
Borland Windows Custom Controls Reference
Click the icon above to open all folders. Click an icon below to open a folder or click the underlined text to see a specific topic.
The Borland Windows Custom Controls (BWCC) library contains a custom dialog class and a set of
custom dialog controls (button, check boxes, group shading boxes, and so on). BWCC adds to the
visual impact of your dialog boxes and their functionality.

Using Borland Custom Controls with new and
existing Windows applications.

Borland Windows Custom Controls API
describes the functions and specific controls.

Creating Custom Control Classes using C
and Pascal.

Borland Windows Custom Controls Reference
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific
topic.
The Borland Windows Custom Controls (BWCC) library contains a custom dialog class and a set of
custom dialog controls (button, check boxes, group shading boxes, and so on). BWCC adds to the
visual impact of your dialog boxes and their functionality.

Using Borland Custom Controls with new and
existing Windows applications.

Borland Button and Check Box
Enhancements

Borland Custom Controls
Borland Custom Control Tools
Customizing Existing Applications for

BWCC
Designing Borland Windows Custom

Control Dialog Boxes

Borland Windows Custom Controls API
describes the functions and specific controls.

Creating Custom Control Classes using C
and Pascal.

Borland Windows Custom Controls Reference
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific
topic.
The Borland Windows Custom Controls (BWCC) library contains a custom dialog class and a set of
custom dialog controls (button, check boxes, group shading boxes, and so on). BWCC adds to the
visual impact of your dialog boxes and their functionality.

Using Borland Custom Controls with new and
existing Windows applications.

Borland Windows Custom Controls API
describes the functions and specific controls.

BWCC Functions
Defining a Derivative Dialog Class
Technical Description of Borland

Windows Custom Controls
Using BWCC Controls in Non-Dialog

Windows

Creating Custom Control Classes using C
and Pascal.

Borland Windows Custom Controls Reference
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific
topic.
The Borland Windows Custom Controls (BWCC) library contains a custom dialog class and a set of
custom dialog controls (button, check boxes, group shading boxes, and so on). BWCC adds to the
visual impact of your dialog boxes and their functionality.

Using Borland Custom Controls with new and
existing Windows applications.

Borland Windows Custom Controls API
describes the functions and specific controls.

Creating Custom Control Classes using C
and Pascal.

Using C To Create Custom Controls
Using Pascal To Create Custom

Controls

Borland Windows Custom Controls Reference
Click any icon to close all folders or click the underlined text to see a specific topic.
The Borland Windows Custom Controls (BWCC) library contains a custom dialog class and a set of
custom dialog controls (button, check boxes, group shading boxes, and so on). BWCC adds to the
visual impact of your dialog boxes and their functionality.

Using Borland Custom Controls with new and
existing Windows applications.

Borland Button and Check Box
Enhancements

Borland Custom Controls
Borland Custom Control Tools
Customizing Existing Applications for

BWCC
Designing Borland Windows Custom

Control Dialog Boxes

Borland Windows Custom Controls API
describes the functions and specific controls.

BWCC Functions
Defining a Derivative Dialog Class
Technical Description of Borland

Windows Custom Controls
Using BWCC Controls in Non-Dialog

Windows

Creating Custom Control Classes using C
and Pascal.

Using C To Create Custom Controls
Using Pascal To Create Custom

Controls

Using Borland Windows Custom Controls
See Also
The custom dialog class, BORDLG, works on both a visual and functional level:

It improves the appearance of your dialog window by painting the background with a brush that
varies according to the target display device. For screens of VGA and higher resolution, the background is
a fine grid of perpendicular white lines, giving the effect of "chiseled steel." For EGA and monochrome
screens, the background is white.

It optimizes the drawing of dialog boxes by calling the custom control drawing routines directly
instead of waiting for Windows to paint the controls. This eliminates the typical sluggish drawing of dialog
boxes.

Using the Borland Custom Dialog Class
To use the Borland custom dialog class:
1. Open the dialog resource you want to convert.
2. Double-click the title bar or outer edge of the dialog box to display the Window Style dialog box.
3. Enter "bordlg" as the Class and click OK.

See Also
Borland Button and Check Box Enhancements
Borland Custom Controls
Borland Custom Control Tools
Customizing Existing Applications for BWCC

Customizing Existing Applications for Borland Windows Custom Controls
See Also
Resource Workshop allows you to customize existing Windows applications with Borland-style custom
controls. There are two steps to this process:
1. Modify your WIN.INI file to load the Borland Windows Custom Control (BWCC) library each time you

start Windows.
2. Edit the application in Resource Workshop to change user interface features such as dialog boxes,

menus, icons, and so on.

Loading BWCC to Enable Borland Custom Controls
The BWCC library, which provides support for Borland-style custom controls, must be loaded before
an application can use BWCC's features.
Edit the WIN.INI file (located in the Windows main directory) so that Windows loads the file
LOADBWCC.EXE into memory at start up. (The installation program should have put
LOADBWCC.EXE in the language compiler directory and added this directory to your PATH.)
Add LOADBWCC.EXE to the beginning of the list of files that appear after the "LOAD=" statement.
LOADBWCC.EXE must appear first in the statement to ensure that BWCC is loaded into memory
before any modified applications are executed.

See Also
Borland Button and Check Box Enhancements
Using Borland Custom Controls

Borland Custom Controls
See Also
These Borland custom controls are displayed in the Class drop-down box of the New Custom Control
dialog box:

Control Name Control Description
3-State Checkbox A Borland-style check box that

has three states - on, off, and
"indeterminate," which is
displayed as a checkerboard
pattern. The application
determines what is meant by
"indeterminate." The application
must call the CheckDlgButton
function to send a
BM_SETCHECK message to
check the selected box.

Auto 3-State Checkbox A check box that's identical to a
Borland-style 3-state check box,
except that BWCC and
Windows combine to handle
checking the selection box.

Auto Checkbox A check box that's identical to a
Borland-style check box, except
that BWCC and Windows
combine to handle checking the
selection box.

Auto Radiobutton A radio button that's identical to
a Borland-style radio button,
except that BWCC and
Windows combine to handle
highlighting the selected button
and deselect the other buttons.

Bitmap A bitmap.

Checkbox A Borland-style check box. The
application must call the
CheckDlgButton function to
send a BM_SETCHECK
message to check the selected
box.

Default Pushbutton A push button that's identical to
a Borland-style push button, but
includes a bold border indicating
that it's the default response if
the user presses Enter.

Horizontal Bump A convex horizontal line.

Horizontal Dip A concave horizontal line.

Pushbutton A Borland-style push button.
When the user clicks the button,
a BN_CLICKED message is

sent to the parent window.

Radiobutton A Borland-style radio button.
The application must call the
CheckRadioButton function to
send a BM_SETCHECK
message to highlight the
selected button and deselect
other buttons.

Raised Gray Group A gray box that appears raised
above the surface of the dialog
box.

Recessed Gray Group A gray box that appears
recessed below the surface of
the dialog box.

Static Text A fixed text string used for
labeling parts of the dialog box.

Vertical Bump A convex vertical line.

Vertical Dip A concave vertical line.

See Also
Borland Button and Check Box Enhancements
Custom Controls
Using Borland Custom Controls

Borland Button and Check Box Enhancements
See Also
Borland push buttons, radio buttons, and check boxes have the following functional enhancements
over standard Windows controls:

An additional level of parent window notification and control over keyboard focus and tab
movement. If you choose the Parent Notify option in the control's style dialog box, the control sends the
appropriate message at run time:

BBN_SETFOCUS indicates to the parent window that the push button, radio button, or check box
has gained keyboard focus through an action other than a mouse click.

BBN_SETFOCUSMOUSE indicates to the parent window that the push button, radio button, or
check box has gained keyboard focus through a mouse click.

BBN_GOTATAB indicates to the parent window that the user has pressed the Tab key while the
push button, radio button, or check box has keyboard focus. The parent can intervene in the processing
of the keystroke by returning a nonzero value.

BBN_GOTABTAB indicates to the parent window that the user has pressed Shift-Tab (back-tab)
while the push button, radio button, or check box has keyboard focus. The parent can intervene in the
processing of the keystroke by returning a nonzero value.

An owner-draw option that allows the parent window to draw the push button, radio button, or
check box. Because your application handles drawing the control, it won't necessarily look like a Borland
control, but it will have the standard behavior of that class of control.

See Also
Borland Custom Controls
Using Borland Custom Controls

Borland Windows Custom Controls API
These topics describe technical aspects of the Borland Windows Custom Controls (BWCC) and
contains information that might be useful or of interest to the advanced resource designer:
BWCC Functions
Defining a Derivative Dialog Class
Technical Description of Borland Windows Custom Controls
Using BWCC Controls in Non-Dialog Windows

Borland Windows Custom Controls Functions
See Also
BWCC.DLL exports these additional functions:

BWCCGetPattern
BWCCGetVersion
BWCCIntlInit
BWCCIntlTerm
BWCCMessageBox
BWCCRegister

See Also
Technical Description of Borland Windows Custom Controls

BWCCRegister
BWCC Functions

Syntax
BWCCRegister (HINSTANCE hInst)
Description
This function is used to register an instance of the application with BWCC.DLL. It is required for 32-bit
applications and should be called when the application is initialized.

BWCCIntlInit
BWCC Functions

Syntax
BWCCIntlInit (UINT language)
Description
This function (call on startup) selects a language (see BWCC.H for language choices) for text and
bitmaps (it returns TRUE for success or FALSE for failure). If you do not use this function. BWCC uses
its default resource language, which depends on which translated version you have. Each BWCC
client can use a different language.

BWCCIntlTerm
BWCC Functions

Syntax
BWCCIntlTerm (VOID)
Description
This function frees memory (use on exit) after you use BWCCIntlInit. This function returns TRUE
(success) or FALSE (failure).

BWCCGetVersion
BWCC Functions

Syntax
BWCCGetVersion()
Description
This function, which takes no parameters, returns the current version of BWCC.DLL. The value it
returns is defined in BWCC.H as BWCCVERSION:
Value Platform

0x0200 Windows 3.x
0x10200 Win32, Win32s, Windows NT

BWCCGetPattern
BWCC Functions

Syntax
BWCCGetPattern()
Description
This function, which takes no parameters, returns a handle to the brush used to paint the background
of BorDlg class dialogs. Since this brush could be a patterned brush, you must align it by calling
UnrealizeObject and SetBrushOrg before selecting it into a device context. Do not delete this brush
by calling DeleteObject!

BWCCMessageBox
BWCC Functions

Syntax
BWCCMessageBox()
Description
This function, which is call-compatible with the Windows standard function MessageBox, displays a
message box that is consistent with the Borland dialog box style.

Defining a Derivative Dialog Class
See Also
To create your own dialog window class (for example, if you want the dialog box to have its own icon),
you must "derive" your class from the BORDLG class.
To derive a class from BORDLG, do the following:
1. Your dialog window function should call BWCCDefDlgProc, note the Windows standard
DefDlgProc for messages that it does not process.

2. The window proc must call BWCCDefDlgProc for the following messages:
WM_CTLCOLOR
WM_NCCREATE
WM_PAINT
WM_ERASEBKGND
WM_NCDESTROY

See Also
Using BWCC Controls in Non-Dialog Windows

Technical Description of Borland Windows Custom Controls
See Also
These topics contain descriptions of each of these Borland Windows Custom Controls classes:

BORBTN control
BORRADIO control
BORCHECK control
BORSHADE control
BORSTATIC control
BORDLG dialog class

Most of the subsection headings are self-explanatory, with the possible exception of the following:
Class Name gives the Resource Workshop name in quotation marks, followed by the identifier

name--C define or Pascal constant.
Window Styles include Types and Options. Within each class there may be several types of

controls. Types dictate the overall appearance and functionality of the control. Options are those available
to each control type.

Messages include Commands and Notifications. Commands are messages to a control.
Notifications are a special type of WM_COMMAND message used by controls. The control ID of the
control is passed in the wParam of the message, while the lParam contains both the notification type and
the window handle of the control. The notification type is contained in the high-order word of lParam and
can be extracted using the HIWORD macro; the window handle is contained in the low-order word of
lParam and can be extracted using the LOWORD macro.

See Also
BWCC Functions

BORBTN control
Examples Borland Windows Custom Controls

Function
bitmapped push buttons and "splash panels"

Class Name
"borbtn" (BUTTON_CLASS)

Types Inherited From Standard Windows Controls
BS_DEFPUSHBUTTON Defines the two standard Windows push button types:
BS_PUSHBUTTON BS_DEFPUSHBUTTON

BS_PUSHBUTTON
The BS_DEFPUSHBUTTON type identifies the "default" push button. When the user presses the

Enter key in a dialog box, the ID of the default button is in the wParam of the WM_COMMAND message
sent to the parent window of the button. The Windows dialog manager sends a BN_CLICKED notification
from that button to the dialog window.

There are two exceptions:
If another button gains keyboard focus through a Tab keystroke, that key temporarily

becomes the default button and is referenced in the BN_CLICKED notification.
If keyboard focus is in an edit control for which the ES_WANTRETURN flag is set, the

Enter key inserts a carriage return into the text in the edit control.

Types Unique to BWCC
BBS_BITMAP This type is used to display "splash panels," which are bitmaps the user

does not interact with.

Options Unique to BWCC
BBS_PARENTNOTIFY This option causes the control to generate the following notification

messages at run time:
BBN_SETFOCUS

BBN_SETFOCUSMOUSE
BBN_GOTATAB
BBN_GOTABTAB

BBS_OWNERDRAW This option causes the control to send WM_DRAWITEM to its parent at run time,
for specialized drawing.

Commands Inherited from Standard Windows Controls
BM_SETSTYLE The Windows dialog manager uses this message to toggle between the

BS_DEFPUSHBUTTON and BS_PUSHBUTTON types.

BM_SETSTATE This message changes the "highlight" state of a button. If the wParam of
the message is nonzero, the button is highlighted (drawn as if it were
pressed).

BM_GETSTATE This message determines whether a button is highlighted, has focus, and
whether it is "checked" (checking does not, however, apply to buttons).
The 0x0004 bit of the return value indicates that the button is highlighted
(drawn with a heavy outline around the button); the 0x0008 bit indicates
that the button has the focus (a dotted line surrounds the text caption).

Commands Unique to BWCC
BBM_SETBITS The application uses this message to pass a set of bitmap handles to the

button. Normally, the buttons use the button control ID to automatically
load bitmaps from the resources of the user. If the bitmaps do not exist,
the button caption is drawn into a default bitmap by using a lighter-weight
version of the dialog font. To use this message, you must first create
three bitmap images of a single button:

the button without keyboard focus
the button with keyboard focus, but not pressed
the button when it is "pressed" (or highlighted)

After creating the bitmaps, you must put the handles to these bitmaps into an array and pass a far
pointer to this array in the lParam of the BM_SETBITS message.

Notifications Inherited from Standard Windows Controls
BN_CLICKED The button sends this message when it has been "pressed" by the user,

either by clicking while the mouse pointer is within the button window or
by either of the following keyboard actions:

The user presses the Spacebar or the Enter key when the button has
keyboard focus.

The user presses the accelerator key for the the button when keyboard focus is in
another control.

To associate an accelerator key with a button, place an ampersand before the ASCII value of the
key in the text of the button (for example, "&Yes"). Note that case is not significant for button accelerators.

BN_DOUBLECLICKED The button sends this message when it has been double-clicked by the
user. The notification is sent at the time of the second mouse button-
down message.

Notifications Unique to BWCC
The following notifications are available if you have specified the BBS_PARENTNOTIFY style:
BBN_SETFOCUS The button sends this notification to its parent window when it gains

keyboard focus through an action other than a mouse click.
BBN_SETFOCUSMOUSE The button sends this notification to its parent window when it gains

keyboard focus through a mouse click.
BBN_GOTATAB The button sends this notification to its parent window when the user

presses the <Tab> key while keyboard focus is in the button. The parent
can then intervene in the processing of the keystroke by returning a
nonzero value.

BBN_GOTABTAB The button sends this notification to its parent window when the user
presses Shift-Tab (back-tab) while keyboard focus is in the button. The
parent can then intervene in the processing of the keystroke by returning
a nonzero value.

WM_DRAWITEM If you specify the BBS_OWNERDRAW style for the button, it sends a
WM_DRAWITEM message to its parent window. The lParam of the
message contains a far pointer to a DRAWITEMSTRUCT structure. The
fields of that structure are described in the Windows SDK documentation
for this message, but with the following enhancement:
For Windows owner-draw buttons, the itemID field of the
DRAWITEMSTRUCT structure is unused. Borland buttons use this field
to pass their type. If the button is a default push button, this field contains
the value BS_DEFPUSHBUTTON. Otherwise, it contains the value

BS_PUSHBUTTON.
The other fields and the values passed in them are:
CtlType ODT_BUTTON
CtlID The control ID of the button (GetWindowWord(hWnd,
GWW_ID))
itemAction ODA_DRAWENTIRE, unless the repaint is being
caused by a focus change, in which case this field contains
ODA_FOCUS
itemState The combination of the following values, depending on the
current state of the button:
ODS_FOCUS if the button has keyboard focus
ODS_DISABLED if the button is disabled
ODS_SELECTEDif the button is highlighted
hwndItem The window handle of the control
hDC A device context for the window, with all values in the default
state returned by GetDC
rcItem The client rectangle of the control

Button Resource ID Numbering Scheme
The Microsoft resource compiler does not provide user-specified control initialization data when it
parses the Windows dialog template data structure. Because of this, Resource Workshop uses the
control ID field as a base from which to derive the resource IDs of the bitmaps required by a button.
For each bitmap button, there are six images: three for EGA and monochrome devices, and three for
VGA and higher-resolution devices.
The bitmap resource IDs are derived from the button control using the following formulas:
Control ID + 1000 Normal VGA-resolution image
Control ID + 3000 Pressed VGA-resolution image
Control ID + 5000 Focused VGA-resolution image

Control ID + 2000 Normal EGA-resolution image
Control ID + 4000 Pressed EGA-resolution image
Control ID + 6000 Focused EGA-resolution image

BORBTN Examples
C example
Pascal example

C Example
HBITMAP hBits[3];
HWND hWndButton = GetDlgItem(hWnd, ID_FOO);

hBits[0] = MakeNormalBitmap(...);
hBits[1] = MakeHighlightBitmap(...);
hBits[2] = MakeFocusBitmap(...);

SendMessage(hWndButton, BBM_SETBITS, 0, (LONG) (LPSTR) hBits);

Pascal Example
procedure SetBitmaps(Wnd: HWnd);

var
 Bits: array[0..2] of HBitmap;
 WndButton: HWnd;

begin
 WndButton := GetDlgItem(Wnd, id_Foo);

 Bits[0] := MakeNormalBitmap(...);
 Bits[1] := MakeHighlightBitmap(...);
 Bits[2] := MakeFocusBitmap(...);

 SendMessage(WndButton, BBM_SETBITS, 0, @@Bits);
end;
Note: If the bitmaps for a button are initialized in this manner, the application must destroy the bitmaps

by calling DeleteObject before it terminates. The application typically makes this call in the
WM_DESTROY message handler for the parent window of a button.

BORRADIO control
Borland Windows Custom Controls

Function
Better-looking radio buttons

Class Name
"borradio" (RADIO_CLASS)

Types Inherited from Standard Windows Controls
BS_RADIOBUTTON A nonautomatic radio button. The button merely informs the application

program that it has been "checked" (pressed) via the BN_CLICKED
notification. The application is responsible for calling the
CheckRadioButton function to change the state of a button and the state
of the other buttons it is grouped with.

BS_AUTORADIOBUTTON An "automatic" radio button. When the user selects one of these buttons,
it is automatically marked (with a circle or diamond), and the previously
selected button within the group is deselected, without the intervention of
the application program.

Options Inherited from Standard Windows Controls
BS_LEFTTEXT This option causes the text associated with the button to be displayed to

the left of the button, rather than to the right of the button.

Options Unique to BWCC
BBS_PARENTNOTIFY This option causes the control to generate the following notification

messages at run time:
BBN_SETFOCUS

BBN_SETFOCUSMOUSE
BBN_GOTATAB
BBN_GOTABTAB

BBS_OWNERDRAW This option causes the control to send WM_DRAWITEM to its parent at run time,
for specialized drawing.

Commands Inherited from Standard Windows Controls
BM_GETCHECK This message causes the button to return its current "check" state (the

message names and descriptions all use check box imagery). If it is
checked (pressed), it returns a nonzero value. Otherwise, it returns zero.

BM_SETCHECK This message changes the check state of a button. If the wParam of the
message is nonzero, the button is checked (filled with a circle or a
diamond).

BM_GETSTATE This message determines whether a button is highlighted, has focus, and
whether it is checked. The low-order two bits (0x0003) of the return value
contain the check state: 0 indicates unchecked and 1 indicates checked.
The 0x0004 bit of the return value indicates that the button is highlighted
(drawn with a heavy outline around the circle or diamond); the 0x0008 bit
indicates that the button has the focus (a dotted line surrounds the text
caption).

BM_SETSTATE This message changes the highlight state of a button. If the wParam of
the message is nonzero, the button is highlighted.

Notifications Inherited from Standard Windows Controls

BN_CLICKED described earlier in this file.
BN_DOUBLECLICKED described ealier in this file.

Notifications Unique to BWCC
The following notifications are sent to the parent window only if the programmer has specified the
BBS_PARENTNOTIFY style.

BBN_SETFOCUS
BBN_SETFOCUSMOUSE
BBN_GOTATAB
BBN_GOTABTAB

WM_DRAWITEM The description of this notification is identical to the one under BORBTN,
with the following exception: For automatic radio buttons, the itemID field
of the DRAWITEMSTRUCT structure contains the value
BS_AUTORADIOBUTTON. Otherwise, it contains the value
BS_RADIOBUTTON.

BORCHECK control
Borland Windows Custom Controls

Function
Better-looking check boxes

Class Name
"borcheck" (CHECK_CLASS)

Types Inherited from Standard Windows Controls
BS_CHECKBOX A nonautomatic check box. Application program intervention is required to

change its visual state after it has been "clicked."
BS_AUTOCHECKBOX A check box that automatically changes state when clicked.
BS_3STATE A nonautomatic check box that switches between three states: checked,

unchecked, and indeterminate.
BS_AUTO3STATE An automatic version of BS_3STATE.

Options Inherited from Standard Windows Controls
BS_LEFTTEXT This option causes the text associated with the button to be displayed to

the left of the button, rather than to the right of the button.

Options Unique to BWCC
BBS_PARENTNOTIFY This option causes the control to generate the following notification

messages at run time:
BBN_SETFOCUS

BBN_SETFOCUSMOUSE
BBN_GOTATAB
BBN_GOTABTAB

BBS_OWNERDRAW This option causes the control to send WM_DRAWITEM to its parent at run time,
for specialized drawing.

Commands Inherited from Standard Windows Controls
BM_GETCHECK This message causes the control to return its current "check" state. The

return value is 0 if the control is unchecked; 1 if checked; and 2 if
indeterminate (applies only for 3-state check boxes).

BM_SETCHECK This message changes the state of a check box. If the wParam of the
message is 0, the check box is drawn empty; if 1, the check box is
checked; and if 2, it is drawn with with a pattern indicating the
indeterminate state.

BM_GETSTATE This message determines whether a check box is highlighted, has focus,
and whether it is checked. The low-order two bits (0x0003) of the return
value contain the check state: 0 indicates unchecked; 1 indicates
checked; and 2 indicates the indeterminate state for 3-state check boxes.
The 0x0004 bit of the return value indicates that the check box is
highlighted (drawn with a heavy outline); the 0x0008 bit indicates that the
button has the focus (a dotted line surrounds the text caption).

BM_SETSTATE This message changes the highlight state of a check box. If the wParam
of the message is a nonzero value, the check box is highlighted.

Notifications Inherited from Standard Windows Controls
BN_CLICKED described in the BORBTN section.
BN_DOUBLECLICKED described in the BORBTN section.

Notifications Unique to BWCC
The following notifications are sent to the parent window only if the programmer has specified the
BBS_PARENTNOTIFY style:

BBN_SETFOCUS
BBN_SETFOCUSMOUSE
BBN_GOTATAB
BBN_GOTABTAB

For a description of these notifications, see the BORBTN section in this file.
WM_DRAWITEM The description of this notification is identical to the one in the BORBTN

section with the following exception: For automatic check boxes, the
itemID field of the DRAWITEMSTRUCT structure contains the value
BS_AUTOCHECKBOX or BS_AUTO3STATE. Otherwise, it contains the
value BS_CHECKBOX or BS_3STATE.

BORSHADE control
Borland Windows Custom Controls

Function
panels and dividers

Class Name
"borshade" (SHADE_CLASS)

Types Unique to BWCC
BSS_GROUP This style draws a "chiseled" gray box with a recessed appearance.
BSS_RGROUP This style draws a "chiseled" gray box with a raised appearance.
BSS_HDIP This style draws a horizontal dividing line that can be used to separate

sections of a dialog box.
BSS_VDIP This style draws a vertical dividing line that can be used to separate

sections of a dialog box.
BSS_HBUMP This style draws a horizontal dividing line that can be used to separate

sections of a gray group shade (BSS_GROUP or BSS_RGROUP).
BSS_VBUMP This style draws a vertical dividing line that can be used to separate

sections of a gray group shade (BSS_GROUP or BSS_RGROUP).

Options Unique to BWCC
BSS_CAPTION This option applies only to the BSS_GROUP and BSS_RGROUP types. It

causes the caption of the group shade box (if any) to be appear above
the recessed (or raised) portion of the box. The dimensions of the box
include the caption as well as the box.

BSS_CTLCOLOR This option applies only to the BSS_GROUP and BSS_RGROUP types. It
causes the control to send registered messages to its parent prior to
erasing. The parent can then provide a different brush for painting the
group box background, and make other changes to the HDC as needed.
To use this mechanism, you must first register a special message using
the Windows RegisterWindowMessage() API. In the file BWCC.H you will
find the following definition:
#define BWCC_CtlColor_Shade "BWCC_CtlColor_Shade"
Include the following static declaration in your program (the following
examples are in C):
WORD hCtlColor_Shade;
Then, in your application initialization function, register the message:

hCtlColor_Shade=RegisterWindowMessage(BWCC_CtlColor_Sh
ade);
In your window procedure, dialog box window procedure, or most
commonly your dialog procedure, test for the message:
if (msg == hCtlColor_Shade)
{
 ...
}
The parameters for the message are the same as for WM_CTLCOLOR,
and the message is handled in the same manner. For example, the text
foreground and background colors and the background mode in the HDC
may be modified, in order to change the appearance of the caption. A

background brush may be also returned. (As with normal
WM_CTLCOLOR handling, be sure not to create a new brush every time
the message is processed.)
In order to return a brush from a dialog procedure (as opposed to from a
dialog box window procedure or a window procedure), you must place
the value of the brush into offset DWL_MSGRESULT in the window
structure with SetWindowLong() and then return TRUE. Here is an
example:
if (msg == hCtlColor_Shade)
{
 SetTextColor((HDC) wParam, RGB(255,0,0)); // red
text
 SetBkColor((HDC) wParam, RGB(128,128,128)); //
gray
 SetBkMode ((HDC) wParam, OPAQUE);
 SetWindowLong(hwndDlg, DWL_MSGRESULT,
 GetStockObject(WHITE_BRUSH));
 return TRUE;
}
The Windows include files provide a macro that combines the last two
steps: SetDlgMsgResult(hwnd, msg, result), which you would
use with hCtlColor_Shade as the second parameter.

BSS_NOPREFIX This option applies only to the BSS_GROUP and BSS_RGROUP types,
and is the equivalent of the SS_NOPREFIX option for static text: it
causes any ampersands (&) within the caption to be treated as normal
characters, rather than causing the next character to be underlined.

BSS_LEFT, BSS_CENTER, BSS_RIGHT
These options apply only to the BSS_GROUP and BSS_RGROUP types,
and control the horizontal placement of the caption.

Commands Unique to BWCC
RegisterWindowMessage(BWCC_CtlColor_Shade)

BORSTATIC control
Borland Windows Custom Controls

Function
static text with a gray background

Class Name
"borstatic" (STATIC_CLASS)

Types Inherited from Standard Windows Controls
SS_LEFT The text is left-justified in the control.
SS_RIGHT The text is right-justified in the control.
SS_CENTER The text is center-justified in the control.
SS_SIMPLE The text is left-justified in a single line within the control and does not

word wrap.
SS_LEFTNOWORDWRAP The text is left-justified within the control and does not word wrap.

Options Inherited from Standard Windows Controls
SS_NOPREFIX Ampersands (&) within the text do not cause the following character to be

underlined.

BORDLG dialog class
See Also Borland Windows Custom Controls

Function
"Turbo" fast dialog box drawing

Class Name
"bordlg" (BORDLGCLASS)

Description
This custom dialog window class implements the "turbo painting" of Borland custom controls by
keeping its own private list of controls within a dialog box and painting those controls itself. It also
automatically provides a patterned background on VGA and higher-resolution displays. If you want
your dialogs to have the "Borland look," specify this dialog class in your dialog box template. (As an
alternative to specifying "bordlg" as the class, you may also call BWCCDefDlgProc(), as discussed in
section 1 of this file).

Types Inherited from Standard Windows Controls
All valid styles for a standard Windows dialog box.

Commands Inherited from Standard Windows Controls
WM_CTLCOLOR If the user has provided a dialog procedure, it is called with the

WM_CTLCOLOR message. If it returns a non-zero value, then no further
processing takes place, and that value is returned. Otherwise, the
processing depends on which CTCOLOR value is specified. For list
boxes, the background is set to a gray brush. For static and button
controls, the background mode is set to transparent; the text color to
COLOR_WINDOWTEXT; for non-monochrome monitors, the background
color is set to COLOR_GRAYTEXT; and a gray background brush is
returned.
For CTLCOLOR_DLG, the steel-gray dialog background brush is
returned, but it is first unrealized and the origin of the HDC is reset to
match the dialog box.
For other CTLCOLOR values, DefWindowProc() is called and its value
returned.

WM_NCCREATE This message sets up a structure, which is attached as a property to the
dialog window. As Borland controls are then created, they will register
themselves with the dialog window, and information about each control
will be added to this structure. This is the mechanism used to provide
turbo-painting.
After attaching the structure, WM_NCCREATE calls DefDlgProc() and
returns its value.

WM_ERASEBKGND This message first sends a WM_CTLCOLOR message with
CTLCOLOR_DLG to the dialog procedure of the user (if any) to get a
background brush for the dialog. If zero is returned, the chiseled-steel
brush is used. But before painting the background, the control structure is
iterated and any Borland group shades and Borland static text controls
are painted with a gray background (for speed). (Note, however, that the
brush used for group shades may be modified by an additional
CTLCOLOR-like message, as described in the BORSHADE section.)
The background brush is realigned with the top left corner of the dialog
window and the dialog background is painted with it, excluding any

rectangles that were painted for group shades and static text controls.
Finally, WM_ERASEBKGND returns TRUE, to indicate to Windows that
no further erasing is necessary.

WM_PAINT This message iterates through the control structure described above and
paints each of the Borland controls. For each control that is painted, its
window is validated, so that it will not itself get WM_PAINT or
WM_ERASE messages.
After all Borland controls are painted, a thin frame is drawn around the
dialog to provide a sense of depth, and zero is returned.

WM_DESTROY This message simply frees the control list attached to the dialog window
and then calls DefDlgProc(), returning its value.

See Also
Defining a Derivative Dialog Class
Using BWCC Controls in Non-Dialog Windows

Using BWCC Controls in Non-Dialog Windows
See Also Borland Windows Custom Controls
If you want your non-dialog windows to look like the BorDlg windows (with the steel-gray background
and light gray background for static controls), BWCC.DLL provides two functions that replace the
Windows standard "Def" window functions and that should be called in place of them:

For MDI child windows, call BWCCDefMDIChildProc instead of the Windows standard function
DefMDIChildProc.

For all other windows, call BWCCDefWindowProc instead of the Windows standard function
DefWindowProc.

As described earlier for BWCCDefDlgProc, your window proc must call either
BWCCDefMDIChildProc or BWCCDefWindowProc for the following messages:

WM_CTLCOLOR
WM_NCCREATE
WM_NCDESTROY
WM_PAINT
WM_ERASEBKGND

Note: BWCC does not provide a replacement function for DefFrameProc.

See Also
Defining a Derivative Dialog Class

Designing Borland Windows Custom Control Dialog Boxes
These topics present style considerations you can follow when designing Borland Windows Custom
Control (BWCC) dialog boxes for your Windows-based software.
Panels
Fonts
Group Boxes
Push Buttons
Examining Your Dialog Box

Panels
See Also
Each dialog box has two panels: a Main panel and an Action panel. The Main panel should contain all
the required controls. The Action panel should contain the push buttons.
Your finished dialog box should be relatively square. If the Main panel is wider than it is tall, put the
Action panel along the bottom of your dialog box. If the Main panel is taller than it is wide, put the
Action panel on the right side.

See Also
Designing Borland Windows Custom Control Dialog Boxes

Main Panel
See Also
You can arrange the group boxes on the Main panel in either a single column or row, or in an array.
Here are some guidelines for arranging group boxes on the Main panel. You should treat group titles
as part of the group boxes.

Space group boxes 8 dialog units apart, both vertically and horizontally.
Leave a margin of 8 dialog units from all edges of the dialog to the nearest group box.
In a column of group boxes, make all group boxes the same width. The width should

accommodate the widest item or title. Widen the other group boxes to match.
In a row of group boxes, vary the group box heights. Align the tops of the group boxes and let the

bottoms of the group boxes vary.
If some of the group boxes in a row have titles and some do not, align the top of the recessed

group boxes with each other, not with the title rectangles. For these "mixed" groups of boxes, the margin
above group boxes without titles should include the space for a title.

If some of the group boxes you want to align in a row are taller than others, compute the bottom
margin using the tallest group box.

See Also
Panels

Action Panel
See Also
An Action panel can appear at the bottom or the right side of a dialog box. Here are the guidelines for
Action panels:

Make the Action panel tall or wide enough to contain the push buttons while leaving a margin of 8
dialog units above and below or to the sides of the push buttons.

Distribute the push buttons evenly along the Action panel, leaving a minimum of 8 dialog units
between the buttons and between the buttons and the edges of the dialog box. Try to use the same
number of dialog units between each button and between the buttons and the edges of the dialog box.
You can put more space between the buttons than between the buttons and the edges of the dialog box,
if necessary, but the two margin spaces should be equal and the spaces between the buttons should be
equal.

See Also
Panels

Fonts
See Also
Borland dialog boxes use 8-point Helvetica Bold. The Borland Windows custom dialog controls look
best when you use this font. An 8-point font is small; using it prevents your dialog boxes from growing
too big. Of course, you can use other fonts for other custom controls.

See Also
Designing Borland Windows Custom Control Dialog Boxes
Examining Your Dialog Box
Group Boxes
Push Buttons

Group Boxes
See Also
Collect all options that appear in the Main panel into Borland Windows custom group boxes. For
example, place a group of related check boxes in a group box. You should place each single control,
such as a file name text box or combo box, in a group box also. You will not have to do this with a
Borland list box because a list box draws its own group box.

Group Box Titles
A group box title identifies what a group box contains. By default, a group box title in a Borland dialog
box has a gray background. Here are guidelines for using group box titles:

If a group box contains multiple controls, place the group box title above and touching the top
edge of the group box.

If a group box contains a single check box, place the group box title above and touching the top
edge of the group box.

If a group box contains a single text box or combo box control, you can either put the title to the
left of the control and 4 dialog units from the edge of the group box or you can put it above the control.

If a group box contains two or more editable text fields or combo boxes or both, precede each
with a short label.

Align group box titles above the recessed group boxes.
Make all group box titles 9 dialog units high.
Make the titles the same width as the group boxes, including the beveled sides.

Group Box Elements
These suggestions help you arrange elements within a group box:

Distribute controls within a group box vertically every 13 units from the bottom of one line of text
to the bottom of the next.

Left-justify the controls.
The left and right margins between the edges of the group box and the widest control within it

should be 4 dialog units wide.
Make the margin between the top of the group box and the first control in the group 4 dialog units.
Make the margin between the bottom of the group box and the last control in the group 4 dialog

units.
If a group box contains two or more editable text fields or combo boxes or both, make them the

same width. Space them so that the bottom of one is 13 units from the bottom of the next one. Right-
justify these controls in the group box 4 units from the right edge. Left-justify the titles, leaving a 4 unit
margin. Make the group box wide enough to leave 4 units between the longest title and its control.

See Also
Designing Borland Windows Custom Control Dialog Boxes
Examining Your Dialog Box
Fonts
Push Buttons

Push Buttons
See Also
The following are style considerations for push buttons:

The Borland custom push buttons use glyphs (small bitmapped images). For example, a
question-mark glyph is used on the Help push button. Place the glyph inside the button on the left side.

Use Helvetica (normal, not bold) for the text of a button text and right-justify it.
Make each push button 39 pixels high for VGA resolution and 30 pixels high for EGA resolution.
Most push buttons are 63 pixels wide in both VGA and EGA resolution. Although you can make a

button wider to prevent the text and image from overlapping or looking too crowded, you should try to
restrict the width to 63 pixels if possible.

Action Panel Push Buttons
The Action panel push buttons usually indicate the end of the user's work with a dialog box, but can
also serve as a major departure from the function of the dialog box, such as bringing up Help with the
Help button. The guidelines for these buttons are:

Put the buttons on the Main panel rather than the Action panel.
Do not put these push buttons in a group box. Place them directly on the surface of the Main

panel.
Make all push buttons in a group the same width. They should be just wide enough to

accommodate the widest text string.
Make the buttons 14 dialog units in height.
Try to restrict text to 20 characters or less.
Place the buttons in either a row or a column, depending on what looks best in your dialog box.
Leave 8 dialog units to the left and right of a column of push buttons. The vertical space between

the buttons and any other controls or borders above or below the buttons should be equal.
Leave 8 dialog units above and below a row of push buttons. The horizontal space between the

buttons and any other controls or borders to the left or right of them should be equal.

See Also
Designing Borland Windows Custom Control Dialog Boxes
Examining Your Dialog Box
Fonts
Group Boxes

Examining Your Dialog Box
See Also
When Windows calculates dialog units, it rounds the computation. Rounding errors can affect the
appearance of your dialog box. Examine your dialog box carefully and look for these problems:

A crack between the title text and the top of a gray group box
Obvious uneven spacing in a vertical group of radio buttons or check boxes
An inconsistent border width in exposed panel areas

Usually, making an adjustment of 1 dialog unit will fix these problems. Occasionally in a large group of
repeating controls, two or more rounding errors can occur. You cannot tell how text in controls will
appear when you are designing your dialog box. Editable text, large static text fields, and combo boxes
fall into this category. You may have to modify your original design to be sure text appears correctly
without being clipped at run time.

See Also
Designing Borland Windows Custom Control Dialog Boxes

Creating Custom Control Classes
See Also
Windows provides standard control classes, such as list boxes and radio buttons, that you can add to
your dialog box resources. In addition to these standard classes, Resource Workshop also lets you
create and use custom control classes, which must be in a DLL (dynamic-link library). This file
describes the functions you'll need to use to make your custom controls accessible to Resource
Workshop.
The DLL file of custom controls must contain functions that let Resource Workshop work with the
custom controls just as it works with the standard Windows controls. In particular, you must implement
the ListClasses function and export it by name. This function provides information to Resource
Workshop about the custom control classes in the DLL.
You must also provide the following functions for each custom control window class:

Info
Style
Flags

These functions can have any name. They must, however, be exported by the DLL, and pointers to
them must be supplied in the ListClasses function.

See Also
Using C To Create Custom Controls
Using Pascal To Create Custom Controls

Using C To Create Custom Controls
See Also
ListClasses function
Info function
Style function
Flags function

See Also
Using Pascal To Create Custom Controls

ListClasses function
ListClasses is a programmer-implemented function that passes information about the custom control
classes back to Resource Workshop. Exporting ListClasses marks your DLL as supporting this custom
control specification.
If ListClasses is present in the DLL, Resource Workshop calls the function, passing information about
itself along with two utility function variables used in editing the custom control.
ListClasses should return a handle to global memory allocated by calling GlobalAlloc. The memory
referenced by this handle holds a structure of type CTLCLASSLIST, which describes the controls in
the library. CTLCLASSLIST is described later in this section. The handle is freed by Resource
Workshop and should not be freed by the DLL.

Syntax
HGLOBAL CALLBACK ListClasses(LPSTR szAppClass, UINT wVersion, LPFNLOADRES
fnLoad, LPFNEDITRES fnEdit);

Return Value
Returns a global handle to the data structure.

Parameters
szAppClass The class name of the application's main window. The class name can be used by

the custom control to determine if it is running under a resource editor. If
szAppClass is "rwswnd", the calling application is Resource Workshop.

wVersion The version number of the calling application. The major version is in the high-
order byte and the minor version in the low-order byte. For example, version 1.02
is 0x0102.

fnLoad A pointer to a that function a custom control can use to get a binary version of any
resource in the project being edited by the calling application--the equivalent of
the Windows API function LoadResource(). The function takes two parameters: a
resource type name and a resource name. The custom control must free the
global handle (if any) returned by the function.

fnEdit A pointer to a function that a custom control can use to start a resource editor for
any resource in the project being edited by Resource Workshop. It takes two
parameters: a resource type name and a resource name.

Data Structures
typedef struct
{
 LPFNINFO fnRWInfo; // Info function
 LPFNSTYLE fnRWStyle; // Style function
 LPFNFLAGS fnFlags; // Flags function
 char szClass[CTLCLASS]; // Class name

} RWCTLCLASS, FAR *LPRWCTLCLASS;

typedef struct {
 short nClasses; // Number of classes in list
 RWCTLCLASS Classes[]; // Class list
} CTLCLASSLIST, FAR *LPCTLCLASSLIST;

The CTLCLASSLIST structure contains a variable number of RWCTLCLASS strucures, the number of
which is determined by the nClasses field.
Each control class in the DLL must have a corresponding RWCTLCLASS structure in the

CTLCLASSLIST. The szClass field contains the name with which the class was registered. For
example, if you called RegisterClass giving the class name "MYBUTTON", szClass must be
"MYBUTTON".
The function variables Info, Style, and Flags--which correspond to the pointers fnRWInfo, fnRWStyle,
and fnFlags--are described in the following sections.

Info function
Resource Workshop calls the Info function to retrieve information about the control class, including the
string to add to the control menu and the bitmap to add to the tool palette. The function returns a
memory handle that can be allocated by GlobalAlloc. This handle must refer to memory that contains a
RWCTLINFO structure. Like ListClasses, the handle returned by Info is freed by Resource Workshop
and should not be freed by the DLL. Resource Workshop calls this function once when it loads the
DLL.

Syntax
HGLOBAL CALLBACK Info(void);
Parameters
None.

Data Structures
The RWCTLINFO structure, defined by a typedef in the file CUSTCNTL.H, has two basic parts:

The first part has a fixed length and provides information about the whole control class.
The second part is a variable-length array of fixed-length records. Each record provides

information about a particular type or subclass of the control.
/* general size definitions */
#define CTLTYPES12 /* number of control types*/
#define CTLDESCR22 /* size of control menu name */
#define CTLCLASS20 /* max size of class name */
#define CTLTITLE94 /* max size of control text */

typedef struct {
 UINTwVersion; // control version
 UINTwCtlTypes; // control types
 charszClass[CTLCLASS]; // control class name
 charszTitle[CTLTITLE]; // control title
 charszReserved[10]; // reserved for future
 RWCTLTYPE Type[CTLTYPES]; // control type list
} RWCTLINFO;

 typedef RWCTLINFO *RWPCTLINFO;
 typedef RWCTLINFO FAR *LPRWCTLINFO;

wVersion The version number of the custom control library. The major version is in the high-
order byte and the minor version is in the low-order byte. For example, version
1.02 is 0x0102. Resource Workshop doesn't use this.

wCtlTypes The number of control sub-types defined in the Type array.
szClass The name of the class as registered with Windows. This is duplicated from the

CTLCLASSLIST structure to retain upward compatiblity with the Windows custom
control specificiation.

szReserved Space reserved for future expansion. Must be cleared to null characters (0).
Type An array of sub-type description structures of type RWCTLTYPE.

/*
 * RWCTLTYPE DATA STRUCTURE
 *
 * This data structure is returned by the control options
 * function while inquiring about the capabilities of a
 * particular control. Each control may contain various types

 * (with predefined style bits) under one general class.
 *
 * The width and height fields provide the application with
 * a suggested size. Use pixels or dialog units for the
 * values in these fields. If you use pixels, turn on the
 * most significant bit (MSB). If you use dialog units, turn
 * off the MSB.
 *
 */

typedef struct {
 UINT wType; // type style
 UINT wWidth; // suggested width
 UINT wHeight; // suggested height
 DWORDdwStyle; // default style
 char szDescr[CTLDESCR]; // menu name
 HBITMAP hToolBit; // Toolbox bitmap
 HCURSOR hDropCurs; // Drag and drop cursor
} RWCTLTYPE, FAR * LPRWCTLTYPE;

wType A user-defined value used to indicate the sub-type of the control. This value isn't
used by Resource Workshop.

wWidth The default width for the control. Resource Workshop uses this value if, for
example, the control is created by dragging the icon from the tool palette. wWidth
is in dialog coordinates unless the most significant bit is set, in which case the
value is in pixels. For example, a value of "32" is 32 in dialog coordinates, but the
value "32 | 0x8000" is in pixels.

wHeight The default height for the control. Resource Workshop uses this value if, for
example, the control is created by dragging the icon from the tool palette. wHeight
is in dialog coordinates unless the most significant bit is set, in which case the
value is in pixels. For example, a value of "32" is 32 in dialog coordinates, but the
value "32 | 0x8000" is in pixels.

wStyle The default style Resource Workshop uses to create the Window. This is the key
field that you use to distinguish one subtype from another.

szDescr The description of the control subtype. Resource Workshop uses the to text
construct a menu item that the user can use to create an instance of your custom
control.

hToolBit A handle to a bitmap which will be placed on the tool palette. Resource Workshop
requires the bitmap be a 22x22 black and gray bitmap containing a 2-pixel border
that is white on the top and left and black on the bottom and right. You can use
the bitmaps contained in BITBTN.RES as templates.

hDropCurs A cursor to be used while dragging the control from the tool palette.

Style function
The Style function makes it possible for you to edit your custom control. You must first create an
appropriate dialog box in Resource Workshop and then implement a Boolean function that displays
that dialog box. Resource Workshop calls this function whenever you initiate a request to edit the
custom control. Resource Workshop passes the function a handle to the window that is the parent of
the dialog, a handle to memory containing the RWCTLSTYLE structure, and two function variables for
string conversion.

Syntax
BOOL CALLBACK Style(HWND hWnd, HGLOBAL hCtlStyle, LPFNSTRTOID lpfnStrToId,
LPFNIDTOSTR lpfnIdToStr);

Return Value
If the user changes any options for the control, this function's return value is TRUE. If the user doesn't
make changes or if an error prevents changes, the return value is FALSE.

Parameters
hWnd A handle to the parent window of the dialog box displayed by this function.
hCtlStyle A handle to global memory containing the RWCTLSTYLE structure to be edited.
lpfnStrToId A function variable that converts a string into a control ID for the wId field of

RWCTLSTYLE. This lets the user enter the control ID using a constant identifier.
This routine evaluates the string as an expression, returning the result. The ID
can convert back into a string by calling lpfnIdToStr.

lpfnIdToStr A function variable that converts the control ID in the wId field of RWCTLSTYLE
to a string for editing. The ID can be converted back into a word by calling
lpfnStrToId. This function variable lets the user see the symbolic constant that
represents the control ID instead of the word value.

Data Structures
/*
 * CONTROL-STYLE DATA STRUCTURE
 *
 * The class style function uses this data structure
 * to set or reset various control attributes.
 *
 */

typedef struct {
 UINT wX; // x origin of control
 UINT wY; // y origin of control
 UINT wCx; // width of control
 UINT wCy; // height of control
 UINT wId; // control child id
 DWORDdwStyle; // control style
 char szClass[CTLCLASS]; // control class name
 char szTitle[CTLTITLE]; // control text
 BYTE CtlDataSize; // control data size
 BYTE CtlData[CTLDATALENGTH]; // control data
} RWCTLSTYLE;

typedef RWCTLSTYLE * PRWCTLSTYLE;
typedef RWCTLSTYLE FAR * LPRWCTLSTYLE;

wX The horizontal (X) location of the control in dialog coordinates.
wY The vertical (Y) location of the control in dialog coordinates.
wCx The width of the control (dialog coordinates).
wCy The height of the control (dialog coordinates).
wId The control's ID value. This value must be converted to a string by calling

lpfnIdToStr before being displayed for editing. It must be converted back into a
word for storage by calling lpfnStrToId after editing.

dwStyle The style flags of the control.
szClass The class name of the control.
szTitle The title of the control.
CtlDataSize Windows lets controls in a resource file have up to 255 bytes of control-defined

data. This field indicates how much of that space is being used by the control. The
data is stored in CtlData.

CtlData This field holds up to 255 bytes of control-specific data. The amount used must be
recorded in the CtlDataSize field. The use of this data area is user-defined.

When you save your project, Resource Workshop saves the CtlData array into the .RC or .RES file.
To enable a custom control to access this array from within your program at run time, lParam of the
WM_CREATE message points to a CREATESTRUCT data structure. The CREATESTRUCT structure
contains a field, lpCreateParams, that is a pointer to the extra data you stored in the CtlData array. If
the pointer is NULL, there is no CtlData.
The CtlDataSize variable isn't available to your program. To make the size data accessible to your
program, the CtlData array should either contain a fixed amount of data, or its first byte should contain
the length of the data.
The Style function first converts the ID to a string by passing the numerical ID value to LPFNIDTOSTR.
The Style function then displays the string in the dialog box.
If the user changes the string returned by LPFNIDTOSTR, the Style function verifies the string by
passing it to LPFNSTRTOID, which determines if the string is a valid constant expression. If
LPFNSTRTOID returns a zero in the LOWORD, the ID is illegal and is displayed in the dialog box, so
the user can change it to a valid ID. If LPFNSTRTOID is successful, it returns a nonzero value in the
LOWORD and the ID in the HIWORD.

Flags function
Resource Workshop uses the Flags function to translate the style of a control into text. Resource
Workshop inserts the text into the .RC file being edited. The function must only convert the values
unique to the control. For example, if you were creating a Flags function for the Windows button class,
you would only examine the lower sixteen bits of Flags and translate them into one of the bs_XXXX
constants.

Syntax
UINT CALLBACK Flags(DWORD dwFlags, LPSTR lpStyle, UINT wMaxString);
Return Value
Returns the number of bytes copied into the destination string. Returns 0 if the Flags word is not valid
or the string exceeds MaxString in length.

Parameters
dwFlags The control style to be translated into text. This field is derived from the dwStyle

field of the RWCTLSTYLE structure passed to the Style function variable.
lpStyle The location to write the translated text.
wMaxString The maximum number of bytes the Flags function can write into Style.

Using Pascal To Create Custom Controls
See Also
ListClasses function
Info function
Style function
Flags function

See Also
Using C To Create Custom Controls

ListClasses function
ListClasses is a programmer-implemented function that passes information about the custom control
classes back to Resource Workshop. Exporting ListClasses marks your DLL as supporting this custom
control specification.
If ListClasses is present in the DLL, Resource Workshop calls the function, passing information about
itself along with two utility function variables used in editing the custom control.
ListClasses should return a handle to global memory allocated by calling GlobalAlloc. The memory
referenced by this handle holds a record of type TCtlClassList, which describes the controls in the
library. TCtlClassList is described later in this section. The handle is freed by Resource Workshop and
should not be freed by the DLL.

Syntax
function ListClasses(AppName: PChar; Version: Word; Load: TLoad; Edit:
TEdit): THandle; export;

Return value
Returns a handle to global memory containing a record of type TCtlClassList.

Parameters
AppName The class name of the main window of the calling application. This value can be

used by the custom control to determine if it is running under a resource editor. If
AppName is 'rwswnd', the calling application is Resource Workshop.

Version The version number of the calling application. The major version is in the high-
order byte and the minor version in the low-order byte. For example, version 1.02
is $0102.

Load A function variable that custom controls can use to obtain the handle of a
resource in the project being edited by the calling application (the equivalent of
the Windows API function LoadResource). The function takes two parameters, a
resource type name and a resource name. The custom control is responsible for
freeing the global handle (if any) returned by this function.

Edit A function variable that custom controls can use to start a resource editor for any
resource in the project being edited by Resource Workshop. The function takes
two parameters, a resource type name and a resource name.

Return Value Records
PCtlClassList = ^TCtlClassList;
TCtlClassList = record
 nClasses: Integer; { Number of classes in list }
 Classes: array[0..0] of TRWCtlClass; { Class list }
end;

TCtlClassList contains a variable number of TRWCtlClass records, the number of which is determined
by the nClasses field.
PRWCtlClass = ^TRWCtlClass;
TRWCtlClass = record
 fnInfo: TFnInfo; { Info function }
 fnStyle: TFnStyle; { Style function }
 fnFlags: TFnFlags; { Flags function }
 szClass: array[0..ctlClass-1] of Char; { Class name }
end;
Each control class in the DLL must have a corresponding TRWCtlClass record in the TCtlClassList.
The szClass field contains the name with which the class was registered. For example, if you called

RegisterClass giving the class name as 'MYBUTTON', szClass must be 'MYBUTTON'.
The function variables Info, Style, and Flags--which correspond to the pointers TFnInfo, TFnStyle, and
TFnFlags--are described in the following sections.

Info function
The Info function is called by Resource Workshop to retrieve information about the control class,
including the string to add to the control menu and the bitmap to add to the tool palette. The function
returns a memory handle that can be allocated by GlobalAlloc. This handle must refer to memory that
contains a TRWCtlInfo record. Like ListClasses, the handle returned by Info is freed by Resource
Workshop and should not be freed by the DLL. This function is called once by Resource Workshop
upon loading the DLL.

Syntax
function Info: Handle; export;
Return Value
Returns a handle to global memory containing a record of type TRWCtlInfo.

Parameters
None.

Return Value Record
TRWCtlInfo has two parts:

A fixed-length part that provides information about the control class in general.
A variable-length array of records, with each record providing information about a particular type

or subclass of the control.
Each control class can include several control types. For example, Windows provides a BUTTON class
that includes push buttons, radio buttons, and check boxes. This variety can be duplicated by your
classes by providing two or more TRWCtlType records in the TRWCtlInfo record.
The following is the declaration of TRWCtlInfo:
PRWCtlInfo = ^TRWCtlInfo;
TRWCtlInfo = record
 wVersion:Word; { control version }
 wCtlTypes: Word; { control types }
 szClass: array[0..ctlClass-1] of Char; { control class name }
 szTitle: array[0..ctlTitle-1] of Char; { control title }
 szReserved: array[0..9] of Char; { reserved for future use }
 ctType: array[0..ctlTypes] of TRWCtlType; { control type list }
end;

wVersion The version number of the custom control library. The major version is in the high-
order byte and the minor version in the low-order byte. For example, version 1.02
is $0102. This field is not used by Resource Workshop.

wCtlTypes The number of control sub-types defined in the ctType array.
szClass The name of the class as registered with Windows. This is duplicated from the

TCtlClassList record to retain upward compatiblity with the Windows custom
control specification.

szReserved Space reserved for future expansion. Must be cleared to null characters (#0).
ctType An array of sub-type description records of type TRWCtlType.

The following is the declaration of TRWCtlType:
PRWCtlType = ^TRWCtlType;
TRWCtlType = record
 wType:Word; { type style }
 wWidth: Word; { suggested width }

 wHeight: Word; { suggested
height }
 dwStyle: LongInt; { default style }
 szDescr: array[0..ctlDescr-1] of Char; { menu name }
 hToolBit: HBitmap; { toolbox bitmap }
 hDropCurs: HCursor; { drag and drop
cursor }
end;

wType A user-defined value used to indicate the sub-type of the control. This value is not
used by Resource Workshop.

wWidth The default width for the control. Resource Workshop will use this value if, for
example, the control is created by dragging the icon from the tool palette. wWidth
is in dialog coordinates unless the most significant bit is set, in which case the
value is in pixels. For example, a value of "32" is 32 in dialog coordinates, but the
value "32 or $8000" is in pixels.

wHeight The default height for the control. Resource Workshop will use this value if, for
example, the control is created by dragging the icon from the tool palette. wHeight
is in dialog coordinates unless the most significant bit is set, in which case the
value is in pixels. For example, a value of "32" is 32 in dialog coordinates, but the
value "32 or $8000" is in pixels.

wStyle The default style Resource Workshop will use to create the Window. This is the
key field that you will use to distinguish one subtype from another.

szDescr The description of the control subtype. This text is used by Resource Workshop to
construct a menu item that the user can use to create an instance of your custom
control.

hToolBit A handle to a bitmap which will be placed on the tool palette. Resource Workshop
requires the bitmap be a 22x22 black and gray bitmap containing a 2-pixel border
that is white on the top and left and black on the bottom and right. You can use
the bitmaps contained in BITBTN.RES as templates.

hDropCurs A cursor to be used while dragging the control from the tool palette.

Style function
The Style function makes it possible for you to edit your custom control. You must first create an
appropriate dialog box in Resource Workshop and then implement a Boolean function that displays
that dialog box. Resource Workshop calls this function whenever you initiate a request to edit the
custom control. Resource Workshop passes the function a handle to the window that is the parent of
the dialog, a handle to memory containing the TRWCtlStyle record, and two function variables for
string conversion.

Syntax
function Style(Window: HWnd; CtlStyle: THandle; StrToId: TStrToId; IdToStr:
TIdToStr): Bool; export;

Return Value
The function must return true if the TRWCtlSytle record has been modified; otherwise, it must return
false.

Parameters
Window A handle to the parent window of the dialog box displayed by this function.
CtlStyle A handle to global memory containing the TRWCtlStyle record to be edited.
StrToId A function variable that converts a string into a control ID for the wId field of

TRWCtlStyle. This allows the user to enter the control ID using a constant
identifier. This routine evaluates the string as an expression, returning the result.
The ID can be converted back into a string by calling IdToStr.

IdToStr A function variable that converts the control ID in the wId field of TRWCtlStyle to a
string for editing. The ID can be converted back into a word by calling StrToId.
This function variable allows the user to see the symbolic constant that represents
the control ID instead of the word value.

CtlStyle record:
The following is the record type referenced by the CtlStyle memory handle:
PRWCtlStyle = ^TRWCtlStyle;
TRWCtlStyle = record
 wX: Word; { x origin of
control }
 wY: Word; { y origin of
control }
 wCx: Word; { width of
control }
 wCy: Word; { height of
control }
 wId: Word; { control
child id }
 dwStyle: LongInt; { control
style }
 szClass: array[0..ctlClass-1] of Char; { name of
control class }
 szTitle: array[0..ctlTitle-1] of Char; { control text
}
 CtlDataSize: Byte; { control data
size }
 CtlData: array[0..ctlDataLength-1] of Char; { control data
}
end;

wX The horizontal (X) location of the control in dialog coordinates.
wY The vertical (Y) location of the control in dialog coordinates.
wCx The width of the control in dialog coordinates.
wCy The height of the control in dialog coordinates.
wId The control's ID value. This value must be converted to a string by calling IdToStr

before being displayed for editing. It must be converted back into a word for
storage by calling StrToId after editing.

dwStyle The style flags of the control.
szClass The class name of the control.
szTitle The title of the control.
CtlDataSize Windows allows controls in a resource file to have up to 255 bytes of control-

defined data. This field indicates how much of that space is being used by the
control. The data is stored in CtlData.

CtlData This field holds up to 255 bytes of control-specific data. The amount used must be
recorded in the CtlDataSize field. The use of this data area is user-defined.

When you save your project, Resource Workshop saves the CtlData array into the .RC or .RES file.
To enable a custom control to access this array from within your program at run time, lParam of the
WM_CREATE message points to a CREATESTRUCT data structure. The CREATESTRUCT structure
contains a field, lpCreateParams, that is a pointer to the extra data you stored in the CtlData array. If
the pointer is nil, there is no CtlData.
The CtlDataSize variable is not available to your program. To make the size data accessible to your
program, the CtlData array should either contain a fixed amount of data, or its first byte should contain
the length of the data.
The Style function first converts the ID to a string by passing the numerical ID value to IdToStr. The
Style function then displays the string in the dialog box.
If the user changes the string that's returned by IdToStr, the Style function verifies the string by passing
it to StrToId, which determines if the string is a valid constant expression. If StrToId returns a zero in
the low word, the ID is illegal and is displayed in the dialog box so the user can change it to a valid ID.
If StrToId is successful, it returns a nonzero value in the low word and the ID in the high word.

Flags function
The Flags function is used by Resource Workshop to translate the style of a control into text. Resource
Workshop inserts the text into the .RC file being edited. The function must only convert the values
unique to the control. For example, if you were creating a Flags function for the Windows button class,
you would only examine the lower sixteen bits of Flags and translate them into one of the bs_XXXX
constants.

Syntax
function Flags(Flags: LongInt; Style: PChar; MaxString: Word): Word;
Return Value
Returns the number of bytes copied into the destination string. Returns 0 if the Flags word is not valid
or the string exceeds MaxString in length.

Parameters
Flags The style of the control to be translated into text. This field is derived from the

dwStyle field of the TRWCtlStyle record passed to the Style function variable.
Style The location to write the translated text.
MaxString The maximum number of bytes the Flags function can write into Style.

