
Automatic Translation of Data Parallel

Programs to Message Passing Programs

T. Brandes

Internal Report No. Adaptor 93-1

January 29, 1993

High Performance Computing Center

German National Research Institute for Computer Science

P. O. Box 1316

D-5205 Sankt Augustin 1

Federal Republic of Germany

Tel.: +49 (0)2241 / 14-2492

E-mail: brandes@gmd.de

Automatic Translation of Data Parallel Programs to

Message Passing Programs

T. Brandes

German National Research Center for Computer Science,

P.O. Box 1316, D-5205 Sankt Augustin 1, FRG

Abstract

Data parallel programming stands for single threaded, global name space,

and loosely synchronous parallel computation. This kind of parallel program-

ming has been proven to be very user-friendly, easy to debug and easy to

use. But this programming model is not available for most message passing

multiprocessor architectures.

Adaptor (Automatic Data Parallelism Translator) is a tool that transforms

data parallel programs written in Fortran with array extensions, parallel loops,

and layout directives to parallel programs with explicit message passing. The

current version supports especially the translation of Connection Machine

Fortran programs to message passing programs.

Adaptor is not a compiler but a source to source transformation that

generates Fortran 77 host and node programs with message passing. The new

generated source codes can run on most parallel architectures. By this way it

is possible to write data parallel programs that are portable for a wide range

of parallel machines.

In the following the realization of such a translation system is described.

It will be shown how e�cient this approach is and what kind of optimizations

could be useful for compiling data parallel programs.

1 Introduction

MIMD (multiple instruction, multiple data) architectures with distributed memory

are the kind of parallel machines that are scalable and can be used for a wide range

of scienti�c applications. Usually, these architectures are programmed with explicit

message passing between the processes running on the di�erent processors. As the

message passing programming model is very error prune and di�cult to use, many

e�orts have been made to o�er other programming models that are easier to use.

The High Performance Fortran Forum has de�ned language extensions and mo-

di�cations for Fortran to overcome these di�culties by supporting data parallel

programming [Koe92]. This kind of programming can be de�ned as single threaded,

global name space, and loosely synchronous parallel computation. The new language

allows code tuning for various architectures and should guarantee top performance

on MIMD and SIMD (single instruction, multiple data) computers with non-uniform

memory access costs.

1

Many large scienti�c applications are expected to be programmed in this data par-

allel model (Fortran 77 with array extensions or Fortran 90). The parallelization

tool Adaptor (Automatic Data Parallelism Translator) makes it possible to trans-

late these programs to message passing programs already now. It transforms data

parallel programs written in Fortran 77 with array extensions, parallel loops, and

layout directives to parallel programs with explicit message passing.

Therefore the code with global data references together with a user speci�ed or

implicitly de�ned data distribution is translated into a program with local and non-

local references, where the latter are satis�ed by automatically inserting message-

passing statements.

Experiments with many sequential programs and their Fortran 90 counterparts have

shown [Fox91] that automatic methods could not parallelize the sequential version

where it is possible for the version with explicit array operations. In Adaptor only

the inherent parallelism of the array operations is used. Local array operations will

be distributed among the available nodes, for non-local array operations e�cient

communication is generated as these operations have mostly regular communication

patterns (e.g. global reductions, shift and spread operations).

In the following sections the functionality and the realization of the tool Adaptor is

described. First results are presented and useful optimization issues will be discussed.

2 Translation of Data Parallel Programs

A prototype version of the Adaptor tool has been realized that transforms Fortran

77 or Fortran 90 programs with explicit data parallelism into parallel programs for

MIMD architectures with explicit message passing. Though during the last months

the High Performance Fortran Forum has de�ned language extensions for data par-

allelism, the current version has been designed especially to translate CM Fortran

[Cor90] programs to message passing programs.

2.1 Properties of Adaptor

Though the user will need to understand some issues of parallelism and has to know

for e�ciency reasons where message passing will be generated, the e�ectiveness of

Adaptor is based on the fact that the user has not to know any message passing

command and not to manage the control of the data partitioning. He can change

types of variables (e.g. single to double precision) and data distributions without

rewriting any other statement in his program. He has not to write two versions of

code (host and node program) and many global array operations are translated to

the most e�cient code for the underlying architecture.

The parallel program can be written in such a way that it can be developed on a

serial machine and is also suitable for vector machines or parallel machines with

2

shared memory. Many features supported by Adaptor result also in good execution

times for these architectures. By this way, it helps to design programs that run

e�ciently on nearly all architectures.

The generated code of Adaptor should be as e�cient as possible and competitive to

a hand-coded Fortran program with message passing. Otherwise the acceptance of

such a tool cannot be expected.

Adaptor supports the development of parallel codes that scale with the number of

processors. No support is given for any kind of programming where the number

of processors is �xed in any way. It makes heavy use of dynamic arrays and the

executable version of the generated program can run for any number of processors

without any recompilation.

2.2 Related Work

The data parallel programming style has been proven as to be user-friendly and

easy to use. Many other systems have been developed during the last time that also

support SIMD programming for MIMD architectures. A SIMD program is translated

into an equivalent SPMD program (single program, multiple data stream). This

has been done for C* [HLJ

+

91] or for Fortran 90 with additional layout directives

[Mer91, WF91]. Though the latter systems are very similar to Adaptor there is no

information about the e�ciency of the generated message passing programs and

about their availability.

Due to the introduction of High Performance Fortran, many compilers will be availa-

ble in the next future and compiler optimizations are goals of some other projects

[HKT91].

Further developments have been made to support data parallel programming in an

object-oriented language like C++ [CCRS91]. This approach has the great advan-

tage that no additional preprocessor or compiler is necessary. But due to the lack of

e�ciency there is not a great acceptance for scienti�c applications until now.

3 Overview of Adaptor

The Adaptor system consists of an interactive source-to-source transformation (XA-

daptor), a library of routines for message passing and controlling array distributions

(DALIB).

3.1 The Input Language

The input language of Adaptor can be de�ned as Fortran 77 with some restrictions

(see section 4.1), but with many extensions like dynamic arrays, array operations,

parallel loops and layout directives [Bra92].

3

Data Parallel Program

(Fortran 77 + extensions)

XAdaptor

host.f node.f Makefile

host* node*

compile, link DALIB
Generic

functions

Figure 1: Overview of Adaptor

The central idea of an automatic adaptation is to distribute most of the given arrays

among the available processors. This is done in such a way that most operations can

be done locally without any need of communication. Where global operations are

necessary the corresponding message passing statements are inserted automatically.

Adaptor takes only advantage of the parallelism in the array operations and of the

parallel loops. It has no features for automatic parallelization.

For the speci�cation of data layouts in Adaptor similar directives as in CM Fortran

are used. The user can de�ne host arrays, replicated arrays and distributed arrays. In

contrary to many other systems [Mer91, Cor91, FHK

+

91, Ger89] Adaptor supports

only block distributions along the last dimension.

Alignment is a feature that can be used to reduce communication [KLS91] especially

for a given program. It is supported in CM Fortran and in High Performance Fortran.

For Adaptor it is not supported until now as the best alignment is done by declaring

arrays with the same shape and the same layout when writing new parallel programs.

3.2 Generated Programs

For a given data parallel program Adaptor generates a host and a node program

(hostnode model) or only a node program (hostless model).

The host program is running on the front end and the node program runs indepen-

dently on all processing nodes. While the host program takes care about the host

arrays and all I/O activities, the nodes are operating on the distributed arrays. Con-

trol ow, scalar variables and replicated arrays are replicated for the host process

and all node processes.

4

3.3 Interactive Source-to-Source Transformation

The translation of the input �le can be done as a batch job, but an interactive

translation is also possible. A graphical environment allows the user to select units

of the source program (program, functions, subroutines) or variables in a unit to get

information about them (see �gure 2).

Figure 2: XAdaptor: Interactive Source-to-Source Transformation

Except the graphical interface, the whole source-to-source transformation of Adap-

tor is generated with a toolbox for compiler construction [GE90]. These tools have

a great exibility and can generate very e�cient code. As intermediate language,

abstract syntax trees will be used where the program module that de�nes the struc-

ture of the abstract syntax trees and provides general tree manipulating procedures

is also generated by a tool.

For the analysis and transformation components the new compiler tool Puma is

utilized [Gro91]. This tool cooperates with the generator for abstract syntax trees

and supports the transformation and attribution of attributed trees. It is based on

pattern-matching, uni�cation and recursion. The exibility of this tool allows not

only to have a modular design but also to extend it in a way as one would expect

from a knowledge-based system [BS87].

The graphical environment is realized with Athena widgets based on the X Window

System [O'R90].

5

3.4 Distributed Array Library

For the realization of the communication needed for global operations on distributed

arrays, many library functions will be used that build the DALIB (distributed array

library). This library contains

� low level communication (send, receive, wait, ...),

� high level communication (broadcast, reduction, barrier, ...),

� functions to control the data partitioning,

� primitives for gathering and scattering data,

� timing functions and tracing facilities,

� parallel random number generator,

� and a X-Windows interface.

The DALIB is implemented in C. Most part of this library is portable between

the di�erent machines. Only the low level message passing commands, the timing

functions and the random number generator have to be adapted to the hardware

architecture.

Though the realization of the high level communication routines is based on the

low level routines, these functions should be tuned for the underlying hardware

architecture. As e.g. the CM 5 has an own control network, broadcasts and reductions

are more e�cient when using this network than using the data network by message

passing.

One version of the DALIB is implemented upon the public domain software PVM

[Sun90]. It guarantees the portability of the generated parallel programs to all ma-

chines where PVM is running. Another version exists for shared memory and virtual

shared memory systems where the message passing is realized very e�ciently via a

shared memory segment.

At the moment the DALIB has been implemented for iPSC/860, net of SUN or IBM

workstations, Alliant FX/2800, Parsytec GCel, CM5 and KSR 1.

3.5 Visualization of the Run Time Behavior

If the �nal parallel program is started with the trace ag switched on, a trace�le will

be generated that gives information about the behavior of the parallel program. The

information of the trace�le can be visualized and animated with the public domain

software ParaGraph [HE91]. Especially the information about the utilization and

communication can be used for further optimizations.

6

3.6 Availability

The source �les of Adaptor, documentation �les in PostScript and a number of

example programs are available via 'anonymous ftp' from:

ftp.gmd.de (129.26.8.90)

in subdirectory gmd/adaptor

Currently version 0.1 is available, version 1.0 with more functionality, stability and

more supported features will be available spring 1993.

4 Description of the Translation

The following steps are done during the source to source transformation of Adaptor:

1. The source program is parsed and an abstract syntax tree will be generated.

2. Symbol tables are created and used for a semantic analysis.

3. The real translation on the internal abstract syntax tree and symbol tables

has four phases:

(a) analysis to verify that the program is suitable for translation with Adap-

tor,

(b) splitting up statements in local and non-local operations and creation of

the necessary temporary variables,

(c) initial translation and serialization,

(d) �nal translation with generation of calls to the DALIB

4. The new internal abstract syntax tree is unparsed back to source text.

In the following the four phases of the real translation on the internal abstract syntax

tree are described in more detail.

4.1 The Analysis Phase

In the �rst phase most checks are made to verify whether the source program can

be translated with Adaptor. The current version has the following restrictions:

� no EQUIVALENCE or SAVE statements for distributed arrays,

� the use of distributed arrays in a DATA statement is not possible,

7

� no input/output statements or calls of external subroutines with distributed

arrays (use replicated or host arrays and send the values to the nodes by using

a primitive array assignment),

� arrays in COMMON blocks cannot be distributed (make them to local arrays

of the main program and use a new parameter for subroutine calls),

� arrays in subroutine calls must have the same distribution as the dummy

argument (this restriction can be observed by using temporary arrays and

primitive array assignments),

� no parameter subroutines or functions,

� no return statement (replace it if necessary with a jump to the end of the

function or subroutine),

� assumed shaped arrays are not allowed, assumed sized arrays cannot be dis-

tributed and not be used in array expressions,

� some restrictions for the use of intrinsic functions (in most cases it is possible

to use parallel loops),

� correct layout of arrays used as parameters of intrinsic subroutines.

Many restrictions are only preliminary and will not exist in the next version. On

the other side experiences have shown that the required changes in the data parallel

source program help to think about more data parallelism and better data locality.

4.2 Temporary Variables

In many cases array assignments need communication. In this case Adaptor tries

to split up the assignment in primitive array assignments with communication and

local array assignments. Sometimes new temporary arrays have to be created.

real A(N), B(N), C(N) ! all distributed by default

A(1:K) = A(1:K) * B(1:K) - C(K+1:N-K)

c will result in

real A(N), B(N), C(N), A_TMP1(N)

A_TMP1(1:K) = C(K+1:N-K) ! requires communication

A(1:K) = A(1:K) * B(1:K) - A(1:K) ! local operation

In many other situations, especially when using complex array operations, temporary

variables will also be necessary. Due to the memory overhead attention should be

paid by the user itself that not too many arrays will be created.

8

4.3 Initial Translations

In this phase static and automatic arrays that are distributed become allocatable

arrays. By this way it will be possible that the generated message passing programs

can run for di�erent numbers of processors.

Local array operations will be translated to parallel loops, the forall statement will

be translated to equivalent do loops. After this phase only parallel loops without

communication will exist.

The following program part

integer N

parameter (N=100)

real A(N), B(N)

a = b

forall (i=2:n-1)

a(i) = b(i) + a(i+1)

end forall

will be translated to:

INTEGER*4 N

PARAMETER (N = 100)

REAL*4 A (:), B (:), A_TMP1 (:)

INTEGER*4 I_1

ALLOCATE (A(1:N), B(1:N), A_TMP1(1:N))

DO I_1=1,N !parallel

A(I_1) = B(I_1)

END DO

A_TMP1(2:N-1) = A(3:N) ! array movement

DO I=2,N-1 !parallel

A(I) = B(I)+A_TMP1(I)

END DO

DEALLOCATE (A_TMP1, B, A)

4.4 Final Translation

Now all statements are classi�ed whether they are local statements or communica-

tion statements. After the �nal translations it is guaranteed that

� a parallel loop is restricted to the part of the arrays that is owned by the node

process,

� communication statements or movements are translated to corresponding calls

of subroutines of the DALIB.

9

This small source code

real A(N), S

S = sum (A)

is translated to the following code:

INTEGER*4 A_DSP

INTEGER*4 A_LOW, A_HIGH

INTEGER*4 A_START, A_STOP, A_INC

REAL*4 A (:)

REAL*4 S

INTEGER*4 I_1

call dalib_define_array1 (A_DSP,4,1,N)

call dalib_array_pardim (A_DSP,A_LOW,A_HIGH)

ALLOCATE (A(A_LOW:A_HIGH))

S = 0.0

DO I_1=A_LOW,A_HIGH

S = S+A(I_1)

END DO

call dalib_real_sum (S)

call dalib_undefine_array (A_DSP)

DEALLOCATE (A)

The generated program alternates between phases of local computations and more

synchronous phases of local and global communication.

5 Experiments and Results

With the current system it is possible to translate CM Fortran programs to message

passing programs. Due to the restrictions in the distribution of parallel variables

and to some other restrictions it is necessary to make some changes in the given CM

Fortran programs.

5.1 The Purdue Set

For testing the �rst version of Adaptor the High Performance Fortran Benchmark

Suite has been utilized [MFL

+

92] where many data parallel programs are given in

di�erent versions.

The Purdue set (J.R. Rice set) with 14 simple data parallel problems has been used

to test the e�ciency of the generated message passing programs.

Three di�erent versions of the programs have been considered:

10

� the Fortran 77 code can be translated for one node and is used to measure

real speed ups,

� the CM Fortran version gives results for the Connection Machine and is used

for Adaptor with slightly changes to get automatically generated message pas-

sing programs for di�erent parallel machines,

� the parallel version, Fortran 77 with explicit message passing based on PICL,

is used to compare the results of Adaptor with a hand-coded message passing

program.

no short description of the problem problem size

1 Trapezoidal rule 1048576

2 reduction function 1 1024 x 1024

3 reduction function 2 1024 x 1024

4 reduction function 3 524288

5 simple search 128 x 4096

6 tridiagonal set of lin. equations 65536

7 Lagrange interpolation 10 x 32768

8 divided di�erences 65536 x 8

9 �nite di�erences 512 x 512

11 Fourier's moments 262144

12 array's construction 1023 x 511

13 oating point arithmetic 262144

14 Simpson's and Gauss' integration 262144

15 Chebyshev interpolation 16384

5.2 Sequential and Parallel Version

The following table shows the results of the sequential Fortran 77 version running on

one node of the iPSC/860 compared with the generated message passing program

only running on one node. The speed up or better slow down of the parallel version

with the sequential version is given.

11

no problem time of sequential Adaptor version speed up

size F77 version (1 node) (1 node)

1 1048576 284.7 s 290.6 s 0.98

2 1024 x 1024 45.9 s 33.8 s 1.36

3 1024 x 1024 47.0 s 10.3 s 4.56

4 524288 222.1 s 185.5 s 1.20

5 128 x 4096 175.9 s 209.3 s 0.84

6 262144 414.7 s 1008.9 s 0.41

7 10 x 32768 131.1 s 143.4 s 0.91

8 65536 x 8 104.8 s 186.5 s 0.56

9 512 x 512 46.2 s 46.2 s 1.00

11 262144 289.7 s 289.1 s 1.00

12 1023 x 511 182.6 s 21.9 s 8.34

13 262144 588.4 s 555.9 s 1.06

14 262144 35.5 s 25.2 s 1.41

15 16384 133.2 s 92.0 s 1.45

The results show that the Adaptor version is faster than the F77 counterpart for

the problems 2, 3, 4, 12, 14 and 15. The following reasons are responsible for this

e�ect:

� In problem 2, 3 and 12 Adaptor generates a di�erent loop nesting (innermost

loop is always for the �rst index that results in stride 1 for the loop iterations).

After loop interchanging and loop distribution the sequential F77 version was

as fast as the Adaptor version.

� In problem 4 only one loop fusion makes the F77 version as fast the generated

one.

� In problem 14 and 15 the Adaptor version has a vector version of the function

that is integrated. By this way there is only one subroutine call instead of a

call for every point.

But of course for most programs the Adaptor version is a little bit slower due to the

generated communication and due to additional memory movements. Especially the

problems 6 and 8 require much communication.

5.3 E�ciency and Scalability

The following table shows the speed ups and e�ciencies for the generated message

passing programs on the iPSC/860 for 8, 16 and 32 nodes.

12

no Size iPSC(8) iPSC(16) iPSC(32)

1 1048576 7.96 (99.5 %) 15.79 (98.7 %) 31.25 (97.6 %)

2 1024 x 1024 7.41 (92.6 %) 14.08 (88.0 %) 28.17 (88.0 %)

3 1024 x 1024 6.44 (80.5 %) 12.88 (80.5 %) 25.75 (80.5 %)

4 524288 6.08 (76.0 %) 13.16 (82.2 %) 26.13 (81.6 %)

5 128 x 4092 7.12 (89.0 %) 14.14 (88.4 %) 27.91 (87.2 %)

6 262144 4.86 (60.7 %) 8.75 (54.7 %) 16.17 (50.5 %)

7 10 x 32768 7.97 (99.6 %) 15.76 (98.5 %) 31.17 (97.4 %)

8 65536 x 8 7.61 (95.2 %) 13.92 (87.0 %) 25.90 (80.9 %)

9 512 x 512 7.97 (99.6 %) 15.40 (96.3 %) 28.88 (90.2 %)

11 262144 7.94 (99.3 %) 14.90 (93.1 %) 29.20 (91.3 %)

12 1023 x 511 6.84 (85.5 %) 10.95 (68.4 %) 16.85 (52.6 %)

13 262144 7.91 (98.9 %) 15.80 (98.7 %) 31.71 (99.0 %)

14 262144 7.20 (90.0 %) 14.00 (87.5 %) 25.20 (78.8 %)

15 16384 7.48 (93.5 %) 14.84 (92.7 %) 28.75 (89.8 %)

These results verify that the scalability of the data parallel programs results also in

scalability of the message passing programs.

5.4 Adaptor vs. hand-coded message passing programs

The parallel programs based on PICL stand for portable hand-coded message passing

programs. The most interesting results came up when comparing these programs

with the automatically generated message passing programs of Adaptor.

Both versions are portable parallel programs. Both versions are able to run on dif-

ferent number of processors. The hand-coded version realizes this by having the

whole data structure replicated on all arrays but every node works only on a subset

of the arrays. This has the disadvantage that for bigger problems the code has to

be rewritten completely. The Adaptor version can also be used for bigger problems

with the only restriction that the program will not run on smaller machines size.

� A hand-coded message passing program of problem 6 was not available,

� for problem 2, 3, 4, 14 Adaptor was much more faster,

� in all other problems a little bit faster or nearly the same (problems 5, 8, 11,

12, 13).

13

no Size nodes F77 + PICL Adaptor

1 1048576 16 25.4 s 18.4 s

2 1024 x 1024 16 5.2 s 2.4 s

3 1024 x 1024 16 7.1 s 0.8 s

4 524288 16 24.3 s 14.1 s

7 10 x 32768 16 9.0 s 9.1 s

9 512 x 512 16 5.3 s 3.0 s

14 262144 16 11.6 s 1.8 s

15 16384 16 14.6 s 6.2 s

As a hand-coded program should always be faster than an automatically generated

message passing program, the results show in any case that Adaptor can generate

more e�cient programs than just straightforward hand written message passing

programs.

5.5 Full vs. Loosely Synchronous Execution

The last table compares the results of the programs running on the SIMD Connection

Machine CM 2 and on the MIMD iPSC/860.

no Size iPSC/860 iPSC/860 CM2 CM2

(16 nodes) (32 nodes) 8k 16k

1 1048576 18.4 s 9.3 s 9.2 s 4.5 s

2 1024 x 1024 2.4 s 1.2 s 4.2 s 2.2 s

3 1024 x 1024 0.8 s 0.4 s 3.3 s 1.6 s

4 524288 14.1 s 7.1 s 4.6 s 2.3 s

5 128 x 4092 14.8 s 7.5 s 32.9 s 17.3 s

6 262144 115.3 s 62.4 s 96.0 s 51.4 s

7 10 x 32768 9.1 s 4.6 s 40.9 s 23.8 s

8 131072 x 4 13.4 s 7.2 s 11.1 s 5.6 s

9 512 x 512 3.0 s 1.6 s 2.7 s 1.4 s

11 262144 19.4 s 9.9 s 8.9 s 4.4 s

12 1023 x 511 2.0 s 1.3 s 12.7 s 7.3 s

13 262144 35.2 s 17.5 s 8.9 s 4.5 s

14 262144 1.8 s 1.0 s 13.6 s 6.9 s

15 16384 6.2 s 3.2 s 3.5 s 2.5 s

The SIMD architecture takes advantage of the very fast realization of broadcasts

and reductions. In case of the CM the performance of many local operations is

also slightly better than on the iPSC/860. This is especially true for the intrinsic

functions sin, cos, sqrt and exp.

But for many problems MIMD gives better performance due to the asynchronous

execution of local computations and local communications. Processes will only be

synchronized with broadcasts and reductions and not with every instruction.

14

6 Optimization Issues

Though a dependence analysis has been realized to verify that sequential loops are

equivalent to the parallel loops, the current version of Adaptor has no optimizations

implemented. Some �rst experiments have shown that the following optimizations

issues are the most important ones:

� optimization of the high level communication operations of the DALIB,

� loop fusion to make register optimization possible within the compiler,

� overlap analysis to reduce memory transfer,

� minimizing the use of temporary arrays,

� combination of messages to avoid communication overhead,

� and overlapping computation and communication.

This kind of optimization techniques will be investigated in the next future for more

complex applications.

7 Summary

Adaptor is a prototype of a compilation system for High Performance Fortran that

gave the following insights:

� It is possible to translate e�cient CM Fortran or SIMD programs to e�cient

message passage programs for MIMD architectures. This guarantees portabi-

lity and e�ciency of all existing data parallel programs.

� The potential of parallelism is mainly given by array operations and the parallel

loops. Automatic parallelization has less importance, program rewriting of

sequential programs will be necessary in any case.

� Experiments on shared memory and virtual shared memory systems like the

Alliant FX/2800 and the KSR 1 have shown that processes with an own ad-

dress space are more e�cient than programs based on threads with a common

address space. As the compiler knows that no data is shared, data accesses

can be more optimized by using registers and local caches.

Adaptor itself can and will be used to implement di�erent optimization strategies

for High Performance Fortran compilers. Most interesting are optimizations that

depend on system parameters like communication start up time, communication

bandwidth and so on. Optimizations at run time are also of great interest.

Adaptor will also be used to de�ne and test language extensions of interest that

could be part in one of the next versions of High Performance Fortran.

15

Acknowledgements

I thank the Central Institute for Applied Mathematics at the research center in

J�ulich for providing the iPSC/860 and Renate Knecht for her user support.

The following people have inuenced this work by valuable discussions: Clemens-

August Thole (GMD), Rolf H�anisch (GMD), Michael Gerndt (ZAM, Research Cen-

ter J�ulich), John Merlin (University of Southampton), Dave Watson (NA Software,

Liverpool) and James Cownie (Meiko, Bristol).

Many thanks are also due to Falk Zimmermann for his implementation work and

for the discussions about proving correctness of the transformations realized within

Adaptor.

References

[Bra92] T. Brandes. ADAPTOR Language Reference Manual. Internal Report

ADAPTOR-3, GMD, 1992.

[BS87] T. Brandes and M. Sommer. Realization of a Knowledge-Based Paralleliza-

tion Tool in a Programming Environment. In International Conference on

Supercomputing, Athens, Greece, June 1987.

[CCRS91] C. Chase, A. Cheung, A. Reeves, and M. Smith. Paragon: A Parallel Program-

ming Environment for Scienti�c Applications Using Communications Struc-

tures. In Proc. of 1991 International Conference on Parallel Processing, St.

Charles, Illinois, August 1991.

[Cor90] Thinking Machines Corporation. Connection Machine Model CM-2. Technical

Summary Version 6.0, TMC, November 1990.

[Cor91] Thinking Machines Corporation. CM Fortran Programming Guide, Version

1.0. Manual, TMC, January 1991.

[FHK

+

91] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and

M. Wu. Fortran D language speci�cation. Technical Report TR90079, Depart-

ment of Computer Science, Rice University, April 1991.

[Fox91] G. Fox. Achievements and prospects for parallel computing. Concurrency:

Practice and Experience, 3(6):725{739, December 1991.

[GE90] J. Grosch and H. Emmelmann. A Tool Box for Compiler Construction. Lecture

Notes of Computer Science, 477:106{116, October 1990.

[Ger89] H.M. Gerndt. Automatic Parallelization for Distributed-Memory Multiproces-

sing Systems. PhD thesis, University of Bonn, 1989.

[Gro91] J. Grosch. Puma - A Generator for the Transformation of Attributed Trees.

Compiler Generation Report 26, GMD, Forschungsstelle an der Universit�at

Karlsruhe, 1991.

16

[HE91] M. Heath and J. Etheridge. Visualizing the Performance of Parallel Programs.

IEEE Software, pages 29{39, September 1991.

[HKT91] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiler Optimizations for

Fortran D on MIMD Distributed-Memory Machines. Technical report, Depart-

ment of Computer Science, Rice University, 1991.

[HLJ

+

91] P. Hatcher, A. Lapadula, R. Jones, M. Quinn, and R. Anderson. A production

quality C* compiler for hypercube machines. In 3rd ACM SIGPLAN Sympo-

sium on Principles Practice of Parallel Programming, pages 73{82, April 1991.

[KLS91] K. Knobe, J. Lukas, and G. Steele. Data Optimization: Allocation of Arrays

to Reduce Communication on SIMD Machines. Journal of Parallel and Dis-

tributed Computing, 8:102{118, 1991.

[Koe92] C. et al. Koelbel. Draft of High Performance Fortran Language Speci�cation.

Technical Report Version 0.4, Department of Computer Science, Rice Univer-

sity, October 1992.

[Mer91] J. Merlin. ADAPTing Fortran 90 Array Programs for Distributed Memory

Architectures. In Proc. 1st International Conference of the Austrian Center

for Parallel Computation, Salzburg, October 1991.

[MFL

+

92] A. Mohamed, G. Fox, G. Laszewski, M. Parashar, T. Haupt, K. Mills, Y. Lu,

N. Lin, and N. Yeh. Applications Benchmark Set for Fortran-D and High

Performance Fortran. Technical Report 327, Northeast Parallel Architectures

Center, 1992.

[O'R90] T. O'Reilly. X Toolkit Intrinsics Reference Manual. Nutshell Handbooks,

Sebastopol, CA, 1990.

[Sun90] V. Sunderam. PVM: a Framework for Parallel Distributed Computing. Con-

currency: Practice and Experience, 3(10), December 1990.

[WF91] M. Wu and G. Fox. Compiling Fortran 90 programs for distributed memory

MIMD parallel computers. Technical Report No. SCCS-88, Syracuse Center

for Computational Science, 1991.

17

