
Contents

1 Overview 1

2 Setting the Environment 2

3 Batch Use of Adaptor 3

3.1 Call of Adaptor : 3

3.2 Choosing the Target Machine : 4

3.3 Choosing the Execution Model : 5

3.4 Handling of Distributed Static Arrays : : : : : : : : : : : : : : : : : : 5

3.5 Handling of Dynamic Arrays : 6

3.6 Translation of Array Operations : 6

3.7 Default Distributions : 7

3.8 Setting the Installation Directory : 7

3.9 Splitting the Sources : 7

3.10 Changing Default Options : 7

3.11 Other Options : 8

4 Examples for the Translation 8

4.1 The Input Program : 9

4.2 Compiling for a single node : 9

4.3 Generating a Host-Node Program : 10

4.4 Generating a Only-Node Program : 12

4.5 Using Dynamic Arrays : 12

4.6 Using Array Operations : 13

5 Interactive Use of Adaptor 14

5.1 Description of the Window : 15

5.2 Help : 15

5.3 File Selection : 17

5.4 Show : 17

5.5 Parse : 17

5.6 Semantic : 17

5.7 Calling : 17

1

5.8 CallGraph : 18

5.9 Adapt : 18

5.10 Check : 20

5.11 Write : 20

5.12 Unparse : 20

5.13 Options : 20

6 Interactive Analysis of Units and Variables 21

6.1 Unit Menu : 21

6.1.1 Unparse Unit : 21

6.1.2 Write Unit : 21

6.1.3 Show Declarations : 22

6.2 Var Menu : 22

7 Compiling and Linking 22

8 Running the parallel program 23

8.1 Start of the Processes : 23

8.2 Number of Node Processes : 24

8.3 Using PVM : 24

8.3.1 About PVM : 24

8.3.2 Running PVM Programs : 24

8.4 Alliant FX/2800 : 25

8.5 KSR 1 : 25

8.6 Silicon Graphics : 26

8.7 iPSC/860 : 26

8.8 Meiko CS : 26

8.9 Parsytec GC : 27

8.10 CM-5 : 27

9 Performance Visualization 27

10 Problems 28

2

ADAPTOR

Users Guide

Version 1.0 (June 1993)

T. Brandes

Internal Report No. Adaptor 2

June 30, 1993

High Performance Computing Center

German National Research Institute for Computer Science

P. O. Box 1316

D-5205 Sankt Augustin 1

Federal Republic of Germany

Tel.: +49 (0)2241 / 14-2492

E-mail: Thomas.Brandes@gmd.de

ADAPTOR

Users Guide

Version 1.0 (June 1993)

T. Brandes

German National Research Center for Computer Science,

P.O. Box 1316, D-5205 Sankt Augustin 1, FRG

Abstract

ADAPTOR (Automatic DAta Parallelism TranslatOR) is a tool for trans-

forming data parallel programs written in Fortran with array extensions, par-

allel loops, and layout directives to parallel programs with explicit message

passing. The input language is very similar to CM Fortran and High Perfor-

mance Fortran though not all features of these language are supported.

The generated message passing programs will run on di�erent multipro-

cessor systems with distributed memory, but also on shared or virtual shared

memory architectures.

In this paper it is described in which way this transformation tool can be

used either interactively or in a batch version, and how to run the generated

parallel message passing programs.

1 Overview

The Adaptor tool system consists of a source-to-source transformation (fadapt) and a

basic set of routines for message passing and operations on sequential and distributed

arrays (DALIB).

The source-to-source transformation can be done in a batch manner or interactively.

In the interactive version a graphical environment allows the user to select units of

the source program (program, functions, subroutines) or variables in a unit to get

information about them.

After the transformation process is done the generated programs have to be compiled

and linked. The distributed array library (DALIB) will be linked together with the

compiled sources to executable programs. These executables can easily be started

on the parallel system and will hopefully run faster.

Before continuing make sure that Adaptor has already been installed on your ma-

chine [Bra93a]. Though you can make your own installation, it is recommended to

make a system-wide installation for all users.

1

Data Parallel Program

(Fortran 77 + extensions)

host.f node.f Makefile

host* node*

compile, link DALIB

fadapt

Figure 1: Overview of Adaptor

2 Setting the Environment

Let be <install-dir> the directory on the machine where Adaptor is installed.

Every user should set a link to this directory in the following way:

cd ! change to home directory

ln -s <install-dir> adaptor

Furthermore, the bin-directory of Adaptor should be included in the path variable,

the man-directory in the manpath variable.

setenv PATH $HOME/adaptor/bin:$PATH

setenv MANPATH $HOME/adaptor/man:$MANPATH

Now there should be no problems to call the commands of Adaptor (fadapt, fstrip,

adapt.clean). A manual page for 'fadapt' is available.

The following commands should now work.

fadapt -help

man fadapt

2

3 Batch Use of Adaptor

In most cases it is su�cient to call the batch version of Adaptor. So it is possible to

make a direct source-to-source translation without the usage of X-Windows.

3.1 Call of Adaptor

With the following command the sources of a data parallel program are directly

translated to a message passing program.

fadapt <source_file_names>

In the current version more than one source �le may be speci�ed, but only for the

batch use. All soure �les together stand for one data parallel program. There must be

exactly one main program in the speci�ed source �les. All subroutines and functions

that are not de�ned are assumed to be external.

If no source �le is speci�ed, the interactive version will be called.

If the translation is executed correctly, the following �les will have been generated:

host.f, node.f (host and node program)

or cube.f (only node program)

or node1.f (single node program)

and Makefile (Makefile for compiling and linking)

Furthermore, some �les will be created which contain analysis informations about

the translation process. These �les are very useful in situations where errors have

been encountered. If an error within one phase occurs, the translation will stop

directly after this phase.

adaptor.def (protocol file of phase 1 of semantic analysis)

adaptor.sem (protocol file of phase 2 of semantic analysis)

adaptor.cf (protocol file of phase 3 of semantic analysis)

adaptor.anal (protocol file of adaptor phase 1: analysis)

adaptor.dist (protocol file of adaptor phase 2: distributions)

adaptor.temps (protocol file of adaptor phase 3: temporary variables)

adaptor.init (protocol file of adaptor phase 4: initial translation)

adaptor.seq (protocol file of adaptor phase 5: serialization)

adaptor.trans (protocol file of adaptor phase 6: final translation)

unparse.f (source program before final translation)

These �les can be deleted with the command adapt.clean1 .

3

3.2 Choosing the Target Machine

The following target machines are supported:

� Intel iPSC/860

� Sun workstation net (using PVM)

� IBM Risc workstation net (using PVM)

� KSR 1

� CM 5

� Parsytec GC, GCel (using PARIX)

� Meiko CS1, Meiko CS2

� Silicon Graphics multiprocessor machines

� Alliant FX/2800

The following options can be used to specify the desired target machine. Only the

last option will be the valid one.

[-sun] target machine = SUN4, PVM

[-ibm] target machine = IBM, PVM

[-alliant] target machine = Alliant FX/2800

[-all_pvm] target machine = Alliant FX/2800 with PVM

[-ipsc] target machine = iPSC/860

[-gc] target machine = Parsytec GC

[-meiko_cs1] target machine = Meiko CS 1

[-meiko_cs2] target machine = Meiko CS 2

[-ksr] target machine = KSR 1

[-ksr_pvm] target machine = KSR 1 with PVM

[-sgi] target machine = Silicon Graphics (IRIX)

[-cm] target machine = CM 5

The new generated source programs are independent of the target machine. Only

some syntax might be machine-dependent.

In contrast, the Makefile, that is also generated, depends on the selected target

machine.

4

3.3 Choosing the Execution Model

The user can select between the following three programming models:

� HOST-NODE will generate a host program (host.f) and a node program

(node.f). The node program runs on all available nodes of the parallel ma-

chine, while the host program contains all I/O operations that will be executed

on the front end system.

� ONLY-NODE will generate a program (cube.f) that runs on all available nodes.

There is no host program. The �rst node takes care of all I/O operations.

� UNI-PROC will generate a program (node1.f) that runs on a single node. It

has no communication and therefore it ought to be faster than the previous

one running on a single node.

For the call of Adaptor the model can be speci�ed by the following options:

-H model = HOST_NODE (host and node program)

-N model = ONLY_NODE (only node program)

-1 model = UNI_PROC (single node program)

-uniproc model = UNI_PROC, same as -1

3.4 Handling of Distributed Static Arrays

Big static arrays are usually distributed among the available nodes. The size of a

part of the array on one node should be the size of the original array divided by the

number of processors. Otherwise one might run in memory problems.

But if the compiler of the target machine does not support dynamic arrays, the size

of the distributed array on one node must be �xed. Therefore the translation has to

know about the minimal number of processors that will be available when running

the generated message passing program.

This number of minimal processors can be speci�ed with the -p option.

[-p <n>] Minimal number of processes is n

The e�ect resulting of this option is the following one:

real A(1000) ! A is block distributed

becomes in the new generated program:

5

real A(1000) ! for -p 1

real A(334) ! for -p 3

real A(100) ! for -p 10

real A(:) ! if target compiler supports dynamic arrays

The parallel program must not run on a parallel machine with less processors that

has been speci�ed with the number of minimal processors, otherwise there will be

severe run-time errors. But it is possible to use more processors. The translation

with �p 1 ends up in a parallel program that runs for any number of processors,

but it might cause some memory problems.

3.5 Handling of Dynamic Arrays

Adaptor supports dynamic arrays like allocatable and automatic arrays. Sometimes

this feature is not available for the compiler of the target machine. In this case the

dynamic arrays are translated to static arrays with a given size.

-D (generated programs will have dynamic arrays)

-S size (dynamic arrays are translated to

static arrays with default size)

The e�ect of this option is the following one:

real A(:)

becomes in the new generated program:

real, allocatable :: A(:) ! for -D

real A(:) ! for -D and some target machines

real A(25000) ! for -S 25000

3.6 Translation of Array Operations

Adaptor supports array syntax. Sometimes this feature is not available for the com-

piler of the target machines. In this case the array operations must be translated to

sequential loops of Fortran 77.

-F90 Target Language knows about array operations

-F77 Arrays operations are translated to loops

6

3.7 Default Distributions

If the user does not give any layout or distribution directive for an array in his data

parallel program, a default distribution will be chosen. The following options are

intended for selecting a strategy for the default distribution.

-ddr default distribution of arrays is replicated

-ddb default distribution of arrays is block distribution

along the last dimension

-ddcm default distribution depends on the use of the array,

the same rules as in CM Fortran will apply

Scalar variables will always be replicated.

3.8 Setting the Installation Directory

The installation directory must contain the help �le and the DALIB. It is possible

to refer to the correct directory if there are some inconveniences (e.g. if the Adaptor

system is mounted from another workstation).

-home <dir> Home Directory

3.9 Splitting the Sources

Sometimes it is quite useful to split the generated message passing programs up into

source �les for every unit. One reason may be that compilers cannot compile large

source codes, whereas another reason might be that one wants to take advantage of

a parallel 'make'.

The splitting itself is done by using the 'fsplit' command that is usually available

for every Fortran compiler.

With the following options it can be speci�ed whether splitting should be done or

not.

-split ! generated programs will be split up

-nosplit ! only one source file

3.10 Changing Default Options

With the following command one can get a summary of the default options.

fadapt -defaults

7

An alias can be de�ned to set its own default options.

alias fadapt1 fadapt -S 1000000 -F77 -ksr -N !*

Afterwards the command fadapt1 can be used like fadapt but with di�erent default

options.

fadapt1 -defaults

Defaults of fadapt:

===================

Home Directory : /home/brandes/adaptor

Default Distribution : arrays are block distributed (ddb)

Target Machine : Kendall Square Research 1

Target Model : N=Only Nodes

Target Language : F77 (Fortran 77)

Dynamic Arrays will be : S=static with minimal size = 1000000

Minimal number of processes (p) : 1

Generated sources will not be split (nosplit)

3.11 Other Options

For the batch translation the user has the following possibilities:

fadapt [options] (-parse | -semantic | -call | -adapt) <filenames>

parse : only syntactical analysis

semantic : syntactical and semantical analysis

call : semantic + generating a call graph (test.call)

adapt : full source to source translation

A detailed description of the input language for Adaptor can be found in [Bra93b].

There exist also many example programs that should be used to analyze the func-

tionality of the transformation tool.

4 Examples for the Translation

This section shows for one example program how the translation works and what

can be done with some di�erent options.

8

4.1 The Input Program

The following data parallel program computes the number of primes in the range

from 2 to n. The program uses dynamic arrays and array syntax. Timing functions

are used to measure the run time of the program.

There is exactly one array in the program. This array will be distributed among the

nodes.

program prime

integer n, s, k

logical*1 a(:)

!hpf$ distribute a(block)

print *, 'Input n for counting primes in range 2 to n : '

read *, n

allocate (a(1:n))

call cm_timer_clear (1)

call cm_timer_start (1)

a = .true.

a(1) = .false.

k = 2

do while (k*k .le. n)

a(k*k:n:k) = .false.

k = k + 1

do while (.not. a(k))

k = k + 1

end do

end do

s = count (a)

call cm_timer_stop (1)

print *, 'There are ',s,' primes until ', n

call cm_timer_print (1)

deallocate (a)

end

4.2 Compiling for a Single Node

The following command translates the data parallel program to a sequential Fortran

77 program with static arrays.

fadapt -1 -S 1000000 -F77 prime.f

In this case the dynamic array becomes a static array of size 1000000. The array

operations will be translated to sequential loops.

SUBROUTINE NODEMODULE ()

INTEGER*4 N

INTEGER*4 S

INTEGER*4 K

LOGICAL*1 A (1:1000000)

INTEGER*4 A_DIM1

INTEGER*4 A_OFS

INTEGER*4 I_1

PRINT *,'Input n for counting primes in range 2 to n : '

READ *, N

A_DIM1 = N

9

A_OFS = 1-1

IF (A_DIM1 .gt. 1000000) THEN

PRINT *,'NODEMODULE: A is out of memory, needs : ',A_DIM1

END IF

call dalib_clear_timer (1)

call dalib_start_timer (1)

cdir$ ivdep

DO I_1=1,N

A(A_OFS+I_1) = .TRUE.

END DO

A(A_OFS+1) = .FALSE.

K = 2

DO WHILE (K*K .le. N)

cdir$ ivdep

DO I_1=K*K,N,K

A(A_OFS+I_1) = .FALSE.

END DO

K = K+1

DO WHILE (.not. A(A_OFS+K))

K = K+1

END DO

END DO

S = 0

cdir$ ivdep

DO I_1=1,N

IF (A(A_OFS+I_1)) THEN

S = S+1

END IF

END DO

call dalib_stop_timer (1)

PRINT *,'There are ',S,' primes until ',N

call dalib_print_timer (1)

END

The generated program contains subroutine calls to the DALIB for timing. The

program runs only on a single node, so no message passing is required.

4.3 Generating a Host-Node Program

The next command translates the data parallel program to a parallel Fortran 77

host and node program with message passing.

fadapt -H -S 1000000 -F77 prime.f

The host program contains all I/O-operations. Input values will be broadcast to all

nodes. Furthermore, the host program has the same control
ow as all nodes. But

it has no operations on distributed arrays.

SUBROUTINE HOSTMODULE ()

INTEGER*4 N

INTEGER*4 S

INTEGER*4 K

LOGICAL*1 A_SC1

INTEGER*4 I_1

PRINT *,'Input n for counting primes in range 2 to n : '

READ *, N

call dalib_broadcast (N,4,0)

10

call dalib_clear_timer (1)

call dalib_start_timer (1)

K = 2

DO WHILE (K*K .le. N)

K = K+1

call dalib_node_get (A_SC1,A_SC1,1,N,K)

DO WHILE (.not. A_SC1)

K = K+1

call dalib_node_get (A_SC1,A_SC1,1,N,K)

END DO

END DO

S = 0

call dalib_reduction (S,7)

call dalib_stop_timer (1)

PRINT *,'There are ',S,' primes until ',N

call dalib_print_timer (1)

END

This is the node message-passing program for all nodes of the parallel machine:

SUBROUTINE NODEMODULE ()

INTEGER*4 N

INTEGER*4 S

INTEGER*4 K

INTEGER*4 A_LOW, A_HIGH

INTEGER*4 A_START, A_STOP, A_INC

LOGICAL*1 A (1:1000000)

INTEGER*4 A_DIM1, A_OFS

LOGICAL*1 A_SC1

INTEGER*4 I_1

LOGICAL*4 dalib_have_i

EXTERNAL dalib_have_i

call dalib_broadcast (N,4,0)

call dalib_array_pardim (N,A_LOW,A_HIGH)

A_DIM1 = A_HIGH-A_LOW+1

A_OFS = 1-A_LOW

IF (A_DIM1 .gt. 1000000) THEN

PRINT *,'NODEMODULE: A is out of memory, needs : ',A_DIM1

END IF

call dalib_clear_timer (1)

call dalib_start_timer (1)

cdir$ ivdep

DO I_1=A_LOW,A_HIGH

A(A_OFS+I_1) = .TRUE.

END DO

IF (dalib_have_i(N,1)) THEN

A(A_OFS+1) = .FALSE.

END IF

K = 2

DO WHILE (K*K .le. N)

call dalib_local_range (N,K*K,N,K,A_START,A_STOP,A_INC)

cdir$ ivdep

DO I_1=A_START,A_STOP,A_INC

A(A_OFS+I_1) = .FALSE.

END DO

K = K+1

call dalib_node_get (A_SC1,A(A_OFS+K),1,N,K)

DO WHILE (.not. A_SC1)

K = K+1

call dalib_node_get (A_SC1,A(A_OFS+K),1,N,K)

END DO

END DO

S = 0

cdir$ ivdep

11

DO I_1=A_LOW,A_HIGH

IF (A(A_OFS+I_1)) THEN

S = S+1

END IF

END DO

call dalib_reduction (S,7)

call dalib_stop_timer (1)

call dalib_print_timer (1)

END

4.4 Generating a Only-Node Program

In many cases it is not necessary or useful to have an own host program. The

following translation will generate only a node program.

fadapt -N -S 1000000 -F77 prime.f

There is no separate host program, but the �rst node will be responsible for the I/O

activities.

SUBROUTINE NODEMODULE ()

...

LOGICAL*4 dalib_have_i

EXTERNAL dalib_have_i

INTEGER*4 dalib_pid

EXTERNAL dalib_pid

IF (dalib_pid() .eq. 1) THEN

PRINT *,'Input n for counting primes in range 2 to n : '

READ *, N

END IF

call dalib_broadcast (N,4,1)

call dalib_array_pardim (N,A_LOW,A_HIGH)

A_DIM1 = A_HIGH-A_LOW+1

A_OFS = 1-A_LOW

IF (A_DIM1 .gt. 1000000) THEN

PRINT *,'NODEMODULE: A is out of memory, needs : ',A_DIM1

END IF

call dalib_clear_timer (1)

call dalib_start_timer (1)

...

call dalib_reduction (S,7)

call dalib_stop_timer (1)

IF (dalib_pid() .eq. 1) THEN

PRINT *,'There are ',S,' primes until ',N

END IF

call dalib_print_timer (1)

END

4.5 Using Dynamic Arrays

In the previous translations the dynamic array was translated to a static array. If the

compiler of the parallel machine supports dynamic arrays, the following translation

will be the better solution.

fadapt -N -D -F77 prime.f

12

This was the solution with static arrays:

LOGICAL*1 A (1:1000000)

INTEGER*4 A_DIM1, A_OFS

...

call dalib_array_pardim (N,A_LOW,A_HIGH)

A_DIM1 = A_HIGH-A_LOW+1

A_OFS = 1-A_LOW

IF (A_DIM1 .gt. 1000000) THEN

PRINT *,'NODEMODULE: A is out of memory, needs : ',A_DIM1

END IF

Here is the generated node program with a dynamic array.

LOGICAL*1 A (:)

...

call dalib_array_pardim (N,A_LOW,A_HIGH)

ALLOCATE (A(A_LOW:A_HIGH))

This program works also for input values greater than 1000000.

4.6 Using Array Operations

The array operations of the data parallel program have been translated to sequential

Fortran 77 loops.

cdir$ ivdep

DO I_1=A_LOW,A_HIGH

A(A_OFS+I_1) = .TRUE.

END DO

...

K = 2

DO WHILE (K*K .le. N)

call dalib_local_range (N,K*K,N,K,A_START,A_STOP,A_INC)

cdir$ ivdep

DO I_1=A_START,A_STOP,A_INC

A(A_OFS+I_1) = .FALSE.

END DO

K = K+1

...

END DO

END DO

S = 0

cdir$ ivdep

DO I_1=A_LOW,A_HIGH

IF (A(A_OFS+I_1)) THEN

S = S+1

END IF

END DO

call dalib_reduction (S,7)

call dalib_stop_timer (1)

...

If the compiler of the parallel machine supports array syntax, the following transla-

tion will also be possible:

13

fadapt -N -D -F90 prime.f

These are the array operations restricted to a single node.

cdir$ ivdep

A(A_LOW:A_HIGH) = .TRUE.

...

K = 2

DO WHILE (K*K .le. N)

call dalib_local_range (N,K*K,N,K,A_START,A_STOP,A_INC)

A(A_START:A_STOP:A_INC) = .FALSE.

K = K+1

...

END DO

S = COUNT(A)

call dalib_reduction (S,7)

call dalib_stop_timer (1)

...

5 Interactive Use of Adaptor

The interactive translation tool is realized with Athena widgets based on the X-

Window system [NO90, O'R90].

The interactive tool will be called if no source �le is speci�ed.

fadapt [options]

After calling fadapt a window should be displayed on your X-Server. If any pro-

blems occur, check whether

� the X-Server is running,

� the environment variable DISPLAY has been set to the address of the machine

running the X-Server,

setenv DISPLAY hostname:0.0

� the client (in this case the machine running fadapt) has been authorized to

write on the screen of the X-Server (use command xhost)

xhost + <hostname1>

14

5.1 Description of the Window

The window of Adaptor consists of the following areas and lines (see �gure 2):

� GMD Logo

All users should never forget where this nice tool has been developed.

� Command Line

In the top line of the window all commands are listed that can be invoked at

the actual time. This list varies with each step of the translation.

� Filename Line

In the second line the name of the selected �le is displayed.

� Message Line

In the third line the last message is shown that gives information about the

success of the last command. Also some help information will be shown here.

� Edit Area

The largest window is an editor where the selected �le will be displayed. Scrol-

ling is possible for larger �les. The editor is used to highlight actual positions

of units and variables. In the current version the edited �le cannot be changed

(read-only).

� Unit Area

In the Unit Area every unit of the program has an item that can be chosen.

� Variable Area

In the Variable Area every variable of the selected unit has an item that can

be selected.

5.2 Help

When a command or label widget is selected with the right mouse button, a help

window appears that gives some information for the corresponding command.

The topic for which help is required can also be chosen in a submenu of the Help

command.

The window is released after selecting the Quit command in the help window.

15

Figure 2: Interactive Environment of Adaptor

Figure 3: Example of a Help Window

16

5.3 File Selection

The source �le for the translation can be set with the command File . When selecting

this button with the mouse all entries of the current directory are popped up in a

menu. If the chosen item is a �le, this �le becomes the current selected �le and

is displayed in the �lename line. If the chosen item is a directory, this directory

becomes the new current directory where the �le selection can be done again.

It should be observed that only one source �le can be translated. Therefore it is

necessary that sources of the given program are put together in one �le.

5.4 Show

With the command Show the selected �le is shown in the editor window. Only the

�le in the edit window can be parsed.

This command can be called at every time, but then the �le has to be parsed again.

5.5 Parse

When selecting the command Parse the source �le is parsed, and an abstract syntax

tree is generated. In the message window it is shown how many errors have been

occurred.

If there are any errors, semantic analysis and adaptation cannot be done. In this

case Adaptor should be quitted and the source �le be edited by using another editor.

Afterwards, Adaptor can be restarted.

5.6 Semantic

The semantical analysis will be done after selecting the command Semantic . In

this phase the declaration tables are generated. Only the use and declaration of

identi�ers are checked, but not the correct typing.

If this phase is successful all units of the source program will get an item in the unit

area.

5.7 Calling

When selecting the command Calling a call graph is generated that is written to

the �le test.call. This �le will be displayed with the next command CallGraph

that appears in the command line after the �le has been generated.

17

5.8 CallGraph

With the command CallGraph the �le test.call is displayed in a new generated

window. This �le can be printed by selecting the Print command in this window.

After viewing the �le the command Quit should be selected.

Figure 4: Call Graph Information

5.9 Adapt

The command Adapt is responsible for the generation of the new parallel pro-

gram and the generation of a corresponding Make�le. This command has the same

functionality as the use of Adaptor in the batch version.

In the interactive version the generated sources for the host and nodes will be shown

in a window if the translation was successful (see �gure 5).

If there have been any errors in the translation during a phase of the translation,

the corresponding protocol �le of the phase will be displayed in a new generated

window that has the same functionality as the window for displaying the call graph

information.

18

Figure 5: The generated host and node program

19

5.10 Check

The command Check is only for test purposes. It checks the abstract tree for correct

typing. The checking can be done after parsing and semantic analysis.

5.11 Write

Some users might be interested in the internal representation of the abstract syntax

tree that stands for the program. When selecting Write the abstract syntax tree

of the whole program is written to the �le test.out. This �le is not displayed in a

new window. The command can be executed after parsing and semantic analysis.

It should be noticed that this �le becomes very large for programs with many source

lines. The abstract syntax tree of a single unit can also be displayed interactively by

selecting the corresponding command in the unit area as it is explained in section

6.1.2.

5.12 Unparse

The creation of a new source program from an abstract syntax tree is called unpar-

sing. With the command Unparse the current abstract syntax tree is unparsed and

written to the �le unparse.f that is also displayed in a new window.

5.13 Options

If the command Options is selected, a new menu is popped up where the user can

choose the target language, the target machine, the programming model, and where

he can choose between static and dynamic arrays.

All these options have only an e�ect for the translation which is called by the

command Adapt .

Figure 6: The Options Menu

The e�ect of the options is the same as if they are used in the batch translation (see

section 3).

If an option requires a value (static size or minimal number of processors), this value

can be de�ned within a new window. The value is accepted by selecting Accept or

with the RETURN-key.

20

Figure 7: Interactive Input of a Value

6 Interactive Analysis of Units and Variables

After the semantic analysis has �nished, it is possible to get information about units

and variables of the source program.

6.1 Unit Menu

In the Unit Area the user can select a unit. After this selection the variables within

the unit are listed in the Variable Area and the corresponding declaration of the

unit is highlighted in the Edit Area.

The unit menu is pulled up when pushing the right mouse button in the unit area

(see �gure 8).

Figure 8: The Unit Menu

6.1.1 Unparse Unit

With this command the selected unit is unparsed and written to the �le unparse.f.

This �le is afterwards displayed in a new window.

6.1.2 Write Unit

With this command the abstract syntax tree of the highlighted unit is written in

ASCII format to the �le test.out. This �le is afterwards displayed in a new window.

21

6.1.3 Show Declarations

This command generates an ASCII �le test.sem that contains information about all

the variables within the selected unit. This �le will be displayed in a new generated

window.

Figure 9: Information about the declarations of a unit

6.2 Var Menu

When selecting a variable in the variable area the corresponding declaration is dis-

played and the declaration is highlighted in the unit area. At the same time infor-

mation about the variable is printed.

7 Compiling and Linking

When the translation of the data parallel program to a parallel program with explicit

message passing is completed, the new programs have to be compiled and linked.

These programs are

� host.f and node.f if the Host-Node model is used

� cube.f if the only node model is used

22

� node1.f if a sequential program has been generated

In some situations the length of source lines can be longer than 72 or 132 characters

so that the compiler will fail. A typical error message is the following one:

Line 162 Error message # 1139

Perhaps missing RPARENT before ENDOFST

-- [unexpected end of statement]

If this is the case, the longer lines can be striped automatically with the following

command of Adaptor:

fstrip cube.f 72 ! maximal 72 characters in one line

fstrip node1.f ! default length is 132

For compiling and linking a Make�le is automatically generated with the transla-

tion. The 'Make�le' is di�erent for the di�erent parallel machines. So it should be

possible to make the executables for the parallel program by simply typing 'make'.

If the Make�le does not work correctly, please read the 'Installation Guide of Ad-

aptor' carefully, or make your own changes to the 'Make�le'. If a 'Make�le' is in the

current directory, Adaptor will not generate a new one.

If the executables are no longer needed one can type

make clean

to delete all �les that are no longer needed. Another command helps to delete all

generated �les by Adaptor:

adapt.clean

8 Running the parallel program

8.1 Start of the Processes

How the parallel programs are started is very machine-dependent.

For the Host-Node programming model, only the host process (host) is usually

started. This process will automatically invoke the node processes (node).

For the Only-Node programming model the node program (cube) will be loaded on

all node processors.

A single node program (node1) is started in the same way as other programs.

23

8.2 Number of Node Processes

The default number of node processes is usually the number of processors that has

been reserved for running the parallel application. If such a reservation does not

exist, there will be no default value.

The number of nodes can also be speci�ed by giving an explicit argument or by

setting the environment variable NP.

host 12 ! will start 12 node processes

setenv NP 12

host ! will start 12 node processes

If there is no default value and no explicit speci�cation for the number of processes,

this number will be interactively asked for until a legal value has been given as an

input. This is also done if there was an illegal explicit speci�cation, e.g. if the number

of node processes is bigger than the number of available nodes.

8.3 Using PVM

8.3.1 About PVM

The public domain software PVM [Sun90] is used for running the parallel program

on a net of workstations, e.g. SUN 4 or IBM Risc. It can also be used to let di�erent

processes communicate via socket communication on a shared memory machine,

e.g. the Alliant FX/2800, KSR 1 or SGI multiprocessor machines. It should be

mentioned that this software also guarantees that Adaptor can be used for other

kinds of workstations, but at the current state this has not been tested.

Adaptor supports PVM version 2.4 and 3.1. Refer to your installation manager to

verify which version is used on your machine.

First experiences have shown that this environment can be used to test the parallel

programs. But due to the high latency of communications when using workstations

in many cases a good speed-up of the parallel program cannot be expected.

8.3.2 Running PVM Programs

Before starting the parallel program the PVM daemon has to be started. This dae-

mon will run on all machines of the current con�guration.

brasun 1 > pvm

pvm> add sprsun

1 successful

24

HOST DTID

sprsun 80000

pvm> add fourier

1 successful

HOST DTID

fourier c0000

pvm> conf

3 hosts, 1 data format

HOST DTID ARCH MTU SPEED

brasun 40000 SUN4 4096 1

sprsun 80000 SUN4 4096 1

fourier c0000 SUN4 4096 1

pvm> quit

pvmd still running.

brasun 2 >

Before starting the host program that loads the node program on all other work-

stations it should be guaranteed that the node program is accessible by all other

workstations. This is usually done by a remote copy of the node program to all other

workstations.

brasun 2 > rcp cube sprsun:pvm3/bin/SUN4

brasun 3 > rcp cube fourier:pvm3/bin/SUN4

8.4 Alliant FX/2800

Though the Alliant FX/2800 is a multiprocessor system with a shared memory, the

parallel program will execute on this machine by running independent processes that

communicate with each other (no automatic parallelization of the compiler is used).

The realization on the Alliant is done in such a way that the started process forks

itself where the father process calls the host program and the child processes call

the node program. The message passing between the processes is implemented on a

shared memory region that will be created by the initial process.

If there is no host process, the �rst node process has to be started that forks itself

in a similar way.

8.5 KSR 1

The KSR 1 is from the programmers point of view a shared-memory architecture like

the Alliant FX/2800. The message passing is realized via a shared memory segment

and by using semaphores. These Unix System V features are supported on the KSR

machine.

25

8.6 Silicon Graphics

On the SGI parallel machine the same Unix System V features are provided as on

the KSR machine. Both realizations of the DALIB are nearly identical.

8.7 iPSC/860

Before starting a parallel program on the iPSC, the user has to attach to a cube

with the command getcube.

getcube -tn (reservation of a cube with n processors)

When using a host process this process has to be started on the SRM (the current

version does not support remote hosts), it will load the node processes automatically.

host (will load node processes on all reserved nodes)

In the current version it is not possible to limit the number of node processes to a

number smaller than the number of reserved nodes.

Without a host program the user has to load explicitly the node program on all

nodes.

load cube; waitcube

After the termination of the parallel program the cube should be released by using

the command relcube.

relcube

8.8 Meiko CS

Executing the parallel program on a Meiko CS1 or CS2 is similar to running it on

an iPSC. Please look in the manuals to �nd out the speci�c commands for running

programs on this machine.

26

8.9 Parsytec GC

For the Parsytec system the generated Fortran sources must be stripped to a length

of 72 characters.

fstrip [host.f | node.f | cube.f | node1.f] 72

For the Parsytec GC system one executable (host.px or cube.px) is generated that

has to be loaded on all nodes with the run command.

run -s0 -g1 4 4 host (will use 16 processors)

If there is a host process, one processor will execute the host program, all other

processors the node program. If the executable is loaded on 16 processors only 15

processors will execute the node program.

Without a host program, only one executable (cube.px) is generated that has to

be loaded on all nodes with the run command, too. In this case all processors will

execute the node program, where node 1 is also responsible for I/O.

run -c2 4 4 cube (will use 16 processors)

For the current version there are some strong restrictions concerning the fact that

sometimes messages cannot be longer than one kByte.

8.10 CM-5

The number of actual used processors can be smaller than the number of available

processors.

9 Performance Visualization

For some machines it is possible to collect run time data that can be visualized and

animated. Currently, this works only for the Alliant machine.

If the host or cube program is started with the
ag '-t', run time data will be

collected. Another possibility is to set the environment variable TRACE.

setenv TRACE on

setenv TRACE ON

setenv TRACE 1

The following events are used to generate an entry for the trace�le:

27

� sending a message

� waiting for a message

� receiving a message

The collected trace data is sorted and one trace�le (with the name trace�le) is

generated. The data can be viewed and animated with the public domain software

ParaGraph [HE91]. It allows the resulting trace data to be replayed pictorially and

provides a dynamic depiction of the behavior of the parallel program. There are up

to 26 distinct visual perspectives from which to view the same performance data.

host -t 4 ...

....

tracefile created

paragraph tracefile

Figure 10: Example of Paragraph: Spacetime

10 Problems

If any problems occur while using Adaptor, please mail these problems to the author.

It will be tried to �x these problems and to remove them immediately.

The author would also be very grateful if there were proposals for improvements.

New applications that have been translated successfully with Adaptor are apprecia-

ted.

28

Figure 11: Example of Paragraph: Statistics

References

[Bra93a] T. Brandes. ADAPTOR Installation Guide (Version 1.0). Internal Report

ADAPTOR-1, GMD, June 1993.

[Bra93b] T. Brandes. ADAPTOR Language Reference Manual (Version 1.0). In-

ternal Report ADAPTOR-3, GMD, June 1993.

[HE91] M. Heath and J. Etheridge. Visualizing the Performance of Parallel Pro-

grams. IEEE Software, pages 29{39, September 1991.

[NO90] A. Nye and T. O'Reilly. X Toolkit Intrinsics Programming Manual. Nuts-

hell Handbooks, Sebastopol, CA, 1990.

[O'R90] T. O'Reilly. X Toolkit Intrinsics Reference Manual. Nutshell Handbooks,

Sebastopol, CA, 1990.

[Sun90] V. Sunderam. PVM: a Framework for Parallel Distributed Computing.

Concurrency: Practice and Experience, 3(10), December 1990.

29

