
What's PowerBSORT OLE custom control ?
PowerBSORT enables you to use high feature, high performance sort/merge programs (DLL)
in OLE container applications. The PowerBSORT Dynamic Link Library (DLL) is required to
perform sort/merge processes with PowerBSORT OLE custom control. PowerBSORT OLE
custom control can be viewed when it's designed but cannot be displayed when it runs. You
can add high performance sort/merge processes to application programs and set properties
easily without much coding if you set properties after you place PowerBSORT object to
forms.

Registration of PowerBSORT OLE custom control
PowerBSORT must be registered when it's designed and developed or before you run
applications created with PowerBSORT OLE custom control. When both Windows 95 and
Windows NT are installed on one computer, you must register it to each OS's registries. If
PowerBSORT is installed by an installer, these essential registration operations are done
automatically. However, if PowerBSORT OLE custom control is transferred to other
directory/folder, you must register by following installation steps or registration information
will not process.

Registration operation and procedures
REGSVR32.EXE (32 bits) needs to be registered by the user and may be installed to
directory/folder specified by other users. The following steps show how to register OLE
custom control (OCX) to the registry.

<user_directory/folder>\REGSVR32    \<user_directory/folder>\F3BEBSRT.OCX

Note:
Specify PowerBSORT OLE custom control with full path name.
When PowerBSORT OLE custom control is registered normally, a message box is displayed
and informs users of the normal registration.

About the copyright
Copyright (C) 1994-1997 Fujitsu Ltd.    All rights reserved, Fujitsu, PowerBSORT is a
registered trademark of Fujitsu Ltd.. The contents of this online document might be revised
without any advance notice. Moreover, please acknowledge that our company cannot
guarantee the result of using this document. The software described in this document is
provided based on the license agreement or the closed-door agreement. These softwares
can be used or reproduced only when the agreement is followed. It is prohibited to
reproduce the software, except when the reproduction is specifically permitted in the
agreement. It is also prohibited to reproduce or divert this online document partially or
throughout without permission with electrical or mechanical form or means of photo copy,
the record equipment, the information storage medium, and the retrieval system.
Reproduction or diversion is permitted if the customers use this document personally and
our company's permission is granted.

Outline of PowerBSORT
PowerBSORT is an efficient sort/merge product for business use.
PowerBSORT supports rich key formats, such as internal decimal numbers and external
decimal numbers necessary for office work and also sorts a large quantity of data
efficiently. Since record processes (e.g. selection/summation/reconstruction of the record)
can be combined with Sort processes, you will generate processed results which meet
demand.

Introduction to main features
 See Also
Main features supported by PowerBSORT are sort, merge and copy features . The following
help features may be classified as main features.
Sort: Sort is used to arrange records into either ascending or descending order

based on key fields contained in the record.
Merge: Merge is used to combine multiple files or groups of records into a single file

or group, preserving the existing order based on key fields. Records being
merged must already be in order based on the same key fields that are
specified to the Merge feature.

Copy: This feature copies records from one file to another.    A key field is not
required for Copy.

Introduction to record option features
 See Also

Combining a main feature and the feature operating the record is called a record option
feature. In PowerBSORT, the following five features are called record option features.
Record selection: Records are selected during Sort or Merge processing based on

the contents of specified fields within the record.
Record reconstruction: During Sort , Merge or Copy processing, fields in an input record

can be moved or removed, and new constant data can be added
to create a new output record.

Record summation: The values of specially defined on Summary Fields are added
together during Sort or Merge processing, whenever records are
found to have matching keys.    Only one record is output for each
unique key value, and the Summary Field in that record will
contain the sum of all corresponding values in the matching
records.

Record Suppression: Used with Sort or Merge features, records that have keys
matching a previous record are dropped. Only one record is
output for each unique key value.

FIFO: When records are sorted, records with the same key values are
kept in the same relative order to matching records. The first
input record corresponding with each unique key value is output
first, the second input record with that same value is output
second.

Combination of main feature and record option feature
 See Also
. The following table show which main features are combined with record option features.

Option Sort Merge Copy
Record Selection A A A
Record Reconstruction A A A
Record Summation A A NA
Record Suppression A A NA
FIFO A NA NA

          A    = Available
          NA = Not Available

Supported file types
 See Also
PowerBSORT supports the following files types:
- Text file
- Binary ordinary file
- Fujitsu COBOL85 sequential file
- Fujitsu COBOL85 indexed file
- Fujitsu COBOL85 relative file
Note:
Text is a document file composed of character string data. The binary fixed length file
contains hexadecimal data in addition to character strings and is composed of records
whose length is constant.    The COBOL85 sequential file, the COBOL85 indexed file, and the
COBOL85 relative file are file formats supported by Fujitsu COBOL85 and each file has a
fixed length record format and variable-length record format. The following table shows the
combinations of input file types and output file types. COBOL85 files indicates Fujitsu
COBOL85 files.

Input File Text Binary COBOL85
 fixed sequential indexed relative

Text OK NG NG NG NG
Binary fixed NG OK OK OK OK
COBOL85
sequential fixed NG OK OK OK OK
COBOL85
sequential variable NG NG OK OK OK
COBOL85
indexed fixed NG OK OK OK OK
COBOL85
indexed variable NG NG OK OK OK
COBOL85
relative fixed NG OK OK OK OK
COBOL85
relative variable NG NG OK OK OK

Notes:
- If the file type is a text file, the 0x1a code detected in the data is processed by
PowerBSORT as EOF(End of File).    Therefore, data entered after the 0x1a of the file is not

processed.    Moreover, when 0x1a exists in an input file, the 0x1a is added to the end of
the output file.    When two or more input files include 0x1a, the size of the output file
becomes smaller than the total value of the input files size because only one 0x1a is added
to the output file.    If 0x1a does not exist in the input files, 0x1a is not added to the end of
the output file.
- The record format of the output file is the same record format of the input file.
- The file type that differs from the actual file type must not be specified. Attempts to
specify added data will result in program malfunction.

Data Formats
ASCII
ASCII data consists of character data with hexadecimal values from 0x00 to 0x7f. Special
processing is not required for ASCII data.

Unsigned binary
Eight bit values in a byte can be used by defining a numeric mask value that is used to
select specific bits.    The mask and the data byte are compared with a logical AND process
(the logical product). The mask is specified as a decimal number but is translated into a
binary string.    For example, should the right 3 bits of a byte be desired as the key field, a
mask of 7 would be specified.    The 7 is translated into the binary mask of "00000111".   
When the mask is AND'ed with the data byte, the left hand 5 bits of the product will be 0
and the right hand 3 bits will match the bits in the data byte.

Fixed point signed binary
The first bit of this binary number is assumed to be a sign.    A 1 makes the number
positive.    A 0 is negative.    All other bits are treated as a binary value.

Fixed point unsigned binary
This binary number does not have a sign bit.

IEEE format floating point binary
This 32 bit binary number uses the first bit as a sign and the next 7 bits as an exponent
value from 1 to 127.    The remaining 24 bits represent the mantissa of the floating point
number.

IEEE format floating point binary double precision
This 64 bit binary number uses the first bit as a sign and the next 10 bits as an exponent
value.    The remaining bits represent the mantissa of the floating point number.

Internal decimal number
This format, sometimes called "packed decimal", stores two decimal digits (0-9) in a single
byte.    Each digit is stored as a hexadecimal 4 bit nibble with only the valid decimal values
(0-9) allowed.    The right most nibble of the right most byte is reserved to carry the sign.   
A value of 0xa, 0xc, 0xe or 0xf in the sign nibble indicates positive.    Values of 0xb or 0xd
indicate negative.    A 1 byte number can store 1 digit and a sign.    A 2 byte number can
store 3 digits and the sign.    (e.g. 0x23901c is the positive number 23901)

External decimal
This format, sometimes called "display format", stores one decimal digit in each byte.    The

left nibble (4 bits) of each byte is filled with 0x3.    The right nibble has the decimal digit
(0-9).    The left nibble of the right most byte holds a sign.    When this nibble is 0x4 the
number is positive.    0x5 indicates negative.    (e.g. 0x34303152 is the negative
decimal number -4012)

Leading separated sign
This format is a version of display format similar to external.    Decimal digits are stored in
the right nibble (4 bits) of each byte and the left nibble is filled with 0x3.    The left most
byte is reserved as a sign.    A value of 0x2b indicates positive and 0x2d is Negative.   
(e.g. 0x2b3431 is the decimal +41)

Trailing separated sign
This format is identical to leading separated sign format except the sign byte is the right
most byte.    (e.g.    0x34312b is +41)

Leading overpunched sign
This format is identical to external decimal format except the sign is on the left nibble of
the left most byte, rather than the right most byte. (e.g. 0x54303132 is the negative
decimal -4012)

Trailing overpunched sign
This format is identical to external decimal format.

Relation between PowerBSORT data format and Visual Basic data type
The following table displays which Visual Basic data type corresponds to the data format
supported by PowerBSORT
[Explanation of Key words in the following lists]
Data type: Visual Basic
Data format: PowerBSORT
Data type Data format 1996 -1996
String asc 3139393620 2D31393936
Byte asc
Integer fbl CC07 34F8
Long fbl CC070000 34F8FFFF
Single ifl 0080F944 0080F9C4
Double ifl 0000000000309F40 00000000000309FC0
Currency - C090300100000000 406FCFFFFFFFFFFF
Date - 0000000000309F40 00000000000309FC0
Boolean -
Variant -

Data type Bytes Range
String 1 byte par 1 character0 to about 65,500bytes
Byte 1 byte 0 to
Integer 2 bytes -32,768 to 32,767
Long 4 bytes -2,147,483,648 to 2,147,483,647
Single 4 bytes -3.402823E38 to -1.401298E-45 (negative values)
 ditto 1.401298E-45 to 3.402823E38 (positive values)
Double 8 bytes -1.79769313486231E308 to -.94065645841247E-324

(negative values)
 ditto 4.94065645841247E-324 to .79769313486231E308

(positive values)
Currency 8 bytes -922,337,203,685,477.5808 to

922,337,203,685,477.5807
Date 8 bytes 1 Jan. 100 A.D. to 31 Dec. 9999 A.D.
Boolean 2 bytes True or False
Variant 16 or 1 byte par 1 character (in the case data is a character string)

AlphaNumOnly Property
    See Also
All key field specifications are omitted in text file sorting or merging (DisposalNumber=0
or 1) and True is to be set if alphabet, number, blank and tab are entered.

Syntax
object.AlphaNumOnly [= integer]
The AlphaNumOnly property syntax has the following parts:
Part Description
object Specify the object expression that refers to the object.
integer Specify the value that determines behavior when key field is omitted. See

“Settings” below for the value to be set.

Settings
The settings for integer are:
Setting Description
True Alphabet, number,blank and tab are entered.
False (Default) All characters are entered.

Remarks
The value specified in this property makes sense only when text file is dealt and key field of
sorting or merging is omitted. It does not make sense in other cases. This option also has
the same meaning in the KeyCmdStr property. This operation is performed for every
specified key field and AlphaNumOnly property is performed when all key fields are
omitted.

CollationOrder Property
    See Also
Key field checking order is set if all specifications of key field are omitted in sorting or
merging of the text file (DisposalNumber=0 or 1). Checking order means how to compare
character string.

Syntax
object.CollationOrder = {value}
The CollationOrder property syntax has the following parts:
Part Description
object Specify the object expression that refers to the object.
value Specify the value that determines the key field checking order. See

“Settings” below for the value to be set.

Settings
The CollationOrder Property settings are:
Setting Description
0 (Default) No specification (Checking order of system).
1 Comparison is performed even if some bites exist.
2 The number including sign (+,-)character are dealt.

Remarks
The value specified in this CollationOrder property makes sense only when text file is
dealt and key field of sorting or merging is omitted. It does not make sense in other cases.
This option also has the same meaning in the KeyCmdStr property. This operation is
performed for every specified key field and CollationOrder property is performed when all
key fields are omitted. “Checking order of system” means Binary mode or arranging in the
order of character code.

CompareAsUpperCase Property
    See Also
True is set if all key field specifications are omitted in sorting or merging of the text file
(DisposalNumber=0 or 1) and small letters are dealt as capital letters.

Syntax
object.CompareAsUpperCase [= integer]
The CompareAsUpperCase property syntax has the following parts:
Part Description
object Specify the object expression that signifies reference to the object.
integer Specify the value that directs behavior when key field is omitted. To set up

value, refer to “Settings” below.

Settings
The settings for integer are:
Setting Description
True Lowercase letters are dealt as uppercase letters.
False (Default) Lowercase letters and uppercase letters are dealt separately.

Remarks
The value specified in this property makes sense only when text file is dealt and key field of
sorting or merging is omitted. It does not make sense in other cases. This option also has
the same meaning in the KeyCmdStr property.    This operation is performed for every
specified key field and CompareAsUpperCase property is performed when all key fields
are omitted.

DispMessage Property
    See Also
This property specifies if messages are to be displayed should an error be found in
PowerBSORT OLE custom control execution. Set True if error messages are to be displayed.

Syntax
object.DispMessage [= integer]
The DispMessage property syntax has the following parts:
Part Description
object Specify the object expression that refers to the object.
integer Specify the value determining whether error messages are visible or hidden.

To set up value, refer to“ Settings” below.

Settings
The settings for integer are:
Setting Description
True Error messages are displayed when errors are found.
False (Default) Error messages are hidden.

Remarks
DispMessage property displays error messages on the screen. The code is set to
ErrorCode, ErrorDetail and SubErrorCode property (depending on the case) when errors
are found upon execution, even if error messages are not displayed. However, you should
examine the meaning of the error code from the help menu. The process is halted to
display messages when errors are found if DispMessage property is set to display
messages. If you wish to refer to error code when errors are found and continue to process
(by coding to cut the process by the value), it is convenient to set the value of
DispMessage property to False.

DisposalNumber Property
    See Also
Main feature performed In PowerBSORT is set.

Syntax
object.DisposalNumber = {value}
The DisposalNumber property syntax has the following parts:
Part Description
object Specify the object expression that refers to the object.
Value Specify the value that determines the main feature of PowerBSORT. To set up

value, refer to “Settings” below
Settings
The DisposalNumber property settings are:
Setting Description
0 (Default) Sort feature.
1 Merge feature.
2 Copy feature.

Remarks
This DisposalNumber property is important because sort, merge and copy features, the
main features of PowerBSORT, are determined by the value specified in this property.

EnableOverwriteInputFile Property
See Also
Sets output file handling when the output file set in OutputFile property exists in the input
file set in InputFiles property. Set True if input file can be overwritten.

Syntax
object.EnableOverwriteInputFile [= integer]
The EnableOverwriteInputFile property syntax has the following parts:
Part Description
object Specify the object expression that refers to the object.
integer Specify the value that determines how to specify the field.

Settings
The settings for integer are:
Setting Description
True Overwriting on input file is allowed.
False (Default) Overwriting on input file is not allowed.

Remarks
EnableOverwriteInputFile property is valid in sort process(DisposalNumber = 0).
Therefore error occurs if True is set in merge process (DisposalNumber = 1) or copy
process(DisposalNumber = 2).
EnableOverwriteInputFile property is a feature to protect your resource.    Input file data
is rewritten if the result of sorting has the same name as the input file.    Therefore, do not
use this value if you do not wish to input file rewrite data.

FieldDefinition Property
See Also
Sets text files field specification.

Syntax
object.FieldDefinition = {integer}
The FieldDefinition property syntax has the following parts:
Part Description
object Specify the object expression that refers to the object.
integer Specify the value determining how to specify the field. To set up value, refer

to “Settings” below

Settings
The FieldDefinition property settings are:
Setting Description
0 (Default) Distinguish the field by field separation character. It is sometimes

called “floating field”.
1 Specify field by column position. It is sometimes called “fixed field”.

Remarks
FieldDefinition property is valid when the processed file is text file. Files other than text
file (e.g. binary file) are always calculated with the column position from the head of the
record (FieldDefinition = 1    in this property).
How to calculate the field position of various field, such as key field(KeyCmdStr Property),
summation field(SumCmdStr Property), reconstruction field (RconCmdStr Property) and
selection field (SelCmdStr Property) changes depending on how field specification is set in
the FieldDefinition property. For more information on field separation character and
floating field, see FieldDelimiter property.

FieldDelimiter Property
See Also
Sets text file field separation character.

Syntax
object.FieldDelimiter = {string}
The FieldDelimiter property syntax has the following parts:
Part Description
object Specify the object expression that refers to the object.
string Specify character expression used as field separation character.
Remarks
Field separation characters indicate field break points in the record. There are two ways to
specify field separation characters. One option is to specify by character string and the
other is to specify by hexadecimal. If you specify field separation characters by character
string, enclose the whole with a quotation mark. (')    If you use the quotation mark
separation character, set a backslash (\) ahead of    the quotation mark. If you specify with
hexadecimal, insert an 'x' at the head and then set the hexadecimal code. Blank or tab
code is regarded as a field separation character when they are omitted.
If you use (\) mark as a field separating character, specify two(\) marks consecutively. For
example, specify (\\) if you specify(\). Do not use the same character as a record separation
character.

Example of Field separation character specification
- Character string specification
    single blank: ' '
    single \mark: '\\'
    character string including quotation mark: ' \''
- Hexadecimal specification

specification of level tub: x09

Notes on field specification divided by separation character:
- The field numbers of floating field are counted from 0.
- Separation character is not included in the field. However, blank or tab of the head of

record is included in the head field if field separation character is omitted.
- The first blank becomes a separation character if blanks are continued and the rest of the

blanks are regarded as a part of the field. However, an empty field is regarded as
existing when separation characters continue if you specify the separation character.

FjcobAlternateKey Property
See Also
Sets index sub key when making output file Fujitsu COBOL85 index file. (OutputFileType=
3) The sub key defines the position and length.

Syntax
object.FjcobAlternateKey = {string}
The FjcobAlternateKey property syntax has the following parts:
Part Description
object Specify the object expression that refers to the object.
string Specify sub key of Fujitsu COBOL85 index following the description form.

Remarks
The following is the sub key description form for FjcobAlternateKey property. Separate
plural sub keys with /.

Description Form:
      [D] (pos.len [/pos.len] ...)
D
Specify this when sub key data items overlap with other keys.
Pos(Position)
Specifies the sub key position of Fujitsu COBOL85 index file by decimal number. Relative
position from the head of data item record (the bite number which starts from 0) is
specified as the position.
len(Length)
Specifies the sub key length of Fujitsu COBOL85 index file by decimal number. Be sure to
make the total length of main key (FjcobPrimeKey Property) and sub key
(FjcobAlternateKey Property) 254 bites or less.
/
Specify plural data fields as a key by separating with '/'.

Notes:
- FjcobAlternateKey property operates only if Fujitsu COBOL85 file system is installed.
Contact Fujitsu to obtain information about Fujitsu COBOL. (See product “About
Information” for details.)

- Errors occur if output file type is not Fujitsu COBOL85 index (OutputFileType = 3).
- Data form of specified sub key is processed in ASCII code.

- Specified main key is arranged in ascending order. They cannot be arranged in
descending order.

FjcobDataCompression Property
See Also
Specifies whether record is compressed or not when making output file Fujitsu COBOL85
index file (OutputFileType = 3). Set True to compress record.

Syntax
object.FjcobDataCompression [= integer]
The FjcobDaraCompression property syntax has the following parts:
Part Description
object Specify the object expression that refers to the object.
integer Specify the value that directs record compression. To set up value refer to

“Settings” below.

Settings
The settings for integer are:
Setting Description
True Compress record.
False (Default) Does not compress record.

Remarks
FjcobDataCompression property is valid only when Output file type is Fujitsu COBOL85
index file (OutputFileType = 3). Errors occur if another type of output file is specified.

Note:
FjcobDataCompression property operates only if the Fujitsu COBOL85 file system is
installed. Contact    Fujitsu to obtain information about Fujitsu COBOL. (See product “About
Information” for details.)

FjcobKeyCompression Property
See Also
Specifies whether to compress index key when making output file Fujitsu COBOL85 index
file (OutputFileType = 3).    Set True to compress index key.

Syntax
object.FjcobKeyCompression [= integer]
The FjcobKeyCompression property syntax has the following parts:
Part Description
object Specify the object expression that refers to the object.
integer Specify the value that directs index key compression. To set up value refer to

“Settings” below.

Settings
The settings for integer are:
Setting Description
True Compress index key.
False (Default) Does not compress index key.

Remarks
FjcobKeyCompression property is valid only when Output file type is Fujitsu COBOL85
index file (OutputFileType = 3). Errors occur if another type of output file is specified.

Note:
FjcobDataCompression property operates only if the Fujitsu COBOL85 file system is
installed. (See product “About Information” for details.)

FjcobPrimeKey Property
See Also
Sets index main key when making Output file Fujitsu COBOL85 index file (OutputFileType
= 3).    The main key is defined with the position and the length.

Syntax
object.FjcobPrimeKey = {string}
The FjcobPrimeKey property syntax has the following parts:
Part Description
object Specify the object expression that refers to the object.
string Specify the main key of Fujitsu COBOL85 index following its description form.

Remarks
The description form of main key described to FjcobPrimeKey property is shown below.
Specify plural main keys by separating with / .

Description Form:
      [D] (pos.len [/pos.len] ...)
D
Specify this when data item sub keys overlap with other keys.
Pos(Position)
Specifies the sub key position of Fujitsu COBOL85 index file with a decimal number. Relative
position from the head of data item record (the bite number which starts from 0) is
specified as the position.
len(Length)
Specifies the main key length of Fujitsu COBOL85 index file with a decimal number. Make
the total of length of main key (FjcobPrimeKey Property) and sub key
(FjcobAlternateKey Property) 254 bites or less.
/
When you specify plural data fields as a key, separate with '/'.

Notes:
- FjcobPrimeKey property operates only if the Fujitsu COBOL85 file system is installed.
(See product “About Information” for details.)

- Errors occur if output file type is not Fujitsu COBOL85 index (OutputFileType = 3).
- Data form of specified sub key is processed in ASCII code.
- Specified main key is arranged in ascending    order. They cannot be arranged in

descending order.

HandlingSameKey Property
See Also
Sets how to process some key fields having the same contents. It does not process when
the copy feature is used (DisposalNumber = 2).

Syntax
object.HandlingSameKey = {value}
The HandlingSameKey property syntax has the following parts:
Part Description
object Specify the object expression that refers to the object.
value Specify the value determining how to process when key field is the same.   

To set up value refer to “Settings” below.

Settings
The HandlingSameKey property settings are:
Setting Description
0 (Default) Processes indefinitely.
1 Determines the order of record output with FIFO.
2 Deletes record suppressing.
3 Adds summary field with record summary feature.

Remarks
Compares records following key field setting in KeyCmdStr property. If identical records
are found HandlingSameKey property directs how to process them.    Therefore, the FIFO
feature, suppress feature and record summary feature will not operate alone.
Features provided in HandlingSameKey property have exclusive relation to each other.

The following is the explanation of processes (terms) used in HandlingSameKey property.
FIFO feature:
When sorting a file containing some records with the same value key field, this feature
outputs records to retain their original order. This feature operates in the sort feature
(DisposalNumber = 0).

Suppress feature:
When you sort or merge a file containing some records with the same value key field, this
feature deletes all other records leaving only one record. The suppress feature operates in
the sort/merge feature (DisposalNumber = 0 or 1).
Record summary feature:

When you sort or merge a file containing some records with the same value key field, this
feature adds the values of the summation field (the field set in SumCmdStr property) and
makes one record. This feature operates in the sort/merge feature (DisposalNumber = 0
or 1).

IgnoreControlCode Property
    See Also
All key fields specifications are omitted in sorting or merging of the text file
(DisposalNumber = 0 or 1).    Set True to ignore control code.

Syntax
object.IgnoreControlCode [= integer]
The IgnoreControlCode property syntax has the following parts:
Part Description
object Specify the object expression that refers to the object.
integer Specify the value directing whether control code is ignored or not.    To set up

value refer to “Settings” below.

Settings
The settings for integer are:
Setting Description
True Ignore control code.
False (Default) Process control code.

Remarks
The value specified in this Property operates only under the following conditions:
- The processed file is a text file.
- Key field of sorting or merging is omitted.   

This property will not operate on other conditions.    Use caution.    There are other options
that ignore control code in KeyCmdStr property.    This operation is used for every specified
key field and IgnoreControlCode property operates only if all key fields are omitted.

InputFiles Property
See Also

Sets Input files path name to perform sorting, merging and copying.

Syntax
object.InputFiles = {string}
The InputFiles property syntax has the following parts:
Part Description
object Specify the object expression that refers to the object.
string Specify Input files path name.

Remarks
Input file path names described in InputFiles property support long file names. Plural Input
file path names may also be set. File name rules are described in the system. Use the
following specifications to set plural Input files.

Note:
Placing blank(s) between file names is regarded as a separation. Therefore, if you want to
set a file name including a blank, enclose it with a double quotation.

InputFileType Property
See Also

Sets Input file type to perform sorting, merging and copying.

Syntax
object.InputFileType = {value}
The InputFileType property syntax has the following parts:
Part Description
object Specify the object expression that refers to the object.
value Specify the value determing Input file type.    To set up value refer to

“Settings” below.

Settings
The InputFileType property settings are:
Setting Description
0 (Default) Text file.
1 Binary fixed length file.
2 Fujitsu COBOL85 sequential fixed length file.
3 Fujitsu COBOL85 sequential variable length file.
4 Fujitsu COBOL85 index fixed length file.
5 Fujitsu COBOL85 index variable-length file.
6 Fujitsu COBOL85 relative fixed length file.
7 Fujitsu COBOL85 relative variable-length file.

Remarks
InputFileType property sets the file type to be processed. This property can set only one
type of file. Therefore,    plural InputFiles set in InputFiles property must be the same file
type.

Note:
This property operates only if Fujitsu COBOL85 file system is installed, even if Fujitsu
COBOL85 file is set (the option numbers 2-7 are set) as InputFile Type. (See product “About
Information” for details.)

KeyCmdStr Property
See Also
Sets sorting and merging key fields. The key fields define the position, length, data form
and key operation. The entire record is entered as ASCII code key field if it is omitted.

Syntax
object.KeyCmdStr = {string}
The KeyCmdStr property syntax has the following parts:
Part Description
object Specify the object expression that refers to the object.
string Specify key field following its description form.

Remarks
The following is the key field description form described to KeyCmdStr property.    When
specifying plural key fields, enter them continuously or separate with a comma.

Description Form :
pos.len typ opt    [pos.len typ opt ...]
pos(Position)
The key field position is specified with a decimal number. Calculate the position regarding
the head of record as 0. If text file is set in InputFileType property, whether it is the
position of field or column is decided depending on the value that was set in
FieldDefinition property and the meaning may change. Calculation is performed as the
position of column if InputFileType property is set to any file other than text file.
len(Length)
The key field length is specified with a period (.). followed by a decimal number. When an
unsigned binary number is specified, enter the mask value for length with a decimal 1-255.
The logical product of the field value and the mask value then become the key values. For
example, when the field value is 0x8e and the mask value is 3(0x03),    the key value is
0x02. When a field longer than the specified length appears for floating field text, the fields
are processed using the specified field length.
typ(Type or Data Format)
Key field data format is specified immediately after len. For Data Format specification, see
“Key field data Format and the length”.
opt(Option)
Key field order is specified immediately after typ.    For more information, see “Order of key
field”.

Key Field Data Format and length

Data Format typ Length
ASCII code asc 1 to record length
EBCDIC code ebc 1 to record length
Unsigned binary (bit) bit 1 to 8bits
Signed Fixed point binary fbi 1 to 256
Unsigned fixed point binary ufb 1 to 256
8086 format fixed point binary fbl 1 to 256
Unsigned 8086 format fixed point binary ufl 1 to 256
IEEE format floating point binary ifl 1 to 256
Internal decimal pdl 1 to 256
Unsigned internal decimal pdu 1 to 256
External decimal zdl 1 to 256
Unsigned external decimal zdu 1 to 256
Leading separate signed number als 2 to 256
Trailing separate signed number ats 2 to 256
Leading overpunch signed number alo 1 to 256
Trailing overpunch signed number ato 1 to 256

Note:
ASCII and EBCDIC code may be used with text and binary files. Other data formats may
only be used with binary files.

Order of key field
Except the text file
      [a | r]   
Order Meaning
a Arrange in ascending order.
r Arrange in descending order.

Note:
"a" and "r" cannot be specified simultaneously. When "a" and "r" are omitted, "a" is
specified.

At the text file
      [a | r]      [b]      [d]      [i]      [j]      [n | w]
Order Meaning
a Arrange in ascending order.

b Ignore leading blanks and tabs.
d Only blanks and tabs, alphanumeric characters are compared. (Note1)
i Ignore control character codes (unprinted character).
j Compare lower-case letters as upper-case letters.
n Numeric values which contain a sign are compared as arithmetic values.
r Arrange in descending order.
w Compare and arranges key field even if they include characters consisting of

plural bites.

Notes:
- "a" and "r" cannot be specified simultaneously. When "a" and "r" are omitted, "a" is

specified.
- "w" can be specified only when the type of Data Format is ASCII code.
- "n" and "w" are exclusive features. They cannot be specified simultaneously.
- When specifying plural orders, describe them continuously.
Note1:
Blanks and tabs are not recognized as control characters.

For example:
(1) 0.10asca
The 10 byte ASCII field at the beginning of the record is sorted in ascending order.
(2) 0.5ascr,20.1zdla
The 5 byte ASCII field at the beginning of the record is sorted in descending order and the 1
byte external decimal number in byte 20 is sorted in ascending order.

LineDelimiter Property
See Also
Set up separate characters in a text file record.

Syntax
object.LineDelimiter = {value}
The LineDelimiter property syntax has the following parts:
Part Description
object Specify an object expression that refers to the object.
value Specify the numerical value distinguishing separate record characters. For

value set up, see “Settings” below.

Settings
The LineDelimiter property settings are:
Setting Description
0 (Default) CRLF
1 CR
2 LF

Remarks
Separate record characters can be selected among CRLF (Carriage Return and Line Feed),
CR (Carriage Return) and LF (Line Feed). A common format text file is separated by CRLF.
CR and LF use 1 byte to separate record characters.    CRLF uses 2 bytes.    Use special
attention when calculating text file record length.

MaxRecordLength Property
See Also
Set up a record length or maximum record length to be the decimal integer.    Using a text
file, set up the maximum record length including the line feed code (the separate
characters on a record) explained in LineDelimiter property.

Syntax
object.MaxRecordLength = {value}
The MaxRecordLength property syntax has the following parts:
Part Description
object Specify an object expression that refers to the object.
value Specify the numerical value defining separate record characters. For value

set up, see “Settings” below.

Settings
The MaxRecordLength property settings are:
Setting Description
1 to 32,000 Record length

Remarks
Make the upper bound 30,720 bytes as a standard.    The upper bound of the maximum
record length can be fixed up to 32,000 bytes. Should an error message appear after
fixing the maximum length at 30,720 bytes, check the total length of the specified Key
field, the field length reorganized by the record reorganization feature, and the field length
selected by the record selecting feature to verify you have not exceeded the processing
limit of this program.    Correct the problem and execute program again. Should you
continue to experience problems, try reducing the number of key fields and process twice
by dividing the key fields.      At the text file, correct the maximum record length by
including separate characters on each record.

Notes:    If you fix a record length, note the following points:
- The maximum record length is a value with numbers of bytes up to a line feed and the

numbers of bytes of separate characters on a record are added.
- Character of two-byte code (such as an em-size Japanese character) is calculated by one

character numbering two bytes.
- If a longer record than the fixed maximum record length exists, stop processing.

OutputFile Property
See Also
Set up a file path name which outputs sort, merge, and copy processing results.

Syntax
object.OutputFile = {string}
The OutputFile property syntax has the following parts:
Part Description
object Specify an object expression that refers to the object.
string Specify an output path name.

Remarks
An output path name described in OutputFile property supports a long file name. It cannot
set up two or more file path names, unlike the InputFiles property. File name rules are
described in the Windows system.    When setting up a file name with a space, add double
quotation marks.

OutputFileType Property
See Also
Set up a file type which outputs of sort, merge, and copy processing results.

Syntax
object.OutputFileType = {value}
The OutputFileType property syntax has the following parts:
Part Description
object Specify an object expression that refers to the object.
value Specify a numerical value to the output file type. For value set up, see

“Settings” below.

Settings
The OutputFileType property settings are:
Setting Description
0 (Default) Text file
1 Fixed length of binary file
2 Sequential organization file of Fujitsu COBOL85
3 Index file of Fujitsu COBOL85
4 Relativity file of Fujitsu COBOL85

Remarks
OutputFileType property sets up an output file type. Note only one file type can be set up
by this property.

Note:
Fujitsu COBOL85 file system operates only when installed, even if it is set up (Setting option
numbers 2-4 up to value) as an output file type.    Contact Fujitsu to obtain information
about Fujitsu COBOL.    (See product “About Information” for details.)

RconCmdStr Property
See Also
Set up reconstruction field.    The reconstruction field defines the position, length or user
predetermined value, its length and data format.

Syntax
object.RconCmdStr = {string}
The RconCmdStr property syntax has the following parts:
Part Description
object Specify an object expression that refers to the object.
string Specify reconstruction field according to its description format.

Remarks
Record reconstruction feature changes the position of a field to embed user-defined values
into record.    It combines the processes of sorting, merging and copying.    When
reorganizing a record, specify the field you wish to use sequentially from the left end of the
output record.    If you wish to use the field of input record, specify its position and length.   
If you want to use a self-defined value, specify the value.
In addition, if you use the record reconstruction feature, pay special attention to setting up
the KeyCmdStr property and the SumCmdStr property.    When the record reconstruction
feature is used, these property values specify position and length against the form of
output record to be reconstructed.
The following is the description format of a record reconstruction feature described in
theRconCmdStr property.    When you specify two or more reconstruction fields, separate
them by inserting a comma (,) .

Description Form:
{ pos.len | slf.len typ } [,{ pos.len | slf.len typ } ...]
pos.len
Specify the reconstruction field position and length.    A period is put between "pos" and
"len" as shown in the above example. If a specified field is outside the record, an error
occurs.
pos(Position)
Specify the reconstruction field position with a decimal number. Calculate the head of the
record as 0.    If a text file is set up with the an input file type (InputFileType Property),
whether it is on a field position or in a column position depends on the value set up by the
FieldDefinition property. This property will determine its position and affect its meaning.
Moreover, when the input file type (InputFileType property) is set up with a text file, it is
calculated using the column position.
Note:

If the specified field does not exist with the input record, an error occurs.

len(Length)
Specify the reconstruction field length with a period (.) and a decimal numeral.    When
specifying a binary numeral (bit) without a mark to a data format, make the mask value
from 1 to 255 decimal numbers in length.
In this example, the key value is conjugation of the field value and the mask value. For
instance, when the field value is specified as 0x8e and the mask value as 3(0x03), the key
value is 0x02. A floating field is a longer field than the specified field length and is
processed with the specified field length.    When a shorter field than the specified field
length is displayed, it is processed with its actual field length.
slf.len typ
The specification method to pad a self-defined value to an output record is accomplished by
placing a period between "slf" and "len". See prior example.
slf(Self-defined Values)
Specify the self-defined value to pad an output record. Self-defined values are specified by
the following three methods:
- Character string values: 'character string' (e.g. '123', 'AbCD')

Enclose the character string with quotation marks.
- Hexadecimal numbers: x###### (e.g. x313233)

Put an "X" at the head and continue the hexadecimal number code.
- Decimal numbers: d#### (e.g. d123, d+123, d-123)

Put a "d" at the head and continue the decimal numbers. Symbols "+" and "-" may also
be added.

Only characters can be used in a text file.
len(Length)
Specify the self-defined value length with a period (.) and a decimal number.
typ(Type or Data Format)
Specify the self-defined value data format.

Self-defined Value of a reconstruction field
A self-defined value is a constant or a character string constant of a decimal number or a
hexadecimal number.    For instance, the self-defined value is used to add    the decimal
number 00 value to a output record field or is used for other    purposes.    A self-defined
value is determined by a value, a format and a length.

Notes of self-defined value
A character equal to a record separation character cannot be specified as a self-defined
value.    In addition, a floating field equivalent to a record separation character may not be
specified.

- Marks can be defined on specification of a decimal number.

- When you specify an quotation mark (') , specify it sequentially ('').
- If the value (slf) specified by an self-defined value is not as long as the length specified

by the length (len), use the corresponding processes below.
When the length of a self-defined value is shorter than the "len".
Character string: Add a self-defined value to the left, then add spaces to the right blank.
Figure: Add a self-defined value to the left, then add 00 to the left blank.
When the length of a self-defined value is longer than the "len".
Character string: Add a self-defined value to the left and ignore the remainder.
Figure: Add a self-defined value to the right and ignore the remainder.

Note:
If a self-defined value described with a hexadecimal number is an odd number, an error
occurs because the value of hexadecimal number should consists of a 2 bytes unit.    For
instance, when a self-defined value is specified as x234.1asc, it becomes an ASCII code
whose length (len) is 1 byte even though the specified self-defined value is a 3 digit odd
number. In this case, the specified self-defined value cannot recognize the ASCII code
because 1 byte in the ASCII code consists of a 2 digit number.

Data format of a reconstruction field and length of a self-defined value
The following shows the specified reconstruction field data format and the self-defined
value lengths.

Except the text file
Type of Data format typ Length Data format that can be specified
ASCII code asc 1 to 256 Character or Hexadecimal
Signed fixed point binary fbi 1 to 8(Note) Decimal
Unsigned fixed point binary ufb 1 to 8(Note) Decimal
Internal decimal pdl 1 to 16 Decimal
External decimal zdl 1 to 18 Decimal

At the text file
Type of Data format typ Length Data format that can be specified
ASCII code asc 1 to 256 Character or Hexadecimal

Note:
Fixed point binary numbers and fixed zero point unsigned binary numbers can be specified
within 8 bytes. The fixed zero point binary numbers range can be specified from -
2147483647 (0x80000001) to 2147483647(0x7fffffff). On the other hand, the unsigned
binary number range can specify from 0(0x00000000) to 4294967295(0xffffffff).

For example:
(1) 20.10,50.12,30.22
Reorganize the input record sequentially following the fields shown below and then output
the record.

First field : 10 bytes from the 20th byte of the input record.
Second field: 12 bytes from the 50th byte of the input record.
Third field : 22 bytes from the 30th byte of the input record.

(2) 'abc'.8asc,20.10
Reorganize the input record sequentially following the fields shown below and then output
the record.

First field : Enbed 8 bytes into the character string 'abc' of an ASCII code.
Second field: 10 bytes from the 20th byte of the input record.

Reverse Property
    See Also
For text file sorting or merging processes(DisposalNumber = 0 or 1) set up the row when
all key field specifications are omitted, False is an ascending order and True is a
descending order. When these specifications are omitted, ascending order is set up.

Syntax
object.Reverse [= integer]
The Reverse property syntax has the following parts:
Part Description
object Specify an object expression that refers to the object.
integer Specify a value indicating the row default key fields. For value set up refer to

“Settings” below.

Settings
The settings for integer are:
Setting Description
True Sort in descending order.
False (Default) Sort in ascending order.

Remarks
The value specified in this property has meaning only when the key field processed both by
sorting and merging is omitted, and the file to be processed is a text file.    If these cases
are not met, the value is meaningless.    Similarly, sorting operation exists in the
KeyCmdStr property option. It operates specified key fields sequentially. Reverse
property, however, is a operation available only when all key fields are omitted.

SelCmdStr Property
See Also
Set up the selection field. The record selection field defines the selection condition by the
logical expression.

Syntax
object.SelCmdStr = {string}
The SelCmdStr property syntax has these parts:
Part Description
object Specify an object expression that refers to the object.
string Selection field is specified according to the description format.

Remarks
This record selection feature specifies the method of selecting a record to be processed and
uses only necessary records. The record selection feature combines sorting, merging or
copying processes. If you select a record, specify a compared field, a comparing field and
comparison operator, or specify a compared field, a self-defined value and a comparison
operator. This feature then compares two specified fields according to the comparison
operator and determines whether to or not to select the sorted, merged, and copied record.

The selection field description format described in SelCmdStr property is as follows; When
specifying two or more selection fields, tie each selection together using AND or OR.

Description Format:
pos.len typ opt.cmp. { pos.len typ | slf } [{ AND | OR } pos.len typ opt.cmp. { pos.len typ |
slf } ...]
Place a period (.) between pos and len and describe continuously between len and typ.
Put periods in front and behind cmp, and describe continuously without using blank(s).
pos(Position)
Specify the position of a selection field by a decimal number.    Calculate the head of the
record as 0. If a text file is set up with the input file type (InputFileType Property),
whether the specified position is a field position or a column position, it is judged by the
value set up in FieldDefinition property and its meaning changes.    Moreover, when the
input file type (InputFileType property) is set with a text file, pos is calculated at the
column position.

Note:
An error occurs when the specified field is outside the record.

len(Length)
Specify the selection field length by a period and a decimal number.    When specifying an
unsigned binary number (bit) for a data format typ, use the mask value to be a decimal
number from 1 to 255.      In this case, conjugation of the field value and the mask value
reaches the key value. For instance, when the field value is specified as the hexadecimal
number 0x8e and the mask value as 3(0x03), the key value becomes hexadecimal
number 0x02. When a floating field is a longer field than the specified field length, it is
processed by the specified field length. A shorter floating field than the specified field
length is processed with its actual field length.

typ(Type or Data Format)
Specify the selection field data format. For details on the data format specifications, refer to
"data format of the compared field and the comparing field" . For data format length
specifications, refer to "data format and its length".

opt(Option)
Specify the selection field operation. This specification is effective when the input file type
is a text file.    The operation instruction is shown below.

Options Meaning
b Disregard the first blank of the key field.
d Compare only blank and alphanumeric characters.
i Disregard a code of control characters.
j Compare English small letters as an English capital letter.
n Compare the character string of figures which includes a mark with an

arithmetic value.

cmp(The comparison operator)
Specify a comparison operator. Comparison operators are listed below.

Comparison Operator Meaning (true case)
eq compared field = comparing field (including a self-regulated value)
ne compared field != comparing field (same)
gt compared field > comparing field (same)
ge compared field >= comparing field (same)
lt compared field < comparing field (same)
le compared field <= comparing field (same)

slf(Self-defined Values)

If you compare values using a self-defined value, specify the formats listed below.    For data
specified as a self-defined value, refer to "data format specified for a self-defined value".
- Character string values: 'character string' (e.g. '123', 'AbCD')
- Hexadecimal numbers: x###### (e.g. x313233)
- Decimal numbers: d#### (e.g. d123, d+123, d-123)

Only characters can be used as a text file.

Data format of a compared field and a comparing field
The data formats specified for a compared field and a comparing field are shown below.
Except for a text file
COMPARED FIELD COMPARING FIELD
ASCII code ASCII code
Unsigned binary (bit) Unsigned binary (bit)
Fixed point binary Fixed point binary
Unsigned fixed point binary Unsigned fixed point binary
Internal decimal Internal decimal
    External decimal
External decimal Internal decimal
    External decimal
Leading separate signed number Leading separate signed number
    Trailing separate signed number
Trailing separate signed number Leading separate signed number
    Trailing separated sign
Leading overpunch signed number Leading overpunch signed number
    Trailing overpunch signed number
Trailing overpunch signed number Leading overpunch signed number
    Trailing overpunch signed number
At a text file
COMPARED FIELD COMPARING FIELD
ASCII code ASCII code

Data Format specified for a Self-defined Value.
Compared fields and the data formats specified for a self-defined value are shown below.
Except for a text file
COMPARED FIELD SELF-DEFINED VALUE
ASCII code Character or Hexadecimal

Unsigned binary(bit) Decimal
Fixed point binary Decimal
Unsigned fixed point binary Decimal
Internal decimal Decimal
External decimal Decimal
Leading separate signed number Decimal
Trailing separate signed number Decimal
Leading overpunch signed number Decimal
Trailing overpunch signed number Decimal
At the text file
COMPARED FIELD SELF-DEFINED VALUE
ASCII code Character or Hexadecimal
The data format and its length
The followings are data formats and its length.
Except the text file
Data Format typ Length(bytes)
ASCII code asc 1 to 256
EBCDIC code ebc 1 to 256
Unsigned binary (bit) bit 1 to 8 bits
Fixed point binary number fbi 1 to 256
Unsigned ‚†ixed point binary ufb 1 to 256
Internal decimal number pdl 1 to 256
External decimal number    zdl 1 to 256
Leading separate signed number als 2 to 256
Trailing separate signed number ats 2 to 256
Leading overpunch signed number alo 1 to 256
Trailing overpunch signed number ato 1 to 256

At a text file
Data Format typ Length (bytes)
ASCII code asc 1 to 256

For example:
 (1) 20.10asc.eq.30.10asc

Compare the ASCII code of 10 bytes from the 20th byte of the input record and the ASCII
code of 10 bytes from the 30th byte of the input record. If both codes are equal in length,
make the record to be processed.

(2) 20.10asc.ne.'abcd'
Compare the ASCII code of 10 byte from the 20th byte of an input record and the character
string 'abcd' in the ASCII code. If both codes are equal in length, make the record to be
processed.

(3) 12.4fbi.ge.d30
The record whose length is 30 bytes or more in decimal number is made to the record to be
processed by the field of 4 byte length in fixed point binary number from the 12th byte of
the input record.

Descriptions Using AND or OR
20.10pdl.lt.d123 AND 50.4zdl.gt.d-123
For input records, select records corresponding to both following conditions.
Condition 1: The field of 10 byte length in internal decimal number from the 20th byte of an

input record is shorter than decimal number 123.
Condition 2: The field of 4 byte length in external decimal number from the 50th byte of an

input record is longer than decimal number -123.
"20.10asc.eq.'abcd' OR 50.4zdl.gt.d123"

For input records, select records corresponding to either of the following two conditions:
Condition 1: The record including the character string "abcd".

The position of the character string inside the record is at the 20th byte from
the head of the record, and its length is 10 bytes.
When specifying "abcd" without a blank, as shown above, the blank of 6
characters is set up after 'd' so it is a 10 byte length.

Condition 2: The record including decimal number above 123.
The position of the number inside the record is at the 50th byte from the head
of the record, and its length is 4 bytes.

Note:
The priority level AND and OR becomes in the order of AND > OR.    Parentheses or
brackets cannot be used. Write the logical expression as (a AND b) OR(c AND d) to read a
AND b OR c AND d, the logical expression a OR (b AND c) to read a OR b AND c and
the logical expression a AND (b OR c) to read a AND b OR a AND c.

SkipLeadingBlank Property
    See Also
In text file sorting or merging processes (DisposalNumber = 0 or 1) all key field
specification is omitted and True is set when the first blank and the tab are disregarded.

Syntax
object.SkipLeadingBlank [= integer]
The SkipLeadingBlank property syntax has the following parts:

Part Description
object Specify an object expression that refers to the object.
integer Specify the value indicating whether the first blank and the tab are

disregarded or not.    For value set up, refer to "Settings" below.

Settings
The settings for integer are:

Setting Description
True Disregard the first blank and the tab.
False (Default) Process all characters

Remarks
The value specified in this property has meaning only when the file to be processed is a
text file and the key field of sorting and merging processes are omitted. Note it does not
have meaning in other cases.    Similarly, what operates this order also exists in the option
<KeyCmdStr property>.    Note the difference is the operation of each specified key field.
SkipLeadingBlank property is an operation when all key fields are omitted.

SumCmdStr Property
See Also
Set up the Summation field when sorting or merging processes are completed. The
summation field defines the position, length, and the data format. The summation field
value doubles the key field value being set up in KeyCmdStr property but cannot be
specified.

Syntax
object.SumCmdStr = {string}
The SumCmdStr property syntax has the following parts:

Part Description
object Specify an object expression that refers to the object.
string Specify a summation field according to its description format.

Remarks
The summation feature adds the summation field being set up in the SumCmdStr property
one after another when all the key field values specified in KeyCmdStr property possess
the same records. However, even if the summation field is set with SumCmdStr property,
records are not summed unless the value of HandlingSameKey property is 3 (record
summation).

Note:
The record summed and output cannot be made to a specific record. The remaining records
are undecided and then decided arbitrarily by the execution condition and the environment
of PowerBSORT.    Moreover, when an overflow occurs during summation processing, it is
interrupted at that time, but the processing of PowerBSORT is continued. If the error is not
detected by the processing afterwards, the 0 shows a normal end is set in ErrorCode
property. To determine whether an overflow occurred, use value ErrorDetail property to
reflect code 115.

The key field description format described in SumCmdStr property is the following; When
specifying two or more summation fields, specify a key field continuously or specify them
with a comma (,).

Description Format:
pos.len typ    [pos.len typ ...]
pos(Position)
Specify the summation field position by decimal number. Calculate the head of the record
as 0 at the position.. If a text file is set up by the input file type (InputFileType Property),

whether the specified position is a field position or a column position, it is judged by the
value set up with the FieldDefinition property, changing its meaning.    Moreover, when
the input file type (InputFileType Property) is set with a text file, the position of a
summation field is calculated at the column position.

len(Length)
Specify the summation field length by a period (.) and a decimal number. If you specify a
unsigned binary number (bit) for data format typ, specify the mask value to be a decimal
number from 1 to 255.    In this case, conjugation of the field value and the mask value
reaches the key value. For example, if the field value is specified as hexadecimal 8e and
the mask value is specified as decimal 3, the key value becomes hexadecimal 02.

Note:
If you set up a reconstruction field using the RconCmdStr property, specify the summation
field according to the field shown by the reconstruction field.
When the floating field is processed with a text file, the summation result is processed by
the specified field length. Conversely, when a field shorter than the specified field appears,
the summation result is calculated by the actual field length. See the following examples.

How are floating fields summed ?
It is assumed that following records are summed.
Record 1: F5
Record 2: F123
When the summation field is 0.1asc, 5 and 1 are added and the result of summation
becomes 6.
When the summation field is 0.3asc, 5 and 123 are added and the summation result
becomes 128.

typ(Type or Data Format)
Specify the summation field data format to follow len.    For specifying data format, refer to 
" summation field data format and its length".

Summation field data format and its length
The summation field data format and its length are shown as follows.

Except for a Text File
The data format typ Length (number of bytes)
Internal decimal number pdl 1 to 16
External decimal number zdl 1 to 18

Fixed point binary fbi 1 to 8
Unsigned fixed point binary ufb 1 to 8

At a Text file
The data form typ Length (number of bytes)
ASCII asc 1 to 256

For example
(1) 20.10zdl
Sum the field of 10 bytes in external decimal number from the 20th byte of the input
record.

(2) 10.10zdl30.8fbi
Sum the field of 10 bytes in external decimal number from 10th byte of the input record
and the field of 8 bytes in fixed point binary number from 30th byte of the record.

Notes:
- Complete Summation fields must be included within a record
- Specify a summation field so that it does not overlap a key field or another summation

field
- The remaining records summation results are undecided
- If an overflow occurs during summation fields addition process, summation process is not

completed
- Numbers containing a decimal point cannot be summed

TempDir Property
See Also

Set up an temporary file allocated directory name used in sorting processes.

Syntax
object.TempDir = {string}
The TempDir property syntax has the following parts:

Part Description
object Specify an object expression that refers to the object.
string Specify the temporarily file directory name according to the description

format.

Remarks
During sorting process, if the data amount is excessive, data may not be processed due to
memory restraints.    A temporary file collects unprocessed data.
TempDir property sets the directories (or the folder names) to create the temporary file.   
In TempDir property, two or more directories (or folder names) can be specified in
TempDir property..    If two or more directories (or folder names) are specified, errors result
due to insufficient free space.    When specifying two or more directories (or folder names),
specify a different drive using a semicolon (;).When the directory (or file) name of a
temporary file is omitted, create temporary files according to the following priority:

1. The directory or folder specified by the environmental variable BSORT_TMPDIR.
2. The directory or folder specified by the environmental variable TEMP.
3. The directory or folder specified by the environmental variable TMP.
4. Windows system directory or folder.

Note:
If the specified directory (or the folder name) does not exist, PowerBSORT displays an error
message.

UsableMemorySize Property
See Also
Specify the memory size PowerBSORT uses in a decimal number integer. The setting is
treated as a unit of kilobyte (1024 bytes).

Syntax
object.UsableMemorySize = {value}
The UsableMemorySize property syntax has the following parts:

Part Description
object Specify an object expression that refers to the object.
value Specify the numeric of the memory size. For value set up, refer to "Settings"

below.

Settings
The UsableMemorySize property settings are:

Setting Description
64 to 32,767 (Default = 0) memory size (KB, kilobyte).

Remarks
When the value of UsableMemorySize property is a default, the value 0 is set up with
UsableMemorySize property.    This value 0 has a special meaning and is operated by the
memory size PowerBSORT decides. PowerBSORT can operate with the value of 64 kilobytes
or more.    Therefore, if the value is set up as a number 1-63 with UsableMemorySize
property, an error occurs.
PowerBSORT uses specified memory size.    However, the specified memory size may not be
secured by a particular type of environment at execution time. The processing is continued
with the memory size secured in the execution time.    However, when an obstacle occurs
within execution, set up the error detail code showing memory insufficiency to ErrorCode
property and interrupt the processing.    At this time, enlarge the specified memory size and
execute the processing again. Should memory errors occur (even if the memory size is
enlarged), check the execution environment where other application programs use memory.
If other applications are open, close them to free up memory.
Generally, the more the memory size set up with UsableMemorySize property, the faster
its processing is executed.    However, greater performance might not be demonstrated due
to constant memory swapping, caused when the memory size is too large. To best utilize
the operation environment adjust memory accordingly.

ErrorCode Property
    See Also
The return code of PowerBSORT is notified with the LONG value.    Reference to this property
is available only when PowerBSORT OLE (Custom Control) is executed.

Syntax
object.ErrorCode
The ErrorCode property syntax has the following parts:

Part Description
object Specify an object expression that refers to the object.

Values to be returned
The values to be returned to ErrorCode property are:

Error code Description
0 Terminated Successfully.
-1 A error was detected while processing PowerBSORT DLL.
-2 A error was detected while the syntax analysis processing with PowerBSORT

OLE (Custom Control).
-3 A error was detected while the syntax analysis processing with PowerBSORT

OLE (Custom Control).    (This is a peculiar error detected only in
PowerBSORT OLE).

-4 The error in PowerBSORT OLE (Custom Control) was detected.

Remarks
ErrorCode property notifies error code when an error is detected during PowerBSORT
execution time processing. Refer to ErrorCode property for initial problem solving.

ErrorDetail Property
    See Also
Error detail codes of PowerBSORT are notified with the LONG value. Reference to this
property is possible only when PowerBSORT OLE (Custom Control) is executed.

Syntax
object.ErrorDetail
The ErrorDetail property syntax has the following parts:
Part Description
object Specify a object expression that refers to the object.

Remarks
ErrorDetail property notifies detailed code when an error is detected during PowerBSORT
execution time processing. Refer to ErrorDetail property for initial problem solving. For
notified values, refer to “error details code list”.

SubErrorCode Property
    See Also
The error code detected by the file system utility supported by PowerBSORT is notified with
the LONG value. Reference to this property is possible only when PowerBSORT OLE (Custom
Control) is executed.

Syntax
object.SubErrorCode
The SubErrorCode property syntax has the following parts:
Part Description
object Specify an object expression that refers to the object.

Remarks
SubErrorCode property notifies detailed code when an error is detected during
PowerBSORT execution time processing. Refer to SubErrorCode property for initial
problem solving. For notified value, refer to “error code concerning Fujitsu COBOL85 index
file“.

Action Method
See Also
Call the DLL of PowerBSORT.

Syntax
object.Action

Remarks
There is no argument in the Action method. You must call DLL of PowerBSORT based on
the value specified with various properties which PowerBSORT OLE (Custom Control) offers.
Be sure to set up the value to the specified property before using the Action method.

Error detail codes(ErrorCode = -1 or -2)
See Also
Values of ErrorDetail property when ErrorCode property is -1 or -2:
Code Explanation
50 The specified memory size is too small.
52 Memory necessary for PowerBSORT could not be allocated.
56 Error in the specification relates to files information.

1) The input file record format does not match the specified record format.
2) The binary file size is not a multiple of the record length.
3) Overwrite for Merge or Copy.

57 Mutually exclusive parameters were specified.
1) First In First Out (FIFO), suppress, and summation.
2) Sort, Merge, and Copy.

59 Error in the Key field
1) The key field points are outside the record.
2) The format of the key is invalid.
3) The key length is outside of support.

60 Error in the summation field
1) The summation field points are outside the record.
2) The format of the summation key is invalid.
3) The length of the summation key is outside of support.

61 The key field and the summation field or two or more of the summation fields
overlap.

62 An unsupported feature was specified.
63 Error in the selection field.
64 Error in the reconstruction field.
65 Error in the file system specification.
66 The selection field does not exist in the input record.
67 The reconstruction field does not exist in the input record.
111 The mistake is found in the length of the record.
114 The input files merge processing is not sorted.
115 An overflow occurred in summation processing.
116 A variable-length or text record input did not include the summation field.   

Summation processing was halted but other processing was continued.
117 There is no line Delimiter character on the text record.
118 A text record input did not include the key field.
200 A read error occurred.

201 A write error occurred.
202 Attribute error in the file. PowerBSORT failed in the acquisition of the file attribute.
203 Attribute error in the temporary file. PowerBSORT failed in the acquisition of the

file attribute.
204 Error in the file format.

1) Incompatible file formats were specified. Refer to "Supported files type" of the
help file.
2) An unsupported file format was specified.

205 The same file was specified for input and output.
206 Error in the record format.

1) A fixed length file and a variable-length file were specified together.
2) The record format of input and output is different.

207 Error in the length of the record.
1) When a variable-length file is specified, this error occurs when the record
length of the file attribute exceeds the length specified by MaxRecordLength
property.
2) For fixed length files, the length specified by MaxRecordLength property differs
from the file attribute record length.

208 The error occurred while opening the file.
209 Too many files are open in the system.
210 The error occurred by closing the file.
211 Hardware media or system software trouble occurred.
212 Insufficient capacity for the temporary file.
213 Sorting was not able to be processed in the memory.
214 The temporary file cannot be generated.
215 There is no file specified for input.
216 No reference permission for the input file.
217 No write permission for the output file.
219 No reference or write permission for the temporary file.
222 Record length was omitted when binary file was specified for input.
224 Write error occurred on the temporary file.
225 Read error occurred on the temporary file.
226 Error in environmental variable setting.
228 Error in initialization file content.
229 No reference permission in the initialization file.
230 Invalid code in the key field.
231 FUJITSU COBOL85 file system error occurred.

1) There is no FUJITSU COBOL85 library.

2) Error in setting the "Product_Directory" in PowerSORT registry key in Windows
NT or Windows 95).

232 The number of symbolic links found while checking the file name exceeded
MAXSYMLINKS.

233 The file name is too long.
234 A directory/folder in the file name was not found.
235 The file name specified was a directory.
236 Insufficient space on the output device.
237 The file size exceeded the maximum file size.
238 An error occurred in a system call or library function.
240 The record comparison area was not allocated.
241 A numeric value is not recognized in record summation processing.
243 An error was detected in FUJITSU COBOL85 index file system.    Refer to FUJITSU

COBOL85 index file error codes for a SubErrorCode property other than 0.
250 Error in the processing of PowerBSORT.
251 Output file already exists.
252 The specified device name is invalid.
253 The input file device name is invalid.
254 The output file device name is invalid.
255 The specified file name is invalid.
256 The input file name is invalid.
257 The output file name is invalid.
258 The specified device cannot be found.
259 The input file device cannot be found.
260 The output file device cannot be found.
261 The file name is too long.
262 The input file name is too long.
263 The output file name is too long.
264 The directory/folder or the file cannot be made.
265 The input file or directory/folder cannot be made.
266 The output file or directory/folder cannot be made.
267 The device is not connected.
268 The input file device is not connected.
269 The output file device is not connected.
270 Directory/Folder is not a sub directory or a root directory.
271 Input file directory/folder is not a sub directory or a root directory.
272 Output file directory/folder is not a sub directory or a root directory.

273 Directory/Folder name is invalid.
274 Input file directory/folder name is invalid.
275 Output file directory/folder name is invalid.
276 Disk unit has failed.
277 Insufficient space on disk.
278 Disk operation failed during access and during retry.
279 Disk recalibrate operation failed during access, and during retry.
280 The reset operation for disk controller is required during hard disk, and reset

operation also failed.
281 Disk is in use, or locked.
282 Input file disk is in use, or locked.
283 Output file disk is in use, or locked.
284 Extended error occurred.
285 File or directory/folder is corrupt and unreadable.
286 Opened file is not available.    The volume was removed.
287 Opened input file is not available.    The volume was removed.
288 Opened output file is not available.    The volume was removed.
289 The specified file is not found.
290 The specified input file is not found.
291 The specified output file is not found.
292 File name or extension is too long.
293 Input file name or extension is too long.
294 Output file name or extension is too long.
295 Disk full.
296 Specified drive is not found.
297 Specified input file drive is not found.
298 Specified output file drive is not found.
299 The syntax of the file name, directory/folder name or volume label is invalid.
300 The syntax of the input file name, directory/folder name or volume label is invalid.
301 The syntax of the output file name, directory/folder name or volume label is

invalid.
302 An I/O request was not executed by I/O device error.
303 Cannot access the file due to record locks in place.
304 Cannot access the input file due to record locks in place.
305 Cannot access the output file due to record locks in place.
306 File pointer was moved to a position above the top of file.
307 A writing violation occurred on the network.

308 Network access was denied.
309 Network access of input file was denied.
310 Network access of output file was denied.
311 Network is busy.
312 File does not exist after previous access.
313 Network does not exist or is not started.
314 Network of input file does not exist or is not started.
315 Network of output file does not exist or is not started.
316 Specified alias does not exist.
317 Specified alias of input file does not exist.
318 Specified alias of output file does not exist.
319 The volume label of the disk does not exist.
320 The volume label of the input file disk does not exist.
321 The volume label of output file disk does not exist.
322 Network file connection does not exist.
323 Network input file connection does not exist.
324 Network output file connection does not exist.
325 Cannot access specified disk.
326 Cannot access input file disk.
327 Cannot access output file disk.
328 Drive is not ready.
329 Input file drive is not ready.
330 Output file drive is not ready.
331 Network request not supported.
332 Input file network request not supported.
333 Output file network request not supported.
334 Specified device or file cannot be opened.
335 Specified input device or file cannot be opened.
336 Specified output device or file cannot be opened.
337 Specified path is not available at this time.
338 Specified input path is not available at this time.
339 Specified output path is not available at this time.
340 Specified path not found.
341 Specified input path not found.
342 Specified output path not found.
343 Client does not have required privilege.
344 Client does not have required input file privilege.

345 Client does not have required output file privilege.
346 System cannot read from specified device.
347 Remote computer is not available.
348 Network request was not accepted.
349 Drive cannot find required sector.
350 Drive cannot find required input sector.
351 Drive cannot find required output sector.
352 Drive cannot determine specified track or sector.
353 Drive cannot determine specified track or sector for input.
354 Drive cannot determine specified track or sector for output.
355 File pointer cannot be set to device or file.
356 File pointer cannot set to input device or file.
357 File pointer cannot set to output device or file.
358 Remote server is paused in starting.
359 File cannot be accessed.    It is in use.
360 Input file cannot be accessed.    It is in use.
361 Output file cannot be accessed.    It is in use.
362 Input file cannot be opened.
363 Output file cannot be opened.
364 Disk is not recognized.    May not be formatted.
365 Input disk is not recognized.    May not be formatted.
366 Output disk is not recognized.    May not be formatted.
367 Volume does not have a recognized file system. Confirm the file system and

volume status.
368 Specified device cannot be written.
369 The device is write protected.
370 Access to the file was denied.
371 Access to the input file was denied.
372 Access to the output file was denied.

Error detail codes (ErrorCode = -3)
See Also
Values of ErrorDetail property when ErrorCode property is -3:
Code Explanation(property name)
1 Memory necessary for PowerBSORT OLE Control could not be allocated.
2 Error in the specification of UsableMemorySize.(UsableMemorySize)
3 The directory/folder specified was a file name.(TempDir)
4 Invalid number was specified in DisposalNumber property.(DisposalNumber)
5 Specify the input file(s) name.(InputFiles)
6 Invalid number was specified in InputFileType property.(InputFileType)
7 Specify the output file name.(OutputFile)
8 Invalid number was specified in OutputFileType property.(OutputFileType)
9 The specification in KeyCmdStr property is too long.(KeyCmdStr)
10 The self-defined value specified by the record reconstruction feature is not

available in the specified length (RconCmdStr)
11 The mistake is found in FUJITSU COBOL85 index information.(FjcobPrimKey ,

FjcobAlternateKey)
12 The mistake is found in the combination of the equal key specification and the

summation feature specification.(HandlingSameKey,SumCmdStr)
13 Invalid number was specified in HandlingSameKey property.(HandlingSameKey)
14 Invalid number was specified in CollationOrder property.(CollationOrder)
15 Invalid number was specified in FieldDefinition property.(FieldDefinition)
16 Invalid number was specified in LineDelimiter property.(LineDelimiter)
17 The FieldDelimiter specification property is too long.(FieldDelimiter)
18 Error in the FieldDelimiter property specification.(FieldDelimiter)
19 The EnableOverwriteInputFile specification is available only with SORT feature.
20 Error in the TempDir property specification(TempDir)
999 An illegal code was detected in the PowerBSORT OCX return value.

Error detail codes(ErrorCode = -4)
See Also
ErrorCode property is -4 is PowerSORT OLE custom control error. Please report
ErrorDetail property value to our development department.

Error codes for FUJITSU COBOL85 indexed files
See Also
Error codes are from 1 to 4 bytes. The last byte is a file status. The leading byte(s) is(are) a
detail code.    All values are hexadecimal numbers.    A value expressed with a hyphen ("-")
indicates that part of the number can be varied through the indicated range.
Example: "30-3E 39" means 3039, 3139, 3239, 3339 ... 3C39, 3D39 or 3E39.
Code Explanation

00 Normal end.
10 Attempt to read record prior to the first record, or after the last record.
21 Error occurred in the record primary key sequence.
22 A duplicate key occurred when no duplicate was specified.
23 The specified record does not exist.
24 Insufficient disk space.

1 24 Invalid record number(0) while writing to a relative record    file.
2 24 An attempt to write too many records to the file.

mmllss 30 Severe error. The ss indicates the originator of the error as detailed below. ll
is the low order byte of the error.    mm is the high order byte.

mmll00 30 Severe error. The source is uncertain.
mmll01 30 FUJITSU COBOL85 file manager detected operating system error.

101 30 The area allocation failed.
mmll02 30 MS-DOS source
mmll03 30 OS/2 source
mmll04 30 UNIX source
mmll05 30 RM/COS source
mmll06 30 Btrieve source
mmll07 30 RM+DB for INFORMIX source
mmll08 30 RM+DB for ORACLE source
mmll09 30 AmigaDOS

A 30 The error occurred in FUJITSU COBOL85 OpenFileManager.
10A 30 The error occurred in the operating system version.
20A 30 The error occurred in the interface.
30A 30 There is no record.
40A 30 Too many files opened.
50A 30 The error occurred in the handle.

35 The file does not exist.
37 There was a no corresponding access to the file attribute.

7 37 File opened for write access denied.    Only Read access is permitted.

38 The file is locked and cannot be opened.
39 The file cannot be opened because the file attribute is incorrect.

1 39 The file organization is incorrect.
2 39 The length of a minimum record is incorrect.
3 39 The length of the maximum record is incorrect.
4 39 The length of a minimum block is incorrect.
5 39 The length of the maximum block is incorrect.
6 39 The delimitation of the record is incorrect.
7 39 The code set is incorrect.
8 39 The collating sequence is incorrect.
9 39 The record format is incorrect.
A 39 The padding character is incorrect.

30-3E 39 The key flag of key 0-E is incorrect.
3F 39 The key flag of key F-FF is incorrect.

40-4E 39 The key offset of key 0-E is incorrect.
4F 39 The key offset of key F-FF is incorrect.

50-5E 39 The key length of key 0-E is incorrect.
5F 39 The key length of key F-FF is incorrect.

43 An error occurred in the last read.
1 90 Illegal access at open processing.
4 90 Access contrary to file organization.
5 90 The file truncate instruction contradicts other users.
6 90 The server session was inhibited.
7 90 Invalid access for a read only file.
8 90 Illegal access.
9 90 The message area is too small.

10 90 Connection Endpoint Identifier is invalid.
92 The file is not closed.

1 92 Open was issued to a file already open.
93 The file is not effective.

2 93 It is not possible to open because of the file lock.
6 93 File has already existed, it is not possible to open.

94 It is an invalid open.
21 94 The file organization is invalid or outside of support.
2 94 The length of a minimum record is invalid.
3 94 The length of the maximum record is invalid.
4 94 The length of a minimum block is invalid.

5 94 The length of the maximum block is invalid.
6 94 The delimitation of the record is invalid.
7 94 The code set is invalid.
8 94 The collating sequence is invalid.
9 94 The record format is invalid.
A 94 The padding character is invalid.

30-3E 94 Key flag of key 0-E is invalid.
3F 94 Key flag of key F-FF is invalid.

40-4E 94 Key offset of key 0-E is invalid.
4F 94 Key offset of key F-FF is invalid.

50-5E 94 The length of key 0-E is invalid.
5F 94 The length of key F-FF is invalid.
60 94 Insufficient memory to open the file.
61 94 Insufficient disk space to open the file.
63 94 The open with lock issued but not supported.

96 The file position is undefined.
1 97 Incorrect character in a line sequential file record.
2 97 Incorrect character.
3 97 Shorter record area than the minimum record length is specified.
4 97 Longer record area than the maximum record length is specified.
7 97 The length of the record is incorrect.

98 File structure invalid.
99 Record is locked by other programs.

Memory Shortages
If memory shortages occur while executing PowerBSORT, do the following:
- Increase the value of UsableMemorySize property.
- Cancel other application programs.
- Decrease the number of files.

Temporary File Directories
The following notes specify the directory/folder where temporary files are made in
TempDir property.
- Make sure the drive and directory/folder exists.
- Make sure the drive has enough empty space.
- Add a backslash(\) to the end of directory/folder name. Errors may occur if it is not added.
- Use a semicolon(;) and no blanks to separate two or more directory names.
[Correct example]    C:\;D:\TEMP\
[Incorrect example]    C:\ ; D:TEMP

Record Summation
- Summation fields must be defined completely within the record.
- Summation field must not overlap a key field or other summation field.
- The contents of the output record, other than key fields and the summation fields, is
unpredictable.
- When an overflow occurs in summary processing, record summation is halted.
- Numbers containing a decimal point cannot be added.

Existing Output Files
When an existing file on a network is specified as the output file, the output file size may

not match the actual data size. This can happen because the file size does not change
when the amount of data written is smaller than the original file size. Also, the output file
size will be 4096 bytes when the input file is a text file and no records are selected for
output by the record selection feature. In these cases, the EOF(End of File) mark is set
correctly with no problem in processing. However, it is recommended to delete existing
output files accessed on a network before reusing them with PowerBSORT.

Field Specification with Record Reconstruction
PowerBSORT has Key field, Selection field, Reconstruction field, and Summation field that

correspond with Main features and Record option features. Attention is necessary when
specifying key fields and summation fields when the record is changed with record
reconstruction.

Internal Processing Order of PowerBSORT
PowerBSORT executes processing in the following order:

Data input -> Record selection -> Record reconstruction -> Sort/Merge/Copy -> Record
summation -> Data output.

When the record position changes during record reconstruction, the key position for
sort/merge processing and record summation processing may be different from the input
record.    Refer to the following rules to specify each field.
- Selection field
    Selection fields are always specified based on the input record.
- Reconstruction field
    Reconstruction field are always specified based on the input record.
- Key field
    Key fields are usually specified based on the input record.    However, they are

specifically
 based on the reconstructed record when record reconstruction is used.
- Summation field
    Summation fields are usually specified based on the input record.    However, they are   
specifically based on the reconstructed record when record reconstruction is used.

SORT(Binary file)
 The following sample programs show how to use the SORT feature of PowerBSORT by
binary file.
These programs sort external decimal numbers, the first 10 bytes of the existing binary file
record "c:\sortin" whose record length is 100 bytes, in ascending order regarding them as a
key field .    The result is outputted to binary file "c:\sortout".

Private Sub Command1_Click()
PowerBSORT1.DispMessage = False 'Don't display error messages.
PowerBSORT1.DisposalNumber = 0 'Specify SORT processing.
PowerBSORT1.InputFiles = "c:\sortin" 'Specify an input file(or two or more

input files).
PowerBSORT1.InputFileType = 1 'Specify Binary fixed length to input file

format.
PowerBSORT1.OutputFile = "c:\sortout" 'Specify an output file.
PowerBSORT1.OutputFileType = 1 'Specify Binary fixed length to output file

format.
PowerBSORT1.KeyCmdStr = "0.10zdla" 'Specify to sort external decimal number,

the first 10 bytes of record, in ascending
order as a key field.

PowerBSORT1.MaxRecordLength = 100 'Record length is 100 bytes.
PowerBSORT1.Action 'Call PowerBSORT and execute SORT

processing.
if PowerBSORT1.ErrorCode <> 0 Then 'Check the error code.
Msgbox "PowerBSORT error was detected." & " ErrorDetail=" &
PowerBSORT1.ErrorDetail
Exit Sub

End If
End Sub

SORT(Text file)
 The following sample programs show how to use the SORT feature of PowerBSORT by text
file.
These programs sort ASCII, from byte 20 to byte 30 of the existing text file record "c:\
sortin.txt" whose maximum record length is 120 bytes, in ascending order regarding them
as a key field.    The result is outputted to text file "c:\sortout.txt".

Private Sub Command1_Click()
PowerBSORT1.DispMessage = False 'Don't display error messages.
PowerBSORT1.DisposalNumber = 0 'Specify SORT processing.
PowerBSORT1.InputFiles = "c:\sortin.txt" 'Specify an input file(or two or more

input files).
PowerBSORT1.InputFileType = 0 'Specify Text to input file format.
PowerBSORT1.OutputFile = "c:\sortout.txt" 'Specify an output file.
PowerBSORT1.OutputFileType = 0 'Specify Text to output file format.
PowerBSORT1.KeyCmdStr = "20.10asca" 'Specify to sort ASCII code, from byte 20

to byte 30 of input record, in ascending
order as a key field.

PowerBSORT1.MaxRecordLength = 120 'Maximum record length is 120 bytes.
PowerBSORT1.Action 'Call PowerBSORT and execute SORT

processing.
if PowerBSORT1.ErrorCode <> 0 Then 'Check the error code.

Msgbox "PowerBSORT error was detected." & " ErrorDetail=" &
PowerBSORT1.ErrorDetail
Exit Sub

End If
End Sub

MERGE(Binary file)
 The following sample programs show how to use the MERGE feature of PowerBSORT by
binary file.
These programs merge two binary files "c:\mrgein1" and "c:\mrgein2" whose record lengths
are 100 bytes and are already sorted in ascending order regarding external decimal
number, the first 10 bytes of record, as a key field and output the result to binary file "c:\
mrgeout"
     
Private Sub Command1_Click()

PowerBSORT1.DispMessage = False 'Don't display error messages.
PowerBSORT1.DisposalNumber = 0 'Specify MERGE processing.
PowerBSORT1.InputFiles = "c:\mrgein1 c:\mrgein2" 'Specify some input files.
PowerBSORT1.InputFileType = 1 'Specify Binary fixed length to

input file format.
PowerBSORT1.OutputFile = "c:\mrgeout" 'Specify an output file.
PowerBSORT1.OutputFileType = 1 'Specify Binary fixed length to

output file format.
PowerBSORT1.KeyCmdStr = "0.10zdla" 'External decimal number, the first

10 bytes of the input record, is
sorted in ascending order as a key
field.

PowerBSORT1.MaxRecordLength = 100 'Record length is 100 bytes.
PowerBSORT1.Action 'Call PowerBSORT and execute

MERGE processing.
if PowerBSORT1.ErrorCode <> 0 Then 'Check the error code.

Msgbox "PowerBSORT error was detected." & " ErrorDetail=" &
PowerBSORT1.ErrorDetail
Exit Sub

End If
End Sub

MERGE(Text file)
 The following sample programs show how to use the MERGE feature of PowerBSORT by
text file.
These programs merge two binary files "c:\mrgein1.txt" and "c:\mrgein2.txt" whose record
lengths are 120 bytes and are already sorted in ascending order regarding ASCII, from byte
20 to byte 30 of the record, as a key field and output the result to text file "c:\mrgeout.txt"
Private Sub Command1_Click()

PowerBSORT1.DispMessage = False 'Don't display error messages.
PowerBSORT1.DisposalNumber = 0 'Specify MERGE processing.

'Specify some input files.
PowerBSORT1.InputFiles = "c:\mrgein1.txt c:\mrgein2.txt"
PowerBSORT1.InputFileType = 0 'Specify Text to input file format.
PowerBSORT1.OutputFile = "c:\mrgeout.txt" 'Specify an output file.
PowerBSORT1.OutputFileType = 0 'Specify Text to output file format.
PowerBSORT1.KeyCmdStr = "20.10asca" 'ASCII code, from byte 10 to byte 20 of

input record, are already sorted in
ascending order as a keyfield.

PowerBSORT1.MaxRecordLength = 120 'Maximum record length is 120 bytes.
PowerBSORT1.Action 'Call PowerBSORT and execute MERGE

processing.
if PowerBSORT1.ErrorCode <> 0 Then 'Check the error code.

Msgbox "PowerBSORT error was detected." & " ErrorDetail=" &
PowerBSORT1.ErrorDetail
Exit Sub

End If
End Sub

COPY(Binary file)
 The following sample programs show how to use the COPY feature of PowerBSORT by
binary file.
These programs output the existing binary file "c:\copyin" whose record length is 100 bytes
to a binary file "c:\copyout".

Private Sub Command1_Click()
PowerBSORT1.DispMessage = False 'Don't display error messages.
PowerBSORT1.DisposalNumber = 2 'Specify COPY processing.
PowerBSORT1.InputFiles = "c:\copyin" 'Specify an input file(or two or more input

files).
PowerBSORT1.InputFileType = 1 'Specify Binary fixed length to input file

format.
PowerBSORT1.OutputFile = "c:\copyout" 'Specify an output file.
PowerBSORT1.OutputFileType = 1 'Specify Binary fixed length to output file

format.
PowerBSORT1.MaxRecordLength = 100 'Record length is 100 bytes.
PowerBSORT1.Action 'Call PowerBSORT and execute COPY

processing.
if PowerBSORT1.ErrorCode <> 0 Then 'Check the error code.

Msgbox "PowerBSORT error was detected." & " ErrorDetail=" &
PowerBSORT1.ErrorDetail
Exit Sub

End If
End Sub

COPY(Text file)
 The following sample programs show how to use the COPY feature of PowerBSORT by text
file.
These programs output the existing text file "c:\copyin.txt" whose maximum record length
is 120 bytes to a text file "c:\copyout.txt".

Private Sub Command1_Click()
PowerBSORT1.DispMessage = False 'Don't display error messages.
PowerBSORT1.DisposalNumber = 2 'Specify COPY processing.
PowerBSORT1.InputFiles = "c:\copyin.txt" 'Specify an input file(or two or more input

files).
PowerBSORT1.InputFileType = 0 'Specify Text to input file format.
PowerBSORT1.OutputFile = "c:\copyout.txt" 'Specify an output file.
PowerBSORT1.OutputFileType = 0 'Specify Text to output file format.
PowerBSORT1.MaxRecordLength = 120 'Maximum record length is 120 bytes.
PowerBSORT1.Action 'Call PowerBSORT and execute COPY

processing.
if PowerBSORT1.ErrorCode <> 0 Then 'Check the error code.

Msgbox "PowerBSORT error was detected." & " ErrorDetail=" &
PowerBSORT1.ErrorDetail
Exit Sub

End If
End Sub

Using Record Selection feature
 The following sample programs show how to use the Record Selection feature of
PowerBSORT by binary file.
These programs select the existing binary file "c:\sortin" whose record length is 100 bytes
only when byte 10 to byte 14 of the record is bigger than from byte 30 to byte 34, and
output to binary file "c:\sortout".

Private Sub Command1_Click()
PowerBSORT1.DispMessage = False 'Don't display error messages.

'Specify to select the record, from byte 10
to byte 14 of it is bigger than from byte 30
to byte 34, as the selection field.

PowerBSORT1.SelCmdStr = "10.4asc.gt.30.4asc"
PowerBSORT1.InputFiles = "c:\sortin" 'Specify an input file(or two or more input

files).
PowerBSORT1.InputFileType = 1 'Specify Binary fixed length to input file

format.
PowerBSORT1.OutputFile = "c:\sortout" 'Specify an output file.
PowerBSORT1.OutputFileType = 1 'Specify Binary fixed length to output file

format.
PowerBSORT1.MaxRecordLength = 100 'Maximum record length is 100 bytes.
PowerBSORT1.Action 'Execute Record Selection processing.
if PowerBSORT1.ErrorCode <> 0 Then 'Check the error code.

Msgbox "PowerBSORT error was detected." & " ErrorDetail=" &
PowerBSORT1.ErrorDetail
Exit Sub

End If
End Sub

Using Record Reconstruction feature
 The following sample programs show how to use the Record Reconstruction feature of
PowerBSORT by binary file. These programs reconstruct the record of the existing binary file
"c:\sortin" whose record length is 100 bytes in the following order.
from byte 20 to byte 30 -> from byte 30 to byte 40 -> from byte 0 to byte 10
-> from byte 40 to byte 50
The result is outputted to binary file "c:\sortout".

Private Sub Command1_Click()
PowerBSORT1.DispMessage = False 'Don't display error messages.
PowerBSORT1.RconCmdStr = "20.10 30.10 0.10 40.10"

'Specify to sort the record in the following
order as the reconstruction field.    from
byte 20 to byte 30 -> from byte 30 to byte
40 -> from byte 0 to byte 10 -> from byte
40 to byte 50

PowerBSORT1.InputFiles = "c:\sortin" 'Specify an input file(or two or more input
files).

PowerBSORT1.InputFileType = 1 'Specify Binary fixed length to input file
format.

PowerBSORT1.OutputFile = "c:\sortout" 'Specify an output file.
PowerBSORT1.OutputFileType = 1 'Specify Binary fixed length to output file

format.
PowerBSORT1.MaxRecordLength = 100 'Maximum record length is 100 bytes.
PowerBSORT1.Action 'Execute Record Reconstruction

processing.
if PowerBSORT1.ErrorCode <> 0 Then 'Check the error code.

Msgbox "PowerBSORT error was detected." & " ErrorDetail=" &
PowerBSORT1.ErrorDetail
Exit Sub

End If
End Sub

Using Record Summation feature
 The following sample programs show how to use the Record Summation feature of
PowerBSORT by text file. These programs sort ASCII, from byte 9 to byte 13 of the existing
text file record "c:\sortin.txt" whose record length is 15 bytes, in ascending order regarding
them as a key field. Some records having the same value key fields, ASCII, from byte 4 to
byte 8, are summarized and the result outputted to text file "c:\sortout".

Private Sub Command1_Click()
PowerBSORT1.DispMessage = False 'Don't display error messages.
PowerBSORT1.FieldDefinition = 1 'Specify the field with column(byte).
PowerBSORT1.KeyCmdStr = "9.4asca" 'Specify to sort ASCII, from byte 9 to

byte 13 of the input record, in ascending
order as a key field.

PowerBSORT1.SumCmdStr = "4.4asc" 'Specify the field from byte 4 to byte 8 of
the input records as a summation key
field which format is ASCII.

PowerBSORT1.HandlingSameKey = 3 'When the equal key(the field value of
key field is equal) exist in the input
records, sum the value of summation
field of the input records.

PowerBSORT1.InputFiles = "c:\sortin.txt" 'Specify an input file(or two or more
input files).

PowerBSORT1.InputFileType = 0 'Specify Text to input file format.
PowerBSORT1.OutputFile = "c:\sortout.txt" 'Specify an output file.
PowerBSORT1.OutputFileType = 0 'Specify Text to output file format.
PowerBSORT1.MaxRecordLength = 15 'Maximum record length is 15 bytes.
PowerBSORT1.Action 'Execute Record Summation processing.
if PowerBSORT1.ErrorCode <> 0 Then 'Check the error code.

Msgbox "PowerBSORT error was detected." & " ErrorDetail=" &
PowerBSORT1.ErrorDetail
Exit Sub

End If
End Sub

Combining Record Selection, Record Reconstruction, and Record Summation
feature
 The following sample programs show how to combine record processing features of
PowerBSORT by text file. These programs select one feature among record selection, record
reconstruction and record summation and execute the selected feature with the existing
text file
"c:\sortin.txt" whose record length is 15 bytes. The result is outputted to text file "c:\
sortout.txt".

Private Sub Command1_Click()
PowerBSORT1.DispMessage = False 'Don't display error messages.
PowerBSORT1.FieldDefinition = 1 'Specify the field with column(byte).
If Option1.Value = True Then 'When record selection was checked.
    PowerBSORT1.SelCmdStr = "0.3asc.ne.'DDD'" 'Specify to select record whose first

3 bytes are not string 'DDD' as a key
field.

End If
If Option2.Value = True Then 'When record reconstruction was

checked.
    PowerBSORT1.RconCmdStr = "9.4 3.5 0.3" 'Reconstruct the input record in the

following order as the reconstruction
field.    from byte 9 to byte 13 -> from
byte 3 to byte 8 -> from byte 0 to byte 3

If Option3.Value = True Then 'When record summation was checked.
    PowerBSORT1.KeyCmdStr = "9.4asca" 'Reconstruct the input record in the

following order as a key field. from byte
4 to byte 9 -> from byte 0 to byte 4 ->
from byte 9 to byte 13

    PowerBSORT1.SumCmdStr = "4.4asc" 'Specify to summarize ASCII of input
record, from byte 4 to byte 8, as the
summation field

    PowerBSORT1.HandlingSameKey = 3 'When the equal key(the field value of
key field is equal) exist in the input
records, sum the value of summation
field of the input records.

End If
PowerBSORT1.InputFiles = "c:\sortin.txt" 'Specify an input file(or two or more

input files).
PowerBSORT1.InputFileType = 0 'Specify Text to input file format.
PowerBSORT1.OutputFile = "c:\sortout.txt" 'Specify an output file.
PowerBSORT1.OutputFileType = 0 'Specify Text to input file format.

PowerBSORT1.MaxRecordLength = 15 'Maximum record length is 15 bytes.
PowerBSORT1.Action 'Execute PowerBSORT processing.
if PowerBSORT1.ErrorCode <> 0 Then 'Check the error code.

Msgbox "PowerBSORT error was detected." & " ErrorDetail=" &
PowerBSORT1.ErrorDetail
Exit Sub

End If
End Sub

Using Suppression feature
 This sample program shows how to use the Suppression feature of PowerBSORT by binary
file.
These programs sort external decimal numbers, from byte 20 to byte 24 of the existing
binary file record "c:\sortin" whose record length is 100 bytes, in ascending order regarding
them as a key field. Some records having the same value key fields are deleted retaining
only one record and the result is outputted to binary file "c:\sortout".

Private Sub Command1_Click()
PowerBSORT1.DispMessage = False 'Don't display error messages.
PowerBSORT1.DisposalNumber = 0 'Specify SORT processing.
PowerBSORT1.KeyCmdStr = "20.4zdla" 'Specify to sort external decimal number,

from byte 20 to byte 24 of the input
record, in ascending order as a key field.

PowerBSORT1.HandlingSameKey = 2 ' When the equal key(the field value of key
field is equal) exist in the input records,
leave only one record and delete other
records.

PowerBSORT1.InputFiles = "c:\sortin" 'Specify an input file(or two or more input
files).

PowerBSORT1.InputFileType = 1 'Specify Binary fixed length to input file
format.

PowerBSORT1.OutputFile = "c:\sortout" 'Specify an output file.
PowerBSORT1.OutputFileType = 1 'Specify Binary fixed length to output file

format.
PowerBSORT1.MaxRecordLength = 100 'Record length is 100 bytes.
PowerBSORT1.Action 'Execute SORT processing.
if PowerBSORT1.ErrorCode <> 0 Then 'Check the error code.

Msgbox "PowerBSORT error was detected." & " ErrorDetail=" &
PowerBSORT1.ErrorDetail
Exit Sub

End If
End Sub

Using FIFO feature
 The following sample programs show how to use FIFO feature of PowerBSORT by binary
file. These programs sort external decimal numbers, from byte 20 to byte 24 of the existing
binary file record "c:\sortin" whose record length is 100 bytes, in ascending order regarding
them as a key field. Some records having the same value key fields and inputted originally
are outputted first and the result is outputted to binary file "c:\sortout".

Private Sub Command1_Click()
PowerBSORT1.DispMessage = False 'Don't display error messages.
PowerBSORT1.DisposalNumber = 0 'Specify SORT processing.
PowerBSORT1.KeyCmdStr = "20.4zdla" 'Specify to sort external decimal number,

from byte 20 to byte 24 of the input
record, in ascending order as a key field.

PowerBSORT1.HandlingSameKey = 1 'When the equal key(the field value of key
field is equal) exist in the input records,
the first input record encountered with
each unique key value is output first, the
second input record with that same value
is output second, etc.

PowerBSORT1.InputFiles = "c:\sortin" 'Specify an input file(or two or more input
files).

PowerBSORT1.InputFileType = 1 'Specify Binary fixed length to input file
format.

PowerBSORT1.OutputFile = "c:\sortout" 'Specify an output file.
PowerBSORT1.OutputFileType = 1 'Specify Binary fixed length to input file

format.
PowerBSORT1.MaxRecordLength = 100 'Record length is 100 bytes.
PowerBSORT1.Action 'Execute SORT processing.
if PowerBSORT1.ErrorCode <> 0 Then 'Check the error code.

Msgbox "PowerBSORT error was detected." & " ErrorDetail=" &
PowerBSORT1.ErrorDetail
Exit Sub

End If
End Sub

Sorting FUJITSU COBOL85 indexed file
 The following sample programs show how to sort FUJITSU COBOL85 fixed length indexed
files.
These programs sort ASCII, from byte 5 to byte 8 of the existing FUJITSU COBOL85 fixed
length indexed file record "c:\sortcob" whose length is 20 bytes, in ascending order
regarding them as a key field. The result is outputted to text file "c:\sortout".

Private Sub Command1_Click()
PowerBSORT1.DispMessage = False 'Don't display error messages.
PowerBSORT1.DisposalNumber = 0 'Specify SORT processing.
PowerBSORT1.InputFiles = "c:\sortcob" 'Specify an input file(or two or more input

files).
PowerBSORT1.InputFileType = 4 'Specify FUJITSU COBOL85 fixed length

indexed file to input file format.
PowerBSORT1.OutputFile = "c:\sortout" 'Specify an output file.
PowerBSORT1.OutputFileType = 3 'Specify FUJITSU COBOL85 indexed file to

output file format.
PowerBSORT1.KeyCmdStr = "5.3asca" 'Specify to sort ASCII code, from byte 5 to

byte 8 of record, in ascending order as a
key field.   

PowerBSORT1.FjcobPrimeKey = "D(5,3)" 'Specify the field from byte 5 to byte 8 of
the input record as the main index key of
FUJITSU COBOL85 indexed file.

PowerBSORT1.MaxRecordLength = 20 'Maximum record length is 20 bytes.
PowerBSORT1.Action 'Execute SORT processing.
if PowerBSORT1.ErrorCode <> 0 Then 'Check the error code.

Msgbox "PowerBSORT error was detected." & " ErrorDetail=" &
PowerBSORT1.ErrorDetail
Exit Sub

End If
End Sub

See Also
    DisposalNumber Property

See Also
    SelCmdStr Property
    RconCmdStr Property
    SumCmdStr Property
    HandlingSameKey Property
    Record Summation
    Field Specification with Record Summation
    Internal Processing Order of PowerBSORT

See Also
    DisposalNumber Property
    SelCmdStr Property
    RconCmdStr Property
    SumCmdStr Property
    HandlingSameKey Property
    Record Summation
    Field Specification with Record Summation
    Internal Processing Order of PowerBSORT

See Also
    InputFileType Property
    OutputFileType Property
    InputFiles Property
    OutputFile Property
    EnableOverwriteInputFile Property
    FjcobAlternateKey Property
    FjcobDataCompression Property
    FjcobKeyCompression Property
    FjcobPrimeKey Property

See Also
    CollationOrder Property
    CompareAsUpperCase Property
    IgnoreControlCode Property
    Reverse Property
    SkipLeadingBlank Property

See Also
    AlphaNumOnly Property
    CompareAsUpperCase Property
    IgnoreControlCode Property
    Reverse Property
    SkipLeadingBlank Property

See Also
    AlphaNumOnly Property
    CollationOrder Property
    IgnoreControlCode Property
    Reverse Property
    SkipLeadingBlank Property

See Also
    AlphaNumOnly Property
    CollationOrder Property
    CompareAsUpperCase Property
    Reverse Property
    SkipLeadingBlank Property

See Also
    AlphaNumOnly Property
    CollationOrder Property
    CompareAsUpperCase Property
    IgnoreControlCode Property
    SkipLeadingBlank Property

See Also
    AlphaNumOnly Property
    CollationOrder Property
    CompareAsUpperCase Property
    IgnoreControlCode Property
    Reverse Property

See Also
    ErrorCode Property
    ErrorDetail Property
    SubErrorCode Property
    Error detail codes (ErrorCode = -1 or -2)
    Error detail codes (ErrorCode = -3)
    Error detail codes (ErrorCode = -4)
    Error codes for FUJITSU COBOL85 indexed files

See Also
    DispMessage Property
    ErrorDetail Property
    SubErrorCode Property
    Error detail codes (ErrorCode = -1 or -2)
    Error detail codes (ErrorCode = -3)
    Error detail codes (ErrorCode = -4)
    Error codes for FUJITSU COBOL85 indexed files

See Also
    DispMessage Property
    ErrorCode Property
    SubErrorCode Property
    Error detail codes (ErrorCode = -1 or -2)
    Error detail codes (ErrorCode = -3)
    Error detail codes (ErrorCode = -4)
    Error codes for FUJITSU COBOL85 indexed files

See Also
    DispMessage Property
    ErrorCode Property
    ErrorDetail Property
    Error detail codes (ErrorCode = -1 or -2)
    Error detail codes (ErrorCode = -3)
    Error detail codes (ErrorCode = -4)
    Error codes for FUJITSU COBOL85 indexed files

Key field is shown by position information, the length, the data format, and the order for
Sort or Merge processing.

Summation field is used to make one record by the specific field addition on the record with
the key field equivalence. Summation field must not overlap a key field or other summation
fields. Summation field specifies with no overflow addition.

Selection field specifies some conditions to select specific records during Sort, Merge or
Copy processing.

See Also
    Introduction to main features
    Combination with main feature and record option feature

See Also
    InputFiles Property
    OutputFile Property
    DisposalNumber Property

Reconstruction field is used to change the input record to a new record composition. It is
composed of one or more fields of input file record and one or more new constant fields are
defined by specifying a Self-defined Value.

See Also
    FieldDelimiter Property
    SelCmdStr Property
    RconCmdStr Property
    SumCmdStr Property
    HandlingSameKey Property
    Record Summation
    Field Specification with Record Summation
    Internal Processing Order of PowerBSORT

See Also
    FieldDefinition Property
    LineDelimiter Property

See Also
    OutputFileType Property
    FjcobDataCompression Property
    FjcobKeyCompression Property
    FjcobPrimeKey Property
    SubErrorCode Property
    Error codes for FUJITSU COBOL85 indexed files

See Also
    OutputFileType Property
    FjcobAlternateKey Property
    FjcobKeyCompression Property
    FjcobPrimeKey Property
    SubErrorCode Property
    Error codes for FUJITSU COBOL85 indexed files

See Also
    OutputFileType Property
    FjcobAlternateKey Property
    FjcobDataCompression Property
    FjcobPrimeKey Property
    SubErrorCode Property
    Error codes for FUJITSU COBOL85 indexed files

See Also
    OutputFileType Property
    FjcobAlternateKey Property
    FjcobDataCompression Property
    FjcobKeyCompression Property
    SubErrorCode Property
    Error codes for FUJITSU COBOL85 indexed files

See Also
    Introduction to record option features
    Combination with main feature and record option feature
    KeyCmdStr Property
    SumCmdStr Property

See Also
    Supported files type
    EnableOverwriteInputFile Property
    InputFileType Property
    MaxRecordLength Property
    OutputFile Property
    OutputFileType Property

See Also
    Supported files type
    EnableOverwriteInputFile Property
    InputFilesProperty
    MaxRecordLength Property
    OutputFile Property
    OutputFileType Property

See Also
    FieldDefinition Property
    FieldDelimiter Property
    HandlingSameKey Property
    LineDelimiter Property
    MaxRecordLength Property
    RconCmdStr Property
    SelCmdStr Property
    SumCmdStr Property

See Also
    MaxRecordLength Property

See Also
    LineDelimiter Property

See Also
    Supported files type
    EnableOverwriteInputFile Property
    InputFilesProperty
    InputFileType Property
    MaxRecordLength Property
    OutputFileType Property

See Also
    Supported files type
    EnableOverwriteInputFile Property
    InputFiles Property
    InputFileType Property
    MaxRecordLength Property
    OutputFile Property

See Also
    FieldDefinition Property
    FieldDelimiter Property
    HandlingSameKey Property
    LineDelimiter Property
    MaxRecordLength Property
    KeyCmdStr Property
    SelCmdStr Property
    SumCmdStr Property

See Also
    FieldDefinition Property
    FieldDelimiter Property
    HandlingSameKey Property
    LineDelimiter Property
    MaxRecordLength Property
    KeyCmdStr Property
    RconCmdStr Property
    SumCmdStr Property

See Also
    FieldDefinition Property
    FieldDelimiter Property
    HandlingSameKey Property
    LineDelimiter Property
    MaxRecordLength Property
    KeyCmdStr Property
    RconCmdStr Property
    SelCmdStr Property

See Also
    UsableMemorySize Property

See Also
    TempDir Property

See Also
    Introduction to main features
    Combination with main feature and record option feature
    Internal Processing Order of PowerBSORT
    DisposalNumber Property

See Also
    DispMessage Property
    ErrorCode Property
    ErrorDetail Property
    SubErrorCode Property
    Error detail codes (ErrorCode = -3)
    Error detail codes (ErrorCode = -4)
    Error codes for FUJITSU COBOL85 indexed files

See Also
    DispMessage Property
    ErrorCode Property
    ErrorDetail Property
    SubErrorCode Property
    Error detail codes (ErrorCode = -1 or -2)
    Error detail codes (ErrorCode = -4)
    Error codes for FUJITSU COBOL85 indexed files

See Also
    DispMessage Property
    ErrorCode Property
    ErrorDetail Property
    SubErrorCode Property
    Error detail codes (ErrorCode = -1 or -2)
    Error detail codes (ErrorCode = -3)
    Error codes for FUJITSU COBOL85 indexed files

See Also
    DispMessage Property
    ErrorCode Property
    ErrorDetail Property
    SubErrorCode Property
    Error detail codes (ErrorCode = -1 or -2)
    Error detail codes (ErrorCode = -3)
    Error detail codes (ErrorCode = -4)

