What is Solver?	
View	Example conventions
View	What can Solver do?
View	Using Solver
View	Getting Online Help
View	Solver answers
View	Using Solver models

Example conventions

Key:
Adjustable cell
Constraint cell
Optimal cell
Optimal/Adjustable
User Data

The examples in this file use a c required to solve the problem. Solver Definition dialog box. Fc adjustable cell, "A:A1" is ent box.

What can Solver do?

Solver can solve most problems using the algebraic and logical r Regardless of the complexity of work is done before you start Sc relationships that already exist i

For example, you might use a u manufacturer's profits and losse determine how to maximize pro and mix of hats produced. This of this file.

Solver can provide several ansv optimal answer. By finding multi values of all the variables for ea you with a wider range of possik more useful than the mathemati For more information, see Chap User's Guide.

Using Solver

Solver is located in the Range F two ways to start Solver:
${ }^{\circ}$ Choose Range Analyze and c menu.
${ }^{\circ}$ Press ALT, then press R, A, a correspond to the underlined let

For more information on using \subseteq Solver" in the User's Guide or sı "Range Analyze Solver" topic.

Getting Online Help

 about Solver Solver Help is available by:${ }^{\circ}$ Pressing F1 (HELP) when a S
${ }^{\circ}$ Using the Search facility in He Using the Search facility

1. Choose Help Search.
2. Type "solver" in the text box.
3. Choose Show Topics.

A list of topics appear in the list window.
4. Select a topic by choosing G

Note If you are a new Solver user, thi useful introductory information: "Solver Definition".

Viewing Solver answers and attempts

As Solver is working to solve thi appears and informs you of the problem.

If Solver says it has found an ar constraints you placed on the pI one or more of the constraints is

To view answers or attemr

> 1. To view answers or attempts, dialog box.
> ${ }^{\circ}$ Next displays the next answer
> ${ }^{\circ}$ First displays the optimal ansv the first answer or attempt.
> ${ }^{\circ}$ Original displays the values th ran Solver.
> $1-2-3$ changes the values in the answer or attempt to the next. A dependent formulas may also c
> Note You can move the Answer dialo worksheet.
> For more information on answe। "Using Solver" in the User's Gui and go to the "Solver Answer" tı

[^0]This file contains several Solver on each sheet in the file. These of Solver and provide you with r applications.

You can run Solver on the mods button that appears at the top o

Model Conventions

This file uses cell coloring conve of cells required for Solver to so

Note Some models let you replace th This is referred to as "user data'

Sheet Name

Car Loan
Mortgage
PL
Mix
Math
Quotas
Advert
Invest

Break even
IRR
\qquad
zolor key to identify cells that are These cells are entered in the ir example, if cell $A: A 1$ is the eered in the Adjustable cells text
; that can be described elationships in a worksheet. the problem, most of your गlver, since Solver uses the n your worksheet. ıorksheet to analyze a hat :s. You can use Solver to fits by varying the number problem is in worksheet $D(P / L)$
vers to a problem, including the iple answers and presenting the ich answer, Solver can provide jilities, one of which might be ically optimal answer.
ıter 21, "Using Solver" in the
ıull-down menu. There are two
hoose Solver from the cascade
nd S in that order. These letters
ters in the commands.
jolver, see Chapter 21, "Using
earch on "Solver" and go to the
olver dialog box appears.
lp.
box at the bottom of the Search.

〕 To or by double-clicking the topic.
e following Help topics provide
"Setting Up a Solver Problem" and
a problem, a Progress dialog box progress being made in solving the
iswer, this result satisfies all the roblem. A result that does not satisfy s called an attempt.
)ts
, choose an option in the Answer
or attempt.
ver (if any), the best answer found, or
at were in the worksheet before you
adjustable cells as you go from one is a result, cells that contain hange.
ig box so that you can see the
rs and attempts, see Chapter 21, de or search on "Answers" in Help opic.

- models. There is a different model models illustrate the capabilities nodels to create your own Solver
als by pressing the "Example"
f the sheet next to the introduction.

эntions to identify the different types Ive the problem.
e sample data with your own data.
".

Description

Car Loan Monthly Payment Model
Home Mortgage Planning Model
Basic Profit-Loss Statement
Product Mix Optimization
Simple Mathematical Models
Adjusting Sales Quotas
Advertising Placements
Investment Asset Allocation Model

Asset Purchasing Model
Buying a company

Car Loan Monthly-Payment Model

You are purchasing a new car and want to arrangexample financing. You want to determine what the monthly payments are given your purchase facts. Try some variations by changing the Purchase Facts and re-running Solver.

Purchase Facts

Years to Pay	4	1 Monthly pmt <= M
Car Price	\$24000.00	1 Monthly pmt >= 0
Interest Rate	9.00\%	0 Down pmt <= Ma>
Max payment per Mont	\$700.00	1 Down pmt $>=0$
Maximum Down-Payme	\$3000.00	
Monthly Payment	\$500.00	

Loan Facts:

Down-Payment \$3907.61
Loan Amount \$20092.39
Total Interest Paid \$3907.61
\{Solver-Define? "D16";"F10..F13";"OFF";;;2\}

Key:
Adjustable cell
Constraint cell
Optimal cell
pptimal/Adjustable
User Data

lax monthly pmt
(down pmt

Home Mortgage Planning Model

You are buying a home and want to determine the largest bank mortgage you can afford given your income and expenses. In this model the Bank
Loan amount is Solver's adjustable and optimal Example
cell. Try some variations by changing the User
Data cells and re-running Solver.
Purchase Facts:

Bank Loan	$\# \# \#$
Downpayment	$\$ 10000.00$
Purchase Price	$\# \# \#$
Mortgage Payment	$\$ 877.57$
Interest Rate (APR)	10.00%
Total Payments (mor	360
Personal Information:	
Existing Debt	$\$ 7000.00$
Gross Income	$\$ 75000.00$
Tax Bracket	35.0%

Monthly PITI Limitation:
P/l
Taxes
Home Ins
PMI
Total PITI
Expenses \% of Income

Real Estate Expenses:
\$877.57 Insurance
\$229.17 Maintenance
$\$ 28.42 U$ Utility
\$91.67 Taxes
\#\#\# Total Expenses
19.63\%

Monthly Debt Limitation:

Existing Debt
Total PITI
Total Debt
Debt \% of Income
\$583.33 Max Exp \% of Incor \#\#\# \#\#\# 28.96\% Max Debt \% of IncoI

1 Expense \% <= Ma>
1 Debt \% <= Max \%

Key:
Adjustable cell
Constraint cell
Optimal cell
Optimal/Adjust.
User Data

< \%
$\$ 341.00$
\$2750.00 \$550.00
\$2750.00
\$6391.00

Vax";1\}

Basic Profit and Loss Statement

In this profit and loss model you want to maximize the ${ }_{\text {e }}$ gross profit from sales of women's and men's hats, subject to guidelines on production capacity and the ratio of men's to women's hats.

Women's hats
Men's hats
Total hats sold
Price per hat
Total sales
Less: Cost of goods sold Gross profit on sales

5000
4000
9000
\$20
\$180000
\$120000
$\$ 60000$

Sell no more than 4,500 men's hats No more than 65% of hats sold are Profit at least \$75,000 \square

Key:
Adjustable cell
Constraint cell
Optimal cell
Dptimal/Adjustable

8..C20";"On";C16;Max;1\}

Product Mix Optimization Model

Your bakery produces 3 types of bread: low-calorie, More high-fiber, and white. You are the bakery manager and track revenues, costs, and profits from production. You are to determine the number of cases for each type of bread that maximize total profit while satisfying production limit guidelines.

Type of bread:	ow calorie High fiber	White	Total	
Cases produced	30000	20000	50000	100000
Hours per case	0.25	0.32	0.33	
Person hr. to produ	7500.00	6400.00	16500.00	30400.00
Cost per case	$\$ 17.00$	$\$ 23.00$	$\$ 27.00$	
Price per case	$\$ 42.00$	$\$ 40.00$	$\$ 45.00$	
Revenues	$\$ 1260000$	$\$ 800000 \$ 2250000$	$\$ 4310000$	
Costs	$\$ 510000$	$\$ 460000 \$ 1350000$	$\$ 2320000$	
Profit	$\$ 750000$	$\$ 340000$	$\$ 900000$	$\$ 1990000$

Constraints:

1 Meet production quota for low calorie?
0 Acceptable ratio of high fiber to low calorie? Acceptable ratio of white to low calorie? 1 Within limits for person hours used?
\{Solver-Define? "C11..E11";"B21..B24";"On";F

Key:
Adjustable cell
Constraint cell
Optimal cell
pptimal/Adjustable

:18;"Max";1\}

Simple Mathematical Solver Models - Mo

The model below solves

$$
x^{2}-4=0 \text { for } x
$$

Solver will find both roots +2 and -2 .

0
0

Mathematical Model 2

Solver can also be used to find the "optimal" answer.
This model finds the largest Y where two curves
Curve 1: $A=(1-Z)^{2}$
Curve 2: $B=10 Z+1$
These curves intersect at 2 points. Solver uses the following constraint to find those points:
$A-B=0$

0	1	1
1	0	11
2	1	21
3	4	31
4	9	41
5	16	51
6	25	61
7	36	71
8	49	81
9	64	91
10	81	101
11	100	111
12	121	121
15	196	151

\{Solver-Define? "C14";"C15";"Off";;;2\}
\{Solver-Define? "C34";"C35";"On";C36;Max;2\}

Key:
Adjustable cell
Constraint cell
Optimal cell
Optimal/Adjustable

Key:
Adjustable cell
Constraint cell
Optimal cell
Optimal/Adjustable

Adjusting Sales Quotas

You are North American Sales Director. It is now five	More
months into the year and you realize that you must	
adjust your year-end targets and sales quotas for each	
region. By defining the criteria as constraints, not	
specifying optimization and requesting more that one	
answer, Solver generates multiple answers - each a	
different set of quotas satisfying the criteria. To find	Example
additional answers, press the Solve button on the Solver Answer dialog.	

Region:	(\$millions)\$millions)\$millions)\$millions)				
	\$millions)	Starting Adjusted		YTDTD Actual	
	Adjust	Quota	Quota	Quota	Revenue
Canada	\$0.000	\$28.76	\$28.76	\$11.98	\$15.36
Northeast	\$0.000	\$49.81	\$49.81	\$20.75	\$19.94
New York	\$0.000	\$2.79	\$2.79	\$1.29	\$1.57
Federal	\$0.000	\$16.59	\$16.59	\$4.98	\$3.66
Southern	\$0.000	\$35.31	\$35.31	\$14.71	\$16.54
Great Lake	\$0.000	\$16.30	\$16.30	\$8.01	\$5.89
Northwest	\$0.000	\$71.64	\$71.64	\$29.85	\$28.64
Southwest	\$0.000	\$106.70	\$106.70	\$44.46	\$34.18
Total	\$0.00	\$327.89	\$327.89	\$136.04	\$125.78

CONSTRAINTS:

$1+$ NORTHWEST $\$>=0$
$1+$ SOUTHWEST $\$<=0$
$1+$ TOTAL ADJUST $\$=0$
\{Solver-Define? "D16..D23";"C27..C44";"Off";;;3\}

Adjusted Performance
1.2817
0.9611
1.2113
0.7357
1.1240
0.7354
0.9594
0.7688

2r can find 20+ ers which satisfy onstraints. After | Solver you can t the answer that ars to most
mnably reflect your cted performance. aps Solver will point Iternatives which d never have been dered with manual t-if" rimentation.

Advertising Placements Model

You are the advertising manager for a new product ${ }_{\text {More }}$ promotion. Each media type is subject to diminishing returns -- each ad reaches fewer new viewers than themple previous ad. You have a budget of \$500,000 and your goal is to reach as many viewers as possible.

	TVRadio		
Cost per placement	$\$ 15000$	$\$ 2500$	$\$ 1000$
Number of placements	1	1	1
Total cost	$\$ 15000$	$\$ 2500$	$\$ 1000$
Budget			
Projected exposure	100000	25000	15000
Marginal exposure	100000	25000	15000
Marginal cost per expo	$\$ 0.15$	$\$ 0.10$	$\$ 0.07$
Average cost per expo	$\$ 6.67$	$\$ 10.00$	$\$ 15.00$

Constraints:

Minimum
Meet budget limit?

Projecting Diminishing Returns

This example uses a weighted natural log curve (@LN) to forecas the curve is shifted by 1 to force exposure to 0 at 0 placements. predicted by the following formula:

```
WEIGHT * @LN( #PLACEMENTS + 1 )
```

Key:
Adjustable cell
Constraint cell
Optimal cell
pptimal/Adjustable

Total	
	3
$\$ 18500.00$	
$\$ 500000.00$	
140000	

st total exposure. In addition, The cumulative exposure is
n";G15;Max;1\}

Investment Asset Allocation Model

As an investor you wish to optimize an investment
should be invested in each type of asset to maximize total expected return on the investments, while satisfying certain investment criteria.

Asset	Before tax yield	After tax yield	Annual asset apprec.	Amount invested	Percent invested	Before tax income
Stocks	3.20\%	2.27\%	9.50\%	\$20000.00	20.00\%	\$640.00
Taxable bonds	9.20\%	6.44\%	3.80\%	\$20000.00	20.00\%	\#\#\#
Tax-exempt bon	7.80\%	7.80\%	2.70\%	\$20000.00	20.00\%	\#\#\#
Money market	8.90\%	6.23\%	0.00\%	\$40000.00	40.00\%	\#\#\#
Total				\$100000.00 100.00\% \$7600.00		
Total return (weighted average)				10.80\%		

Constraints:

0	At least 22\% in stocks?
1	No more than 45\% in stocks?
1	At least 15% in taxable bonds?
1	At least 12% in tax-exempt bonds?
1	At least 10% in money market?
1	Not over 60% in stocks plus taxable bonds?
1	At least $\$ 15,000$ in tax-exempt bonds?
1	After tax income at least $\$ 5,000 ?$
0	Total return at least 11\%?

\{Solver-Define? "F16..F19";"B24..B32";"On";F21;Max;3\}

e cell
int cell
nal cell
Adjustabl

Break-even analysis

As the office manager for a small firm, you must
More replace the existing copy machine service. You want to determine how much can be spent on a copier and still break even over a 4 year period, compared to out-sourcing the service. There is an upper limit of $\$ 5,000$ on the purchase.

Inputs:			
Purchase Price	\$5000	Tax Rate	34.00\%
Delivery	\$0	Cost of Money	11.00\%
Installation	0		
Useful Life	4	Price per Copy	\$0.10
Depreciation	SL	Copies per Year	15000
Salvage Value	\$0	Blank Paper	\$0.008
Investment Tax Cred	0.00\%	Cartridges per Co	\$0.035
		Service Contract	\$66.00

Constraints:

1	$\$ 0$	Minimum Price
1	$\$ 5000$	Maximum Price
0	0	Minimum NPV

Cash flow by year

Outflows (After Tax):	year 1
Capital Photocopy Machine	\$5000.00
Operatin Paper	\$79.20
Cartridges	\$346.50
Service Contract	\$43.56
Total Outflows	\$5469.26
$\begin{array}{ll} \hline \text { Capital } & \text { Invest. Tax Credit } \\ & \text { Trade-In Value } \end{array}$	\$0.00
Operatin Depreciation Tax Sh	\$425.00
Copy Expense Saved	\$990.00
Total Inflows	\$1415.00
Net After-Tax Cash F	-\$4054.26
Net Present Value	-\$1570.40
Internal Rate of Retu	-15.93\%

year 2	year 3	year 4
$\$ 79.20$	$\$ 79.20$	$\$ 79.20$
$\$ 346.50$	$\$ 346.50$	$\$ 346.50$
$\$ 43.56$	$\$ 43.56$	$\$ 43.56$
$\$ 469.26$	$\$ 469.26$	$\$ 469.26$
$\$ 425.00$	$\$ 425.00$	$\$ 425.00$
$\$ 990.00$	$\$ 990.00$	$\$ 990.00$
$\$ 1415.00$	$\$ 1415.00$	$\$ 1415.00$
$\$ 945.74$	$\$ 945.74$	$\$ 945.74$

Buying a Business (using internal rate of r

You have agreed to buy a business. You will pay the seller a total of $\$ 1.5 \mathrm{~m}$ over 3 years. The seller will allow you to pay as little as $\$ 400,000$ and as much as $\$ 600,000$ at the end each of the 3 years, as long as the total principal amount paid is $\$ 1.5 \mathrm{~m}$. Interest on the outstanding principal is computed at 12% per annum. You expect to generate the operating income shown below. Use Solver to determine the payment stream that maximizes your internal rate of return on investment.

Purchase facts:

Tax rate	34.00%
Interest rate	

IRR:
29.34%
TOTAL
$\$ 1200000 \quad 0$ Total payme

PURCHASE				OPERATING	
YR BALANCEPAYMENTSNTEREST	INCOME				
$1 \$ 1500000$	$\$ 400000$	$\$ 180000$	$\$ 357250 \$ 177250$	$\$ 60265$	
$2 \$ 1100000$	$\$ 400000$	$\$ 132000$	$\$ 400120 \$ 268120$	$\$ 91161$	
3	$\$ 700000$	$\$ 400000$	$\$ 84000$	$\$ 448134$	$\$ 364134$
4	$\$ 300000$	$\$ 0$	$\$ 36000$	$\$ 501911 \$ 465911$	$\$ 158410$
5	$\$ 300000$	$\$ 0$	$\$ 36000$	$\$ 562140 \$ 526140$	$\$ 178888$
6	$\$ 300000$	$\$ 0$	$\$ 36000$	$\$ 629597 \$ 593597$	$\$ 201823$
7	$\$ 300000$	$\$ 0$	$\$ 36000$	$\$ 705148 \$ 669148$	$\$ 227510$
8	$\$ 300000$	$\$ 0$	$\$ 36000$	$\$ 789766 \$ 753766$	$\$ 256280$
TOTALS	$\$ 1200000$	$\$ 4394065$			

\{Solver-Define? "F16..F18";"G16..H18;G20";"On";D2

Key:
Adjustable cell
Constraint cell
Optimal cell
ptimal/Adjustabl
User Data

!nts $=1.5 \mathrm{M}$?

AFTER TAX
CASH FLOW
$-\$ 283015$
$-\$ 223041$
$-\$ 159671$
$\$ 307501$
$\$ 347252$
$\$ 391774$
$\$ 441638$
$\$ 497486$
$\$ 1319923$

0;Max;2\}

[^0]: Using Solver models

