

The Windows Programmer's Journal    Volume 01
 Copyright 1993 by Peter J. Davis    Number 03
 and Mike Wallace    Mar 93

A monthly forum for novice-advanced programmers to share ideas and concepts about
programming in the Windows (tm) environment.    Each issue is uploaded to the info systems
listed below on the first of the month, but made available at the convenience of the sysops,
so allow for a couple of days.

You can get in touch with the editors via Internet or Bitnet at:
HJ647C at GWUVM.BITNET      or      HJ647C at GWUVM.GWU.EDU
CompuServe: 71141 2071
GEnie: P.DAVIS5
or you can send paper mail to:
 Windows Programmer's Journal
 9436 Mirror Pond Dr.
 Fairfax, Va. 22032
We can also be reached by phone at: (703) 503-3165.
 The WPJ BBS can be reached at: (703) 503-3021.
The WPJ BBS is currently 2400 Baud (8N1). We'll be going to 14,400 in the near future, we
hope.
- WPJ is available from the WINSDK    WINADV, MSWIN32, BPASCAL and BCPPWIN forums on
CompuServe, and the IBMPC, WINDOWS and BORLAND forums on GEnie.    It is also available
on America Online in the Programming library.    On Internet, it's available on WSMR-
SIMTEL20.ARMY.MIL and FTP.CICA.INDIANA.EDU.    We upload it by the 1st of each month and
it is usually available by the 3rd or 4th, depending on when the sysops receive it.

                                LEGAL STUFF
- Microsoft    MS-DOS, Microsoft Windows, Windows NT, Windows for Workgroups, Windows
for Pen Computing, Win32, and Win32S are registered trademarks of Microsoft Corporation.
- Turbo Pascal for Windows    Turbo C++ for Windows, and Borland C++ for Windows are
registered trademarks of Borland International.
- Other trademarks mentioned herein are the property of their respective owners.
- WordPerfect is a registered trademark of WordPerfect Corporation.
- The Windows Programmer's Journal takes no responsibility for the content of the text within
this document. All text is the property and responsibility of the individual authors. The

Windows Programmer's Journal is solely a vehicle for allowing articles to be collected and
distributed in a common and easy to share form.
- No part of the Windows Programmer's Journal may be re-published or duplicated in part or
whole, except in the complete and unmodified form of the Windows Programmer's Journal,
without the express written permission of each individual author. The Windows
Programmer's Journal may not be sold for profit without the express written permission of
the Publishers, Peter Davis and Michael Wallace, and only then after they have obtained
permission from the individual authors.

                      Table of Contents

 Cover

 WPJ.INI Pete Davis
 Letters Readers
 Beginner's Column    Dave Campbell
 Install Program Part III Pete Davis
 Home Cooking - C++ From Scratch Andrew Bradnan
 Creating and Using Owner Draw Buttons Todd Snoddy
 Hacker's Gash    Mike and Pete
 Special News Mike Wallace

 Windows 3.1: Using Version Stamping Library Alex Fedorov
 Book Review Pete Davis
 Book Review Mike Wallace
 Printing in Windows Pete Davis
 Advanced C++ and Windows Andrew Bradnan
 Trials and Tribulations Part 1 Jim Youngman
 Getting in Touch with Us Pete & Mike

 Last Page Mike Wallace

Windows Programmer's Journal Staff:

 Publishers Pete and Mike
 Editor-in-Chief Pete Davis
 Managing Editor Mike Wallace
 Contributing Editor David Campbell
 Contributing Editor Andrew Bradnan

 Contributing Writer Alex Federov
 Contributing Writer Andrew Bradnan
 Contributing Writer Jim Youngman
 Contributing Writer Todd Snoddy

                                      WPJ.INI

                                by Pete Davis

Issue #3    wow... So far things have been going really well. The third issue is almost as big
as the first and second put together! We've even got some extra articles for next month.
We're getting a good response from the readers and the contributions are coming in. It
seems like every day we get a letter from someone in another country. We've been getting
mail from people in Romania, Czechoslovakia, Russia, Hong Kong, Australia, England,
Germany, etc... In fact, the amount of mail we're getting is getting pretty high. We try to
answer it all, but we don't always get a chance to. Also, some of the replies don't make it
back. I've noticed this more often with certain Internet sights in the U.K. I don't know why
that is, but the ones that have something like ac.uk in them don't seem to make it back.
Sorry about that. The list goes on and on. Keep the mail coming, we love to get it.

I mentioned in the last issue about readers suggesting different formats for the text. So
far, the biggest response has been in favor of the WINHELP format and the plain text format.
That way you can read it on-screen and, if you want, print it out. Speaking of printing it out,
we've had some negative responses about the printing format. I have to take responsibility
for that. I had the page length a bit too long and a lot of you were getting pages with three
or four lines of text. I'll try not to let that happen again.

As far as the Help format    because we can do bitmaps now, it would be nice if we could
get someone who is artistically inclined (Not us, as you'll see in this first issue) to give us a
hand with some of the graphics. You don't have to be a Renoir, just better than us. If you can
draw stick figures, you probably qualify.

So    this issue we'll be starting with the WINHELP format. We hope you like it. We're pretty
pleased with the idea. Right now we're using minimal tools for getting it into the help format,
but we're looking into getting some better ones later on.

We'd like to thank the guys at America Online for giving us some time each month to get
on and be able to stay in touch with our readers there. Mike will have more to say about all
this in the Last Page.    [See the "Special News" column - MW]

This month I'm going to be doing my article on printing that I should have done last
month. Sorry for the delay, but we've just been real busy. I'm also going to do the third
article in the series on the install program. This article is basically going to give some insight
into the data structure that we're going to use for storing data about each of the files for the
install.

This month David Campbell will be taking over the Beginners Column in C and we have
Andrew Bradnan taking over the Beginners Column in C++. (We could still use someone to
do the Beginner's Column in Pascal for Windows). This brings me to another point.
Beginner's Column might be a bit of a misnomer. Yes, they'll all be basic, but like anything
else, as time goes on, the articles will progress. They will all be, eventually, an intermediate
programmer's column. There's only so much that you can say about the basics and
eventually you have to move on.

We're starting a new feature this month called Hacker's Gash. Hacker's Gash is going to be
a bunch of little tips and tricks that you can use in Windows. This is where the readers can
really get in on the fun. Read through it, get an idea of what kinds of things we're doing and
send in a list of your own tricks.

Ah    good news, the BBS is finally up. Haven't replaced the hard drive, but I've done some
serious work on it and did some pretty strenuous testing on it and it seems to be ok for now.
I will need to replace it eventually, but we don't have the money right now for that. Besides
being the first place to get the Windows Programmer's Journal, the WPJ BBS has the
SIMTEL20 CD-ROM which has 600+ megs of public domain and shareware software. We will
try to add a second CD-ROM in the near future and add some new disks. We'll probably try to
add the CICA disk next, which has a very large library of Windows public domain and
shareware software. The number's around here somewhere, but to make it easier, and as
long as you're reading here, it's (703) 503-3021. (That's in the U.S. for you guys overseas.)

Mike and I have debated doing this    but we're really getting to the point where we don't
have much choice. Seeing as we're going into the Windows Help format, which will allow us
to support graphics, we've decided that we're going to start allowing some advertisers in the
magazine. We're going to keep the ads to a minimum, but, even though the magazine is
free, there are some costs involved in putting it together and we really need some
reimbursement for it. Right now, our Compuserve and Genie bills alone are costing us a fair
amount. Running the BBS will cost us $25/month in phone bills alone, not to mention
possible hardware maintenance. We're hoping to get a few advertisers to help offset some of
those costs. The ads will be, most likely, from shareware authors. If you are a Windows
shareware author and you're interested in advertising, get in touch with us and we'll discuss
the costs, size, design, etc.

One last thing before I wrap up. We've gotten a lot of comments about the format of the
magazine. Most of these were in reference to the format we're going to distribute it in. If you
have preferences about the layout or other stylistic concerns, we'd like to hear them.

That's really about it for this month    I guess. We just wanted to thank all of you for reading
and to keep the comments and suggestions coming. We'd also like to thank those of you
who have submitted articles and we ask that you please keep the articles coming in. It would
be nice if we got a few more submissions each month so we could get the magazine up to
the size that we'd really like. I think 50 pages would be a good size, although, with
something like this, I suppose, the bigger the better, so more than 50 pages would be
fantastic. Well, I've said enough. Enjoy the magazine.

  _Pete Davis

P.S. I just read Mike's Last Page (He does it last    so I didn't see it when I was writing the
WPJ.INI) You might want to read that and then come back to this, but I wanted to give my
own thoughts on what Mike said regarding the WPJ as a source of information. We are not
here to be a sole source of information, nor will we always be correct. We do our best to
make sure that the information we give out is correct. The only people who check the
submissions are Mike and myself. Neither one of us has a PhD in Windows Programming. We
both make mistakes. The WPJ is going to have errors in it. We're going to give out completely
wrong information at times. When that happens, we will try to correct ourselves by the next
issue (usually in response to someone saying "You guys screwed up!").

What I'm saying is that there are a lot of sources out there. You need to check out as many
as you can. Cross- reference the information between different books and magazines and
when you see an inconsistency, that's probably a fault.

Mike and I have several reasons for doing the WPJ. First of all, we felt beginners weren't
being addressed well enough. Also, we wanted to cover as many Windows programming

languages and environments as possible. (We're getting there, but slowly.) Most important, I
think, we wanted to address Windows programming and Windows programming only.

Windows is an enormous programming environment and there's tons of information to
absorb. No one publication can even approach covering it all. I like to think that one of our
advantages is that, unlike a lot of other programming magazines, we don't center on a topic
each month. Other magazines might have, say, an issue on Custom Controls or an issue on
Multi-media. Well, that's great, but what about those of us who don't work with Custom
Controls or Multi-media? There are two issues that we don't care for. We try to keep a variety
of topics each month so we can appeal to as many people as possible with each issue, but I
digress.

To wrap up    I just want to say, (this feels like deja vu, I'll check later, but I think I said this
in the last issue also) don't count on us being right every time. If something we wrote about
doesn't work, try it again. If it still doesn't work, we probably screwed up. Let us know, and
we'll try to correct it by the next issue. I know, I'm getting repetitive. I know, I'm getting
repetitive. Until the next issue, peace.

                                    Letters

 Date:    10-Feb-93 07:04 EST
 From:    Chris Newham [100027,16]
 Subj:    Windows Programmer's Journal
 Hi,

I would just like to say that I have enjoyed the two issues of WPJ so far. You can add at
least 1 to your readership numbers as my friend and I download it once between us.

The sections on DLLs & install progs are of particular interest to us as we have just finished
work on a DLL and are now working on the install prog. A point that I think you might
mention and give some consideration to for the install prog is this:

If you are installing DLLs then you need to check if the file exists first (easy); if it exists you
then need to check its version control information    to determine if the copy you wish to
install is newer (also quite easy); the difficult part comes when you have determined that
you need to replace the existing DLL but the DLL is already in use by Windows.

Windows will not let you delete or replace the file. Microsoft's install program works around
this but we haven't yet worked out how; we think that it copies the new DLL to a temp dir or
hides it somewhere then replaces it when Windows next starts up.

It's an interesting little problem and has at present got us stumped.    If you know how to
solve it let's see it published.    If we find a solution we will let you know. [We're working on
this problem, too. - MW]

I am very impressed by the quality of the journal and would like to see it remain in either
text or Windows write format as my time on the PC is limited and so what I do is take a hard
copy of the journal to work to read at lunch time so Winhelp format would not suit me.

Keep up the good work Best wishes Chris.

Date:    12-Feb-93 17:29 EST
 From:    Tammy Steele
 Subj:    WPJ

Hi Mike

          I just downloaded my mail today.    I generally only read it once a month. So, sorry for
the delay in my comments about WPJ.    I had a chance to skim the first issue and have just
spent some time reading through the second issue. Of course I cannot make official
"Microsoft" comments, but I can give you my opinion.

          Generally speaking    I think the WPJ will be another good place for us to point people
to for information. One problem will be getting the Microsoft support engineers familiar with
the content of the journal.    Another problem is the accuracy of the articles.    In order for
Microsoft to point people to the articles, we need review the accuracy of them.    We are
pretty swamped now with too much to do, not enough people.    I am sending mail to my
group about the journal.    So we'll see what happens.

          Specifically    I thought it was good that you discussed the feedback you received from
the first journal. Especially the Linked List sample.    If the sample were used for a large
number of nodes, as I'm sure someone probably mentioned, it would not be a "cooperative"

windows app because each globalalloc eats a selector and the selectors (8K of them) are
shared between *all* windows apps and the Windows system itself.

          Also    it would be useful for samples to be updated to the current software although
there is still value to having the code and comments (ie, the DLL article.)

          People who submit articles should check the MSKB and if they have areas that they
are uncertain about, should post questions in the forum before they submit articles. For
example, the DLL article talks about WEPS and says something like "the documentation says
the WEP is called once...but I haven't seen it be called in Codeview in Windows 3.0."    There
is an article that discusses the reason why you can't see it be called in Codeview under
Windows 3.0 and/or this question could have been easily answered in the DLL section on
WINSDK. [This question is answered farther down in this column. - MW]

          I like the coding style and the sample makefiles (the makefiles are easy to read.)

          I'm sure you've had lots of comments    as you mentioned, about how to format this.   
I personally think you should offer it in helpfile format *and* text format so that people have
the option. [editors note: This seems to be the most common opinion.]

          Overall    I see this journal as a really great place for people to compile information
and share it.
 Thanks for all your work,
 Tammy

Editor's Note: We got a letter from Craig Derouen (CompuServe ID: 75136, 1261) of Seattle.   
I'll reprint his letter here and let him explain his BBS:

I've looked at your 2 first issues of WPJ and am impressed. I run an    extensive
programmer's BBS out here in Seattle, primarily Windows code but    also C, C++ and 8086
code for DOS. I carry both your issues. I am also in Fidonet and have all the listings for WPJ
available for Frequest.    Also I am a support BBS for WinTech,Windows/DOS,CUJ and PC
Techniques Magazine. I have a LOT of code on line. Anyways here's the details:
 Cornerstone BBS        (2400,9600 baud)
 (206) 362-4283
 Fidonet 1:343/22

All magazine listings are available for first time callers; free downloads    and some file
requests are also available.

Editor's Note: In our last issue    we had an article by Rod Haxton on DLLs.    In the article, he
mentioned that he had never seen WEP get called under CodeView in Windows 3.0.    So, I
posed the question to the WINSDK forum on CompuServe and got a response from Brian
Scott of Microsoft.    Thanks, Brian.
 Mike,

          If you implicitly link to a DLL in Windows 3.0, the WEP is called after the application
has unloaded.    Since Codeview stops debugging after the application terminates, it does not
see the WEP get called.    If you need to debug the WEP, you can load it using LoadLibrary()
and free it using FreeLibrary(), instead of linking to the import library.    In this case, you will
see the WEP get called when you call FreeLibrary().    If you need to link to the DLL using an
import library, then you can debug the WEP using something like WDEB386, putting

OutputDebugString() statements in your WEP, or moving the code in the WEP into a cleanup
function that you call just before the application terminates.

Hope this helps
 Brian Scott - Microsoft

Editor's Note: Pete and I started a beginner's column with the first issue, and Dave Campbell
offered last month to take it over.    Dave is a confirmed Windows hacker and so will be
writing this column starting with this issue.    We hope you like it. Questions should be
directed to Dave.    Means of reaching him are given at the end of his column.

                            Beginner's Column
                            By Dave Campbell

          My name is Dave Campbell and    I write Windows software under the business name
WynApse. I am going to be writing the beginner's column until I get buried in work (wouldn't
that be too bad?) or I get usurped by someone who wants to do this more than I do.

          Up until recently    I have been a Borland programmer, so the tools I am most familiar
with are the Borland C++ suite, 3.0 and 3.1, in particular.    Pete and Mike's previous two
columns have been Microsoft, and I am leaning that way myself right now, so I will continue
that. My intention is to provide code and ideas that aren't tied to Borland or Microsoft, but
could be used with either compiler. A major difference between the two is make files, so I will
stay away from those as much as possible.

          My intention is to write code that is useable on 3.0/3.1 Windows. If enough questions
come in for 3.1- specific applications, we will cover them. This leads directly into the request
for requests. I would like to present code that is useful to all the readers, and the best way
would be to be responsive to readers questions. Please send questions! I will list various
ways of reaching me at the end of each article.

          Now on to the fun stuff...Mike and Pete have been working on a Hello World program
for a few issues, and I am going to add some configuration to that code and demonstrate
some basic uses for radio buttons and INI files.

Radio Buttons

          A radio button is one of several control types available to Windows programmers
inside dialog boxes. They work similar to the buttons on your car radio...only one may be
pressed at a time, at least in this application. There are other controls available in the basic
set, and we will look into them later. For now, let's look a little deeper into the declaration of
a radio button.

          Radio button declarations are made in the .RC file, for example:
 CONTROL "Hello", IDM_HELLO, "BUTTON", BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE
| WS_TABSTOP, 20, 15, 42, 12

          We will use one more button in our dialog box, and that is a pushbutton. The ever-
present OK button to be precise. The control is a graphical representation of a 3D button
with text written on it. By making a pushbutton an "OK button", we are really painting the
word OK on the face of a 3D pushbutton. The button definition we are going to use is:
 CONTROL "OK", IDOK, "BUTTON", BS_DEFPUSHBUTTON | WS_CHILD | WS_VISIBLE |
WS_TABSTOP, 29, 57, 24, 14

          The explanation of the fields in these two declarations is covered later in this article.
 INI files

          INI files are used by Windows to control the environment under which Windows
executes. Windows programs use INI files to manage the individual environmental changes
available to users to customize the system to his needs. There are two ways to read a
variable from an INI file, but only one way to write information into one:
 Reading:

ReadPrivateProfileString
ReadPrivateProfileInt

 Writing:

WritePrivateProfileString

          This does seem clunky    but it's what we've got to work with. When we get to that
point, I'll demonstrate that it's not that big of a problem.

          Windows handles the INI files very nicely in that you will always get something for
your efforts. In the Read calls, a default value is given, in case the variable does not exist in
the INI file (or the INI file doesn't exist, for that matter). In the Write call, if the variable
doesn't exist (or even if the INI file doesn't exist) prior to the call, it will when the call
returns. This means that you needn't be concerned about the pre-existence of an INI file
before trying to use one.

          Let's consider an INI file for our application, HELLO.INI:
 [Hello]
 Setup=0

          This is the simplest form of an INI file: there is a single 'Application Name', [Hello],
and a single 'Keyname', Setup, that is associated with it. The value for Setup is 0. During
execution of our program, if we had a need for picking up the Setup value, we would simply
use the line:
 nDflt = ReadPrivateProfileInt("Hello", "Setup", 0, "hello.ini");

where nDflt is defined:

int nDflt;

          This reads from hello.ini    looking for the 'Setup' keyword under the 'Hello' application
name, and assigning the value equivalence listed there, or 0 for default, to the variable
nDflt.

          If    however, the INI file was defined as:

[Hello]
 Setup=Hello World

          you now cannot read the file with ReadPrivateProfileInt. Now the line to read the value
is:

char szDflt[25];

          ReadPrivateProfileString("Hello"    "Setup", szDflt, "Goodbye World", 13, "hello.ini");

          This has some similarities    and some differences from the one above. The "Hello",
"Setup", and "hello.ini" are self-explanatory, but the string read also adds other parameters.
The string name to store the result into is listed as the third parameter, in this case szDflt.
The fifth parameter is an integer variable declaring the maximum number of characters
accepted from the INI file, and the fourth parameter, in this case "Goodbye World", is the
default value. If this line were to be executed and the INI file not even exist, szDflt would
contain the string "Goodbye World". This is also the case if the file exists but does not
contain either [Hello] or Setup, or both.

          To change an INI file    the WritePrivateProfileString function must be called:

char szDflt[25];
 int    nDflt;

wsprintf(szDflt    "%d", nDflt);
 WritePrivateProfileString("Hello", "Setup", (LPSTR) szDflt, "hello.ini");

          'wsprintf' should be used in place of 'sprintf' because it is already in    Windows, and
will not cause the linking to another library. The downside is the need to cast the string as a
LPSTR. wsprintf will build a string, in this case, containing the ASCII representation of the
single integer nDflt. That string is then passed to the INI file using the syntax shown. If the
Setup variable were a string, the variable to be inserted would be given in the
WritePrivateProfileString call rather than using the intermediate wsprintf step.

          Whew    I'm glad that's over.

Dialog Box

The dialog box we're going to display will have two radio buttons, and an OK button.
Typically, the buttons to complete a dialog box are located either along the bottom, or if the
dialog is very busy, they can be placed along the right edge. Of course, this has nothing to
do with programming Windows. This is all aesthetics and being kind to users. Look at a
thousand Windows applications, and you'll get used to seeing things a certain way. Users get
used to them being that way, and you will lose some people just with your user interface, or
lack thereof.

          The code I propose for the dialog box is:

Hello DIALOG 63    56, 83, 77
 STYLE WS_POPUP | WS_CAPTION
 CAPTION "Hello Setup"
 FONT 8, "Helv"
 BEGIN
 CONTROL "Hello",        IDM_HELLO,      "BUTTON", BS_AUTORADIOBUTTON | WS_CHILD |
WS_VISIBLE | WS_TABSTOP, 20, 15, 42, 12
 CONTROL "Goodbye",    IDM_GOODBYE, "BUTTON", BS_AUTORADIOBUTTON | WS_CHILD |
WS_VISIBLE | WS_TABSTOP, 20, 28, 42, 12
 CONTROL "OK", IDOK, "BUTTON", BS_DEFPUSHBUTTON | WS_CHILD | WS_VISIBLE |
WS_TABSTOP, 29, 57, 24, 14
 END

          This code can be produced either by hand with any text editor, or by graphically
placing the objects with Borland's Resource Workshop or some similar tool. I usually start
with the Resource Workshop, and make small tweeks by hand. Large changes are best done
graphically to ensure the placement, and logical usefulness of the dialog box is alright.

          I am going to take a break right here and talk about coding style. This is something
that is as peculiar to a person as their name. Everybody has their own, and I wouldn't think
of trying to force my ideas on someone. But...(have you ever noticed there's always a big
But around somewhere?), if you don't have your mind made up yet about those long
Windows lines like the 100+ character ones above, please split them onto succeeding lines!
Line-wrap on listings is UGLY!! OK, that's over, I've got it out of my system. But (another
one), since I am writing this, you are going to have to put up with my style...

          I'm done now.    That short dissertation was free, now back to the program. The field
explanations are as follows:

Hello DIALOG 63    56, 83, 77

This line defines the name    "Hello" of the dialog, and the coordinates of the box relative to
the client area of the parent window. The units are NOT pixels, and beyond that, I don't want
to get into it now. Just play with it for now until you get it where you like it. The first two
numbers are the x,y coordinates, and the second two are the width and height of the dialog.

STYLE WS_POPUP | WS_CAPTION

The STYLE line defines the manner in which the dialog box is built. WS_POPUP is pretty
standard for dialog boxes. There are real differences between POPUP windows and
OVERLAPPED windows, the main one being the CAPTION on a POPUP is an option. Because
we are going to call this as a modal dialog box, we are going to give it a caption bar to allow
it to be moved. 'Modal' dialog boxes, as opposed to 'modeless', disable the parent window,
and demand attention until closed. Without the caption bar, the box cannot be moved.

CAPTION "Hello Setup"

The CAPTION line declares the caption used with the WS_CAPTION style parameter.

FONT 8    "Helv"

This defines the default font used throughout the dialog box. You could pick any
conceivable font here, but it is best to be kind and only use those shipped to Windows users,
or you are going to get some nasty mail messages.

BEGIN

          BEGIN..END or .. define the body of the dialog box.

CONTROL "Hello"          IDM_HELLO,      "BUTTON", BS_AUTORADIOBUTTON | WS_CHILD |
WS_VISIBLE | WS_TABSTOP, 20, 15, 42, 12
 CONTROL "Goodbye",    IDM_GOODBYE, "BUTTON", BS_AUTORADIOBUTTON | WS_CHILD |
WS_VISIBLE | WS_TABSTOP, 20, 28, 42, 12

          The two radio button definitions following the declaration CONTROL are:

- The text of the control    in our case "Hello" or "Goodbye"

- The ID value to be returned to the parent window, IDM_HELLO or IDM_GOODBYE are
defined in our ".H" file.

- BUTTON declares the control class. Buttons are generally small child windows.

- BS stands for BUTTON STYLE    and BS_AUTORADIOBUTTON declares the buttons will only
be pressed one at a time, and the button is automatically checked.

- WS_CHILD declares the dialog box as a child window. This means it resides within the
boundaries of the parent window.

- WS_VISIBLE applies to overlapped and popup windows. The initial condition is visible.

- WS_TABSTOP specifies that the user may step through the control sequence with the tab
key.

- 20    28, 42, 12 are the coordinates and size of the control, similar to that of the dialog
box itself.

CONTROL "OK"    IDOK, "BUTTON",
 BS_DEFPUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 29, 57, 24, 14

          The OK button declaration: everything should be self-explanatory except the
BS_DEFPUSHBUTTON style. DEFPUSHBUTTON means that this is the default PUSHBUTTON.
Pushbuttons are: OK, CANCEL, ABORT, RETRY, IGNORE, YES, NO, and HELP. Only one may be
the default, and it has a dark border around it, so that if the Enter key is pressed, that is the
one you get. IDOK is defined in windows.h, so we don't have to declare it.

          The user will get this dialog box on the screen, and select one of the radio buttons, or
toggle them back and forth a few times, then select OK. The dialog box procedure should
read the INI file and preset the proper radio button to show the user the current value. Upon
selecting OK, the procedure will have to set the selected information into the INI file.

          That completes the dialog box procedure discussion. The code follows:

BOOL FAR PASCAL HelloDlgProc (HWND hDlg    WORD message, WORD wParam, LONG
lParam)   

switch (message)
       

      case WM_INITDIALOG :
            CheckRadioButton(hDlg    IDM_HELLO, IDM_GOODBYE, InitSettings);
            return TRUE;

      case WM_COMMAND :
            switch (wParam)
                   

                  case IDM_HELLO :
                            WritePrivateProfileString("Hello" "Setup", "1", "Hello.ini");
                                    InitSettings = wParam;
                                    break;

                  case IDM_GOODBYE :
                            WritePrivateProfileString("Hello" "Setup", "0", Hello.ini");
                                    InitSettings = wParam;
                                    break;

                  case IDOK :
                                    EndDialog(hDlg    wParam);
                                    return TRUE;

   
            break;

   
return FALSE;

              /* HelloDlgProc */

          Notice the WM_INITDIALOG call:

CheckRadioButton(hDlg    IDM_HELLO, IDM_GOODBYE, InitSettings);

          An assumption is being made here that the variable InitSettings has been read into
our program somewhere, and is set to (in our case) either IDM_HELLO or IDM_GOODBYE.
CheckRadioButton uses the dialog box handle hDlg to identify a numerical sequence of
buttons from IDM_HELLO to IDM_GOODBYE, and ensures that only InitSettings is set.

          More advanced Windows programmers will probably want to skip the

      case IDM_HELLO
 .
 case IDM_GOODBYE

statements altogether    and wait until OK is pressed to check the state of the buttons. That
is fine, and more streamlined, but for now, let's not leave    anyone behind. I want all of us to
learn this stuff.

          Let's change one more function    or else the whole idea of the dialog box selecting
radio buttons is wasted. Let's read the INI file in WndProc, and change the text displayed
based upon the Select value.

          This is going to take two steps    just like the two parts of the previous sentence:

      case WM_CREATE :
          InitSettings = GetPrivateProfileInt("Hello" "Setup", 1, "Hello.ini");
          InitSettings = InitSettings ? IDM_HELLO : IDM_GOODBYE;
          hdc = GetDC(hWnd);
          InvalidateRect(hWnd    NULL, TRUE);
          ReleaseDC(hWnd    hdc);

and:

/*---
 fall through to WM_PAINT...

--*/
case WM_PAINT :

          hdc = BeginPaint(hWnd &ps);                /* returns pointer to hdc */
          GetClientRect(hWnd    &rect);

/*
 -1 tells the DrawText function to calculate length of string based on      NULL-termination
 */

        DrawText(hdc    (InitSettings == IDM_HELLO) ? "Hello Windows!" : "Goodbye
Windows!", -1, &rect, DT_SINGLELINE | DT_CENTER | DT_VCENTER);

    EndPaint(hWnd &ps);
 return 0;

          The WM_CREATE case reads the INI file to find out which we want printed and sets up
the 'InitSettings' variable used in the dialog box. Then we get a "handle to a device context"
or hdc for our window.

          A device context is the area into which we "paint" text in a window. In a dialog box,
we can use wsprint, but in a window, we have to "DrawText", and we draw it into a device
context. A device context could be a window or a printer page, Windows doesn't care. At this
point, we are getting the device context for our main window's client area. We then report to
Windows that the entire area is invalid, which will set us up for a repaint.

          In handling the WM_PAINT case    we again need an hdc, and this time do it with a call
to BeginPaint, passing a pointer to a structure variable of type PAINTSTRUCT. BeginPaint has
Windows fill in the ps for us, and is then available for our use. We aren't going to use it,
however.

          We call GetClientRect to get the dimensions of the client area into the rect structure.

          DrawText uses the hdc    the rect structure, and the InitSettings value to decide what
to paint and where. Ultimately, either "Hello Windows!", or "Goodbye Windows!" is printed
on a single line, centered horizontally and vertically: DT_SINGLELINE | DT_CENTER |
DT_VCENTER. Notice the note above the DrawText line. Instead of telling Windows how many
characters we are painting, let Windows do it for us!

          EndPaint closes the ps structure    and finishes our WM_PAINT case.

The Setup dialog

          I almost forgot    we do need to get the dialog box onto the screen. I have added three
lines to the hello.c file:

hMenu = GetSystemMenu(hWndMain    FALSE);
 AppendMenu(hMenu, MF_SEPARATOR, 0, NULL);
 AppendMenu(hMenu, MF_STRING,        IDM_SETUP, "Setup...");

          These get a handle to the system menu of the window, and insert a menu separator
followed by the word "Setup...". When "Setup..." is chosen, the value IDM_SETUP is sent to
our windows message loop:

      case WM_SYSCOMMAND :
            switch (wParam)
                 

                  case IDM_SETUP :
                        lpfnHelloDlgProc = MakeProcInstance(HelloDlgProc, hInst);
                        DialogBox(hInst    "Hello", hWnd, lpfnHelloDlgProc);
                        FreeProcInstance(lpfnHelloDlgProc);
                        return 0;

                 
            break;

          This is handled as WM_SYSCOMMAND    because the system menu is the one used.

          We must get a long pointer to a function lpfnHelloDlgProc, to use in the DialogBox
function call. The parameter "Hello" in the call is the title of the dialog box we built. Because
of the 'DialogBox' call, this dialog box will be modal, and control will not return to the main
window until OK is pressed in the dialog box.

          Don't forget the classical Windows programmer's bug...any ideas?? Ok, since nobody
is raising their hand...it's exporting the dialog box in the .def file. I have forgotten this so
many times, I hesitate to admit it. If you don't list the dialog box in the .def file, it is
guaranteed not to work in Windows 3.0, and will be extremely unreliable in 3.1. The next
time you get an unreliable dialog box, remember the "classical Windows programmer's bug".

          The files are archived with the magazine. I have made one other excursion, and that
is the dialog box code is in a separate file named HELLO.DLG. The file HELLO.RC contains the
following line to include the .DLG file:

rcinclude Hello.dlg

          This is pretty standard among Windows programmers, because it keeps the dialog
box code in its own file.

3.0/3.1/Borland

          I just checked and found that I had produced great 3.1 code, but the thing wouldn't
run under 3.0. If you are programming for the general public, you better keep at least a
'virgin' copy of 3.0 around on your hard disk for this sort of checking. Users tend to get a
little touchy about that sort of thing. The fix is really easy for Microsoft people. The problem
lies in the Resource Compilation stage. If you type 'RC -?' at the command line, you will see a
'-30' switch listed. This is what will get you 3.0+ executables. That is the way I have it in the
make file.

          Borland 3.1 programmers have a couple more lines. In addition to the RC file change,
you must also add the line:

#define WINVER 0x0300

ahead of your include of windows.h in your hello.c file. Also you must change the

wc.lpfnWndProc      = WndProc;                              /* Name of proc to handle window */

line to be:

wc.lpfnWndProc      = (WNDPROC)WndProc;        /* Name of proc to handle window */

          I may have left off some stuff here    if so, let me know about it. We're all in this thing
together.

          Please hang in there. If you are beyond the scope of this article, stick with me we are
going to go places together. If you are way beyond this, write us an article. If you are bogged
down, just compile it, and stare at the source. If you want help with something, send me a
note.

          That's it for this time. Next month I plan on building an About box with live compile
date inserted, and I'll discuss Icons and Menus. In coming issues my intention is to discuss
File Open boxes, Help files, Dialog Boxes as main windows, Obscure Dialog Box uses, Timers,
and debugging. Feel free to contact me in any of the ways below. I want to rat out the things
other people are having questions about, not just what I think people want to hear.

Dave Campbell WynApse PO Box 86247 Phoenix    AZ 85080-6247

 (602)863-0411              ---                CIS: 72251    445

                            Phoenix ACM BBS (602) 970-0474 - WynApse SoftWare forum

                Install Program Part III:
                          The SETUP.INF File

                                by Pete Davis

          Before I get started this month    there are a couple of things I wanted to talk about.
First of all, because of some stuff coming up in the near future, I won't be able to do Part IV
of the install program next month. It will, however, continue in May. Sorry about this, but
Part IV is going to be a big one and I'm not going to have the time to do it yet.

          I'd also like to respond to Chris Newham's letter (found, oddly enough, in the Letters
section) regarding installing DLLs which are currently active. I have to admit I haven't yet
tried this, but plan, by Part IV to have a solution. I went through Microsoft's code for their
install program and I couldn't find anything that seemed to make exceptions for DLLs. This
leads me to believe that the solution is something fairly simple. If worst comes to worst, you
could always just find out who's using it and shut them down. I doubt this is a very good way
to do it, but it's just a thought. Like I said, I'm going to look into it and I can hopefully have a
solution to it by Part IV. (I better have a solution by then, 'cause Part IV is going to handle
copying the files over.)

          Ok    this one's going to be short and sweet. There's not much to it. We're using a
SETUP.INF file which is going to tell us what the name of our application is, how big it is,
what files have to be installed, what disks they're on, whether or not they're executables,
etc. I had two options for doing this. I could have used the GetPrivateProfileString and
GetPrivateProfileInt functions and make it into a .INI file, but I wanted to maintain Windows
2.0 compatibility. (Just kidding :-) Actually, one reason I didn't is because I didn't think of it
until it was too late. Actually, there are some problems with that approach. The problem is
that we're dealing with multiple files and they're going to have the same entry names. I'm
sure you understand completely now, right? Ok, here's an example of a SETUP.INF file and
then I'll explain it again.

; Semicolons    as is typical for these kinds of files, mean comments follow
 ; and the line is ignored.
 Application=My Application
 AppSize=1204558
 DefaultDir=
 ;
 ; Now we'll have information about each file
 ;
 ; CompName = Name of file compressed on install disk
 ; UCompName = Name of the file when we uncompress it.
 ; FileType = 0 - EXE      1 - DLL      2 - Other (Other is the default)
 ; FileSize = Uncompressed file size
 ; AddDir = Sub-directory name if it's a sub-dir of the DefaultDir
 ; (i.e. AddDir=would mean the file is in
 CompName=MYAPP.EX0
 UCompName=MYAPP.EXE
 FileType=0
 FileSize=10294
 CompName=DATA1.DA0
 UCompName=DATA1.DAt
 FileType=2
 AddDir=

          Ok    that should be enough for a sample. Now our code is going to start a separate
node in our linked list of files to install each time it hits a CompName= statement. This is
harder to do with the GetPrivateProfile... functions. We could throw in a new section like

[FILE1] for the first file, [FILE2] for the second, etc. But back to the topic, we're not doing it
that way. I just wanted to give you ideas of how it could be done if you choose to do it that
way.

          All right    well, that was all simple enough. Did I mention linked list in the last
paragraph? Yup, that nasty phrase!!! Ok, it's pretty simple linked list. To make it easier, it's
essentially a stack, so each time we get a new file, we just add it to the front of the list. The
code is in the READSET.C file and the FILES.H file. I've commented it pretty heavily, so I
won't go in depth here. It's all very simple.

          In Part IV    which will be in May, we're going to do a lot of the real work.    Like I said,
it's going to be a big one, and we're going to be tying in all the stuff from the first three
parts. I might have to finish the entire thing in June, just because what's left is so big. I've
tried to break this series up into easily recognizable parts, First I had the DDE with Program
Manager, then I had the LZEXPAND.DLL part, and this month we had the READSET stuff. I
feel like what's left all goes in the category of 'the rest of it', but there's so much, that I'll
have to break it up into two hard do divide sections. I'll probably just do a few of the small
things in each one, like the Progress Bar, creating directories, copying files, etc...

          Oh well    that's it for this month. Sorry it was so short and sorry I can't do it next
month. If I can, I might try to do all of the rest in May to make up for not doing it at all in
April. We'll see. Until next time......

[Editor's Note: Last month, I started a Beginner's column on C++.    Andrew Bradnan was
kind enough to offer to take over the column, and will be writing it starting with this issue.   
Any questions you have can be directed to him.    His CompuServe ID is given at the end of
his column.    - MW]

Home Cooking - C++ from Scratch
                            by Andrew Bradnan

          This month I'll be starting a new column WPJ will be doing every month to introduce
people to C++ and Windows.    I am going to try and keep this simple enough for a
programmer new to Windows programming and C++.    Your brain may melt if you are at this
stage,    but give it a try and it will sink in after a while.    Feel free to send me some email on
Compuserve [70204,63].    I'll answer any questions and put the good ones at the end of next
month's article.

          I've read many books on C++ and I considered all but a few totally confusing.    (I
don't plan on adding my name to this list.)    There is another rumor that C++ is really slow
because it writes all sorts of code behind your back. This is kind of like complaining that C
writes all kind of assembly behind your back.    The compiler is supposed to write code for
you. The great thing about C++ is that you can forget many of the details.    I usually forget
them all by myself.    Instead of me rambling how great C++ is, let's find an example of
exactly how we can forget some things.    On purpose.    The simplest place to start is
constructors and destructors.    Of all the confusing C++ terms (abstraction, encapsulation,
modularity, hierarchy, typing, concurrency, and persistence), constructors fall into the
abstraction and encapsulation category.    More later.    Since we almost always want to
initialize our data structures (objects) to some known state, C++ will automatically call your
own constructor every time.    The converse is also true.    When you delete an object, or it
goes out of scope (falls out of    a curly braces), you also want to free up memory, and set
your variables to a used state. Where in the bleep do they dome from?    You only have to do
two things.    First declare your member functions, and then define them. Piece of cake.    For
an example, Windows is kind enough to require us to create and destroy all sorts of stuff.   
There are over 63 calls to create something in the Windows API.    All these objects (bitmaps,
etc.) have to be closed, deleted, freed, or destroyed (pick your favorite synonym).    Since we
almost always trap the WM_CREATE message lets create a PAINTSTRUCT object.    We'll call it
a PAINT. If you want to put anything on the screen, you have to ask permission. Since
Windows is kind enough to let many programs run at once, they have to share the screen.   
Kind of like kindergarten, and Windows is the teacher.    To get permission you have to ask for
a display context (think constructor).    Your piece of the screen. A display context is provided
when we call BeginPaint(...).    Due to the limitations of DOS and/or Windows you can only
have five DC in use at once.    So after you are done you have to release the DC so that
another program can draw in his corner of the sand box (think destructor).    This is done
with EndPaint(...).    BeginPaint (...) also fills in a PAINTSTRUCT data structure.    The only
additional information filled in is whether you should paint the background, and the smallest
rectangle you have to paint.    In my tradition, let's write some code that uses our PAINT
object.    This will clarify what advantages we'll gain and what member functions we are
going to have to write.

/*
 PAINT Object Test
 Written by Andrew Bradnan (c) 1993
 Note: The only C++ code is in the WM_PAINT case statement and in PAINT.H */

 [Editors Note: There was code here. Because of problems in generating the help file, it was
removed, but is in the plain text version of the magazine (WPJV1N3.TXT). We are
investigating the problem and will try to prevent it from happening in the future.]

          As you can see we have gone from four lines of code to two.    Not too bad.    The
interesting part is that we no longer have to call BeginPaint or EndPaint, and we no longer
care what those pesky PAINTSTRUCT members are.    The compiler grabs it from the PAINT
object for us, calling our declared explicit cast operators.    There is also sort of an intentional
bug.    If you cover up only part of the client window and then bring the sample application
back to the foreground, "PAINT Test!" doesn't draw in the middle of the client window.   
"PAINT Test!" will draw in the middle of the rectangle that was covered up.    Windows is kind
enough to let you do a little optimization should you want to. From the sample code above
we can determine that we need a PAINT object with four member functions.    One
constructor, a destructor, a cast to an HDC, and a cast to a LPRECT.

 [Editors Note: More code belongs here. See the above Editor's note for an explanation.]

          As you can see    strangely enough all the code is written in the header file.    This is
called inlining.    The short story is that this allows the compiler to optimize your source code.
It does this by replacing the function call with the code you have written.    So our call to
DrawText () really won't call two functions to get the parameters it will just reference the
members in our PAINTSTRUCT ps.    It is essentially like using a macro except you get all the
type checking thrown in for free. Some statement will not inline but your compiler will let
you know what these are.    You will also note that the constructor looks a little weird.    In the
constructor, we can optionally tell the compiler how to initialize our members hWnd and ps.   
If we do not the compiler will create them, set all the members to zero, and then we would
initialize the member within the curly braces. Obviously one more step than you want.    To
initialize hWnd we use the parameter passed in.    Memory for hWnd is allocated and then
filled with the parameter passed in.    Which is exactly what we wanted.    Space for ps is
allocated, set to zero, and then we initialize it, using BeginPaint, in the function body.    An
extra step but it can't be avoided in this case.      So the moral of the story is that C++ code
can be quite easy to read when you are using the object.    Writing the actual code is a little
messier.    Just remember you only have to get it right once.    You can forget two function
calls and three PAINTSTRUCT member names.    You can even forget about PAINTSTRUCT.         
Readers familiar with some of the brand name applications frameworks may be wondering
why I did not add DrawText() as a member function to our PAINT object.    Doing this we could
just remove the two cast operators and call DrawText with new parameters - DrawText
(LPSTR szText, int cb, UINT fuFormat).    The only problem is we have to learn more than we
forget.    Now you have two versions of DrawText().    This is supposed to be easier not more
complicated.    The second reason is that you can't DrawText a PAINT.    English wise, this
makes no sense.    You can draw some text on a DC.    That would make sense.    You would
also end up with every drawing function listed under the PAINT and/or DC object.    Definitely
confusing.    Just look at Microsoft's AFX. Yuck!          I have built the above example using BCW
3.1.    With minimal changes it ought to work fine with MSC 7.0 and with Windows NT.    Next
month I'll start a little earlier so I can test it on all three platforms and send the appropriate
make files to make your life easier.    Again if you have any problems, questions, suggestions,
or answers send me a note on Compuserve [70204,63].

Andrew Bradnan is president of Erudite Software, Inc.    Their latest offering, which he
wrote using C++, is called Noise for Windows, a sound utility for Windows 3.1.    Feel free to
contact him for information.

      Creating And Using Owner Draw Buttons
                              By Todd Snoddy

          Many of you may be wondering how some Windows programs display the fancy
bitmapped buttons.    Although these are not standard controls, Windows does provide the
capability to utilize controls that are custom designed.    Many times a properly displayed
graphic can mean much more than a simple text word.    I will try to explain how you can use
your own custom buttons in your programs.

          My sample code is written in Turbo Pascal for Windows, although the techniques apply
just the same to Turbo C++ for Windows.    I use Borland's Object Windows Library in my
examples, but if you use Microsoft Foundation Classes it should still be possible to
understand the basic concepts.

          My code emulates some of the functions of Borland's BWCC.DLL, which many people
use to enhance the visual appearance of their programs.    This DLL provides an assortment
of functions that can give your program that extra visual 3D look without too much work on
your part.    Unfortunately, the size of the DLL can be a big factor in deciding whether or not
to use it, especially if you are writing a shareware program and want to keep its size down.   
You may also have your own reasons for not wanting to use the DLL, and this may cause you
to look for other solutions.

          I will demonstrate how to use what is called owner drawn controls.    My examples
show how to simulate the BWCC style buttons from BWCC.DLL using owner drawn buttons.   
If you want to use owner drawn buttons in your programs, it should be rather straightforward
to use my code "straight out of the box" or modify it to suit your needs.

          We'll start with the obvious question. What are owner drawn controls?    An owner
drawn control is a special type of control which is designed to allow the program to specify
custom behavior.    It is most often used for listboxes with graphics or for custom buttons.

          Whenever a user clicks on an owner drawn control or it changes state in some other
way, like getting the focus, a special message is sent to the owning window of this control.   
This message is called WM_DRAWITEM, and its purpose is to let the window know that one of
it's owner drawn controls needs attention.    Along with this message, a pointer to an
information structure is sent to the window.    This structure contains information about what
exactly happened with the control, and which control it was.    The pointer to this structure is
passed in lParam. In Pascal format, the structure looks like:

    TDrawItemStruct = record
          CtlType: Word;                    Control type    can be odt_Button, odt_ComboBox,   

odt_ListBox, odt_Menu
          CtlID: Word;                        ID of Control
          itemID: Word;                      Not used for buttons. Has different meanings for other types

of controls
          itemAction: Word;              What happened.    For buttons, tells if gained or lost focus, or

selected
          itemState: Word;                What state control should be in after this drawing.    Buttons

only use    ods_Disabled, ods_Focused, and ods_Selected
          hwndItem: HWnd;                  Window handle for the control
          hDC: HDC;                              Display context to be used for drawing the control
          rcItem: TRect;                  Defines clipping boundary rectangle for control
          itemData: Longint;                  Not used for buttons.    Only used for listboxes and

comboboxes
 end;

          The owning window can examine this structure and determine what needs to be done
with the control.    By looking in the CtlType field, it will know what type of control the
message is for.    For a owner drawn button, this will be odt_Button. The CtlID field contains
the ID of the control.    The itemID field is not used for owner draw buttons.    The itemAction
field tells what happened with the control to cause this WM_DRAWITEM message. It can
contain oda_DrawEntire, oda_Focus, or oda_Select.    Only oda_Focus and oda_Select are
relevant for owner drawn buttons.    If oda_Focus is set, then the focus for the button
changed, and you must check itemState to see whether or not the control gained or lost the
focus.    If oda_Select is set, the selection state of the button changed, and you must check
itemState to know what the new state is.

          The itemState field specifies what state the control should be drawn in next.    To
check the values of itemAction and itemState, you must use the logical AND operation since
they can contain more than one value.    If (itemState AND ods_Focused) = TRUE, then the
button has the focus.    If (itemState AND ods_Selected) = TRUE, then the button is selected,
or pushed.

          The hwndItem field specifies the window handle for the control.    You can use this to
send messages to the control's window procedure.    The hDC field is the display context that
should be used when drawing the control.    The rcItem field defines the clipping rectangle for
the control.    It is used mainly with owner drawn menus.    The itemData field is only used for
listboxes and comboboxes.

          There are a couple of ways that your window procedure can process the
WM_DRAWITEM message.    It can either draw the control itself, or it can pass the message
on to the window procedure of the control.    This will use an object oriented technique and
let the control draw itself instead of the main window procedure having to worry about how
to draw each control.    This is the technique that I used in my example code. The dialog
window merely passes the WM_DRAWITEM message along to the control.

          The control reacts to this message by looking at the TDrawItemStruct record and
determining what state it should draw, and then draws the button using StretchBlt.    I
originally wrote this to draw with BitBlt, but when the program was tested under the 1024 x
768 resolution while using large fonts, it became obvious that hardcoding the size of the
bitmap didn't work properly when the dialog sizes were increased.    This problem has
basically two solutions.    Either use StretchBlt to draw the bitmap button at a larger than
normal size, or have separate bitmaps depending on the resolution.

          Both of these methods have their pros and cons, and in the long run I decided to just
use StretchBlt.    You will notice a degradation in the quality of the bitmaps if you do run in
the high resolutions and use the large fonts because StretchBlt can't do a perfect job scaling
an image up.

          That's the basic idea for using owner drawn buttons.    Things will probably be much
clearer after actually looking at the source code.    I'll briefly describe how to use it.

          My code is primarily designed to be used for owner drawn buttons in a dialog box,
although there's no reason why you can't use them in a normal window.    There are several
steps that you will have to take to use this code in your own programs.

1.    DESIGN YOUR DIALOG.    When designing your dialog, you will need to create a
standard button for each owner draw button in the dialog.    Remember what the button ID is,
as that's what you'll need to know to associate your owner draw control object to this
button.    You will need to set the size of the button to be 32 x 20, which is half the size of the
actual bitmap for Borland's standard VGA bitmaps.    I'm assuming that you are using
Borland's Resource Workshop to design your dialog.    After you have all of your buttons

positioned where you want them and sized properly, bring up the control attributes dialog by
double clicking on each control, and set the control type to owner draw button.    After this,
you won't be able to see the button anymore, but it will still be there.    Save your dialog.

2.    DESIGN THE BUTTON BITMAPS.    You can use any Windows graphics program that can
save in BMP format to design the actual bitmaps.    The bitmaps will use the BWCC
numbering scheme for their names.    The numbering scheme is: normal = button ID + 1000,
pressed = button ID + 3000, and focused = button ID + 5000.    This means that if your
button ID is 500, the bitmap number for the normal button without focus will 1500, for
pressed 3500, and for focused it will be 5500.    These are the names that you will give to the
bitmaps when you save them.    There is a shareware program written by N. Waltham called
Buttons that will automate this task for you by creating all of the necessary bitmaps from
one main bitmap.    It automatically adds a 3D shadow effect and has some other useful
features.    This program is available on Compuserve in the BPASCAL forum, and the author
can be contacted at 100013.3330@compuserve.com.    Although you must register with the
author, I don't mind sending copies of it via Internet email to interested users.

3.    ADD NECESSARY CODE TO YOUR PROGRAM.    You will need to add OwnDraw to your
USES statement in your program. You will also need to make your dialog object a descendant
of TOwnerDialog.    The sample program shows an example of doing this. The last thing to do
will be to use the NewButton method in your dialog's constructor for each owner draw
button in that dialog. The NewButton method is called with the button ID, and a Boolean
True or False depending on whether or not you want that button to be the default button in
the dialog.    If this is True, then it will be the button drawn with focus when your dialog is
initially created.

          That's all there is to it.    When your dialog is displayed, the owner draw buttons will be
displayed along with it.    Of course, to get the buttons to do some useful function, you will
need procedures in your dialog object to respond to each button selection.    The sample
program demonstrates this too.

          As you can see    using bitmapped buttons in your programs is not quite as difficult as
it may at first look. When properly used, bitmaps can really make a big difference in the look
of your program.

          I welcome any comments you may have    good or bad.    I can be reached on
Compuserve at 71044,1653, on America OnLine at TSnoddy, and on the Internet at
tsnoddy@nyx.cs.du.edu.

                              Hacker's Gash
              by Mike Wallace and Pete Davis

          This is our first attempt at a tips/tricks column.    If you couldn't figure out what the
title meant, blame Pete.    Here are three tricks we've come up with.    Hope you like them.    If
you have any you want to share with our readers, send them in!    Full credit will be given for
all tips we publish, of course.

1) Menu bar on a dialog box:    We spent a lot of time on this one, but the solution turned
out to be a simple one. In the dialog box definition in either (a) the .RC file, or (b) a .DLG file
you include in the .RC file, throw in the lines:

STYLE WS_OVERLAPPEDWINDOW
 MENU <menu name>

where <menu name> is a menu you have defined in the .RC file.    The style
WS_OVERLAPPEDWINDOW combines WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU and
WS_THICKFRAME, and is a standard parent window.

2) Highlighting a button on a dialog box when the cursor is over it: By highlight, I mean the
button moves "in" slightly, and it's a cool effect that can look pretty impressive. Add the
following declarations to the function that controls the dialog box:

    static BOOL        ButtnDn;
 static int          LastDown;
 static int          IDNumber=0;
 int                        counter;

Next    assume you have 5 buttons on your dialog box, and these buttons are identified by
the constants IDB_BUTNx (where x is a number between 1 and 5), which are defined in
the .H file for the .DLG file containing the definition for your dialog box.    Also assume these
five constants are defined sequentially, say, 101 to 105.    The variable "hDlg" is the handle
to the dialog box, and "message" is the message passed to the function by Windows (these
are, respectively, the first and second parameters passed into a    standard window-handling
function).    Add the following two cases inside the "switch(message) " structure:

case WM_SETCURSOR:

          ButtnDn= TRUE;
        LastDown= IDNumber;
        IDNumber= GetDlgCtrlID(wParam);
        for(counter=IDB_BUTN1; counter<=IDB_BUTN5; counter++)

              if(counter==IDNumber)
                        SendDlgItemMessage(hDlg    counter, BM_SETSTATE, TRUE, 0L);

          if(IDNumber != LastDown)
              SendDlgItemMessage(hDlg    LastDown, BM_SETSTATE, FALSE, 0L);

 break;

case WM_NCHITTEST:

          if (ButtnDn)
              ButtnDn = FALSE;
              SendDlgItemMessage(hDlg    LastDown, BM_SETSTATE, FALSE, 0L);

      break;

3) Using DlgDirList for a subdirectory:    I recently tried using the DlgDirList function

passing a pathname like "DATA*.DAT" to fill a list box with all the files in the DATA directory
ending with .DAT (by the way, the double backslash ("\") is needed because the backslash is
a special character in a C string).    Afterwards, I found out that if this function is successful, it
changes the current working directory to whatever is specified in the string (here, the
"DATA" directory).    Afterwards, I tried changing the directory back to the original working
directory, but if the function got called again, chaos ensued.    I managed to get around this
by including in the program the following line:

#include <direct.h>

          The direct.h file has prototypes for the directory-manipulating functions, including the
one needed here: chdir, which changes the current working directory.    I replaced the call to
DlgDirList with the following code:

chdir("DATA");
 DlgDirList(hDlg, "*.DAT", IDL_POPUP, IDL_DIRSTRING, 0);
 chdir("..");

          The "hDlg" variable is the handle to the dialog box, "IDL_POPUP" is the dialog box ID
value for the list box control, "IDL_DIRSTRING" is the dialog box ID value for a static text
control that will be updated with the current path name, and 0 is the DOS file attribute used
to retrieve a list of read/write files with no other attributes set.    There are other values you
can use for the DOS file attribute value to retrieve, for example, subdirectories and drives.   
This code simply changes to the DATA directory, gets a list of the .DAT files in that directory
and puts that list in the IDL_POPUP list box and the path in the IDL_DIRSTRING static text
control, and then changes back to the parent directory.    You can use the DlgDirSelect
function to retrieve a selected filename from the list box.

                              Special News
                              by Mike Wallace

          We recently got a letter from Todd Snoddy offering to put WPJ on the America Online
information system.    We said "Sure", and a couple of days later got a phone call from a
sysop for the board.    He liked the magazine (all contributing authors can now pat
themselves on the back) and asked how we would feel about holding an on-line conference
on AO, giving readers a chance to talk directly to us and ask us any questions they have
about the journal.    Sounded good to us, so we agreed, and now hope to bring this to you AO
subscribers soon.    The details are still being worked out, so watch the AO Programming
Library for updates.

          For the benefit of our readers without access to America Online, I'll try to write down
what questions get asked and our answers and include them in our next issue.

          Thanks    Todd, and the great folks at America Online!

Windows 3.1: Using Version Stamping library
                              By Alex Fedorov

          Windows 3.1 introduces the new resource type with ID number 16 called   
VS_FILE_INFO.    This resource contains the symbolic data about the file version, its
description, the company name and so on.    Such information can be used to determine the
file type/subtype and its version and can be used in installation programs.    Resource data
lives as a set of blocks; each block contains information of its own.    The first one (with a
fixed size) describes the TVS_FixedFileInfo structure.    The fields of this structure contain the
following information: file version, environment type and version, file type and subtype.
There are several subblocks, which contains symbolic information with the following IDs (the
table contains only those which must present):
      ID Contents

 CompanyName Company name
 FileDescription File description
 FileVersion File version
 InternalName Internal file name
 ProductName Product name
 ProductVersion Product version

          Resource of this type can be created with resource editor, such as Resource Workshop
(version 1.02 or higher), or with resource compiler (RC or BRC).    The latter needs the
resource template.    VS_FILE_INFO resource for resource compiler looks like the following:

            1 VERSIONINFO LOADONCALL MOVEABLE

            FILEVERSION                3 10,0,61

      PRODUCTVERSION 3 10,0,61
              FILEFLAGSMASK VS_FF_DEBUG | VS_FF_PATCHED
              FILEFLAGS VS_FF_DEBUG
              FILEOS VOS__WINDOWS16
              FILETYPE VFT_APP
              FILESUBTYPE VFT2_UNKNOWN
              BEGIN
                    BLOCK "StringFileInfo"
                    BEGIN
                            BLOCK "040904E4"
                            BEGIN
                              VALUE "CompanyName"    "Microsoft Corporation"
                              VALUE "FileDescription"    "Windows Terminal application file"
                              VALUE "FileVersion"    "3.10.061"
                              VALUE "InternalName"    "Terminal"
                              VALUE "LegalCopyright" "Copyright 51 Microsoft Corp. 1991"
                              VALUE "OriginalFilename" "TERMINAL.EXE"
                              VALUE "ProductName" "Microsoft56 Windows31 Operating System"
                              VALUE "ProductVersion"      "3.10.061"

                            END
                    END

            END

          To get access to VS_FILE_INFO resource data you can use the functions from VER
Dynamic Link Library included with Windows 3.1.

 [Editor's Note: There was code that belonged here. Because of problems encountered while

generating the help file, it had to be removed. The code is provided in the WPJV1N3.TXT file.
We are investigating this problem and will try to find a solution before the next issue is
released.]

                                Book Review
                                by Pete Davis

Microsoft Windows 3.1 Programmer's Reference Library

          If you're a serious Windows programmer you've probably got Microsoft's series of
books on Windows programming. The series is broken up into 4 volumes and two extra
books, as follows:

- Volume 1: Overview

          This is    as it says, an overview. It covers a lot of different topics from how windows
are managed, graphics, and how to write extensions for Control Panel and File Manager.

- Volume 2: Functions

          This is an alphabetical listing of all the Windows 3.1 functions. It's a big one.

- Volume 3: Messages    Structures and Macros

          Like the previous two    this one is exactly what it says it is. it's got some great
information on all the structures, which comes in real handy.

- Volume 4: Resources

          This one has a lot of information on file formats for a bunch of different Windows files
(.GRP files, Meta Files,    etc.) It's also got a bit of information on creating Help files, using
assembly language in Windows, and more.

- Programming Tools

          Not listed as a Volume. This is more of an additional Microsoft C reference. It covers a
lot of the SDK tools, debugging with Codeview, data compressions and that kind of stuff.

- Guide to Programming

          Also not listed as a Volume    but I would have made it one. It covers different types of
resources like Icons, Dialog boxes, etc. Printing, DLLs, MDI, Fonts, Assembly and C, and
more.

          Ok    so there's our list. I would say, all- in-all, this is probably the most definitive
resource on programming for Windows and that anyone planning on doing a lot of Windows
programming should get the whole series. It's a big ticket item. The least expensive book is
$23 (US) and the most expensive is $39 (US).

          I suggest you get some other books and not limit yourself to just these. Although they
cover most of the topics most programmer's will need, the books are lacking in some areas
and there are some typos which have slowed this programmer down on more than one
occasion. Every book has typos and that's why, as a serious programmer, your library should
come from several sources so you can check the books against each other when you run
into problems.

          These books are    however, well worth the cost. There's a lot of stuff covered in these
books that you won't find in other sources. The detail on different file formats, for example, I
haven't seen in any other books. The structures list is very complete and is a very handy
reference. There's also some good information on memory management and DLLs.

                      What these books aren't

          These books aren't everything and    like I said, don't limit yourselves to just these.
The Windows API bible (which Mike will be reviewing) has some great information too and it's
a good one to check against Microsoft's Function reference when you get suspicious that a
function isn't doing something it's supposed to do. Also, because it's Microsoft, you're not
going to get the wealth of inside, under-the-hood, information like you get from
Undocumented Windows (Andrew Schulman, David Maxey, Matt Pietrek. Addison-Wesley. See
the review in WPJ Vol.1 No.1)

          Unfortunately    because Windows is such an enormous system and no single book can
even begin to cover every aspect of it, we programmers have to get a lot of different books.
If you're serious, though, you should consider setting aside the money to get this collection.

                                Book Review
                              by Mike Wallace

          The Waite Group's Windows API Bible
                          by James L. Conger

          Earlier in this issue Pete reviewed the Microsoft Windows 3.1 Programmer's Reference
Library.    Now it's my turn to review my Windows programming reference book of choice: The
Waite Group's Windows API Bible by James Conger.    Pardon my French, but this book kicks
serious "lune".    While the Microsoft books spread out everything across several books, the
Waite Group threw it all into one book, making anything you want to look up easy to find.   
This book is a must-have for anyone wanting to learn how to program Windows.    Here are
the details:

          The book is divided into 30 chapters    each discussing a distinct area (e.g., creating
windows, menus, windows messages, metafiles).    Each chapter starts off with a discussion
of its topic (usually several pages long), then a summary of the associated functions (a list of
the function names with a one line purpose), and then a complete description of the same
functions in the summary.    Their descriptions are detailed and include suggested uses for
the function, a great "see also" reference list (more complete than the Microsoft books), an
explanation of all the parameters and the return value, and code (real programs) that shows
how to use the function.    It's my one stop for looking up a function.    Plus, the inside front
cover contains a list of all the API functions with a page number so I can quickly jump to the
function I want to look up, followed by a list of messages grouped by category (e.g., button
notification codes, windows messages).

          But wait    there's more...the book also includes a pullout reference card containing a
list of all functions with the type declarations for all parameters and the return value, plus
the same list of messages that's on the inside cover.    The function list in the pullout card is
organized the same way as the chapters, so that all the functions listed in the chapter on,
say, sound functions, are grouped together in the pullout under the heading "Sound
Functions."    I couldn't ask for a better list.    In the Microsoft books, you have to know the
name of the function before you can look it up, and there have been many times when I
didn't know what the function was called, but I knew what it did.    This book lets me find the
name of the function quickly, and then shows me how to use it.

          In the appendices    there is a discussion of useful macros from WINDOWS.H, mouse
test hit codes, and a printout of WINDOWS.H, which has been very helpful to me on
occasion.    The book ends with a very complete index, making it extremely easy to look up
related subjects.

          There are very few faults with this book but there a few.    One is the strange absence
of the Windows API functions starting with the letter "N".    I am not making this up. The
Microsoft reference book on functions lists four functions starting with "N": NetBIOSCall,
NotifyProc, NotifyRegister and NotifyUnRegister.    None of these functions are in the API
Bible. There is also no discussion of OLE or True Type fonts, although the author writes (in
the introduction) these will be covered in a separate volume currently under development.

          Also    the Microsoft volume on programming tools (those included with the SDK, such
as Spy) covers an area not addressed by the API Bible.    If you want to use the Microsoft
SDK, the API Bible won't be of much help, but this isn't much of a fault, because Microsoft
isn't the only producer of Windows SDKs, and you're going to get manuals for any SDK you
buy, so why include a lot of information that some readers won't need to know?

          To me    the faults of this book do not detract from its overall usefulness.    It has paid
for itself many times over, and when compared to the Microsoft reference books, the price
seems insignificant.    Total price for the six books in the Microsoft Windows 3.1 Programmer's

Reference Library: around $170- 180.    The Windows API Bible: $40.    I recommend this book.
You'll thank me for it.

                        Printing in Windows
                                by Pete Davis

          Ok    I failed to get this article out last time and I've been feeling really guilty about it,
so here it is. Writing this article hasn't been easy. Writing about printing reminds me of my
first attempt at printing under Windows. It wasn't a very good one.

          Actually    printing under Windows isn't a big deal and if you're printing graphics, it's a
lot easier than you'd think. My real problem with printing the first time was
incomplete/incorrect documentation. I won't mention names, but I saw at least 3 examples
of printing in different books on Windows programming and every one of them either misled
me or had code that didn't work.

          Here's the deal. When you print    you MUST, and I mean MUST (I'm really serious
about this), have an abort procedure. This is an absolute necessity. You MUST have it. You
can't do without it. You'll have problems if you don't have an abort procedure, so write one.
Are you starting to get the picture here? An abort procedure is NOT optional, you MUST have
it.

          Now    you might be wondering why I'm emphasizing this point. Every book I read on
printing made it sound like an option. I needed to print one page of text (and not much text
at that) and didn't have a need for an abort procedure, so I didn't include one. I kept getting
UAEs as soon as I tried to print. It even occurred to me that I might need the Abort
procedure, and I specifically looked for a phrase which said something along those lines in
every bit of documentation I had. Finally, 4 days later, I decided I'd just pop an abort
procedure in. (I had tried just about everything else at that point, why not?) Of course, it
worked, and I had wasted four days because I HAD TO HAVE AN ABORT PROCEDURE!!!!

          So    I'm assuming that, after reading this, none of you are going to spend four days
trying to figure out why your print routine UAEs only to find that you forgot your abort
procedure. If I hear of any of you doing this after reading this article, I'm going to come over
and personally give you a whuppin (as we say down in Arkansas). If you haven't, at this
point, realized that an abort procedure might possibly be a good idea to include in your print
procedure, you fit into one of the following three categories:

          1> You program on the cutting edge of Atari 2600 technology.
          (or some other cutting edge of obsolescence)
          2> Blind and not able to read any of this anyway.
          3> Just plain stupid

          There    so I have that off my chest, on to the meat of this article, which is how to
print. It's real easy!!!

          The first thing we'll look at is our Abort procedure. (Did I mention that you need this
part?) The abort procedure is real simple. It receives the device context of the printer and an
error code. In our example, the nCode is the error code and if it's non-zero, you have an
error.

          Basically all your abort procedure has to do have a message loop. I don't do anything
else with it, myself. It should look something like this.

BOOL FAR PASCAL AbortProc(HDC hdcPrint    short nCode)   

MSG msg;

      while(!bPrintAbort && PeekMessage(&msg    NULL, 0, 0, PM_REMOVE))   
              if(!hDlgPrint || !IsDialogMessage (hDlgPrint &msg))   

                      TranslateMessage(&msg);
                      DispatchMessage(&msg);

               
     
    return !bPrintAbort;

          The next thing on our agenda is the PrintDlgProc procedure. This is basically the
dialog box procedure for our cancel printing dialog box. Although there is a cancel button in
our dialog box, instead of checking specifically for the cancel button, our only concern is
with a WM_COMMAND. (We only have one button, so what other WM_COMMANDS are they
going to be sending?) If we get the WM_COMMAND, we basically abort the printout (by
setting bPrintAbort = TRUE) and destroy our dialog box. Pretty darn simple.

BOOL FAR PASCAL PrintDlgProc(HWND hDlg    WORD message, WORD wParam, LONG lParam)

    if (message == WM_COMMAND)

              bPrintAbort = TRUE;
              EnableWindow(GetParent(hDlg)    TRUE);
              DestroyWindow(hDlg);
              hDlgPrint = 0;
              return TRUE;

   

          return FALSE;

          The next procedure is our printing procedure. There are a couple of neat things here
that I'd like to talk about. First of all, there's the four lines involved with getting information
about our printer driver. What we're doing here is just getting the default printer device. We
get the information via a GetProfileString command. Under the section "windows" and then
the line starting with "device". That's our printer. All the information goes into szPrinter
which we then break into the Device, Driver, and PortName using the strtok function. This
basically breaks out our string into separate strings. The second parameter of strtok is the
thing we want to break our string apart at. In this case, we want it broken up at the commas.
Also, notice how we only pass szPrinter once. If we use NULL in the next two occurrences of
strtok, it knows to continue using szPrinter and to continue from where we left off which, in
this case, is at the last comma.

GetProfileString("windows"    "device", ",,,", szPrinter, 80);
 lpDevice = strtok(szPrinter, ",");
 lpDriver = strtok(NULL, ",");
 lpPortName = strtok(NULL, ",");

          Our next job is pretty simple    we just create a device context based on the
information about our driver.

/* Create the device context. */
 if ((hdcPrint = CreateDC(lpDriver, lpDevice, lpPortName, NULL)) == NULL)   
 MessageBox(hWnd, "Could not assign printer.", "ERROR", MB_OK);
 return FALSE;
   

          Here's another thing you don't really have to deal with in DOS. With Windows, you
need to know where you are on the page. The reason is that you have to tell Windows when

you're done with the current page. This means you need to know the size of a page and the
size of the text on the page. Now, this can be a bit of a pain, but it also allows for a lot of
interesting stuff. For example, you don't have to start from the top of the page and go down.
You can print the bottom part of the page, and then print something in the middle of the
page, and so on. Then you just tell Windows to eject the page. In our case, we're going to be
assuming 1 page or less of text and not really deal with that. (As they say in school books,
this is left as an exercise for the reader.) All we're going to do is use the text size to tell us
where to print the next line of text. First we have to use CurYPos as our current Y position on
the page. (I love descriptive variable names.) Then we need to find out how tall a single
character is. That's done from getting a text metric for the printer and adding the
character's height, plus the external leading, which is kind of like the blank space between
lines.

CurYPos = 1;
 GetTextMetrics(hdcPrint, &tm);
 yChar = tm.tmHeight + tm.tmExternalLeading;

          The next step is to create our dialog box and abort procedure. By the way, the abort
procedure is not optional.

lpfnPrintDlgProc = MakeProcInstance (PrintDlgProc hInst);
 hDlgPrint = CreateDialog(hInst, "PrintDlgBox", hWnd, lpfnPrintDlgProc);
 lpfnAbortProc = MakeProcInstance(AbortProc, hInst);
 bPrintAbort = FALSE;

          Now    the secret to printing is all in the Escape commands. (Actually, in Windows 3.1,
they have commands you can use instead of Escape, but since we try to maintain our 3.0
backwards compatibility, we're going to use Escape.) The Escape is the heart of the printing
routines. You use it to send different commands and/or data to the printer driver. The first
one we'll send is our SETABORTPROC command. This sets up our all-important abort
procedure.

Escape(hdcPrint    SETABORTPROC, 0, (LPSTR) lpfnAbortProc, NULL);

          The next Escape we're going to send is our STARTDOC command. We're going to pass
the name of our document and the length of the string that has the name of our document.
Pretty straight-forward.

Escape(hdcPrint    STARTDOC, strlen(szMsg), (LPSTR) szMsg, NULL);

          Since our example involves reading from a file, we're just going to read one line at a
time from the file. We use a TextOut function to output our string to the printer driver. We
need to give X and Y coordinates. In our case, the X is always 0 and the Y position is
calculated from the GetTextMetric which we did above. We just add the text height to the
current Y position after each line.

while (fgets(CurLine    132, inFile)!=NULL)   
        TextOut(hdcPrint    0, CurYPos, CurLine, strlen(CurLine)-2);
        CurYPos += yChar;

          When we're done    we need to send a NEWFRAME command via the Escape function.
This basically means to advance to the next page. Now, if you're printing multiple pages,
you need to do a NEWFRAME between each page. In our case, we're only allowing one
pages, so we do it right at the end.

Escape(hdcPrint    NEWFRAME, 0, NULL, NULL);

          The last thing to do is send an ENDDOC. This basically tells the printer driver we're
done and it can begin printing the document.

Escape(hdcPrint    ENDDOC, 0, NULL, NULL);

          After all that    we just close the file and delete the device context for our printer, then
get a cup of coffee and a smoke and relax.

fclose(inFile);
 DeleteDC(hdcPrint);

          Ok    so it's a little more complex than printing text under DOS, but the thing I didn't
mention is the graphics. Now, I'm not going to go into great detail about it, because it is a
little more complex, but not much. Essentially, all you have to do is route all of your graphics
to a printer device context instead of a screen device context. The complexity comes in
when you're trying to figure out pages sizes and that kind of stuff, but for the most part,
printing graphics is as easy as printing text.

          There are some things we didn't cover here. One of them is a thing called banding,
which is a way of printing your page in parts called bands. This is particularly useful for dot-
matrix and other non-postscript printers. Banding makes it a bit faster to do the printing.
Some printer drivers have the banding built-in and I, personally, have never had to work in
an environment where printing had to be particularly fast, so I've avoided banding. If
someone feels that banding is of particular importance, they're more than welcome to write
an article on it.

          That just about wraps up printing. It's really not all that complex, and as you can see,
Windows gives you a lot of power as to how to handle it. There are all kinds of neat and nifty
things you can do, like mixing graphics and text, which is a cinch. Try doing that in DOS. And
last but not least, please, don't forget your abort procedure.

                  Advanced C++ and Windows
                            By Andrew Bradnan

Talking to the User
 Overview

While Windows offers a great variety of ways to talk to the user, none of them are very
easy.    Even fewer are quick to implement.    In this article we will look at some C++ classes
to make things a little easier.

Output
 Introduction

Let's look at a few ways to talk to the user. The simplest way to tell the user something is
to create a message box.    This is one of the easiest things to do in Windows.    Luckily,
Windows does most of the work for us.    We are going to make it even easier.    With the
classes we are going to create you will never have to remember what the parameters are,
what order they go in, and exactly how they spelled all the constant values you can pass in
and that MessageBox() passes back.    We also need a good way to tell the user and
ourselves about error messages (God forbid).

Message Boxes

If you are at all familiar with the MessageBox () call you are well aware that there are
several different incantations.    Each has its own purpose and can be used for several
circumstances.    Its function prototype looks like this: int MessageBox (HWND hwndParent,
LPSTR lpszText, LPSTR lpszTitle, UINT fuStyle); You can pass it 18 different flags (or
combinations) and it will return seven different flags to tell you what the user did. Not as
ugly as CreateWindow() but not easy either.

OKBOX

A stream is an abstraction referring to the flow of data from a producer to a consumer. The
first output object we are going to create is an OKBOX.    Once again it does exactly what it
sounds like.    It displays a message box with one "OK" button.    The OKBOX will allow us to
use C++ stream conventions. Let's first look at how we would like to use an OKBOX so we
can write the appropriate member functions.

OKTEST.H

//
//    OKBOX Test Header
//    Andrew Bradnan (c) 1992
//    C++ Windows Version
//

#ifndef __OBJECTS_H
#include <objects.h>
#endif

class WINDOW : public BASEWINDOW
 public:

    WINDOW (LPCSTR lpcszClass    HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR
lpszCmdLine, int nCmdShow) : BASEWINDOW (lpszClass, hInstance, hPrevInstance,
lpszCmdLine, nCmdShow) ;

    BOOL OnCreate (CREATESTRUCT FAR *lpCreateStruct);
;

OKTEST.CPP

//
//    OKBOX Test Module
//    Andrew Bradnan (c) 1992
//    C++ Windows Version
//

#include <oktest.h>

BOOL WINDOW::OnCreate:: (CREATESTRUCT FAR *lpCreateStruct)

    OKBOX msg ("OK Test Caption");
    msg << "User notification."
    return TRUE;

int PASCAL WinMain (HANDLE hInstance    HANDLE hPrevInstance, LPSTR lpszCmdLine, int
nCmdShow)   
 WINDOW Window ("OK Test", hInstance, hPrevInstance, lpszCmdLine, nCmdLine);
 return Window.MessageLoop ();

          We are using our WINDOW virtual function to trap the WM_CREATE message.    Here
we define msg as an OKBOX with the caption "OK Test Caption"    When we want to send a
message to the user we just stream some text to it.    This will invoke the message box with
the "User notification."    It is much easier to read. Now that we have an easy way to send a
message to the user or ourselves let's look in the "black box" to see how OKBOX works.

OKBOX.H

//
//    OKBOX Header
//    Andrew Bradnan (c) 1992
//    C++ Windows Version
//

#ifndef __OKBOX_H
 #define __OKBOX_H

#ifndef __WINSTR_H
 #include <winstr.h>
 #endif

class OKBOX
 public:

    OKBOX (LPSTR lpszCaption);
    int operator<< (STRING& strMessage);

 private:
    STRING strCaption;

 #endif // __OKBOX_H

OKBOX.CPP

//
//    OKBOX Module

//    Andrew Bradnan (c) 1992
//    C++ Windows Version
//

#include <okbox.h>

OKBOX::OKBOX (LPSTR lpszCaption) : strCaption (lpszCaption)
;

int OKBOX::operator<< (STRING strMessage)

    return MessageBox (NULL    strMessage, strCaption, MB_OK);

Short and sweet.    We have a constructor that takes a string which we will save as the
caption for the message box.    Our other function, operator<<() is called by the compiler
when ever it sees an OKBOX object on the left of the << and a STRING (or an object that can
construct a STRING like a LPSTR) object on the right side.

ERRORS

Unfortunately    errors are bound to occur.    We will assume these are all going to be user
errors.    If we think a bit, an ERROR object is going to be coded almost exactly like an
OKBOX.    In fact, let's rewrite our OKBOX object so that we can take advantage of this.   
Quality if free, but we have to pay for it up front. So that we can reuse some of the code we
will create an object call MSGBOX.    MSGBOX will contain the code shared by the OKBOX and
the ERROR object.

MSGBOX.H

//
//    MSGBOX Object Header
//    Andrew Bradnan (c) 1992
//    C++ Windows Version
//

#ifndef __MSGBOX_H
 #define __MSGBOX_H

#ifndef __WINSTR_H
 #include <winstr.h>
 #endif

class MSGBOX
 public:

    MSGBOX (LPSTR lpszCaption)
    : strCaption (lpszCaption)    fuStyle (Style)
    ;
    int operator<< (STRING& strMessage)
   

              return MessageBox (NULL    strOutput, strCaption, fuStyle);
    ;

 private:
    STRING strCaption;
    UINT fuStyle;

#endif // __MSGBOX_H

          The MSGBOX object only adds fuStyle so that different message boxes can be
created. Now we can rewrite OKBOX to use the code in MSGBOX.    OKBOX will be inherited
from MSGBOX.      Since we will inherit all the public member functions, we will only have to
write a short constructor.

OKBOX.H

//
//    OKBOX Object Header
//    Andrew Bradnan (c) 1992
//    C++ Windows Version
//

#ifndef __OKBOX_H
 #define __OKBOX_H

class OKBOX : public MSGBOX
 public:

    OKBOX (LPSTR lpszCaption) : MSGBOX (lpszCation MB_OK) ;

#endif // __OKBOX_H

The code for an ERROR object is exactly the same except for the value of fuStyle.

ERROR.H

//
//    ERROR Object Header
//    Andrew Bradnan (c) 1992
//    C++ Windows Version
//

#ifndef __ERROR_H
 #define __ERROR_H

class ERROR : public MSGBOX
 public:

    ERROR (LPSTR lpszCaption) : MSGBOX (lpszCation MB_ICONSTOP | 
MB_SYSTEMMODAL | MB_OK) ; ;

#endif // __ERROR_H

Great!    Now we can notify the user using the OKBOX object and tell the user about errors
using the ERROR object.

Questions

Your programs often need to ask the user a question.    If this is a yes or no affair we can
use a message box. Let's look at how we would like to use an object like this.    Then we will
write the member functions to fill out the class.

QTEST.H

//
//    QUESTION Test Header

//    Andrew Bradnan (c) 1992
//    C++ Windows Version
//

#ifndef __OBJECTS_H
 #include <objects.h>
 #endif

class WINDOW : public BASEWINDOW
 public:

    WINDOW (LPCSTR lpcszClass    HINSTANCE hInstance, HINSTANCE hPrevInstance,                 
LPSTR lpszCmdLine, int nCmdShow)

    : BASEWINDOW (lpszClass    hInstance, hPrevInstance, lpszCmdLine, nCmdShow) ;
    BOOL OnCreate (CREATESTRUCT FAR *lpCreateStruct);

QTEST.CPP

//
//    QUESTION Test Header
//    Andrew Bradnan (c) 1992
//    C++ Windows Version
//

#include <qtest.h>

BOOL OnCreate (CREATESTRUCT FAR * lpCreateStruct)

    OKBOX ("Question Test");
    if ((QUESTION) "Do you like the object?")

              msg << "Great    I hope your programming is easier."
    else

              msg >> "What the hell do you know!";

    return TRUE;

int PASCAL WinMain (HANDLE hInstance    HANDLE hPrevInstance, LPSTR lpszCmdLine, int
nCmdShow)   

    WINDOW Window ("Question Test"    hInstance, hPrevInstance, lpszCmdLine, nCmdLine);
    return Window.MessageLoop ();

Once again we are trapping the WM_CREATE message and trying out our QUESTION
object.    The code is kind of sneaky.    I know one thing, you can actually read C++ code if
you write your classes carefully.    I would hate to write those four lines of code in C.    They
certainly would not be as easy to read. Let's look at how the C++ compiler helps us.    First of
all, when the compiler sees that we would like to cast the string to a QUESTION it creates a
temporary QUESTION object using our string. Then since the if statement really wants a
BOOL the compiler will cast the QUESTION to a BOOL.    It is in this explicit cast, operator
BOOL (), that will make the message box call.    The cast member function will "look" to see if
the user hit the "Yes" or "No" button, and return TRUE or FALSE.

If you didn't understand that    let me explain it another way.    The C++ compiler did all the
work. Seeing as how I'm trying to champion code reuse let's try and use the MSGBOX object. 
We are only going to have to write two member functions for this object.    The constructor
and the cast member function.

QUESTION.H

//
//    QUESTION Object Header
//    Andrew Bradnan (c) 1992
//    C++ Windows Version
//

#ifndef __QUESTION_H
 #define __QUESTION_H

class QUESTION : public QUESTION
 public:

    QUESTION (LPSTR lpszOutput)
    : MSGBOX ("Warning!"    MB_QUESTION | MB_YESNO), strOutput (lpszOutput) ;

          operator BOOL (void)
   

              if (IDYES == operator<< (strOutput))
                        return TRUE;

              else
                        return FALSE;

    ;
 private:

    STRING strOutput;

#endif // QUESTION_H

          As you can see the only action really takes place in the explicit cast, operator BOOL ().
It is here that we call the member function operator<< () to invoke the message box call.   
We didn't do too much but transform one call to the MSGBOX class.    Since we declared it
inline we won't even gain any function call overhead.    The C++ compiler will put this ugly
code right where our beautiful code exists right now.    Pretty damn cool.

Warnings

          We also might want to warn the user of impending doom.    The File Manager uses this
to confirm that you really want to overwrite a file.    If works almost like a QUESTION object
except it can return whether the user chose "Yes", "No" or "Cancel".

WARNING.H

//
//    WARNING Object Header
//    Andrew Bradnan (c) 1992
//    C++ Windows Version
//

#ifndef __WARNING_H
 #define __WARNING_H

class WARNING : public MSGBOX
 public:

    WARNING (LPSTR lpszOutput)
    : MSGBOX ("Warning!"    MB_EXCLAMATION | MB_YESNOCANCEL) ;

          operator BOOL (void)
   

              BOOL fUserChoice;
              fUserChoice = operator<< (strOutput);
              if (fUserChoice == IDYES)

                        return TRUE;
              else if (fUserChoice == IDNO)

                        return FALSE;
              else // if (fUserChoice == IDCANCEL)

                        return -1;
    ;

 private:
    STRING strOutput;

#endif // WARNING_H

          Wondrous.

          Why    you ask, go through all this trouble just for a MessageBox() call?    Well, there
are plenty of reasons. Let's review them.    First, who can remember all those flag variables?   
Not me.    Does the caption go first, like I know it should (and always write)?    No!    No matter
how many times I write it the correct way, Windows just will not learn.    Second, the folks at
Microsoft just love to change things.    The MessageBox() call may gain new functionality.   
Why romp through all the code you have written to change it for the latest greatest
MessageBoxEx()?    It would be a pain and you surely would miss some of your old code. Now
all you need to do is make a change to the MSGBOX class. Third, you can add all sorts of
checking to the base class.    This really doesn't apply in this case but in more complicated
classes this will be important.    We even gain some checking from the string class. "How?"
you ask.    There is nothing to screw up with constant strings.    I'm afraid not, my friend.   
Once upon a time, I forgot to export one of my functions (good thing you have never done
that) that used one of these classes.    My data segment was pointing off to never never land
and luckily my STRING's told me as much.      They didn't even GP fault, just quietly told me
that I had screwed up. Windows 3.1 has brought multimedia to our clutches so let's look at a
real example of how powerful C++ inheritance can be.    We will be updating MSGBOX.

MSGBOX.H

//
//    MSGBOX Object Module
//    Andrew Bradnan (c) 1992
//    C++ Windows Version
//

#ifndef __MSGBOX_H
 #define __MSGBOX_H

#ifndef __WINSTR_H
 #include <winstr.h>
 #endif

class MSGBOX
 public:

    MSGBOX (LPSTR lpszCaption);
    : strCaption (lpszCaption)    fuStyle (Style)
    ;

    int operator<< (STRING& strMessage);
   

              MessageBeep (fuStyle);
              return MessageBox (NULL    strOutput, strCaption, fuStyle);

private:
    STRING strCaption;
    UINT fuStyle;

#endif // __MSGBOX_H

          You have now added multimedia to everywhere you use message boxes.    All by
changing one measly line. You're a fast worker.    Your boss will probably give you a raise. We
have just implemented some easy ways to have dialog with the user. They are by no means
complicated, but just think of the complicated things you can make this easy, even fun to
program.    There are plenty of other nasty constants you can play with to create you own
classes.    Then you can rip those pages right out of the Windows Programmer's Reference.

The Trials and Tribulations of an Antipodean Abecedarian
 who uses Turbo Pascal to Program Windows

                          Part 1
      They Also Serve Who Only Stand and Wait

                                by Jim Youngman
                      [CompuServe 100250 60]

          I live in Melbourne    Australia and I work in a one man Operations Research
department.    The programming that I do is in order to solve OR problems that I encounter.   
I am very much isolated in my job although I do my best to keep in touch with others
through professional societies and computer user groups.    e- mail has proved invaluable
since I had a modem installed a short time ago.

          The problems I have struck are often simple in the end, but they can be confusing for
a beginning Windows programmer such as myself.    The documentation for the various
programming languages does not tell you what you need to do; rather it tells you how to do
something when you know what it is you need to do.    Perhaps sharing some of these trivial
trials and tribulations in a series of short articles might just help another beginner.

          I have the job of writing a user friendly front end to a mathematical programming
package.    The end users will be line managers with a background in mechanics rather than
computers.    This led me to decide that the best medium for them to use the final
application would be Windows (we are standardized on IBM compatible machines).

          One of the first things I needed to do after setting up various screens using the
Borland Resource Workshop was to find out how to run the mathematical programming
package from within a Windows program.    The package is DOS based and uses the Phar Lap
DOS extender to run in 32 bit mode.

          How could I do this?    I could not find any clues in the manuals, nor in the only book
on TPW that I had at the time: Tom Swan's Turbo Pascal for Windows 3.0 Programming
(1991) which is an excellent introduction to the subject.

          The books being no help    I then went on to search the Borland Pascal Help file.   
Eventually I tried a search on Load and soon discovered the function LoadModule.    This was
described as loading and executing a Windows application, but there was a cross-reference
to WinExec.    The description of this function did not specifically mention either Windows or
DOS applications, so I tried it:

procedure RunIPOPT;
 begin

      WinExec(hWindow 'c:', sw_Show)
 end;

          This worked OK.    However    the IPOPT program displays masses of mathematical
detail on screen as it is running.    I do not want to confuse the end users with this detail, so I
want to eventually hide the window in which it runs and bring up a message box to inform
the user when the program has run to completion.    For the time being I will leave the
window visible (sw_Show) so that I can monitor progress:

procedure RunIPOPT;
 begin

      WinExec(hWindow 'c:',sw_Show);
      MessageBox(hWindow    'Program Completed','IPOPT', mb_Ok)

 end;

          Surely this should work.    But    no!    The message box came up on screen before
IPOPT had even begun to run.

          Again all my books failed me    as did the Help file too this time.    Borland's Windows
API guide had a description of the command, but there were still no examples that showed
how it might be used in practice.    I was stuck!

          All fairy tales have happy endings    but they have to begin with "Once upon a
time ...".

          Once upon a time I was browsing in my favorite computer book store and discovered
a copy of Neil Rubenking's Turbo Pascal for Windows Techniques (1992).    A cursory look at
the index found a reference to the WinExec function.    I looked it up. It had exactly what I
wanted.    I bought a copy immediately.    The book is another excellent reference that I now
have on my shelf and reach for often.

          It seems that the crucial point I was missing was the need to create a loop to test
whether the DOS program was still running.    I adapted Neil Rubenking's code to produce the
following procedure:

procedure RunDos(hWindow: hWnd; CommandLine CompletionMessage, CompletionTitle:
PChar);

var IH : word;
        M    : TMsg;

begin
    IH := WinExec(CommandLine    SW_Show);
    if IH <= 32 then

              MessageBox(hWindow    CommandLine,
                              'Failed to run'+chr(13)+chr(10)+'Execution Error'+

chr(13)+chr(10)+'Contact Jim Youngman for Help',
                              mb_Ok + mb_IconHand)
                else
                    begin
                        repeat
                            while PeekMessage(M    0, 0, 0, PM_REMOVE) do
                                begin
                                    if M.Message = WM_QUIT then
  begin
  PostQuitMessage(M.wParam);
  Exit;

  end
                                    else
  begin
  TranslateMessage(M);
  DispatchMessage(M);

  end;
                                end; end do

                        until GetModuleUsage(IH) = 0;
                        MessageBox(HWindow    CompletionMessage, CompletionTitle,
  mb_Ok + mb_IconInformation);

                    end;
 end;

I lived happily ever after    at least until the next problem.

                  Getting in touch with us:
Internet and Bitnet:

HJ647C at GWUVM.GWU.EDU -or- HJ647C at GWUVM.BITNET (Pete)

GEnie: P.DAVIS5 (Pete)

CompuServe: 71141 2071 (Mike)

WPJ BBS (703) 503-3021 (Mike and Pete)

Home Phone (703) 503-3165 (Mike and Pete)

You can also send paper mail to:

Windows Programmer's Journal
 9436 Mirror Pond Drive
 Fairfax, VA      22032
 U.S.A.

          In future issues we will be posting e-mail addresses of contributors and columnists
who don't mind you knowing their addresses. We will also contact any writers from the first
two issues and see if they want their mail addresses made available for you to respond to
them. For now, send your comments to us and we'll forward them.

                              The Last Page
                              by Mike Wallace

          Things have been hectic in the WPJ offices (i.e., our basement) - you've been sending
us great articles and mail with lots of input (see the Letters column).    It's been great - you
seem to like what we're doing, and we're having a good time. This month a tips/tricks
column (Hacker's Gash) makes its debut in WPJ (Official slogan: "The original party snack").   
It was written by us, but we're always glad to hear from you people.    If you have any tricks
you want to share, let us know about them!    We seem to be accomplishing our basic goal of
helping people learn how to program in Windows, but this goal brings up an issue I want to
write a bit about.

          In the Letters column    there is a letter from Tammy Steele, formerly of the SDK forum
on CompuServe, and in her letter she discusses the accuracy of WPJ.    If the magazine isn't
accurate, the Microsoft sysops aren't going to recommend WPJ as a source of helpful info.   
When we started this effort, I didn't envision Microsoft referring people needing help our
way.    Don't ask me why, I guess it just never occurred to me, but it illustrated to me the
point that the available sources of help on this matter shouldn't be exclusive - that is, no one
has a monolopy on this field (nor should anyone), because no one source can be everything
to everybody.    I'm not going to tell you that WPJ can answer every question you ever had
about programming in Windows, because different sources offer different things to their
readers. We write about the topics we think the most people can benefit from, but in some
ways we're much different than, say, "Windows/DOS Developer's Journal".    Not to say we're
better, just different. Don't limit yourself to just one source of information.

          If you have a specific question about Windows programming, you have several
options: write us a letter and we'll try to answer it, or, if you have a ID on CompuServe,
America Online, GEnie, etc., post it and see if you get a response. Microsoft also puts out a
Developer CD full of articles (yes, I have this CD and it's a great source).    What I'm leading
up to is that the sysops for these services (and their members) help people learn this stuff,
but sometimes a complete answer isn't possible (due to space constraints), so why not refer
someone to WPJ if we have an article that answers the question?    Much like I frequently
refer to The Waite Group's Windows API Bible (see review in this issue), I also read some of
the other Windows programming magazines.    Sometimes they help, sometimes not.    As
long as WPJ is useful and offers something you can't get elsewhere, we'll stay around.    A
magazine shouldn't exist for its own sake, and judging from your response, we're succeeding
in filling a niche.    Pete and I didn't start this because we were bored; we saw an area we
thought wasn't getting addressed, namely, help beginners learn the basics, while offering
advanced articles for the people who have been around for a while.    If you don't like what
we're doing, send us a note.    If we keep getting positive letters and don't hear anything to
the contrary, we'll continue what we're doing.    Tammy's concerns about accuracy are well-
founded.    We'll be the first ones to admit it if we make a mistake.    I learn just as much from
our contributing authors as you do, but if a mistake slips through, I want to know about it.   
With your help, we can make WPJ a helpful source of info.    'Nuff said.

