile();
144:  }
145:
146:
147:  void XpEd1App::OpenFile (const char *fileName)
148:  {
149:      if (fileName)
150:          lstrcpy(FileData.FileName, fileName);
151:
152:      Client->ReplaceWith(FileData.FileName);
153:  }
154:
155:
156:  //////////////////////////////////////////////////////////
157:  // XpEd1App
158:  // =====
159:  // Menu File Close command
160:  void XpEd1App::CmFileClose ()
161:       {
162:  if (Client->CanClose())
163:             Client->DeleteSubText(0, UINT(-1));
164:  }
165:
166:
167:  //////////////////////////////////////////////////////////
168:  // XpEd1App
169:  // ===========
170:  // Menu Help About xped1.exe command
171:  void XpEd1App::CmHelpAbout ()
172:  {
173:      //
174:      // Show the modal dialog.
175:      //
176:      XpEd1AboutDlg(MainWindow).Execute();
177:  }
178:
179:
180:  int OwlMain (int , char* [])

continues



754

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓

181:  {
182:      XpEd1App     App;
183:      int             result;
184:
185:      result = App.Run();
186:
187:      return result;
188:  }

Listing X3.7 shows the source code for the XPED1APP.CPP implementation
file. The listing includes the XPED1ABD.H header file to access the definition
of the application and About dialog box classes. In addition, the listing contains

the declaration of a class that models a decorated SDI window frame.

The listing contains the definition of the message-response table for the application
class txted1App. The table includes a set of EV_COMMAND macros to map the various
CM_XXXX commands with their respective CmXXXX member functions.

The listing offers the declaration and definition of the class SDIDecFrame. This class,
a descendant of the class TDecoratedFrame, models the decorated SDI frame window.
The AppExpert comments remind you that this class needs to override the member
functions that support the printing and print-previewing features. The class declares
a constructor and a dummy destructor.

The listing contains the definitions of the following members:

1. The constructor (defined in lines 63 to 75), which performs the following
minimal initialization:

■■ Assigns an expression of bitwise ORed OFN_XXXX constants to the Flags
member of the data member FileData.

■■ Sends the C++ message SetFilter to the data member FileData. This
message has the string literal argument that assigns the file-type filters
to the member FileData.

The preceding assignments initialize the data member FileData to prepare it
for the dialog boxes that open and save files. The constructor contains a
comment that indicates where to place statements for additional initializa-
tion.

2. The destructor (defined in lines 78 to 82) merely contains a comment that
indicates where to place statements for application cleanup.

Listing X3.7. continued

Analysis



755

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

3. The member function InitMainWindow (defined in lines 90 to 118) initializes
the main window by carrying out the following tasks:

■■ Creates a new client area by allocating an instance of the class
TEditFile. The function assigns the address of this instance to the data
member Client.

■■ Creates a new decorated SDI frame window by allocating an instance
of class SDIDecFrame. The function assigns the address of this instance
to the local pointer frame.

■■ Assigns a value to the inherited data member nCmdShow such that the
window appears in its normal state.

■■ Assigns the application’s icon using the icon resource
IDI_SDIAPPLICATION. This task involves sending the C++ message
SetIcon to the SDI window accessed by the pointer frame.

■■ Assigns the application’s menu using the menu resource SDI_MENU. This
task involves sending the C++ message AssignMenu to the SDI window
accessed by pointer frame.

■■ Assigns the accelerator table SDI_MENU to the frame window.

■■ Assigns the address in pointer frame to the inherited data member
MainWindow.

4. The member function CmFileNew (defined in lines 125 to 128) responds to
the New menu option by sending the C++ message NewFile to the window
client area accessed by pointer Client.

5. The member function CmFileOpen (defined in lines 135 to 144) responds to
the Open menu option. The function contains nested if statements. The
outer if statement sends the C++ message CanClose to the client area
(accessed by member Client). If this message returns a nonzero value, the
function CmFileOpen executes the nested if statement. This statement creates
a dynamic instance of the class TFileOpenDialog and sends it the C++
message Execute. The if statement compares the result of the message with
the predefined constant IDOK. If the two values match, the function invokes
the member function OpenFile.

6. The member function OpenFile (defined in lines 147 to 153) performs two
simple tasks. The first task assigns the string in the parameter fileName to
the member Filename of data member FileData. The second task updates



756

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓
the title of the window with the name of the newly opened file. The func-
tion performs this task by sending the C++ message ReplaceWith to the
window client area object. The argument of this message is the member
Filename of the data member FileData.

7. The member function CmFileClose (defined in lines 160 to 164) closes the
window by sending the C++ message CanClose to the window client area
object. If this message returns a nonzero value, the function sends the C++
message DeleteSubText to the client area. The arguments for this message
are 0 and UINT(-1), which specify the entire text to delete.

8. The member function CmHelpAbout (defined in lines 171 to 177) responds to
the Help|About menu option. The function creates a new instance of class
txted1AboutDlg to invoke the About dialog box. The function invokes this
modal dialog box by sending it the C++ message Execute.

The XPED2 Project
The project XPED2 supports an SDI-compliant editor with a speed bar and a status
line. When you invoke the AppExpert, check the options for the SDI window, the
speed bar, and the status line. Uncheck all of the other options. In addition, select the
Code Gen Control subtopic (in the Application topic of the AppExpert dialog box)
to make the application and dialog box class names XpEd2App and XpEd2AboutDlg,
respectively. Also, select the Maximized window option in the Advanced Options
subtopic. The AppExpert generates the following files:

Filename Size Date/Time Stamp

XPED2    APX 10,204 02-12-94 9:47a
XPED2APP RC 14,287 02-12-94 9:47a
XPED2APP RH   4,236 02-12-94 9:47a
XPED2APP DEF      505 02-12-94 9:47a
XPED2APP CPP   5,451 02-12-94 9:47a
XPED2APP H   1,476 02-12-94 9:47a
XPED2ABD CPP   4,735 02-12-94 9:47a
XPED2ABD H      900 02-12-94 9:47a
BORABOUT BMP   2,494 02-12-94 9:47a
NEW      BMP      358 02-12-94 9:47a
OPEN     BMP      358 02-12-94 9:47a
SAVE     BMP      358 02-12-94 9:47a
UNDO     BMP      358 02-12-94 9:47a



757

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

Type

CUT      BMP      358 02-12-94 9:47a
COPY     BMP      358 02-12-94 9:47a
PASTE    BMP      358 02-12-94 9:47a
FIND     BMP      358 02-12-94 9:47a
FINDNEXT BMP      358 02-12-94 9:47a
APPLSDI  ICO   1,086 02-12-94 9:47a
XPED2    IDE 60,456 02-12-94 9:50a

The preceding list of files exceeds that of project XPED1 by several .BMP files, because
the speed bar uses additional bitmaps. The speed bar buttons use these bitmaps.

Build the XPED2 project and experiment with its text-editing features. Due to limited
space, we’ll be focusing on the header and implementation files, which are fairly
different from those in project XPED1. The files XPED2ABD.H and
XPED2ABD.CPP are very similar to files XPED1ABD.H and XPED1ABD.CPP,
respectively. The main differences are in the class names, which are derived from the
project name. By contrast, the files XPED2APP.H and XPED2APP.CPP have more
statements and declarations than the files XPED1APP.H and XPED1APP.CPP,
respectively.

Listing X3.8. The source code for the XPED2APP.H
header file.

1:   #if !defined(__xped2app_h)       // Sentry, use file only
2:                                    // if it’s not already included.
3:   #define __xped2app_h
4:
5:   /*  Project xped2
6:
7:       Copyright  1993. All Rights Reserved.
8:
9:       SUBSYSTEM:    xped2.exe Application
10:      FILE:         xped2app.h
11:      AUTHOR:
12:
13:
14:      OVERVIEW
15:      ========
16:      Class definition for XpEd2App (TApplication).
17:  */
18:
19:
20:  #include <owl\owlpch.h>
21:  #pragma hdrstop

continues



758

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓

22:
23:  #include <owl\statusba.h>
24:  #include <owl\controlb.h>
25:  #include <owl\buttonga.h>
26:  #include <owl\editfile.h>
27:  #include <owl\opensave.h>
28:
29:  #include “xped2app.rh”            // Definition of all resources.
30:
31:
32:  //{{TApplication = XpEd2App}}
33:  class XpEd2App : public TApplication {
34:  private:
35:      TEditFile *Client;           // Client window for the frame.
36:      TOpenSaveDialog::TData FileData;  // Data to control
                                           // open/saveas
37:                                        // standard dialog.
38:
39:  private:
40:      void SetupSpeedBar (TDecoratedFrame *frame);
41:
42:  public:
43:      XpEd2App ();
44:      virtual ~XpEd2App ();
45:
46:      void OpenFile (const char *fileName = 0);
47:  //{{XpEd2AppVIRTUAL_BEGIN}}
48:  public:
49:      virtual void InitMainWindow();
50:  //{{XpEd2AppVIRTUAL_END}}
51:
52:  //{{XpEd2AppRSP_TBL_BEGIN}}
53:  protected:
54:      void CmFileNew ();
55:      void CmFileOpen ();
56:      void CmFileClose ();
57:      void CmHelpAbout ();
58:  //{{XpEd2AppRSP_TBL_END}}
59:    DECLARE_RESPONSE_TABLE(XpEd2App);
60:  };    //{{XpEd2App}}
61:
62:
63:  #endif                               // __xped2app_h sentry.

Listing X3.8 shows the source code for the XPED2APP.H header file. This file
includes more nested header files than XPED1APP.H in order to support the status
bar and the speed bar features. In addition, the XPED2APP.H header file declares the

Listing X3.8. continued



759

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

Type

application class XpEd2App in line 33. This class is similar to the class XpEd1App, except
it has the additional public member function SetupSpeedBar, located in line 40.

Listing X3.9. The source code for the XPED2PP.CPP
implementation file.

 1:   /*  Project xped2
 2:
 3:       Copyright  1993. All Rights Reserved.
 4:
 5:       SUBSYSTEM:    xped2.exe Application
 6:       FILE:         xped2app.cpp
 7:       AUTHOR:
 8:
 9:
 10:      OVERVIEW
 11:      ========
 12:      Source file for implementation of XpEd2App (TApplication).
 13:  */
 14:
 15:
 16:  #include <owl\owlpch.h>
 17:  #pragma hdrstop
 18:
 19:
 20:  #include “xped2app.h”
 21:  #include “xped2abd.h”     // Definition of About dialog.
 22:
 23:
 24:  //{{XpEd2App Implementation}}
 25:
 26:
 27:  //
 28:  // Build a response table for all messages/commands handled
 29:  // by the application.
 30:  //
 31:  DEFINE_RESPONSE_TABLE1(XpEd2App, TApplication)
 32:  //{{XpEd2AppRSP_TBL_BEGIN}}
 33:      EV_COMMAND(CM_FILENEW, CmFileNew),
 34:      EV_COMMAND(CM_FILEOPEN, CmFileOpen),
 35:      EV_COMMAND(CM_FILECLOSE, CmFileClose),
 36:      EV_COMMAND(CM_HELPABOUT, CmHelpAbout),
 37:  //{{XpEd2AppRSP_TBL_END}}
 38:  END_RESPONSE_TABLE;
 39:
 40:
 41:  //
 42:  // FrameWindow must be derived to override Paint for Preview
 43:  // and Print.

continues



760

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓

 44:  //
 45:  class SDIDecFrame : public TDecoratedFrame {
 46:  public:
 47:      SDIDecFrame (TWindow *parent, const char far *title,
 48:                   TWindow *clientWnd,
 49:                   BOOL trackMenuSelection = FALSE,
 50:                   TModule *module = 0) :
 51:              TDecoratedFrame(parent, title, clientWnd,
 52:                              trackMenuSelection, module)
 53:        {  }
 54:      ~SDIDecFrame ()
 55:        {  }
 56:  };
 57:
 58:
 59:  //////////////////////////////////////////////////////////
 60:  // XpEd2App
 61:  // =====
 62:  //
 63:  XpEd2App::XpEd2App () : TApplication(“xped2”)
 64:  {
 65:
 66:     // Common file flags and filters for Open/Save As dialogs.
 67:     // Filename and directory are computed in the member functions
 68:     // CmFileOpen, and CmFileSaveAs.
 69:      FileData.Flags = OFN_FILEMUSTEXIST | OFN_HIDEREADONLY |
 70:                       OFN_OVERWRITEPROMPT;
 71:      FileData.SetFilter(“All Files (*.*)|*.*|”);
 72:
 73:      // INSERT>> Your constructor code here.
 74:
 75:  }
 76:
 77:
 78:  XpEd2App::~XpEd2App ()
 79:  {
 80:      // INSERT>> Your destructor code here.
 81:
 82:  }
 83:
 84:
 85:  void XpEd2App::SetupSpeedBar (TDecoratedFrame *frame)
 86:  {
 87:      //
 88:      // Create default toolbar New and associate toolbar buttons
 89:      // with commands.
 90:      //

Listing X3.9. continued



761

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

91:       TControlBar* cb = new TControlBar(frame);
92:       cb->Insert(*new TButtonGadget(CM_FILENEW, CM_FILENEW));
93:       cb->Insert(*new TButtonGadget(CM_FILEOPEN, CM_FILEOPEN));
94:       cb->Insert(*new TButtonGadget(CM_FILESAVE, CM_FILESAVE));
95:       cb->Insert(*new TSeparatorGadget(6));
96:       cb->Insert(*new TButtonGadget(CM_EDITCUT, CM_EDITCUT));
97:       cb->Insert(*new TButtonGadget(CM_EDITCOPY, CM_EDITCOPY));
98:       cb->Insert(*new TButtonGadget(CM_EDITPASTE, CM_EDITPASTE));
99:       cb->Insert(*new TSeparatorGadget(6));
100:      cb->Insert(*new TButtonGadget(CM_EDITUNDO, CM_EDITUNDO));
101:      cb->Insert(*new TSeparatorGadget(6));
102:      cb->Insert(*new TButtonGadget(CM_EDITFIND, CM_EDITFIND));
103:      cb->Insert(*new TButtonGadget(CM_EDITFINDNEXT,
104:                                    CM_EDITFINDNEXT));
105:
106:      // Add fly-over help hints.
107:      cb->SetHintMode(TGadgetWindow::EnterHints);
108:
109:      frame->Insert(*cb, TDecoratedFrame::Top);
110:  }
111:
112:
113:  //////////////////////////////////////////////////////////
114:  // XpEd2App
115:  // =====
116:  // Application initialization.
117:  //
118:  void XpEd2App::InitMainWindow ()
119:  {
120:      Client = new TEditFile(0, 0, 0);
121:      SDIDecFrame *frame = new SDIDecFrame(0, GetName(),
122:                                           Client, TRUE);
123:
124:      nCmdShow = nCmdShow != SW_SHOWMINIMIZED ?
125:                             SW_SHOWMAXIMIZED : nCmdShow;
126:
127:      //
128:      // Assign ICON w/ this application.
129:      //
130:      frame->SetIcon(this, IDI_SDIAPPLICATION);
131:
132:      //
133:      // Menu associated with window and accelerator table
134:      // associated with table.
135:      //
136:      frame->AssignMenu(SDI_MENU);
137:
138:      //
139:      // Associate with the accelerator table.

continues



762

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓

140:      //
141:      frame->Attr.AccelTable = SDI_MENU;
142:
143:      SetupSpeedBar(frame);
144:
145:      TStatusBar *sb = new TStatusBar(frame, TGadget::Recessed,
146:                                      TStatusBar::CapsLock        |
147:                                      TStatusBar::NumLock         |
148:                                      TStatusBar::ScrollLock      |
149:                                      TStatusBar::Overtype);
150:      frame->Insert(*sb, TDecoratedFrame::Bottom);
151:
152:      MainWindow = frame;
153:
154:      //
155:      // Borland Windows custom controls.
156:      //
157:      EnableBWCC();
158:  }
159:
160:
161:  //////////////////////////////////////////////////////////
162:  // XpEd2App
163:  // ===========
164:  // Menu File New command
165:  void XpEd2App::CmFileNew ()
166:  {
167:      Client->NewFile();
168:  }
169:
170:
171:  //////////////////////////////////////////////////////////
172:  // XpEd2App
173:  // ===========
174:  // Menu File Open command
175:  void XpEd2App::CmFileOpen ()
176:  {
177:      //
178:      // Display standard Open dialog box to select a file name.
179:      //
180:      *FileData.FileName = 0;
181:      if (Client->CanClose())
182:          if (TFileOpenDialog(MainWindow, FileData).Execute() ==
183:              IDOK)
184:              OpenFile();
185:  }

Listing X3.9. continued



763

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

186:
187:
188:  void XpEd2App::OpenFile (const char *fileName)
189:  {
190:      if (fileName)
191:          lstrcpy(FileData.FileName, fileName);
192:
193:      Client->ReplaceWith(FileData.FileName);
194:  }
195:
196:
197:  //////////////////////////////////////////////////////////
198:  // XpEd2App
199:  // =====
200:  // Menu File Close command
201:  void XpEd2App::CmFileClose ()
202:  {
203:       if (Client->CanClose())
204:               Client->DeleteSubText(0, UINT(-1));
205:  }
206:
207:
208:  //////////////////////////////////////////////////////////
209:  // XpEd2App
210:  // ===========
211:  // Menu Help About xped2.exe command
212:  void XpEd2App::CmHelpAbout ()
213:  {
214:      //
215:      // Show the modal dialog.
216:      //
217:      XpEd2AboutDlg(MainWindow).Execute();
218:  }
219:
220:
221:  int OwlMain (int , char* [])
222:  {
223:      XpEd2App     App;
224:      int             result;
225:
226:      result = App.Run();
227:
228:      return result;
229:  }

Figure X3.13 shows a sample session with the XPED2.EXE application.



764

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓

Figure X3.13. A sample session with the XPED2.EXE application.

Listing X3.9 contains the source code for the XPED2APP.CPP implementation file.
The file contains the message-response table macro, the declaration of the class
SDIDecFrame, and the definition of the members of the class XpEd2App. The message-
response macro table and declaration of the class SDIDecFrame are similar to those in
the file XPED1APP.CPP. The following application class member functions are new
or different in the file XPED2APP.CPP:

1. The member function SetupSpeedBar (defined in lines 85 to 109) sets up the
application’s speed bar by carrying out these subsequent tasks:

■■ Creates a new instance of the class TControlBar and assigns the address
of that instance to the local pointer cb.

■■ Inserts the bitmapped buttons in the speed bar by sending a sequence
of the C++ message Insert to the instance accessed by pointer cb. Each
message has the appropriate arguments needed to insert a specific
bitmapped button. These messages also include the CM_XXXX identifiers
for the buttons, defined in resource header file.

■■ Includes fly-over help hints by sending the C++ message SetHintMode
to the control bar accessed by pointer cb.



765

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

■■ Sends the C++ message Insert to the object accessed by the pointer-
type parameter frame. This parameter represents the SDI decorated
frame window.

2. The member function InitMainWindow (defined in lines 118 to 158) initial-
izes the main window by carrying out the following tasks:

■■ Creates a new client area by allocating an instance of class TEditFile.
The function assigns the address of this instance to the data member
Client.

■■ Creates a new decorated SDI frame window by allocating an instance
of the class SDIDecFrame. The function assigns the address of this
instance to the local pointer frame.

■■ Assigns a value to the inherited data member nCmdShow such that the
window appears in its maximized state (as requested in the application
setup of AppExpert).

■■ Assigns the application’s icon using the icon resource
IDI_SDIAPPLICATION. This task involves sending the C++ message
SetIcon to the SDI window accessed by the pointer frame.

■■ Assigns the application’s menu using the menu resource SDI_MENU. This
task involves sending the C++ message AssignMenu to the SDI window
accessed by the pointer frame.

■■ Assigns the accelerator table SDI_MENU to the frame window.

■■ Invokes the member function SetupSpeedBar to set up the tool bar.
The argument for this member function is the local pointer frame.

■■ Creates a new instance of the class TStatusBar. The function assigns
the address of the status bar object to the local pointer sb.

■■ Inserts the status bar in the SDI frame window. This task involves
sending the C++ message Insert to the frame window. The arguments
for this message are the speed bar object (represented by the expression
*sb) and the TDecoratedFrame::Bottom value. This value locates the
status bar at the bottom of the SDI frame window.

■■ Assigns the address in the pointer frame to the inherited data member
MainWindow.

The next extra-credit chapter looks at the MDI-compliant text editors generated by
AppExpert.



766

p2/va—ns4 TYS Borland C++ 21 Dayssusan/SJM  4-6-94  X3 LP#2(sp 4/12 folio)

2 Extra Credit Bonus 3+✓

Summary
This chapter introduced you to using the AppExpert utility and offered sample SDI-
compliant text-editor applications generated by that utility. You learned about the
following topics:

■■ Working with the AppExpert utility, which you invoke from inside the IDE.

■■ The Application topics in AppExpert, which enable you to make main
selections about the kind of application you wish AppExpert to generate.

■■ The Main Window topics in AppExpert, which enable you to fine-tune the
window styles and the SDI or MDI client windows.

■■ The MDI Child/View options in AppExpert, which enable you to control
the creation of the MDI child windows.

■■ The XPED1 and XPED2 projects, which implement SDI-compliant,
minimally functioning text editors generated by the AppExpert utility. The
XPED1 project implements the simplest kind of text editor that you can
create with the AppExpert utility. The XPED2 project supports an SDI-
compliant editor that has a speed bar and a status line.

Q&A
Q How does the ClassExpert utility complement the source code generated

by AppExpert?

A The ClassExpert enables you to fine-tune the source code of AppExpert by
adding new classes and/or member functions that support custom operations
of your program.

Q Can I customize the code generated by AppExpert without using
ClassExpert?

A Yes. However, depending on how you manually customize the code, it may
be difficult to use ClassExpert later for further customization.

Q How can I change the menus and other resources?

A Use the Workshop Resource utility.



767

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4   TYS Borland C++ 21 Days  #30483 susan/SJM 4-6-9X LP#2 (sp 4/12 folio)

Exercises
1. Use the AppExpert utility to create a text editor that supports the drag/drop

and printing features. Compare the output code with the listings in this
chapter.

2. Use the AppExpert utility to create a text editor that supports the speed bar,
status line, drag/drop, and printing features. Compare the output code with
the listings in this chapter.

3. Use the AppExpert utility to create a text editor that uses the document/view
feature. Compare the output code with the listings in this chapter.



769

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

M
T

W
R

F
S

S✓+
Extra Credit 
Bonus

44
Generating MDI
Applications with
AppExpert



770

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

2 Extra Credit Bonus 4+✓
This extra-credit chapter complements the preceding one and examines the different
versions of the MDI-compliant text editors generated by the AppExpert utility. You
will learn about the following minimal MDI editors:

■■ An editor that contains the speed bar and the status line.

■■ An editor that supports the drag-and-drop and printing features.

■■ An editor that uses the document and view classes.

Note: The listings generated by AppExpert were edited to better fit the
pages in this book.

Table X4.1 shows the various projects that create different versions of the MDI-
compliant text editors.

Table X4.1. The various MDI-compliant projects generated by
AppExpert for this chapter’s case studies.

Project MDI? Doc/View? SpeedBar? Status Drag Print?
Line? & Drop?

XPED3 Yes No Yes Yes No No

XPED4 Yes No No No Yes Yes

XPED5 Yes Yes No No No No

The XPED3 Project
The XPED3 project creates an MDI-compliant text editor that contains the speed bar
and the status line. When you invoke the AppExpert menu option, select the options
for the MDI windows, the speed bar, and the status line. Clear the check marks for
the remaining options. In addition, select the Code Gen Control subtopic (in the
Application topic of the AppExpert dialog box) to make the application and dialog-
box class names XpEd3App and XpEd3AboutDlg, respectively. The AppExpert utility
generates the following files. (The date and time stamps are for the files that we
generated on one of our systems.)



771

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

Filename Size Date/Time Stamp

APPLMDI  ICO 1,086 02-13-94 4:15p
COPY     BMP 358 02-13-94 4:15p
CUT      BMP 358 02-13-94 4:15p
FIND     BMP 358 02-13-94 4:15p
FINDNEXT BMP 358 02-13-94 4:15p
MDICHILD ICO 1,086 02-13-94 4:15p
NEW      BMP 358 02-13-94 4:15p
OPEN     BMP 358 02-13-94 4:15p
PASTE    BMP 358 02-13-94 4:15p
SAVE     BMP 358 02-13-94 4:15p
UNDO     BMP 358 02-13-94 4:15p
XPD3MDI1 H 901 02-13-94 4:15p
XPD3MDI1 CPP 967 02-13-94 4:15p
XPD3MDIC CPP 4,737 02-13-94 4:15p
XPD3MDIC H 1,349 02-13-94 4:15p
XPED3    APX 24,483 02-13-94 4:15p
XPED3    OBR 433 02-13-94 4:15p
XPED3    IDE 26,574 02-13-94 4:15p
XPED3    DSW 264 02-13-94 4:15p
XPED3ABD CPP 4,735 02-13-94 4:15p
XPED3ABD H 900 02-13-94 4:15p
XPED3APP RC 13,996 02-13-94 4:15p
XPED3APP H 1,106 02-13-94 4:15p
XPED3APP RH 4,560 02-13-94 4:15p
XPED3APP DEF 505 02-13-94 4:15p
XPED3APP CPP 3,610 02-13-94 4:15p

Build the XPED3 project and run the XPED3.EXE program. Experiment with this
version of the text editor to develop a feel for the supported features. The preceding
list of files shows the additional header and implementation files XPD3MDI1.H,
XPD3MDI1.CPP, XPD3MDIC.H, and XPD3MDIC.CPP. Listing X4.1 shows the
source code for the XPD3MDI1.H header file. This file contains the declaration of
the MDI child window class XPD3MDIChild. The class is declared as a descendant of
the class TMDIChild and includes a constructor and a destructor.



772

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

2 Extra Credit Bonus 4+✓

Type

Type Listing X4.1. The source code for the XPD3MDI1.H
header file.

 1:   #if !defined(__xpd3mdi1_h)     // Sentry, use file only if
 2:                                  // it’s not already included.
 3:   #define __xpd3mdi1_h
 4:
 5:   /*  Project xped3
 6:
 7:       Copyright  1993. All Rights Reserved.
 8:
 9:       SUBSYSTEM:    xped3.exe Application
 10:      FILE:         xpd3mdi1.h
 11:      AUTHOR:
 12:
 13:
 14:      OVERVIEW
 15:      ========
 16:      Class definition for XPD3MDIChild (TMDIChild).
 17:  */
 18:
 19:
 20:  #include <owl\owlpch.h>
 21:  #pragma hdrstop
 22:
 23:  #include <owl\editfile.h>
 24:  #include <owl\listbox.h>
 25:
 26:  #include “xped3app.rh”            // Definition of all resources.
 27:
 28:
 29:  //{{TMDIChild = XPD3MDIChild}}
 30:  class XPD3MDIChild : public TMDIChild {
 31:  public:
 32:      XPD3MDIChild (TMDIClient &parent,
 33:                     const char far *title,
 34:                     TWindow *clientWnd,
 35:                     BOOL shrinkToClient = FALSE,
 36:                     TModule* module = 0);
 37:      virtual ~XPD3MDIChild ();
 38:  };    //{{XPD3MDIChild}}
 39:
 40:
 41:  #endif                                   // __xpd3mdi1_h sentry.

Listing X4.2. The source code for the XPD3MDI1.CPP
implementation file.

  1:  /*  Project xped3
  2:



773

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

 3:       Copyright  1993. All Rights Reserved.
 4:
 5:       SUBSYSTEM:    xped3.exe Application
 6:       FILE:         xpd3mdi1.cpp
 7:       AUTHOR:
 8:
 9:
 10:      OVERVIEW
 11:      ========
 12:      Source file for implementation of XPD3MDIChild (TMDIChild).
 13:  */
 14:
 15:
 16:  #include <owl\owlpch.h>
 17:  #pragma hdrstop
 18:
 19:  #include “xped3app.h”
 20:  #include “xpd3mdi1.h”
 21:
 22:  #include <stdio.h>
 23:
 24:
 25:  //{{XPD3MDIChild Implementation}}
 26:
 27:
 28:  //////////////////////////////////////////////////////////
 29:  // XPD3MDIChild
 30:  // ==========
 31:  // Construction/Destruction handling.
 32:  XPD3MDIChild::XPD3MDIChild (TMDIClient &parent,
 33:                                const char far *title,
 34:                                TWindow *clientWnd,
 35:                                BOOL shrinkToClient,
 36:                                TModule *module)
 37:      : TMDIChild (parent, title, clientWnd == 0 ?
 38:             new TEditFile(0, 0, 0) : clientWnd,
 39:             shrinkToClient, module)
 40:  {
 41:      // INSERT>> Your constructor code here.
 42:
 43:  }
 44:
 45:
 46:  XPD3MDIChild::~XPD3MDIChild ()
 47:  {
 48:      Destroy();
 49:
 50:      // INSERT>> Your destructor code here.
 51:
 52:  }



774

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

2 Extra Credit Bonus 4+✓

Type

Listing X4.2 shows the source code for the XPD3MDI1.CPP implementation
file. The listing contains the implementation for the constructor and destructor
of the class XPD3MDIChild. The constructor invokes the constructor of the parent

class. The destructor simply invokes the member function Destroy to remove the
MDI child window. Both members include comments that indicate where to insert
additional code.

Listing X4.3. The source code for the XPD3MDIC.H
header file.

 1:   #if !defined(__xpd3mdic_h)       // Sentry, use file only if
 2:                                    // it’s not already included.
 3:   #define __xpd3mdic_h
 4:
 5:   /*  Project xped3
 6:
 7:       Copyright  1993. All Rights Reserved.
 8:
 9:       SUBSYSTEM:    xped3.exe Application
 10:      FILE:         xpd3mdic.h
 11:      AUTHOR:
 12:
 13:
 14:      OVERVIEW
 15:      ========
 16:      Class definition for XPD3MDIClient (TMDIClient).
 17:  */
 18:
 19:
 20:  #include <owl\owlpch.h>
 21:  #pragma hdrstop
 22:
 23:  #include <owl\opensave.h>
 24:
 25:  #include “xped3app.rh”       // Definition of all resources.
 26:
 27:
 28:  //{{TMDIClient = XPD3MDIClient}}
 29:  class XPD3MDIClient : public TMDIClient {
 30:  public:
 31:      int ChildCount;   // Number of child window created.
 32:      TOpenSaveDialog::TData  FileData; // Data to control
 33:                                        // open/saveas standard
 34:                                        // dialog.
 35:
 36:      XPD3MDIClient ();

Analysis



775

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

Analysis

 37:      virtual ~XPD3MDIClient ();
 38:
 39:      void OpenFile (const char *fileName = 0);
 40:
 41:  private:
 42:      void LoadTextFile ();
 43:
 44:  //{{XPD3MDIClientVIRTUAL_BEGIN}}
 45:  protected:
 46:      virtual void SetupWindow ();
 47:  //{{XPD3MDIClientVIRTUAL_END}}
 48:
 49:  //{{XPD3MDIClientRSP_TBL_BEGIN}}
 50:  protected:
 51:      void CmFileNew ();
 52:      void CmFileOpen ();
 53:  //{{XPD3MDIClientRSP_TBL_END}}
 54:  DECLARE_RESPONSE_TABLE(XPD3MDIClient);
 55:  };    //{{XPD3MDIClient}}
 56:
 57:
 58:  #endif                             // __xpd3mdic_h sentry.

Listing X4.3 shows the source code for the XPD3MDIC.CPP implementation
file. This file contains the declaration of the MDI client window XPD3MDIClient,
as a descendant of TMDIClient. The class declares the following members:

1. The public data member ChildCount (declared in line 31), which stores the
number of MDI child windows.

2. The public data member FileData (declared in line 32), which is an
instance of the class TOpenSaveDialog::TData.

3. The constructor, declared in line 36.

4. The destructor, declared in line 37.

5. The member function OpenFile, declared in line 39.

6. The private member function LoadTextFile, declared in line 42.

7. The protected member function SetupWindow, declared in line 46.

8. The protected member functions CmFileNew and CmFileOpen (declared in
lines 51 and 52), which handle menu commands.



776

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

2 Extra Credit Bonus 4+✓

Type Listing X4.4. The source code for the XPD3MDIC.CPP
implementation file.

 1:   /*  Project xped3
 2:
 3:       Copyright  1993. All Rights Reserved.
 4:
 5:       SUBSYSTEM:    xped3.exe Application
 6:       FILE:         xpd3mdic.cpp
 7:       AUTHOR:
 8:
 9:
 10:      OVERVIEW
 11:      ========
 12:      Source file for implementation of XPD3MDIClient (TMDIClient).
 13:  */
 14:
 15:
 16:  #include <owl\owlpch.h>
 17:  #pragma hdrstop
 18:
 19:  #include <dir.h>
 20:
 21:  #include “xped3app.h”
 22:  #include “xpd3mdic.h”
 23:  #include “xpd3mdi1.h”
 24:
 25:
 26:  //{{XPD3MDIClient Implementation}}
 27:
 28:
 29:  //
 30:  // Build a response table for all messages/commands handled
 31:  // by XPD3MDIClient derived from TMDIClient.
 32:  //
 33:  DEFINE_RESPONSE_TABLE1(XPD3MDIClient, TMDIClient)
 34:  //{{XPD3MDIClientRSP_TBL_BEGIN}}
 35:      EV_COMMAND(CM_MDIFILENEW, CmFileNew),
 36:      EV_COMMAND(CM_MDIFILEOPEN, CmFileOpen),
 37:  //{{XPD3MDIClientRSP_TBL_END}}
 38:  END_RESPONSE_TABLE;
 39:
 40:
 41:  //////////////////////////////////////////////////////////
 42:  // XPD3MDIClient
 43:  // ===========
 44:  // Construction/Destruction handling.
 45:   XPD3MDIClient::XPD3MDIClient ()
 46:   : TMDIClient ()
 47:  {
 48:      ChildCount = 0;



777

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

 49:
 50:      // INSERT>> Your constructor code here.
 51:
 52:  }
 53:
 54:
 55:   XPD3MDIClient::~XPD3MDIClient ()
 56:  {
 57:      Destroy();
 58:
 59:      // INSERT>> Your destructor code here.
 60:
 61:  }
 62:
 63:
 64:  //////////////////////////////////////////////////////////
 65:  // XPD3MDIClient
 66:  // ===========
 67:  // MDIClient site initialization.
 68:  void XPD3MDIClient::SetupWindow ()
 69:  {
 70:      // Default SetUpWindow processing.
 71:      TMDIClient::SetupWindow ();
 72:
 73:      // Common file flags and filters for Open/Save As
 74:      // dialogs. Filename and directory are computed in the
 75:      // member functions CmFileOpen, and CmFileSaveAs.
 76:      FileData.Flags = OFN_FILEMUSTEXIST | OFN_HIDEREADONLY |
 77:                       OFN_OVERWRITEPROMPT;
 78:      FileData.SetFilter(“All Files (*.*)|*.*|”);
 79:
 80:  }
 81:
 82:
 83:  //////////////////////////////////////////////////////////
 84:  // XPD3MDIClient
 85:  // ===========
 86:  // Menu File New command
 87:  void XPD3MDIClient::CmFileNew ()
 88:  {
 89:      char    title[255];
 90:
 91:      // Generate a title for the MDI child window.
 92:      wsprintf(title, “%d”, ChildCount++);
 93:
 94:      XPD3MDIChild* child = new XPD3MDIChild(*this, title, 0);
 95:
 96:      // Associate ICON w/ this child window.
 97:      child->SetIcon(GetApplication(), IDI_DOC);
 98:

continues



778

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

2 Extra Credit Bonus 4+✓

99:       // If the current active MDI child is maximized then this
100:      // one should be also.
101:      XPD3MDIChild *curChild = (XPD3MDIChild *)GetActiveMDIChild();
102:      if (curChild && (curChild->GetWindowLong(GWL_STYLE) &
103:              WS_MAXIMIZE))child->Attr.Style |= WS_MAXIMIZE;
104:
105:      child->Create();
106:  }
107:
108:
109:  void XPD3MDIClient::OpenFile (const char *fileName)
110:  {
111:      if (fileName)
112:          lstrcpy(FileData.FileName, fileName);
113:
114:      //
115:      // Create a MDIChild window whose client is TEditFile.
116:      //
117:      XPD3MDIChild* child = new XPD3MDIChild(*this, “”,
118:                             new TEditFile(0, 0, 0, 0, 0, 0, 0,
119:                             FileData.FileName));
120:
121:      // Associate ICON w/ this child window.
122:      child->SetIcon(GetApplication(), IDI_DOC);
123:
124:      // If the current active MDI child is maximized then this
125:      // one should be also.
126:      XPD3MDIChild *curChild = (XPD3MDIChild*)GetActiveMDIChild();
127:      if (curChild && (curChild->GetWindowLong(GWL_STYLE) &
128:           WS_MAXIMIZE))child->Attr.Style |= WS_MAXIMIZE;
129:
130:      child->Create();
131:
132:      LoadTextFile();
133:  }
134:
135:
136:  //////////////////////////////////////////////////////////
137:  // XPD3MDIClient
138:  // ===========
139:  // Menu File Open command
140:  void XPD3MDIClient::CmFileOpen ()
141:  {
142:      //
143:      // Display standard Open dialog box to select a file name.
144:      //
145:      *FileData.FileName = 0;

Listing X4.4. continued



779

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

146:      if (TFileOpenDialog(this, FileData).Execute() == IDOK)
147:          OpenFile();
148:  }
149:
150:
151:  // Used by ListBox client to read a text file into the list box.
152:  void XPD3MDIClient::LoadTextFile ()
153:  {
154:    char            buf[255+1];
155:    ifstream        *inStream;
156:
157:    XPD3MDIChild  *curChild = (XPD3MDIChild *)GetActiveMDIChild();
158:    TListBox        *client = TYPESAFE_DOWNCAST(
159:                            curChild->GetClientWindow(), TListBox);
160:
161:      // Only works if the client class is a TListBox.
162:      if (client) {
163:          client->ClearList();
164:          inStream = new ifstream(FileData.FileName);
165:          while (inStream->good()) {
166:              inStream->getline(buf, sizeof(buf) - 1);
167:              if (inStream->good())
168:                  client->AddString(buf);
169:          }
170:
171:          // Return an error message if we had a stream error and it
172:          // wasn’t the eof.
173:          if (inStream->bad() && !inStream->eof()) {
174:              string msgTemplate(*GetModule(), IDS_UNABLEREAD);
175:              char*  msg = new char[MAXPATH + msgTemplate.length()];
176:              wsprintf(msg, msgTemplate.c_str(), FileData.FileName);
177:              MessageBox(msg, GetApplication()->GetName(),
178:                         MB_ICONEXCLAMATION | MB_OK);
179:              delete msg;
180:          }
181:
182:          delete inStream;
183:      }
184:  }

Figure X4.1 shows a sample session with the XPED3.EXE application.

Listing X4.4 contains the source code for the XPD3MDIC.CPP implementa-
tion file. The listing contains the message-response table macros and the
definitions of the various class members.

Analysis



780

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

2 Extra Credit Bonus 4+✓

Figure X4.1. A sample session with the XPED3.EXE application.

The message-response table maps the messages for the support-menu commands. The
class defines the following relevant members:

1. The constructor (defined in lines 45 to 52), which invokes the constructor of
the parent class and assigns 0 to the data member ChildCount.

2. The destructor (defined in lines 55 to 61), which invokes the member
function Destroy.

3. The member function SetupWindow (defined in lines 68 to 80), which
initializes an MDI client window by performing the following tasks:

■■ Invokes the SetupWindow of the parent class.

■■ Assigns the bitwise ORed expression of OFN_XXXX constants to the
Flags member of the data member FileData.

■■ Sends the C++ message SetFilter to the data member FileData. This
message sets the file-type filters used in the Open and Save File dialog
boxes.

4. The member function CmFileNew (defined in lines 86 to 106), which creates
a new MDI child window by performing the following tasks:

■■ Generates the title of the new MDI child window.



781

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

Type

■■ Creates a new MDI child window object and assigns its address to the
local pointer child.

■■ Associates an icon with the MDI child window. This task involves
sending the C++ message SetIcon to the MDI child window.

■■ Maximizes the new MDI child window if the current MDI child
window is also maximized.

■■ Creates the visible MDI child window.

5. The member function OpenFile (defined in lines 109 to 133), which creates
a new MDI child window and loads the text from the filename specified by
the parameter fileName. The tasks of this function resemble those of
CmFileNew. The main difference is that this function invokes the member
function LoadTextFile after creating the MDI child window.

6. The member function CmFileOpen (defined in lines 140 to 148), which
invokes the Open dialog box and then calls the member function OpenFile
to process the selected file.

7. The member function LoadTextFile (defined in lines 152 to 184), which
loads the text from the input file into the current MDI child window.

Listing X4.5. The source code for the XPED3APP.H
header file.

 1:   #if !defined(__xped3app_h)      // Sentry, use file only
 2:                                   // if it’s not already included.
 3:   #define __xped3app_h
 4:
 5:   /*  Project xped3
 6:
 7:       Copyright  1993. All Rights Reserved.
 8:
 9:       SUBSYSTEM:    xped3.exe Application
 10:      FILE:         xped3app.h
 11:      AUTHOR:
 12:
 13:
 14:      OVERVIEW
 15:      ========
 16:      Class definition for XpEd3App (TApplication).
 17:  */
 18:
 19:

continues



782

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

2 Extra Credit Bonus 4+✓

Type

 20:  #include <owl\owlpch.h>
 21:  #pragma hdrstop
 22:
 23:  #include <owl\statusba.h>
 24:  #include <owl\controlb.h>
 25:  #include <owl\buttonga.h>
 26:
 27:  #include “xped3app.rh”            // Definition of all resources.
 28:
 29:
 30:  //{{TApplication = XpEd3App}}
 31:  class XpEd3App : public TApplication {
 32:  private:
 33:
 34:  private:
 35:      void SetupSpeedBar (TDecoratedMDIFrame *frame);
 36:
 37:  public:
 38:      XpEd3App ();
 39:      virtual ~XpEd3App ();
 40:
 41:  //{{XpEd3AppVIRTUAL_BEGIN}}
 42:  public:
 43:      virtual void InitMainWindow();
 44:  //{{XpEd3AppVIRTUAL_END}}
 45:  //{{XpEd3AppRSP_TBL_BEGIN}}
 46:  protected:
 47:      void CmHelpAbout ();
 48:  //{{XpEd3AppRSP_TBL_END}}
 49:  DECLARE_RESPONSE_TABLE(XpEd3App);
 50:  };    //{{XpEd3App}}
 51:
 52:
 53:  #endif                            // __xped3app_h sentry.

Listing X4.5 shows the source code for the XPED3APP.H header file.

This file contains the declaration of the application class XpEd3App. This
declaration includes a constructor, a destructor, and the member functions

InitMainWindow, SetupSpeedBar, and CmHelpAbout.

Listing X4.6. The source code for the XPED3APP.CPP
implementation file.

  1:  /*  Project xped3
  2:
  3:      Copyright  1993. All Rights Reserved.

Listing X4.5. continued

Analysis



783

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

 4:
 5:       SUBSYSTEM:    xped3.exe Application
 6:       FILE:         xped3app.cpp
 7:       AUTHOR:
 8:
 9:
 10:      OVERVIEW
 11:      ========
 12:      Source file for implementation of XpEd3App (TApplication).
 13:  */
 14:
 15:
 16:  #include <owl\owlpch.h>
 17:  #pragma hdrstop
 18:
 19:
 20:  #include “xped3app.h”
 21:  #include “xpd3mdic.h”
 22:  #include “xped3abd.h”             // Definition of About dialog.
 23:
 24:
 25:  //{{XpEd3App Implementation}}
 26:
 27:  //
 28:  // Build a response table for all messages/commands handled
 29:  // by the application.
 30:  //
 31:  DEFINE_RESPONSE_TABLE1(XpEd3App, TApplication)
 32:  //{{XpEd3AppRSP_TBL_BEGIN}}
 33:      EV_COMMAND(CM_HELPABOUT, CmHelpAbout),
 34:  //{{XpEd3AppRSP_TBL_END}}
 35:  END_RESPONSE_TABLE;
 36:
 37:
 38:  //////////////////////////////////////////////////////////
 39:  // XpEd3App
 40:  // =====
 41:  //
 42:  XpEd3App::XpEd3App () : TApplication(“xped3”)
 43:  {
 44:
 45:      // INSERT>> Your constructor code here.
 46:
 47:  }
 48:
 49:
 50:  XpEd3App::~XpEd3App ()
 51:  {
 52:      // INSERT>> Your destructor code here.
 53:

continues



784

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

2 Extra Credit Bonus 4+✓

54:   }
55:
56:
57:   void XpEd3App::SetupSpeedBar (TDecoratedMDIFrame *frame)
58:   {
59:       //
60:       // Create default toolbar New and associate toolbar buttons
61:       // with commands.
62:       //
63:       TControlBar* cb = new TControlBar(frame);
64:       cb->Insert(*new TButtonGadget(CM_MDIFILENEW, CM_MDIFILENEW));
65:       cb->Insert(*new TButtonGadget(CM_MDIFILEOPEN,
66:                                     CM_MDIFILEOPEN));
67:       cb->Insert(*new TButtonGadget(CM_FILESAVE, CM_FILESAVE));
68:       cb->Insert(*new TSeparatorGadget(6));
69:       cb->Insert(*new TButtonGadget(CM_EDITCUT, CM_EDITCUT));
70:       cb->Insert(*new TButtonGadget(CM_EDITCOPY, CM_EDITCOPY));
71:       cb->Insert(*new TButtonGadget(CM_EDITPASTE, CM_EDITPASTE));
72:       cb->Insert(*new TSeparatorGadget(6));
73:       cb->Insert(*new TButtonGadget(CM_EDITUNDO, CM_EDITUNDO));
74:       cb->Insert(*new TSeparatorGadget(6));
75:       cb->Insert(*new TButtonGadget(CM_EDITFIND, CM_EDITFIND));
76:       cb->Insert(*new TButtonGadget(CM_EDITFINDNEXT,
77:                                     CM_EDITFINDNEXT));
78:
79:       // Add fly-over help hints.
80:       cb->SetHintMode(TGadgetWindow::EnterHints);
81:
82:       frame->Insert(*cb, TDecoratedFrame::Top);
83:   }
84:
85:
86:   //////////////////////////////////////////////////////////
87:   // XpEd3App
88:   // =====
89:   // Application initialization.
90:   //
91:   void XpEd3App::InitMainWindow ()
92:   {
93:       TDecoratedMDIFrame* frame = new TDecoratedMDIFrame(Name,
94:                        MDI_MENU, *(new XPD3MDIClient), TRUE);
95:
96:       nCmdShow = (nCmdShow != SW_SHOWMINNOACTIVE) ?
97:                                     SW_SHOWNORMAL : nCmdShow;
98:
99:       //
100:      // Assign ICON w/ this application.
101:      //
102:      frame->SetIcon(this, IDI_MDIAPPLICATION);

Listing X4.6. continued



785

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

103:
104:      //
105:      // Menu associated with window and accelerator table
106:      // associated with table.
107:      //
108:      frame->AssignMenu(MDI_MENU);
109:
110:      //
111:      // Associate with the accelerator table.
112:      //
113:      frame->Attr.AccelTable = MDI_MENU;
114:
115:
116:      SetupSpeedBar(frame);
117:
118:      TStatusBar *sb = new TStatusBar(frame, TGadget::Recessed,
119:                                      TStatusBar::CapsLock     |
120:                                      TStatusBar::NumLock      |
121:                                      TStatusBar::ScrollLock   |
122:                                      TStatusBar::Overtype);
123:      frame->Insert(*sb, TDecoratedFrame::Bottom);
124:
125:      MainWindow = frame;
126:
127:  }
128:
129:
130:  //////////////////////////////////////////////////////////
131:  // XpEd3App
132:  // ===========
133:  // Menu Help About xped3.exe command
134:  void XpEd3App::CmHelpAbout ()
135:  {
136:      //
137:      // Show the modal dialog.
138:      //
139:      XpEd3AboutDlg(MainWindow).Execute();
140:  }
141:
142:
143:  int OwlMain (int , char* [])
144:  {
145:      XpEd3App     App;
146:      int             result;
147:
148:      result = App.Run();
149:
150:      return result;
151:  }



786

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

2 Extra Credit Bonus 4+✓
Listing X4.6 shows the source code for the XPED3APP.CPP implementation
file. The listing contains the implementation for the constructor, the destructor,
and the member functions SetupSpeedBar, InitMainWindow, and CmHelpAbout.

The constructor (defined in lines 42 to 47) simply invokes the constructor of the
parent class. The destructor (defined in lines 50 to 54) is a dummy member that
contains no executable statements. The definitions of the member functions
SetUpSpeedBar and InitMainWindow resemble those of XPED2APP.CPP in List-
ing X3.9.

The XPED4 Project
The project XPED4 creates an MDI-compliant text editor that supports the drag-
and-drop and printing features. When you invoke the AppExpert menu option, select
the options for the MDI windows, the drag-and-drop feature, and the printing-
related features. Clear the check marks for the other options. In addition, select the
Code Gen Control subtopic (in the Application topic of the AppExpert dialog box)
to make the application and dialog box class names XpEd4App and XpEd4AboutDlg,
respectively. The AppExpert utility generates the following files. (The date and time
stamps are for the files that we generated on one of our systems.)

Filename Size Date/Time Stamp

APPLMDI  ICO 1,086 02-13-94 4:16p
APXPREV  CPP 8,775 02-13-94 4:16p
APXPREV  H 1,660 02-13-94 4:16p
APXPRINT H 1,283 02-13-94 4:16p
APXPRINT CPP 5,615 02-13-94 4:16p
MDICHILD ICO 1,086 02-13-94 4:16p
NEXT     BMP 322 02-13-94 4:16p
PREVIEW1 BMP 322 02-13-94 4:16p
PREVIEW2 BMP 322 02-13-94 4:16p
PREVIOUS BMP 322 02-13-94 4:16p
XPD4MDI1 CPP 5,144 02-13-94 4:17p
XPD4MDI1 H 1,212 02-13-94 4:16p
XPD4MDIC CPP 8,367 02-13-94 4:17p
XPD4MDIC H 1,522 02-13-94 4:17p
XPED4    DSW 250 02-13-94 4:17p
XPED4    APX 36,368 02-13-94 4:17p
XPED4    IDE 27,570 02-13-94 4:17p
XPED4    OBR 433 02-13-94 4:17p

Analysis



787

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

Type

XPED4ABD CPP 4,735 02-13-94 4:16p
XPED4ABD H 900 02-13-94 4:16p
XPED4APP RC 15,226 02-13-94 4:16p
XPED4APP RH 5,499 02-13-94 4:16p
XPED4APP CPP 7,328 02-13-94 4:16p
XPED4APP H 2,190 02-13-94 4:16p
XPED4APP DEF 505 02-13-94 4:16p

The XPED4 project files include a set of header and implementation files that are
similar to those in project XPED3.

Build the XPED4 project and run the XPED4.EXE program. Experiment with this
version of the text editor to develop a sense for the supported features.

Listing X4.7. The source code for the APXPRINT.H
header file.

 1:   #if !defined(__apxprint_h)        // Sentry use file only if
 2:                                     // it’s not already included.
 3:   #define __apxprint_h
 4:
 5:   /*  Main xped4
 6:
 7:       Copyright  1993. All Rights Reserved.
 8:
 9:       SUBSYSTEM:    xped4.exe Application
 10:      FILE:         APXPrint.H
 11:      AUTHOR:
 12:
 13:
 14:      OVERVIEW
 15:      ========
 16:      Class definition for APXPrintOut (TPrintOut).
 17:  */
 18:
 19:
 20:  #include <owl\owlpch.h>
 21:  #pragma hdrstop
 22:
 23:  #include <owl\printer.h>
 24:
 25:
 26:  class APXPrintOut : public TPrintout {
 27:  public:
 28:      APXPrintOut (TPrinter *printer, const char far *title,
 29:                   TWindow* window,
 30:                   BOOL scale = TRUE) : TPrintout(title)

continues



788

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

2 Extra Credit Bonus 4+✓

Type

 31:        { Printer = printer;
 32:          Window = window;
 33:          Scale = scale;
 34:          MapMode = MM_ANISOTROPIC; }
 35:
 36:      void GetDialogInfo (int& minPage, int& maxPage,
 37:                          int& selFromPage, int& selToPage);
 38:      void BeginPrinting ();
 39:      void BeginPage (TRect &clientR);
 40:      void PrintPage (int page, TRect& rect, unsigned flags);
 41:      void EndPage ();
 42:      void SetBanding (BOOL b)        { Banding = b; }
 43:      BOOL HasPage (int pageNumber);
 44:
 45:  protected:
 46:      TWindow     *Window;
 47:      BOOL        Scale;
 48:      TPrinter    *Printer;
 49:      int         MapMode;
 50:
 51:      int         PrevMode;
 52:      TSize       OldVExt, OldWExt;
 53:      TRect       OrgR;
 54:  };
 55:
 56:
 57:  #endif           // __apxprint_h sentry.

Listing X4.7 shows the source code for the APXPRINT.H header file. This file
declares the class APXPrintOut (a descendant of the OWL class TPrintout) in line
26. The descendant class supports printing. The class declares a constructor and

the member functions GetDialogInfo, BeginPrinting, BeginPage, PrintPage, EndPage,
SetBanding, and HasPage in lines 36 to 43. The class also declares a set of protected
data members, in lines 46 to 53, to manage the printing process. The header file
contains the definition of the constructor, which calls the constructor of the parent
class and then assigns the arguments of its parameters to the related data members. The
file APXPRINT.CPP contains the implementation for the member functions of the
class APXPrintOut.

Listing X4.8. The source code for the APXPREV.H
header file.

  1:  #if !defined(__apxprev_h)     // Sentry, use file only if
  2:                                // it’s not already included.
  3:  #define __apxprev_h

Listing X4.7. continued

Analysis



789

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

 4:
 5:   /*  Main xped4
 6:
 7:       Copyright  1993. All Rights Reserved.
 8:
 9:       SUBSYSTEM:    xped4.exe Application
 10:      FILE:         APXPrev.H
 11:      AUTHOR:
 12:
 13:
 14:      OVERVIEW
 15:      ========
 16:      Class definition for PreviewWindow (Print Preview).
 17:  */
 18:
 19:
 20:  #include <owl\owlpch.h>
 21:  #pragma hdrstop
 22:
 23:  #include <owl\controlb.h>
 24:  #include <owl\printdia.h>
 25:  #include <owl\preview.h>
 26:
 27:  #include “apxprint.h”
 28:  #include “xped4app.rh”
 29:
 30:
 31:  //{{TDecoratedFrame = PreviewWindow}}
 32:  class PreviewWindow : public TDecoratedFrame {
 33:  public:
 34:      PreviewWindow (TWindow *parentWindow, TPrinter *printer,
 35:                     TWindow* currWindow, const char far* title,
 36:                     TLayoutWindow* client);
 37:      ~PreviewWindow ();
 38:
 39:      int             PageNumber;
 40:
 41:      TWindow         *CurrWindow;
 42:      TControlBar     *PreviewSpeedBar;
 43:      TPreviewPage    *Page1;
 44:      TPreviewPage    *Page2;
 45:      TPrinter        *Printer;
 46:
 47:      TPrintDC        *PrnDC;
 48:      TSize           *PrintExtent;
 49:      APXPrintOut     *Printout;
 50:
 51:  private:
 52:      TLayoutWindow   *Client;
 53:

continues



790

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

2 Extra Credit Bonus 4+✓

 54:      void SpeedBarState ();
 55:
 56:  //{{PreviewWindowVIRTUAL_BEGIN}}
 57:  protected:
 58:      virtual void SetupWindow ();
 59:  //{{PreviewWindowVIRTUAL_END}}
 60:
 61:  //{{PreviewWindowRSP_TBL_BEGIN}}
 62:  protected:
 63:      void PPR_Previous ();
 64:      void PPR_Next ();
 65:      void PPR_OneUp ();
 66:      void PPR_TwoUp ();
 67:      void EvNCLButtonDown (UINT wHitTestCode, TPoint & point);
 68:      void EvClose ();
 69:  //{{PreviewWindowRSP_TBL_END}}
 70:  DECLARE_RESPONSE_TABLE(PreviewWindow);
 71:  };    //{{PreviewWindow}}
 72:
 73:
 74:  #endif      // __apxprev_h sentry.

Listing X4.8 shows the source code for the APXPREV.H header file. The file
declares the class PreviewWindow (a descendant of the class TDecoratedFrame) in
line 32. The descendant class supports the print preview feature. The file

APXPREV.CPP contains the implementation for the member functions of the class
PreviewWindow. The class declares the following members:

1. The constructor in line 34.

2. The destructor in line 37.

3. The set of public members (in lines 39 to 49), which are mostly pointers to
pages, control bars, printer devices, and printout objects.

4. The private member Client (in line 52), which is a pointer to the layout
window class TLayoutWindow.

5. The private member function SpeedBarState in line 54.

6. The protected member function SetupWindow in line 59.

7. The protected member functions PPR_XXXX (in lines 63 to 66), which
respond to the speed bar buttons that support previewing the next and
previous pages.

Listing X4.8. continued

Analysis



791

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

Type

8. The protected member functions EvXXXX (in lines 67 and 68), which handle
the speed bar buttons and closing the preview page.

Listing X4.9. The source code for the XPD4MDI1.H
header file.

 1:   #if !defined(__xpd4mdi1_h)    // Sentry, use file only if
 2:                                 // it’s not already included.
 3:   #define __xpd4mdi1_h
 4:
 5:   /*  Project xped4
 6:
 7:       Copyright  1993. All Rights Reserved.
 8:
 9:       SUBSYSTEM:    xped4.exe Application
 10:      FILE:         xpd4mdi1.h
 11:      AUTHOR:
 12:
 13:
 14:      OVERVIEW
 15:      ========
 16:      Class definition for XPD4MDIChild (TMDIChild).
 17:  */
 18:
 19:
 20:  #include <owl\owlpch.h>
 21:  #pragma hdrstop
 22:
 23:  #include <owl\editfile.h>
 24:  #include <owl\listbox.h>
 25:
 26:  #include “xped4app.rh”    // Definition of all resources.
 27:
 28:
 29:  //{{TMDIChild = XPD4MDIChild}}
 30:  class XPD4MDIChild : public TMDIChild {
 31:  public:
 32:      XPD4MDIChild (TMDIClient &parent,
 33:                     const char far *title,
 34:                     Window *clientWnd,
 35:                     BOOL shrinkToClient = FALSE,
 36:                     TModule* module = 0);
 37:      virtual ~XPD4MDIChild ();
 38:
 39:  //{{XPD4MDIChildVIRTUAL_BEGIN}}
 40:  public:
 41:      virtual void Paint (TDC& dc, BOOL erase, TRect& rect);
 42:  //{{XPD4MDIChildVIRTUAL_END}}

continues



792

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

2 Extra Credit Bonus 4+✓

Type

 43:  //{{XPD4MDIChildRSP_TBL_BEGIN}}
 44:  protected:
 45:      void EvGetMinMaxInfo (MINMAXINFO far& minmaxinfo);
 46:  //{{XPD4MDIChildRSP_TBL_END}}
 47:  DECLARE_RESPONSE_TABLE(XPD4MDIChild);
 48:  };    //{{XPD4MDIChild}}
 49:
 50:
 51:  #endif                              // __xpd4mdi1_h sentry.

Listing X4.9 shows the source code for the XPD4MDI1.H header file. This file
contains the declaration for the MDI child class, XPD4MDIChild. The declaration
includes the following members:

1. The constructor, declared in lines 32 to 36.

2. The destructor, declared in line 37.

3. The public member function Paint, declared in line 41.

4. The protected member function EvGetMinMaxInfo, declared in line 45.

Listing X4.10. The source code for the XPD4MDI1.CPP
implementation file.

 1:   /*  Project xped4
 2:
 3:       Copyright  1993. All Rights Reserved.
 4:
 5:       SUBSYSTEM:    xped4.exe Application
 6:       FILE:         xpd4mdi1.cpp
 7:       AUTHOR:
 8:
 9:
 10:      OVERVIEW
 11:      ========
 12:      Source file for implementation of XPD4MDIChild (TMDIChild).
 13:  */
 14:
 15:
 16:  #include <owl\owlpch.h>
 17:  #pragma hdrstop
 18:
 19:  #include “xped4app.h”
 20:  #include “xpd4mdi1.h”
 21:
 22:  #include <stdio.h>

Listing X4.9. continued

Analysis



793

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

 23:
 24:
 25:  //{{XPD4MDIChild Implementation}}
 26:
 27:
 28:  //
 29:  // Build a response table for all messages/commands handled
 30:  // by XPD4MDIChild derived from TMDIChild.
 31:  //
 32:  DEFINE_RESPONSE_TABLE1(XPD4MDIChild, TMDIChild)
 33:  //{{XPD4MDIChildRSP_TBL_BEGIN}}
 34:      EV_WM_GETMINMAXINFO,
 35:  //{{XPD4MDIChildRSP_TBL_END}}
 36:  END_RESPONSE_TABLE;
 37:
 38:
 39:  //////////////////////////////////////////////////////////
 40:  // XPD4MDIChild
 41:  // ==========
 42:  // Construction/Destruction handling.
 43:  XPD4MDIChild::XPD4MDIChild (TMDIClient &parent,
 44:                     const char far *title,
 45:                     TWindow *clientWnd,
 46:                     BOOL shrinkToClient,
 47:                     TModule *module)
 48:      : TMDIChild (parent, title, clientWnd == 0 ?
 49:                     new TEditFile(0, 0, 0) : clientWnd,
 50:                     shrinkToClient, module)
 51:  {
 52:      // INSERT>> Your constructor code here.
 53:
 54:  }
 55:
 56:
 57:  XPD4MDIChild::~XPD4MDIChild ()
 58:  {
 59:      Destroy();
 60:
 61:      // INSERT>> Your destructor code here.
 62:
 63:  }
 64:
 65:
 66:  //
 67:  // Paint routine for Window, Printer, and PrintPreview for
 68:  // an TEdit client.
 69:  //
 70:  void XPD4MDIChild::Paint (TDC& dc, BOOL, TRect& rect)
 71:  {
 72:      XpEd4App *theApp = TYPESAFE_DOWNCAST(GetApplication(),

continues



794

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

2 Extra Credit Bonus 4+✓

73:                                            XpEd4App);
74:       if (theApp) {
75:           // Only paint if we’re printing and we have something
76:           // to paint, otherwise do nothing.
77:           if (theApp->Printing && theApp->Printer &&
78:               !rect.IsEmpty()) {
79:               // Use pageSize to get the size of the window to
80:               // render into. For a Window it’s the client area,
81:               // for a printer it’s the printer DC dimensions, and
82:               // for print preview it’s the layout window.
83:               TSize   pageSize(rect.right - rect.left,
84:                                rect.bottom - rect.top);
85:                HFONT hFont =
86:                  (HFONT)GetClientWindow()->GetWindowFont();
87:               TFont   font(“Arial”, -12);
88:               if (hFont == 0)
89:                 dc.SelectObject(font);
90:               else
91:                 dc.SelectObject(TFont(hFont));
92:
93:               TEXTMETRIC  tm;
94:               int fHeight = (dc.GetTextMetrics(tm) == TRUE) ?
95:                          tm.tmHeight + tm.tmExternalLeading : 10;
96:
97:               // How many lines of this font can we fit on a page?
98:               int linesPerPage = MulDiv(pageSize.cy, 1, fHeight);
99:               if (linesPerPage) {
100:                  TPrintDialog::TData &printerData =
101:                                      theApp->Printer->GetSetup();
102:
103:                  int maxPg = 1;
104:
105:                  // Get the client class window (this is the
106:                  // contents we’re going to print).
107:                  TEdit *clientEditWindow = 0;
108:                  TListBox *clientListWindow = 0;
109:
110:                  clientEditWindow = TYPESAFE_DOWNCAST(
111:                                     GetClientWindow(), TEdit);
112:                  if (clientEditWindow)
113:                      maxPg = ((clientEditWindow->GetNumLines() /
114:                              linesPerPage) + 1.0);
115:                  else {
116:                      clientListWindow = TYPESAFE_DOWNCAST(
117:                                    GetClientWindow(), TListBox);
118:                      if (clientListWindow)
119:                          maxPg = ((clientListWindow->GetCount() /
120:                                  linesPerPage) + 1.0);
121:                  }
122:

Listing X4.10. continued



795

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

123:                  // Compute the number of pages to print.
124:                  printerData.MinPage = 1;
125:                  printerData.MaxPage = maxPg;
126:
127:                  // Do the text stuff:
128:                  int     fromPage = printerData.FromPage == -1 ?
129:                                        1 : printerData.FromPage;
130:                  int     toPage = printerData.ToPage == -1 ?
131:                                        1 : printerData.ToPage;
132:                  char    buffer[255];
133:                  int     currentPage = fromPage;
134:
135:                  while (currentPage <= toPage) {
136:                      int startLine = (currentPage - 1) *
137:                                      linesPerPage;
138:                      int lineIdx = 0;
139:                      while (lineIdx < linesPerPage) {
140:                        // If the string is no longer valid
141:                        // then there’s nothing more to display.
142:                        if (clientEditWindow) {
143:                           if (!clientEditWindow->GetLine(buffer,
144:                               sizeof(buffer),
145:                               startLine + lineIdx))
146:                                  break;
147:                          }
148:                          if (clientListWindow) {
149:                             if (clientListWindow->GetString(buffer,
150:                                           startLine + lineIdx) < 0)
151:                                  break;
152:                          }
153:                          dc.TabbedTextOut(TPoint(0, lineIdx *
154:                              fHeight), buffer, lstrlen(buffer),
155:                              0, NULL, 0);
156:                          lineIdx++;
157:                      }
158:                      currentPage++;
159:                  }
160:              }
161:          }
162:      }
163:  }
164:
165:
166:  void XPD4MDIChild::EvGetMinMaxInfo (MINMAXINFO far& minmaxinfo)
167:  {
168:      XpEd4App *theApp = TYPESAFE_DOWNCAST(GetApplication(),
169:                                           XpEd4App);
170:      if (theApp) {
171:          if (theApp->Printing) {
172:              minmaxinfo.ptMaxSize = TPoint(32000, 32000);

continues



796

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

2 Extra Credit Bonus 4+✓

173:              minmaxinfo.ptMaxTrackSize = TPoint(32000, 32000);
174:              return;
175:          }
176:      }
177:      TMDIChild::EvGetMinMaxInfo(minmaxinfo);
178:  }

Figure X4.2 shows a sample session with the XPED4.EXE application.

Listing X4.10. continued

Figure X4.2. A sample session with the XPED4.EXE application.

Listing X4.10 shows the source code for the XPD4MDI1.CPP implementation
file. The MDI child window class declares the following relevant members:

1. The constructor (defined in lines 43 to 54), which invokes the constructors
of the parent class. The constructor contains comment-based placeholders
for inserting additional class-initialization statements.

2. The destructor (defined in lines 57 to 63), which destroys the MDI child
window (by calling the inherited member function Destroy).

3. The member function Paint (defined in lines 70 to 163), which performs
the following tasks:

Analysis



797

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

■■ Declares the local pointer theApp (in line 72), which accesses the
application object using the TYPESAFE_DOWNCAST (a macro that
supports a safe form for typecasting of classes).

■■ Determines whether the application is printing, whether there is a
connected printer, and whether there is something to print. If these
conditions are all true, the function performs the remaining tasks.

■■ Declares pageSize (in line 83 and 84) as an instance of the class TSize
and initializes it with the coordinates of the upper-left and lower-right
corner of the parameter rect.

■■ Declares font handle, hFont (in lines 85 and 86), used in the client
window. If the handle is 0, the function assigns the system font to the
font handle.

■■ Selects the font using the font handle hFont using the statements in
lines 89 or 91.

■■ Declares the TEXTMETRIC-type variable tm in line 93.

■■ Declares the variable fHeight (in line 94) and assigns the font height to
this variable.

■■ Declares the variable linesPerPage (in line 98) and assigns the number
of lines per page to this variable.

■■ Declares the variables fromPage and toPage (in lines 128 and 130,
respectively) and assigns values to these variables.

■■ Declares a local buffer to hold 255 characters in line 132.

■■ Starts a conditional while loop (in line 135) to print the range of
selected pages. The loop performs these following tasks:

■■ Declares the variable startLine and assigns it a value based on the
contents of variable currentPage and linesPerPage.

■■ Declares the variable lineIdx and assigns 0 to this variable.

■■ Starts a nested while loop (in line 139) that obtains the pointer
to the client area, extracts the currently printed line, and sends it
to the printer. Each loop iteration increments the variable
lineIdx.

■■ Increments the variable currentPage.



798

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

2 Extra Credit Bonus 4+✓

Type

4. The member function EvGetMinMaxInfo (defined in lines 166 to 178), which
returns the information about the window’s maximum size and about the
minimum and maximum tracking size if printing. The function passes this
information using the MINMAXINFO-type reference parameter minmaxinfo.

Listing X4.11. The source code for the XPD4MDIC.H
header file.

 1:   #if !defined(__xpd4mdic_h)      // Sentry, use file only
 2:                                   // if it’s not already included.
 3:   #define __xpd4mdic_h
 4:
 5:   /*  Project xped4
 6:
 7:       Copyright  1993. All Rights Reserved.
 8:
 9:       SUBSYSTEM:    xped4.exe Application
 10:      FILE:         xpd4mdic.h
 11:      AUTHOR:
 12:
 13:
 14:      OVERVIEW
 15:      ========
 16:      Class definition for XPD4MDIClient (TMDIClient).
 17:  */
 18:
 19:
 20:  #include <owl\owlpch.h>
 21:  #pragma hdrstop
 22:
 23:  #include <owl\opensave.h>
 24:
 25:  #include “xped4app.rh”            // Definition of all resources.
 26:
 27:
 28:  //{{TMDIClient = XPD4MDIClient}}
 29:  class XPD4MDIClient : public TMDIClient {
 30:  public:
 31:      int ChildCount; // Number of child window created.
 32:      TOpenSaveDialog::TData  FileData;  // Data to control
 33:                                    // open/saveas standard dialog.
 34:
 35:      XPD4MDIClient ();
 36:      virtual ~XPD4MDIClient ();
 37:
 38:      void OpenFile (const char *fileName = 0);
 39:
 40:  private:
 41:      void LoadTextFile ();



799

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

Type

 42:
 43:  //{{XPD4MDIClientVIRTUAL_BEGIN}}
 44:  protected:
 45:      virtual void SetupWindow ();
 46:  //{{XPD4MDIClientVIRTUAL_END}}
 47:
 48:  //{{XPD4MDIClientRSP_TBL_BEGIN}}
 49:  protected:
 50:      void CmFileNew ();
 51:      void CmFileOpen ();
 52:      void CmFilePrint ();
 53:      void CmFilePrintSetup ();
 54:      void CmFilePrintPreview ();
 55:      void CmPrintEnable (TCommandEnabler &tce);
 56:      void EvDropFiles (TDropInfo);
 57:  //{{XPD4MDIClientRSP_TBL_END}}
 58:  DECLARE_RESPONSE_TABLE(XPD4MDIClient);
 59:  };    //{{XPD4MDIClient}}
 60:
 61:
 62:  #endif                        // __xpd4mdic_h sentry.

Listing X4.11 shows the source code for the XPD4MDIC.H header file. This
listing declares the MDI client window class XPD4MDIClient. This declaration is
very similar to that of the class XPD3MDIClient in file XPD3MDI1.H found in

Listing X4.3. The main difference between the two classes is that the class XPD4MDIClient
declares the member functions CmFilePrint. CmFilePrintSetup, CmFilePrintPreview,
CmPrintEnable, and EvDropFiles in lines 52, 53, 55, and 56, respectively.

Listing X4.12. The source code for the XPD4MDIC.CPP
implementation file.

 1:   /*  Project xped4
 2:
 3:       Copyright  1993. All Rights Reserved.
 4:       SUBSYSTEM:    xped4.exe Application
 5:       FILE:         xpd4mdic.cpp
 6:       AUTHOR:
 7:
 8:       OVERVIEW
 9:       ========
 10:      Source file for implementation of XPD4MDIClient (TMDIClient).
 11:  */
 12:
 13:  #include <owl\owlpch.h>

Analysis

continues



800

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

2 Extra Credit Bonus 4+✓

 14:  #pragma hdrstop
 15:  #include <dir.h>
 16:  #include “xped4app.h”
 17:  #include “xpd4mdic.h”
 18:  #include “xpd4mdi1.h”
 19:  #include “apxprint.h”
 20:  #include “apxprev.h”
 21:
 22:  //{{XPD4MDIClient Implementation}}
 23:
 24:  //
 25:  // Build a response table for all messages/commands handled
 26:  // by XPD4MDIClient derived from TMDIClient.
 27:  //
 28:  DEFINE_RESPONSE_TABLE1(XPD4MDIClient, TMDIClient)
 29:  //{{XPD4MDIClientRSP_TBL_BEGIN}}
 30:      EV_COMMAND(CM_MDIFILENEW, CmFileNew),
 31:      EV_COMMAND(CM_MDIFILEOPEN, CmFileOpen),
 32:      EV_COMMAND(CM_FILEPRINT, CmFilePrint),
 33:      EV_COMMAND(CM_FILEPRINTERSETUP, CmFilePrintSetup),
 34:      EV_COMMAND(CM_FILEPRINTPREVIEW, CmFilePrintPreview),
 35:      EV_COMMAND_ENABLE(CM_FILEPRINT, CmPrintEnable),
 36:      EV_COMMAND_ENABLE(CM_FILEPRINTERSETUP, CmPrintEnable),
 37:      EV_COMMAND_ENABLE(CM_FILEPRINTPREVIEW, CmPrintEnable),
 38:      EV_WM_DROPFILES,
 39:  //{{XPD4MDIClientRSP_TBL_END}}
 40:  END_RESPONSE_TABLE;
 41:
 42:  //////////////////////////////////////////////////////////
 43:  // XPD4MDIClient
 44:  // ===========
 45:  // Construction/Destruction handling.
 46:   XPD4MDIClient::XPD4MDIClient ()
 47:   : TMDIClient ()
 48:  {
 49:      ChildCount = 0;
 50:      // INSERT>> Your constructor code here.
 51:  }
 52:
 53:   XPD4MDIClient::~XPD4MDIClient ()
 54:  {
 55:      Destroy();
 56:      // INSERT>> Your destructor code here.
 57:  }
 58:
 59:  //////////////////////////////////////////////////////////
 60:  // XPD4MDIClient
 61:  // ===========
 62:  // MDIClient site initialization.
 63:  void XPD4MDIClient::SetupWindow ()

Listing X4.12. continued



801

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

64:   {
65:       // Default SetUpWindow processing.
66:       TMDIClient::SetupWindow ();
67:       // Common file flags and filters for Open/Save
68:       // As dialogs.  Filename and directory are
69:       // computed in the member functions CmFileOpen, and
70:       // CmFileSaveAs.
71:       FileData.Flags = OFN_FILEMUSTEXIST | OFN_HIDEREADONLY |
72:                        OFN_OVERWRITEPROMPT;
73:       FileData.SetFilter(“All Files (*.*)|*.*|”);
74:       // Accept files via drag/drop in the client window.
75:       DragAcceptFiles(TRUE);
76:   }
77:
78:   //////////////////////////////////////////////////////////
79:   // XPD4MDIClient
80:   // ===========
81:   // Menu File New command
82:   void XPD4MDIClient::CmFileNew ()
83:   {
84:       char    title[255];
85:       // Generate a title for the MDI child window.
86:       wsprintf(title, “%d”, ChildCount++);
87:       XPD4MDIChild* child = new XPD4MDIChild(*this, title, 0);
88:       // Associate ICON w/ this child window.
89:       child->SetIcon(GetApplication(), IDI_DOC);
90:       // If the current active MDI child is maximized then this
91:       // one should be also.
92:       XPD4MDIChild *curChild =
93:                    (XPD4MDIChild *)GetActiveMDIChild();
94:         if (curChild && (curChild->GetWindowLong(GWL_STYLE) &
                WS_MAXIMIZE))
95:           child->Attr.Style |= WS_MAXIMIZE;
96:      child->Create();
97:   }
98:
99:   void XPD4MDIClient::OpenFile (const char *fileName)
100:  {
101:      if (fileName)
102:          lstrcpy(FileData.FileName, fileName);
103:      //
104:      // Create a MDIChild window whose client is TEditFile.
105:      //
106:      XPD4MDIChild* child = new XPD4MDIChild(*this, “”,
107:                             new TEditFile(0, 0, 0, 0, 0, 0, 0,
108:                             FileData.FileName));
109:      // Associate ICON w/ this child window.
110:      child->SetIcon(GetApplication(), IDI_DOC);
111:      // If the current active MDI child is maximized then this
112:      // one should be also.

continues



802

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

2 Extra Credit Bonus 4+✓

113:      XPD4MDIChild *curChild =
114:                      (XPD4MDIChild *)GetActiveMDIChild();
115:      if (curChild && (curChild->GetWindowLong(GWL_STYLE) &
116:          WS_MAXIMIZE))
117:          child->Attr.Style |= WS_MAXIMIZE;
118:      child->Create();
119:      LoadTextFile();
120:  }
121:
122:  //////////////////////////////////////////////////////////
123:  // XPD4MDIClient
124:  // ===========
125:  // Menu File Open command
126:  void XPD4MDIClient::CmFileOpen ()
127:  {
128:      //
129:      // Display standard Open dialog box to select a file name.
130:      //
131:      *FileData.FileName = 0;
132:      if (TFileOpenDialog(this, FileData).Execute() == IDOK)
133:          OpenFile();
134:  }
135:
136:  // Used by ListBox client to read a text file into the list box.
137:  void XPD4MDIClient::LoadTextFile ()
138:  {
139:      char            buf[255+1];
140:      ifstream        *inStream;
141:      XPD4MDIChild  *curChild =
142:                          (XPD4MDIChild *)GetActiveMDIChild();
143:      TListBox        *client = TYPESAFE_DOWNCAST(
144:                           curChild->GetClientWindow(), TListBox);
145:      // Only work if the client class is a TListBox.
146:      if (client) {
147:          client->ClearList();
148:          inStream = new ifstream(FileData.FileName);
149:          while (inStream->good()) {
150:              inStream->getline(buf, sizeof(buf) - 1);
151:              if (inStream->good())
152:                  client->AddString(buf);
153:          }
154:          // Return an error message if we had a stream error
155:          // and it wasn’t the eof.
156:          if (inStream->bad() && !inStream->eof()) {
157:              string msgTemplate(*GetModule(), IDS_UNABLEREAD);
158:              char*  msg = new char[MAXPATH + msgTemplate.length()];
159:              wsprintf(msg, msgTemplate.c_str(),
                           *FileData.FileName);
160:              MessageBox(msg, GetApplication()->GetName(),
161:                         MB_ICONEXCLAMATION | MB_OK);

Listing X4.12. continued



803

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

162:              delete msg;
163:          }
164:          delete inStream;
165:      }
166:  }
167:
168:  //////////////////////////////////////////////////////////
169:  // XPD4MDIClient
170:  // ==========
171:  // Menu File Print command
172:  void XPD4MDIClient::CmFilePrint ()
173:  {
174:      //
175:      // Create Printer object if not already created.
176:      //
177:      XpEd4App *theApp = TYPESAFE_DOWNCAST(GetApplication(),
178:                                           XpEd4App);
179:      if (theApp) {
180:          if (!theApp->Printer)
181:              theApp->Printer = new TPrinter;
182:          //
183:          // Create Printout window and set characteristics.
184:          //
185:          APXPrintOut printout(theApp->Printer, Title,
186:                               GetActiveMDIChild(), TRUE);
187:          theApp->Printing = TRUE;
188:          //
189:          // Bring up the Print dialog and print the document.
190:          //
191:          theApp->Printer->Print(
192:                 GetActiveMDIChild()->GetClientWindow(),
193:                 printout, TRUE);
194:          theApp->Printing = FALSE;
195:      }
196:  }
197:
198:  //////////////////////////////////////////////////////////
199:  // XPD4MDIClient
200:  // ==========
201:  // Menu File Print Setup command
202:  void XPD4MDIClient::CmFilePrintSetup ()
203:  {
204:      XpEd4App *theApp = TYPESAFE_DOWNCAST(GetApplication(),
205:                                           XpEd4App);
206:      if (theApp) {
207:          if (!theApp->Printer)
208:              theApp->Printer = new TPrinter;
209:          //
210:          // Bring up the Print Setup dialog.
211:          //

continues



804

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

2 Extra Credit Bonus 4+✓

212:          theApp->Printer->Setup(this);
213:      }
214:  }
215:
216:  //////////////////////////////////////////////////////////
217:  // XPD4MDIClient
218:  // ==========
219:  // Menu File Print Preview command
220:  void XPD4MDIClient::CmFilePrintPreview ()
221:  {
222:      XpEd4App *theApp = TYPESAFE_DOWNCAST(GetApplication(),
223:                                           XpEd4App);
224:      if (theApp) {
225:          if (!theApp->Printer)
226:              theApp->Printer = new TPrinter;
227:          theApp->Printing = TRUE;
228:          PreviewWindow *prevW = new PreviewWindow(Parent,
229:                          theApp->Printer, GetActiveMDIChild(),
230:                          “Print Preview”, new TLayoutWindow(0));
231:          prevW->Create();
232:          GetApplication()->BeginModal(
233:                                   GetApplication()->MainWindow);
234:          // We must destroy the preview window explicitly.
235:          // Otherwise, the window will not be destroyed until
236:          // it’s parent the MainWindow is destroyed.
237:          prevW->Destroy();
238:          delete prevW;
239:          theApp->Printing = FALSE;
240:      }
241:  }
242:
243:  //////////////////////////////////////////////////////////
244:  // XPD4MDIClient
245:  // ==========
246:  // Menu enabler used by Print, Print Setup and Print Preview.
247:  void XPD4MDIClient::CmPrintEnable (TCommandEnabler &tce)
248:  {
249:      if (GetActiveMDIChild()) {
250:          XpEd4App *theApp = TYPESAFE_DOWNCAST(GetApplication(),
                                                   XpEd4App);
251:          if (theApp) {
252:              // If we have a Printer already created just test if
253:              // all is okay. Otherwise create a Printer object
254:              // and make sure the printer really exists and
255:              // then delete the Printer object.
256:              if (!theApp->Printer) {
257:                  theApp->Printer = new TPrinter;
258:
259:                  tce.Enable(theApp->Printer->GetSetup().Error
                        == 0);

Listing X4.12. continued



805

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

260:              } else
261:                  tce.Enable(theApp->Printer->GetSetup().Error ==
0);
262:          }
263:      } else
264:          tce.Enable(FALSE);
265:  }
266:
267:  void XPD4MDIClient::EvDropFiles (TDropInfo)
268:  {
269:      Parent->ForwardMessage();
270:  }

Listing X4.12 shows the source code for the XPD4MDIC.CPP implementation
file. The listing defines the following relevant members of the class XPED4MDIClient:

1. The member function SetupWindow (defined in lines 63 to 76), which
performs the following tasks to setup the MDI client window:

■■ Invokes the SetupWindow of the parent class.

■■ Assigns the bitwise ORed expression of OFN_XXXX constants to the
Flags member of the data member FileData.

■■ Sends the C++ message SetFilter to the data member FileData. This
message sets the file type filters used in the Open and Save file dialog
boxes.

■■ Accepts files via the dragging or dropping of a file in the client win-
dow. This task involves invoking the inherited member function
DragAcceptFiles.

2. The member function CmFilePrint (defined in lines 172 to 196), which
responds to the Print menu command. The function performs the following
tasks:

■■ Assigns the address of the application to the local pointer theApp using
the TYPESAFE_DOWNCAST macro. The function performs the
remaining tasks if the pointer theApp is not NULL.

■■ Creates a printer object (if the pointer theApp->Printer is NULL) and
assigns the address of that object to the application member Printer.

■■ Creates the instance printout of the class APXPrintOut and assigns the
printing characteristics.

Analysis



806

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

2 Extra Credit Bonus 4+✓
■■ Assigns TRUE to the application’s member Printing.

■■ Invokes the Print dialog box and prints the document. This task
involves sending the C++ message Print to the printer object.

■■ Assigns FALSE to the application’s member Printing.

3. The member function CmFilePrintSetup (defined in lines 202 to 214),
which sets up the printer by performing the following tasks:

■■ Assigns the address of the application to the local pointer theApp using
the TYPESAFE_DOWNCAST macro. The function performs the
remaining tasks if the pointer theApp is not NULL.

■■ Creates a printer object (if the pointer theApp->Printer is NULL) and
assigns the address of that object to the application member Printer.

■■ Invokes the Print Setup dialog box by sending the C++ message Setup
to the printer object.

4. The member function CmFilePrintPreview (defined in lines 220 to 241)
responds to the Preview Menu option. The function performs the following
tasks:

■■ Assigns the address of the application to the local pointer theApp using
the TYPESAFE_DOWNCAST macro. The function performs the
remaining tasks if the pointer theApp is not NULL.

■■ Creates a printer object (if the pointer theApp->Printer is NULL) and
assigns the address of that object to the application member Printer.

■■ Creates the instance prevW of the class PreviewWindow and assigns the
printing-preview aspects.

■■ Creates the print-preview window by sending the C++ message Create
to the preview window object.

■■ Invokes the preview window by sending the C++ message BeginModal
to the application object.

■■ Destroys the preview window by sending it the C++ message Destroy.

■■ Removes the dynamic instance of the preview window.

■■ Assigns FALSE to the application’s member Printing.

The files XPED4APP.H and XPED4APP.CPP are very similar to the files
XPED3APP.H and XPED3APP.CPP, respectively.



807

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns4     TYS Borland C++ 21 Days  #30483       susan      4-12-94       X4      lp#2(sp 4/12 folio)

The XPED5 Project
The XPED5 project creates an MDI-compliant text editor that uses the document
and view classes. The application contains no speed bar and no status line, does not
support printing, and does not support the drag-and-drop feature. When you invoke
the AppExpert menu option, select the options for the MDI windows and the
Document/Views feature. Clear the check marks for the other options. In addition,
select the Code Gen Control subtopic (in the Application topic of the AppExpert
dialog box) to make the application and dialog box class names XpEd5App and
XpEd5AboutDlg, respectively. The AppExpert utility generates the following files. (The
date and time stamps are for the files that we generated on one of our systems.)

Filename Size Date/Time Stamp

APPLDOCV ICO 1,086 02-13-94 4:17p
MDICHILD ICO 1,086 02-13-94 4:17p
XPD5MDI1 CPP 925 02-13-94 4:17p
XPD5MDI1 H 901 02-13-94 4:17p
XPD5MDIC CPP 1,330 02-13-94 4:17p
XPD5MDIC H 1,195 02-13-94 4:17p
XPED5    IDE 26,570 02-13-94 4:18p
XPED5    DSW 246 02-13-94 4:18p
XPED5    APX 24,448 02-13-94 4:17p
XPED5    OBR 433 02-13-94 4:18p
XPED5ABD H 900 02-13-94 4:17p
XPED5ABD CPP 4,735 02-13-94 4:17p
XPED5APP RC 14,574 02-13-94 4:17p
XPED5APP H 1,143 02-13-94 4:17p
XPED5APP RH 5,147 02-13-94 4:17p
XPED5APP DEF 505 02-13-94 4:17p
XPED5APP CPP 3,064 02-13-94 4:17p

The header file XPD5MDI1.H is very similar to the header file XPD3MDI1.H, and
declares a constructor, a destructor, and the message response table. The implemen-
tation file XPD5MDI1.CPP is similar to the file XPD3MDI1.CPP.

Build the XPED5 project and run the XPED5.EXE program. Experiment with this
version of the text editor to develop a sense for the supported features. Figure X4.3
shows a sample session with the XPED5.EXE application.



817

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

M
T

W
R

F
S

S✓+
Extra Credit 
Bonus

55
Using the
ClassExpert



818

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓
The previous two chapters discussed using the AppExpert utility in generating various
kinds of SDI and MDI editors. The ClassExpert utility complements AppExpert by
enabling you to declare new member functions and classes. These additional items
enable you to customize and fine-tune the classes generated by AppExpert. In this
chapter, you will learn about the following topics:

■■ Invoking the ClassExpert utility.

■■ Adding new member functions to a class created by AppExpert.

■■ Adding a new class to the project created by AppExpert.

Invoking ClassExpert
To use the ClassExpert, invoke the ClassExpert menu option in the View menu
selection. Figure X5.1 shows a sample session with the ClassExpert utility in a project
created by AppExpert. The ClassExpert window contains three panes: the Classes
pane, the Events pane, and the editor pane. The Classes pane lists the classes in the
current project. If there are too many classes to fit in this pane, the ClassExpert
window displays vertical scroll bars. The Events pane shows an outline of the various
messages for the selected class in the Classes pane. These messages include command
notifications, control notifications, virtual functions, and Windows messages. The
thick + symbol indicates that an outline item is hiding subitems. The thick – symbol
indicates that the item is expanded. The editor pane is supported by a BRIEF-like
smart editor that enables you to enter, edit, and delete statements.

When you select a different class in the Class pane, the contents of the Events pane
automatically change to reflect the events available for the newly selected class.

When you expand the outlines in the Events pane, you will notice check marks to the
left of certain outline items. These check marks indicate that the event has a handler
in the project’s source code.

Note: The right mouse button offers versatile context-sensitive pop-up
menus that enable you to perform various tasks. (The pop-up menus are
so context-sensitive that they vary not only from one pane to another, but
also between one type of selection and another in the same pane.)

In the following sections, we describe how to add new member functions and classes.



819

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

Figure X5.1. A sample session with the ClassExpert utility.

Note: The listings generated by AppExpert and ClassExpert were edited
to better fit the pages in this book.

Adding New Member Functions
Let’s look at an example of a simple SDI-compliant text editor (which is very similar
to program XPED1.EXE in the extra-credit Chapter 3) with an additional menu. This
menu supports the following features:

■■ Converting the selected text or the entire contents of the file (if there is no
selected text) to lowercase characters.

■■ Converting the selected text or the entire contents of the file (if there is no
selected text) to uppercase characters.

■■ Reversing the characters of the selected text or the entire contents of the file
(if there is no selected text).

■■ Inserting the current date.



820

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓
■■ Inserting the current time.

■■ Inserting the current date and time.

Each of the preceding features is supported by a menu option. Each menu option has
an event-handler member function.

To create the application, follow these general steps:

1. Use the AppExpert to create the new editor CLSXPRT1.EXE as an SDI-
compliant application with no speed bar, no status line, no support for drag-
and-drop, and no printing-related features.

2. Use the Resource Workshop to add the menu selection Special and its nested
menu options Lowercase, Uppercase, Reverse, Insert Date, Insert Time, and
Insert Date/Time. (Consult Part II of the Borland C++ User’s Guide manual
to learn more about using this utility.) Use the identifiers CM_LOWERCASE,
CM_UPPERCASE, CM_REVERSE, CM_INSDATE, CM_INSTIME, and CM_INSDATETIME,
respectively, for the preceding menu options. Insert a separator menu item
between the first three and last three menu options in the menu selection.
The targeted menu resource is the one with the ID SDI_MENU. When you are
finished adding the preceding menu items, save the updated resources.

3. Use the ClassExpert utility to add the member functions needed to handle
the six new menu options. Click the Command Notifications item in the
Events pane to expand that outline item.

4. Search for the CM_LOWERCASE identifier, which represents the commands for
the new menu option Lowercase.

5. Click in the + symbol located to the left of the identifier CM_LOWERCASE. This
action reveals two nested outline items: Command and Command Enable.

6. Select the Command outline and click the right mouse button to access the
pop-up menu.

7. Select and invoke the Add Handler menu option. This option prompts a
simple input dialog box, which requests that you type in the name of the
handler member function. Enter CmLowercase and then click the OK button
of the dialog box. The ClassExpert responds by creating the following:

■■ The declaration of member function CmLowercase in the declaration of
class clsxprt1App (located in the header file CLSXPR1A.H).



821

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

Type

■■ The event response-table macro that links the command CM_LOWERCASE
with the member function CmLowercase (located in the implementation
file CLSXPR1A.CPP).

■■ The empty definition of member function CmLowercase (located in the
implementation file CLSXPR1A.CPP).

8. Repeat steps 4 through 7 for the other CM_XXXX constants that handle the
remaining new menu options. Specify the member functions CmUppercase,
CmInsertDate, CmInsertTime, CmInsertDateTime, and CmReverse to handle
the Windows commands CM_UPPERCASE, CM_INSDATE, CM_INSTIME,
CM_INSDATETIME, and CM_REVERSE, respectively.

9. Add the header files STDIO.H, STRING.H, and DOS.H, along with the
statements for the member function CmXXXX in file CLSXPR1A.CPP. (More
about these statements later.)

Listing X5.1 shows the contents of the CLSXPR1A.DEF definition file. Listing X5.2
contains the source code for the CLSXPR1A.H header file. Listing X5.3 contains
the source code for the CLSXPR1A.RH header file. Listing X5.4 shows the script
of the CLSXPR1A.RC resource file. Listing X5.5 contains the source code for the
CLSXPR1A.CPP implementation file.

Listing X5.1. The contents of the CLSXPR1A.DEF
definition file.

 1:   ;------------------------------------------------
 2:   ;   Main clsxprt1
 3:   ;
 4:   ;   Copyright  1993. All Rights Reserved.
 5:   ;
 6:   ;   SUBSYSTEM:    clsxprt1.exe Module Definition File
 7:   ;   FILE:         clsxpr1a.def
 8:   ;   AUTHOR:
 9:   ;
 10:  ;------------------------------------------------
 11:  NAME clsxprt1
 12:  DESCRIPTION ‘clsxprt1 Application - Copyright  1993. All Rights
                   Reserved.’
 13:  EXETYPE     WINDOWS
 14:  CODE        PRELOAD MOVEABLE DISCARDABLE
 15:  DATA        PRELOAD MOVEABLE MULTIPLE
 16:  HEAPSIZE    4096
 17:  STACKSIZE   8192



822

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓

Type Listing X5.2. The source code for the CLSXPR1A.H
header file.

 1:   #if !defined(__clsxpr1a_h)     // Sentry, use file only if
 2:                                  // it’s not already included.
 3:   #define __clsxpr1a_h
 4:   /*  Project clsxprt1
 5:
 6:       Copyright  1993. All Rights Reserved.
 7:       SUBSYSTEM:    clsxprt1.exe Application
 8:       FILE:         clsxpr1a.h
 9:       AUTHOR:
 10:
 11:      OVERVIEW
 12:      ========
 13:      Class definition for clsxprt1App (TApplication).
 14:  */
 15:
 16:  #include <owl\owlpch.h>
 17:  #pragma hdrstop
 18:  #include <owl\editfile.h>
 19:  #include <owl\opensave.h>
 20:  #include “clsxpr1a.rh”            // Definition of all resources.
 21:
 22:  //{{TApplication = clsxprt1App}}
 23:  class clsxprt1App : public TApplication {
 24:  private:
 25:      TEditFile *Client; // Client window for the frame.
 26:      TOpenSaveDialog::TData FileData;  // Data to control
 27:                                     // open/saveas standard dialog.
 28:  public:
 29:      clsxprt1App ();
 30:      virtual ~clsxprt1App ();
 31:      void OpenFile (const char *fileName = 0);
 32:  //{{clsxprt1AppVIRTUAL_BEGIN}}
 33:  public:
 34:      virtual void InitMainWindow();
 35:  //{{clsxprt1AppVIRTUAL_END}}
 36:  //{{clsxprt1AppRSP_TBL_BEGIN}}
 37:  protected:
 38:      void CmFileNew ();
 39:      void CmFileOpen ();
 40:      void CmFileClose ();
 41:      void CmHelpAbout ();
 42:      void CmUppercase ();
 43:      void CmLowercase ();
 44:      void CmInsertDate ();
 45:      void CmInsertTime ();
 46:      void CmInsertDateTime ();
 47:      void CmReverse ();
 48:  //{{clsxprt1AppRSP_TBL_END}}



823

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

Type

 49:    DECLARE_RESPONSE_TABLE(clsxprt1App);
 50:  };    //{{clsxprt1App}}
 51:
 52:  #endif                     // __clsxpr1a_h sentry.

Notice that the header file in Listing X5.2 contains the protected member
functions CmUppercase , CmLowercase, CmInsertDate, CmInsertTime,
CmInsertDateTime, and CmReverse, which handle the Windows commands

emitted by the new menu options. The ClassExpert utility added these member
functions. The remaining declarations are the product of AppExpert.

Listing X5.3. The source code for the CLSXPR1A.RH
header file.

 1:   //#if !defined(__clsxpr1a_rh)   // Sentry use file only if
 2:                                   // it’s not already included.
 3:   //#define __clsxpr1a_rh
 4:   /*  Main clsxprt1
 5:
 6:       Copyright  1993. All Rights Reserved.
 7:       SUBSYSTEM:    clsxprt1.exe Application
 8:       FILE:         clsxpr1a.rh
 9:       AUTHOR:
 10:
 11:      OVERVIEW
 12:      ========
 13:      Constant definitions for all resources defined in clsxpr1a.rc.
 14:  */
 15:
 16:  //
 17:  // IDHELP BorButton for BWCC dialogs.
 18:  //
 19:  #define IDHELP                  998       // Id of help button
 20:
 21:  //
 22:  // Application specific definitions:
 23:  //
 24:  #define IDI_SDIAPPLICATION      1001      // Application icon
 25:  #define SDI_MENU                100       // Menu resource ID and
 26:                                            // Accelerator IDs
 27:  #define CM_REVERSE
 28:  106
 29:  #define CM_INSDATETIME
 30:  105
 31:  #define CM_INSTIME
 32:  104

Analysis

continues



824

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓

 33:  #define CM_INSDATE
 34:  103
 35:  #define CM_LOWERCASE
 36:  102
 37:  #define CM_UPPERCASE
 38:  101
 39:  //
 40:  // CM_FILEnnnn commands (include\owl\editfile.rh
 41:  // except for CM_FILEPRINTPREVIEW)
 42:  #define CM_FILENEW              24331           // SDI New
 43:  #define CM_FILEOPEN             24332           // SDI Open
 44:  #define CM_FILECLOSE            24339
 45:  #define CM_FILESAVE             24333
 46:  #define CM_FILESAVEAS           24334
 47:
 48:  //
 49:  // Window commands (include\owl\windows.rh)
 50:  //
 51:  #define CM_EXIT                 24310
 52:
 53:  //
 54:  // CM_EDITnnnn commands (include\owl\edit.rh)
 55:  //
 56:  #define CM_EDITUNDO             24321
 57:  #define CM_EDITCUT              24322
 58:  #define CM_EDITCOPY             24323
 59:  #define CM_EDITPASTE            24324
 60:  #define CM_EDITDELETE           24325
 61:  #define CM_EDITCLEAR            24326
 62:
 63:  //
 64:  // Search menu commands (include\owl\editsear.rh)
 65:  //
 66:  #define CM_EDITFIND             24351
 67:  #define CM_EDITREPLACE          24352
 68:  #define CM_EDITFINDNEXT         24353
 69:
 70:  //
 71:  // Help menu commands.
 72:  //
 73:  #define CM_HELPABOUT            24389
 74:
 75:  //
 76:  // About Dialogs
 77:  //
 78:  #define IDD_ABOUT            22000
 79:  #define IDC_VERSION             22001
 80:  #define IDC_COPYRIGHT           22002
 81:  #define IDC_DEBUG               22003
 82:  //

Listing X5.3. continued



825

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

83:   // OWL defined strings
84:   //
85:   // Statusbar
86:   #define IDS_MODES               32530
87:   // EditFile
88:   #define IDS_UNTITLED            32550
89:   #define IDS_UNABLEREAD          32551
90:   #define IDS_UNABLEWRITE         32552
91:   #define IDS_FILECHANGED         32553
92:   #define IDS_FILEFILTER          32554
93:
94:   // EditSearch
95:   #define IDS_CANNOTFIND          32540
96:
97:   //
98:   // General & application exception messages
99:   // (include\owl\except.rh)
100:  //
101:  #define IDS_UNKNOWNEXCEPTION    32767
102:  #define IDS_OWLEXCEPTION        32766
103:  #define IDS_OKTORESUME          32765
104:  #define IDS_UNHANDLEDXMSG       32764
105:  #define IDS_UNKNOWNERROR        32763
106:  #define IDS_NOAPP               32762
107:  #define IDS_OUTOFMEMORY         32761
108:  #define IDS_INVALIDMODULE       32760
109:  #define IDS_INVALIDMAINWINDOW   32759
110:  //
111:  // Owl 1 compatibility messages
112:  //
113:  #define IDS_INVALIDWINDOW       32756
114:  #define IDS_INVALIDCHILDWINDOW  32755
115:  #define IDS_INVALIDCLIENTWINDOW 32754
116:  //
117:  // TXWindow messages
118:  //
119:  #define IDS_CLASSREGISTERFAIL   32749
120:  #define IDS_CHILDREGISTERFAIL   32748
121:  #define IDS_WINDOWCREATEFAIL    32747
122:  #define IDS_WINDOWEXECUTEFAIL   32746
123:  #define IDS_CHILDCREATEFAIL     32745
124:  #define IDS_MENUFAILURE         32744
125:  #define IDS_VALIDATORSYNTAX     32743
126:  #define IDS_PRINTERERROR        32742
127:  #define IDS_LAYOUTINCOMPLETE    32741
128:  #define IDS_LAYOUTBADRELWIN     32740
129:  //
130:  // TXGdi messages
131:  //
132:  #define IDS_GDIFAILURE          32739

continues



826

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓

Type

133:  #define IDS_GDIALLOCFAIL        32738
134:  #define IDS_GDICREATEFAIL       32737
135:  #define IDS_GDIRESLOADFAIL      32736
136:  #define IDS_GDIFILEREADFAIL     32735
137:  #define IDS_GDIDELETEFAIL       32734
138:  #define IDS_GDIDESTROYFAIL      32733
139:  #define IDS_INVALIDDIBHANDLE    32732
140:
141:  // TInputDialog DIALOG resource (include\owl\inputdia.rh)
142:  #define IDD_INPUTDIALOG         32514
143:  #define ID_PROMPT               4091
144:  #define ID_INPUT                4090
145:
146:  // TSlider bitmaps (horizontal and vertical)
147:  // (include\owl\slider.rh)
148:  #define IDB_HSLIDERTHUMB        32000
149:  #define IDB_VSLIDERTHUMB        32001
150:
151:  // Validation messages (include\owl\validate.rh)
152:  #define IDS_VALPXPCONFORM       32520
153:  #define IDS_VALINVALIDCHAR      32521
154:  #define IDS_VALNOTINRANGE       32522
155:  #define IDS_VALNOTINLIST        32523
156:
157:  //#endif         // __clsxpr1a_rh sentry.

The resource header file in Listing X5.3 shows the CM_XXXX constants for the new
menu options that were added by the Resource Workshop. The remaining
statements are the product of AppExpert.

Listing X5.4. The script of the CLSXPR1A.RC
resource file.

 1:   /*  Main clsxprt1
 2:
 3:       Copyright  1993. All Rights Reserved.
 4:       SUBSYSTEM:    clsxprt1.exe Application
 5:       FILE:         clsxpr1a.rc
 6:       AUTHOR:
 7:
 8:       OVERVIEW
 9:       ========
 10:      All resources defined here.
 11:  */
 12:  #if !defined(WORKSHOP_INVOKED)
 13:  #include <windows.h>
 14:  #endif

Listing X5.3. continued

Analysis



827

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

 15:  #include “clsxpr1a.rh”
 16:  SDI_MENU MENU
 17:  {
 18:   POPUP “&File”
 19:   {
 20:    MENUITEM “&New”, CM_FILENEW
 21:    MENUITEM “&Open...”, CM_FILEOPEN
 22:    MENUITEM “&Close”, CM_FILECLOSE
 23:    MENUITEM SEPARATOR
 24:    MENUITEM “&Save”, CM_FILESAVE, GRAYED
 25:    MENUITEM “Save &As...”, CM_FILESAVEAS, GRAYED
 26:    MENUITEM SEPARATOR
 27:    MENUITEM “E&xit\tAlt+F4”, CM_EXIT
 28:   }
 29:   POPUP “&Edit”
 30:   {
 31:    MENUITEM “&Undo\tAlt+BkSp”, CM_EDITUNDO, GRAYED
 32:    MENUITEM SEPARATOR
 33:    MENUITEM “Cu&t\tShift+Del”, CM_EDITCUT, GRAYED
 34:    MENUITEM “&Copy\tCtrl+Ins”, CM_EDITCOPY, GRAYED
 35:    MENUITEM “&Paste\tShift+Ins”, CM_EDITPASTE, GRAYED
 36:    MENUITEM SEPARATOR
 37:    MENUITEM “Clear &All\tCtrl+Del”, CM_EDITCLEAR, GRAYED
 38:    MENUITEM “&Delete\tDel”, CM_EDITDELETE, GRAYED
 39:   }
 40:   POPUP “&Search”
 41:   {
 42:    MENUITEM “&Find...”, CM_EDITFIND, GRAYED
 43:    MENUITEM “&Replace...”, CM_EDITREPLACE, GRAYED
 44:    MENUITEM “&Next\aF3”, CM_EDITFINDNEXT, GRAYED
 45:   }
 46:   POPUP “S&pecial”
 47:   {
 48:    MENUITEM “&Uppercase”, CM_UPPERCASE
 49:    MENUITEM “&Lowercase”, CM_LOWERCASE
 50:    MENUITEM “&Reverse”, CM_REVERSE
 51:    MENUITEM SEPARATOR
 52:    MENUITEM “Insert &Date”, CM_INSDATE
 53:    MENUITEM “Insert &Time”, CM_INSTIME
 54:    MENUITEM “Insert D&ate/Time”, CM_INSDATETIME
 55:   }
 56:   POPUP “&Help”
 57:   {
 58:    MENUITEM “&About...”, CM_HELPABOUT
 59:   }
 60:  }
 61:
 62:  // Accelerator table for short-cut to menu commands.
      // (include\owl\editfile.rc)
 63:  SDI_MENU ACCELERATORS

continues



828

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓

 64:  BEGIN
 65:    VK_DELETE, CM_EDITCUT, VIRTKEY, SHIFT
 66:    VK_INSERT, CM_EDITCOPY, VIRTKEY, CONTROL
 67:    VK_INSERT, CM_EDITPASTE, VIRTKEY, SHIFT
 68:    VK_DELETE, CM_EDITCLEAR, VIRTKEY, CONTROL
 69:    VK_BACK,   CM_EDITUNDO, VIRTKEY, ALT
 70:    VK_F3,     CM_EDITFINDNEXT, VIRTKEY
 71:  END
 72:
 73:  //
 74:  // Table of help hints displayed in the status bar.
 75:  //
...
177:
178:  // About box.
179:  IDD_ABOUT DIALOG 12, 17, 204, 65
180:  STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
181:  CAPTION “About clsxprt1”
182:  FONT 8, “MS Sans Serif”
183:  BEGIN
184:      CTEXT “Version”, IDC_VERSION, 2, 14, 200, 8, SS_NOPREFIX
185:      CTEXT “My Application”, -1, 2, 4, 200, 8, SS_NOPREFIX
186:      CTEXT “”, IDC_COPYRIGHT, 2, 27, 200, 17, SS_NOPREFIX
187:      RTEXT “”, IDC_DEBUG, 136, 55, 66, 8, SS_NOPREFIX
188:      ICON IDI_SDIAPPLICATION, -1, 2, 2, 16, 16
189:      DEFPUSHBUTTON “OK”, IDOK, 88, 48, 28, 12
190:  END
191:
192:  // TInputDialog class dialog box.
193:  IDD_INPUTDIALOG DIALOG 20, 24, 180, 64
194:  STYLE WS_POPUP | WS_CAPTION | DS_SETFONT
195:  FONT 8, “Helv”
196:  BEGIN
197:      LTEXT “”, ID_PROMPT, 10, 8, 160, 10, SS_NOPREFIX
198:      CONTROL “”, ID_INPUT, “EDIT”, WS_CHILD | WS_VISIBLE |
                WS_BORDER | WS_TABSTOP | ES_AUTOHSCROLL, 10, 20, 160, 12
199:      DEFPUSHBUTTON “&OK”, IDOK, 47, 42, 40, 14
200:      PUSHBUTTON “&Cancel”, IDCANCEL, 93, 42, 40, 14
201:  END
202:
...
321:  #endif

The resource file in Listing X5.4 shows the pop-up menu Special and its nested
menu options. The Resource Workshop has inserted these script statements.
The remaining script statements are the product of AppExpert.

Listing X5.4. continued

Analysis



829

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

Type Listing X5.5. The source code for the CLSXPR1A.CPP
implementation file.

 1:   /*  Project clsxprt1
 2:
 3:       Copyright  1993. All Rights Reserved.
 4:       SUBSYSTEM:    clsxprt1.exe Application
 5:       FILE:         clsxpr1a.cpp
 6:       AUTHOR:
 7:
 8:       OVERVIEW
 9:       ========
 10:      Source file for implementation of clsxprt1App (TApplication).
 11:  */
 12:
 13:  #include <owl\owlpch.h>
 14:  #pragma hdrstop
 15:
 16:  #include “clsxpr1a.h”
 17:  #include “clsxp1ad.h”           // Definition of about dialog.
 18:  #include <stdio.h>
 19:  #include <string.h>
 20:  #include <dos.h>
 21:  //{{clsxprt1App Implementation}}
 22:
 23:  //
 24:  // Build a response table for all messages/commands handled
 25:  // by the application.
 26:  //
 27:  DEFINE_RESPONSE_TABLE1(clsxprt1App, TApplication)
 28:  //{{clsxprt1AppRSP_TBL_BEGIN}}
 29:      EV_COMMAND(CM_FILENEW, CmFileNew),
 30:      EV_COMMAND(CM_FILEOPEN, CmFileOpen),
 31:      EV_COMMAND(CM_FILECLOSE, CmFileClose),
 32:      EV_COMMAND(CM_HELPABOUT, CmHelpAbout),
 33:      EV_COMMAND(CM_UPPERCASE, CmUppercase),
 34:      EV_COMMAND(CM_LOWERCASE, CmLowercase),
 35:      EV_COMMAND(CM_INSDATE, CmInsertDate),
 36:      EV_COMMAND(CM_INSTIME, CmInsertTime),
 37:      EV_COMMAND(CM_INSDATETIME, CmInsertDateTime),
 38:      EV_COMMAND(CM_REVERSE, CmReverse),
 39:  //{{clsxprt1AppRSP_TBL_END}}
 40:  END_RESPONSE_TABLE;
 41:
 42:  //
 43:  // FrameWindow must be derived to override Paint for Preview
 44:  // and Print.
 45:  //
 46:  class SDIDecFrame : public TDecoratedFrame {
 47:  public:

continues



830

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓

 48:      SDIDecFrame (TWindow *parent,
 49:                   const char far *title,
 50:                   TWindow *clientWnd,
 51:                   BOOL trackMenuSelection = FALSE,
 52:                  TModule *module = 0) :
 53:             TDecoratedFrame(parent, title, clientWnd,
 54:                             trackMenuSelection, module)
 55:        {  }
 56:      ~SDIDecFrame ()
 57:        {  }
 58:  };
 59:
 60:  //////////////////////////////////////////////////////////
 61:  // clsxprt1App
 62:  // =====
 63:  //
 64:  clsxprt1App::clsxprt1App () : TApplication(“clsxprt1”)
 65:  {
 66:      // Common file flags and filters for Open/Save As
 67:      // dialogs. Filename and directory are computed in the
 68:      // member functions CmFileOpen, and CmFileSaveAs.
 69:      FileData.Flags = OFN_FILEMUSTEXIST | OFN_HIDEREADONLY |
 70:                       OFN_OVERWRITEPROMPT;
 71:      FileData.SetFilter(“All Files (*.*)|*.*|”);
 72:      // INSERT>> Your constructor code here.
 73:  }
 74:
 75:  clsxprt1App::~clsxprt1App ()
 76:  {
 77:      // INSERT>> Your destructor code here.
 78:  }
 79:
 80:  //////////////////////////////////////////////////////////
 81:  // clsxprt1App
 82:  // =====
 83:  // Application initialization.
 84:  //
 85:  void clsxprt1App::InitMainWindow ()
 86:  {
 87:      Client = new TEditFile(0, 0, 0);
 88:      SDIDecFrame *frame = new SDIDecFrame(0, GetName(), Client,
 89:                                           FALSE);
 90:      nCmdShow = nCmdShow != SW_SHOWMINIMIZED ?
 91:                                SW_SHOWNORMAL : nCmdShow;
 92:      //
 93:      // Assign ICON w/ this application.
 94:      //
 95:      frame->SetIcon(this, IDI_SDIAPPLICATION);
 96:      //
 97:      // Menu associated with window and accelerator table

Listing X5.5. continued



831

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

98:       // associated with table.
99:       //
100:      frame->AssignMenu(SDI_MENU);
101:
102:      //
103:      // Associate with the accelerator table.
104:      //
105:      frame->Attr.AccelTable = SDI_MENU;
106:
107:      MainWindow = frame;
108:  }
109:
110:  //////////////////////////////////////////////////////////
111:  // clsxprt1App
112:  // ===========
113:  // Menu File New command
114:  void clsxprt1App::CmFileNew ()
115:  {
116:      Client->NewFile();
117:  }
118:
119:  //////////////////////////////////////////////////////////
120:  // clsxprt1App
121:  // ===========
122:  // Menu File Open command
123:  void clsxprt1App::CmFileOpen ()
124:  {
125:      //
126:      // Display standard Open dialog box to select a file name.
127:      //
128:      *FileData.FileName = 0;
129:      if (Client->CanClose())
130:          if (TFileOpenDialog(MainWindow, FileData).Execute() ==
131:              IDOK)
132:              OpenFile();
133:  }
134:
135:  void clsxprt1App::OpenFile (const char *fileName)
136:  {
137:      if (fileName)
138:          lstrcpy(FileData.FileName, fileName);
139:      Client->ReplaceWith(FileData.FileName);
140:  }
141:
142:  //////////////////////////////////////////////////////////
143:  // clsxprt1App
144:  // =====
145:  // Menu File Close command
146:  void clsxprt1App::CmFileClose ()
147:  {

continues



832

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓

148:   if (Client->CanClose())
149:           Client->DeleteSubText(0, UINT(-1));
150:  }
151:
152:  //////////////////////////////////////////////////////////
153:  // clsxprt1App
154:  // ===========
155:  // Menu Help About clsxprt1.exe command
156:  void clsxprt1App::CmHelpAbout ()
157:  {
158:      //
159:      // Show the modal dialog.
160:      //
161:      clsxprt1AboutDlg(MainWindow).Execute();
162:  }
163:
164:  int OwlMain (int , char* [])
165:  {
166:      clsxprt1App     App;
167:      int             result;
168:      result = App.Run();
169:      return result;
170:  }
171:  void clsxprt1App::CmUppercase ()
172:  {
173:    UINT startPos, endPos;
174:    int numChars;
175:    char* pszStr;
176:    Client->GetSelection(startPos, endPos);
177:    // is there selected text
178:    if (startPos < endPos) {
179:      numChars = endPos - startPos + 1;
180:      pszStr = new char[numChars+1];
181:      Client->GetSubText(pszStr, startPos, endPos);
182:      strupr(pszStr);
183:      Client->Insert(pszStr);
184:      Client->SetSelection(startPos, endPos);
185:      delete [] pszStr;
186:    }
187:    else {
188:      numChars = Client->GetWindowTextLength();
189:      pszStr = new char[numChars+1];
190:      Client->GetSubText(pszStr, 0, (UINT)numChars);
191:      strupr(pszStr);
192:      Client->DeleteSubText(0, (UINT)numChars);
193:      Client->SetSelection(0, 0);
194:      Client->Insert(pszStr);
195:      delete [] pszStr;
196:    }
197:  }

Listing X5.5. continued



833

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

198:
199:  void clsxprt1App::CmLowercase ()
200:  {
201:    UINT startPos, endPos;
202:    int numChars;
203:    char* pszStr;
204:    Client->GetSelection(startPos, endPos);
205:    // is there selected text
206:    if (startPos < endPos) {
207:      numChars = endPos - startPos + 1;
208:      pszStr = new char[numChars+1];
209:      Client->GetSubText(pszStr, startPos, endPos);
210:      strlwr(pszStr);
211:   Client->Insert(pszStr);
212:      Client->SetSelection(startPos, endPos);
213:      delete [] pszStr;
214:    }
215:    else {
216:      numChars = Client->GetWindowTextLength();
217:      pszStr = new char[numChars+1];
218:      Client->GetSubText(pszStr, 0, (UINT)numChars);
219:      strlwr(pszStr);
220:      Client->DeleteSubText(0, (UINT)numChars);
221:      Client->SetSelection(0, 0);
222:      Client->Insert(pszStr);
223:      delete [] pszStr;
224:    }
225:  }
226:
227:  void clsxprt1App::CmInsertDate ()
228:  {
229:    struct date dt;
230:    char szStr[41];
231:    getdate(&dt);
232:    sprintf(szStr, “%02d/%02d/%4d”,
233:            dt.da_mon, dt.da_day, dt.da_year);
234:    Client->Insert(szStr);
235:  }
236:
237:  void clsxprt1App::CmInsertTime ()
238:  {
239:    struct time tm;
240:    char szStr[41];
241:    gettime(&tm);
242:    sprintf(szStr, “%02d:%02d:%02d”,
243:
244:   tm.ti_hour, tm.ti_min, tm.ti_sec);
245:    Client->Insert(szStr);
246:  }
247:

continues



834

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓

248:  void clsxprt1App::CmInsertDateTime ()
249:  {
250:    struct date dt;
251:    struct time tm;
252:    char szStr[41];
253:    getdate(&dt);
254:    sprintf(szStr, “%02d/%02d/%4d “,
255:            dt.da_mon, dt.da_day, dt.da_year);
256:    Client->Insert(szStr);
257:    gettime(&tm);
258:    sprintf(szStr, “%02d:%02d:%02d”,
259:
260:   tm.ti_hour, tm.ti_min, tm.ti_sec);
261:    Client->Insert(szStr);
262:  }
263:
264:  void clsxprt1App::CmReverse ()
265:  {
266:    UINT startPos, endPos;
267:    int numChars;
268:    char* pszStr;
269:    char swapChar;
270:    Client->GetSelection(startPos, endPos);
271:    // is there selected text
272:    if (startPos < endPos) {
273:      numChars = endPos - startPos + 1;
274:      pszStr = new char[numChars+1];
275:      Client->GetSubText(pszStr, startPos, endPos);
276:      for (int i = 0, j = strlen(pszStr)-1; i < j ; i++, j--) {
277:        swapChar = pszStr[i];
278:        pszStr[i] = pszStr[j];
279:        pszStr[j] = swapChar;
280:      }
281:      Client->Insert(pszStr);
282:      Client->SetSelection(startPos, endPos);
283:      delete [] pszStr;
284:    }
285:    else {
286:      numChars = Client->GetWindowTextLength();
287:      pszStr = new char[numChars+1];
288:      Client->GetSubText(pszStr, 0, (UINT)numChars);
289:      for (int i = 0, j = strlen(pszStr)-1; i < j ; i++, j--) {
290:        swapChar = pszStr[i];
291:        pszStr[i] = pszStr[j];
292:        pszStr[j] = swapChar;
293:      }
294:      Client->DeleteSubText(0, (UINT)numChars);
295:      Client->SetSelection(0, 0);
296:      Client->Insert(pszStr);

Listing X5.5. continued



835

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

297:      delete [] pszStr;
298:    }
299:  }

The implementation file in Listing X5.5 shows the definitions of the CmXXXX
member functions that handle the new menu options. The file contains the
#include statements that we added to include the header files STDIO.H,

STRING.H, and DOS.H. Also, notice the response table macros that were inserted
by the ClassExpert utility. We added the code for the following member functions:

1. The member function CmUppercase (defined in lines 171 to 197) responds to
the Uppercase menu option by performing the following tasks:

■■ Obtains the currently selected text (if any). This task involves sending
the C++ message GetSelection (in line 176) to the client window
(accessed by the application’s member Client). The arguments for this
message are the local variables startPos and endPos.

■■ Performs the following sequence of subtasks (found in line 179 to 185)
if the value in variable startPos is less than that in endPos (which
indicates that there is selected text):

■■ Calculates the number of characters in the selected text and
assigns this number to the local variable numChars.

■■ Creates a dynamic string with numChars+1 characters and assigns
the address of that string to the local pointer pszStr.

■■ Copies the selected text into the dynamic string. This task
involves sending the C++ message GetSubText to the client
window. The arguments for this message are pszStr, startPos,
and endPos.

■■ Converts the characters of the dynamic string to uppercase by
using the string function strupr.

■■ Replaces the selected text with the contents of the dynamic
string. This task involves sending the C++ message Insert to the
client window. The argument for this message is the pointer
pszStr.

■■ Selects the newly inserted text by sending the C++ message
SetSelection to the client window. The arguments for this
message are the local variables startPos and endPos.

Analysis



836

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓
■■ Deletes the dynamic string accessed by pointer pszStr.

■■ If there is no selection, the function converts all of the characters in the
file to uppercase by performing the following subtasks (using the
statements in lines 188 to 195):

■■ Obtains the size of the edited text by sending the C++ message
GetWindowTextLength to the client window. This task assigns the
result of the message to the local variable numChars.

■■ Creates a dynamic string with numChars+1 characters and assigns
the address of that string to the local pointer pszStr.

■■ Obtains the entire edited text by sending the C++ message
GetSubText to the client area. The arguments for this message are
pszStr (the text copy buffer), 0, and (UINT)numChars.

■■ Converts the characters of the dynamic string to uppercase by
using the string function strupr.

■■ Deletes the entire edited text by sending the C++ message
DeleteSubText to the client window. The arguments for this
message are 0 and (UINT)numChars.

■■ Selects the start of the file as the insertion point by sending the
C++ message SetSelection to the client window. The arguments
for this message are the integers 0 and 0.

■■ Inserts the characters of the dynamic string into the client
window. This task involves sending the C++ message Insert to
the client area. The argument for this message is the pointer
pszStr.

■■ Deletes the dynamic string accessed by pointer pszStr.

Note: The program implements the various text-edit operations using the
data member Client, which is a pointer to the class TEditFile. This class
is a descendant of the class TEditSearch, which in turn is a descendant of
the class TEdit. This lineage enables the pointer Client to receive C++
editing messages implemented by the member functions of class TEdit.



837

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2. The member function CmLowercase (defined in lines 199 to 225) responds to
the menu option Lowercase. The function is very similar to the function
CmUppercase and differs only by its use of the string function strlwr instead
of the function strupr.

3. The member function CmInsertDate (defined in lines 227 to 235) responds
to the Insert Date menu option by performing the following options:

■■ Obtains the current system date by calling the function getdate
(prototyped in the DOS.H header file). The argument for this func-
tion call is the address of the structured variable dt. This variable has
the date structure.

■■ Creates a formatted string image of the month number, day number,
and year number. This task uses the function sprintf and assigns the
formatted string to the local string variable szStr.

■■ Inserts the string image into the client window by sending that win-
dow the C++ message Insert. The argument for this message is the
variable szStr.

4. The member function CmInsertTime (defined in lines 237 to 246) responds
to the Insert Time menu option by performing the following options:

■■ Obtains the current system time by calling the function gettime
(prototyped in the DOS.H header file). The argument for this func-
tion call is the address of the structured variable tm. This variable has
the time structure.

■■ Creates a formatted string image of the hour, minute, and second. This
task uses the function sprintf and assigns the formatted string to the
local string variable szStr.

■■ Inserts the string image into the client window by sending that win-
dow the C++ message Insert. The argument for this message is the
variable szStr.

5. The member function CmInsertDateTime responds to the Insert Date/Time
menu option. This function combines the tasks of the member functions
CmInsertDate and CmInsertTime.



838

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓
6. The member function CmReverse (defined in lines 264 to 299) responds to

the Reverse menu option. This function performs the following tasks:

■■ Obtains the currently selected text (if any). This task involves sending
the C++ message GetSelection to the client window (accessed by the
application’s member Client). The arguments for this message are the
local variables startPos and endPos.

■■ Performs the following sequence of subtasks (in lines 273 to 283) if the
value in variable startPos is less than that in endPos (which indicates
that there is selected text):

■■ Calculates the number of characters in the selected text and
assigns this number to the local variable numChars.

■■ Creates a dynamic string with numChars+1 characters and assigns
the address of that string to the local pointer pszStr.

■■ Copies the selected text into the dynamic string. This task
involves sending the C++ message GetSubText to the client
window. The arguments for this message are pszStr, startPos,
and endPos.

■■ Reverses the characters in the dynamic string. This task involves
using a for loop with two control variables: i and j. The loop
statements swap characters using the local variable swapChar. The
loop initializes the variable i and j to 0 and strlen(pszStr)-1,
respectively, and iterates until variable i is equal to or is greater
than variable j.

■■ Replaces the selected text with the contents of the dynamic
string. This task involves sending the C++ message Insert to the
client window. The argument for this message is the pointer
pszStr.

■■ Selects the newly inserted text by sending the C++ message
SetSelection to the client window. The arguments for this
message are the local variables startPos and endPos.

■■ Deletes the dynamic string accessed by pointer pszStr.



839

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

■■ If there is no selection, the function converts all of the characters in the
file to uppercase by performing the following subtasks (using the
statements in lines 286 to 293):

■■ Obtains the size of the edited text by sending the C++ message
GetWindowTextLength to the client window. This task assigns the
result of the message to the local variable numChars.

■■ Creates a dynamic string with numChars+1 characters and assigns
the address of that string to the local pointer pszStr.

■■ Obtains the entire edited text by sending the C++ message
GetSubText to the client area. The arguments for this message are
pszStr (the text copy buffer), 0, and (UINT)numChars.

■■ Reverses the characters in the dynamic string. This task involves
using a for loop with two control variables: i and j. The loop
statements swap characters using the local variable swapChar. The
loop initializes the variable i and j to 0 and strlen(pszStr)-1,
respectively, and iterates until variable i is equal to or is greater
than variable j.

■■ Deletes the entire edited text by sending the C++ message
DeleteSubText to the client window. The arguments for this
message are 0 and (UINT)numChars.

■■ Selects the start of the file as the insertion point by sending the
C++ message SetSelection to the client window. The arguments
for this message are the integers 0 and 0.

■■ Inserts the characters of the dynamic string into the client
window. This task involves sending the C++ message Insert to
the client area. The argument for this message is the pointer
pszStr.

■■ Deletes the dynamic string accessed by pointer pszStr.

Compile and run the program CLSXPRT1.EXE. Load a small text file and experi-
ment with converting and reversing the characters of selected text and of the entire file.
In addition, experiment with inserting the date, the time, or both. When you are done
experimenting, exit the file without saving it. Figure X5.2 shows a sample session with
the CLSXPRT1.EXE program.



840

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓

Figure X5.2. A sample session with the CLSXPRT1.EXE program.

Adding a Class
Let’s develop the preceding programming project to create program CLSXPRT2.EXE
by adding a new menu option in the Special menu selection. This option pops up a
dialog box that permits you to select the date format (MM/DD/YYYY, DD/MM/
YYYY, or YYYY/MM/DD) and time format (24 hours or AM/PM). The new
program supports this dialog box by first creating its resource, then declaring its class,
and finally adding the various member functions and declarations to breathe life into
the new dialog box.

Here are the general steps to create the project files:

1. Create the files of project CLSXPRT2, using AppExpert as in project
CLSXPRT1.

2. Use the Resource Workshop to add the menu selection Special and its menu
options: Lowercase, Uppercase, Reverse, Insert Date, Insert Time, Insert
Date/Time, and Preferences…. The last menu option is the one that invokes
the dialog box with the date and time format selection. Use the identifiers
CM_LOWERCASE, CM_UPPERCASE, CM_REVERSE, CM_INSDATE, CM_INSTIME,



841

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

CM_INSDATETIME, and CM_FORMATDATETIME, respectively, for the preceding
menu options. Insert a separator menu item after the menu options Reverse
and Insert Date/Time.

3. Use the Resource Workshop to create the new Borland-style dialog box
resource IDD_DATETIME_DLG, which contains the following controls:

■■ The OK and Cancel pushbuttons, which are automatically inserted by
the Resource Workshop.

■■ The Date Format group box (with the ID IDD_DATE_GRP), which
contains the following Borland-style radio buttons:

■■ The MM/DD/YYYY radio button (with the ID IDC_MMDDYY_RBT)

■■ The DD/MM/YYYY radio button (with the ID IDC_DDMMYY_RBT)

■■ The YYYY/MM/DD radio button (with the ID IDC_YYMMDD_RBT)

■■ The Time Format group box (with the ID IDC_TIME_GRP), which
contains the following Borland-style radio buttons:

■■ The 24-hour radio button (with the ID IDC_24HR_RBT)

■■ The AM/PM radio button (with the ID IDC_AMPM_RBT)

4. Use the ClassExpert to add the member functions CmLowercase,
CmUppercase, CmReverse, CmInsertDate, CmInsertTime, CmInsertDateTime,
and CmPreferences to handle the preceding new menu options, respectively.

5. Use the ClassExpert to create the new dialog box class TFrmtDialog. To
perform this task, move the mouse to the Classes pane of the ClassExpert
window, select the class clsxprt2AboutDlg, and then click the right mouse
button to view the pop-up menu. Select the Create New Class… menu
option. This option brings up the Add New Class dialog box, which has the
following controls:

■■ The Base Class drop-down combo list, which enables you to choose
the base class for the new class. Accept the default selection of TDialog
as the base class.

■■ The Class Name edit box, in which you enter the name of the new
class. Enter TFrmtDialog.

■■ The Source File edit box, which contains the name of the implementa-
tion file.



842

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓
■■ The Header File edit box, which contains the name of the header file for the

new class.

■■ The Dialog Id drop-down combo list, which enables you to choose the ID
of the new dialog box.

When you type in the class name, the Add New Class dialog box automatically forms
the names of the implementation and header files. When you are done, click the OK
pushbutton. Figure X5.3 shows a sample session with the Add New Class dialog box.
It is worth noting that the Add New Class dialog box is context-sensitive. If you select
the application class and then invoke it, you see slightly different controls, because
ClassExpert assumes you wish to create a window or a control.

Figure X5.3. A sample session with the Add New Class dialog box.

Listing X5.6 contains the contents of the CLSXPR2A.DEF definition file. Listing
X5.7 contains the source code for the TFRMTDLG.H header file. Listing X5.8
contains the source code for the CLSXPR2A.H header file. Listing X5.9 contains the
source code for the CLSXPR2A.RH header file. Listing X5.10 contains the partial
script of the CLSXPR2A.RC resource file. Listing X5.11 contains the source code for
the TFRMTDLG.CPP implementation file. Listing X5.12 contains the source code
for the CLSXPR2A.CPP implementation file. (We will discuss the customization
process for each listing later in this section.)



843

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

Type

Type Listing X5.6. The contents of the CLSXPR2A.DEF
definition file.

 1:   ;------------------------------------------------
 2:   ;   Main clsxprt2
 3:   ;
 4:   ;   Copyright  1993. All Rights Reserved.
 5:   ;
 6:   ;   SUBSYSTEM:    clsxprt2.exe Module Definition File
 7:   ;   FILE:         clsxpr2a.def
 8:   ;   AUTHOR:
 9:   ;
 10:  ;------------------------------------------------
 11:  NAME clsxprt2
 12:  DESCRIPTION ‘clsxprt2 Application - Copyright  1993. All Rights
                   Reserved.’
 13:  EXETYPE     WINDOWS
 14:  CODE        PRELOAD MOVEABLE DISCARDABLE
 15:  DATA        PRELOAD MOVEABLE MULTIPLE
 16:  HEAPSIZE    4096
 17:  STACKSIZE   8192

Listing X5.7. The source code for the TFRMTDLG.H
header file.

 1:   #if !defined(__tfrmtdlg_h)        // Sentry, use file only if
 2:                                     // it’s not already included.
 3:   #define __tfrmtdlg_h
 4:   /*  Project clsxprt2
 5:
 6:       Copyright  1993. All Rights Reserved.
 7:       SUBSYSTEM:    clsxprt2.exe Application
 8:       FILE:         tfrmtdlg.h
 9:       AUTHOR:
 10:
 11:      OVERVIEW
 12:      ========
 13:      Class definition for TFrmtDialog (TDialog).
 14:  */
 15:  #include <owl\owlpch.h>
 16:  #pragma hdrstop
 17:  #include <owl\dialog.h>
 18:  #include “clsxpr2a.rh”            // Definition of all resources.
 19:  #include “clsxpr2a.h”
 20:  //{{TDialog = TFrmtDialog}}
 21:  class TFrmtDialog : public TDialog {
 22:  public:

continues



844

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓

Type

 23:      TFrmtDialog (TWindow* parent, TResId resId = IDD_ABOUT,
 24:                   TModule* module = 0);
 25:      virtual ~TFrmtDialog ();
 26:      BOOL IsAmPm;
 27:      clsxprt2App::dateFormat df;
 28:  //{{TFrmtDialogVIRTUAL_BEGIN}}
 29:  public:
 30:      virtual BOOL EvInitDialog (HWND hWndFocus);
 31:      void CmOk();
 32:  //{{TFrmtDialogVIRTUAL_END}}
 33:   // insert declaration of response table
 34:   DECLARE_RESPONSE_TABLE(TFrmtDialog);
 35:  };    //{{TFrmtDialog}}
 36:
 37:  #endif                          // __tfrmtdlg_h sentry.

Listing X5.7 shows the header file TFRMTDLG.H, which contains the
declaration for the date/time format dialog box class, TFrmtDialog. The
ClassExpert utility generated this header file when we created the class TFrmtDialog.

In addition, we used ClassExpert to add the member function EvInitDialog to handle
initializing the dialog box. We manually added the following:

1. The statement #include “clsxpr2a.h” in line 19, which enables the class
TFrmtDialog to access a nested enumerated type in the application class.

2. The declaration of the member function CmOk in line 31, to handle pressing
the OK button of the dialog box.

3. The Boolean data member IsAmPm in line 26, which stores the selection of
the time format.

4. The enumerated data member df in line 27, which stores the date format.
Notice that the enumerated type is clsxprt2App::dateFormat, an export of
class clsxprt2App.

5. The declaration of the message response table in line 34.

Listing X5.8. The source code for the CLSXPR2A.H
header file.

  1:  #if !defined(__clsxpr2a_h)         // Sentry, use file only if
  2:                                     // it’s not already included.
  3:  #define __clsxpr2a_h
  4:  /*  Project clsxprt2
  5:

Listing X5.7. continued

Analysis



845

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

 6:       Copyright  1993. All Rights Reserved.
 7:       SUBSYSTEM:    clsxprt2.exe Application
 8:       FILE:         clsxpr2a.h
 9:       AUTHOR:
 10:
 11:      OVERVIEW
 12:      ========
 13:      Class definition for clsxprt2App (TApplication).
 14:  */
 15:
 16:  #include <owl\owlpch.h>
 17:  #pragma hdrstop
 18:  #include <owl\editfile.h>
 19:  #include <owl\opensave.h>
 20:  #include “clsxpr2a.rh”            // Definition of all resources.
 21:
 22:  //{{TApplication = clsxprt2App}}
 23:  class clsxprt2App : public TApplication {
 24:    // declare friend class
 25:  private:
 26:      TEditFile *Client; // Client window for the frame.
 27:      TOpenSaveDialog::TData FileData;  // Data to control
 28:                                   // open/saveas standard dialog.
 29:  public:
 30:      // new nested enumerated type
 31:      enum dateFormat { mmddyy, ddmmyy, yymmdd };
 32:      clsxprt2App ();
 33:      virtual ~clsxprt2App ();
 34:      void OpenFile (const char *fileName = 0);
 35:  //{{clsxprt2AppVIRTUAL_BEGIN}}
 36:  public:
 37:      virtual void InitMainWindow();
 38:  //{{clsxprt2AppVIRTUAL_END}}
 39:  //{{clsxprt2AppRSP_TBL_BEGIN}}
 40:  protected:
 41:      BOOL IsAmPm;
 42:      dateFormat df;
 43:      void CmFileNew ();
 44:      void CmFileOpen ();
 45:      void CmFileClose ();
 46:      void CmHelpAbout ();
 47:      void CmInsertDateTime ();
 48:      void CmInsertTime ();
 49:      void CmLowercase ();
 50:      void CmReverse ();
 51:      void CmUppercase ();
 52:      void CmDateTimeFormat ();
 53:      void CmPreferences ();
 54:      void CmInsertDate ();
 55:  //{{clsxprt2AppRSP_TBL_END}}

continues



846

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓

Type

 56:    DECLARE_RESPONSE_TABLE(clsxprt2App);
 57:  };    //{{clsxprt2App}}
 58:
 59:  #endif                              // __clsxpr2a_h sentry.

Listing X5.8 shows the CLSXPR2A.H header file, which contains the declara-
tion of the application class clsxprt2App. The AppExpert utility generated most
of the statements in this file. The ClassExpert utility inserted the member

functions CmXXXX, which deal with the options of the Special menu selection. We
manually added the following items:

1. The public declaration of the nested enumerated type dateFormat. This type
models the three date formats.

2. The Boolean data member IsAmPm, which stores the time format.

3. The enumerated data member df, which stores the date format.

Listing X5.9. The partial source code for the
CLSXPR2A.RH header file.

 1:   //#if !defined(__clsxpr2a_rh)       // Sentry use file only if
 2:                                       // it’s not already included.
 3:   //#define __clsxpr2a_rh
 4:
 5:   /*  Main clsxprt2
 6:
 7:       Copyright  1993. All Rights Reserved.
 8:
 9:       SUBSYSTEM:    clsxprt2.exe Application
 10:      FILE:         clsxpr2a.h
 11:      AUTHOR:
 12:
 13:
 14:      OVERVIEW
 15:      ========
 16:      Constant definitions for all resources defined in clsxpr2a.rc.
 17:  */
 18:
 19:
 20:  //
 21:  // IDHELP BorButton for BWCC dialogs.
 22:  //
 23:  #define IDHELP                  998        // Id of help button
 24:
 25:

Listing X5.8. continued

Analysis



847

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

 26:  //
 27:  // Application specific definitions:
 28:  //
 29:  #define IDI_SDIAPPLICATION      1001       // Application icon
 30:
 31:  #define SDI_MENU                100        // Menu resource ID
 32:                                             // and Accelerator IDs
 33:
 34:  //
 35:  // CM_FILEnnnn commands (include\owl\editfile.rh except for
 36:  // CM_FILEPRINTPREVIEW)
 37:  //
 38:  #define CM_FILENEW              24331           // SDI New
 39:  #define CM_FILEOPEN             24332           // SDI Open
 40:  #define CM_FILECLOSE            24339
 41:  #define CM_FILESAVE             24333
 42:  #define CM_FILESAVEAS           24334
 43:
 44:
 45:  //
 46:  // Window commands (include\owl\windows.rh)
 47:  //
 48:  #define CM_EXIT                 24310
 49:
 50:
 51:  //
 52:  // CM_EDITnnnn commands (include\owl\edit.rh)
 53:  //
 54:  #define CM_EDITUNDO             24321
 55:  #define CM_EDITCUT              24322
 56:  #define CM_EDITCOPY             24323
 57:  #define CM_EDITPASTE            24324
 58:  #define CM_EDITDELETE           24325
 59:  #define CM_EDITCLEAR            24326
 60:
 61:
 62:  //
 63:  // Search menu commands (include\owl\editsear.rh)
 64:  //
 65:  #define CM_EDITFIND             24351
 66:  #define CM_EDITREPLACE          24352
 67:  #define CM_EDITFINDNEXT         24353
 68:
 69:  //
 70:  // Special menu commands
 71:  //
 72:  #define CM_LOWERCASE            300
 73:  #define CM_UPPERCASE            301
 74:  #define CM_REVERSE              302
 75:  #define CM_INSDATE              303

continues



848

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓

Type

 76:  #define CM_INSTIME              304
 77:  #define CM_INSDATETIME          305
 78:  #define CM_DATETIMEFORMAT       306
 79:
 80:  #define IDD_DATETIME_DLG        400
 81:  #define IDC_MMDDYY_RBT          401
 82:  #define IDC_DDMMYY_RBT          402
 83:  #define IDC_YYMMDD_RBT          403
 84:  #define IDC_24HR_RBT            404
 85:  #define IDC_AMPM_RBT            405
 86:  #define IDC_TIME_GRP            406
 87:  #define IDC_DATE_GRP            407
 88:
 89:
 90:  //
 91:  // Help menu commands.
 92:  //
 93:  #define CM_HELPABOUT            24389
...
192:  //#endif         // __clsxpr2a_rh sentry.

The resource header file in Listing X5.9 (which is a partial listing) shows the
CM_XXXX, IDD_DATETIME_DLG,  IDC_XXXX_RBT, and IDC_XXXX_GRP identifiers for
the new menu options and the new dialog box resource. The Resource

Workshop added these identifiers. The remaining statements are the product of
AppExpert.

Listing X5.10. The partial script of the CLSXPR2A.RC
resource file.

 1:   /*  Main clsxprt2
 2:
 3:       Copyright  1993. All Rights Reserved.
 4:
 5:       SUBSYSTEM:    clsxprt2.exe Application
 6:       FILE:         clsxpr2a.rc
 7:       AUTHOR:
 8:
 9:
 10:      OVERVIEW
 11:      ========
 12:      All resources defined here.
 13:  */
 14:
 15:  #if !defined(WORKSHOP_INVOKED)
 16:  #include <windows.h>

Listing X5.9. continued

Analysis



849

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

 17:  #endif
 18:  #include “clsxpr2a.rh”
 19:
 20:  SDI_MENU MENU
 21:  {
 22:   POPUP “&File”
 23:   {
 24:    MENUITEM “&New”, CM_FILENEW
 25:    MENUITEM “&Open...”, CM_FILEOPEN
 26:    MENUITEM “&Close”, CM_FILECLOSE
 27:    MENUITEM SEPARATOR
 28:    MENUITEM “&Save”, CM_FILESAVE, GRAYED
 29:    MENUITEM “Save &As...”, CM_FILESAVEAS, GRAYED
 30:    MENUITEM SEPARATOR
 31:    MENUITEM “E&xit\tAlt+F4”, CM_EXIT
 32:   }
 33:
 34:   POPUP “&Edit”
 35:   {
 36:    MENUITEM “&Undo\tAlt+BkSp”, CM_EDITUNDO, GRAYED
 37:    MENUITEM SEPARATOR
 38:    MENUITEM “Cu&t\tShift+Del”, CM_EDITCUT, GRAYED
 39:    MENUITEM “&Copy\tCtrl+Ins”, CM_EDITCOPY, GRAYED
 40:    MENUITEM “&Paste\tShift+Ins”, CM_EDITPASTE, GRAYED
 41:    MENUITEM SEPARATOR
 42:    MENUITEM “Clear &All\tCtrl+Del”, CM_EDITCLEAR, GRAYED
 43:    MENUITEM “&Delete\tDel”, CM_EDITDELETE, GRAYED
 44:   }
 45:
 46:   POPUP “&Search”
 47:   {
 48:    MENUITEM “&Find...”, CM_EDITFIND, GRAYED
 49:    MENUITEM “&Replace...”, CM_EDITREPLACE, GRAYED
 50:    MENUITEM “&Next\aF3”, CM_EDITFINDNEXT, GRAYED
 51:   }
 52:
 53:   POPUP “S&pecial”
 54:   {
 55:    MENUITEM “&Uppercase”, CM_UPPERCASE
 56:    MENUITEM “&Lowercase”, CM_LOWERCASE
 57:    MENUITEM “&Reverse”, CM_REVERSE
 58:    MENUITEM SEPARATOR
 59:    MENUITEM “Insert &Date”, CM_INSDATE
 60:    MENUITEM “Insert &Time”, CM_INSTIME
 61:    MENUITEM “Insert Date/Time”, CM_INSDATETIME
 62:    MENUITEM SEPARATOR
 63:    MENUITEM “&Preferences...”, CM_DATETIMEFORMAT
 64:   }
 65:
 66:   POPUP “&Help”

continues



850

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓

67:    {
68:     MENUITEM “&About...”, CM_HELPABOUT
69:    }
70:
71:   }
...
197:  //
198:  // Misc application definitions
199:  //
200:
201:  // Application ICON
202:  IDI_SDIAPPLICATION ICON “applsdi.ico”
203:
204:
205:  // About box.
206:  IDD_ABOUT DIALOG 12, 17, 204, 65
207:  STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
208:  CAPTION “About clsxprt2”
209:  FONT 8, “MS Sans Serif”
210:  BEGIN
211:      CTEXT “Version”, IDC_VERSION, 2, 14, 200, 8, SS_NOPREFIX
212:      CTEXT “My Application”, -1, 2, 4, 200, 8, SS_NOPREFIX
213:      CTEXT “”, IDC_COPYRIGHT, 2, 27, 200, 17, SS_NOPREFIX
214:      RTEXT “”, IDC_DEBUG, 136, 55, 66, 8, SS_NOPREFIX
215:      ICON IDI_SDIAPPLICATION, -1, 2, 2, 16, 16
216:      DEFPUSHBUTTON “OK”, IDOK, 88, 48, 28, 12
217:  END
218:
219:
220:  // TInputDialog class dialog box.
221:  IDD_INPUTDIALOG DIALOG 20, 24, 180, 64
222:  STYLE WS_POPUP | WS_CAPTION | DS_SETFONT
223:  FONT 8, “Helv”
224:  BEGIN
225:      LTEXT “”, ID_PROMPT, 10, 8, 160, 10, SS_NOPREFIX
226:      CONTROL “”, ID_INPUT, “EDIT”, WS_CHILD | WS_VISIBLE |
227:      WS_BORDER | WS_TABSTOP | ES_AUTOHSCROLL, 10, 20, 160, 12
228:      DEFPUSHBUTTON “&OK”, IDOK, 47, 42, 40, 14
229:      PUSHBUTTON “&Cancel”, IDCANCEL, 93, 42, 40, 14
230:  END
...
359:
360:  IDD_DATETIME_DLG DIALOG 55, 37, 189, 124
361:  STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION |
362:        WS_SYSMENU
363:  CLASS “bordlg”
364:  CAPTION “Date & Time Formats”
365:  FONT 8, “MS Sans Serif”
366:  {
367:   CONTROL “”, -1, “BorShade”, BSS_HDIP | BSS_LEFT | WS_CHILD |

Listing X5.10. continued



851

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

Type

368:     WS_VISIBLE, 0, 83, 189, 3
369:   CONTROL “”, IDOK, “BorBtn”, BS_DEFPUSHBUTTON | WS_CHILD |
370:     WS_VISIBLE | WS_TABSTOP, 48, 92, 37, 25
371:   CONTROL “”, IDCANCEL, “BorBtn”, BS_PUSHBUTTON | WS_CHILD |
372:     WS_VISIBLE | WS_TABSTOP, 104, 92, 37, 25
373:   CONTROL “&mm/dd/yyyy”, IDC_MMDDYY_RBT, “BorRadio”,
374:     BS_AUTORADIOBUTTON | BBS_PARENTNOTIFY | WS_CHILD | WS_VISIBLE |
375:     WS_TABSTOP, 13, 27, 57, 12
376:   CONTROL “&dd/mm/yyyy”, IDC_DDMMYY_RBT, “BorRadio”,
377:     BS_AUTORADIOBUTTON | BBS_PARENTNOTIFY | WS_CHILD | WS_VISIBLE |
378:     WS_TABSTOP, 13, 44, 57, 12
379:   CONTROL “&yyyy/mm/dd”, IDC_YYMMDD_RBT, “BorRadio”,
380:     BS_AUTORADIOBUTTON | BBS_PARENTNOTIFY | WS_CHILD | WS_VISIBLE |
381:     WS_TABSTOP, 13, 60, 57, 12
382:   GROUPBOX “ Time Format”, IDC_TIME_GRP, 97, 13, 63, 60,
383:     BS_GROUPBOX
384:   GROUPBOX “ Date Format”, IDC_DATE_GRP, 9, 9, 69, 73,
385:     BS_GROUPBOX
386:   CONTROL “24 Hour”, IDC_24HR_RBT, “BorRadio”, BS_AUTORADIOBUTTON |
387:     BBS_PARENTNOTIFY | WS_CHILD | WS_VISIBLE | WS_TABSTOP,
388:     108, 32, 44, 11
389:   CONTROL “AM/PM”, IDC_AMPM_RBT, “BorRadio”, BS_AUTORADIOBUTTON |
390:     BBS_PARENTNOTIFY | WS_CHILD | WS_VISIBLE | WS_TABSTOP,
391:     108, 55, 44, 11
392:  }

Listing X5.10 shows the partial script statements of the resource file
CLSXPR2A.RC. The listing shows the menu resource and the custom dialog
box resource.

Listing X5.11. The source code for the TFRMTDLG.CPP
implementation file.

 1:   /*  Project clsxprt2
 2:
 3:       Copyright  1993. All Rights Reserved.
 4:       SUBSYSTEM:    clsxprt2.exe Application
 5:       FILE:         tfrmtdlg.cpp
 6:       AUTHOR:
 7:
 8:        OVERVIEW
 9:       ========
 10:      Source file for implementation of TFrmtDialog (TDialog).
 11:  */
 12:  #include <owl\owlpch.h>
 13:  #pragma hdrstop
 14:  #include “tfrmtdlg.h”

continues

Analysis



852

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓

 15:
 16:  //{{TFrmtDialog Implementation}}
 17:  DEFINE_RESPONSE_TABLE1(TFrmtDialog, TDialog)
 18:      EV_COMMAND(IDOK, CmOk),
 19:  END_RESPONSE_TABLE;
 20:
 21:  TFrmtDialog::TFrmtDialog (TWindow* parent, TResId resId,
 22:                            TModule* module):
 23:      TDialog(parent, resId, module)
 24:  {
 25:      // INSERT>> Your constructor code here.
 26:  }
 27:
 28:  TFrmtDialog::~TFrmtDialog ()
 29:  {
 30:      Destroy();
 31:      // INSERT>> Your destructor code here.
 32:  }
 33:
 34:  BOOL TFrmtDialog::EvInitDialog (HWND hWndFocus)
 35:  {
 36:      BOOL result;
 37:
 38:   result = TDialog::EvInitDialog(hWndFocus);
 39:      // INSERT>> Your code here.
 40:      CheckRadioButton(IDC_MMDDYY_RBT, IDC_YYMMDD_RBT,
 41:                       IDC_MMDDYY_RBT);
 42:      CheckRadioButton(IDC_24HR_RBT, IDC_AMPM_RBT,
 43:                       IDC_24HR_RBT);
 44:      return result;
 45:  }
 46:  void TFrmtDialog::CmOk()
 47:  {
 48:      // save date format
 49:      if (IsDlgButtonChecked(IDC_MMDDYY_RBT))
 50:        df = clsxprt2App::mmddyy;
 51:      else if (IsDlgButtonChecked(IDC_DDMMYY_RBT))
 52:        df = clsxprt2App::ddmmyy;
 53:      else
 54:        df = clsxprt2App::yymmdd;
 55:      // save time format
 56:      IsAmPm = (IsDlgButtonChecked(IDC_AMPM_RBT)) ?
 57:                                             TRUE : FALSE;
 58:      TDialog::CmOk();
 59:  }

Listing X5.11. continued



853

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

Type

Listing X5.11 shows the source code for the TFRMTDLG.CPP implementa-
tion file. The ClassExpert utility created this file and added the empty definition
of the member function EvInitDialog. We manually added the definition of the

event response table, the statements in function EvInitDialog, and the entire member
function CmOk.

The member function EvInitDialog initializes the dialog box by performing the
following tasks:

■■ Invokes the function EvInitDialog of the parent class and assigns its result
to the local Boolean variable result.

■■ Clears the radio buttons in the Date Format group box and checks the MM/
DD/YYYY radio button. This task uses the member function
CheckRadioButton, which is inherited from class TWindow.

■■ Clears the radio buttons in the Time Format group box and checks the
24-hour radio button. This task uses the inherited member function
CheckRadioButton.

■■ Returns the value in the local variable result.

The member function CmOk responds to clicking the OK pushbutton of the dialog box
by performing the following tasks:

■■ Saves the date format in the data member df. This task uses a multiple-
decision if statement to examine each radio button control in the Date
Format group box. The if statement invokes the inherited member function
IsDlgButtonChecked to determine which radio button is checked.

■■ Saves the time format in the data member IsAmPm. This task invokes the
inherited member function IsDlgButtonChecked to determine if the AM/PM
radio button is checked.

■■ Invokes the function CmOk of the parent class.

Listing X5.12. The source code for the CLSXPR2A.CPP
implementation file.

  1:  /*  Project clsxprt2
  2:
  3:      Copyright  1993. All Rights Reserved.
  4:      SUBSYSTEM:    clsxprt2.exe Application
  5:      FILE:         clsxpr2a.cpp
  6:      AUTHOR:

continues

Analysis



854

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓

 7:
 8:       OVERVIEW
 9:       ========
 10:      Source file for implementation of clsxprt2App (TApplication).
 11:  */
 12:
 13:  #include <owl\owlpch.h>
 14:  #pragma hdrstop
 15:
 16:  #include “clsxpr2a.h”
 17:  #include “clsxp2ad.h”           // Definition of about dialog.
 18:  #include “tfrmtdlg.h”
 19:  #include <stdio.h>
 20:  #include <string.h>
 21:  #include <dos.h>
 22:  //{{clsxprt2App Implementation}}
 23:
 24:  //
 25:  // Build a response table for all messages/commands handled
 26:  // by the application.
 27:  //
 28:  DEFINE_RESPONSE_TABLE1(clsxprt2App, TApplication)
 29:  //{{clsxprt2AppRSP_TBL_BEGIN}}
 30:      EV_COMMAND(CM_FILENEW, CmFileNew),
 31:      EV_COMMAND(CM_FILEOPEN, CmFileOpen),
 32:      EV_COMMAND(CM_FILECLOSE, CmFileClose),
 33:      EV_COMMAND(CM_HELPABOUT, CmHelpAbout),
 34:      EV_COMMAND(CM_INSDATETIME, CmInsertDateTime),
 35:      EV_COMMAND(CM_INSTIME, CmInsertTime),
 36:      EV_COMMAND(CM_LOWERCASE, CmLowercase),
 37:      EV_COMMAND(CM_REVERSE, CmReverse),
 38:      EV_COMMAND(CM_UPPERCASE, CmUppercase),
 39:      EV_COMMAND(CM_DATETIMEFORMAT, CmPreferences),
 40:      EV_COMMAND(CM_UPPERCASE, CmUppercase),
 41:      EV_COMMAND(CM_REVERSE, CmReverse),
 42:      EV_COMMAND(CM_LOWERCASE, CmLowercase),
 43:      EV_COMMAND(CM_INSTIME, CmInsertTime),
 44:      EV_COMMAND(CM_INSDATE, CmInsertDate),
 45:      EV_COMMAND(CM_INSDATETIME, CmInsertDateTime),
 46:  //{{clsxprt2AppRSP_TBL_END}}
 47:  END_RESPONSE_TABLE;
 48:
 49:  //
 50:  // FrameWindow must be derived to override Paint for Preview
 51:  // and Print.
 52:  //
 53:  class SDIDecFrame : public TDecoratedFrame {
 54:  public:
 55:      SDIDecFrame (TWindow *parent,
 56:                   const char far *title,

Listing X5.12. continued



855

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

 57:                   TWindow *clientWnd,
 58:                   BOOL trackMenuSelection = FALSE,
 59:                   TModule *module = 0) :
 60:              TDecoratedFrame(parent, title, clientWnd,
 61:                   trackMenuSelection, module)
 62:        {  }
 63:      ~SDIDecFrame ()
 64:        {  }
 65:  };
 66:
 67:  //////////////////////////////////////////////////////////
 68:  // clsxprt2App
 69:  // =====
 70:  //
 71:  clsxprt2App::clsxprt2App () : TApplication(“clsxprt2”)
 72:  {
 73:      // Common file  flags and filters for Open/Save As
 74:      // dialogs. Filename and directory are computed in the
 75:      // member functions CmFileOpen, and CmFileSaveAs.
 76:      FileData.Flags = OFN_FILEMUSTEXIST | OFN_HIDEREADONLY |
 77:                       OFN_OVERWRITEPROMPT;
 78:      FileData.SetFilter(“All Files (*.*)|*.*|”);
 79:      // INSERT>> Your constructor code here.
 80:      IsAmPm = FALSE;
 81:      df = mmddyy;
 82:  }
 83:
 84:  clsxprt2App::~clsxprt2App ()
 85:  {
 86:      // INSERT>> Your destructor code here.
 87:  }
 88:
 89:  //////////////////////////////////////////////////////////
 90:  // clsxprt2App
 91:  // =====
 92:  // Application initialization.
 93:  //
 94:  void clsxprt2App::InitMainWindow ()
 95:  {
 96:      Client = new TEditFile(0, 0, 0);
 97:      SDIDecFrame *frame = new SDIDecFrame(0, GetName(),
 98:                                           Client, FALSE);
 99:      nCmdShow = nCmdShow != SW_SHOWMINIMIZED ?
100:                                SW_SHOWNORMAL : nCmdShow;
101:      //
102:      // Assign ICON w/ this application.
103:      //
104:      frame->SetIcon(this, IDI_SDIAPPLICATION);
105:      //
106:      // Menu associated with window and accelerator table

continues



856

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓

107:      // associated with table.
108:      //
109:      frame->AssignMenu(SDI_MENU);
110:
111:      //
112:      // Associate with the accelerator table.
113:      //
114:      frame->Attr.AccelTable = SDI_MENU;
115:
116:      MainWindow = frame;
117:  }
118:
119:  //////////////////////////////////////////////////////////
120:  // clsxprt2App
121:  // ===========
122:  // Menu File New command
123:  void clsxprt2App::CmFileNew ()
124:  {
125:      Client->NewFile();
126:  }
127:
128:  //////////////////////////////////////////////////////////
129:  // clsxprt2App
130:  // ===========
131:  // Menu File Open command
132:  void clsxprt2App::CmFileOpen ()
133:  {
134:      //
135:      // Display standard Open dialog box to select a file name.
136:      //
137:      *FileData.FileName = 0;
138:      if (Client->CanClose())
139:          if (TFileOpenDialog(MainWindow, FileData).Execute() ==
140:              IDOK)
141:              OpenFile();
142:  }
143:
144:  void clsxprt2App::OpenFile (const char *fileName)
145:  {
146:      if (fileName)
147:          lstrcpy(FileData.FileName, fileName);
148:      Client->ReplaceWith(FileData.FileName);
149:  }
150:
151:  //////////////////////////////////////////////////////////
152:  // clsxprt2App
153:  // =====
154:  // Menu File Close command
155:  void clsxprt2App::CmFileClose ()
156:  {

Listing X5.12. continued



857

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

157:   if (Client->CanClose())
158:           Client->DeleteSubText(0, UINT(-1));
159:  }
160:
161:  //////////////////////////////////////////////////////////
162:  // clsxprt2App
163:  // ===========
164:  // Menu Help About clsxprt2.exe command
165:  void clsxprt2App::CmHelpAbout ()
166:  {
167:      //
168:      // Show the modal dialog.
169:      //
170:      clsxprt2AboutDlg(MainWindow).Execute();
171:  }
172:
173:  int OwlMain (int , char* [])
174:  {
175:      clsxprt2App     App;
176:      int             result;
177:      result = App.Run();
178:      return result;
179:  }
180:  void clsxprt2App::CmInsertTime ()
181:  {
182:    struct time tm;
183:    char szStr[41];
184:    gettime(&tm);
185:    if (IsAmPm) {
186:      if (tm.ti_hour == 12)
187:        sprintf(szStr, “12:%02d:%02d p.m.”,
188:
189:       tm.ti_min, tm.ti_sec);
190:      else if (tm.ti_hour > 12)
191:        sprintf(szStr, “%2d:%02d:%02d p.m.”,
192:
193:   tm.ti_hour - 12, tm.ti_min, tm.ti_sec);
194:      else
195:         sprintf(szStr, “%2d:%02d:%02d a.m.”,
196:
197:   tm.ti_hour, tm.ti_min, tm.ti_sec);
198:    }
199:    else
200:      sprintf(szStr, “%2d:%02d:%02d”,
201:
202:   tm.ti_hour, tm.ti_min, tm.ti_sec);
203:    Client->Insert(szStr);
204:  }
205:
206:  void clsxprt2App::CmLowercase ()

continues



858

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓

207:  {
208:    UINT startPos, endPos;
209:    int numChars;
210:    char* pszStr;
211:    Client->GetSelection(startPos, endPos);
212:    // is there selected text
213:    if (startPos < endPos) {
214:      numChars = endPos - startPos + 1;
215:      pszStr = new char[numChars+1];
216:      Client->GetSubText(pszStr, startPos, endPos);
217:      strlwr(pszStr);
218:   Client->Insert(pszStr);
219:      Client->SetSelection(startPos, endPos);
220:      delete [] pszStr;
221:    }
222:    else {
223:      numChars = Client->GetWindowTextLength();
224:      pszStr = new char[numChars+1];
225:      Client->GetSubText(pszStr, 0, (UINT)numChars);
226:      strlwr(pszStr);
227:      Client->DeleteSubText(0, (UINT)numChars);
228:      Client->SetSelection(0, 0);
229:      Client->Insert(pszStr);
230:      delete [] pszStr;
231:    }
232:  }
233:
234:  void clsxprt2App::CmReverse ()
235:  {
236:    UINT startPos, endPos;
237:    int numChars;
238:    char* pszStr;
239:    char swapChar;
240:    Client->GetSelection(startPos, endPos);
241:    // is there selected text
242:    if (startPos < endPos) {
243:      numChars = endPos - startPos + 1;
244:      pszStr = new char[numChars+1];
245:      Client->GetSubText(pszStr, startPos, endPos);
246:      for (int i = 0, j = strlen(pszStr)-1; i < j ; i++, j--) {
247:        swapChar = pszStr[i];
248:        pszStr[i] = pszStr[j];
249:        pszStr[j] = swapChar;
250:      }
251:   Client->Insert(pszStr);
252:      Client->SetSelection(startPos, endPos);
253:      delete [] pszStr;
254:    }
255:    else {
256:      numChars = Client->GetWindowTextLength();

Listing X5.12. continued



859

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

257:      pszStr = new char[numChars+1];
258:      Client->GetSubText(pszStr, 0, (UINT)numChars);
259:      for (int i = 0, j = strlen(pszStr)-1; i < j ; i++, j--) {
260:        swapChar = pszStr[i];
261:        pszStr[i] = pszStr[j];
262:        pszStr[j] = swapChar;
263:      }
264:      Client->DeleteSubText(0, (UINT)numChars);
265:      Client->SetSelection(0, 0);
266:      Client->Insert(pszStr);
267:      delete [] pszStr;
268:    }
269:  }
270:
271:  void clsxprt2App::CmUppercase ()
272:  {
273:    UINT startPos, endPos;
274:    int numChars;
275:    char* pszStr;
276:    Client->GetSelection(startPos, endPos);
277:    // is there selected text
278:    if (startPos < endPos) {
279:      numChars = endPos - startPos + 1;
280:      pszStr = new char[numChars+1];
281:      Client->GetSubText(pszStr, startPos, endPos);
282:      strupr(pszStr);
283:      Client->Insert(pszStr);
284:      Client->SetSelection(startPos, endPos);
285:      delete [] pszStr;
286:    }
287:    else {
288:      numChars = Client->GetWindowTextLength();
289:      pszStr = new char[numChars+1];
290:      Client->GetSubText(pszStr, 0, (UINT)numChars);
291:      strupr(pszStr);
292:      Client->DeleteSubText(0, (UINT)numChars);
293:      Client->SetSelection(0, 0);
294:      Client->Insert(pszStr);
295:      delete [] pszStr;
296:    }
297:  }
298:  void clsxprt2App::CmPreferences ()
299:  {
300:    TFrmtDialog* pDlg = new TFrmtDialog(Client,
301:                            TResID(IDD_DATETIME_DLG));
302:    pDlg->EnableTransfer();
303:    if (pDlg->Execute() == IDOK) {
304:      // save time format
305:      IsAmPm = pDlg->IsAmPm;
306:      // save date format

continues



860

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓

307:      df = pDlg->df;
308:    }
309:  }
310:
311:  void clsxprt2App::CmInsertDateTime ()
312:  {
313:    struct date dt;
314:    struct time tm;
315:    char szStr[41];
316:    getdate(&dt);
317:    switch (df) {
318:      case mmddyy:
319:         sprintf(szStr, “%2d/%02d/%4d “,
320:             dt.da_mon, dt.da_day, dt.da_year);
321:         break;
322:      case ddmmyy:
323:         sprintf(szStr, “%2d/%02d/%4d “,
324:             dt.da_day, dt.da_mon, dt.da_year);
325:         break;
326:      default:
327:         sprintf(szStr, “%4d/%02d/%02d “,
328:             dt.da_year, dt.da_day, dt.da_mon);
329:         break;
330:    }
331:    Client->Insert(szStr);
332:    gettime(&tm);
333:    if (IsAmPm) {
334:      if (tm.ti_hour == 12)
335:        sprintf(szStr, “12:%02d:%02d p.m.”,
336:
337:       tm.ti_min, tm.ti_sec);
338:      else if (tm.ti_hour > 12)
339:        sprintf(szStr, “%2d:%02d:%02d p.m.”,
340:
341:   tm.ti_hour - 12, tm.ti_min, tm.ti_sec);
342:      else
343:         sprintf(szStr, “%2d:%02d:%02d a.m.”,
344:
345:   tm.ti_hour, tm.ti_min, tm.ti_sec);
346:    }
347:    else
348:      sprintf(szStr, “%2d:%02d:%02d”,
349:
350:   tm.ti_hour, tm.ti_min, tm.ti_sec);
351:    Client->Insert(szStr);
352:  }
353:  void clsxprt2App::CmInsertDate ()
354:  {
355:    struct date dt;
356:    char szStr[41];

Listing X5.12. continued



861

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

357:    getdate(&dt);
358:    switch (df) {
359:      case mmddyy:
360:         sprintf(szStr, “%2d/%02d/%4d”,
361:             dt.da_mon, dt.da_day, dt.da_year);
362:         break;
363:      case ddmmyy:
364:         sprintf(szStr, “%2d/%02d/%4d”,
365:             dt.da_day, dt.da_mon, dt.da_year);
366:         break;
367:      default:
368:         sprintf(szStr, “%4d/%02d/%02d”,
369:             dt.da_year, dt.da_day, dt.da_mon);
370:         break;
371:    }
372:    Client->Insert(szStr);
373:  }

Listing X5.12 shows the CLSXPR2A.CPP implementation file. The AppExpert
utility generated this file. The ClassExpert utility added the response-table
macro and the empty definitions of the CmXXXX member functions, which

respond to the options of the Special menu selection. We inserted the statements in
these member functions and added the #include directives to include files
TFRMTDLG.H, STDIO.H, STRING.H, and DOS.H.

The member functions CmLowercase, CmUppercase, and CmReverse are identical to
those in the file CLSXPR1A.CPP (in Listing X5.5). The member functions
CmInsertTime, CmInsertDate, and CmInsertDateTime are expanded versions of their
counterparts in Listing X5.5. This extension is due to the fact that these member
functions use the data members IsAmPm and df to select the time and date format and
create the string image of the date and/or time accordingly.

The most relevant member function in Listing X5.12 is CmPreferences. This
function, which is defined in lines 298 to 309, performs the following tasks:

■■ Creates the instance pDlg of class TFrmtDialog. The parent window of this
dialog box is the member Client (which accesses the client window). The
resource ID for this dialog box is IDD_DATETIME_FLG.

■■ Executes the dialog box instance by sending it the C++ message Execute, and
performs the subsequent tasks if the message returns IDOK.

■■ Copies the value of the dialog’s data member IsAmPm to the application’s data
member IsAmPm.

Analysis



862

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

2 Extra Credit Bonus 5+✓
■■ Copies the value of the dialog’s data member df to the application’s data

member df.

Compile and run the CLSXPRT2.EXE program. Invoke the dialog box for selecting
the date and time formats (see Figure X5.4). Then create a new text file and try
inserting the date and/or time.

Figure X5.4. A sample session with program CLSXPRT2.EXE.

Summary
This chapter presented the ClassExpert utility, which enables you to fine-tune and
customize OWL-based Windows applications generated by AppExpert. You learned
about the following:

■■ Invoking the ClassExpert utility from an option in the View menu selection.
The ClassExpert displays a window with the Classes pane, the Events pane,
and the editor pane. The Classes pane lists the current project classes. The
Events pane shows an outline for the various events related to the currently
selected class. The editor pane lists the implementation file for the current
class.



863

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

p2/va—ns8     TYS Borland C++ 21 Days  #30483      cAp    4-11-94       X5     lp#3(sp 4/12 folio)

■■ ClassExpert enables you to add new member functions to a class created by
AppExpert. This task involves adding the declaration of the member func-
tions in the targeted class, adding the response table macros for the new
functions, and inserting empty definitions of these functions.

■■ ClassExpert enables you to add a new class to the project created by
AppExpert. This task involves creating the header and implementation files
for the new class and placing the declaration and definition of the class in
these files, respectively.

Q&A
Q Does ClassExpert generate source code that supports OLE 2.0?

A No.

Q Does ClassExpert generate source code that supports VBX (Visual Basic)
controls?

A No, but you can use OWL classes to support VBX controls.

Q Does ClassExpert generate source code that supports ODBC (Open
Database Connectivity)?

A No.

Exercises
1. Create a version of the program CLSXPRT1.EXE that adds the capability to

write a block of selected text to a file and to insert text from a file.

2. Create a version of program CLSXPRT2.EXE that sorts the lines either in
the selected text or in the entire file.



865

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

M
T

W
R

F
S

S✓+
Extra Credit 
Bonus

66
Common Dialog
Boxes



866

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓
The lesson for Day 20 introduced you to building your own dialog boxes. In this extra-
credit chapter, we present three of the five common dialog boxes supported by both
Windows and the ObjectWindows library. In addition, we present the input dialog
box supported by the ObjectWindows library. In this extra-credit chapter, you will
learn about the following topics:

■■ Software requirements for using the common dialog boxes.

■■ The ObjectWindows TInputDialog class.

■■ The file-selection dialog box class TFileOpenDialog. This class creates dialog
boxes that support opening a file.

■■ The file-selection dialog box class TFileSaveDialog. This class creates dialog
boxes that support saving a file.

■■ The color-selection dialog box class TChooseColorDialog.

■■ The text-search dialog box class TFindDialog. This class creates dialog boxes
that support finding text.

■■ The text-replacement dialog box class TReplaceDialog. This class creates
dialog boxes that support replacing text.

We would like to emphasize that the common dialog boxes merely offer the user
interfaces for the respective tasks of the common dialog boxes. You are responsible for
providing the associated operations based on the information supplied or selected by
the user of these common dialog boxes. Many of the examples in this chapter are kept
short to focus on creating, invoking, and accessing the data of the common dialog
boxes.

Software Requirements
The use of the common dialog boxes requires Windows 3.1 COMMDLG functions
in order to compile. However, these dialog boxes do not require Windows 3.1 to run.
You need to observe the following when incorporating the common dialog box into
your Windows applications:

■■ Ensure that the project’s .DEF file assigns at least 16 KB of stack space.

■■ Include the corresponding header file in the client source files.

■■ Ensure that the COMMDLG.DLL file is present in the Windows system
directory.



867

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

DO DON’T
DO allow a minimum stack space of 16 KB in the project’s .DEF file.

DON’T forget to ensure that your Windows programs that use common
dialog boxes have a copy of the file COMMDLG.DLL in the Windows
directory of the system running these programs.

The TInputDialog Class
Some of the programs that we presented in earlier chapters required input dialog boxes
to obtain your input. These programs executed instances of the ObjectWindows
TInputDialog class. This class declares three data members, a constructor, and a set
of member functions. The declaration of class TInputDialog is as follows:

class _OWLCLASS TInputDialog : public TDialog {
  public:
    char far* Prompt;
    char far* Buffer;
    int       BufferSize;

    TInputDialog(TWindow*        parent,
                 const char far* title,
                 const char far* prompt,
                 char far*       buffer,
                 int             bufferSize,
                 TModule*        module = 0,
                 TValidator*     valid = 0);  // Optional validator

   ~TInputDialog();

    //
    // Override TWindow virtual member functions
    //
    void TransferData(TTransferDirection);

  protected:
    //
    // Override TWindow virtual member functions
    //
    void SetupWindow();



868

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓
  private:
    //
    // hidden to prevent accidental copying or assignment
    //
    TInputDialog(const TInputDialog&);
    TInputDialog& operator=(const TInputDialog&);

  DECLARE_STREAMABLE(_OWLCLASS, TInputDialog, 1);
};

The data members Buffer and Prompt are pointers to the text buffer and prompting
string, respectively. The data member BufferSize stores the size of the buffer that
returns the user’s input.

The class constructor requires the parameters for the parent window, the pointer to
the dialog box title, the pointer to the prompt string, the pointer to the text buffer,
and the buffer size. The constructor calls the TDialog constructor to pass the
parameter parent, the resource identifier SD_INPUTDIALOG, and the AModule param-
eter. The identifier SD_INPUTDIALOG is the name of the dialog box resource defined in
the INPUTDIA.RC resource file, supplied by Borland. You need to include this
recource file in your resource file using a #include directive.

Perhaps the most noteworthy TInputDialog member function is the TransferData
function. This function transfers the data between the edit control of the input dialog
box and the text buffer. If the caller passes the argument tdSetData to the direction
parameter, the function transfers data from the text buffer to the edit control. The
function moves data in the reverse direction when a caller passes the tdGetData
argument.

Let’s look at a simple number-guessing game that uses the input dialog box to prompt
you for a new guess. The game has a main menu along with the Exit and Game menu
items. To start the game, run file INPUTDLG.EXE and then click the Game menu
item or press the Alt+G keys. The program generates a secret number between 0 and
1,000 and enables you make up to 10 guesses. To assist you in refining your guess, the
program displays hints in the dialog box that tell you whether your last guess was
higher or lower than the secret number. You can stop the game at any time by clicking
the Cancel button. If you do stop the game, the program displays the secret number.
If you fail to guess the number after 10 trials, the program also displays the secret
number. If you do manage to guess the number, the program displays a congratulatory
message. Figure X6.1 shows a sample session with the INPUTDLG.EXE application.

Let’s look at the source code for the number guess game. Listing X6.1 shows the
contents of the INPUTDLG.DEF definition file. Listing X6.2 shows the source code
for the INPUTDLG.H header file, which contains a single constant declaration.



869

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

Type

Type

Listing X6.3 shows the script for the INPUTDLG.RC resource file. The file includes
the INPUTDIA.DLG resource file required to define the ObjectWindows input
dialog box. Listing X6.4 shows the source code for the INPUTDLG.CPP program
file.

Figure X6.1. A sample session with the INPUTDLG.EXE application.

Listing X6.1. The contents of the INPUTDLG.DEF
definition file.

1:  NAME         InputDlg
2:  DESCRIPTION  ‘An OWL Windows Application’
3:  EXETYPE      WINDOWS
4:  CODE         PRELOAD MOVEABLE DISCARDABLE
5:  DATA         PRELOAD MOVEABLE MULTIPLE
6:  HEAPSIZE     1024
7:  STACKSIZE    8384

Listing X6.2. The source code for the INPUTDLG.H
header file.

1:  #define CM_GAME      101
2:  #define IDM_MAINMENU 400



870

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓

Type

Type Listing X6.3. The script for the INPUTDLG.RC resource
file.

1:   #include <windows.h>
2:   #include <owl\window.rh>
3:   #include <owl\inputdia.rh>
4:   #include <owl\inputdia.rc>
5:   #include “inputdlg.h”
6:
7:   IDM_MAINMENU MENU LOADONCALL MOVEABLE PURE DISCARDABLE
8:   BEGIN
9:       MENUITEM “E&xit”, CM_EXIT
10:      MENUITEM “&Game”, CM_GAME
11:  END

Listing X6.4. The source code for the INPUTDLG.CPP
program file.

1:   /*
2:     Program illustrates using the input dialog box in a
3:     number-guessing game
4:   */
5:   #include <owl\applicat.h>
6:   #include <owl\framewin.h>
7:   #include <owl\inputdia.h>
8:   #include “inputdlg.h”
9:   #include <stdlib.h>
10:  #include <stdio.h>
11:  #include <string.h>
12:
13:  const MaxBuffer = 81;
14:
15:  // declare the custom application class as
16:  // a subclass of TApplication
17:  class TWinApp : public TApplication
18:  {
19:  public:
20:    TWinApp() : TApplication() {}
21:
22:  protected:
23:    virtual void InitMainWindow();
24:  };
25:
26:  // expand the functionality of TWindow by deriving class
     // TMainWindow
27:  class TMainWindow : public TWindow
28:  {
29:  public:
30:



871

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

 31:    TMainWindow() : TWindow(0, 0, 0) {}
 32:
 33:  protected:
 34:
 35:    // handle the Game menu item
 36:    void CMGame();
 37:
 38:    // handle closing the window
 39:    virtual BOOL CanClose();
 40:
 41:    DECLARE_RESPONSE_TABLE(TMainWindow);
 42:  };
 43:
 44:  DEFINE_RESPONSE_TABLE1(TMainWindow, TWindow)
 45:    EV_COMMAND(CM_GAME, CMGame),
 46:  END_RESPONSE_TABLE;
 47:
 48:  void TMainWindow::CMGame()
 49:  {
 50:    char s[MaxBuffer];
 51:    int n, m;
 52:    int MaxIter = 10;
 53:    int iter = 0;
 54:    BOOL ok = TRUE;
 55:    TInputDialog* pDlg;
 56:
 57:    randomize();
 58:    n = random(1001);
 59:
 60:    strcpy(s, “500”);
 61:    // execute the opening dialog box
 62:    pDlg = new TInputDialog(this, “Hi-Lo Guessing Game”,
 63:                          “Enter a number between 0 and 1000”,
 64:                          s, sizeof(s));
 65:    if (pDlg->Execute() == IDOK) {
 66:         m = atoi(s);
 67:         iter++;
 68:         // loop to obtain the other guesses
 69:         while (m != n && iter < MaxIter && ok == TRUE) {
 70:           // is the user’s guess higher?
 71:           if (m > n) {
 72:             pDlg = new TInputDialog(this,
 73:                             “Hi-Lo Guessing Game”,
 74:                             “Enter a lower guess”,
 75:                              s, sizeof(s));
 76:             ok = (pDlg->Execute() == IDOK) ? TRUE : FALSE;
 77:
 78:          }
 79:           else {
 80:             pDlg = new TInputDialog(this,
 81:                             “Hi-Lo Guessing Game”,

continues



872

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓

82:                              “Enter a higher guess”,
83:                               s, sizeof(s));
84:              ok = (pDlg->Execute() == IDOK) ? TRUE : FALSE;
85:           }
86:            m = atoi(s);
87:            iter++;
88:          }
89:
90:          // did the user guess the secret number
91:          if (iter < MaxIter && ok == TRUE) {
92:            MessageBeep(MB_ICONEXCLAMATION);
93:            MessageBeep(MB_ICONEXCLAMATION);
94:            sprintf(s, “You guess it! It’s %d”, n);
95:            MessageBox(s, “Congratulations!”, MB_OK);
96:          }
97:          else {
98:            MessageBeep(-1);
99:            sprintf(s, “The secret number is %d”, n);
100:           MessageBox(s, “Sorry!”, MB_OK);
101:         }
102:    }
103:  }
104:
105:  BOOL TMainWindow::CanClose()
106:  {
107:    return MessageBox(“Want to close this application”,
108:                      “Query”, MB_YESNO | MB_ICONQUESTION) == IDYES;
109:  }
110:
111:  void TWinApp::InitMainWindow()
112:  {
113:    MainWindow = new TFrameWindow(0, “Hi-Lo Number-Guessing Game”,
114:                                  new TMainWindow);
115:    // load the menu resource
116:    MainWindow->AssignMenu(TResID(IDM_MAINMENU));
117:  }
118:
119:  int OwlMain(int /* argc */, char** /*argv[] */)
120:  {
121:    TWinApp app;
122:    return app.Run();
123:  }

The program in Listing X6.4 declares two classes: the application class, TWinApp,
and the main window class, TMainWindow.

Listing X6.4. continued

Analysis



873

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

The most relevant part of the program is the member function CMGame, which executes
the number-guess game. The function, whose definition starts at line 48, performs the
following tasks:

■■ Randomizes the seed for the random-number generating function, using the
statement at line 57.

■■ Obtains a random number in the range of 0 to 1,000 and stores that number
in the local variable n.

■■ Assigns the string “500” to the text buffer (implemented using the local
variable s).

■■ Executes the opening dialog box by calling the Execute member function, at
line 62, to create an instance of the TInputDialog class. If the function
Execute returns IDOK, the game resumes by executing the next tasks.

■■ Converts the contents of the text buffer into an int and stores that value in
the local variable m. This task calls the function atoi at line 66.

■■ Increments the iteration counter variable iter.

■■ Loops to obtain other guesses while the following conditions are true:

■■ The contents of variables m and n differ.

■■ The number of iterations is less than the maximum limit.

■■ The Boolean ok flag is TRUE to indicate that you did not click the
Cancel button of the dialog box.

The loop, which starts at line 69, displays one of two dialog box versions,
depending on whether the last number you entered is less than or greater
than the secret number. The loop also converts your input into the integer
stored in variable m and increments the loop iteration counter.

■■ Displays a congratulatory message (in lines 92 to 95) if you guessed the
secret number within the allowed number of iterations. Otherwise, the
program displays the secret number using the statements at lines 98 to 100.

The TCommonDialog Class
The classes that model the common dialog boxes in this chapter are descendants of
the class TDialog. In addition, these classes (except TInputDialog) are also descendants
of the class TCommonDialog. Here is the declaration of the class TCommonDialog:



874

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓
class _OWLCLASS TCommonDialog : public TDialog {
  public:
    TCommonDialog(TWindow* parent, const char far* title = 0,
                  TModule* module = 0);

    HWND DoCreate()
          { return 0; }
    int DoExecute()
         { return IDCANCEL; }

  protected:
    const char far* CDTitle;

    void SetupWindow();

    // Default behavior inline for message response functions
    //
    void CmOkCancel()
          { DefaultProcessing(); } // EV_COMMAND(IDOK or IDCANCEL)
    void EvClose()
          { DefaultProcessing(); } // EV_CLOSE
    void CmHelp()
          { DefaultProcessing(); } // EV_COMMAND(pshHelp,

  private:
    TCommonDialog(const TCommonDialog&);
    TCommonDialog& operator=(const TCommonDialog&);

  DECLARE_RESPONSE_TABLE(TCommonDialog);
  DECLARE_CASTABLE;
};

The TCommonDialog class is the root of the common dialog class subhierarchy that
models color selection, font selection, input-file selection, output-file selection,
printing, text search, and text-replacement dialog boxes.

The File Dialog Classes
The ObjectWindows library offers the classes TOpenSaveDialog, TFileOpenDialog,
and TFileSaveDialog to implement the common modal dialog boxes that support
opening a file and saving data in a file. The class TOpenSaveDialog is a descendant of
class TCommonDialog and the parent of classes TFileOpenDialog and TFileSaveDialog.
Figure X6.2 shows a standard File dialog box in the open file mode. The Open and
Save As dialog boxes have the following controls:

■■ A filename combo box

■■ A file-filter combo box



875

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

■■ A current directory static-text control

■■ A directory list box that shows the current directory, its sibling directories,
and its parent directory

■■ A drives combo box

■■ An OK pushbutton

■■ A Cancel pushbutton

■■ A Help pushbutton

■■ A read-only check box to select read-only files

Figure X6.2. A sample session with the COMMDLG1.EXE program.

The Supporting Classes and Structures
The TOpenSaveDialog class encapsulates the OPENFILENAME structure and the Win-
dows API functions GetOpenFileName and GetSaveFileName. The OPENFILENAME
structure is declared as follows:

     typedef struct tagOFN
     {
         DWORD   lStructSize;
         HWND    hwndOwner;
         HINSTANCE hInstance;



876

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓
         LPCSTR  lpstrFilter;
         LPSTR   lpstrCustomFilter;
         DWORD   nMaxCustFilter;
         DWORD   nFilterIndex;
         LPSTR   lpstrFile;
         DWORD   nMaxFile;
         LPSTR   lpstrFileTitle;
         DWORD   nMaxFileTitle;
         LPCSTR  lpstrInitialDir;
         LPCSTR  lpstrTitle;
         DWORD   Flags;
         UINT    nFileOffset;
         UINT    nFileExtension;
         LPCSTR  lpstrDefExt;
         LPARAM  lCustData;
         UINT    (CALLBACK *lpfnHook)(HWND, UINT, WPARAM, LPARAM);
         LPCSTR  lpTemplateName;
     }   OPENFILENAME;

The OPENFILENAME structure and its related Windows API functions use the following
OFN_XXXX constants:

     #define OFN_READONLY                 0x00000001
     #define OFN_OVERWRITEPROMPT          0x00000002
     #define OFN_HIDEREADONLY             0x00000004
     #define OFN_NOCHANGEDIR              0x00000008
     #define OFN_SHOWHELP                 0x00000010
     #define OFN_ENABLEHOOK               0x00000020
     #define OFN_ENABLETEMPLATE           0x00000040
     #define OFN_ENABLETEMPLATEHANDLE     0x00000080
     #define OFN_NOVALIDATE               0x00000100
     #define OFN_ALLOWMULTISELECT         0x00000200
     #define OFN_EXTENSIONDIFFERENT       0x00000400
     #define OFN_PATHMUSTEXIST            0x00000800
     #define OFN_FILEMUSTEXIST            0x00001000
     #define OFN_CREATEPROMPT             0x00002000
     #define OFN_SHAREAWARE               0x00004000
     #define OFN_NOREADONLYRETURN         0x00008000
     #define OFN_NOTESTFILECREATE         0x00010000

The declaration of the TOpenSaveDialog class is as follows:

class _OWLCLASS TOpenSaveDialog : public TCommonDialog {
  public:
    class _OWLCLASS TData {
      public:
        DWORD      Flags;
        DWORD      Error;
        char*      FileName;
        char*      Filter;
        char*      CustomFilter;
        int        FilterIndex;



877

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

        char*      InitialDir;
        char*      DefExt;

        TData(DWORD flags=0, char* filter=0, char* customFilter=0,
              char* initialDir=0, char* defExt=0);
        ~TData();

        void     SetFilter(const char* filter = 0);

        void     Write(opstream& os);
        void     Read(ipstream& is);
    };

    TOpenSaveDialog(TWindow*        parent,
                    TData&          data,
                    TResId          templateId = 0,
                    const char far* title = 0,
                    TModule*        module = 0);

    static int GetFileTitleLen(const char far* fileName)
           { return ::GetFileTitle((LPSTR)fileName, 0, 0);  //Win32 cast

    static int GetFileTitle(const char far* fileName,
                            char far* fileTitle,
                            int fileTitleLen) //Win32 casts
           { return ::GetFileTitle((LPSTR)fileName,
                                    fileTitle,(WORD)fileTitleLen); }

  protected:
    OPENFILENAME ofn;
    TData&       Data;

    TOpenSaveDialog(TWindow* parent, TData& data, TModule* module = 0);
    void Init(TResId templateId);
    BOOL DialogFunction(UINT message, WPARAM, LPARAM);

    //
    // override TWindow & TDialog virtuals
    //
    int DoExecute() = 0;

    //
    // Virtual function called when a share violation occurs in dlg
    //
    virtual int ShareViolation();

    //
    // Messages registered by the common dialog DLL
    //
    static UINT ShareViMsgId;

    //



878

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓
    // Default behavior inline for message response functions
    //
    void CmOk()
          { DefaultProcessing(); } // EV_COMMAND(IDOK,
    void CmLbSelChanged()
          { DefaultProcessing(); } // EV_COMMAND(lst1 or lst2)

  private:
    TOpenSaveDialog(const TOpenSaveDialog&);
    TOpenSaveDialog& operator =(const TOpenSaveDialog&);

  DECLARE_RESPONSE_TABLE(TOpenSaveDialog);
};

The class TOpenSaveDialog declares the nested class TData. This nested class contains
data members that store information related to the selected file and other information
used in the file-selection process. The class TOpenSaveDialog::TData works with both
descendants, TFileOpenDialog and TFileSaveDialog.

Typically, you create an instance of the class TData and initialize it when you create
the main window. The creation of the TData instance involves specifying the values
for the TData members Flags, Filter, CustomFilter, InitialDir, and DefExt.

The argument for parameter flags in the TData constructor can have one or more
OFN_XXXX constants to fine-tune various aspects of the File dialog box. In the case of
multiple OFN_XXXX constants, you need to use the bitwise OR operator to combine
their effect. For example, the following expression

OFN_HIDEREADONLY | OFN_NOCHANGEDIR | OFN_FILEMUSTEXIST

performs the following dialog box operations:

1. Hides the read-only check box in the dialog box.

2. Sets the current directory back to the original one when the dialog box was
opened.

3. Permits the user to type in only names of existing files. If this condition is
violated, the dialog box displays a warning-message dialog box.

The argument for the parameter filter (in the TData constructor) is a specially-
formatted string. It contains pairs of substrings. The first pair member contains the
wording of the filter—for example, the string C++ file (*.CPP). This wording is
selected by the dialog box user and need not include any filename wildcard. The
second pair member contains the actual wildcard used in filtering the selected files—
for example, *.CPP. The formatting rules to observe are as follows:

■■ Use the bar character, |, to separate the substrings.



879

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

■■ Use pairs of strings—one for wording and one for the corresponding
wildcard. The latter is actually used to filter the file selection.

■■ The string must end with an empty substring. That is, the last two string
characters must be a pair of bar characters, ||.

An example of the argument for lpszFilter is the following string:

char szFilter[] =
“All files (*.*)|*.*|C++ files|*.cpp|Header files (*.h)|*.h||”;

The preceding string displays three file selections. The first one enables you to select
all of the files, the second enables you to choose the *.CPP files, and the last one enables
you to pick the header files.

The argument for the parameter customFilter (in the TData constructor) is a string
that represents a user-specified file filter, such as *.CPP. The argument for the
parameter initialDir can specify an initial directory other than the current one. The
argument for the parameter defExt indicates the default file extension. The data
member Error contains a CDERR_XXXX value that identifies the kind of error involved
in creating the dialog box.

The declaration of the TFileOpenDialog is as follows:

class _OWLCLASS TFileOpenDialog : public TOpenSaveDialog {
  public:
    TFileOpenDialog(TWindow*        parent,
                    TData&          data,
                    TResId          templateId = 0,
                    const char far* title = 0,
                    TModule*        module = 0);

    //
    // override TDialog virtual functions
    //
    int  DoExecute();

  private:
    TFileOpenDialog(const TOpenSaveDialog&);
    TFileOpenDialog& operator=(const TOpenSaveDialog&);
};

The class TFileOpenDialog declares a constructor that has a list of five parameters. The
parameter parent is the pointer to the parent window. The parameter data is the
reference to the TData structure that passes the information for the file I/O operation.
The templateId is the resource ID for a dialog box. The parameter title specifies the
dialog box title.



880

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓
The declaration of class TFileSaveDialog is as follows:

class _OWLCLASS TFileSaveDialog : public TOpenSaveDialog {
  public:
    TFileSaveDialog(TWindow*        parent,
                    TData&          data,
                    TResId          templateId = 0,
                    const char far* title = 0,
                    TModule*        module = 0);

    //
    // override TDialog virtual functions
    //
    int  DoExecute();

  private:
    TFileSaveDialog(const TFileSaveDialog&);
    TFileSaveDialog& operator=(const TFileSaveDialog&);
};

The TFileOpenDialog class constructor creates a dialog box object defined by the
various parameters. These parameters are similar to those in the class TFileSaveDialog.

Invoking the File Dialog Box
After the TFileOpenDialog instance is created by the constructor, you can invoke the
dialog box using the member function Execute. To accept the dialog box, selection
click the OK button. This action makes the function Execute return the IDOK result.
To close the dialog box without accepting the current selection, click the Cancel
button or select the Close system-menu command. Either action causes the function
Execute to return IDCANCEL.

The File Statistics Program
Next is a program that enables you to obtain file statistics (file size and date/time
stamp) using the standard file dialog box. Listing X6.5 the contents of the
COMMDLG1.DEF definition file. Listing X6.6 the COMMDLG1.H header file.
Listing X6.7 shows the script for the COMMDLG1.RC resource file. Listing X6.8
shows the source code for the COMMDLG1.CPP program file.

Compile and run the COMMDLG1.EXE program. Click the File Stats menu item
to invoke the Open dialog box. The file-filter combo box has two items: all the files
and the .CPP files. You can select a file from the current directory or move to another
directory. When you have selected a file, click the OK button. The Open dialog box



881

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

Type

Type

Type

Type

disappears and a message box appears with the selected filename, size, and date/time
stamp.

Listing X6.5. The contents of the COMMDLG1.DEF
definition file.

1:  NAME         CommDlg1
2:  DESCRIPTION  ‘An OWL Windows Application’
3:  EXETYPE      WINDOWS
4:  CODE         PRELOAD MOVEABLE DISCARDABLE
5:  DATA         PRELOAD MOVEABLE MULTIPLE
6:  HEAPSIZE     1024
7:  STACKSIZE    16384

Listing X6.6. The source code for the COMMDLG1.H
header file.

1:  #define CM_FILESTAT  100
2:  #define IDM_MAINMENU 400

Listing X6.7. The script for the COMMDLG1.RC
resource file.

1:  #include <windows.h>
2:  #include <owl\window.rh>
3:  #include “commdlg1.h”
4:
5:  IDM_MAINMENU MENU LOADONCALL MOVEABLE PURE DISCARDABLE
6:  BEGIN
7:      MENUITEM “E&xit”, CM_EXIT
8:      MENUITEM “&File Stats”, CM_FILESTAT
9:  END

Listing X6.8. The source code for the COMMDLG1.CPP
program file.

  1:  /*
  2:    Program to test the Open File common dialog box. The program
  3:    displays the basic statistics for the file you select
  4:  */
  5:
  6:  #include <owl\applicat.h>

continues



882

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓

 7:   #include <owl\framewin.h>
 8:   #include <owl\opensave.h>
 9:   #include “commdlg1.h”
 10:  #include <stdlib.h>
 11:  #include <stdio.h>
 12:  #include <string.h>
 13:  #include <dos.h>
 14:  #include <dir.h>
 15:
 16:  const MaxStringLen = 256;
 17:
 18:  // declare the custom application class as
 19:  // a subclass of TApplication
 20:  class TWinApp : public TApplication
 21:  {
 22:  public:
 23:    TWinApp() : TApplication() {}
 24:
 25:  protected:
 26:    virtual void InitMainWindow();
 27:  };
 28:
 29:  // expand the functionality of TWindow by
 30:  // deriving class TMainWindow
 31:  class TMainWindow : public TWindow
 32:  {
 33:  public:
 34:
 35:    TMainWindow();
 36:
 37:  protected:
 38:
 39:    // the pointer to the data for the File Open dialog box
 40:    TOpenSaveDialog::TData *FileData;
 41:
 42:    // handle the calculation
 43:    void CMFileStat();
 44:
 45:    // handle exiting the program
 46:    void CMExit();
 47:
 48:    // handle closing the window
 49:    virtual BOOL CanClose();
 50:
 51:    // declare the message map macro
 52:    DECLARE_RESPONSE_TABLE(TMainWindow);
 53:
 54:  };
 55:

Listing X6.8. continued



883

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

56:   DEFINE_RESPONSE_TABLE1(TMainWindow, TWindow)
57:     EV_COMMAND(CM_FILESTAT, CMFileStat),
58:     EV_COMMAND(CM_EXIT, CMExit),
59:   END_RESPONSE_TABLE;
60:
61:   TMainWindow::TMainWindow()
62:     : TWindow(0, 0, 0)
63:   {
64:     FileData = new TOpenSaveDialog::TData(
65:          DWORD(OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT),
66:          “All Files (*.*)|*.*|”
67:          “C++ Programs (*.cpp)|*.cpp|”
68:          “Batch files (*.bat)|*.bat||”,
69:          “*.cpp”, “”, “*.cpp”);
70:   }
71:
72:   void TMainWindow::CMFileStat()
73:   {
74:     char selFile[MaxStringLen];
75:     char s[MaxStringLen];
76:     char format[MaxStringLen];
77:     ffblk fileInfo;
78:     unsigned Hour, Minute, Second, Day, Month, Year,
79:          uDate, uTime;
80:     TFileOpenDialog* FileDialog;
81:
82:     FileDialog = new TFileOpenDialog(this, *FileData);
83:
84:     if (FileDialog->Execute() == IDOK) {
85:       // get the file information
86:       strcpy(selFile, FileData->FileName);
87:       findfirst(selFile, &fileInfo, FA_ARCH);
88:       // build the format string
89:       strcpy(format, “Filename: %s\n”);
90:       strcat(format, “Time Stamp: %02u:%02u:%02u\n”);
91:        strcat(format, “Date Stamp: %02u/%02u/%u\n”);
92:        strcat(format, “Size: %ld bytes\n”);
93:       uTime = (unsigned)fileInfo.ff_ftime;
94:       // get the seconds
95:       Second = 2 * (uTime & 0x1f);
96:       // get the minutes
97:       Minute = (uTime >> 5) & 0x3f;
98:       // get the hours
99:       Hour = (uTime >> 11) & 0x1f;
100:      uDate = (unsigned)fileInfo.ff_fdate;
101:      // get the day
102:      Day =  uDate & 0x1f;
103:      // get the month
104:       Month = (uDate >> 5) & 0xf;
105:      // get the year

continues



884

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓

106:      Year = (uDate >> 9) & 0x7f;
107:      sprintf(s, format, fileInfo.ff_name, Hour, Minute, Second,
108:          Month, Day, Year + 1980U, fileInfo.ff_fsize);
109:       MessageBox(s, “File Statistics”,
110:                          MB_OK | MB_ICONINFORMATION);
111:    }
112:  }
113:
114:  void TMainWindow::CMExit()
115:  {
116:    Parent->SendMessage(WM_CLOSE);
117:  }
118:
119:  BOOL TMainWindow::CanClose()
120:  {
121:    return MessageBox(“Want to close this application?”,
122:                      “Query”, MB_YESNO | MB_ICONQUESTION) == IDYES;
123:  }
124:
125:  void TWinApp::InitMainWindow()
126:  {
127:    MainWindow = new TFrameWindow(0, “File Statistics”,
128:                     new TMainWindow);
129:    // load the menu resource
130:    MainWindow->AssignMenu(TResID(IDM_MAINMENU));
131:    // enable the keyboard handler
132:    MainWindow->EnableKBHandler();
133:  }
134:
135:  int OwlMain(int /* argc */, char** /*argv[] */)
136:  {
137:    TWinApp app;
138:    return app.Run();
139:  }

Now let’s examine the code for the program in Listing X6.4. The window class
TMainWindow declares a constructor, a data member, and three member func-
tions. The data member FileData is a pointer to the supporting structure

TOpenSaveDialog::TData. The TMainWindow constructor initializes member FileData,
at line 64, by dynamically allocating a new instance of TOpenSaveDialog::TData. This
instance is initialized using the ORed constants OFN_HIDEREADONLY and
OFN_OVERWRITEPROMPT. In addition, the creation of the preceding instance specifies the
arguments for the parameters filter (the long string that spans over three lines),
customFilter (the string “*.cpp”), initialDir (the empty string), and defExt (the
string “*.cpp”).

Listing X6.8. continued

Analysis



885

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

The most relevant component of the class is the CMFileStat member function, whose
definition starts at line 72. The function declares a number of local variables. The
function also declares the ffblk-typed fileInfo variable, in line 72. This variable
contains the structure for the DOS file data. In addition, the function declares, in line
80, the FileDialog object as a pointer to TFileOpenDialog. The function CmFileStat
creates a dynamic instance of TFileOpenDialog using the arguments this and
*FileData. The latter argument passes information to and from the dialog box.

The CMFileStat function sends the C++ message Execute to the dialog box object in
an if statement (located at line 84) that compares the result of Execute with IDOK. If
the two values match, the function obtains the full name of the selected file by using
the expression FileData->FileName (FileName is a member of the structure
TOpenSave::TData). The result of this function is assigned to the string variable
selFile. The function CMFileStat then uses this string variable in the function
findfirst to obtain the information for the selected file and stores it in the fileInfo
variable. The rest of the statements, in the if statement, obtain the file statistics and
build the output string. The function then displays the text of this output string in a
call to function MessageBox.

The TChooseColorDialog Class
The TChooseColorDialog class supports the color-selection common dialog box.
Figure X6.3 shows the Color dialog box. The dialog box contains various controls to
select colors, define custom colors, and add to custom colors. As with every other
dialog box, the Color dialog box has OK and Cancel buttons.

Supporting Classes and Structures
The TChooseColorDialog class encapsulates the CHOOSECOLOR structure and the
Windows API function ChooseColor. The declaration of the CHOOSECOLOR structure
is as follows:

     typedef struct tagCHOOSECOLOR
     {
         DWORD   lStructSize;
         HWND    hwndOwner;
         HWND    hInstance;
         COLORREF rgbResult;
         COLORREF FAR* lpCustColors;
         DWORD   Flags;
         LPARAM  lCustData;



886

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓
         UINT    (CALLBACK* lpfnHook)(HWND, UINT, WPARAM, LPARAM);
         LPCSTR  lpTemplateName;
     } CHOOSECOLOR;

Figure X6.3. A sample session with the COMMDLG2.EXE program.

The CHOOSECOLOR structure uses the following CC_XXXX constants:

     #define CC_RGBINIT               0x00000001
     #define CC_FULLOPEN              0x00000002
     #define CC_PREVENTFULLOPEN       0x00000004
     #define CC_SHOWHELP              0x00000008
     #define CC_ENABLEHOOK            0x00000010
     #define CC_ENABLETEMPLATE        0x00000020
     #define CC_ENABLETEMPLATEHANDLE  0x00000040

The TChooseColorDialog class, a descendant of TCommonDialog, is declared as follows:

class _OWLCLASS TChooseColorDialog : public TCommonDialog {
  public:
    class _OWLCLASS TData {
      public:
        DWORD       Flags;
        DWORD       Error;
        TColor      Color;
        TColor*     CustColors;
    };



887

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

    TChooseColorDialog(TWindow*        parent,
                       TData&          data,
                       TResId          templateId = 0,
                       const char far* title = 0,
                       TModule*        module = 0);

    //
    // Set the current RGB color in this dialog
    //
    void SetRGBColor(TColor color)
         { SendMessage(SetRGBMsgId,0,color); }

  protected:
    CHOOSECOLOR  cc;
    TData&       Data;

    int DoExecute();
    BOOL DialogFunction(UINT message, WPARAM, LPARAM);

    //
    // Registered messages this class sends (to itself)
    //
    static UINT SetRGBMsgId;

    //
    // Default behavior inline for message response functions
    //
    LPARAM EvSetRGBColor(WPARAM, LPARAM) // EV_REGISTERED(SETRGBSTRING,
             { return DefaultProcessing(); }

  private:
    TChooseColorDialog(const TChooseColorDialog&);
    TChooseColorDialog& operator=(const TChooseColorDialog&);

  DECLARE_RESPONSE_TABLE(TChooseColorDialog);
  DECLARE_CASTABLE;
};

The constructor has five parameters that customize the Color dialog boxes. The
parameter parent is the pointer to the parent window. The parameter data is a
reference to a TChooseColorDialog::TData structure. The parameter templateId is
the dialog box resource ID. The parameter title specifies the title of the Color dialog
boxes.

The TChooseColorDialog declares the protected data members cc and Data. The
member cc has the CHOOSECOLOR structure type. This data member enables the class
instances to exchange data with the supporting API function. The data member Data



888

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓

Type

Type

is a reference to the TData structure. This structure contains data members that set and
query the color in the dialog box, and it sets the flags that fine-tune the appearance
and operations of the dialog box. The data member Error contains a CDERR_XXXX value
that identifies the kind of error involved in creating the dialog box.

Invoking a Color dialog box is very similar to invoking an Open or Save As dialog box.
The OK button, the Cancel button, and the Close System menu item play the same
role in influencing the result returned by the Execute member function. The
Windows API function CommDlgExtendedError can also be used to detect errors when
the Execute function returns IDCANCEL.

A Sample Program
The following is a simple program that invokes the Color dialog box and then displays
the numeric value for the selected color. Listing X6.9 shows the contents of the
COMMDLG2.DEF definition file. Listing X6.10 shows the COMMDLG2.H
header file. Listing X6.11 contains the script for the COMMDLG2.RC resource file.
Listing X6.12 contains the source code for the COMMDLG2.CPP program file.

Compile and run the COMMDLG2.EXE program. Click the Colors menu item to
invoke the Color dialog box. Experiment with selecting different colors. Click the OK
button to close the dialog box. The program then displays a message box that contains
the integer code for the currently selected color.

Listing X6.9. The contents of the COMMDLG2.DEF
definition file.

1:  NAME         CommDlg2
2:  DESCRIPTION  ‘An OWL Windows Application’
3:  EXETYPE      WINDOWS
4:  CODE         PRELOAD MOVEABLE DISCARDABLE
5:  DATA         PRELOAD MOVEABLE MULTIPLE
6:  HEAPSIZE     1024
7:  STACKSIZE    16384

Listing X6.10. The source code for the COMMDLG2.H
header file.

1:  #define CM_COLORCHANGE 100
2:  #define IDM_MAINMENU   400



889

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

Type

Type Listing X6.11. The script for the COMMDLG2.RC
resource file.

1:  NAME         CommDlg2
2:  DESCRIPTION  ‘An OWL Windows Application’
3:  EXETYPE      WINDOWS
4:  CODE         PRELOAD MOVEABLE DISCARDABLE
5:  DATA         PRELOAD MOVEABLE MULTIPLE
6:  HEAPSIZE     1024
7:  STACKSIZE    16384

Listing X6.12. The source code for the COMMDLG2.CPP
program file.

1:   /*
2:     Program to test the Choose Color common dialog box.
3:   */
4:
5:   #include <owl\applicat.h>
6:   #include <owl\framewin.h>
7:   #include <owl\chooseco.h>
8:   #include “commdlg2.h”
9:   #include <stdio.h>
10:  #include <string.h>
11:
12:  const int MaxStrLen = 31;
13:  const int MaxLongStrLen = 1024;
14:
15:  // declare the custom application class as
16:  // a subclass of TApplication
17:  class TWinApp : public TApplication
18:  {
19:  public:
20:    TWinApp() : TApplication() {}
21:
22:  protected:
23:    virtual void InitMainWindow();
24:  };
25:
26:  // expand the functionality of TWindow by
27:  // deriving class TMainWindow
28:  class TMainWindow : public TWindow
29:  {
30:  public:
31:
32:    TMainWindow();
33:

continues



890

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓
Listing X6.12. continued

 34:  protected:
 35:
 36:    // the data for the color dialog box
 37:    TChooseColorDialog::TData ColorData;
 38:
 39:    // handle invoking the color dialog box
 40:    void CMColors();
 41:
 42:    // handle exiting the program
 43:    void CMExit();
 44:
 45:    // handle closing the window
 46:    virtual BOOL CanClose();
 47:
 48:    // declare the message map macro
 49:    DECLARE_RESPONSE_TABLE(TMainWindow);
 50:
 51:  };
 52:
 53:  DEFINE_RESPONSE_TABLE1(TMainWindow, TWindow)
 54:    EV_COMMAND(CM_COLORCHANGE, CMColors),
 55:    EV_COMMAND(CM_EXIT, CMExit),
 56:  END_RESPONSE_TABLE;
 57:
 58:  TMainWindow::TMainWindow()
 59:    : TWindow(0, 0, 0)
 60:  {
 61:  }
 62:
 63:  void TMainWindow::CMColors()
 64:  {
 65:    char ColorStr[MaxStrLen];
 66:    static TColor CustColors[16] =
 67:    {
 68:      TColor(0,0,0), TColor(255, 255, 255), TColor(128, 128, 128),
 69:      TColor(255, 0, 0), TColor(0, 255, 0), TColor(0, 0, 255),
 70:      TColor(255, 128, 0), TColor(128, 255, 0), TColor(128, 0, 255),
 71:      TColor(255, 0, 128), TColor(0, 255, 128), TColor(0, 128, 255),
 72:      TColor(255, 128, 128), TColor(128, 255, 128),
 73:      TColor(128, 128, 255), TColor(64, 64, 64)
 74:    };
 75:    TChooseColorDialog* ColorDialog;
 76:
 77:    ColorData.Color = TColor(255, 0, 0);
 78:    ColorData.Flags = CC_FULLOPEN | CC_SHOWHELP | CC_RGBINIT;
 79:    ColorData.CustColors = CustColors;
 80:    ColorDialog = new TChooseColorDialog(this, ColorData);
 81:



891

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

82:     if (ColorDialog->Execute() == IDOK) {
83:        sprintf(ColorStr,
84:           “Hexadecimal color code: %lX\nDecimal color code: %lu”,
85:           COLORREF(ColorData.Color),
86:           COLORREF(ColorData.Color));
87:        MessageBox(ColorStr, “Color Metrics”,
88:                          MB_OK | MB_ICONINFORMATION);
89:     }
90:   }
91:
92:   void TMainWindow::CMExit()
93:   {
94:     Parent->SendMessage(WM_CLOSE);
95:   }
96:
97:   BOOL TMainWindow::CanClose()
98:   {
99:     return MessageBox(“Want to close this application?”,
100:               “Query”, MB_YESNO | MB_ICONQUESTION) == IDYES;
101:  }
102:
103:  void TWinApp::InitMainWindow()
104:  {
105:    MainWindow = new TFrameWindow(0,
                         “Simple Colors Dialog Box Tester”,
106:                     new TMainWindow);
107:    // load the menu resource
108:    MainWindow->AssignMenu(TResID(IDM_MAINMENU));
109:    // enable the keyboard handler
110:    MainWindow->EnableKBHandler();
111:  }
112:
113:  int OwlMain(int /* argc */, char** /*argv[] */)
114:  {
115:    TWinApp app;
116:    return app.Run();
117:  }

Let’s examine the source code shown in Listing X6.12. The window class
TMainWindow declares a constructor, a data member, and a number of member
functions. The data member ColorData is a TChooseColorDialog::TData struc-

ture and is involved in passing information to and from the color-selection dialog box.

The relevant member function is CMColor, whose definition starts at line 63. This
function declares a local string variable; the TColor-typed static array, CustColors; and
ColorDialog, a pointer to the class TChooseColorDialog. The function initializes the
array CustColors. The function invokes the Color dialog box by sending it the C++

Analysis



892

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓
message Execute in an if statement (located at line  82). The if statement compares
the value returned by the function Execute with IDOK. If the two values match, the
CMColors function converts the numeric value (both the hexadecimal and decimal
values) of the expression ColorData.Color into a string and then displays that string
in a message box.

The Find and Replace
Dialog Classes

The ObjectWindows library offers the classes TFindReplaceDialog, TFindDialog, and
TReplaceDialog to support modeless dialog boxes that are involved in finding and
replacing text. Figure X6.4 shows the Find dialog box, which contains the following
controls:

■■ Find What edit control, which contains the search text

■■ Match Whole Word Only check box

■■ Match Case check box

■■ Direction group box, which contains the Up and Down radio buttons

■■ Find Next pushbutton, which acts like the OK button of a typical modal
dialog box

■■ Cancel pushbutton

■■ Help pushbutton

Figure X6.5 shows a sample Replace dialog box, which contains the following
controls:

■■ Find What edit control, which contains the search text

■■ Replace With edit control, which contains the replacing text

■■ Match Whole Word Only check box

■■ Match Case check box

■■ Find Next pushbutton, which acts like the OK button of a typical modal
dialog box

■■ Replace pushbutton



893

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

■■ Replace All pushbutton

■■ Cancel pushbutton

Figure X6.4. A sample Find dialog box.

Figure X6.5. A sample Replace dialog box.



894

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓
Supporting Classes and Structures

The TFindReplaceDialog class encapsulates the FINDREPLACE structure and the
Windows API functions FindText and ReplaceText. The declaration of the FINDREPLACE
structure is as follows:

     typedef struct tagFINDREPLACE
     {
         DWORD lStructSize; /* size of this struct 0x20 */
         HWND hwndOwner; /* handle to owner’s window    */
         HINSTANCE hInstance; /* instance handle of.EXE that
                                 contains  cust. dlg. template */

         DWORD Flags; /* one or more of the FR_?? */
         LPSTR lpstrFindWhat; /* ptr. to search string */
         LPSTR lpstrReplaceWith; /* ptr. to replace string */
         UINT wFindWhatLen; /* size of find buffer */
         UINT wReplaceWithLen;  /* size of replace buffer */
         LPARAM lCustData; /* data passed to hook fn. */
         UINT (CALLBACK* lpfnHook)(HWND, UINT, WPARAM, LPARAM);
               /* ptr. to hook fn. or NULL    */
         LPCSTR lpTemplateName; /* custom template name */
     } FINDREPLACE;

The FINDREPLACE structure and the related Windows API functions use the following
FR_XXXX constants:

     #define FR_DOWN                  0x00000001
     #define FR_WHOLEWORD             0x00000002
     #define FR_MATCHCASE             0x00000004
     #define FR_FINDNEXT              0x00000008
     #define FR_REPLACE               0x00000010
     #define FR_REPLACEALL            0x00000020
     #define FR_DIALOGTERM            0x00000040
     #define FR_SHOWHELP              0x00000080
     #define FR_ENABLEHOOK            0x00000100
     #define FR_ENABLETEMPLATE        0x00000200
     #define FR_NOUPDOWN              0x00000400
     #define FR_NOMATCHCASE           0x00000800
     #define FR_NOWHOLEWORD           0x00001000
     #define FR_ENABLETEMPLATEHANDLE  0x00002000
     #define FR_HIDEUPDOWN            0x00004000
     #define FR_HIDEMATCHCASE         0x00008000
     #define FR_HIDEWHOLEWORD         0x00010000

The TFindReplaceDialog Class
The TFindReplaceDialog class, a descendant of the class TCommonDialog, supports the
modeless dialog boxes that are typically used to find and replace text. The descendant



895

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

classes, TFindDialog and TReplaceDialog, offer more specialized operations for
searching and replacing text. Making the instances of class TFindDialog modeless
makes them easier to use, because their dialog boxes remain visible while the text
search takes place. As modeless dialogs, the Find and Replace dialog boxes enable the
focus to be shifted to the related window that contains the edited text. You can reselect
these dialog boxes at any time and resume another round of text search. There is no
need to reinvoke the dialog box from a menu, because the dialog boxes are on stand-
by. This flexibility comes at a price—a slightly more elaborate coding requirement.
The declaration of the TFindReplaceDialog class is as follows:

class _OWLCLASS TFindReplaceDialog : public TCommonDialog {
  public:
    class _OWLCLASS TData {
      public:
        DWORD    Flags;
        DWORD    Error;
        char*    FindWhat;
        char*    ReplaceWith;
        int      BuffSize;

        TData(DWORD flags = 0, int buffSize = 81);
        ~TData();

        void     Write(opstream& os);
        void     Read(ipstream& is);
    };

    TFindReplaceDialog(TWindow*        parent,
                       TData&          data,
                       TResId          templateId = 0,
                       const char far* title = 0,
                       TModule*        module = 0);

    void UpdateData(LPARAM lParam = 0);

  protected:
    FINDREPLACE  fr;
    TData&       Data;

    HWND DoCreate() = 0;

    TFindReplaceDialog(TWindow*        parent,
                       TResId          templateId = 0,
                       const char far* title = 0,
                       TModule*        module = 0);

    void Init(TResId templateId);
    BOOL DialogFunction(UINT message, WPARAM, LPARAM);



896

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓
    //
    // Default behavior inline for message response functions
    //
    void CmFindNext()
          { DefaultProcessing(); }   // EV_COMMAND(IDOK,
    void CmReplace()
          { DefaultProcessing(); }    // EV_COMMAND(psh1,
    void CmReplaceAll()
          { DefaultProcessing(); }    // EV_COMMAND(psh2,
    void CmCancel()
          { DefaultProcessing(); }     // EV_COMMAND(IDCANCEL,

    void EvNCDestroy();

  DECLARE_RESPONSE_TABLE(TFindReplaceDialog);
  DECLARE_CASTABLE;
};

The class TFindReplaceDialog declares the nested class TData. This nested class
contains data members that store the dialog box flags, search string, replacement
string, error flag, and buffer size. The dialog box flags fine-tune the appearance and
operations of the Find and Replace dialog boxes. The class TFindReplaceDialog
declares a constructor with five parameters. The parameter parent is the pointer to the
parent window. The parameter data is the reference to the nested class TData. The
parameter templateID specifies the resource ID for the dialog box. The default
argument for this parameter invokes the standard resource for the Find or Replace
dialog box. The parameter title designates the title of the dialog box. The default
argument for this parameter invokes the standard title for the Find or Replace dialog
box. The member function UpdateData updates the protected data member Data,
which is a reference to the nested class TData.

The class TFindReplaceDialog declares a set of protected member functions—
CmFindNext, CmReplace, CmReplaceAll, and CmCancel—to handle clicking the Find
Next, Replace, Replace All, and Cancel buttons (respectively) in the Find and/or the
Replace dialog boxes.

The TFindDialog Class
The declaration of class TFindDialog is as follows:

class _OWLCLASS TFindDialog : public TFindReplaceDialog {
  public:
    TFindDialog(TWindow*        parent,
                TData&          data,
                TResId          templateId = 0,
                const char far* title = 0,
                TModule*        module = 0);



897

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

  protected:
    HWND DoCreate();

  private:
    TFindDialog();
    TFindDialog(const TFindDialog&);

  DECLARE_CASTABLE;
};

The class TFindDialog constructor has the same number and type of parameters as the
constructor of its parent class, TFindReplaceDialog. The class also declares two
additional private constructors. One is the default constructor and the other is a copy
constructor. They are private to prevent copying.

The TReplaceDialog Class
The class TReplaceDialog, which models the modeless Replace dialog box, has the
following declaration:

class _OWLCLASS TReplaceDialog : public TFindReplaceDialog {
  public:
    TReplaceDialog(TWindow*        parent,
                   TData&          data,
                   TResId          templateId = 0,
                   const char far* title = 0,
                   TModule*        module = 0);

  protected:
    HWND     DoCreate();

  private:
    TReplaceDialog(const TReplaceDialog&);
    TReplaceDialog& operator=(const TReplaceDialog&);

  DECLARE_CASTABLE;
};

The TReplaceDialog class constructor has the same number and type of parameters
as the constructor of its parent class, TFindReplaceDialog. The class also declares two
additional private constructors. One is the default constructor and the other is a copy
constructor. They are private to prevent copying.

Notifying the Parent Window
In order for the instances of classes TFindDialog and TReplaceDialog to notify the
parent window, you need to define the following:



898

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓
■■ A data member that is an instance of the class TFindReplaceDialog::TData.

■■ A data member that is a pointer to the class TFindDialog. The window class
should initialize this data member to NULL or 0.

■■ A data member that is a pointer to class TReplaceDialog. The window class
should initialize this data member to NULL or 0.

In addition, include in your main window class the following member functions:

1. A member function to handle the command that invokes the Find dialog
box. This function examines the data member that points to the class
TFindDialog to determine whether to create the Find dialog box.

2. A member function to handle the command that invokes the Replace dialog
box. This function examines the data member that points to class
TReplaceDialog to determine whether to create the Replace dialog box.

3. A member function that handles the messages sent by the Find and Replace
dialog boxes. The function examines the pointers to both classes
TFindDialog and TReplaceDialog in order to determine which dialog box is
sending messages to the main window.

The following code fragment represents a general idea of how to code and initialize
the preceding members:

     class TMainWindow : public TWindow
     {
     public:
          // member declarations

     protected:
          TFindReplaceDialog::TData FRdata;
          TFindDialog* pFindDlg;
          TReplaceDialog* pReplaceDlg;

          // other declarations

          // handle invoking the Find dialog box
          void CMFind();

          // handle invoking the Replace dialog box
          void CMReplace();

          // handle the messages
          LRESULT EvFindMsg(WPARAM, LPARAM lParam);

          DECLARE_RESPONSE_TABLE(TMainWindow);
     };



899

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

     DEFINE_RESPONSE_TABLE1(TMainWindow, TWindow)
...
          EV_COMMAND(CM_FIND, CMFind),
          EV_COMMAND(CM_REPLACE, CMReplace),
          EV_REGISTERED(FINDMSGSTRING, EvFindMsg),
     END_RESPONSE_TABLE;

     TMainWindow::TMainWindow()
          : TWindow(0, 0, 0)
     {
          pFindDlg = NULL;
          pReplaceDlg = NULL;
          // other statements
     }

     void TMainWindow::CMFind()
     {
          if (!pFindDlg && !pReplaceDlg) {
               // create the Find dialog box
          }
     }

     void TMainWindow::CMReplace()
     {
          if (!pReplaceDlg && !pReplaceDlg) {
               // create the Replace dialog box
          }
     }

     LRESULT TMainWindow::EvFindMsg(WPARAM, LPARAM lParam)
     {
          // handle the Find dialog box
          if (pFindDlg) {
               pFindDlg->UpdateData(lParam);
               // is dialog box terminating?
               if (FRdata.Flags & FR_DIALOGTREM) {
                    // statements for dialog box cleanup
               }
               else {
                    // statements for continual usage
               }
          }

          // handle the Replace dialog box
          if (pReplaceDlg) {
               pReplaceDlg->UpdateData(lParam);
               // is dialog box terminating?
               if (FrData.Flags & FR_DIALOGTREM) {
                    // statements for dialog box cleanup



900

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓
               }
               else {
                    // clicked Replace button?
                    if (FRdata.Flags & FR_REPLACE) {
                         // handle Replace button
                    }
                    // clicked Replace All button?
                    else if (FRdata.Flags & FR_REPLACEALL) {
                         // handle Replace All button
                    }
                    else {
                         // handle Find Next button
                    }
               }

          }
          return 0;
     }

The preceding code segment shows the class TMainWindow declaring the following
three data members:

1. The member FRdata, an instance of the class TFindReplaceDialog::TData.

2. The member pFindDlg, a pointer to the class TFindDialog.

3. The member pReplaceDlg, a pointer to the class TReplaceDialog.

The preceding pointers access their respective dynamic dialog boxes. The main
window class also declares the member functions CMFind, CMReplace, and EvFindMsg.
The first two functions handle the commands that invoke the Find and Replace dialog
boxes. The third member function handles the messages sent by either dialog box to
the main window. Notice that the response table contains the EV_COMMAND entries to
map the commands CM_FIND and CM_REPLACE with member functions CMFind and
CMReplace. In addition, the response table contains the registered message map entry
EV_REGISTERED to map the message FINDMSGSTRING with the member function
EvFindMsg. This is how the main window is able to respond to the clicking of the
various buttons in the Find and Replace dialog boxes.

The constructor for the class TMainWindow initializes the pointers pFindDlg and
pReplaceDlg with NULLs or zeros. The member function CMFind creates the Find dialog
box only if neither the Find nor Replace dialog boxes are nonexistent. This condition
assumes that the two modeless dialog boxes antagonize each other and should not
coexist. If your program can tolerate both dialog boxes (assuming each has its own
TData instance), then you can replace the current tested condition with !pFindDlg.
The code fragment defines the member function CMReplace in a manner similar to the
function CMFind.



901

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

The member function EvFindMsg handles responding to the buttons of the Find and
Replace dialog boxes. The function takes a WPARAM-type parameter and an LPARAM-type
parameter. The latter parameter contains a pointer that must be passed to the
Updatedata member function of the dialog box instance. The function returns a
LRESULT type. The function has two main if statements that determine if the Find or
Replace dialog box is active. If the Find dialog box is active, the function performs the
following tasks:

■■ Sends the C++ message UpdateData to the Find dialog box. The parameter of
this message is the argument for the LPARAM-type parameter.

■■ Determines if the dialog box is not terminating by performing a bitwise
AND operation between the Flags member and the predefined constant
FR_DIALOGTERM. If the result is not zero, the statements in the if clause
handle the cleanup operation before closing the dialog box. Otherwise, the
function EvFindMsg executes the statements in the else clause to support the
ongoing operations of the dialog box.

If the Replace dialog box is active, the function performs the following tasks:

■■ Sends the C++ message UpdateData to the Replace dialog box. The param-
eter of this message is the argument for the LPARAM-type parameter.

■■ Determines if the dialog box is not terminating by performing a bitwise
AND operation between the Flags member and the predefined constant
FR_DIALOGTERM. If the result is not zero, the statements in the if clause
handle the cleanup operation before closing the dialog box.

■■ If the function EvFindMsg executes the else clause, it uses an if-elseif-else
statement to determine if you clicked the Replace, Replace All, or the Find
Next buttons in the Replace dialog box.

Remember that the preceding code segment is just one way of managing the Find and
Replace dialog boxes. Your application may warrant changing and fine-tuning this
code. (In fact, the next programming example does just that.)

A Sample Program
Let’s put all of the preceding information to work in a test program. Here we present
a simple menu-driven program that enables you to invoke a Find or Replace dialog
box. Listing X6.13 shows the contents of the COMMDLG3.DEF definition file.
Listing X6.14 shows the COMMDLG3.H header file. Listing X6.15 contains the
script for the COMMDLG3.RC resource file. Listing X6.16 contains the source code
for the COMMDLG3.CPP program file.



902

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓
Compile and run the COMMDLG3.EXE test program. The program has two main
menu items, Exit and Search. When you select the Search menu item, a pull-down
menu appears with the Find… and Replace… options. The first option invokes the
Find dialog box; the second one invokes the Replace dialog box. Select either option
and experiment with making new selections and typing new text in the corresponding
dialog box. Click the Find Next button (available in both the Find and Replace dialog
boxes) and watch the program display a message box that contains the data for the Find
or Replace dialog box. When you finish experimenting with one dialog box, select the
other. When you are done testing the program, click the Cancel button of the current
dialog box to exit. Figure X6.6 illustrates a sample session with program
COMMDLG3.EXE showing the Find dialog box. Figure X6.7 illustrates a sample
session with program COMMDLG3.EXE displaying the Replace dialog box.

Figure X6.6. A sample session with program COMMDLG3.EXE showing the Find
dialog box.



903

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

Type

Type

Figure X6.7. A sample session with program COMMDLG3.EXE showing the
Replace dialog box.

Listing X6.13. The contents of the COMMDLG3.DEF
definition file.

1:  NAME         CommDlg3
2:  DESCRIPTION  ‘An OWL Windows Application’
3:  EXETYPE      WINDOWS
4:  CODE         PRELOAD MOVEABLE DISCARDABLE
5:  DATA         PRELOAD MOVEABLE MULTIPLE
6:  HEAPSIZE     1024
7:  STACKSIZE    16384

Listing X6.14. The source code for the COMMDLG3.H
header file.

1:  #define CM_FIND      100
2:  #define CM_REPLACE   101
3:  #define IDM_MAINMENU 400



904

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓

Type

Type

Listing X6.15. The script for the COMMDLG3.RC
resource file.

1:   #include <windows.h>
2:   #include <owl\window.rh>
3:   #include “commdlg3.h”
4:
5:   IDM_MAINMENU MENU LOADONCALL MOVEABLE PURE DISCARDABLE
6:   BEGIN
7:       MENUITEM “E&xit”, CM_EXIT
8:       POPUP “&Search”
9:       BEGIN
10:        MENUITEM “&Find...”, CM_FIND
11:        MENUITEM “&Replace...”, CM_REPLACE
12:      END
13:  END

Listing X6.16. The source code for the COMMDLG3.CPP
program file.

1:   /*
2:     Program to test the Find and Replace common dialog boxes.
3:   */
4:
5:   #include <owl\applicat.h>
6:   #include <owl\framewin.h>
7:   #include <owl\findrepl.h>
8:   #include “commdlg3.h”
9:   #include <stdio.h>
10:  #include <string.h>
11:
12:  const int MaxStrLen = 31;
13:  const int MaxLongStrLen = 1024;
14:
15:  // declare the custom application class as
16:  // a subclass of TApplication
17:  class TWinApp : public TApplication
18:  {
19:  public:
20:    TWinApp() : TApplication() {}
21:
22:  protected:
23:    virtual void InitMainWindow();
24:  };
25:
26:  // expand the functionality of TWindow by
27:  // deriving class TMainWindow
28:  class TMainWindow : public TWindow
29:  {



905

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

 30:  public:
 31:
 32:    TMainWindow();
 33:
 34:  protected:
 35:
 36:    TFindReplaceDialog::TData FRdata;
 37:    TFindDialog* pFindDlg;
 38:    TReplaceDialog* pReplaceDlg;
 39:
 40:    // handle invoking the Find dialog box
 41:    void CMFind();
 42:
 43:    // handle clicking the Find Next button
 44:    LRESULT EvFindMsg(WPARAM, LPARAM);
 45:
 46:    // handle the Replace menu item
 47:    void CMReplace();
 48:
 49:    // handle exiting the program
 50:    void CMExit();
 51:
 52:    // handle closing the window
 53:    virtual BOOL CanClose();
 54:
 55:    // write “TRUE” or “FALSE” in string
 56:    void BoolToStr(DWORD Flag, char* s);
 57:
 58:    // declare the message map macro
 59:    DECLARE_RESPONSE_TABLE(TMainWindow);
 60:
 61:  };
 62:
 63:  DEFINE_RESPONSE_TABLE1(TMainWindow, TWindow)
 64:    EV_COMMAND(CM_FIND, CMFind),
 65:    EV_COMMAND(CM_REPLACE, CMReplace),
 66:    EV_COMMAND(CM_EXIT, CMExit),
 67:    EV_REGISTERED(FINDMSGSTRING, EvFindMsg),
 68:  END_RESPONSE_TABLE;
 69:
 70:  TMainWindow::TMainWindow()
 71:      : TWindow(0, 0, 0)
 72:  {
 73:    pFindDlg = NULL;
 74:    pReplaceDlg = NULL;
 75:  }
 76:
 77:  void TMainWindow::CMFind()
 78:  {

continues



906

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓

79:     if (!pFindDlg && !pReplaceDlg) {
80:        FRdata.Flags |= FR_DOWN;
81:        pFindDlg = new TFindDialog(this, FRdata);
82:        pFindDlg->Create();
83:     }
84:   }
85:
86:   LRESULT TMainWindow::EvFindMsg(WPARAM, LPARAM lParam)
87:   {
88:     char s[256];
89:     char s2[11];
90:     if (pFindDlg) {
91:        pFindDlg->UpdateData(lParam);
92:        // is the dialog box still opened
93:        if (!(FRdata.Flags & FR_DIALOGTERM)) {
94:            strcpy(s, “Find String: “);
95:            strcat(s, FRdata.FindWhat);
96:            strcat(s, “\nSearch Down: “);
97:            BoolToStr(DWORD(FRdata.Flags & FR_DOWN), s2);
98:            strcat(s, s2);
99:            strcat(s, “Match Case: “);
100:           BoolToStr(DWORD(FRdata.Flags & FR_MATCHCASE), s2);
101:           strcat(s, s2);
102:           strcat(s, “Whole Word: “);
103:           BoolToStr(DWORD(FRdata.Flags & FR_WHOLEWORD), s2);
104:           strcat(s, s2);
105:           MessageBox(s, “Find Dialog Box Data”,
106:                            MB_OK | MB_ICONINFORMATION);
107:       }
108:       else
109:           pFindDlg = NULL;
110:    }
111:
112:    if (pReplaceDlg) {
113:        pReplaceDlg->UpdateData(lParam);
114:       // is the dialog box still opened
115:       if (!(FRdata.Flags & FR_DIALOGTERM)) {
116:           strcpy(s, “Find String: “);
117:           strcat(s, FRdata.FindWhat);
118:           strcat(s, “\nReplace String: “);
119:           strcat(s, FRdata.ReplaceWith);
120:           strcat(s, “\nSearch Down: “);
121:           BoolToStr(DWORD(FRdata.Flags & FR_DOWN), s2);
122:           strcat(s, s2);
123:           strcat(s, “Match Case: “);
124:           BoolToStr(DWORD(FRdata.Flags & FR_MATCHCASE), s2);
125:           strcat(s, s2);
126:           strcat(s, “Whole Word: “);
127:           BoolToStr(DWORD(FRdata.Flags & FR_WHOLEWORD), s2);
128:           strcat(s, s2);

Listing X6.16. continued



907

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

129:           strcat(s, “Replace Button Clicked: “);
130:           BoolToStr(DWORD(FRdata.Flags & FR_REPLACE), s2);
131:           strcat(s, s2);
132:           strcat(s, “Replace All Button Clicked: “);
133:           BoolToStr(DWORD(FRdata.Flags & FR_REPLACEALL), s2);
134:           strcat(s, s2);
135:           MessageBox(s, “Replace Dialog Box Data”,
136:                            MB_OK | MB_ICONINFORMATION);
137:       }
138:       else
139:           pReplaceDlg = NULL;
140:    }
141:    return 0;
142:  }
143:
144:  void TMainWindow::CMReplace()
145:  {
146:    if (!pFindDlg && !pReplaceDlg) {
147:       FRdata.Flags = FR_DOWN | FR_MATCHCASE | FR_WHOLEWORD;
148:       pReplaceDlg = new TReplaceDialog(this, FRdata);
149:       pReplaceDlg->Create();
150:    }
151:  }
152:
153:  void TMainWindow::CMExit()
154:  {
155:    Parent->SendMessage(WM_CLOSE);
156:  }
157:
158:  void TMainWindow::BoolToStr(DWORD Flag, char* s)
159:  {
160:    strcpy(s, (Flag != 0) ? “TRUE\n” : “FALSE\n”);
161:  }
162:
163:  BOOL TMainWindow::CanClose()
164:  {
165:    return MessageBox(“Want to close this application?”,
166:                 “Query”, MB_YESNO | MB_ICONQUESTION) == IDYES;
167:  }
168:
169:  void TWinApp::InitMainWindow()
170:  {
171:    MainWindow = new TFrameWindow(0,
172:                     “Simple Find/Replace Dialog Box Tester”,
173:                new TMainWindow);
174:    // load the menu resource
175:    MainWindow->AssignMenu(TResID(IDM_MAINMENU));
176:    // enable the keyboard handler
177:    MainWindow->EnableKBHandler();
178:  }
179:

continues



908

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓

180:  int OwlMain(int /* argc */, char** /*argv[] */)
181:  {
182:    TWinApp app;
183:    return app.Run();
184:  }

The COMMDLG3.CPP source code in Listing X6.16 declares the main
window class TMainWindow and the application class TWinApp. The main window
class has the following three protected data members:

1. The member FRdata (declared in line 36) is an instance of the class
TFindReplaceDialog::TData. This member is commonly used by the Find
and Replace dialog boxes. This program feature requires that the dialog
boxes should not coexist.

2. The member pFindDlg (declared in line 37) is a pointer to the class
TFindDialog. This member is a pointer to the Find dialog box instance that
is dynamically created.

3. The member pReplaceDlg (declared in line 38) is a pointer to the class
TReplaceDialog. This member is a pointer to the Replace dialog box in-
stance that is dynamically created.

The TMainWindow constructor assigns NULLs to the data members pFindDlg and
pReplaceDlg. The class declares the following relevant member functions:

1. The member function CMFind (whose definition starts at line 77) handles
invoking the Find dialog box. The function performs the following tasks:

■■ Verifies that both pointers pFindDlg and pReplaceDlg are NULLs. If this
condition is true, the function CMFind proceeds with the remaining
tasks, located in lines 80 to 82.

■■ Includes the downward search flag FR_DOWN to the current set of flags,
stored in the member FRdata.Flags.

■■ Creates a dynamic instance of the class TFindDialog and assigns its
pointer to the member pFindDlg. The creation of this instance specifies
the pointers this and FRdata as the arguments for the parent window
and the TData reference.

■■ Invokes the modeless Find dialog box by sending the C++ message
Create to the dialog box object.

Listing X6.16. continued

Analysis



909

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2. The member function CMReplace (whose definition starts at line 144)
handles invoking the Replace dialog box. The function performs the follow-
ing tasks:

■■ Verifies that both pointers pFindDlg and pReplaceDlg are NULLs. If this
condition is true, the function CMReplace proceeds with the remaining
tasks, located in lines 147 to 149.

■■ Assigns the FR_XXXX flags for downward replacement, case-sensitive
replacement, and the replacement of whole words to the member
FRdata.Flags.

■■ Creates a dynamic instance of the class TReplaceDialog and assigns its
pointer to the member pReplaceDlg. The creation of this instance
specifies the pointers this and FRdata as the arguments for the parent
window and the TData reference.

■■ Invokes the modeless Replace dialog box by sending the C++ message
Create to the dialog box object.

3. The member function EvFindMsg (whose definition begins at line 86)
handles the messages sent by the Find and Replace dialog boxes to the main
window. This function uses two main if statements to handle messages sent
by either dialog box. If the member pFindDlg is not NULL, the function
carries out the following tasks:

■■ Sends the C++ message UpdateData to the Find dialog box. The
argument for this message, located at line 91, is the parameter lParam.

■■ Determines if the Find dialog box is not terminating, using the if
statement at line 93. If this condition is true, the function EvFindMsg
performs the next tasks. Otherwise, the function executes the else
clause statement, which assigns NULL to the member pFindDlg. This
assignment enables the program to properly invoke the Find dialog box
the next time you invoke the Find option.

■■ Builds the multiline string s, which contains information about the
search string, the search direction, the match-case state, and the whole
word state. This task, which uses the statements in lines 94 through
104, involves the member function BoolToStr, which converts integers
into a “TRUE” or “FALSE” string.

■■ Displays the dialog box data string, s, in a message dialog box.



910

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

2 Extra Credit Bonus 6+✓
If the member pReplaceDlg is not NULL, the function carries out the following tasks:

■■ Sends the C++ message UpdateData to the Replace dialog box. The argument
for this message is the parameter lParam.

■■ Determines if the Replace dialog box is not terminating, using the if
statement in line 115. If this condition is true, the function EvFindMsg
performs the next tasks. Otherwise, the function executes the else clause
statement, which assigns NULL to the member pReplaceDlg. This assignment
enables the program to properly invoke the Replace dialog box the next time
you invoke the Replace option.

■■ Builds the multiline string s, which contains information about the search
string, the replacement string, the search direction, the match-case state, the
whole-word state, whether the user clicked the Replace button, and whether
the user clicked the Replace All button. This task, which uses the statements
in lines 116 through 134, involves the member function BoolToStr, which
converts integers into a “TRUE” or “FALSE” string.

■■ Displays the dialog box data string, s, in a message dialog box.

The if statement that handles the message sent by the Replace dialog box is simpler
than the code fragment we presented earlier. This is due to the fact that the program
does not take alternate action if you click the Replace or Replace All buttons.

Summary
This chapter presented you with powerful dialog boxes that serve as input tools. You
learned about the following:

■■ The ObjectWindows TInputDialog class, which enables you to prompt the
user for an input.

■■ Software requirements for using the common dialog boxes. These include
adequate stack space in the .DEF file, making sure that the
COMMDLG.DLL file is in the Windows system directory, and including
the corresponding header files.

■■ The file-selection dialog box classes TSaveOpenDialog, TFileOpenDialog, and
TFileSaveDialog. These classes create dialog boxes that support either
opening or saving a file.

■■ The color-selection dialog box class TChooseColorDialog.



911

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A   TYS Borland C++ 21 Days  #30483   nick  4-12-94    Credit6   LP#2(sp 4/12 folio)

■■ The text find/replace dialog box classes TFindReplaceDialog, TFindDialog,
and TReplaceDialog. These classes create dialog boxes that support either
finding or replacing text.

Q&A
Q What are the other two common dialog boxes not presented in this

chapter?

A The other common dialog boxes are the font-selection and Print common
dialog boxes. The font-selection dialog box enables you to select a font. The
Print dialog box enables you to print or set up your printer.

Q Is it easy to access the folder bitmaps that appear in the File Open/Save
dialog box?

A No. Accessing these bitmaps requires advanced programming skills.

Q Can I use the Find and Replace dialog boxes to search for text patterns?

A Yes. However, using such patterns may not be obvious to the dialog box
user. Using a check box that indicates whether to use pattern search is highly
recommended. This additional control requires that you create your own
version of the Find and Replace dialog boxes.

Exercises
1. Extend the class TInputDialog to create the class TIntegerInput. The new

class supports integer input with validation.

2. Use the class TIntegerInput to replace the class TInputDialog in the
number-guessing game, program INPUTGLD.EXE.

3. Write a program that uses the File dialog box to copy a file, possibly using a
different name for the copy.



913

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

M
T

W
R

F
S

SAA
Answers



914

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

Answers
M

T
W

R
F

S
S

A

Note: Because of space limitations, not every Exercise has an answer
presented here.

Answers to Day 1, “Getting Started”

Quiz
1. The program generates the string C++ in 21 Days?.

2. The program generates no output because the cout statement appears inside
a comment! The function main simply returns 0.

3. The cout statement is missing the semicolon.

Exercise
// Exercise program

#include <iostream.h>

main()
{
  cout << “I am a C++ Programmer”;
  return 0;
}

Answers to Day 2, “C++ Program
Components”

Quiz
1. The following table indicates which identifiers are valid and which are not

(and why).

Identifiers Valid? Reason (If Invalid)

numFiles Yes

n0Distance_02_Line Yes

0Weight No Starts with a digit

Bin Number No Contains a space



915

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

static No Reserved keyword

Static Yes

2. The output of the program is

a = 10 and b = 3

The function swap fails to swap the arguments a and b, because it only swaps
a copy of their values.

3. The output of the program is

a = 3 and b = 10

The function swap succeeds in swapping the arguments a and b because it
uses reference parameters. Consequently, the changes in the values of
parameters i and j go beyond the scope of the function itself.

4. The second version of function inc has a default argument, which, when
used, hinders the compiler from determining which version of inc to call.
The compiler flags a compile-time error for such functions.

5. Because the second parameter has a default argument, the third one must
also have a default argument. Here is one version of the correct definition of
function volume:

double volume(double length, double width = 1, double height = 1)

{

  return length * width * height

}

6. The parameter i is a lowercase letter. However, the function uses the
uppercase I in the assignment statement. The compiler complains that the
identifier I is not defined.

7. The function main requires a prototype of function sqr. The correct version
of the program is

#include <iostream.h>

// declare prototype of function sqr

double sqr(double);

Identifiers Valid? Reason (if Invalid)



916

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

Answers
M

T
W

R
F

S
S

A

main()

{

  double x = 5.2;

  cout << x << “^2 = “ << sqr(x);

  return 0;

}

double sqr(double x)

{ return x * x ; }

Exercise
Here is my version of program OVERLOD2.CPP:

// C++ program illustrates function overloading
// and default arguments

#include <iostream.h>

// inc version for int types
void inc(int& i, int diff = 1)
{
  i = i + diff;
}

// inc version for double types
void inc(double& x, double diff = 1)
{
  x = x + diff;
}

// inc version for char types
void inc(char& c, int diff = 1)
{
  c = c + diff;
}

main()
{
  char c = ‘A’;
  int i = 10;
  double x = 10.2;

  // display initial values
  cout << “c = “ << c << “\n”



917

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

       << “i = “ << i << “\n”
       << “x = “ << x << “\n”;
  // invoke the inc functions using default arguments
  inc(c);
  inc(i);
  inc(x);
  // display updated values
  cout << “After using the overloaded inc function\n”;
  cout << “c = “ << c << “\n”
       << “i = “ << i << “\n”
       << “x = “ << x << “\n”;
   return 0;
}

Answers to Day 3, “Operators and
Expressions”

Quiz
1. The output is

12

8

2

3.64851

150.5

2. The output is

12

8

2

3. The output is

12

27

4. The output is

TRUE

TRUE

TRUE

FALSE



918

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

Answers
M

T
W

R
F

S
S

A

Exercises
1. Here is my version of the function max:

int max(int i, int j)

{

  return (i > j) ? i : j;

}

2. Here is my version of the function min:

int min(int i, int j)

{

  return (i < j) ? i : j;

}

3. Here is my version of the function abs:

int abs(int i)

{

  return (i > 0) ? i : -i;

}

4. Here is my version of the function isOdd:

int isOdd(int i)

{

  return (i % 2 != 0) ? 1 : 0;

}

Answers to Day 4, “Managing I/O”

Quiz
1. The output statement cannot contain the inserter operator >>. The state-

ment can be corrected as follows:

cout << “Enter a number “;

cin >> x;

2. Because the variable x appears in the first and last items, the last number
overwrites the first number.



919

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

Exercises
1. Here is my version of program OUT3.CPP:

// C++ program uses the printf function for formatted output

 #include <stdio.h>

 #include <math.h>

 main()

 {

   double x;

   // display table heading

   printf(“      X         Sqrt(X)\n”);

   printf(“------------------------\n”);

   x = 2;

   printf(“    %3.0lf         %3.4lf\n”, x, sqrt(x));

   x++;

   printf(“    %3.0lf         %3.4lf\n”, x, sqrt(x));

   x++;

   printf(“    %3.0lf         %3.4lf\n”, x, sqrt(x));

   x++;

   printf(“    %3.0lf         %3.4lf\n”, x, sqrt(x));

   x++;

   printf(“    %3.0lf         %3.4lf\n”, x, sqrt(x));

   x++;

   printf(“    %3.0lf         %3.4lf\n”, x, sqrt(x));

   x++;

   printf(“    %3.0lf         %3.4lf\n”, x, sqrt(x));

   x++;

   printf(“    %3.0lf         %3.4lf\n”, x, sqrt(x));

   x++;

   printf(“    %3.0lf         %3.4lf\n”, x, sqrt(x));

   return 0;

 }

2. Here is my version of program OUT4.CPP:

 // C++ program which displays octal and hexadecimal integers



920

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

Answers
M

T
W

R
F

S
S

A

 #include <iostream.h>

 #include <stdio.h>

 main()

 {

   long i;

   cout << “Enter an integer : “;

   cin >> i;

   printf(“%ld = %lX (hex) = %lo (octal)\n”, i, i, i);

   return 0;

 }

Answers to Day 5, “The Decision-
Making Constructs”

Quiz
1. The simpler version is

if (i > 0 && i < 10)

  cout << “i = “ << i << “\n”;

2. The simpler version is

if (i > 0) {

  j = i * i;

  cout << “j = “ << j << “\n”;

}

else if (i < 0) {

  j = 4 * i;

  cout << “j = “ << j << “\n”;

}

else {

  j = 10 + i;

  cout << “j = “ << j << “\n”;

}

3. False. When the variable i stores values between -10 and -1, the statements
in the clauses of the two if statements execute. In this case, all the



921

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

assignment statements are executed. By contrast, it is impossible to execute
the statements in both the if and else clauses of the supposedly equivalent
if-else statement.

4. The simplified version is

if (i > 0 && i < 100)

     j = i * i;

else if (i >= 100)

     j = i;

else

     j = 1;

Notice that I eliminate the original first else if clause because the tested
condition is a subset of the first tested condition. Consequently, the condi-
tion in the first else if never gets examined and the associated assign
statement never gets executed. This is an example of what is called dead code.

5. The tested condition is always false. Consequently, the statements in the
clause are never executed. This is another example of dead code.

Exercises
1. Here is my version of program IF5.CPP:

 // C++ program to solve quadratic equation

 #include <iostream.h>

 #include <math.h>

 main()

 {

   double A, B, C, discrim, root1, root2, twoA;

   cout << “Enter coefficients for equation A*X^2 + B*X + C\n”;

   cout << “Enter A: “;

   cin >> A;

   cout << “Enter B: “;

   cin >> B;

   cout << “Enter C: “;

   cin >> C;



922

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

Answers
M

T
W

R
F

S
S

A

   if (A != 0) {

      twoA = 2 * A;

      discrim = B * B - 4 * A * C;

      if (discrim > 0) {

        root1 = (-B + sqrt(discrim)) / twoA;

        root2 = (-B - sqrt(discrim)) / twoA;

        cout << “root1 = “ << root1 << “\n”;

        cout << “root2 = “ << root2 << “\n”;

      }

      else if (discrim < 0) {

        discrim = -discrim;

        cout << “root1 = (“ << -B/twoA

             << “) + i (“ << sqrt(discrim) / twoA <<“)\n”;

        cout << “root2 = (“ << -B/twoA

             << “) - i (“ << sqrt(discrim) / twoA << “)\n”;

      }

      else {

        root1 = -B / 2 / A;

        root2 = root1;

        cout << “root1 = “ << root1 << “\n”;

        cout << “root2 = “ << root2 << “\n”;

      }

   }

   else

     cout << “root = “ << (-C / B) << “\n”;

   return 0;

 }

2. Here is my version of program SWITCH2.CPP:

 // C++ program which uses the switch statement to implement

 // a simple four-function calculator program

 #include <iostream.h>

 const int TRUE = 1;

 const int FALSE = 0;



923

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

 main()

 {

   double x, y, z;

   char op;

   int error = FALSE;

   cout << “Enter the first operand: “;

   cin >> x;

   cout << “Enter the operator: “;

   cin >> op;

   cout << “Enter the second operand: “;

   cin >> y;

   switch (op) {

     case ‘+’:

       z = x + y;

       break;

     case ‘-’:

       z = x - y;

       break;

     case ‘*’:

       z = x * y;

       break;

     case ‘/’:

       if (y != 0)

         z = x / y;

       else

         error = TRUE;

       break;

     default:

       error = TRUE;

   }

   if (!error)

     cout << x << “ “ << op << “ “ << y << “ = “ << z << “\n”;

   else

     cout << “Bad operator or division-by-zero error\n”;

   return 0;

 }



924

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

Answers
M

T
W

R
F

S
S

A

Answers to Day 6, “Loops”

Quiz
1. The statements inside the loop fail to alter the value of i. Consequently, the

tested condition is always true and the loop iterates endlessly.

2. The output of the program consists of the numbers 3, 5, and 7.

3. The output of the program is an endless sequence of lines that display the
value of 3. The reason for the indefinite looping is that the loop control
variable is not incremented.

4. The nested for loops use the same loop control variable. This program will
not run.

5. Both for loops declare the variable i as their loop control variable. The
compiler generates an error for this duplication.

6. The condition of the while loop is always true. Therefore, the loop iterates
endlessly.

7. The program lacks a statement which explicitly initializes the variable
factorial to 1. Without this statement, the program automatically initial-
izes the variable factorial to 0—the wrong value. Consequently, the for
loop ends up assigning 0 to the variable factorial in every iteration. Here is
the correct version of the code:

int n;

double factorial = 1;

cout << “Enter positive integer : “;

cin >> n;

for (int i = 1; i <= n; i++)

  factorial *= i;

cout << n << “!= “ << factorial;

Exercises
1. Here is my version of program FOR5.CPP:

 // Program calculates a sum of odd integers in

 // the range of 11 to 121

 #include <iostream.h>



925

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

 const int FIRST = 11;

 const int LAST = 121;

 main()

 {

     double sum = 0;

     for (int i = FIRST; i <= LAST; i += 2)

       sum += (double)i;

     cout << “Sum of odd integers from “

          << FIRST << “ to “ << LAST << “ = “

          << sum << “\n”;

     return 0;

 }

2. Here is my version of program WHILE2.CPP:

 // Program calculates a sum of squared odd integers in

 // the range of 11 to 121

 #include <iostream.h>

 const int FIRST = 11;

 const int LAST = 121;

 main()

 {

     double sum = 0;

     int i = FIRST;

     while (i <= LAST) {

       sum += double(i * i++);

     }

     cout << “Sum of squared odd integers from “

          << FIRST << “ to “ << LAST << “ = “

          << sum << “\n”;

     return 0;

 }

3. Here is my version of program DOWHILE2.CPP:

 // Program calculates a sum of squared odd integers in

 // the range of 11 to 121



926

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

Answers
M

T
W

R
F

S
S

A

 #include <iostream.h>

 const int FIRST = 11;

 const int LAST = 121;

 main()

 {

     double sum = 0;

     int i = FIRST;

     do {

       sum += double(i * i++);

     } while (i <= LAST);

     cout << “Sum of squared odd integers from “

          << FIRST << “ to “ << LAST << “ = “

          << sum << “\n”;

     return 0;

 }

Answers to Day 7, “Arrays”

Quiz
1. The program displays the factorials for the numbers 0 to 4:

x[0] = 1

x[1] = 1

x[2] = 2

x[3] = 6

x[4] = 24

2. The program displays the square roots for the numbers 0 to 4:

x[0] = 0

x[1] = 1

x[2] = 1.41421

x[3] = 1.73205

x[4] = 2

3. The first for loop should iterate between 1 and MAX-1 and not between 0 and
MAX-1. The first loop iteration uses an out-of-range index.



927

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

Exercise
Here is my version of program ARRAY7.CPP:

// C++ program that sorts arrays using the Comb sort method
 #include <iostream.h>

 const int MAX = 10;
 const int TRUE = 1;
 const int FALSE = 0;

 int obtainNumData()
 {
   int m;
   do { // obtain number of data points
     cout << “Enter number of data points [2 to “
         << MAX << “] : “;
     cin >> m;
     cout << “\n”;
   } while (m < 2 || m > MAX);
   return m;
 }

 void inputArray(int intArr[], int n)
 {
   // prompt user for data
   for (int i = 0; i < n; i++) {
     cout << “arr[“ << i << “] : “;
     cin >> intArr[i];
   }
 }

 void showArray(int intArr[], int n)
 {
   for (int i = 0; i < n; i++) {
     cout.width(5);
     cout << intArr[i] << “ “;
   }
   cout << “\n”;
 }

 void sortArray(int intArr[], int n)
 {
   int offset, temp, inOrder;

   offset = n;
   while (offset > 1) {
     offset /= 2;
     do {
       inOrder = TRUE;
       for (int i = 0, j = offset; i < (n - offset); i++, j++) {



928

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

Answers
M

T
W

R
F

S
S

A

         if (intArr[i] > intArr[j]) {
           inOrder = FALSE;
           temp = intArr[i];
           intArr[i] = intArr[j];
           intArr[j] = temp;
         }
       }
     } while (!inOrder);
   }
 }

 main()
 {
   int arr[MAX];
   int n;

   n = obtainNumData();
   inputArray(arr, n);
   cout << “Unordered array is:\n”;
   showArray(arr, n);
   sortArray(arr, n);
   cout << “\nSorted array is:\n”;
   showArray(arr, n);
   return 0;
 }

Answers to Day 8, “User-Defined
Types and Pointers”

Quiz
1. The enumerated values on and off appear in two different enumerated types.

Here is a correct version of these statements:

enum Boolean { false, true };

enum State { state_on, state_off };

enum YesNo { yes, no };

enum DiskDriveStatus { drive_on , drive_off };

2. False. The enumerated type YesNo is correctly declared.

3. The program lacks a delete statement before the return statement. Here is
the correct version:

#include <iostream.h>

main()

{



929

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

  int *p = new int;

  cout << “Enter a number : “;

  cin >> *p;

  cout << “The square of “ << *p << “ = “ << (*p * *p);

  delete p;

  return 0;

}

Exercises
1. Here is my version of PTR6.CPP:

/* C++ program that demonstrates pointers to structured types */

 #include <iostream.h>

 #include <stdio.h>

 #include <math.h>

 const MAX_RECT = 4;

 const TRUE = 1;

 const FALSE = -1;

 struct point {

   double x;

   double y;

 };

 struct rect {

   point ulc; // upper left corner

   point lrc; // lower right corner

   double area;

   int id;

 };

 typedef rect rectArr[MAX_RECT];

 main()

 {

   rectArr r;

   rect temp;

   rect* pr = r;



930

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

Answers
M

T
W

R
F

S
S

A

   rect* pr2;

   double length, width;

   int offset;

   int inOrder;

   for (int i = 0; i < MAX_RECT; i++, pr++) {

     cout << “Enter (X,Y) coord. for ULC of rect. # “

          << i << “ : “;

     cin >> pr->ulc.x >> pr->ulc.y;

     cout << “Enter (X,Y) coord. for LRC of rect. # “

          << i << “ : “;

     cin >> pr->lrc.x >> pr->lrc.y;

     pr->id = i;

     length = fabs(pr->ulc.x - pr->lrc.x);

     width = fabs(pr->ulc.y - pr->lrc.y);

     pr->area = length * width;

   }

   // sort the rectangles by areas

   offset = MAX_RECT;

   do {

     offset = (8 * offset) / 11;

     offset = (offset == 0) ? 1 : offset;

     inOrder = TRUE;

     pr = r;

     pr2 = r + offset;

     for (int i = 0;

          i < MAX_RECT - offset;

          i++, pr++, pr2++)

       if (pr->area > pr2->area) {

         inOrder = FALSE;

         temp = *pr;

         *pr = *pr2;

         *pr2 = temp;

       }

   } while (!(offset == 1 && inOrder));

   pr = r; // reset pointer

   // display rectangles sorted by area



931

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

   for (i = 0; i < MAX_RECT; i++, pr++)

     printf(“Rect # %d has area %5.4lf\n”, pr->id, pr->area);

   return 0;

 }

2. Here is my version of structure intArrStruct:

struct intArrStruct {

  int* dataPtr;

  unsigned size;

};

3. Here is my version of structure matStruct:

struct matStruct {

  double* dataPtr;

  unsigned rows;

  unsigned columns;

};

Answers to Day 9, “Strings”

Quiz
1. The string s1 is smaller than string s2. Consequently, the call to function

strcpy causes a program bug.

2. Using the function strncpy to include the constant MAX as the third argu-
ment ensures that string s1 receives MAX characters (excluding the null
terminator) from string s1:

#include <iostream.h>

#include <string.h>

const in MAX = 10;

main()

{

  char s1[MAX+1];

  char s2[] = “123456789012345678901234567890”;

  strncpy(s1, s2, MAX);

  cout << “String 1 is “ << s1

       << “\nString 2 is “ << s2;

  return 0;

}



932

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

Answers
M

T
W

R
F

S
S

A

3. Because the string in variable s1 is greater than that in variable s2, the
statement assigns a positive number (1 to be exact) in variable i.

4. The call to function strcmp compares the substrings “C++” with “Pascal”
because the arguments include an offset value. Because “C++” is greater than
“Pascal”, the statement assigns a positive number (1 to be exact) in vari-
able i.

5. False! Although the basic idea for the function is sound, dimensioning the
local variable requires a constant. One solution is to use the same constant,
call it MAX_STRING_SIZE, to size up the arguments of parameter s:

int hasNoLowerCase(const char* s)

{

  char s2[MAX_STRING_SIZE+1];

  strcpy(s2, s);

  strupr(s2);

  return (strcmp(s, s2) == 0) ? 1 : 0);

}

The other solution uses dynamic allocation to create a dynamic local string
that stores a copy of the argument of parameter s. This solution works with
all arguments of parameter s:

int hasNoLowerCase(const char* s)

{

  char *s2 = new char[strlen(s)+1];

  int i;

  strcpy(s2, s);

  strupr(s2);

  // store result in variable i

  i = (strcmp(s, s2) == 0) ? 1 : 0);

  delete [] s2; // first delete local dynamic string

  return i; // then return the result of the function

}

Exercises
1. Here is my version of function strlen:

int strlen(const char* s)

{

  int i = 0;



933

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

  while (s[i] != ‘\0’)

    i++;

  return i;

}

2. Here is the other version of function strlen:

int strlen(const char* s)

{

  char *p = s;

  while (p++ != ‘\0’)

    /* do nothing */;

  return p - s;

}

3. Here is my version of program STRING5.CPP:

 #include <stdio.h>

 #include <string.h>

 main()

 {

    char str[] = “2*(X+Y)/(X+Z) - (X+10)/(Y-5)”;

    char strCopy[41];

    char* tkn[3] = { “+-*/ ()”, “( )”, “+-*/ “ };

    char* ptr;

    strcpy(strCopy, str); // copy str into strCopy

    printf(“%s\n”, str);

    printf(“Using token string %s\n”, tkn[0]);

    // the first call

    ptr = strtok(str, tkn[0]);

    printf(“String is broken into: “);

    while (ptr) {

      printf(“, %s”, ptr);

      // must make first argument a NULL character

      ptr = strtok(NULL, tkn[0]);

    }

    strcpy(str, strCopy); // restore str

    printf(“\nUsing token string %s\n”, tkn[1]);

    // the first call



934

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

Answers
M

T
W

R
F

S
S

A

    ptr = strtok(str, tkn[1]);

    printf(“String is broken into: “);

    while (ptr) {

      printf(“, %s”, ptr);

      // must make first argument a NULL character

      ptr = strtok(NULL, tkn[1]);

    }

    strcpy(str, strCopy); // restore str

    printf(“\nUsing token string %s\n”, tkn[2]);

    // the first call

    ptr = strtok(str, tkn[2]);

    printf(“String is broken into: “);

    while (ptr) {

      printf(“, %s”, ptr);

      // must make first argument a NULL character

      ptr = strtok(NULL, tkn[2]);

    }

    printf(“\n\n”);

    return 0;

 }

Answers to Day 10, “Advanced
Function Parameters”

Quiz
1. The function is

double factorial(int i)

{ return (i > 1) ? double(i) * factorial(i-1) : 1; }

2. At first glance, the function may seem correct, though somewhat unusual.
The case labels offer quick results for arguments of 0 to 4. However, the
catch-all default clause traps arguments that are greater than 4 and are
negative values!  The latter kind of arguments causes the recursion to
overflow the memory resources. Here is a corrected version that returns a
very large negative number when the argument is a negative number:



935

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

double factorial(int i)

{

  if (i > -1)

    switch (i) {

         case 0:

         case 1:

             return 1;

              break;

         case 2:

              return 2;

              break;

         case 3:

              return 6;

              break;

         case 4:

              return 24;

              break;

         default:

              return double(i) * factorial(i-1);

    }

  else

    return -1.0e+30; // numeric code for a bad argument

}

3. The nonrecursive version of function Fibonacci is

double Fibonacci(int n)

{

  double Fib0 = 0;

  double Fib1 = 1;

  double Fib2;

  if (n == 0)

    return 0;

  else if (n == 1 || n == 2)

    return 1;

  else

    for (int i = 0; i <= n; i++) {

      Fib2 = Fib0 + Fib1;

      Fib0 = Fib1;



936

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

Answers
M

T
W

R
F

S
S

A

      Fib1 = Fib2;

    }

    return Fib2;

}

4. True. The first function uses a formal reference parameter, whereas the
second parameter uses a pointer parameter.

Exercise
Here is my version of program ADVFUN9.CPP:

 /*
    C++ program that uses pointers to functions to implement a
    a linear regression program that supports temporary
    mathematical transformations.
 */

 #include <iostream.h>
 #include <math.h>

 const unsigned MAX_SIZE = 100;

 typedef double vector[MAX_SIZE];

 struct regression {
    double Rsqr;
    double slope;
    double intercept;
 };

 // declare array of function pointers
 double (*f[2])(double);

 // declare function prototypes
 void initArray(double*, double*, unsigned);
 double linear(double);
 double sqr(double);
 double reciprocal(double);
 void calcRegression(double*, double*, unsigned, regression&,
                     double (*f[2])(double));
 int select_transf(const char*);

 main()
 {
     char ans;
     unsigned count;
     vector x, y;
     regression stat;
     int trnsfx, trnsfy;



937

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

     do {
         cout << “Enter array size [2..”
              << MAX_SIZE << “] : “;
         cin >> count;
     } while (count <= 1 || count > MAX_SIZE);

     // initialize array
     initArray(x, y, count);
     // transform data
     do {
       // set the transformation functions
       trnsfx = select_transf(“X”);
       trnsfy = select_transf(“Y”);
       // set function pointer f[0]
       switch (trnsfx) {
        case 0 :
           f[0] = linear;
           break;
        case 1 :
           f[0] = log;
           break;
        case 2 :
           f[0] = sqrt;
           break;
        case 3 :
           f[0] = sqr;
           break;
        case 4 :
           f[0] = reciprocal;
           break;
        default :
           f[0] = linear;
           break;
       }
       // set function pointer f[1]
       switch (trnsfy) {
        case 0 :
           f[1] = linear;
           break;
        case 1 :
           f[1] = log;
           break;
        case 2 :
           f[1] = sqrt;
           break;
        case 3 :
           f[1] = sqr;
           break;
        case 4 :
           f[1] = reciprocal;
           break;



938

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

Answers
M

T
W

R
F

S
S

A

        default :
           f[1] = linear;
           break;
      }

      calcRegression(x, y, count, stat, f);

      cout << “\n\n\n\n”
           << “R-square = “ << stat.Rsqr << “\n”
           << “Slope = “ << stat.slope << “\n”
           << “Intercept = “ << stat.intercept << “\n\n\n”;
      cout << “Want to use other transformations? (Y/N) “;
      cin >> ans;
     } while (ans == ‘Y’ || ans == ‘y’);
   return 0;
 }

 void initArray(double* x, double* y, unsigned count)
 // read data for array from the keyboard
 {
     for (unsigned i = 0; i < count; i++, x++, y++) {
        cout << “X[“ << i << “] : “;
        cin >> *x;
        cout << “Y[“ << i << “] : “;
        cin >> *y;
    }
 }

 int select_transf(const char* var_name)
 // select choice of transformation
 {

    int choice = -1;
    cout << “\n\n\n”;
    cout << “select transformation for variable “ << var_name
         << “\n\n\n”
         << “0) No transformation\n”
         << “1) Logarithmic transformation\n”
         << “2) Square root transformation\n”
         << “3) Square transformation\n”
         << “4) Reciprocal transformation\n”;
    while (choice < 0 || choice > 4) {
       cout << “\nSelect choice by number : “;
       cin >> choice;
    }
    return choice;
 }

 double linear(double x)
 { return x; }



939

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

 double sqr(double x)
 { return x * x; }

 double reciprocal(double x)
 { return 1.0 / x; }

 void calcRegression(double* x,
                     double* y,
                     unsigned count,
                     regression &stat,
                     double (*f[2])(double))

 {
      double meanx, meany, sdevx, sdevy;
      double sum = (double) count, sumx = 0, sumy = 0;
      double sumxx = 0, sumyy = 0, sumxy = 0;
      double xdata, ydata;

      for (unsigned i = 0; i < count; i++) {
          xdata = (*f[0])(*(x+i));
          ydata = (*f[1])(*(y+i));
          sumx += xdata;
          sumy += ydata;
          sumxx += sqr(xdata);
          sumyy += sqr(ydata);
          sumxy += xdata * ydata;
      }

      meanx = sumx / sum;
      meany = sumy / sum;
      sdevx = sqrt((sumxx - sqr(sumx) / sum)/(sum-1.0));
      sdevy = sqrt((sumyy - sqr(sumy) / sum)/(sum-1.0));
      stat.slope = (sumxy - meanx * meany * sum) /
                     sqr(sdevx)/(sum-1);
      stat.intercept = meany - stat.slope * meanx;
      stat.Rsqr = sqr(sdevx / sdevy * stat.slope);
 }

Answers to Day 11, “Object-Oriented
Programming and C++ Classes”

Quiz
1. By default, the members of a class are protected. Therefore, the class declara-

tion has no public member and cannot be used to create instances.

2. The third constructor has a default argument, which makes it redundant
with the fourth constructor. The C++ compiler detects such an error.



940

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

Answers
M

T
W

R
F

S
S

A

3. True. String(“Hello Borland C++”) creates a temporary instance of class
String and then assigns it to the instance s.

4. Yes. The new statements are valid.

Exercise
Here is the implementation of function main in my version of program CLASS7.CPP:

main()
{

  Complex c[5];
  c[1].assign(3, 5);
  c[2].assign(7, 5);
  c[4].assign(2, 3);

  c[3] = c[1] + c[2];
  cout << c[1] << “ + “ << c[2] << “ = “ << c[3] << “\n”;
  cout << c[3] << “ + “ << c[4] << “ = “;
  c[3] += c[4];
  cout << c[3] << “\n”;
  return 0;
}

Answers to Day 12, “Basic
Stream File I/O”

Quiz
1. False. The read and write functions cannot store and recall the dynamic

data, which is accessed by a pointer member of a structure or a class.

2. True.

3. True.

4. False.

Exercise
Here is the code for member function binSearch and the updated function main in
program IO4.CPP (the output also shows the new global constant NOT_FOUND and the
updated class declaration):



941

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

const unsigned NOT_FOUND = 0xffff;

class VmArray
{
   protected:
     fstream f;
     unsigned size;
     double badIndex;

   public:
     VmArray(unsigned Size, const char* filename);
     ~VmArray()
       { f.close(); }
     unsigned getSize() const
       { return size; }
     boolean writeElem(const char* str, unsigned index);
     boolean readElem(char* str, unsigned index);
     void Combsort();
     unsigned binSearch(const char* search);
};

unsigned VmArray::binSearch(const char* search)
{
  unsigned low = 0;
  unsigned high = size - 1;
  unsigned median;
  char str[STR_SIZE+1];
  int result;

  do {
    median = (low + high) / 2;
    readElem(str, median);
    result = strcmp(search, str);
    if (result > 0)
      low = median + 1;
    else
      high = median - 1;
  } while (result != 0 && low <= high);
  return (result == 0) ? median : NOT_FOUND;
}

main()
{
  const unsigned NUM_ELEMS = 10;
  char* data[] = { “Michigan”, “California”, “Virginia”, “Main”,
                   “New York”, “Florida”, “Nevada”, “Alaska”,
                   “Ohio”, “Maryland” };
  VmArray arr(NUM_ELEMS, “arr.dat”);
  char str[STR_SIZE+1];
  char c;
  unsigned index;



942

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

Answers
M

T
W

R
F

S
S

A

  // assign values to array arr
  for (unsigned i = 0; i < arr.getSize(); i++) {
    strcpy(str, data[i]);
    arr.writeElem(str, i);
  }
  // display unordered array
  cout << “Unsorted arrays is:\n”;
  for (i = 0; i < arr.getSize(); i++) {
    arr.readElem(str, i);
    cout << str << “\n”;
  }
  // pause
  cout << “\nPress any key and then Return to sort the array...”;
  cin >> c;
  // sort the array
  arr.Combsort();
  // display sorted array
  cout << “Sorted arrays is:\n”;
  for (i = 0; i < arr.getSize(); i++) {
    arr.readElem(str, i);
    cout << str << “\n”
  }
  // pause
  cout << “\nPress any key and then Return to search the array...”;
  cin >> c;
  // search for array elements using the pointer data
  for (i = 0; i < NUM_ELEMS; i++) {
    index = arr.binSearch(data[i]);
    if (index != NOT_FOUND)
      cout << “Found “ << data[i]
           << “ at index “ << index << “\n”;
    else
      cout << “No match for “ << data[i] << “\n”;
  }
  return 0;
}

Answers to Day 13, “The C++ string
Class”

Quiz
1. CSTRING.H must be included to use the C++ string class.

2. A string class variable can be declared either with or without an initial value,
for example:

string s1;



943

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

string s2(“Initial Value”);

3. The string class includes functions for comparing it to a C-style string.

Operators ==, >, <, >=, <= and != have versions that compare string class
variables to C-style strings.

Another way is to compare the C-style element of the string class variable to
the C-string, as in the following:

result = strcmp(CStyleStr, stringClassVar.c_str());

4. The task performed by the replace member function finds text and substi-
tutes for it in one call.

5. The second character in a string class variable is at index 1. Addressing is the
same as with any array, with index 0 being the first item.

6. Given string s1 = “11”; string s2 = “2112”;

a. The result of s1 + s2 is “112112”

b. s2.contains(s1); returns 1 because “11” is found in “2112”

c. s1 > s2 is false

d. s2.find(s1, 0); returns 1 because “11” is located beginning at index
1 in “2112”

Exercises
1. C-style string of value “12”

char myCStyleString[] = “12”;

C++ string class item of value “12”;

either one of the following:

string myString(“12”);

string myString = “12”;

2. The following is a function that accepts a C++ string as a calling argument
and that writes its value to the computer screen:

void MyFunction(string& myString)

  {

  cout << myString;



944

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

Answers
M

T
W

R
F

S
S

A

  }

3. The following function writes out each character of the passed string indi-
vidually and then returns the size of the string:

size_t MyFunction(string& myString)

{

size_t index;

size_t len = myString.length();

// write each char from the string to the screen

// one for each pass through the loop

for (index = 0; index < len; ++index)

  cout << myString[index];

return len; // return the length of the string

}

4. The following shows a way to reverse the characters in a C++ string using the
strrev function:

strrev(myString.c_str());

Answers to Day 14, “Programming
Windows with OWL 2.0”

Quiz
1. False. Templates aren’t magic; the compiler still has to be able to figure out

how to execute each statement in a template exactly as if it weren’t a tem-
plate. For example, the < comparisons in the Low() template function don’t
make sense for classes:

template <class T> const T& Low(const T& a, const T& b, const T& c)

  {

  if (a < b)

    {

    if (a < c)

        return a;

    }

  else if (b < c)



945

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

    return b;

  return c;

  }

What does the < operator mean for a class? There are two solutions:

■■ Write versions of the template that know how to deal with specific
classes (which almost defeats the purpose of using templates).

■■ Write operators for those classes. (For example, if you wanted to use
Low() with a class of your own, you’d need to provide an operator <
function that would figure out what makes one class less than another.)

2. False. The types already changed between Windows 3.1 and Windows NT,
for example. (WORD, for example, changed from an unsigned int to an
unsigned short.) The idea, though, is that if you use the Windows types,
you won’t have to make any changes to your own code.

3. True. Even though OWL uses C++ classes, OWL itself is still written using
the same functions that a C program would. Using OWL, you get to let the
Borland programmers do the work for you.

Answers to Day 15, “Basic Windows”

Quiz
1. True.

2. True.

3. False.

Answers to Day 16, “OWL Controls”

Quiz
1. False. Only the text for controls with SS_SIMPLE style are unchangeable.

2. True.

3. True.

4. True.

5. True, because every control is a window.

6. True, but the OWL-prescribed method is to use the EV_BN_CLICKED macro.



946

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

Answers
M

T
W

R
F

S
S

A

Answers to Day 17, “Grouped
Controls”

Quiz
1. False. The check box can replace the two radio buttons only if these buttons

offer opposite alternatives.

2. True.

3. True. Each check box can be independently toggled.

4. False.

Answers to Day 18, “List Box
Controls”

Quiz
1. True.

2. True.

3. False. LBN_SELCHANGE indicates that a new item is selected.

4. False. LBN_DBLCLICK indicates that a list item is selected with a double
mouse click.

5. False. LBS_STANDARD includes the LBS_SORT style and therefore creates sorted
list boxes.

Answers to Day 19, “Scroll Bars and
Combo Boxes”

Quiz
1. True.

2. False. You need to respond to the CBN_EDITUPDATE message.

3. False. The items are sorted, but not unique. You can insert multiple copies
of the same string.



947

Sa
m

s
Le

ar
ni

ng
Ce

nt
er PUBLISHING

S  MS

A

ns2/a   TYS Borland C++ 21 Days  #30471-6    cAp  4-12-94      APPA   LP#2(sp 4/12 folio)

4. True. In order to maintain a chronological order, you must prevent auto-
matic sorting.

5. False.

6. True.

7. False.

Answers to Day 20, “Dialog Boxes”

Quiz
1. False. You don’t need the .RES file until after linking the object modules

and libraries.

2. False. There does, however, need to be a method by which the user can
signal the dialog box to close itself. This is often done with buttons that,
though labeled differently, return IDOK and IDCANCEL.

3. True.

4. False. The best examples of nested dialogs are those related to setting up the
printer.

5. False. Dialog boxes can be stand-alone windows.

Answers to Day 21, “MDI Windows”

Quiz
1. False. MDI child windows cannot have their own menus.

2. False. MDI child windows are confined to the frame area of their parent
window.

3. False. You cannot nest MDI child windows.

4. True. Now you can move on to the extra-credit chapters to further sharpen
your Windows programming skills.


