
AT&T Bell Laboratories
Murray Hill, NJ 07974

Computing Science Technical Report No. 149

A Fortran-to-C Converter

S. I. Feldman∗

David M. Gay
Mark W. Maimone†

N. L. Schryer

Last updated February 7, 1991.
Originally issued May 16, 1990.

∗Bell Communications Research, Morristown, NJ 07960
†Carnegie-Mellon University, Pittsburgh, PA 15213

A Fortran to C Converter

S. I. Feldman

Bellcore
Morristown, NJ 07960

David M. Gay

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Mark W. Maimone

Carnegie-Mellon University
Pittsburgh, PA 15213

N. L. Schryer

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

We describe f 2c, a program that translates Fortran 77 into C or C++. F 2c lets one port-
ably mix C and Fortran and makes a large body of well-tested Fortran source code avail-
able to C environments.

1. INTRODUCTION

Automatic conversion of Fortran 77 [1] to C [10, 11] is desirable for several reasons. Sometimes it is
useful to run a well-tested Fortran program on a machine that has a C compiler but no Fortran compiler. At
other times, it is convenient to mix C and Fortran. Some things are impossible to express in Fortran 77 or
are harder to express in Fortran than in C (e.g. storage management, some character operations, arrays of
functions, heterogeneous data structures, and calls that depend on the operating system), and some pro-
grammers simply prefer C to Fortran. There is a large body of well tested Fortran source code for carrying
out a wide variety of useful calculations, and it is sometimes desirable to exploit some of this Fortran
source in a C environment. Many vendors provide some way of mixing C and Fortran, but the details vary
from system to system. Automatic Fortran to C conversion lets one create a portable C program that
exploits Fortran source code.

A side benefit of automatic Fortran 77 to C conversion is that it allows such tools as cyntax(1) and
lint(1) [4] to provide Fortran 77 programs with some of the consistency and portability checks that the
Pfort Verifier [13] provided to Fortran 66 programs. The consistency checks detect errors in calling
sequences and are thus a boon to debugging.

This paper describes f 2c, a Fortran 77 to C converter based on Feldman’s original f 77 compiler [6].
We have used f 2c to convert various large programs and subroutine libraries to C automatically (i.e., with
no manual intervention); these include the PORT3 subroutine library (PORT1 is described in [7, 8]), MINOS
[12], and Schryer’s floating-point test [14]. The floating-point test is of particular interest, as it relies heav-
ily on correct evaluation of parenthesized expressions and is bit-level self-testing.

As a debugging aid, we sought bit-level compatibility between objects compiled from the C produced
by f 2c and objects produced by our local f 77 compiler. That is, on the VAX where we developed f 2c, we
sought to make it impossible to tell by running a Fortran program whether some of its modules had been
compiled by f 2c or all had been compiled by f 77. This meant that f 2c should follow the same calling con-
ventions as f 77 [6] and should use f 77’s support libraries, libF77 and libI77.

November 2, 1990

- 2 -

Although we have tried to make f 2c’s output reasonably readable, our goal of strict compatibility
with f 77 implies some nasty looking conversions. Input/output statements, in particular, generally get
expanded into a series of calls on routines in libI77, f 77’s I/O library. Thus the C output of f 2c would
probably be something of a nightmare to maintain as C; it would be much more sensible to maintain the
original Fortran, translating it anew each time it changed. Some commercial vendors, e.g., those listed in
Appendix A, seek to perform translations yielding C that one might reasonably maintain directly; these
translations generally require some manual intervention.

The rest of this paper is organized as follows. Section 2 describes the interlanguage conventions used
by f 2c (and f 77). §3 summarizes some extensions to Fortran 77 that f 2c recognizes. Example invocations
of f 2c appear in §4. §5 illustrates various details of f 2c’s translations, and §6 considers portability issues.
§7 discusses the generation and use of prototypes , which can be used both by C++ and ANSI C compilers
and by f 2c to check consistency of calling sequences. §8 describes our experience with an experimental
f 2c service provided by netlib [5], and §9 considers possible extensions. Appendix A lists some vendors
who offer conversion of Fortran to C that one might maintain as C. Finally, Appendix B contains a man
page telling how to use f 2c.

2. INTERLANGUAGE CONVENTIONS

Much of the material in this section is taken from [6].

Names

An f 2c extension inspired by Fortran 90 (until recently called Fortran 8x [2]) is that long names are
allowed (f 2c truncates names that are longer than 50 characters), and names may contain underscores. To
avoid conflict with the names of library routines and with names that f 2c generates, Fortran names may
have one or two underscores appended. Fortran names are forced to lower case (unless the -U option
described in Appendix B is in effect); external names, i.e., the names of Fortran procedures and common
blocks, have a single underscore appended if they do not contain any underscores and have a pair of under-
scores appended if they do contain underscores. Thus Fortran subroutines named ABC, A_B_C, and
A_B_C_ result in C functions named abc_, a_b_c_ _, and a_b_c_ _ _.

Types

The table below shows corresponding Fortran and C declarations; the C declarations use types
defined in f2c.h, a header file upon which f 2c’s translations rely. The table also shows the C types
defined in the standard version of f2c.h.

_ ___
Fortran C standard f2c.h

integer∗2 x shortint x; short int x;
integer x integer x; long int x;
logical x long int x; long int x;
real x real x; float x;
double precision x doublereal x; double x;
complex x complex x; struct { float r, i; } x;
double complex x doublecomplex x; struct { double r, i; } x;
character∗6 x char x[6]; char x[6];_ ___ 
























By the rules of Fortran, integer, logical, and real data occupy the same amount of memory, and
double precision and complex occupy twice this amount; f 2c assumes that the types in the C col-
umn above are chosen (in f2c.h) so that these assumptions are valid. The translations of the Fortran
equivalence and data statements depend on these assumptions. On some machines, one must modify
f2c.h to make these assumptions hold. See §6 for examples and further discussion.

November 2, 1990

- 3 -

Return Values

A function of type integer, logical, or double precision must be declared as a C func-
tion that returns the corresponding type. If the -R option is in effect (see Appendix B), the same is true of a
function of type real; otherwise, a real function must be declared as a C function that returns
doublereal; this hack facilitates our VAX regression testing, as it duplicates the behavior of our local
Fortran compiler (f 77). A complex or double complex function is equivalent to a C routine with an
additional initial argument that points to the place where the return value is to be stored. Thus,

complex function f(. . .)

is equivalent to

void f_(temp, . . .)
complex ∗temp;
. . .

A character-valued function is equivalent to a C routine with two extra initial arguments: a data address and
a length. Thus,

character∗15 function g(. . .)

is equivalent to

g_(result, length, . . .)
char ∗result;
ftnlen length;
. . .

and could be invoked in C by

char chars[15];
. . .

g_(chars, 15L, . . .);

Subroutines are invoked as if they were int-valued functions whose value specifies which alternate return
to use. Alternate return arguments (statement labels) are not passed to the function, but are used to do an
indexed branch in the calling procedure. (If the subroutine has no entry points with alternate return argu-
ments, the returned value is undefined.) The statement

call nret(∗1, ∗2, ∗3)

is treated exactly as if it were the Fortran computed goto

goto (1, 2, 3), nret()

Argument Lists

All Fortran arguments are passed by address. In addition, for every non-function argument that is of
type character, an argument giving the length of the value is passed. (The string lengths are ftnlen val-
ues, i.e., long int quantities passed by value). In summary, the order of arguments is: extra arguments
for complex and character functions, an address for each datum or function, and a ftnlen for each charac-
ter argument (other than character-valued functions). Thus, the call in

external f
character∗7 s
integer b(3)
. . .

call sam(f, b(2), s)

is equivalent to that in

int f();
char s[7];
long int b[3];
. . .

sam_(f, &b[1], s, 7L);

November 2, 1990

- 4 -

Note that the first element of a C array always has subscript zero, but Fortran arrays begin at 1 by default.
Because Fortran arrays are stored in column-major order, whereas C arrays are stored in row-major order,
f 2c translates multi-dimensional Fortran arrays into one-dimensional C arrays and issues appropriate sub-
scripting expressions.

3. EXTENSIONS TO FORTRAN 77

Since it is derived from f 77, f 2c supports all of the f 77 extensions described in [6]. F 2c’s extensions
include the following.

• Type double complex (alias complex*16) is a double-precision version of complex. Specific
intrinsic functions for double complex have names that start with z rather than c. An exception to
this rule is dimag, which returns the imaginary part of a double complex value; imag is the corre-
sponding generic intrinsic function. The generic intrinsic function real is extended so that it returns the
real part of a double complex value as a double precision value; dble is the specific intrinsic
function that does this job.

• The ‘‘types’’ that may appear in an implicit statement include undefined, which implies that vari-
ables whose names begin with the associated letters must be explicitly declared in a type statement. F 2c
also recognizes the Fortran 90 statement

implicit none

as equivalent to

implicit undefined(a-z)

The command-line option -u has the effect of inserting

implicit none

at the beginning of each Fortran procedure.

• Procedures may call themselves recursively, i.e., may call themselves either directly or indirectly through
a chain of other calls.

• The keywords static and automatic act as ‘‘types’’ in type and implicit statements; they specify
storage classes. There is exactly one copy of each static variable, and such variables retain their val-
ues between invocations of the procedure in which they appear. On the other hand, each invocation of a
procedure gets new copies of the procedure’s automatic variables. Automatic variables may not
appear in equivalence, data, namelist, or save statements. The command-line option -a
changes the default storage class from static to automatic (for all variables except those that appear
in common, data, equivalence, namelist, or save statements).

• A tab in the first 6 columns signifies that the current line is a free-format line, which may extend beyond
column 72. An ampersand & in column 1 indicates that the current line is a free-format continuation line.
Lines that have neither an ampersand in column 1 nor a tab in the first 6 columns are treated as Fortran 77
fixed-format lines: if shorter than 72 characters, they are padded on the right with blanks until they are 72
characters long; if longer than 72 characters, the characters beyond column 72 are discarded. After taking
continuations into account, statements may be up to 1320 characters long; this is the only constraint on
the length of free-format lines. (This limit is implied by the Fortran 77 standard, which allows at most 19
continuation lines; 1320 = (1 + 19) × 66.)

• Aside from quoted strings, f 2c ignores case (unless the -U option is in effect).

• The statement

include ’stuff’

is replaced by the contents of the file stuff. Includes may be nested to a reasonable depth, currently
ten. The command-line option -!I disables includes; this option is used by the netlib f 2c service
described in §8 (for which include obviously makes no sense).

November 2, 1990

- 5 -

• F77 allows binary, octal, and hexadecimal constants to appear in data statements; f 2c goes somewhat
further, allowing such constants to appear anywhere; they are treated just like a decimal integer constant
having the equivalent value. Binary, octal, and hexadecimal constants may assume one of two forms: a
letter followed by a quoted string of digits, or a decimal base, followed by a sharp sign #, followed by a
string of digits (not quoted). The letter is b or B for binary constants, o or O for octal constants, and x, X,
z, or Z for hexadecimal constants. Thus, for example, z’a7’, 16#a7, o’247’, 8#247,
b’10100111’ and 2#10100111 are all treated just like the integer 167.

• For compatibility with C, quoted strings may contain the following escapes:
_ __
\0 null \n newline
\\ \ \r carriage return
\b backspace \t tab
\f form feed \v vertical tab

\’ apostrophe (does not terminate a string)
\" quotation mark (does not terminate a string)
\x x, where x is any other character_ __ 




















The -!bs option tells f 2c not to recognize these escapes. Quoted strings may be delimited either by dou-
ble quotes (") or by single quotes (′); if a string starts with one kind of quote, the other kind may be
embedded in the string without being repeated or quoted by a backslash escape. Where possible, trans-
lated strings are null-terminated.

• Hollerith strings are treated as character strings.

• In equivalence statements, a multiply-dimensioned array may be given a single subscript, in which
case the missing subscripts are taken to be 1 (for backward compatibility with Fortran 66) and a warning
message is issued.

• In a formatted read of non-character variables, the I/O library (libI77) allows a field to be terminated by a
comma.

• Type real*4 is equivalent to real, integer*4 to integer, real*8 to double precision,
complex*8 to complex, and, as stated before, complex*16 to double complex.

• The type integer*2 designates short integers (translated to type shortint, which by default is
short int). Such integers are expected to occupy half a ‘‘unit’’ of storage. The command-line
options -I2 and -i2 turn type integer into integer*2; see the man page (appendix B) for more
details.

• The intrinsic functions and, or, xor, and not perform bitwise Boolean operations.

• LibF77 provides two functions for accessing command-line arguments: iargc(dummy) returns the
number of command-line arguments (and ignores its argument); getarg(k,c) sets the character string
c to the kth command-line argument (or to blanks if k is out of range).

• Variable, common, and procedure names may be arbitrarily long, but they are truncated after the 50th
character. These names may contain underscores (in which case their translations will have a pair of
underscores appended).

• MAIN programs may have arguments, which are ignored.

• Common variables may be initialized by a data statement in any module, not just in a block data
subprogram.

• The label may be omitted from a do loop if the loop is terminated by an enddo statement.

• Unnamed Fortran 90 do while loops are allowed. Such a loop begins with a statement of the form
do [label] [,] while(logical expression)

and ends either after the statement labelled by label or after a matching enddo.

November 2, 1990

- 6 -

• F 2c recognizes the Fortran 90 synonyms <, <=, ==, >=, >, and <> for the Fortran comparison operators
.LT., .LE., .EQ., .GE., .GT., and .NE.

• Namelist works as in Fortran 90 [2], with a minor restriction on namelist input: subscripts must
have the form

subscript [: subscript [: stride]]
For example, the Fortran

integer m(8)
real x(10,10)
namelist /xx/ m, x
. . .
read(*,xx)

could read

&xx x(1,1) = 2, x(1:3,8:10:2) = 1,2,3,4,5,6 m(7:8) = 9,10/

but would elicit error messages on the inputs

&xx x(:3,8:10:2) = 1,2,3,4,5,6/
&xx x(1:3,8::2) = 1,2,3,4,5,6/
&xx m(7:) = 9,10/

(which inputs would be legal in Fortran 90). For compatibility with the namelist variants supplied by
several vendors as Fortran 77 extensions, f 2c’s version of libI77 permits $ to be used instead of & and /
in namelist input. Thus the Fortran shown above could read

$xx x(1,1) = 2, x(1:3,8:10:2) = 1,2,3,4,5,6 m(7:8) = 9,10$end

• Internal list-directed and namelist I/O are allowed.

• In an open statement, name= is treated as file=.

4. INVOCATION EXAMPLES

To convert the Fortran files main.f and subs.f, one might use the UNIX command:

f2c main.f subs.f

This results in translated files suffixed with .c, i.e., the resulting C files are main.c and subs.c. To
translate all the Fortran files in the current directory, compile the resulting C, and create an executable
program named myprog, one might use the following pair of UNIX commands:

f2c *.f
cc -o myprog *.c -lF77 -lI77 -lm

The above -lF77 and -lI77 options assume that the ‘‘standard’’ Fortran support libraries libF77 and
libI77 are appropriate for use with f 2c. On some systems this is not the case (as further discussed in §6);
if one had installed a combination of the appropriate libF77 and libI77 in the appropriate place, then the
above example might become

f2c *.f
cc -o myprog *.c -lf2c -lm

Sometimes it is desirable to use f 2c’s -R option, which tells f 2c not to force all floating-point operations
to be done in double precision. (One might argue that -R should be the default, but we find the current
arrangement more convenient for testing f 2c.) With -R specified, the previous example becomes

f2c -R *.f
cc -o myprog *.c -lf2c -lm

Sometimes it is desirable to translate several Fortran source files into a single C file. This is easily done
by using f 2c as a filter:

cat *.f | f2c >mystuff.c

November 2, 1990

- 7 -

The -A option lets f 2c use ANSI C constructs [3], which yields more readable C when character vari-
ables are initialized. With both -A and -R specified, the last example becomes

cat *.f | f2c -A -R >mystuff.c

For use with C++ [15], one would specify -C++ rather than -A; the last example would then become

cat *.f | f2c -C++ -R >mystuff.c

The -C++ option gives ANSI-style headers and old-style C formatting of character strings and float
constants (since some C++ compilers reject the ANSI versions of these constructs).

With ANSI C, one can use prototypes , i.e., a special syntax describing the calling sequences of proce-
dures, to help catch errors in argument passing. To make using prototypes convenient, the -P option
causes f 2c to create a file.P of prototypes for the procedures defined in each input file.f (or file.F, i.e.,
the suffix ‘‘.f’’ or ‘‘.F’’ is replaced by ‘‘.P’’). One could concatenate all relevant prototype files into a
header file and arrange for the header to be #included with each C file compiled. Since -P implies -A
unless -C++ is specified, one could convert all the Fortran files in the current directory to ANSI C and get
corresponding prototype files by issuing the command

f2c -P *.f

Several command options may be combined if none but perhaps the last takes an argument; thus to spec-
ify -R and get C++ prototypes for all the files in the current directory, one could say either

f2c -C++ -P -R *.f

or

f2c -C++PR *.f

or

f2c -RPC++ *.f

— options can come in any order.

For numeric variables initialized by character data, the -W option specifies the (machine-dependent!)
number of characters per word and is further discussed in §6. This option takes a numeric argument, as in
-W8; such an option must be listed either separately or at the end of a string of other options, as in

f2c -C++RPW8 *.f

5. TRANSLATION DETAILS

F 2c is based on the ancient f 77 Fortran compiler of [6]. That compiler produced a C parse-tree,
which it converted into input for the second pass of the portable C compiler (PCC) [9]. The compiler has
been used for many years and is the direct ancestor of many current Fortran compilers. Thus, it provided
us with a solid base of Fortran knowledge and a nearly complete C representation. The converter f 2c is a
copy of the f 77 Fortran compiler which has been altered to print out a C representation of the program
being converted. The program f 2c is a horror, based on ancient code and hacked unmercifully. Users are
only supposed to look at its C output, not at its appalling inner workings.

Here are some examples that illustrate f 2c’s translations. For starters, it is helpful to see a short but
complete example: f 2c turns the Fortran inner product routine

FUNCTION DOT(N,X,Y)
INTEGER N
REAL X(N),Y(N)
DOT = 0
DO 10 I = 1, N

10 DOT = DOT + X(I)*Y(I)
END

into

November 2, 1990

- 8 -

/* dot.f -- translated by f2c (version of 5 February 1991 23:46:33).
You must link the resulting object file with the libraries:

-lF77 -lI77 -lm -lc (in that order)
*/

#include "f2c.h"

doublereal dot_(n, x, y)
integer *n;
real *x, *y;
{

/* System generated locals */
integer i__1;
real ret_val;

/* Local variables */
static integer i;

/* Parameter adjustments */
--y;
--x;

/* Function Body */
ret_val = (float)0.;
i__1 = *n;
for (i = 1; i <= i__1; ++i) {

/* L10: */
ret_val += x[i] * y[i];

}
return ret_val;

} /* dot_ */

The translated C always starts with a ‘‘translated by f2c’’ comment and a #include of f2c.h. F 2c
forces the variable and procedure names to lower-case and appends an underscore to the external name
dot (to avoid possible conflicts with library names). The parameter adjustments ‘‘--x’’ and ‘‘--y’’
account for the fact that C arrays start at index 0. Unused labels are retained in comments for orienteering
purposes. Within a function, Fortran references to the function name are turned into references to the
local variable ret_val, which holds the value to be returned. Unless the -R option is specified, f 2c
converts the return type of real function values to doublereal. Because using the C ‘‘op=’’ opera-
tors leads to greater efficiency on some machines, f 2c looks for opportunities to use these operators, as in
the line ‘‘ret_val += ...’’ above.

F 2c generally dispenses with superfluous parentheses: ANSI C specifies a clear order of evaluation
for floating-point expressions, and f 2c uses the ANSI C rules to decide when parentheses are required to
faithfully translate a parenthesized Fortran expression. Non-ANSI compilers are free to violate parenthe-
ses; by default, f 2c does not attempt to break an expression into several statements to foil pernicious
non-ANSI C compilers. Thus, for example, the Fortran

x = a*(b*c)
y = (a*b)*c

becomes

x = a * (b * c);
y = a * b * c;

The -kr and -krd options cause f 2c to use temporary variables to force correct evaluation order with
non-ANSI C compilers.

Fortran I/O is complicated; like f 77, f 2c converts a Fortran I/O statement into calls on the Fortran
I/O library libI77. For Fortran reads and writes, there is generally one call to start the statement, one
to end it, and one for each item read or written. Given the Fortran declarations

November 2, 1990

- 9 -

integer count(10)
real val(10)

the Fortran

read(*,*) count, val

is turned into some header lines:

static integer c_ _3 = 3;
static integer c_ _10 = 10;
static integer c_ _4 = 4;
. . .

/* Builtin functions */
integer s_rsle(), do_lio(), e_rsle();

. . .
/* Fortran I/O blocks */
static cilist io_ _1 = { 0, 5, 0, 0, 0 };

and the executable lines

s_rsle(&io_ _1);
do_lio(&c_ _3, &c_ _10, (char *)&count[0], (ftnlen)sizeof(integer));
do_lio(&c_ _4, &c_ _10, (char *)&val[0], (ftnlen)sizeof(real));
e_rsle();

Implicit Fortran do-loops, e.g.

read(*,*) (count(i), val(i), i = 1, 10)

get turned into explicit C loops:

s_rsle(&io_ _4);
for (i = 1; i <= 10; ++i) {

do_lio(&c_ _3, &c_ _1, (char *)&count[i - 1], (ftnlen)sizeof(integer));
do_lio(&c_ _4, &c_ _1, (char *)&val[i - 1], (ftnlen)sizeof(real));

}
e_rsle();

The Fortran end= and err= specifiers make the resulting C even less readable, as they require tests to be
inserted. For example,

read(*,*,err=10) count, val
10 continue

becomes

i_ _1 = s_rsle(&io_ _1);
if (i_ _1 != 0) {

goto L10;
}
i_ _1 = do_lio(&c_ _3, &c_ _10, (char *)&count[0], (ftnlen)sizeof(integer));
if (i_ _1 != 0) {

goto L10;
}
i_ _1 = do_lio(&c_ _4, &c_ _10, (char *)&val[0], (ftnlen)sizeof(real));
if (i_ _1 != 0) {

goto L10;
}
i_ _1 = e_rsle();

L10:
;

A Fortran routine containing n entry statements is turned into n + 2 C functions, a big one con-
taining the translation of everything but the entry statements, and n + 1 little ones that invoke the big
one. Each little one passes a different integer to the big one to tell it where to begin; the big one starts
with a switch that branches to the code for the appropriate entry. For instance, the Fortran

November 2, 1990

- 10 -

function sine(x)
data pi/3.14159265358979324/
sine = sin(x)
return
entry cosneg(y)
cosneg = cos(y+pi)
return
end

is turned into the big procedure

doublereal sine_0_(n_ _, x, y)
int n_ _;
real *x, *y;
{

/* Initialized data */

static real pi = (float)3.14159265358979324;

/* System generated locals */
real ret_val;

/* Builtin functions */
double sin(), cos();

switch(n_ _) {
case 1: goto L_cosneg;
}

ret_val = sin(*x);
return ret_val;

L_cosneg:
ret_val = cos(*y + pi);
return ret_val;

} /* sine_ */

and the little invoking procedures

doublereal sine_(x)
real *x;
{

return sine_0_(0, x, (real *)0);
}

doublereal cosneg_(y)
real *y;
{

return sine_0_(1, (real *)0, y);
}

Fortran common regions are turned into C structs. For example, the Fortran declarations

common /named/ c, d, r, i, l
complex c(10)
double precision d(10)
real r(10)
integer i(10)
logical m(10)

if (m(i(2))) d(3) = d(4)/d(5)

result in

November 2, 1990

- 11 -

struct {
complex c[10];
doublereal d[10];
real r[10];
integer i[10];
logical m[10];

} named_;

#define named_1 named_
. . .

if (named_1.m[named_1.i[1] - 1]) {
named_1.d[2] = named_1.d[3] / named_1.d[4];
}

Under the -p option, the above if statement becomes more readable:

. . .
#define c (named_1.c)
#define d (named_1.d)
#define r (named_1.r)
#define i (named_1.i)
#define m (named_1.m)
. . .

if (m[i[1] - 1]) {
d[2] = d[3] / d[4];

If the above common block were involved in a block data subprogram, e.g.

block data
common /named/ c, d, r, i, l, m
complex c(10)
double precision d(10)
real r(10)
integer i(10)
logical m(10)
data c(1)/(1.0,0e0)/, d(2)/2d0/, r(3)/3e0/, i(4)/4/,

* m(5)/.false./
end

then the struct would begin ‘‘struct named_1_ {’’, and f 2c would issue a more elaborate
#define:

#define named_1 (*(struct named_1_ *) &named_)

/* Initialized data */

struct {
complex e_1;
doublereal fill_2[10];
doublereal e_3;
doublereal fill_4[9];
real e_5;
integer fill_6[10];
integer e_7;
integer fill_8[11];
logical e_9;
integer fill_10[5];
} named_ = { (float)1., (float)0., {0}, 2., {0}, (float)3., {0}, 4,

{0}, FALSE_ };

In this example, f 2c relies on C’s structure initialization rules to supply zeros to the fill_n arrays that
take up the space for which no data values were given. (The logical constants TRUE_ and FALSE_ are
defined in f2c.h.)

November 2, 1990

- 12 -

Character manipulations of multiple-character strings generally result in function calls. For exam-
ple, the Fortran

character*(*) function cat(a,b)
character*(*) a, b
cat = a // b
end

yields

. . .
static integer c_ _2 = 2;

/* Character */ int cat_(ret_val, ret_val_len, a, b, a_len, b_len)
char *ret_val;
ftnlen ret_val_len;
char *a, *b;
ftnlen a_len;
ftnlen b_len;
{

/* System generated locals */
address a_ _1[2];
integer i_ _1[2];

/* Builtin functions */
/* Subroutine */ int s_cat();

/* Writing concatenation */
i_ _1[0] = a_len, a_ _1[0] = a;
i_ _1[1] = b_len, a_ _1[1] = b;
s_cat(ret_val, a_ _1, i_ _1, &c_ _2, ret_val_len);

} /* cat_ */

Note how the return-value length (ret_val_len) and parameter lengths (a_len and b_len) are used.
Single character operations are generally done in-line. For example, the body of the Fortran

character*1 function lastnb(x,n)
character*1 x(n)
lastnb = ’ ’
do 10 i = n, 1, -1

if (x(i) .ne. ’ ’) then
lastnb = x(i)
return
end if

10 continue
end

becomes

*ret_val = ’ ’;
for (i = *n; i >= 1; --i) {

if (x[i] != ’ ’) {
*ret_val = x[i];
return ;

}
/* L10: */

}

F 2c uses structs and #defines to translate equivalences. For a complicated example
showing the interaction of data with common, equivalence, and, for good measure, Hollerith nota-
tion, consider the Fortran

November 2, 1990

- 13 -

common /cmname/ c
complex c(10)
double precision d(10)
real r(10)
integer i(10)
logical m(10)
equivalence (c(1),d(1),r(1),i(1),m(1))
data c(1)/(1.,0.)/
data d(2)/2d0/, r(5)/3e0/, i(6)/4/, m(7)/.true./
call sam(c,d(1),r(2),i(3),m(4),14hsome hollerith,14)
end

The resulting C is

. . .
struct cmname_1_ {

complex c[10];
};

#define cmname_1 (*(struct cmname_1_ *) &cmname_)

/* Initialized data */

struct {
complex e_1;
doublereal e_2;
real e_3;
integer e_4;
logical e_5;
integer fill_6[13];
} cmname_ = { (float)1., (float)0., 2., (float)3., 4, TRUE_ };

/* Table of constant values */

static integer c_ _14 = 14;

/* Main program */ MAIN_ _()
{

/* Local variables */

#define d ((doublereal *)&cmname_1)
#define i ((integer *)&cmname_1)
#define l ((logical *)&cmname_1)
#define r ((real *)&cmname_1)

extern /* Subroutine */ int sam_();

sam_(cmname_1.c, d, &r[1], &i[2], &m[3], "some hollerith", &c_ _14, 14L);
} /* MAIN_ _ */

#undef r
#undef l
#undef i
#undef d

As this example shows, f 2c turns a Fortran MAIN program into a C function named MAIN_ _. Why not
main? Well, libF77 contains a C main routine that arranges for files to be closed automatically when the
Fortran program stops, arranges for an error message to be printed if a floating-point exception occurs,
and arranges for the command-line argument accessing functions iargc and getarg to work properly.
This C main routine invokes MAIN_ _.

November 2, 1990

- 14 -

6. PORTABILITY ISSUES

Three portability issues are relevant to f 2c: the portability of the support libraries (libF77 and
libI77) upon which the translated C programs rely, that of the converter f 2c itself, and that of the C it pro-
duces.

Regarding the first issue, some vendors (e.g., Sun and MIPS) have changed the calling conventions
for their libI77 from the original conventions (those of [6]). Other vendors (e.g., MIPS) have changed the
libF77 calling conventions (e.g., for complex-valued functions). Thus, having libraries libF77 and
libI77 or otherwise having library routines with the names that f 2c expects is insufficient. When using a
machine whose vendor provides but has gratuitously changed libF77 or libI77, one cannot safely mix
objects compiled from the C produced by f 2c with objects compiled by the vendor’s Fortran compiler,
and one must use the correct libraries with programs translated by f 2c. In such a case, the recommended
procedure is to obtain source for the libraries (e.g. from netlib — see §8), combine them into a single
library, say libf2c, and install the library where it they can be conveniently accessed. On a UNIX sys-
tem, for example, one might install libf2c in /usr/lib/libf2c.a; then one could issue the com-
mand

cc *.c -lf2c -lm

to compile and link a program translated by f 2c.

The converter itself is reasonably portable and has run successfully on Apollo, Cray, IBM, MIPS,
SGI, Sun and DEC VAX equipment, all running some version of the UNIX operating system. However,
we shall see that the C it produces may not be portable due to subtle storage management issues in For-
tran 77. In any case, the C output of f 2c will run fine, at least if the -Wn option (see Appendix B) is used
to set the number of characters per word correctly, and if C double values may fall on an odd-word
boundary.

The Fortran 77 standard says that Complex and Double Precision objects occupy two
‘‘units’’ of space while other non-character data types occupy one ‘‘unit.’’ It may be necessary to edit the
header file f2c.h to make these assumptions hold, if possible. On the Cray, for example, float and
double are the same C types, and Fortran double precision, if available, would correspond to the C type
long double. In this case, changing the definition of doublereal in f2c.h from

typedef double doublereal;

to

typedef long double doublereal;

would be appropriate. For the Think C compiler on the Macintosh, on the other hand, this line would
need to become

typedef short double doublereal;

If your C compiler predefines symbols that could clash with translated Fortran variable names, then
you should also add appropriate #undef lines to f2c.h. The current default f2c.h provides the fol-
lowing #undef lines for the following symbols:

cray mc68020 sgi sun2 u370 u3b5
gcos mips sparc sun3 u3b unix
mc68010 pdp11 sun sun4 u3b2 vax

As an extension to the Fortran 77 Standard, f 2c allows noncharacter variables to be initialized with
character data. This extension is inherently nonportable, as the number of characters storable per ‘‘unit’’
varies from machine to machine. Since 32 bit machines are the most plentiful, f 2c assumes 4 characters
per Fortran ‘‘unit’’, but this assumption can be overridden by the -Wn command-line option. For exam-
ple, -W8 is appropriate for C that is to be run on Cray computers, since Crays store 8 characters per word.
An example is helpful here: the Fortran

November 2, 1990

- 15 -

data i/’abcd’/
j = i
end

turns into

/* Initialized data */

static struct {
char e_1[4];
} equiv_3 = { {’a’, ’b’, ’c’, ’d’} };

#define i (*(integer *)&equiv_3)

static integer j;

j = i;
. . .
#undef i

(Some use of i, e.g. ‘‘j = i’’, is necessary or f 2c will see that i is not used and will not initialize it.) If
the target machine were a Cray and the string were ’abcdefgh’ or "abcdefhg", then the Fortran
would run fine, but the C produced by f 2c would only store "abcd" in i, 4 being the default number of
characters per word. The f 2c command-line option -W8 gives the correct initialization for a Cray.

The initialization above is clumsy, using 4 separate characters. Using the option -A, for ANSI,
produces

. . .
} equiv_3 = { "abcd" };

. . .

See Appendix B.

The above examples explain why the Fortran 77 standard excludes Hollerith data statements: the
number of characters per word is not specified and hence such code is not portable even in Fortran. (For-
tran that conservatively assumes only 1 or 2 characters per word is portable but messy. Note that Fortran
77 forbids the mixing, via common, data, or equivalence, of character and noncharacter types.
Like many Fortran compilers, f 2c permits such nonportable mixing; initialization of numeric variables
with Hollerith data is one example of this mixing.)

Some Fortran 66 programs pass Hollerith strings to integer variables. F 2c treats a Hollerith
string as a character string, but this may lead to bus errors on some systems if the character string winds
up being improperly aligned. The -h option instructs f 2c to try to give character variables and constants
the same alignment as integers. Under -h, for example, the Fortran

call foo("a string")
call goo(8ha string)

is translated to

static struct { integer fill; char val[8+1]; char fill2[3]; } c_b1_st = { 0,
"a string" };

#define c_b1 c_b1_st.val
. . .

foo_(c_b1, 8L);
goo_(c_b1, 8L);

. . .

Some systems require that C values of type double be aligned on a double-word boundary. For-
tran common and equivalence statements may require some C double values to be aligned on an
odd-word boundary. On systems where double-word alignment is required, C compilers pad structures, if
necessary, to arrange for the right alignment. Often such padding has no effect on the validity of f 2c’s
translation, but using common or equivalence, it is easy to contrive examples in which the translated
C works incorrectly. F 2c issues a warning message when double-word alignment may cause trouble, but,

November 2, 1990

- 16 -

like f 77, it makes no attempt to circumvent this trouble; the run-time costs of circumvention would be
substantial.

Long decimal strings in data statements are passed to C unaltered. However, expressions involv-
ing long decimal strings are rounded in a machine-dependent manner. On a VAX 8550, the Fortran

x=1.2**10
end

yields the C

static real x;

x = (float)6.1917364224000008;

ANSI C compilers require that all but one instance of any entity with external scope, such as the
structs into which f 2c translates common, be declared extern and that exactly one declaration
should define the entity, i.e., should not be declared extern. Most older C compilers have no such
restriction. To be compatible with ANSI usage, the f 2c command-line option -ec causes the struct
corresponding to an uninitialized common region to be declared extern and makes a union of all suc-
cessive declarations of that common region into a defining declaration placed in a file with the name
cname_com.c, where cname is the name of the common region. For example, the Fortran

common /cmname/ c
complex c(10)
c(1)=cmplx(1.,0.)
call sam(c)
end
subroutine sam(c)
complex c
common /cmname/ca
complex ca(10)
ca(2) = cmplx(1e0,2e0)
return
end

when converted by f2c -ec produces

November 2, 1990

- 17 -

/* Common Block Declarations */

union {
struct {

complex c[10];
} _1;
struct {

complex ca[10];
} _2;

} cmname_;

#define cmname_1 (cmname_._1)
#define cmname_2 (cmname_._2)

/* Main program */ MAIN_ _()
{

extern /* Subroutine */ int sam_();

cmname_1.c[0].r = (float)1., cmname_1.c[0].i = (float)0.;
sam_(cmname_1.c);

} /* MAIN_ _ */

/* Subroutine */ int sam_(c)
complex *c;
{

cmname_2.ca[1].r = (float)1., cmname_2.ca[1].i = (float)2.;
return 0;

} /* sam_ */

as well as the file cmname_com.c:

#include "f2c.h"
union {

struct {
complex c[10];

} _1;
struct {

complex ca[10];
} _2;

} cmname_;

The files *_com.c may be compiled into a library against which one can load to satisfy overly fastidious
ANSI C compilers.

The rules of Fortran 77 apparently permit a situation in which f 2c declares a function to be of type
int, then defines it to be of another type, as illustrated by the first example in §7. In that example, f 2c
discovers too late that f is not a subroutine. With some C compilers, this causes nothing worse than a
warning message; with others, it causes the compilation to be aborted. With unforgiving C compilers,
one can usually avoid trouble by splitting the Fortran source into one file per procedure, e.g., with the
fsplit(1) command, and converting each procedure separately. Another solution is to use prototypes, as
discussed in §7.

With an ANSI C system that enforced consistent prototype declarations across separate compila-
tions, it would be impossible to translate the main program correctly in the last example just by looking at
the main program. Recent C++ compilers do enforce the consistency of prototype declarations across
separate compilations, e.g., by encoding calling sequences into the translated names of functions, except
for functions that are declared extern "C" and compiled separately. F 2c allows one to use this escape
hatch: under -C++, f 2c inserts

#ifdef _ _cplusplus
extern "C" {
#endif

November 2, 1990

- 18 -

at the beginning of its C++ output and places

#ifdef _ _cplusplus
}

#endif

at the end of its C++ output. The #ifdef _ _cplusplus lines are for the benefit of older C++ com-
pilers that do not recognize extern "C".

7. PROTOTYPES

In ANSI C and C++, a prototype describes the calling sequence of a function. Prototypes can save
debugging time by helping catch errors in calling sequences. The -P option instructs f 2c to emit proto-
types for all the functions defined in the C it produces; specifically, f 2c creates a file.P of prototypes for
each input file.f or file.F. One can then arrange for relevant prototype files to be seen by the C com-
piler. For instance, if f 2c’s header file f2c.h is installed as /usr/include/f2c.h, one could issue
the UNIX command

cat /usr/include/f2c.h *.P >f2c.h

to create a local copy of f2c.h that has in it all the prototypes in *.P. Since the C produced by f 2c
always specifies

#include "f2c.h"

(rather than #include <f2c.h>), the C compiler will look first in the current directory for f2c.h
and thus will find the local copy that contains the prototypes.

F 2c can also read the prototype files it writes; one simply specifies them as arguments to f 2c. In
fact, f 2c reads all prototype files before any Fortran files; although multiple Fortran files are handled inde-
pendently, any prototype file arguments apply to all of them. F 2c has more detailed knowledge of For-
tran types than it conveys in the C it puts out; for example, logical and integer are different Fortran
types, but are mapped to the same C type. Moreover, character, complex, and double complex
Fortran functions are all translated to VOID C functions, and, unless the -R option is specified, both
real and double precision Fortran functions are translated to doublereal C functions.
Because f 2c denotes all these types differently in its prototype files, it can catch errors that are invisible to
an ANSI C (or C++) compiler.

The following table shows the types that f 2c uses for procedure arguments:
_ ___
C_fp complex
D_fp doublereal
E_fp real under -!R (the default)
H_fp character
I_fp integer or integer*4
J_fp integer*2
K_fp shortlogical (logical under -i2 or -I2)
L_fp logical
R_fp real under -R
S_fp subroutine
U_fp untyped external
Z_fp doublecomplex_ ___ 






























These types are defined in f2c.h; they appear in prototypes and, under -A or -C++, in the C that f 2c
writes. Prototypes also use special void types to denote the return values of complex, double com-
plex, and character functions:

_ _________________________
C_f complex
H_f character
Z_f double complex_ _________________________ 










November 2, 1990

- 19 -

F 2c also writes special comments in prototype files giving the length of each common block; when
given prototype files as arguments, f 2c reads these special comments so it can issue a warning message if
its Fortran input specifies a different length for some common block.

Sometimes people write otherwise valid Fortran 77 that specifies different lengths for a common
block. If such Fortran is split into several files and converted to C, the loader could end up giving too lit-
tle space to the common block in question. One can avoid the confusion this could cause by running f 2c
twice, first with -P!c, then with the resulting prototypes as additional arguments; the prototypes let f 2c
determine (and convey to all of its output C files) the true length needed for each common block.

One complication with prototypes comes from Fortran subprograms that declare a procedure to be
external but do not explicitly specify a type for it and only pass it as a parameter to another procedure.
(If the subprogram also invokes the external procedure, then f 2c can tell whether the procedure is a
subroutine or a function; in the latter case, Fortran’s implicit typing rules specify a type for the proce-
dure.) If it can do no better, then f 2c assumes that untyped external procedures are subroutines (and
hence become int-valued functions in C). This can cause the generated C to have multiple and inconsis-
tent declarations for some procedures. For example,

external f
call foo(f)
end
function f(x)
double precision f, x
f = x
end

results in MAIN_ _ declaring

extern /* Subroutine */ int f_();

and in the subsequent definition of doublereal f_(x) in the same C file. Such inconsistencies are
grounds for some C compilers to abort compilation.

F 2c’s type inferences only apply sequentially to the procedures in a file, because f 2c writes C for
each procedure before reading the next one. Thus, as just illustrated, if procedure xyz comes after abc
in a Fortran input file, then f 2c cannot use information it gains when it sees the definition of xyz to
deduce types for external procedures passed as arguments to xyz by abc. By using the -P option
and running f 2c several times, one can get around this deficiency. For instance, if file zap.f contains
the Fortran shown above, then the commands

f2c -P!c zap.f
f2c -A zap.[fP]

result in a file zap.c in which MAIN_ _ correctly types f_ and foo_ as

extern doublereal f_();
extern /* Subroutine */ int foo_(D_fp);

rather than

extern /* Subroutine */ int f_();
extern /* Subroutine */ int foo_(U_fp);

The first invocation of f 2c results in a file zap.P containing

extern doublereal f_(doublereal *x);
/*:ref: foo_ 10 1 200 */

The second invocation of f 2c is able to type f_ and foo_ correctly because of the first line in zap.P.

The second line in zap.P is a special comment that records the incomplete type information that
f 2c has about foo_. F 2c puts one such special comment in the prototype file for each Fortran procedure
that is referenced but not defined in the Fortran file. When it reads prototype files, f 2c deciphers these
comments and uses them to check the consistency of calling sequences. As it learns more about untyped

November 2, 1990

- 20 -

external procedures, f 2c updates the information it has on them; the :ref: comments it writes in a pro-
totype file reflect f 2c’s latest knowledge.

Ordinarily f 2c tries to infer the type of an untyped external procedure from its use as arguments
to procedures of known argument types. For example, if f.f contains just

external f
call foo(f)
end

and if foo.P contains

extern int foo_(D_fp);

then

f2c -A f.f foo.P

results in the declaration

extern doublereal f_();

Under unusual circumstances, such type inferences can lead to erroneous error messages or to incorrect
typing. Here is an example:

subroutine zoo
external f
double precision f
external g
call zap(1,f)
call zap(2,g)
end
subroutine goo
call g
end

F 2c first infers g to be a double precision function, then discovers that it must be a subroutine and issues a
warning message about inconsistent declarations for g. This example is legal Fortran 77; zap could be
defined, for instance, by

subroutine zap(n,f)
external f
if (n .le. 1) call zap1(f)
if (n .ge. 2) call zap2(f)
end

In such a case one can specify the -!it option to instruct f 2c not to infer the types of otherwise unty-
pable external procedures from their appearance as arguments to known procedures. Here is another
(somewhat far-fetched) example where -!it is useful:

subroutine grok(f,g,h)
external f, g, h
logical g
call foo(1,g)
call foo(2,f)
call zit(1,f)
call zit(2,h)
call zot(f(3))
end

Without -!it, f 2c first infers f_ to be a logical function, then discovers that Fortran’s implicit typ-
ing rules require it to be a real function. F 2c issues the warning message ‘‘fixing wrong type
inferred for f’’, which should serve as a warning that f 2c may have made some incorrect type
inferences in the mean time. Indeed, f 2c ends up typing h_ as a logical function; with -!it
specified, f 2c types h_ as an external procedure unknown type, i.e., a U_fp, which to the C compiler

November 2, 1990

- 21 -

appears to be a subroutine. (Even with -!it specified, f 2c issues a warning message about inconsistent
calling sequences for foo.)

Because f 2c writes its latest knowledge of types into prototype files, it is easy to write a crude
(Bourne) shell script that will glean the maximum possible type information:

>f.p
until

f2c -Pit f.p f.f
cmp -s f.p f.P

do
mv f.P f.p
done

In such scripts, use of the -Ps option can save an iteration; -Ps implies -P and instructs f 2c to issue
return code 4 if another iteration might change a declaration or prototype. Thus the following script is
more efficient:

while :; do
f2c -Ps f.[fP]
case $? in 4) ;; *) break;; esac
done

The number of iterations depends on the call graph of the procedures in f.f and on their order of appear-
ance in f.f. Sorting them into topological order (so that if abc calls def, then abc precedes def) and
reverse topological order and alternating between the two orders is probably a good heuristic. For exam-
ple, we were able to completely type the PORT3 subroutine library in two passes by first processing it in
reverse topological order, then in forward order. Unfortunately, one can devise situations where arbitrar-
ily many iterations are required. This is slightly annoying, since with appropriate data structures (in an
extensively reorganized version of f 2c), one could do this calculation in linear time.

8. EXPERIENCE WITH netlib

With the help of Eric Grosse, we arranged for the netlib [5] server
netlib@research.att.com to provide an experimental Fortran-to-C translation service by elec-
tronic mail. By executing the UNIX command

(echo execute f2c; cat foo.f) | mail netlib@research.att.com

one submits the Fortran in foo.f to netlib’s f 2c service; netlib replies with the C and diagnostic mes-
sages produced by f 2c from foo.f. (The include mechanism described in §3 makes no sense in this
context, so it is disabled.) To start using this service, one would generally execute

echo ’send index from f2c’ | mail netlib@research.att.com

to check on the current status of the service. Before compiling the returned C, it is necessary to get a
copy of f2c.h:

echo ’send f2c.h from f2c’ | mail netlib@research.att.com

Most likely it would also be necessary to obtain source for the versions of libF77 and libI77 assumed by
f 2c:

echo ’send libf77 libi77 from f2c’ | mail netlib@research.att.com

For testing purposes, we retain the original Fortran submitted to netlib’s ‘‘execute f2c’’ ser-
vice. Observing f 2c’s behavior on over 400,000 lines of submitted Fortran helped us find many obscure
bugs and led us to make some of the extensions described in §3. For example, a block data subpro-
gram initializing a variable that does not appear in any common blocks now elicits a warning message
(rather than causing f 2c to drop core). Another example is that f 2c now gives the warning message
‘‘Statement order error: declaration after DATA’’ and declines to produce any C if a
declaration comes after a data statement (for reasons discussed in §9); f 2c formerly gave a more
obscure error message and then produced invalid C.

November 2, 1990

- 22 -

Now that netlib offers source for f 2c itself (as explained in the index file mentioned above), we
expect to curtail netlib’s ‘‘execute f2c’’ service, perhaps limiting it to employees of AT&T and Bell-
core; to learn the current state of affairs, request the current index file.

9. POSSIBLE EXTENSIONS

Currently f 2c simplifies constant expressions. It would be nice if constant expressions were simply
passed through, and if Fortran parameters were translated as #defines. Unfortunately, several
things conspire to make this nearly impossible to do in full generality. Perhaps worst is that
parameters may be assigned complex or doublecomplex expressions that might, for example,
involve complex division and exponentiation to a large integer power. Parameters may appear in
data statements, which may initialize common variables and so be moved near the beginning of the C
output. Arranging to have the right #defines in effect for the data initialization would, in this worst
case, be a nightmare. Of course, one could arrange to handle ‘‘easy’’ cases with unsimplified constant
expressions and #defines for parameters.

Prototypes and the argument consistency checks currently ignore alternate return specifiers. Proto-
types could be adorned with special comments indicating where alternate return specifiers are supposed to
come, or at least telling the number of such specifiers, which is all that really matters. Since alternate
return specifiers are rarely used (Fortran 90 calls them ‘‘obsolescent’’), we have so far refrained from this
exercise.

Fortran 90 allows data statements to appear anywhere. It would be nice if f 2c could do the same,
but that would entail major rewriting of f 2c. Presently data values are written to a file as soon as they
are seen; among the information in the file is the offset of each value. If an equivalence statement
could follow the data statement, then the offsets would be invalidated.

It would be fairly straightforward to extend f 2c’s I/O to encompass the new specifiers introduced
by Fortran 90. Unfortunately, that would mean changing libI77 in ways that would make it incompatible
with f 77.

Of course, it would be nice to translate all of Fortran 90, but some of the Fortran 90 array manipula-
tions would require new calling conventions and large enough revisions to f 2c that one might be better
off starting from scratch.

With sufficient hacking, f 2c could be modified to recognize Fortran 90 control structures (case,
cycle, exit, and named loops), local arrays of dimensions that depend on arguments and common val-
ues, and such types as logical*1, logical*2, integer*1 or byte. Since our main concern is
with making portable Fortran 77 libraries available to the C world, we have so far refrained from these
further extensions. Perhaps commercial vendors will wish to provide some of these extensions.

10. REFERENCES

[1] American National Standard Programming Language FORTRAN, American National Standards
Institute, New York, NY, 1978. ANSI X3.9-1978.

[2] American National Standard for Information Systems Programming Language Fortran, CBEMA,
1989. Draft S8, Version 112.

[3] American National Standard for Information Systems — Programming Language — C, American
National Standards Institute, New York, NY, 1990. ANSI X3.159-1989.

[4] UNIX Time Sharing System Programmer’s Manual, AT&T Bell Laboratories, 1990. Tenth Edition,
Volume 1.

[5] J. J. Dongarra and E. Grosse, ‘‘Distribution of Mathematical Software by Electronic Mail,’’ Commu-
nications of the ACM 30 #5 (May 1987), pp. 403–407.

[6] S. I. Feldman and P. J. Weinberger, ‘‘A Portable Fortran 77 Compiler,’’ in Unix Programmer’s Man-
ual, Volume II, Holt, Rinehart and Winston (1983).

[7] P. A. Fox, A. D. Hall, and N. L. Schryer, ‘‘Algorithm 528: Framework for a Portable Library,’’ ACM
Trans. Math. Software 4 (June 1978), pp. 177–188.

November 2, 1990

- 23 -

[8] P. A. Fox, A. D. Hall, and N. L. Schryer, ‘‘The PORT Mathematical Subroutine Library,’’ ACM
Trans. Math. Software 4 (June 1978), pp. 104–126.

[9] S. C. Johnson, ‘‘A Portable Compiler: Theory and Practice,’’ pp. 97–104 in Conference Record of
the Fifth Annual ACM Symposium on Principles of Programming Languages, Association for Com-
puting Machinery (1978).

[10] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

[11] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1988. Second
Edition

[12] B. A. Murtagh and M. A. Saunders, ‘‘MINOS 5.1 User’s Guide,’’ Technical Report SOL 83-20R
(1987), Systems Optimization Laboratory, Stanford University, Stanford, CA.

[13] B. G. Ryder, ‘‘The PFORT Verifier,’’ Software Practice and Experience 4 (1974), pp. 359–377.

[14] N. L. Schryer, ‘‘A Test of a Computer’s Floating-point Arithmetic Unit,’’ in Sources and Develop-
ment of Mathematical Software, ed. W. Cowell, Prentice-Hall (1981).

[15] B. Stroustrup, The C++ Programming Language, Addison-Wesley, 1986.

Appendix A: Commercial Fortran-to-C Vendors

At the time of this writing, we are aware that the following vendors offer Fortran to C conversion ser-
vice. Omitted vendors are invited to inform us of their existence, so we may include them in updated ver-
sions of this appendix.

Cobalt Blue
2940 Union, Suite C
San Jose, CA 95124
(408) 723–0474

PROMULA Development Corporation
Columbus, OH
(614) 263–5454

Rapitech Systems
Office Center at Montebello
400 Rella Blvd.
Suffern, NY 10901
(914) 368–3000

November 2, 1990

F2C (1) (Appendix B) F2C (1)

N NA AM ME E
f 2c − Convert Fortran 77 to C or C++

S SY YN NO OP PS SI IS S
f 2c [option ...] file ...

D DE ES SC CR RI IP PT TI IO ON N
F2c converts Fortran 77 source code in files with names ending in .f or .F to C (or C++) source files in
the current directory, with .c substituted for the final .f or .F. If no Fortran files are named, f 2c reads
Fortran from standard input and writes C on standard output. File names that end with .p or .P are taken
to be prototype files, as produced by option -P, and are read first.

The following options have the same meaning as in f 77(1).

-C Compile code to check that subscripts are within declared array bounds.

-I2 Render INTEGER and LOGICAL as short, INTEGER∗4 as long int. Assume the default libF77
and libI77: allow only INTEGER∗4 (and no LOGICAL) variables in INQUIREs. Option -I4
confirms the default rendering of INTEGER as long int.

-onetrip
Compile DO loops that are performed at least once if reached. (Fortran 77 DO loops are not per-
formed at all if the upper limit is smaller than the lower limit.)

-U Honor the case of variable and external names. Fortran keywords must be in lower case.

-u Make the default type of a variable ‘undefined’ rather than using the default Fortran rules.

-w Suppress all warning messages. If the option is -w66, only Fortran 66 compatibility warnings are
suppressed.

The following options are peculiar to f 2c .

-A Produce ANSI C. Default is old-style C.

-a Make local variables automatic rather than static unless they appear in a DATA, EQUIVALENCE,
NAMELIST, or SAVE statement.

-C++ Output C++ code.

-c Include original Fortran source as comments.

-E Declare uninitialized COMMON to be Extern (overridably defined in f2c.h as extern).

-ec Place uninitialized COMMON blocks in separate files: COMMON /ABC/ appears in file
abc_com.c. Option -e1c bundles the separate files into the output file, with comments that
give an unbundling sed(1) script.

-ext Complain about f 77(1) extensions.

-g Include original Fortran line numbers as comments.

-h Try to align character strings on word (or, if the option is -hd, on double-word) boundaries.

-i2 Similar to -I2, but assume a modified libF77 and libI77 (compiled with -Df 2c_i2), so
INTEGER and LOGICAL variables may be assigned by INQUIRE.

-kr Use temporary values to enforce Fortran expression evaluation where K&R (first edition) paren-
thesization rules allow rearrangement. If the option is -krd, use double precision temporaries
even for single-precision operands.

-P Write a file.P of ANSI (or C++) prototypes for procedures defined in each input file.f or file.F .
When reading Fortran from standard input, write prototypes at the beginning of standard output.
Implies -A unless option -C++ is present. Option -Ps implies -P , and gives exit status 4 if
rerunning f 2c may change prototypes or declarations.

February 7, 1991 Tenth Edition Page 24

F2C (1) (Appendix B) F2C (1)

-p Supply preprocessor definitions to make common-block members look like local variables.

-R Do not promote REAL functions and operations to DOUBLE PRECISION. Option -!R confirms the
default, which imitates f 77 .

-r Cast values of REAL functions (including intrinsics) to REAL.

-r8 Promote REAL to DOUBLE PRECISION, COMPLEX to DOUBLE COMPLEX.

-Tdir Put temporary files in directory dir.

-w8 Suppress warnings when COMMON or EQUIVALENCE forces odd-word alignment of doubles.

-Wn Assume n characters/word (default 4) when initializing numeric variables with character data.

-z Do not implicitly recognize DOUBLE COMPLEX.

-!bs Do not recognize backslash escapes (\", \’, \0, \\, \b, \f, \n, \r, \t, \v) in character strings.

-!c Inhibit C output, but produce -P output.

-!I Reject include statements.

-!it Don’t infer types of untyped EXTERNAL procedures from use as parameters to previously defined
or prototyped procedures.

-!P Do not attempt to infer ANSI or C++ prototypes from usage.

The resulting C invokes the support routines of f 77; object code should be loaded by f 77 or with ld(1) or
cc(1) options -lF77 -lI77 -lm. Calling conventions are those of f77: see the reference below.

F FI IL LE ES S
file.[fF]

input file

*.c output file

/usr/include/f2c.h
header file

/usr/lib/libF77.a
intrinsic function library

/usr/lib/libI77.a
Fortran I/O library

/lib/libc.a
C library, see section 3

S SE EE E A AL LS SO O
S. I. Feldman and P. J. Weinberger, ‘A Portable Fortran 77 Compiler’, UNIX Time Sharing System
Programmer’s Manual, Tenth Edition, Volume 2, AT&T Bell Laboratories, 1990.

D DI IA AG GN NO OS ST TI IC CS S
The diagnostics produced by f 2c are intended to be self-explanatory.

B BU UG GS S
Floating-point constant expressions are simplified in the floating-point arithmetic of the machine running
f 2c , so they are typically accurate to at most 16 or 17 decimal places.
Untypable EXTERNAL functions are declared int.

Page 25 Tenth Edition February 7, 1991

