
VBZ
The Electronic Journal for
Visual Basic Programmers
Copyright 1993 User Friendly, Inc.

Issue 04:    July/August 1993

Welcome to Issue 4 of our journal.    We are gratified by all the positive feedback we have
been receiving from you, and we are convinced that we are on the way to providing the best 
possible resource for Visual Basic programmers.    We continue to battle valiantly with the 
Windows help system to provide you with as valuable a hypertext document as we can.    This 
issue marks the beginning of searching functionality and a more consistent organization of 
articles and reference materials, and the review of Q+E MultiLink in our review section contains 
the first bitmaps we have published in VBZ.    Let us know if you like the pop-up method we have
used to display them.    We walk a fine line between a journal and an add-on, and we hope that, 
with your help, VBZ is able to meet both sets of expectations.

Some of your most popular requests have been answered in this issue, including custom 
cursor functionality and VBZ's first custom controls:    a list box that displays bitmaps (VBZList),
and a mixed attribute label (VBZLabel).    We hope you find them unique and useful.    
Introducing these controls has raised the question of on-line help for the tools, via the hypertext 
document.    As an experiment, VBZLabel provides on-line help, but requires that a copy of 
VBZ04.HLP reside in either your VB directory or the Windows directory.    How would you like 
to see this handled in the future?    A separate HLP file for controls?    An INI file in which to 
specify the location of your VBZ issues?    How do you organize your issues now?    Are they all 
in the same directory (currently this is required for jumps across issues, as in our "What's Gone 
Before" section)?    Any answers you can provide to these questions will help us serve you better. 
If you would like an automated survey, we can do that too.    Just let us know.    Pay special 
attention to the "What's Coming Up" section this month, and send us all the feedback you can 
because, as I have said before, our goal is to make VBZ the premier resource for Visual Basic 
programmers.    Enjoy!

Jonathan Zuck, President
User Friendly, Inc.
CIS:    76702,1605



 Table of Contents

About   VBZ  

Features

Creating Custom Cursors
A Mixed Font Label
Beyond the ListBox
Creating Rich Text Formatted Documents

Departments

The   VBZ   Utility Library  
What's Coming Up?
What's Gone Before?
Reviews



 Creating Custom Cursors

A number of applications, especially graphical ones, employ custom cursors as part of 
their user interface.    The paintbrush program that comes with Windows, for example, changes 
the cursor to reflect the drawing tool that is being used.    A number of design tools change the 
cursor to reflect the object that is about to be dropped on the design surface.

There is a way to accomplish this using just VB and the Windows API, but the technique 
has its problems.    The best solution -- as it often is -- is a utility we present as another VBZ 
exclusive.    This utility, VBZCursr.DLL, provides three functions:    Icon2Cursor, which creates 
a handle to a cursor from an icon; SetControlCursor which assigns a cursor (using its handle) to
a control in your application (using the control's hand); and DestroyCursor, which returns the 
cursor to whatever the default is for the window at hand.

First an API Technique
Using VBZCursr
VBZCursr.DLL Commands



 Creating Custom Cursors:    First an API Technique

To use API calls to set a cursor, the first thing you need to do is get a handle to a cursor.    
One way to do this is to retrieve one from a DLL.    This is accomplished by loading the DLL, 
and then a cursor from the DLL.

hLib = LoadLibrary ("MYDLL.DLL")
hCursor = LoadCursor (hLib, "MYCURSOR")

Now that you have a cursor handle, it's time to set the cursor to it.    The good news is that
it's just one more API call, SetCursor(hCursor).    The bad news is that it will only work for 
a fraction of a second.    The reason this is the case is that there is a message sent to all windows 
when the cursor is hovering over them, querying about the cursor to display.    That message is 
WM_SETCURSOR.    If a control doesn't respond to this message, it gets passed on to its parent,
and so on, until there is no more parent, at which point it is passed back to Windows for default 
processing.    At this point, the class cursor is used.    The class cursor is the "default" cursor for 
that type of window which is established when the window gets created.    Often it's that arrow 
pointing North - West.

Accordingly, when you use SetCursor to change the cursor, it does in fact change, but 
since Windows is continually sending that WM_SETCURSOR message to the window under the
cursor, it is quickly changed back.    If you wanted to see your new cursor, you would have to do 
it inside of a loop in which you never yielded to the system; this would not be a very good loop 
to have running for very long.



Creating Custom Cursors:    Using VBZCursr

VBZCursr not only allows you an easy way to assign a cursor to a control, but it also 
provides a great way to get the handle to a cursor.    Its Icon2Cursor command makes it possible 
for you to add all the cursors you'll need as icons.    All you need to do is create hidden 
pictureboxes for each of your cursors, then call Icon2Cursor.    Its parameters are the icon (the 
picture's picture property as an integer), and the x and y coordinates for the "hot spot" of the 
cursor.    This is the point with which you point; for example, it would be the fingertip of a hand 
cursor.

Another way to get an icon is to load a DLL (see the example above) and then use the 
API call LoadIcon.    This method gives you access to the icons stored within every Windows 
program, for example the Moricons.DLL has dozens.

Either way you get an icon, running Icon2Cursor gives you a handle to a cursor.    To 
assign that cursor to a control, run SetControlCursor with the hWnd of the control and the 
handle to the cursor.

The IconView application lets you try any icon on your disk as a cursor.    It uses a 
VBZlistbox  to allow you to choose an icon, which is placed in Picture2, then calling 
Icon2Cursor and SetControlCursor to "assign" the cursor to the button Command2:

hCursor% = Icon2Cursor(CInt(Picture2.Picture), x%, x%)
SetControlCursor Command2.hWnd, hCursor

Note that you can assign cursors to whatever controls you desire, or even to the form 
itself, but you should keep track of each hCursor you create, so you can use one other VBZCursr 
command, DestroyCursor, to remove it.    IconView uses a module level variable for its cursor 
handle and makes sure DestroyCursor is run before any Icon2Cursor's.    The syntax for 
DestroyCursor is simple:

DestroyCursor (hCursor)

You can also use SetControlCursor to change the cursor for a particular object or, by passing zero
for hCursor, return the cursor to the default. Happy Cursoring!    Remember to drop us a line if 
you have any interesting cursor applications or needs.



Creating Custom Cursors:    VBZCursr.DLL Commands

The following are the commands available to create custom cursors using 
VBZCURSRS.DLL:

Filename
VBZCURSRS.DLL

Commands
Command Description
Icon2Cursor Creates handle to cursor from an icon
SetControlCursor Assigns custom cursor to a control
DestroyCursor Restores cursor to default



 Creating Custom Cursors:    Icon2Cursor

Purpose
Creates a cursor handle from an icon

Contained in
VBZCURSR.BAS
(Requires VBZCURSR.DLL)

Declaration
Declare Function Icon2Cursor Lib "CURSOR.DLL" (ByVal hIcon, 

ByVal X, ByVal Y) As Integer

Parameters
Parameter Description
hIcon Integer - handle to an icon
X Integer - x location of hotspot
Y Integer - y location of hotspot

Return Value
Integer - handle to a cursor

Usage
hCursor% = Icon2Cursor(CInt(Picture1.Picture), 1, 1)



 Creating Custom Cursors:    SetControlCursor

Purpose
Designates a cursor to use when over a given control

Contained in
VBZCURSR.BAS
(requires VBZCURSR.DLL)

Declaration
Declare Sub SetControlCursor Lib "CURSOR.DLL" (ByVal hWnd%, 

ByVal hCursor%)

Parameters
Parameter Description
hWnd integer - handle to control being assigned a cursor
hIcon integer - handle to cursor

Usage
SetControlCursor form1.hWnd, hCursor% 

Comments
You may change the cursor for a control dynamically by simply calling SetControlCursor
with a new hCursor. If you wish to "un-install" the custom cursor for an object, simply 
pass a zero for hCursor.



Creating Custom Cursors:    DestroyCursor

Purpose
Restores a cursor to its default

Contained in
VBZCURSR.BAS
(requires VBZCURSR.DLL)

Declaration
Declare Sub DestroyCursor Lib "User" (ByVal hCursor)

Parameters
Parameter Description
hCursor Integer - handle to a cursor

Usage
DestroyCursor (hCursor)



A Mixed Font Label by Brett Foster 70444,135

VB Text boxes and picture boxes don't allow mixed fonts or font attributes, so if you 
want to emphasize a word or phrase, you need to create a separate label for the phrase you want 
to look different, and place it right where it belongs on the first label.    This is not only a lot of 
work to set up, but a lot of work to adjust if the underlying text changes.    Of course, doing this 
dynamically in your program is almost impossible.

VBZLabel doesn't allow mixed typefaces either, but it DOES allow you to predefine a 
second font style, with its own bold, italic, underline, color, size, and strikethrough properties, 
and provide an easy way to switch in and out of that second style within a single label. 

To use VBZLabel, set the properties for the regular text in the regular way: fontname, 
fontsize, etc.    Then set the properties for the other text, using font2name, font2size, etc.

Now, when you set the caption text, just surround the text you want to emphasize with the
"accent" or backwards, single-quote character, e.g., emphasize `the words right here` with the 
accent mark -- the character under the tilde(~) character.

The VBZLabel application demonstrates the ability to set the font2bold, font2italic, and 
font2size dynamically; the other properties were set at design-time.    This application is also a 
good demonstration of the abilities of VBZListBox, a listbox that can have a different font on 
each line (as well as many other exciting enhancements).

VBZLabel Properties



A Mixed Font Label:    VBZLabel Properties

Purpose
Provides a label control with two separate font styles.

Unique Properties
Property Description
Font2Bold second font's bold attribute, True or False
Font2Color second font's color attribute, a VB color value
Font2Italic second font's italic attribute, True or False
Font2Size second font's height, in points
Font2Strikethru second font's strikethrough attribute,True or False
Font2Underline second font's underline attribute,True or False

Usage
Set the attributes for the second font, then, in the caption, set off the text to be highlighted
with the accent character.



A Mixed Font Label:    Font2bold, Font2italic, Font2strikethru, Font2underline

Purpose
Set the attributes for the second font

Values
True or False



A Mixed Font Label:    Font2color

Purpose
Set the color for the second font

Values
Any VB color value



A Mixed Font Label:    Font2size

Purpose
Set the height for the second font

Values
Any number of points (1/72 of an inch)



 Beyond the ListBox by James Shields 71231,2066

VBZList is a work in progress, but one that already has made major strides past the 
listbox that comes with VB.    Notable improvements are the abilitities to set the fontname and 
size for each line, the height of the lines themselves, and the abiltity to have a bitmap for each 
line.

VBZList Properties
The VBZList Samples



 Beyond the ListBox:    VBZList Properties

The following are the properties supported by the VBZList custom control.    Properties 
unique to VBZ are highlighted.    For other properties, see the Visual Basic help file.

Properties
Property Description
Height
Index
ItemBackColor BackColor for an item
ItemDefHeight Default item height
ItemFontName Name of font for item
ItemFontSize Size of font for item
ItemForeColor ForeColor for an item
ItemImage Handle to image for item
ItemInvert Whether to create black bar or inverted bar
Left
List
ListCount
ListIndex
Tag
TopIndex



 Beyond the ListBox:    ItemDefHeight

Purpose
Set the height for lines to be added to a VBZList

Value
Height in twips

Comments
Unlike most properties of the VBZList, this is not settable for items once they are created.
That is, you can't set VBZList1(5).ItemDefHeight.    Instead, all lines added once this 
property is set will be the ItemDef Height until the value is changed.

e.g.:
VBZList1.ItemDefHeight = 200
VBZList1.Additem "I will be 200 twips tall"

You don't set this for each row, you set this as a default for the control in general, e.g., 
vbzlist1.itemdefheight = 40, and then when you do an additem, the new line (and all the 
new lines) will be the new height.    However, you can set this to be a different number 
before each new line.



 Beyond the ListBox:    ItemBackColor, ItemForeColor

Purpose
Set the background and foreground colors for any row in a VBZList.

Value
Any VB color value

Comments
These properties, which work on one line of the listbox at a time, work like their parallels
in other VB controls, with the colors being set with the VB numeric system.



 Beyond the ListBox:    ItemFontName

Purpose
Set the typeface for any item in a VBZList

Value
A string with any valid font name, like "Times New Roman"

Comments
This property, which works on one line of the listbox at a time, works like its parallel in 
other VB controls, with the fontname as a string with a valid name.



 Beyond the ListBox:    ItemFontSize

Purpose
Set the size of the font for any item in a VBZList.

Value
A textheight in points (1/72 of an inch)

Comments
This property, which works on one line of the listbox at a time, works like its parallel in 
other VB controls, with the font size in points.



 Beyond the ListBox:    ItemImage

Purpose
Place a bitmap at the left of a line in a VBZList.

Value
A handle to a bitmap.

Comments
You can get a bitmap handle in one of three ways:    Using LoadPicture, using a picture 
property, or using Clipboard.Getdata.    This example below shows all three.

VBZList1(0).ItemImage = LoadPicture("Mypic.bmp")
VBZList1(1).ItemImage = Picture1.picture
VBZList1(2).ItemImage = Clipboard.Getdata(0)

This property allows you assign a bitmap to the beginning of any or all lines in the 
listbox.    You can use the loadpicture command to read a BMP off the disk.

vbzlist1.ItemImage(i) =LoadPicture("Test.BMP")



 Beyond the ListBox:    ItemInvert

Purpose
The selection bar in the listbox can be a black bar with white text, or it can be whatever 
the inverse of the underlying item is.    If ItemInvert is true, then you would get a white 
bar if the underying item were black.

Value
True or False

Comments
This property, which can be True or False, determines whether the current item is 
indicated with a black bar with white text (False) or whether the bar will be the reverse of
the underlying color, in which case it might be a white bar if the background color is 
dark. 



 Beyond the ListBox:    The VBZList Samples

Two samples here use the VBZList custom control:    the VBZLabel demonstration 
program demonstrates the setting of ItemDefHeight, ItemFontName, ItemBackColor and 
ItemForeColor.    The IconView program demonstrates the ItemImage property.

The VBZLabel program, in its openform routine, cycles through all of the fonts using 
screen.FontCount to see how many there are, and screen.Font(i) to get the name of each one.    
Each time the name of the font gets added to the VBZListBox, the properties of the new line get 
changed:

The height gets 10 twips taller than the last line
vbzlist2.ItemDefHeight = vbzlist2.ItemDefHeight + 10

The typeface of the line is set to the font being added.
vbzlist2.ItemFontName(i) = screen.Fonts(i)

The background color gets changed incrementally.
vbzlist2.ItemBackColor(i) = (i * 10)

The foreground color is always white.
vbzlist2.ItemForeColor(i) = &HFFFFFF

The IconView form uses the drive and path controls to point to whatever directory you 
choose.    Each time the directory is changed, the DIR command is used, with a "*.ICO" mask, to 
find every icon file in a directory.    The name of each one is added to the list box.    Then it 
should be a simple matter to add an icon using:

vbzlist1.itemimage(i) = loadpicture(afile)

But the VBZListBox can't (currently) accept icons.    There's a simple -- but clever-- work
around for this limit, but if there's enough interest, we can change VBZListBox.    Just let us 
know!

For now, though, we need to do the following: add the icon to a hidden image control, 
and then use an API call, DrawIcon, to copy a bitmap of the icon to a hidden picture control.    
This command takes the hDC (handle to device context) of the destination, an x and y 
coordinate, and the icon to copy.

DrawIcon picture1.hDC, 0, 0, Image1.Picture

Now we have a picturebox on the form with our bitmap in it, so all we need to do is set 
the ItemImage of the VBZListBox line to the picture    in the picturebox.    Voila, an icon viewer!

The Future of VBZList

What are our plans for VBZList?    Well, what do you need?    Three-D effects?    
Multiselect?    Multcolumn?    Direct support for icons?    The ability to act as a file box?    Are 



there any events you would like, for example, easy detection of enter or spacebar?    Let us know 
of any enhancements you desire, as well as interesting applications you find for VBZList.



 Creating Rich Text Formatted Documents

You want to create a document from within Visual Basic that will be edited by a user.    
So far you've been saving text as ASCII.    Maybe sticking in some codes, then doing search-and-
replace in Word or WordPerfect?    That's fine as far as it goes, but isn't there a a better way?

Some people have decoded the formats of popular wordprocessors and written libraries to
allow programmers to generate documents in those formats.    What we've done is considerably 
easier and even more useful:    RTF.BAS contains routines to allow easy creation of Rich Text 
Format documents.    This is a universal word-processing format that is not the native format for 
any commercial wordprocessor, but can be imported into many, including Word for Windows.    
You will be able to create documents with your typeface, fontsize, font attributes and indenting 
already embedded.

How to Use RTF.BAS
RTF in Use:    Resume Wizard
How RTF.BAS works
RTF.BAS Functions



 Creating RTF Documents:    How to Use RTF.BAS

First open your disk file, using standard VB:

Open Myfile for output as #1

From this point on, you will be using the filenumber to pass to the RTF routines.

Now you're ready to create Rich Text.    The first steps are the two commands used to 
create the header, RTFSetFonts and RTFSetFormat.    Like every RTF command, they begin with 
the filenumber.    RTFSetFonts takes a string with all the fonts you will be using, separated by 
commas:

RTFSetFonts 1, "Times New Roman, Arial, Symbol" 

You've now created an RTF font table, so remember the order.    Times New Roman will 
be font 0 and Arial will be font 1, etc.

RTFSetFormat takes the filenumber (of course) and the left, right, top, and bottom 
margins, in inches.

RTFSetFormat 1, 1.5, 1.5, 1, 1

All of the "housekeeping" is out of the way.    To send some formatted text, you use 
RTFPrint, as follows:

RTFPrint 1, "Hello there.","\b \i"

That line will be bold and italic.    Other RTF commands let you change fonts, send 
paragraph breaks, even indented paragraphs.      You can send whatever commands you want in 
whatever order, but when you're finished with your document,    you MUST end with an RTFEnd
command before you close the file you are writing.    



Creating RTF Documents:    How RTF.BAS Works

RTF is a relatively easy-to-decode system of ASCII codes.    Each begins with the 
backslash.    For example, the RTFNewPage command just sends the rtf command "\page".    
Most of these can just get stuck in the document, and it will be acted on when encountered, like 
"\qc" turns centering on.    Every paragraph will be centered until the "\pard" (Paragraph enD) is 
encountered.    Font changes work the same way.    You change to Font 0 with "\F0".

The text itself is stored in segments surrounded by curly-braces -- the {} characters.    
Within those segments, you can put the font attributes, like "\b".

Some Interesting(?) RTF Facts

Measurements are in TWIPS, of which there are 1440 to the inch.    The RTF routines 
provided here use inches and multiply by 1440 so you don't have to.    Font sizes, however, are in
half-points.    The RTF routines use points and multiply by 2.

The Future of RTF.Bas

As with most of the programs you see in VBZ, the future is up to you.    What feautures 
would you find valuable?    Possible additions range from the ability to change paper size, to 
color, columns, graphics, and style-sheets.    Let us hear from you.    We'd like to hear what 
programs you're writing with RTF, and how it could be improved to help you.



Creating RTF Documents:    Commands

Filename
RTF.BAS:

Commands
Command Description
RTFEnd Write code to end RTF document
RTFFont Write code for font change, using index in RTF font table
RTFFontSize Write code for font size change
RTFJustifyCenter Write code for centering text
RTFJustifyIndent Write code for indenting paragraph
RTFJustifyNormal Write code to turn off indenting or centering
RTFNewPage Write code for new page
RTFNewPar Write code for new paragraph
RTFPrint Write text with font attributes
RTFSetFonts Create RTF font table
RTFSetFormat Create RTF page definition
RTFTab Write code for tab



 Creating RTF Documents:    RTFSetFonts

Purpose
Creates an RTF font table.    An RTF document needs this table so that fonts can be 
switched with a numeric reference to a table entry.

Contained in
RTF.BAS

Declaration
sub RTFSetFonts (filenum, fontstring)

Parameters
Parameter Description
filenum Integer - a handle to an open file
fontstring String - the names of the fonts you will use, separated by commas

Usage
RTFSetFonts 1, "Times New Roman, Arial, Symbol" 

Comments
In the example above, you would now switch to Times New Roman with the command:

RTFFonts 1,0

This is because Times New Roman is the 0 item in the table, Arial is the 1 item and 
Symbol is the 2 item.    (The 1 in the example is the file handle of the document being 
created.)

RTFSetFormat and RTFSetFonts together are needed to initialize an RTF document.    
RTFEnd is needed to end a document



 Creating RTF Documents:    RTFSetFormat

Purpose
Writes the RTF codes that define the page

Contained in
RTF.Bas

Declaration
Sub RTFSetFormat (filenum, lmargin, rmargin, tmargin, bmargin)

Parameters
Parameter Description
filenum Integer - handle to an open file
lmargin Single - left margin in inches
rmargin Single - right margin in inches
tmargin Single - top margin in inches
bmargin Single - bottom margin in inches

Usage
RTFSetFormat 1, 1.5,1,5, 1,1

Comments
RTFSetFormat and RTFSetFonts together are needed to initialize an RTF document.    
RTFEnd is needed to end a document.



 Creating RTF Documents:    RTFPrint

Purpose
Save text to disk with RTF font attributes

Contained in
RTF.BAS

Declaration
Sub RTFPrint (filnum,text$,attributes$)

Parameters
Parameter Description
filenum Integer - a handle to an open file
text$ String - the text to be printed
Attributes$ String - desired attribute backslash commands; any or all of the

below:
\b Bold
\i Italic
\ul Underlined
\strike StrikeThrough
\v Hidden (inVisible?)
\scaps Small Caps

Usage
RTFPrint 1, "Hello there.","\b \i"



 Creating RTF Documents:    RTFNewPar

Purpose
The RTFPrint command doesn't create an RTF carriage-return at the end.    Since you are 
creating a document for a word processor that will be doing linewrapping, you don't want
a cr-lf at the end of each line.    When you DO need a new paragraph, use the RTFNewPar
command.

Contained in
RTF.BAS

Declaration
Sub RTFNewPar (filnum)

Parameters
Parameter Description
filenum Integer - a handle to an open file

Usage
RTFNewPar 1

:



 Creating RTF Documents:    RTFNewPage

Purpose
To write an RTF newpage code to an open file

Contained in
RTF.Bas

Declaration
Sub RTFNewPage (filenum)

Parameters
Parameter Description
filenum Integer - a handle to an open file

Usage
RTFNewPage 1



 Creating RTF Documents:    RTFFont

Purpose
To change typefaces, referring to the fonts by their position in the font table:

Contained in
RTF.Bas

Declaration
Sub RTFFont (filenum)

Parameters
Parameter Description
filenum Integer - a handle to an open file

Usage
To switch to the first font in the font table:

RTFFont 1, 0

To switch to the second font in the font table
RTFFont 1, 1



Creating RTF Documents:    RTFFontSize

Purpose
Specifies fontsize for RTF document

Contained in
RTF.Bas

Declaration
Sub RTFFontSize (filenum,fontsize)

Parameters
Parameter Description
filenum Integer - a handle to an open file
fontsize Single - size in points

Usage
RTFFontSize 1,12



 Creating RTF Documents:    RTFJustifyCenter

Purpose
Writes RTF codes for centering

Contained in
RTF.Bas

Declaration
Sub RTFJustifyCenter (filenum)

Parameters
Parameter Description
filenum Integer - a handle to an open file

Usage
RTFJustifyCenter 1

Comments
This code is reversed by RTFJustifyNormal



Creating RTF Documents:    RTFJustifyIndent

Purpose
Writes RTF code to indent a paragraph

Contained in
RTF.Bas

Declaration
Sub RTFJustifyIndent(filenum, paraIndent, firstlineIndent)

Parameters
Parameter Description
filenum Integer - a handle to an open file
paraIndent Single - Amount in inches to indent paragraph
firstlineIndent Single - Amount in inches to indent 1st line relative to paragraph

Usage
To indent paragraph 2" and its first line an additional .25"

RTFJustifyIndent 1, 2, .25

To indent paragraph 1", but not the first line (a hanging indent)
RTFJustifyIndent 1, 1, -1

Comments
This code is reversed by RTFJustifyNormal



Creating RTF Documents:    RTFJustifyNormal

Purpose
Writes RTF code to turn off any indent codes activated by RTFJustifyCenter or 
RTFJustifyIndent

Contained in
RTF.Bas

Declaration
Sub RTFJustifyNormal (filenum)

Parameters
Parameter Description
filenum Integer - a handle to an open file

Usage
RTFJustifyNormal 1



Creating RTF Documents:    RTFTab

Purpose
Writes a tab in RTF format to an open file (Sending a chr$(9) doesn't work in RTF).

Contained in
RTF.Bas

Declaration
Sub RTFTab (Filenum)

Parameters
Parameter Description
filenum Integer - a handle to an open file

Usage
RTFTab 1



 Creating RTF Documents:    RTFEnd

Purpose
Write RTF codes to end RTF "session" in an open file.

Contained in
RTF.Base

Declaration
Sub RTFEnd (filenum)

Parameters
Parameter Description
filenum Integer - a handle to an open file

Usage
This routine MUST end your document.    Run it right before you close your file:

RTFEnd 1
Close #1



 Using RTF.BAS:    The Resume Wizard

Although the Resume Wizard doesn't provide as much power or flexibity as a commercial
resume generator, it serves as a good sample project for the RTF commands in RTF.BAS:    it 
uses two different fonts, three different font sizes, bold, italic, hidden and smallcaps text, as well 
as hanging indents.    The resumes Resume Wizard creates are ready to be retrieved into Word, 
printed, and sent to your prospective employer, but VBZ makes no warranty, expressed or 
implied, as to the quality of its output, so you'd better check it before you mail it!    The Wizard is
also a good demonstration of the power of VB:    the heart of the program is a routine that, 
uncommented, would be only a page long.

Using the Resume Wizard
How the Resume Wizard Works



 Using RTF.BAS:    Using the Resume Wizard

The Wizard ships with a database already filled with some sample records.    If you want, 
you can press Generate right away.    You will be asked for a file name.    Create something with 
an RTF extension, and then call it up with Word for Windows.

To create your own resume, fill in your name and address, then erase the item records 
until you are told you can start adding.

The "category" field refers to group names like "Education" or "Work Experience".

The "Title" is where you put job titles, like "Director" or "Supervisor".    This is also 
where you put the text for items that aren't jobs.    For example, this would be where you put the 
name of a school you attended.    If the category was "References", you could use the "Title" field
for "Available upon request"; if the category was "Hobbies", you could use the "Title" field for 
"Working Hard".

The "Years" field is a textbox so you can type something like "1989-1990".

The other fields are self-explanatory.    To change the order of the records, you can change
the number in the "Item" field.    This won't actually change the record order unless you press the 
Refresh Record Order button.

Once you've created your records, press Generate, create a file with an RTF extension, 
and you've got a file you can retrieve into Word, or any other word-processor that can take RTF.



 Using RTF.BAS:    How the Resume Wizard Works

The information is stored in an Access database file called Resume.MDB.    It has two 
tables.    One for the Name and Address, and the other for all the fields of the resume entries.    
Examine the properties of the data controls and you will see the database names and the 
recordsources (or tablenames).    The fields are linked to these datacontrols with their Datasource 
(the name of the datacontrol) and the Datafield properties.

Once the database is populated, and the user presses Generate, the form asks for the name
of an RTF file, which it opens for output.    Then the two RTF header commands are run, 
RTFSetFonts and RTFSetFormat.    The RTFSetFormat commands gets its margin settings from
the textboxes on the form.    The name and address are printed (the address must be printed a line 
at a time, so this requires some parsing), and finally, the database is cycled through.    This is 
done with the basic structure:

Do Until data1.recordset.EOF
...
data1.recordset.MoveNext

Loop

Each record is checked to see if it is the first of a new catagory, in which case the 
category gets printed (otherwise, it does not.)    The information can be retrieved from the records
in two ways: through the databound textboxes, or with a database command, e.g., 
data1.recordset("Employer").     This is a shortcut for 
data1.recordset.fields("Employer").

As to how the information is printed, I refer you to the section on RTF.BAS.    There is 
one formatting trick worth noting here, however:    Those paragraphs that contain a catagory are 
indented paragraphs, with a firstline "outdent" so the category is to the left of the paragraph.    
Then a tab is sent before the rest of the paragraph.    This tabs all the way out to the paragraph 
margin, ignoring any tabstops on the way.

Feel free to modify this program.    Possible additions could include better font choices, 
the storage of the chosen attributes, multiple resumes, and multiple resume styles.    Let us know 
if you come up with anything, or want us to modify Resume Wizard in any way.



Data Basics by Thomas Wagner

Q+E MULTILINK  Sug. Ret. Price: $399
by Pioneer Software
5540 Centerview Drive
Raleigh, NC    27606
Pho: (919) 859-2220
Fax: (919) 859-9334

The potential of Visual Basic as a database development tool, especially in the area of 
client/server development, has been known for quite some time.    It is this potential that provided
the impetus for the creation of Q+E MultiLink, an add-on that enables developers to utilize 
Visual Basic's flexibility and fast development cycle to create client/server applications.

Database programming in the Visual Basic Environment
Grids, Text Boxes, Scroll Bars and VB 3.0, The Hidden 
Two-Field Unique Indexes and Dynamic Queries
Other Distinguishing Characteristics
Helpful Utilities
Final Impressions
User Comments
MultiLink vs. VB 3.0



 Data Basics:    Database Programming in the Visual Basic Environment

How does connecting multiple high-end RDBMS's within your Visual Basic application 
sound to you?    Say, for example, Oracle with Sybase, however unlikely the example may be, or 
DB2 with Informix, another unlikely pairing.    With Q+E Multilink you can do just that. And 
while these examples are very doubtful, can you picture an organization that may have data 
stored simultaneously in Oracle, Dbase and Excel?    You can access all of those formats, and 
DBMS's in ONE Visual Basic application, by using Multilink. 

Q+E Multilink will let you create applications that are able to access the following 
databases and formats:

ASCII TEXT Sybase and Microsoft SQL Server products
Btrieve SQL Base
dBase compatible files Terradata
Excel Worksheet Files XDB
HP Allbase, HP Image/SQL
IBM DB2
IBM OS/2 Datamanager, AS/400 and SQL/DS
Informix
Ingres
Novell Netware SQL
Oracle
Paradox
Progress
Tandem Non-Stop SQL

This portability is made even more attractive because you only write an application 
once.and then just change one property -- the database name -- to connect your app to a different 
database.    Furthermore,the entire application is multi-user capable.    These features make 
portability painless.

MultiLink's main purpose, aside from enabling a developer to write for a variety of 
RDBMS applications, is to provide the user with easy access to information.    This is primarily 
accomplished by giving you the tools to create relatively convenient and fast implementations of 
data queries.    It is important to note this fact, since different products have different areas of 
strength.    MultiLink very much excels at creating and executing queries.    Pioneer's corporate 
mission statement probably reads something like: "We will not rest until we can connect to every
database format and provide fast access to their respective data." 



 Data Basics:    Grids, Text Boxes, Scroll Bars and VB 3.0, The Hidden 
Contender

Of course, there are some trade-offs involved in implementing a tool with this kind of 
portability.    The biggest one is speed.    Pioneer's tools have not been known as speed demons.    
This reputation came about due to some difficulties experienced by earlier releases of other Q+E 
programs.    More appropriately,the statement regarding MultiLink's speed is somewhat relative, 
depending on what you are used to working with.    Just for perspective, the Access engine 
included with VB 3.0, which is most likely the closest direct competitor, is noticeably slower.    
And ODBC,    in its present incarnation, appears slower still.    I do not profess to have conducted
any benchmark tests.    These are just simple observations made with the naked eye.    As far as 
the individual features of each program are concerned, have a look at the attached comparison of 
VB 3.0 and MultiLink. 

Money is always a prime consideration in the evaluation of tools for your production 
efforts.    I know that a few of you will carefully weigh the alternatives between using VB 3.0 to 
its fullest potential and spending the necessary funds for yet another add-on.    That being the 
case, please keep in mind that VB 3.0 can access eight databases, while MultiLink can reach 
twenty.    Aside from that obvious difference, MultiLink also provides you with twelve data-
aware custom controls.    These include some that are not available from Microsoft yet, such as a 
bound query grid.    How's that for productivity?    Figure 1 shows the Visual Basic toolbox with 
Multilink installed.

While we are on the subject of query grids, someone may point out that the VISDATA 
sample application shipping with VB 3.0 shows the utilization of the VB grid control in a 
database setting.    But again even Microsoft's own grid is not databound.    This obvious 
opportunity to provide such a feature is being seized by a number of other vendors.    As you are 
reading this article, there is an interesting development in the works by Sheridan Software, which
captured Bill Gates' attention enough for him to play with a demo for over thirty minutes at the 
last Comdex.    Okay, okay, enough gossip for now.

Back to business.    Some of the controls that come with MultiLink are, at first glance, 
very similar to the ones shipping with VB.    However, you will find Q+E's to be more useful 
overall because of the additional database properties and built-in functionality.    This is 
especially noticeablewhen dealing with back-end systems that can be reached only through 
MultiLink, and not through ODBC. 

Among the controls shipping with this release of MultiLink are interesting offers, such as 
the data-aware radio button and scroll bars.    It seems that one feature of the scroll bar control 
arose out of necessity -- because of a possible shortcoming in the Q+E query grid control.    It 
appears that the query grid cannot be used to enter data:    it is read-only.    As a result, Q+E 
creates a "quasi" grid for data entry by creating a number of textbox arrays and, then, using the 
scroll bar to move records through those text boxes.    While giving the appearance of a grid, this 
achieves an interesting effect, since most of us are used to seeing scrollbars directly attached to a 
list box or table.    Figure 2 illustrates this idea.



The actual production of this "quasi" grid is quite simple; and of course, you can add or 
delete elements just by adding or deleting elements of the array.    The lack of a write/update 
property in the query grid control, while unfortunate, is more than outweighed by MultiLink's 
other positive features.    Q+E is aware of the need for an editable query grid, and promises such 
an improvement for release 2.0 of MultiLink in December 1993.

MultiLink Controls, such as check boxes, list boxes, combo boxes, text boxes, command 
buttons and the picture control, are different from, and sometimes quite improved over, their VB 
3.0 counter parts.    The properties, events and functions that are attributed to them by Q+E are 
very unique and easy to use.



Data-Basics:    Two-Field Unique Indexes and Dynamic Queries

Among these properties and functions were a couple of particularly interesting 
refinements.    While these small provisions are not especially earth shaking, I found them to be 
thoughtful and quite nice to have available.

The first one is called the pKey property and is used to set primary indexes.    The nice 
part I'm talking about is the fact that the pKey property allows the programmer to specify more 
than one field as unique (for indexing purposes).    This means you are no longer chained to a 
field holding a record identification number, unless you like that sort of thing.    For example, you
could specify the combination of last name and social-security number to be the unique index.    
Having this extra little bit of convenience is nice.    It can be applied to the Q+E check box, 
combo box, list box, radio button group, text box and query grid.

The other refinement I enjoyed is part of what Pioneer calls the pWhere property.    This 
property is one of the workhorses and also one of    the connect and query controls.    In the query
control, the pWhere property contains the conditions that a record must meet in order to be 
retrieved by a query.    These conditions can be sort orders or groups.    You will most often use 
this property to find specific matching values between a query and the actual data in a table.

To backtrack just a little, when retrieving data through queries, a QBE (Query by 
Example) facility is especially useful.    When creating a QBE form, a developer will most often 
have the user input or pick the search criteria, such as a "salary field" of $30,000 in a text box 
(i.e. the user types 30,000).    The next step is to pass the contents of the "salary field" text box to 
a data table in the form of a query.    This will produce any matching records.    Ordinarily, the 
process of capturing the input and passing it to the query and table requires a few lines of code.    
Here is where the pWhere property can help.    In designing the query, a developer can specify 
the contents of the example text box (salary field) with a "wildcard" character.    The official term
for it is a hook.    By using a hook, you can set the pWhere property dynamically.    The statement
would look something like this:

Salary > ?Salary Field

The question mark represents the hook.    It will see to it that the contents of the "salary 
field" are used in the query, whatever they may be.    The query as written here looks for salaries 
exceeding the amount specified in the "salary field" (larger than 30,000).    Importantly, the 
technique of using a hook only works with MultiLink field controls, not with standard VB field 
controls or those of other vendors.



 Data-Basics:    Other Distinguishing Characteristics

Aside from the custom controls, properties and functions, Multilink distinguishes itself in
a number of other aspects.    For example, noteworthy is the idea that when using VB 3.0, a 
developer is allowed only one active query per data control.    This results in multiple data 
connection, or data access controls implemented in order to accommodate multiple active 
queries.    Depending on the situation, this can lead to a drain on your server.    MultiLink's 
solution is to allow multiple queries per each single data connection, making your application 
more efficient.

Another noteworthy point is the way transaction processing is being handled. While VB 
3.0's transaction processing is global, affecting all of your data controls on all forms, Multilink's 
transactions can be tied to specific data connections or queries.    This gives you a much finer 
degree of control, especially in the development of mission-critical applications.

Transaction processing is often found in corporate environments,where large tables of 
data are the order of the day.    This climate will benefit from another difference between VB 3.0 
and Q+E MultiLink.    When using Q+E's product    to connect to SQL systems, it is not necessary
for all tables to have unique indexes.    Unfortunately, that is a requirement of VB 3.0.    For a lot 
of people that may not be a problem, unless you happen to be the corporate database 
administrator who keeps getting requests from his VB users to reset the indexes.    Can you 
picture that poor fellow?



 Data-Basics:    Helpful Utilities

To ease your development cycle, Q+E provides two utilities that aid in the design of 
client/server (or other) applications.

Included with the distribution disks, is a Database Manager that allows the developer to 
create, edit, modify and delete files in any of the twenty supported formats from within 
MultiLink.    This flexibility is actually another difference between VB3.0 and MultiLink, since 
the database manager shipping with VB 3.0 can only access the Foxpro, Paradox, dBase and 
Access formats.    It does not support Oracle or Sybase, the formats that need to be reached via 
ODBC.    The Database Manager is shown in figure 3.

Those of you familiar with other database management utilities will feel right at home 
with the functionality of this program.    Actually, anyone who ever had to create or maintain 
database files will feel right at home.    It's straight forward;except that, in the case of SQL tables,
you will need to log on to the server first.    However, once you are logged on, it's a breeze to 
create or modify tables.    All field definitions are just a mouse click away, as shown in figure 4.

The second utility program, and in some cases the more important one, is the Query 
Builder.    It is the same clever program found in other Q+E products.    It's purpose is to lead you 
through the design of standard SQL queries -- even if you don't know the language.    Needless to
say, this utility can come in handy.    The Query Builder is shown in figure 5

The Query Builder becomes available at design time through the VB property settings' 
box .    After placing a Q+E connect control on the form in question and connecting to a database,
it is possible to specify the tables, fields and query expressions with this tool.    Mind you, it is 
only available after you connect.    So: place a connect-control and hook-up to your tables.    
Then, place a query control on the form.    In its property settings' box, click the dialog pop-up 
button ("...") under the pTable, pWhere and pExpr entries.    Pushing this button calls the query 
builder.    Believe me, it is done a lot faster than described in writing.

You now have the ability to create, edit or view SQL queries.    For example, you may 
want to specify a number of fields.    Nothing could be simpler.    Figure 6 shows what happens 
when you click the "Fields" icon.

The query builder lets you sort records (figure 7), group records, join tables and even 
check the SQL expressions you are creating (figure 8).

SQL Statements can be cut or copied to the Windows clipboard. You can also perform 
find-and-replace operations.



Data-Basics:    Final Impressions

Pioneer has created a winner with this product.    Consider how Microsoft Access has 
been compared to Powerbuilder, the premier client/server database development program, and 
then look at some of the user comments regarding the Access engine compared to MultiLink.    
One could almost say that the combination of VB and MultiLink are in competition with a 
software product that costs over $3000.    This is good cause for enthusiasm.

Think about it.    How many times do you wonder which development tools in use today 
that will be around tomorrow?    For example, nobody would want to be in the shoes of those 
programmers who had spent time and energy learning the Paradox Application Language, only to
be faced with a completely different syntax in ObjectPal, the Windows language of Paradox.    I 
can't imagine such a debacle facing a VB developer who wants to standardize around Q+E 
MultiLink.    As I've said in the beginning, the manufacturer will just continue to make this 
program as adaptable as possible.    So if you are looking for a company and program around 
which you can standardize, you can't get much better than this one.

In the end, it all boils down to productivity.    If a tool makes you more productive and 
hence operate more profitably, use it.    If it doesn't do that, then don't use it.



 Data-Basics:    User Comments

Mike Oden

Mike Oden of Oden Industries, located in Pasadena, California, has used Q+E products 
for some time.    He included MultiLink in a project that was actually showcased at the last dB 
Expo.    This showcase application is a database used by a medical corporation specializing in 
pathological examinations.    The program helps this client with several important aspects of day-
to-day logistics, including the management of individual patient records, reports and the billing 
of services rendered.    Mike's application distinguishes itself by being able to incorporate 
photographs of actual biopsies.    In addition, the examining doctor is able to record his 
comments and observations right alongside the picture to be stored with the patient's 
information.    This greatly improves efficiency and helps the pathologist to complete more work 
in the same amount of time, thus operating more profitably.

As part of a very competitive local development community, Mike must choose his tools 
carefully.    When asked to comment about MultiLink, he stated, "The program has several 
almost equally important features.    First of all, you can connect different database back-ends in 
one application.    For example, the showcase program utilizes Microsoft SQL and dBase in 
twenty different files and tables.    Secondly, in my own work, MultiLink was noticeably faster 
than ODBC and the Access engine, so much so that there was no question at all which program I 
would use.    Then there are the actual features of the controls that come with MultiLink, such as 
the databound list box.    With MultiLink, I don't have to write an AddItem loop that puts the 
results of queries into a list box, as I would have to in VB.    Lastly, the company has been around
a while and has been working with this technology.    Consequently, there are a lot fewer bugs 
than a newer vendor might experience."

Jim Thompson

Jim Thomson, an independent consultant presently contracting with the Fisher-
Rosemount division of Emerson Electric, is using Q+E Multilink in the development of a sales 
and marketing decision-support system.    The application is a Microsoft Windows client to a 
Microsoft SQL Server under OS/2.

When asked about his experience with the product,Jim said, "I initially selected 
MultiLink for its ability to connect to a PROGRESS back-end database.    However, PROGRESS
was ultimately deemed to be too slow, particularly with set queries.    I called Q+E on the 
PROGRESS performance issues, and talked to the individual who wrote the PROGRESS 
interface.    He explained that the performance issues were due to PROGRESS' host language 
interface, and gave me the name of a representative at PROGRESS Software.    I contacted this 
individual who confirmed that the host language interface was indeed slow and would remain so 
until the next release of PROGRESS (version 7).    Throughout this process, I found the Q+E 
personnel courteous, responsive, and knowledgeable."    Because of these difficulties with 
PROGRESS, we changed our server database to Microsoft SQL Server, without the need to 
change any of the code we had developed so far, with the exception of a single connect 



statement."

With regard to the obvious competition between Q+E and VB 3.0, Jim stated, 
"Microsoft's inclusion of the Access 1.1 engine in VB 3.0 has brought into question the need for 
MultiLink.    However, MultiLink's inclusion of Query-by-Example capability and bound grid 
control has proven to be a great tool for our development efforts.    Also, we have found 
MultiLink to be more stable than Microsoft's ODBC drivers."    Interestingly enough, Jim also 
mentioned that he found Q+E's tech support personnel more accessible and knowledgeable than 
Microsoft's.



 Data-Basics:    MultiLink vs. VB 3.0

Topic Visual Basic 3.0 Q+E MultiLink/VB
Databases supported MS Access, FoxPro, 

dBase, Paradox 
(3&3.5), Btrieve, SQL
Server, Oracle(SQL 
Server and Oracle are 
only available in the 
Professional Edition)

Oracle, SQL Server, dBase, 
INGRES,Paradox (4.0), Sybase, 
AS/400 (SQL400)*, Btrieve, OS/2 
DBM, DB2*, INFORMIX, 
Netware SQL, PROGRESS, 
SQLBase, XDB, SQL/DS*, 
Tandem NonStop SQL*, Teradata, 
Excel .XLS files, Text files, HP 
ALLBASE/SQL* and HP 
IMAGE/SQL and gateways, IBM 
DDC/2, Micro Decisionware and 
Sybase Net-Gateway* requires 
Gateway

Database Control Types Text, Check Box, 
Picture, Data Label, 
Masked Edit

Text, Check Box, Picture, Query, 
List Box, Combo Box, Radio 
Button, Query Grid, Command 
Buttons, Scroll Bars and Connect 
Controls

Control Arrays No - you can only 
display one record at a
time on a form using 
the database controls.

Yes - you can display any number 
of records on a form at one time 
without writing code. Fully 
supports control arrays.

DB Command Button 
Controls to perform 
database operations 
directly

No Yes - any database operation can 
be assigned to a button without 
writing code.

DB Scroll Bar Controls No - must use Data 
control and arrow 
buttons on Data 
control; no stand alone
scroll bar.

Yes - scroll bar can be used to 
move through records in a 
database without writing code.

Database Control 
Features

Can link Controls to 
database fields.

Can link Controls to database 
fields, and can format numbers as 
well as date values using format 
strings without writing code.

Query by Example No Yes - allows end user of 
application to use QBE to query 
for specific records.

Query Builder Utility No Yes - allows the developer to build 
queries and view/edit their SQL 
statements without knowing SQL 
language.



Picture Controls Picture must be stored 
in databaseOnly BMP 
format supported.

Pictures can be stored in the 
database itself, or the name of a 
specific field containing the 
pictures can be stored in the 
database.BMP and MetaFile 
formats are supported.

Cross Form Control 
Support

No Yes - all controls support cross-
form referencing, allowing 
developers to split records and 
share connections and data across 
forms

Combo and List Box 
Controls filled via bound
database fields

No Yes - the combo and list boxes can 
be filled with directly bound 
database fields.

Database Manger Utility Yes - however it does 
not support SQL 
databases.

Yes - all database formats fully 
supported

Transaction Processing 
Support

Yes - however 
transactions are only 
supported for SQL 
databases which 
themselves need to 
support transactions.

Yes - transactions supported for all
formats including dBase, Btrieve 
and all SQL databases.

Transaction Mechanism Transactions are 
global to all active 
databases in an 
application.

Transactions based on connection 
level, providing more control for 
client/server applications.

Provided by the Product Management of Q+E Software



Figure 1:    The Visual Basic
Toolbox with MultiLink Installed



Figure 2:    The Text Array and Scrollbars in a Sample Application



Figure 3:    MultiLink Database Manager



Figure 4:    Database Manager and Field Definition



Figure 5:    The Query Builder



Figure 6:    The Query Builder -- Selecting Fields



Figure 7:    The Query Builder -- Set Sort Order



Figure 8:    The Query Builder -- Check SQL Code



 What's Coming Up?

While we have a lot already in the works, the content of VBZ is largely up to you, the 
reader, to dictate. If you are having a problem, send it in. If you want more of a particular type of
article -- beginner, advanced, more DLLs, more VB code -- let us know and we'll do our best to 
accommodate your needs and wants.    Here's our list thus far:

VB Developer's Utilities
Button Bitmap Builder
Palette Builder (for PicClip among other things)
Stub Replacement
Object Manager
Code Generators/Wizards
. . . and much more!

Visual Basic Techniques
Calling DLL functions
Standardizing Your VisualBasic Interfaces
Advanced Printing
Metafile Creation
An Improved FindWindow Function
Waiting for other Apps to Execute
. . . and much more!

Dynamic Link Libraries
SendKeys function for DOS Applications
Additional VBZUTIL functions
. . . and much more!

Custom Controls
Generic Subclassing Control
Clipboard Viewer Control
Huge Scrollbars
Enhancements to VBZList (icon support, multi-column)
Enhancements to VBZLabel (more flexibility)
. . . and many other specialized controls!

Improved Help Files
Binary Sample Extraction
Improved Printing
Cross Issue Searching
Setup Program (for Program Manager and INI settings)

The rest is up to you!    Be sure to let us know which of these things are of greatest 
interest to you so that we can bump them to the top of the list to complete.



 What's Gone Before?

VB Developer's Utilities
Dropping Leftover DLLs (VBZ02)
Pop Up Color Selection (VBZ02)
Printing Browse Sequences in WinHelp (VBZ03)
Simplified Formatted Printing (VBZ03)
Screen Saver Wizard (VBZ03)

Visual Basic Techniques
Accessing Private INI Files (VBZ03)
Accessing the Common Color Dialog (VBZ02)
Aligning Controls (VBZ03)
Creating a Drag 'n Drop Client Application (VBZ01)
Creating Dialog Boxes (VBZ01)
Creating Modeless Dialog in VB (VBZ02)
Creating Windows 3.1 Screen Savers (VBZ01)
Screen Saver Wizard (VBZ03)

Dynamic Link Libraries
Aldus Format Metafiles (VBZ01)
A PLAY Command for Visual Basic (VBZ01)
Apps That Tile and Cascade (VBZ02)
Creating a Drag 'n Drop Server Application (VBZ01)
Musical MsgBox and Beep Commands (VBZ01)
Status Bar Help on Controls and Cursors (VBZ01)
System Level Hotkeys (VBZ01)
The QuickBasic Function Library (VBZ02)

Reviews
Doc-To-Help (VBZ02)
3-D Widgets (VBZ02)



About VBZ

\BFeatures\b

Creating Custom Cursors
A Mixed Font Label
Beyond the ListBox
Creating Rich Text Formatted Documents

\BDepartments\b

The VBZ Utility Library
What's Coming Up?
What's Gone Before?
Reviews



A number of applications, especially graphical ones, employ custom cursors as part of 
their user interface.    The paintbrush program that comes with Windows, for example, changes 
the cursor to reflect the drawing tool that is being used.    A number of design tools change the 
cursor to reflect the object that is about to be dropped on the design surface.

There is a way to accomplish this using just VB and the Windows API, but the technique 
has its problems.    The best solution - as it often is - is a utility we present as another \IVBZ\i 
exclusive.    This utility, VBZCursr.DLL, provides three functions:    \BIcon2Cursor\b, which 
creates a handle to a cursor from an icon; \BSetControlCursor\b which assigns a cursor (using 
its handle) to a control in your application (using the control's hand); and \BDestroyCursor\b, 
which returns the cursor to whatever the default is for the window at hand.

First an API Technique
Using VBZCursr
VBZCursr.DLL Commands

\BCreating Custom Cursors:    First an API Technique\b

To use API calls to set a cursor, the first thing you need to do is get a handle to a cursor.    
One way to do this is to retrieve one from a DLL.    This is accomplished by loading the DLL, 
and then a cursor from the DLL.

hLib = LoadLibrary ("MYDLL.DLL")
hCursor = LoadCursor (hLib, "MYCURSOR")

Now that you have a cursor handle, it's time to set the cursor to it.    The good news is that
it's just one more API call, SetCursor(hCursor).    The bad news is that it will only work for 
a fraction of a second.    The reason this is the case is that there is a message sent to all windows 
when the cursor is hovering over them, querying about the cursor to display.    That message is 
WM_SETCURSOR.    If a control doesn't respond to this message, it gets passed on to its parent,
and so on, until there is no more parent, at which point it is passed back to Windows for default 
processing.    At this point, the class cursor is used.    The class cursor is the "default" cursor for 
that type of window which is established when the window gets created.    Often it's that arrow 
pointing North - West.

Accordingly, when you use \BSetCursor\b to change the cursor, it does in fact change, 
but since Windows is continually sending that WM_SETCURSOR message to the window under
the cursor, it is quickly changed back.    If you wanted to see your new cursor, you would have to 
do it inside of a loop in which you never yielded to the system; this would not be a very good 
loop to have running for very long.

\BCreating Custom Cursors:    Using VBZCursr\b



VBZCursr not only allows you an easy way to assign a cursor to a control, but it also 
provides a great way to get the handle to a cursor.    Its \BIcon2Cursor\b command makes it 
possible for you to add all the cursors you'll need as icons.    All you need to do is create hidden 
pictureboxes for each of your cursors, then call \BIcon2Cursor\b.    Its parameters are the icon 
(the picture's picture property as an integer), and the x and y coordinates for the "hot spot" of the 
cursor.    This is the point with which you point; for example, it would be the fingertip of a hand 
cursor.

Another way to get an icon is to load a DLL (see the example above) and then use the 
API call \BLoadIcon\b.    This method gives you access to the icons stored within every 
Windows program, for example the Moricons.DLL has dozens.

Either way you get an icon, running \BIcon2Cursor\b gives you a handle to a cursor.    
To assign that cursor to a control, run \BSetControlCursor\b with the hWnd of the control and 
the handle to the cursor.

The IconView application lets you try any icon on your disk as a cursor.    It uses a 
VBZlistbox  to allow you to choose an icon, which is placed in Picture2, then calling \
BIcon2Cursor\b and \BSetControlCursor\b to "assign" the cursor to the button Command2:

hCursor% = Icon2Cursor(CInt(Picture2.Picture), x%, x%)
SetControlCursor Command2.hWnd, hCursor

Note that you can assign as many cursors to whatever controls you desire, or even to the 
form itself, but you should keep track of each hCursor you create, so you can use one other 
VBZCursr command, \BDestroyCursor\b, to remove it.    IconView uses a global variable for its
cursor handle and makes sure \BDestroyCursor\b is run before any \BIcon2Cursor's\b.    The 
syntax for DestroyCursor is simple:

DestroyCursor (hCursor)

Happy Cursoring!    Remember to drop us a line if you have any interesting cursor applications or
needs.

\BCreating Custom Cursors:    VBZCursr.DLL Commands\b

The following are the commands available to create custom cursors using 
VBZCURSRS.DLL:

\UFilename\u
VBZCURSRS.DLL

\UCommands\u
\BCommand\b \BDescription\b
Icon2Cursor Creates handle to cursor from an icon



SetControlCursor Assigns custom cursor to a control
DestroyCursor Restores cursor to default

\BCreating Custom Cursors:    Icon2Cursor\b

\UPurpose\u
Creates a cursor handle from an icon

\UContained in\u
VBZCURSR.BAS
(Requires VBZCURSR.DLL)

\UDeclaration\u
Declare Function Icon2Cursor Lib "CURSOR.DLL" (ByVal hIcon, 

ByVal X, ByVal Y) As Integer

\UParameters\u
\BParameter\b \BDescription\b
hIcon Integer - handle to an icon
X Integer - x location of hotspot
Y Integer - y location of hotspot

\UReturn Value\u
Integer - handle to a cursor

\UUsage\u
hCursor% = Icon2Cursor(CInt(Picture1.Picture), 1, 1)

\BCreating Custom Cursors:    SetControlCursor\b

\UPurpose\u
Designates a cursor to use when over a given control

\UContained in\u
VBZCURSR.BAS
(requires VBZCURSR.DLL)

\UDeclaration\u
Declare Sub SetControlCursor Lib "CURSOR.DLL" (ByVal hWnd, 

ByVal hIcon)

\UParameters\u
\BParameter\b \BDescription\b
hWnd integer - handle to control being assigned a cursor
hIcon integer - handle to icon



\UUsage\u
SetControlCursor form1.hWnd, hCursor% 

\BCreating Custom Cursors:    DestroyCursor\b

\UPurpose\u
Restores a cursor to its default

\UContained in\u
VBZCURSR.BAS
(requires VBZCURSR.DLL)

\UDeclaration\u
Declare Sub DestroyCursor Lib "User" (ByVal hCursor)

\UParameters\u
\BParameter\b \BDescription\b
hCursor Integer - handle to a cursor

\UUsage\u
DestroyCursor (hCursor)



VB Text boxes and picture boxes don't allow mixed fonts or font attributes, so if you 
want to emphasize a word or phrase, you need to create a \Iseparate\i label for the phrase you 
want to look different, and place it right where it belongs on the first label.    This is not only a lot
of work to set up, but a lot of work to adjust if the underlying text changes.    Of course, doing 
this dynamically in your program is almost impossible.

VBZLabel doesn't allow mixed typefaces either, but it DOES allow you to predefine a 
second font style, with its own bold, italic, underline, color, size, and strikethrough properties, 
and provide an easy way to switch in and out of that second style within a single label. 

To use VBZLabel, set the properties for the regular text in the regular way: fontname, 
fontsize, etc.    Then set the properties for the other text, using font2name, font2size, etc.

Now, when you set the caption text, just surround the text you want to emphasize with the
"accent" or backwards, single-quote character, e.g., emphasize `\Bthe words right here\b` with 
the accent mark - the character under the tilde(~) character.

The VBZLabel application demonstrates the ability to set the font2bold, font2italic, and 
font2size dynamically; the other properties were set at design-time.    This application is also a 
good demonstration of the abilities of VBZListBox, a listbox that can have a different font on 
each line (as well as many other exciting enhancements).

\BA Mixed Font Label:    VBZLabel.VBX\b

\UPurpose\u
Provides a label control with two separate font styles.

\UUnique Properties\u
\BProperty\b \BDescription\b
font2bold second font's bold attribute, True or False
font2color second font's color attribute, a VB color value
font2italic second font's italic attribute, True or False
font2size second font's height, in points
font2strikethru second font's strikethrough attribute,True or False
font2underline second font's underline attribute,True or False

\UUsage\u
Set the attributes for the second font, then, in the caption, set off the text to be highlighted
with the accent character.

\BA Mixed Font Label:    VBZLabel Properties\b



The following are the properties unique to VBZLabel:

Font2bold, Font2italic, Font2strikethru, Font2underline
Font2color
Font2size

\BA Mixed Font Label:    Font2bold, Font2italic, Font2strikethru, Font2underline\b

\UPurpose\u
Set the attributes for the second font

\UValues\u
True or False

\BA Mixed Font Label:    Font2color\b

\UPurpose\u
Set the color for the second font

\UValues\u
Any VB color value

\BA Mixed Font Label:    Font2size\b

\UPurpose\u
Set the height for the second font

\UValues\u
Any number of points (1/72 of an inch)



VBZList is a work in progress, but one that already has made major strides past the 
listbox that comes with VB.    Notable improvements are the abilities to set the fontname and size
for each line, the height of the lines themselves, and the ability to have a bitmap for each line.

VBZList Properties
The VBZList Samples
VBZList.VBX

\BBeyond the ListBox:    VBZList Properties\b

The following are the properties supported by the VBZList custom control.    Properties 
unique to VBZ are highlighted.    For other properties, see the Visual Basic help file.

\UProperties\u
\BProperty\b \BDescription\b
Height
Index
ItemBackColor, ItemForeColor Item color properties
ItemDefHeight Default item height
ItemFontName Name of font for item
ItemFontSize Size of font for item
ItemImage Handle to image for item
ItemInvert Whether to create black bar or inverted bar
Left
List
ListCount
ListIndex
Tag
TopIndex

\BBeyond the ListBox:    ItemDefHeight\b

\UPurpose\u
Set the height for lines to be added to a VBZList

\UValue\u
Height in twips

\UComments\u
Unlike most properties of the VBZList, this is not settable for items once they are created.
That is, you can't set VBZList1(5).ItemDefHeight.    Instead, all lines added once this 
property is set will be the ItemDef Height until the value is changed.



e.g.:
VBZList1.ItemDefHeight = 200
VBZList1.Additem "I will be 200 twips tall"

You don't set this for each row, you set this as a default for the control in general, e.g., 
vbzlist1.itemdefheight = 40, and then when you do an additem, the new line (and all the 
new lines) will be the new height.    However, you can set this to be a different number 
before each new line.

\BBeyond the ListBox:    ItemBackColor, ItemForeColor\b

\UPurpose\u
Set the background and foreground colors for any row in a VBZList.

\UValue\u
Any VB color value

\UComments\u
These properties, which work on one line of the listbox at a time, work like their parallels
in other VB controls, with the colors being set with the VB numeric system.

\BBeyond the ListBox:    ItemFontName\b

\UPurpose\u
Set the typeface for any item in a VBZList

\UValue\u
A string with any valid font name, like "Times New Roman"

\UComments\u
This property, which works on one line of the listbox at a time, works like its parallel in 
other VB controls, with the fontname as a string with a valid name.

\BBeyond the ListBox:    ItemFontSize\b

\UPurpose\u
Set the size of the font for any item in a VBZList.

\UValue\u
A textheight in points (1/72 of an inch)

\UComments\u



This property, which works on one line of the listbox at a time, works like its parallel in 
other VB controls, with the font size in points.

\BBeyond the ListBox:    ItemImage\b

\UPurpose\u
Place a bitmap at the left of a line in a VBZList.

\UValue\u
A handle to a bitmap.

\UComments\u
You can get a bitmap handle in one of three ways:    Using LoadPicture, using a picture 
property, or using Clipboard.Getdata.    This example below shows all three.

VBZList1(0).ItemImage = LoadPicture("Mypic.bmp")
VBZList1(1).ItemImage = Picture1.picture
VBZList1(2).ItemImage = Clipboard.Getdata(0)

This property allows you assign a bitmap to the beginning of any or all lines in the 
listbox.    You can use the loadpicture command to read a BMP off the disk.

vbzlist1.ItemImage(i) =LoadPicture("Test.BMP")

\BBeyond the ListBox:    ItemInvert\b

\UPurpose\u
The selection bar in the listbox can be a black bar with white text, or it can be whatever 
the inverse of the underlying item is.    If ItemInvert is true, then you would get a white 
bar if the underying item were black.

\UValue\u
True or False

\UComments\u
This property, which can be True or False, determines whether the current item is 
indicated with a black bar with white text (False) or whether the bar will be the reverse of
the underlying color, in which case it might be a white bar if the background color is 
dark. 

\BBeyond the ListBox:    The VBZList Samples\b

Two samples here use the VBZList custom control:    the VBZLabel demonstration 
program demonstrates the setting of ItemDefHeight, ItemFontName, ItemBackColor and 



ItemForeColor    The IconView program demonstrates the ItemImage property.

The VBZLabel program, in its openform routine, cycles through all of the fonts using 
screen.FontCount to see how many there are, and screen.Font(i) to get the name of each one.    
Each time the name of the font gets added to the VBZListBox, the properties of the new line get 
changed:

The height gets 10 twips taller than the last line
vbzlist2.ItemDefHeight = vbzlist2.ItemDefHeight + 10

The typeface of the line is set to the font being added.
vbzlist2.ItemFontName(i) = screen.Fonts(i)

The background color gets changed incrementally.
vbzlist2.ItemBackColor(i) = (i * 10)

The foreground color is always white.
vbzlist2.ItemForeColor(i) = &HFFFFFF

The IconView form uses the drive and path controls to point to whatever directory you 
choose.    Each time the directory is changed, the DIR command is used, with a "*.ICO" mask, to 
find every icon file in a directory.    The name of each one is added to the list box.    Then it 
should be a simple matter to add an icon using:

vbzlist1.itemimage(i) = loadpicture(afile)

But the VBZListBox can't (currently) accept icons.    There's a simple - but clever- work 
around for this limit, but if there's enough interest, we can change VBZListBox.    Just let us 
know!

For now, though, we need to do the following: add the icon to a hidden image control, 
and then use an API call, DrawIcon, to copy a bitmap of the icon to a hidden picture control.    
This command takes the hDC (handle to device context) of the destination, an x and y 
coordinate, and the icon to copy.

DrawIcon picture1.hDC, 0, 0, Image1.Picture

Now we have a picturebox on the form with our bitmap in it, so all we need to do is set 
the ItemImage of the VBZListBox line to the picture    in the picturebox.    Voila, an icon viewer!

\BThe Future of VBZList\b

What are our plans for VBZList?    Well, what do you need?    Three-D effects?    
Multiselect?    Multcolumn?    Direct support for icons?    The ability to act as a file box?    Are 
there any events you would like, for example, easy detection of enter or spacebar?    Let us know 
of any enhancements you desire, as well as interesting applications you find for VBZList.

\BBeyond the ListBox:    VBZList.VBX\b



\UPurpose\u
Extend the abilities of listboxes with as many properties as people need, like font 
attributes and bitmaps.

\UUnique Properties\u
\BProperty\b \BValue\b
ItemDefHeight Height of next added line, in twips 
ItemBackColor Backcolor of each item, any VB color value 
ItemForeColor Forecolor of each item, any VB color value
ItemFontName Typeface for each item, a string with valid font name
ItemFontSize Textheight for each item, in points
ItemImage Handle to a bitmap for the beginning of each item, a handle to 

bitmap 
ItemInvert Whether to make selection bar black or the reverse of the line, 

True or False



You want to create a document from within Visual Basic that will be edited by a user.    
So far you've been saving text as ASCII.    Maybe sticking in some codes, then doing search-and-
replace in Word or WordPerfect?    That's fine as far as it goes, but isn't there a a better way?

Some people have decoded the formats of popular wordprocessors and written libraries to
allow programmers to generate documents in those formats.    What we've done is considerably 
easier and even more useful:    RTF.BAS contains routines to allow easy creation of Rich Text 
Format documents.    This is a universal word-processing format that is not the native format for 
any commercial wordprocessor, but can be imported into many, including Word for Windows.    
You will be able to create documents with your typeface, fontsize, font attributes and indenting 
already embedded.

How to Use RTF.BAS
RTF in Use:    Resume Wizard
How RTF.BAS works
RTF.BAS Functions

\BCreating RTF Documents:    How to Use RTF.BAS\b

First open your disk file, using standard VB:

Open Myfile for output as #1

From this point on, you will be using the filenumber to pass to the RTF routines.

Now you're ready to create Rich Text.    The first steps are the two commands used to 
create the header, RTFSetFont and RTFSetFormat.    Like every RTF command, they begin with 
the filenumber.    \BRTFSetFonts\b takes a string with all the fonts you will be using, separated 
by commas:

RTFSetFonts 1, "Times New Roman, Arial, Symbol" 

You've now created an RTF font table, so remember the order.    Times New Roman will 
be font 0 and Arial will be font 1, etc.

\BRTFSetFormat\b takes the filenumber (of course) and the left, right, top, and bottom 
margins, in inches.

RTFSetFormat 1, 1.5, 1.5, 1, 1

All of the "housekeeping" is out of the way.    To send some formatted text, you use 
RTFPrint, as follows:

RTFPrint 1, "Hello there.","\b \i"



That line will be bold and italic.    Other RTF commands let you change fonts, send 
paragraph breaks, even indented paragraphs.      You can send whatever commands you want in 
whatever order, but when you're finished with your document,    you MUST end with an RTFEnd
command before you close the file you are writing.    

\BCreating RTF Documents:    How RTF.BAS Works\b

RTF is a relatively easy-to-decode system of ASCII codes.    Each begins with the 
backslash.    For example, the RTFNewPage command just sends the rtf command "\page".    
Most of these can just get stuck in the document, and it will be acted on when encountered, like 
"\qc" turns centering on.    Every paragraph will be centered until the "\pard" (Paragraph enD) is 
encountered.    Font changes work the same way.    You change to Font 0 with "\F0".

The text itself is stored in segments surrounded by curly-braces - the {} characters.    
Within those segments, you can put the font attributes, like "\b".

\BSome Interesting(?) RTF Facts\b

Measurements are in TWIPS, of which there are 1440 to the inch.    The RTF routines 
provided here use inches and multiply by 1440 so you don't have to.    Font sizes, however, are in
half-points.    The RTF routines use points and multiply by 2.

\BThe Future of RTF.Bas\b

As with most of the programs you see in \IVBZ\i, the future is up to you.    What feautures
would you find valuable?    Possible additions range from the ability to change paper size, to 
color, columns, graphics, and style-sheets.    Let us hear from you.    We'd like to hear what 
programs you're writing with RTF, and how it could be improved to help you.

\BCreating RTF Documents:    Commands\b

\UFilename\u
RTF.BAS:

\UCommands\u
\BCommand\b \BDescription\b
RTFEnd Write code to end RTF document
RTFFont Write code for font change, using index in RTF font 

table
RTFFontSize Write code for font size change
RTFJustifyCenter Write code for centering text
RTFJustifyIndent Write code for indenting paragraph
RTFJustifyNormal Write code to turn off indenting or centering



RTFNewPage Write code for new page
RTFNewPar Write code for new paragraph
RTFPrint Write text with font attributes
RTFSetFonts Create RTF font table
RTFSetFormat Create RTF page definition
RTFTab Write code for tab

\BCreating RTF Documents:    RTFSetFonts\b

\UPurpose\u
Creates an RTF font table.    An RTF document needs this table so that fonts can be 
switched with a numeric reference to a table entry.

\UContained in\u
RTF.BAS

\UDeclaration\u
sub RTFSetFonts (filenum, fontstring)

\UParameters\u
\BParameter\b \BDescription\b
filenum Integer - a handle to an open file
fontstring String - the names of the fonts you will use, separated by commas

\UUsage\u
RTFSetFonts 1, "Times New Roman, Arial, Symbol" 

\UComments\u
In the example above, you would now switch to Times New Roman with the command:

RTFFonts 1,0

This is because Times New Roman is the 0 item in the table, Arial is the 1 item and 
Symbol is the 2 item.    (The 1 in the example is the file handle of the document being 
created.)

RTFSetFormat and \BRTFSetFonts\b together are needed to initialize an RTF document.
RTFEnd is needed to end a document

\BCreating RTF Documents:    RTFSetFormat\b

\UPurpose\u
Writes the RTF codes that define the page

\UContained in\u



RTF.Bas

\UDeclaration\u
Sub RTFSetFormat (filenum, lmargin, rmargin, tmargin, bmargin)

\UParameters\u
\BParameter\b \BDescription\b
filenum Integer - handle to an open file
lmargin Single - left margin in inches
rmargin Single - right margin in inches
tmargin Single - top margin in inches
bmargin Single - bottom margin in inches

\UUsage\u
RTFSetFormat 1, 1.5,1,5, 1,1

\UComments\u
\BRTFSetFormat\b and RTFSetFonts together are needed to initialize an RTF 
document.    RTFEnd is needed to end a document.

\BCreating RTF Documents:    RTFPrint\b

\UPurpose\u
Save text to disk with RTF font attributes

\UContained in\u
RTF.BAS

\UDeclaration\u
Sub RTFPrint (filnum,text$,attributes$)

\UParameters\u
\BParameter\b \BDescription\b
filenum Integer - a handle to an open file
text$ String - the text to be printed
Attributes$ String - desired attribute backslash commands; any or all of the

below:
\\b Bold
\\i Italic
\ul Underlined
\strike StrikeThrough
\v Hidden (inVisible?)
\scaps Small Caps

\UUsage\u
RTFPrint 1, "Hello there.","\b \i"



\BCreating RTF Documents:    RTFNewPar\b

\UPurpose\u
The RTFPrint command doesn't create an RTF carriage-return at the end.    Since you are 
creating a document for a word processor that will be doing linewrapping, you don't want
a cr-lf at the end of each line.    When you DO need a new paragraph, use the RTFNewPar
command.

\UContained in\u
RTF.BAS

\UDeclaration\u
Sub RTFNewPar (filnum)

\UParameters\u
\BParameter\b \BDescription\b
filenum Integer - a handle to an open file

\UUsage\u
RTFNewPar 1

\BCreating RTF Documents:    RTFNewPage\b

\UPurpose\u
To write an RTF newpage code to an open file

\UContained in\u
RTF.Bas

\UDeclaration\u
Sub RTFNewPage (filenum)

\UParameters\u
\BParameter\b \BDescription\b
filenum Integer - a handle to an open file

\UUsage\u
RTFNewPage 1

\BCreating RTF Documents:    RTFFont\b

\UPurpose\u
To change typefaces, referring to the fonts by their position in the font table:



\UContained in\u
RTF.Bas

\UDeclaration\u
Sub RTFFont (filenum)

\UParameters\u
\BParameter Description\b
filenum Integer - a handle to an open file

\UUsage\u
To switch to the first font in the font table:

RTFFont 1, 0

To switch to the second font in the font table
RTFFont 1, 1

\BCreating RTF Documents:    RTFFontSize\b

\UPurpose\u
Specifies fontsize for RTF document

\UContained in\u
RTF.Bas

\UDeclaration\u
Sub RTFFontSize (filenum,fontsize)

\UParameters\u
\BParameter\b \BDescription\b
filenum Integer - a handle to an open file
fontsize Single - size in points

\UUsage\u
RTFFontSize 1,12

\BCreating RTF Documents:    RTFJustifyCenter\b

\UPurpose\u
Writes RTF codes for centering

\UContained in\u
RTF.Bas



\UDeclaration\u
Sub RTFJustifyCenter (filenum)

\UParameters\u
\BParameter\b \BDescription\b
filenum Integer - a handle to an open file

\UUsage\u
RTFJustifyCenter 1

\UComments\u
This code is reversed by RTFJustifyNormal

\BCreating RTF Documents:    RTFJustifyIndent\b

\UPurpose\u
Writes RTF code to indent a paragraph

\UContained in\u
RTF.Bas

\UDeclaration\u
Sub RTFJustifyIndent(filenum, paraIndent, firstlineIndent)

\UParameters\u
\BParameter\b \BDescription\b
filenum Integer - a handle to an open file
paraIndent Single - Amount in inches to indent paragraph
firstlineIndent Single - Amount in inches to indent 1st line \Brelative to paragraph\b

\UUsage\u
To indent paragraph 2" and its first line an additional .25"

RTFJustifyIndent 1, 2, .25

To indent paragraph 1", but not the first line (a hanging indent)
RTFJustifyIndent 1, 2, -2

\UComments\u
This code is reversed by RTFJustifyNormal

\BCreating RTF Documents:    RTFJustifyNormal\b

\UPurpose\u
Writes RTF code to turn off any indent codes activated by RTFJustifyCenter or 
RTFJustifyIndent



\UContained in\u
RTF.Bas

\UDeclaration\u
Sub RTFJustifyNormal (filenum)

\UParameters\u
\BParameter\b \BDescription\b
filenum Integer - a handle to an open file

\UUsage\u
RTFJustifyNormal 1

\BCreating RTF Documents:    RTFTab\b

\UPurpose\u
Writes a tab in RTF format to an open file (Sending a chr$(9) doesn't work in RTF).

\UContained in\u
RTF.Bas

\UDeclaration\u
Sub RTFTab (Filenum)

\UParameters\u
\BParameter\b \BDescription\b
filenum Integer - a handle to an open file

\UUsage\u
RTFTab 1

\BCreating RTF Documents:    RTFEnd\b

\UPurpose\u
Write RTF codes to end RTF "session" in an open file.

\UContained in\u
RTF.Base

\UDeclaration\u
Sub RTFEnd (filenum)

\UParameters\u
\BParameter\b \BDescription\b



filenum Integer - a handle to an open file

\UUsage\u
This routine MUST end your document.    Run it right before you close your file:

RTFEnd 1
Close #1

\BUsing RTF.BAS:    The Resume Wizard\b

Although the Resume Wizard doesn't provide as much power or flexibity as a commercial
resume generator, it serves as a good sample project for the RTF commands in RTF.BAS:    it 
uses two different fonts, three different font sizes, bold, italic, hidden and smallcaps text, as well 
as hanging indents.    The resumes Resume Wizard creates are ready to be retrieved into Word, 
printed, and sent to your prospective employer, but \IVBZ\i makes no warranty, expressed or 
implied, as to the quality of its output, so you'd better check it before you mail it!    The Wizard is
also a good demonstration of the power of VB:    the heart of the program is a routine that, 
uncommented, would be only a page long.

Using the Resume Wizard
How the Resume Wizard Works

\BUsing RTF.BAS:    Using the Resume Wizard\b

The Wizard ships with a database already filled with some sample records.    If you want, 
you can press Generate right away.    You will be asked for a file name.    Create something with 
an RTF extension, and then call it up with Word for Windows.

To create your own resume, fill in your name and address, then erase the item records 
until you are told you can start adding.

The "category" field refers to group names like "Education" or "Work Experience".

The "Title" is where you put job titles, like "Director" or "Supervisor".    This is also 
where you put the text for items that aren't jobs.    For example, this would be where you put the 
name of a school you attended.    If the category was "References", you could use the "Title" field
for "Available upon request"; if the category was "Hobbies", you could use the "Title" field for 
"Working Hard".

The "Years" field is a textbox so you can type something like "1989-1990".

The other fields are self-explanatory.    To change the order of the records, you can change
the number in the "Item" field.    This won't actually change the record order unless you press the 
Refresh Record Order button.



Once you've created your records, press Generate, create a file with an RTF extension, 
and you've got a file you can retrieve into Word, or any other word-processor that can take RTF.

\BUsing RTF.BAS:    How the Resume Wizard Works\b

The information is stored in an Access database file called Resume.MDB.    It has two 
tables.    One for the Name and Address, and the other for all the fields of the resume entries.    
Examine the properties of the data controls and you will see the database names and the 
recordsources (or tablenames).    The fields are linked to these datacontrols with their Datasource 
(the name of the datacontrol) and the Datafield properties.

Once the database is populated, and the user presses Generate, the form asks for the name
of an RTF file, which it opens for output.    Then the two RTF header commands are run, 
RTFSetFonts and RTFSetFormat.    The \BRTFSetFormat\b commands gets its margin settings 
from the textboxes on the form.    The name and address are printed (the address must be printed 
a line at a time, so this requires some parsing), and finally, the database is cycled through.    This 
is done with the basic structure:

Do Until data1.recordset.EOF
...
data1.recordset.MoveNext

Loop

Each record is checked to see if it is the first of a new catagory, in which case the 
category gets printed (otherwise, it does not.)    The information can be retrieved from the records
in two ways: through the databound textboxes, or with a database command, e.g., 
data1.recordset("Employer").  This is a shortcut for 
data1.recordset.fields("Employer").

As to how the information is printed, I refer you to the section on RTF.BAS.    There is 
one formatting trick worth noting here, however:    Those paragraphs that contain a catagory are 
indented paragraphs, with a firstline "outdent" so the category is to the left of the paragraph.    
Then a tab is sent before the rest of the paragraph.    This tabs all the way out to the paragraph 
margin, ignoring any tabstops on the way.

Feel free to modify this program.    Possible additions could include better font choices, 
the storage of the chosen attributes, multiple resumes, and multiple resume styles.    Let us know 
if you come up with anything, or want us to modify Resume Wizard in any way.



Q+E MULTILINK  Sug. Ret. Price: $399
by Pioneer Software
5540 Centerview Drive
Raleigh, NC    27606
Pho: (919) 859-2220
Fax: (919) 859-9334

The potential of Visual Basic as a database development tool, especially in the area of 
client/server development, has been known for quite some time.    It is this potential that provided
the impetus for the creation of Q+E MultiLink, an add-on that enables developers to utilize 
Visual Basic's flexibility and fast development cycle to create client/server applications.

Database programming in the Visual Basic Environment
Grids, Text Boxes, Scroll Bars and VB 3.0, The Hidden 
Two-Field Unique Indexes and Dynamic Queries
Other Distinguishing Characteristics
Helpful Utilities
Final Impressions
User Comments
MultiLink vs. VB 3.0

\BData Basics:    Database Programming in the Visual Basic Environment\b

How does connecting multiple high-end RDBMS's within your Visual Basic application 
sound to you?    Say, for example, Oracle with Sybase, however unlikely the example may be, or 
DB2 with Informix, another unlikely pairing.    With Q+E Multilink you can do just that. And 
while these examples are very doubtful, can you picture an organization that may have data 
stored simultaneously in Oracle, Dbase and Excel?    You can access all of those formats, and 
DBMS's in ONE Visual Basic application, by using Multilink. 

Q+E Multilink will let you create applications that are able to access the following 
databases and formats:

ASCII TEXT Sybase and Microsoft SQL Server products
Btrieve SQL Base
dBase compatible files Terradata
Excel Worksheet Files XDB
HP Allbase, HP Image/SQL
IBM DB2
IBM OS/2 Datamanager, AS/400 and SQL/DS
Informix
Ingres
Novell Netware SQL



Oracle
Paradox
Progress
Tandem Non-Stop SQL

This portability is made even more attractive because you only write an application 
once.and then just change one property - the database name - to connect your app to a different 
database.    Furthermore,the entire application is multi-user capable.    These features make 
portability painless.

MultiLink's main purpose, aside from enabling a developer to write for a variety of 
RDBMS applications, is to provide the user with easy access to information.    This is primarily 
accomplished by giving you the tools to create relatively convenient and fast implementations of 
data queries.    It is important to note this fact, since different products have different areas of 
strength.    MultiLink very much excels at creating and executing queries.    Pioneer's corporate 
mission statement probably reads something like: "We will not rest until we can connect to every
database format and provide fast access to their respective data." 

\BData Basics:    Grids, Text Boxes, Scroll Bars and VB 3.0, The Hidden Contender\
b

Of course, there are some trade-offs involved in implementing a tool with this kind of 
portability.    The biggest one is speed.    Pioneer's tools have not been known as speed demons.    
This reputation came about due to some difficulties experienced by earlier releases of other Q+E 
programs.    More appropriately,the statement regarding MultiLink's speed is somewhat relative, 
depending on what you are used to working with.    Just for perspective, the Access engine 
included with VB 3.0, which is most likely the closest direct competitor, is noticeably slower.    
And ODBC,    in its present incarnation, appears slower still.    I do not profess to have conducted
any benchmark tests.    These are just simple observations made with the naked eye.    As far as 
the individual features of each program are concerned, have a look at the attached comparison of 
VB 3.0 and MultiLink. 

Money is always a prime consideration in the evaluation of tools for your production 
efforts.    I know that a few of you will carefully weigh the alternatives between using VB 3.0 to 
its fullest potential and spending the necessary funds for yet another add-on.    That being the 
case, please keep in mind that VB 3.0 can access eight databases, while MultiLink can reach 
twenty.    Aside from that obvious difference, MultiLink also provides you with twelve data-
aware custom controls.    These include some that are not available from Microsoft yet, such as a 
bound query grid.    How's that for productivity?    Figure 1 shows the Visual Basic toolbox with 
MultiLink installed.

While we are on the subject of query grids, someone may point out that the VISDATA 
sample application shipping with VB 3.0 shows the utilization of the VB grid control in a 
database setting.    But again even Microsoft's own grid is not databound.    This obvious 
opportunity to provide such a feature is being seized by a number of other vendors.    As you are 



reading this article, there is an interesting development in the works by Sheridan Software, which
captured Bill Gates' attention enough for him to play with a demo for over thirty minutes at the 
last Comdex.    Okay, okay, enough gossip for now.

Back to business.    Some of the controls that come with MultiLink are, at first glance, 
very similar to the ones shipping with VB.    However, you will find Q+E's to be more useful 
overall because of the additional database properties and built-in functionality.    This is 
especially noticeablewhen dealing with back-end systems that can be reached only through 
MultiLink, and not through ODBC.    

Among the controls shipping with this release of MultiLink are interesting offers, such as 
the data-aware radio button and scroll bars.    It seems that one feature of the scroll bar control 
arose out of necessity - because of a possible shortcoming in the Q+E query grid control.    It 
appears that the query grid cannot be used to enter data.    It is read - only.    As a result, Q+E 
creates a "quasi" grid for data entry by creating a number of textbox arrays and, then, using the 
scroll bar to move records through those text boxes.    While giving the appearance of a grid, this 
achieves an interesting effect, since most of us are used to seeing scrollbars directly attached to a 
list box or table.    Figure 2 illustrates this idea.

The actual production of this "quasi" grid is quite simple; and of course, you can add or 
delete elements just by adding or deleting elements of the array.    The lack of a write/update 
property in the query grid control, while unfortunate, is more than outweighed by MultiLink's 
other positive features.    Q+E is aware of the need for an editable query grid, and promises such 
an improvement for release 2.0 of MultiLink in December 1993.

MultiLink Controls, such as check boxes, list boxes, combo boxes, text boxes, command 
buttons and the picture control, are different from, and sometimes quite improved over, their VB 
3.0 counter parts.    The properties, events and functions that are attributed to them by Q+E are 
very unique and easy to use.

\BData-Basics:    Two-Field Unique Indexes and Dynamic Queries\b

Among these properties and functions were a couple of particularly interesting 
refinements.    While these small provisions are not especially earth shaking, I found them to be 
thoughtful and quite nice to have available.

The first one is called the pKey property and is used to set primary indexes.    The nice 
part I'm talking about is the fact that the pKey property allows the programmer to specify more 
than one field as unique (for indexing purposes).    This means you are no longer chained to a 
field holding a record identification number, unless you like that sort of thing.    For example, you
could specify the combination of last name and social-security number to be the unique index.    
Having this extra little bit of convenience is nice.    It can be applied to the Q+E check box, 
combo box, list box, radio button group, text box and query grid.

The other refinement I enjoyed is part of what Pioneer calls the pWhere property.    This 



property is one of the workhorses and also one of    the connect and query controls.    In the query
control, the pWhere property contains the conditions that a record must meet in order to be 
retrieved by a query.    These conditions can be sort orders or groups.    You will most often use 
this property to find specific matching values between a query and the actual data in a table.

To backtrack just a little, when retrieving data through queries, a QBE (Query by 
Example) facility is especially useful.    When creating a QBE form, a developer will most often 
have the user input or pick the search criteria, such as a "salary field" of $30,000 in a text box 
(i.e. the user types 30,000).    The next step is to pass the contents of the "salary field" text box to 
a data table in the form of a query.    This will produce any matching records.    Ordinarily, the 
process of capturing the input and passing it to the query and table requires a few lines of code.    
Here is where the pWhere property can help.    In designing the query, a developer can specify 
the contents of the example text box (salary field) with a "wildcard" character.    The official term
for it is a hook.    By using a hook, you can set the pWhere property dynamically.    The statement
would look something like this:

Salary > ?Salary Field

The question mark represents the hook.    It will see to it that the contents of the "salary 
field" are used in the query, whatever they may be.    The query as written here looks for salaries 
exceeding the amount specified in the "salary field" (larger than 30,000).    Importantly, the 
technique of using a hook only works with MultiLink field controls, not with standard VB field 
controls or those of other vendors.

\BData-Basics:    Other Distinguishing Characteristics\b

Aside from the custom controls, properties and functions, Multilink distinguishes itself in
a number of other aspects.    For example, noteworthy is the idea that when using VB 3.0, a 
developer is allowed only one active query per data control.    This results in multiple data 
connection, or data access controls implemented in order to accommodate multiple active 
queries.    Depending on the situation, this can lead to a drain on your server.    MultiLink's 
solution is to allow multiple queries per each single data connection, making your application 
more efficient.

Another noteworthy point is the way transaction processing is being handled. While VB 
3.0's transaction processing is global, affecting all of your data controls on all forms, Multilink's 
transactions can be tied to specific data connections or queries.    This gives you a much finer 
degree of control, especially in the development of mission-critical applications.

Transaction processing is often found in corporate environments,where large tables of 
data are the order of the day.    This climate will benefit from another difference between VB 3.0 
and Q+E MultiLink.    When using Q+E's product    to connect to SQL systems, it is not necessary
for all tables to have unique indexes.    Unfortunately, that \Iis\i a requirement of VB 3.0.    For a 
lot of people that may not be a problem, unless you happen to be the corporate database 
administrator who keeps getting requests from his VB users to reset the indexes.    Can you 
picture that poor fellow?



\BData-Basics:    Helpful Utilities\b

To ease your development cycle, Q+E provides two utilities that aid in the design of 
client/server (or other) applications.

Included with the distribution disks, is a Database Manager that allows the developer to 
create, edit, modify and delete files in any of the twenty supported formats from within 
MultiLink.    This flexibility is actually another difference between VB3.0 and MultiLink, since 
the database manager shipping with VB 3.0 can only access the Foxpro, Paradox, dBase and 
Access formats.    It does not support Oracle or Sybase, the formats that need to be reached via 
ODBC.    The Database Manager is shown in figure 3.

Those of you familiar with other database management utilities will feel right at home 
with the functionality of this program.    Actually, anyone who ever had to create or maintain 
database files will feel right at home.    It's straight forward;except that, in the case of SQL tables,
you will need to log on to the server first.    However, once you are logged on, it's a breeze to 
create or modify tables.    All field definitions are just a mouse click away, as shown in figure 4.

The second utility program, and in some cases the more important one, is the Query 
Builder.    It is the same clever program found in other Q+E products.    It's purpose is to lead you 
through the design of standard SQL queries - even if you don't know the language.    Needless to 
say, this utility can come in handy.    The Query Builder is shown in figure 5.

The Query Builder becomes available at design time through the VB property settings' 
box .    After placing a Q+E connect control on the form in question and connecting to a database,
it is possible to specify the tables, fields and query expressions with this tool.    Mind you, it is 
only available \Bafter you connect\b.    So: place a connect-control and hook-up to your tables.   
Then, place a query control on the form.    In its property settings' box, click the dialog pop-up 
button ("...") under the pTable, pWhere and pExpr entries.    Pushing this button calls the query 
builder.    Believe me, it is done a lot faster than described in writing.

You now have the ability to create, edit or view SQL queries.    For example, you may 
want to specify a number of fields.    Nothing could be simpler.    Figure 6 shows what happens 
when you click the "Fields" icon.

The query builder lets you sort records (figure 7), group records, join tables and even 
check the SQL expressions you are creating (figure 8).

SQL Statements can be cut or copied to the Windows clipboard. You can also perform 
find-and-replace operations.

\BData-Basics:    Final Impressions\b



Pioneer has created a winner with this product.    Consider how Microsoft Access has 
been compared to Powerbuilder, the premier client/server database development program, and 
then look at some of the user comments regarding the Access engine compared to MultiLink.    
One could almost say that the combination of VB and MultiLink are in competition with a 
software product that costs over $3000.    This is good cause for enthusiasm.

Think about it.    How many times do you wonder which development tools in use today 
that will be around tomorrow?    For example, nobody would want to be in the shoes of those 
programmers who had spent time and energy learning the Paradox Application Language, only to
be faced with a completely different syntax in ObjectPal, the Windows language of Paradox.    I 
can't imagine such a debacle facing a VB developer who wants to standardize around Q+E 
MultiLink.    As I've said in the beginning, the manufacturer will just continue to make this 
program as adaptable as possible.    So if you are looking for a company and program around 
which you can standardize, you can't get much better than this one.

In the end, it all boils down to productivity.    If a tool makes you more productive and 
hence operate more profitably, use it.    If it doesn't do that, then don't use it.

\BData-Basics:    User Comments\b

\BMike Oden\b

Mike Oden of Oden Industries, located in Pasadena, California, has used Q+E products 
for some time.    He included MultiLink in a project that was actually showcased at the last dB 
Expo.    This showcase application is a database used by a medical corporation specializing in 
pathological examinations.    The program helps this client with several important aspects of day-
to-day logistics, including the management of individual patient records, reports and the billing 
of services rendered.    Mike's application distinguishes itself by being able to incorporate 
photographs of actual biopsies.    In addition, the examining doctor is able to record his 
comments and observations right alongside the picture to be stored with the patient's 
information.    This greatly improves efficiency and helps the pathologist to complete more work 
in the same amount of time, thus operating more profitably.

As part of a very competitive local development community, Mike must choose his tools 
carefully.    When asked to comment about MultiLink, he stated, "The program has several 
almost equally important features.    First of all, you can connect different database back-ends in 
one application.    For example, the showcase program utilizes Microsoft SQL and dBase in 
twenty different files and tables.    Secondly, in my own work, MultiLink was noticeably faster 
than ODBC and the Access engine, so much so that there was no question at all which program I 
would use.    Then there are the actual features of the controls that come with MultiLink, such as 
the databound list box.    With MultiLink, I don't have to write an AddItem loop that puts the 
results of queries into a list box, as I would have to in VB.    Lastly, the company has been around
a while and has been working with this technology.    Consequently, there are a lot fewer bugs 
than a newer vendor might experience."



\BJim Thompson\b

Jim Thomson, an independent consultant presently contracting with the Fisher-
Rosemount division of Emerson Electric, is using Q+E Multilink in the development of a sales 
and marketing decision-support system.    The application is a Microsoft Windows client to a 
Microsoft SQL Server under OS/2.

When asked about his experience with the product,Jim said, "I initially selected 
MultiLink for its ability to connect to a PROGRESS back-end database.    However, PROGRESS
was ultimately deemed to be too slow, particularly with set queries.    I called Q+E on the 
PROGRESS performance issues, and talked to the individual who wrote the PROGRESS 
interface.    He explained that the performance issues were due to PROGRESS' host language 
interface, and gave me the name of a representative at PROGRESS Software.    I contacted this 
individual who confirmed that the host language interface was indeed slow and would remain so 
until the next release of PROGRESS (version 7).    Throughout this process, I found the Q+E 
personnel courteous, responsive, and knowledgeable."    Because of these difficulties with 
PROGRESS, we changed our server database to Microsoft SQL Server, without the need to 
change any of the code we had developed so far, with the exception of a single connect 
statement."

With regard to the obvious competition between Q+E and VB 3.0, Jim stated, 
"Microsoft's inclusion of the Access 1.1 engine in VB 3.0 has brought into question the need for 
MultiLink.    However, MultiLink's inclusion of Query-by-Example capability and bound grid 
control has proven to be a great tool for our development efforts.    Also, we have found 
MultiLink to be more stable than Microsoft's ODBC drivers."    Interestingly enough, Jim also 
mentioned that he found Q+E's tech support personnel more accessible and knowledgeable than 
Microsoft's.

\BData-Basics:    MultiLink vs. VB 3.0\b

Topic Visual Basic 3.0 Q+E MultiLink/VB
Databases supported MS Access, FoxPro, 

dBase, Paradox 
(3&3.5), Btrieve, SQL
Server, Oracle(SQL 
Server and Oracle are 
only available in the 
Professional Edition)

Oracle, SQL Server, dBase, 
INGRES,Paradox (4.0), Sybase, 
AS/400 (SQL400)*, Btrieve, OS/2 
DBM, DB2*, INFORMIX, 
Netware SQL, PROGRESS, 
SQLBase, XDB, SQL/DS*, 
Tandem NonStop SQL*, Teradata, 
Excel .XLS files, Text files, HP 
ALLBASE/SQL* and HP 
IMAGE/SQL and gateways, IBM 
DDC/2, Micro Decisionware and 
Sybase Net-Gateway* requires 
Gateway



Database Control Types Text, Check Box, 
Picture, Data Label, 
Masked Edit

Text, Check Box, Picture, Query, 
List Box, Combo Box, Radio 
Button, Query Grid, Command 
Buttons, Scroll Bars and Connect 
Controls

Control Arrays No - you can only 
display one record at a
time on a form using 
the database controls.

Yes - you can display any number 
of records on a form at one time 
without writing code. Fully 
supports control arrays.

DB Command Button 
Controls to perform 
database operations 
directly

No Yes - any database operation can 
be assigned to a button without 
writing code.

DB Scroll Bar Controls No - must use Data 
control and arrow 
buttons on Data 
control; no stand alone
scroll bar.

Yes - scroll bar can be used to 
move through records in a 
database without writing code.

Database Control 
Features

Can link Controls to 
database fields.

Can link Controls to database 
fields, and can format numbers as 
well as date values using format 
strings without writing code.

Query by Example No Yes - allows end user of 
application to use QBE to query 
for specific records.

Query Builder Utility No Yes - allows the developer to build 
queries and view/edit their SQL 
statements without knowing SQL 
language.

Picture Controls Picture must be stored 
in databaseOnly BMP 
format supported.

Pictures can be stored in the 
database itself, or the name of a 
specific field containing the 
pictures can be stored in the 
database.BMP and MetaFile 
formats are supported.

Cross Form Control 
Support

No Yes - all controls support cross-
form referencing, allowing 
developers to split records and 
share connections and data across 
forms

Combo and List Box 
Controls filled via bound
database fields

No Yes - the combo and list boxes can 
be filled with directly bound 
database fields.

Database Manger Utility Yes - however it does 
not support SQL 
databases.

Yes - all database formats fully 
supported



Transaction Processing 
Support

Yes - however 
transactions are only 
supported for SQL 
databases which 
themselves need to 
support transactions.

Yes - transactions supported for all
formats including dBase, Btrieve 
and all SQL databases.

Transaction Mechanism Transactions are 
global to all active 
databases in an 
application.

Transactions based on connection 
level, providing more control for 
client/server applications.

Provided by the Product Management of Q+E Software



While we have a lot already in the works, the content of \IVBZ\i is largely up to you, the 
reader, to dictate. If you are having a problem, send it in. If you want more of a particular type of
article - beginner, advanced, more DLLs, more VB code - let us know and we'll do our best to 
accommodate your needs and wants.    Here's our list thus far:

\UVB Developer's Utilities\u
Button Bitmap Builder
Palette Builder (for PicClip among other things)
Stub Replacement
Object Manager
Code Generators/Wizards
. . . and much more!

\UVisual Basic Techniques\u
Calling DLL functions
Standardizing Your VisualBasic Interfaces
Advanced Printing
Metafile Creation
An Improved FindWindow Function
Waiting for other Apps to Execute
. . . and much more!

\UDynamic Link Libraries\u
SendKeys function for DOS Applications
Additional VBZUTIL functions
. . . and much more!

\UCustom Controls\u
Generic Subclassing Control
Clipboard Viewer Control
Huge Scrollbars
. . . and many other specialized controls!

\UImproved Help Files\u
Binary Sample Extraction

\BThe rest is up to you!\b    Be sure to let us know which of these things are of greatest 
interest to you so that we can bump them to the top of the list to complete.



\IVB Developer's Utilities\i
Dropping Leftover DLLs (VBZ02)
Pop Up Color Selection (VBZ02)
Printing Browse Sequences in WinHelp (VBZ03)
Simplified Formatted Printing (VBZ03)

\IVisual Basic Techniques\i
Accessing Private INI Files (VBZ03)
Accessing the Common Color Dialog (VBZ02)
Aligning Controls (VBZ03)
Creating a Drag 'n Drop Client Application (VBZ01)
Creating Modeless Dialog in VB (VBZ02)
Creating Windows 3.1 Screen Savers (VBZ01)
Screen Saver Wizard (VBZ03)

\IDynamic Link Libraries\i
Aldus Format Metafiles (VBZ01)
A PLAY Command for Visual Basic (VBZ01)
Apps That Tile and Cascade (VBZ02)
Creating a Drag 'n Drop Server Application (VBZ01)
Musical MsgBox and Beep Commands (VBZ01)
Status Bar Help on Controls and Cursors (VBZ01)
System Level Hotkeys (VBZ01)
The QuickBasic Function Library (VBZ02)

\IReviews\i
Doc-To-Help (VBZ02)
3-D Widgets (VBZ02)



 About VBZ

VBZ is a completely electronic journal for Visual Basic programmers.    Each issue is in 
the form of a help file, such as the one you are reading, with lots of techniques, sample code, 
DLLs, custom controls and reviews.    An issue of VBZ will come out every two months unless 
there is great demand for greater frequency at the expense of content in each issue.    We think it's
better to wait and get some substantial stuff into the journal rather than just try to get it out every 
month as some others do.

Subscribing to   VBZ  
License Information
Using   VBZ   DLLs  
Writing for   VBZ  



 Subscribing to VBZ

If you are not currently a subscriber, you should be.    We accept MasterCard or Visa, or 
send check, money order or purchase order (payable to User Friendly, Inc.) for $69 + $4 shipping
and handling for the first subscription, $49 + $4 shipping and handling for each additional 
subscription, to:

User Friendly, Inc.
1718 M Street, N.W.
Suite 291
Washington, DC 20036
(202) 387-1949
(202) 785-3607 FAX
CIS: 71652,2657

Please specify whether you would like to receive VBZ via email (in which case please 
include your Compuserve account number), or US Mail (in which case please include your 
preferred media size).

VBZ may also be registered on CompuServe's Shareware Registration Forum (GO 
SWREG).    VBZ's Registration ID Number is 1005.    $73.00 will be billed to your CompuServe 
account, and we will be notified to email you your subscription.



 License Information

Just like a paper journal, VBZ should not be in two places at once.    Therefore, the license
information is quite simple.    If you pass the journal around, you must do it in its entirety, erasing
it from your own hard disk.    In this way, many can read a single issue of VBZ but only one at a 
time.

As a subscriber you have full rights to distribute the DLLs in their binary form (no source
code) with your programs.    You may not document their internal use, however.    If more than 
one developer will be actively using the DLLs than each developer needs a subscription to VBZ.

Disclaimer

The techniques and software presented in this journal are offered "as is" with no warranty 
expressed or implied as to its suitability to the task at hand or reliability under diverse conditions.
The primary purpose of this journal is education.    You use the software and techniques in this 
journal at your own risk.



 Using VBZ DLLs

Each DLL that comes with an issue of VBZ contains a version resource so that you can 
use the Windows version verification procedures when installing one of our DLLs over an 
existing one as part of a setup procedure.    Please make every effort not to overwrite a newer 
copy with an older one that another developer might have installed on the users system.

Whenever a DLL is fixed, only the minor version of the DLL will go up.    Only when 
substantial functionality has been added to the library will the major version increase.

Each DLL also has a module (.BAS) of the same file name with the necessary 
declarations and constants so that you can simply add this file to your project and start 
programming.    Let us know if there is anything else we can do to make the use of our DLLs any
easier.



 Writing for VBZ

If you are interested in getting your name in print or simply looking for a way to share 
your findings, we are interested in hearing from you.    Because of the format, there is no real 
limit as to the number or size of submissions.    Even if it's just a little technique you have 
discovered, I'm sure readers would be interested in hearing about it.

In addition to the notoriety, one benefit of using VBZ to get your idea out is that you have 
an organized way to fix or improve the idea later on.    We will do our best to work with you to 
get your idea working in the first place but we will also make sure that corrections go out to all 
our subscribers.    This kind of dynamic approach is one of the unique benefits of electronic 
publishing.

If you wish to make a submission of some sort, please try to make it problem-solution 
oriented versus "general discussion."    We will be happy to look at anything but the journal is 
targeted at those with specific problems and needs.

Please send your ideas, either by mail or email.    We look forward to getting your name 
in print!

VBZ Submission
User Friendly, Inc.
1718 M Street, N.W.
Washington, DC. 20036
(202) 387-1949
(202) 785-3607 FAX
CIS: 76702,1605



\IVBZ\i is a completely electronic journal for Visual Basic programmers.    Each issue is 
in the form of a help file, such as the one you are reading, with lots of techniques, sample code, 
DLLs, custom controls and reviews.    An issue of \IVBZ\i will come out every two months unless
there is great demand for greater frequency at the expense of content in each issue.    We think it's
better to wait and get some substantial stuff into the journal rather than just try to get it out every 
month as some others do.

\BSubscribing to \IVBZ\i\b

If you are not currently a subscriber, you should be.    We accept MasterCard or Visa, or 
send check, money order or purchase order (payable to User Friendly, Inc.) for $69 + $4 shipping
and handling for the first subscription, $49 + $4 shipping and handling for each additional 
subscription, to:

User Friendly, Inc.
1718 M Street, N.W.
Suite 291
Washington, DC 20036
(202) 387-1949
(202) 785 - 3607 FAX
CIS: 71652,2657

Please specify whether you would like to receive \IVBZ\i via email (in which case please 
include your Compuserve account number), or US Mail (in which case please include your 
preferred media size).

\IVBZ\i may also be registered on CompuServe's Shareware Registration Forum (GO 
SWREG).    \IVBZ's\i Registration ID Number is 1005.    $74.00 will be billed to your 
CompuServe account, and we will be notified to email you your subscription.

\BLicense Information\b

Just like a paper journal, \IVBZ\i should not be in two places at once.    Therefore, the 
license information is quite simple.    If you pass the journal around, you must do it in its entirety,
erasing it from your own hard disk.    In this way, many can read a single issue of \IVBZ\i but 
only one at a time.

As a subscriber you have full rights to distribute the DLLs in their binary form (no source
code) with your programs.    You may not document their internal use, however.    If more than 
one developer will be actively using the DLLs than each developer needs a subscription to \
IVBZ.\i

\BDisclaimer\b

The techniques and software presented in this journal are offered "as is" with no warranty 
expressed or implied as to its suitability to the task at hand or reliability under diverse conditions.
The primary purpose of this journal is education.    You use the software and techniques in this 



journal \Iat your own risk.\i

\BUsing \IVBZ\i DLLs\b

Each DLL that comes with an issue of \IVBZ\i contains a version resource so that you can
use the Windows version verification procedures when installing one of our DLLs over an 
existing one as part of a setup procedure.    Please make every effort not to overwrite a newer 
copy with an older one that another developer might have installed on the users system.

Whenever a DLL is fixed, only the minor version of the DLL will go up.    Only when 
substantial functionality has been added to the library will the major version increase.

Each DLL also has a module (.BAS) of the same file name with the necessary 
declarations and constants so that you can simply add this file to your project and start 
programming.    Let us know if there is anything else we can do to make the use of our DLLs any
easier.

\BWriting for \IVBZ\i\b

If you are interested in getting your name in print or simply looking for a way to share 
your findings, we are interested in hearing from you.    Because of the format, there is no real 
limit as to the number or size of submissions.    Even if it's just a little technique you have 
discovered, I'm sure readers would be interested in hearing about it.

In addition to the notoriety, one benefit of using \IVBZ\i to get your idea out is that you 
have an organized way to fix or improve the idea later on.    We will do our best to work with you
to get your idea working in the first place but we will also make sure that corrections go out to all
our subscribers.    This kind of dynamic approach is one of the unique benefits of electronic 
publishing.

If you wish to make a submission of some sort, please try to make it problem-solution 
oriented versus "general discussion."    We will be happy to look at anything but the journal is 
targeted at those with specific problems and needs.

Please send your ideas, either by mail or email.    We look forward to getting your name 
in print!

\IVBZ\i Submission
User Friendly, Inc.
1718 M Street, N.W.
Washington, DC. 20036
(202) 387-1949
(202) 785-3607 FAX
CIS: 76702,1605



 The VBZ Utility Library

Every so often, there are functions for which it becomes necessary to throw in a DLL.    
Many of you have requested that we stop creating one-function DLLs and this makes sense.    
The result of this request is VBZUTIL.DLL which is designed to contain all of these little utility 
functions that don't quite belong anywhere else.    Don't mistake these for trivial functions, 
because if they were, they wouldn't have to be in a DLL.    In fact, it is in this library that some of
the most important and creative functions will be found.

What goes into this DLL is guided both by our discoveries and needs and requests from 
you.    All that we ask is that you don't request standard functions that can be found in any 
commercial add-on package.    In other words, don't look for a routine to sort integer arrays any 
time soon.    Other than that, the sky's the limit.    You never know what's possible unless you ask 
and we can never anticipate all of our subscribers' needs.    The functions in this library will often
be used in context in the sample programs that come with VBZ, but there will be no samples 
devoted to these functions.    If you would like this to be otherwise, let us know.

The function reference for VBZUTIL.DLL will always be updated instead of being 
fragmented over every issue.    This is the one example where you can get the latest issue and 
know that you are not missing anything, which is not the case for the DLLs and samples in the 
features.    Functions new to this issue are marked with *.

VBZUTIL Function Reference

The declarations can be found in VBZUTIL.BAS.

CtlName
CtlParentClass
CtlTypeOf 
CtlUBound & CtlLBound
GetBValue
GetGValue
GetHInstance
GetRValue
HWnd2Ctl
HIWORD & LOWORD
LPSTR2Str
LP2Str
MakeCtlArray*
MAKELONG
ReCreateControlhWnd
Str2Ctl
USHORT



 The VBZ Utility Library:    CtlName

Purpose
Returns the name of a control as a string.

Contained in
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

Declaration
Declare Function CtlName$ Lib "VBZUTIL.DLL" (C As Control)

Parameters
Parameter Description
C Control variable - Control for which name is needed

Returns
The name of the control as a string

Usage
tbName$ = CtlName$ (Text1)

Comments
This function exists because of the unavailability of the .Name property of a control at 
runtime.    You use it in much the same way you would a control, however.



 The VBZ Utility Library:    CtlUBound & CtlLBound

Purpose
Returns the upper and lower bounds of a control array.

Contained in
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

Declarations
Declare Function CtlUBound Lib "VBZUTIL.DLL" (C As Control)
Declare Function CtlLBound Lib "VBZUTIL.DLL" (C As Control)

Parameters
Parameter Description
C Control variable - any element of a control array

Returns
Integer - the highest or lowest array index of control array

Usage
UpperBound% = CtlUBound (MyControl (0))
LowerBound% = CtlLBound (MyControl (7))

Comments
Don't pass a control to either of these functions unless you know it to be a member of a 
control array.    *Don't* pass the control array with an open paren.    You must pass a valid
control to the function but it can be any element in the array.



 The VBZ Utility Library:    GetHInstance

Purpose
Returns the instance handle of your current application.

Declaration
Declare Function GetHInstance Lib "VBZUTIL.DLL" ()

Returns
Integer - the instance handle of the current application

Usage
myhInstance% = GetHInstance()

Comments
This value is necessary for a number of Windows API functions, so it is provided here.



 The VBZ Utility Library:    HWnd2Ctl

Purpose
Returns the element into the VB2 .Controls() collection of a form, given the control's 
hWnd.

Contained in
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

Declaration
Declare Function HWnd2Ctl% Lib "VBZUTIL.DLL" (ByVal hWnd%)

Parameters
Parameter Description
hWnd% Integer - hWnd of a control

Returns
Integer - the index of the control array to which a given control belongs

Usage
Dim C As Control
'you got the Wnd% from someplace, like MWATCH
El = HWnd2Ctl% (Wnd%)
If El > -1 then Set C = Me.Controls(El)

Comments
At this point, you may use C as if it were a normal control and access all of its properties 
directly.    This function is very useful in applications when you have an hWnd but you 
need access to the underlying properties of the control.



 The VBZ Utility Library:    HIWORD & LOWORD

Purpose
Returns the HiWord or LoWord of a LONG integer.

Contained in
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

Declarations
Declare Function HIWORD Lib "VBZUTIL.DLL" (ByVal LongVal&)
Declare Function LOWORD Lib "VBZUTIL.DLL" (ByVal LongVal&)

Parameters
Parameter Description
LongVal& Long integer - the integer for which you want low or high word

Returns
Integer - the HiWord or LoWord

Usage
HW% = HIWORD (MyLong&)
LW% = LOWORD (MyLong&)

Comments
Often a DLL function will return a long integer which contains two short integers.    
These functions will help you to parse out those values.



 The VBZ Utility Library:    LPSTR2Str

Purpose
Creates a Visual Basic string from a C null terminated string (LPSTR).

Contained In
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

Declarations
Declare Function LPSTR2Str$ Lib "VBZUTIL.DLL" (ByVal LPSTR&)

Parameters
Parameter Description
Lpstr& Long integer - pointer to a string

Returns
String - VB string created from C-type null-terminated string

Usage
MyString$ = LPSTR2Str$ (lpstr&)

Comments
Sometimes a DLL function will return a C language string and you will want to get this 
into a VB string.



 The VBZ Utility Library:    LP2Str

Purpose
Creates a VB language string from any block of memory.

Contained In
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

Declaration
Declare Function LP2Str$ Lib "VBZUTIL.DLL" (lp As Any, ByVal 

nBytes)
Parameters

Parameter Description
lp Variant - pointer to a memory location 
nBytes Integer - number of bytes to retrieve into string

Returns
String - VB string created from a number of bytes starting at a given memory location

Usage
MyString$ = LP2Str$ (ByVal lp, 283)
MKI$ = LP2Str$ (MyInt, 2)



 The VBZ Utility Library:    MAKELONG

Purpose
Create a LONG integer from two short integers.

Contained In
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

Declaration
Declare Function MAKELONG Lib "VBZUTIL.DLL" (ByVal loword%, 

ByVal hiword%) As Long

Parameters
Parameter Description
loword% Integer - Short integer to become the low word of a long
hiword% Integer - Short integer to become the hi word of a long

Returns
Long integer - The long made from two short integers

Usage
MyLong& = MAKELONG (Var1%, Var2%)

Comments
Often a DLL function requires a LONG integer parameter which is really two short 
integers.    This function will allow you to call those functions.    It is identical to the 
MAKELONG macro which is listed in the SDK documentation, but that is unavailable in 
a Windows DLL.



 The VBZ Utility Library:    ReCreateControlhWnd

Purpose
Recreates the hWnd associated with a particular control.

Contained In
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

Declaration
Declare Sub ReCreateControlhWnd Lib "VBZUTIL.DLL" (C As 

Control)

Parameters
Parameter Description
C Control variable - Control for which you want to recreate an hWnd

Usage
This sample changes a single-column, single-select list box to multi-column, multi-select.
While this is no longer necessary with a standard list in VB2 (though File Lists still can't 
be multi-column for some reason), it demonstrates the use of the DLL.

OldLong& = GetWindowLong&(File1.hWnd, GWL_STYLE)
OldLong& = OldLong& Or LBS_EXTENDEDSEL Or LBS_MULTICOLUMN
SetWindowLong File1.hWnd, GWL_STYLE, OldLong&
RecreateControlHwnd File1
File1.Refresh

You can also look at the D&DTEST1.MAK sample that came with VBZ01.

Comments
This function is useful when you need to change a pre-hwnd style of a control 
dynamically or when you need to gain access to a style that has not been exposed by VB, 
such as justification in a text box.    This is an advanced function.    Use it with care!



 The VBZ Utility Library:    Str2Ctl

Purpose
Returns the element into the VB2 .Controls() collection of a form, given the control name
as a string.

Contained In
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

Declaration
Declare Function Str2Ctl% Lib "VBZUTIL.DLL" (Frm As Form, 

ByVal CtlName$)
Parameters

Parameter Description
Frm Form variable - the form with the control array
CtlName$ String - the name of the control array

Returns
Integer - the element within the Controls collection that is a given control

Usage
Dim C As Control
CtlName$ = "Text1"
El = Str2Ctl% (Me, CtlName$)
If El > -1 then Set C = Me.Controls(El)

Comments
At this point, you may use C as if it were a normal control and access all of its properties 
directly.    This function is very useful in database applications when you want to be able 
to relate control names to corresponding column names in a database table.



 The VBZ Utility Library:    USHORT

Purpose
Returns the unsigned version of an integer into a long integer.

Contained In
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

Declaration
Declare Function USHORT& Lib "VBZUTIL.DLL" (ByVal Word)

Parameters
Parameter Description
Word Integer - an unsigned integer you wish to convert to a long integer

Returns
Long integer - A long integer created from an unsigned integer

Usage
Unsigned& = USHORT& (MyWord%)

Comments
VB lacks the unsigned integer data type (often called a WORD).    This function will 
allow you to calculate the actual value from an integer, even one which has moved into 
negative numbers.



 The VBZ Utility Library:    GetRValue

Purpose
Returns the amount of Red (0-255) in a color value.

Declaration
Declare Function GetRValue Lib "VBZUTIL.DLL" Alias 

"GetRedValue" (ByVal RGBVal&)

Parameters
Parameter Description
RGBVal& Long integer - a VB color value

Returns
Integer - the amount of red (0-255) in a given VB color value

Usage
RValue% = GetRValue (ClrValue&)

Comments
While the RGB function exists to construct a color from it's component Red, Green and 
Blue parts, there are no functions to split these values back out.    Therefore we are 
providing you with GetRValue, GetGValue and GetBValue.



 The VBZ Utility Library:    GetGValue

Purpose
Returns the amount of Green (0-255) in a color value.

Contained In
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

Declaration
Declare Function GetGValue Lib "VBZUTIL.DLL" Alias 

"GetRedValue" (ByVal RGBVal&)
Parameters

Parameter Description
RGBVal& Long integer - a VB color value

Returns
Integer - the amount of green (0-255) in a given VB color value

Usage
GValue% = GetGValue (ClrValue&)

Comments
While the RGB function exists to construct a color from it's component Red, Green and 
Blue parts, there are no functions to split these values back out.    Therefore we are 
providing you with GetRValue, GetGValue and GetBValue.



 The VBZ Utility Library:    GetBValue

Purpose
Returns the amount of Blue (0-255) in a color value.

Contained In
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

Declaration
Declare Function GetBValue Lib "VBZUTIL.DLL" Alias 

"GetRedValue" (ByVal RGBVal&)
Parameters

Parameter Description
RGBVal& Long integer - a VB color value

Returns
Integer - the amount of blue (0-255) in a given VB color value

Usage
BValue% = GetBValue (ClrValue&)

Comments
While the RGB function exists to construct a color from it's component Red, Green and 
Blue parts, there are no functions to split these values back out.    Therefore we are 
providing you with GetRValue, GetGValue and GetBValue.



 The VBZ Utility Library:    CtlTypeOf

Purpose
Returns the class name of the control.

Contained In
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

Declaration
Declare Function CtlTypeOf$ Lib "VBZUTIL.DLL" (C As Control)

Parameters
Parameter Description
C Control variable - the control for which you want a control-type

Returns
String - the control-type of a given control

Usage
CtlType$ = CtlTypeOf$ (Screen.ActiveControl)

Comments
The TypeOf syntax in VB is alien to the rest of the BASIC language.    Instead of being 
able to do a simple select case statement, you need to do as series of checks using the 
syntax If TypeOf Ctl Is "CtlType" then.    With the CtlTypeOf$ function, you can 
employ a more familiar syntax such as:

Select Case TypeOf$ (Screen.ActiveControl)
Case "ListBox"
Case "ComboBox"

etc.



 The VBZ Utility Library:    CtlParentClass

Purpose
Returns the name of the parent class, if any, of a control.

Contained In
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

Declaration
Declare Function CtlParentClass$ Lib "VBZUTIL.DLL" (C As 

Control)
Parameters

Parameter Description
C Control variable - the control for which you seek the parentclass

Returns
String - the name of the parentclass of a given control

Usage
Class$ = CtlParentClass$ (List1)

Comments
There are two trends that require this function.    The first is the proliferation of custom 
controls and the other is the increasing use of Windows API functions.    If you want to 
write a generic routine to to search either a list box or combo box, you would have a lot 
of work ahead of you.    If you just wanted it to work with the standard VB controls, you 
could use our CtlTypeOf function.    However, if you wanted it to work with third-party 
custom controls, it would be a little tougher to determine whether the control was a list 
box or combo box.    There is where CtlParentClass comes in.    It returns the name of the 
control class (in Windows) on which a custom control is based.    It will work with 
standard VB controls and with third party custom controls.



 The VBZ Utility Library:    MakeCtlArray

Purpose
Dimensions and assigns array of type Control from a control array.

Contained in
VBZUTIL.BAS

Declaration
Function MakeCtlArray (F as Form, C() as Control, ctrlS$)

Parameters
Parameter Description
F form variable    form that contains the control array
C() control variable array    array to be assigned controls
ctrls$ string    name of control

Returns
Integer    the number of elements of the control variable array

Usage
Make every element in a control array blue:

For i = 0 to MakeCtlArray (form1, C(), (entry.text))
C(i).BackColor = &HFF

Next



Every so often, there are functions for which it becomes necessary to throw in a DLL.    
Many of you have requested that we stop creating one-function DLLs and this makes sense.    
The result of this request is VBZUTIL.DLL which is designed to contain all of these little utility 
functions that don't quite belong anywhere else.    Don't mistake these for trivial functions, 
because if they were, they wouldn't have to be in a DLL.    In fact, it is in this library that some of
the most important and creative functions will be found.

What goes into this DLL is guided both by our discoveries and needs and requests from 
you.    All that we ask is that you don't request standard functions that can be found in any 
commercial add-on package.    In other words, don't look for a routine to sort integer arrays any 
time soon.    Other than that, the sky's the limit.    You never know what's possible unless you ask 
and we can never anticipate all of our subscribers' needs.    The functions in this library will often
be used in context in the sample programs that come with \IVBZ\i, but there will be no samples 
devoted to these functions.    If you would like this to be otherwise, let us know.

The function reference for VBZUTIL.DLL will always be updated instead of being 
fragmented over every issue.    This is the one example where you can get the latest issue and 
know that you are not missing anything, which is not the case for the DLLs and samples in the 
features.    Functions new to this issue are marked with *.

\B\UVBZUTIL Function Reference\b\u

The declarations can be found in VBZUTIL.BAS.

CtlName
CtlParentClass
CtlTypeOf
CtlUBound & CtlLBound
GetBValue
GetGValue
GetHInstance
GetRValue
HWnd2Ctl
HIWORD & LOWORD
LPSTR2Str
LP2Str
MakeArray*
MAKELONG
ReCreateControlhWnd
Str2Ctl
USHORT

\BThe \IVBZ\i Utility Library:    CtlName\b



\UPurpose\u
Returns the name of a control as a string.

\UContained in\u
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

\UDeclaration\u
Declare Function CtlName$ Lib "VBZUTIL.DLL" (C As Control)

\UParameters\u
\BParameter\b \BDescription\b
C Control variable - Control for which name is needed

\UReturns\u
The name of the control as a string

\UUsage\u
tbName$ = CtlName$ (Text1)

\UComments\u
This function exists because of the unavailability of the .Name property of a control at 
runtime.    You use it in much the same way you would a control, however.

\BThe \IVBZ\i Utility Library:    CtlUBound & CtlLBound\b

\UPurpose\u
Returns the upper and lower bounds of a control array.

\UContained in\u
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

\UDeclarations\u
Declare Function CtlUBound Lib "VBZUTIL.DLL" (C As Control)
Declare Function CtlLBound Lib "VBZUTIL.DLL" (C As Control)

\UParameters\u
\BParameter\b \BDescription\b
C Control variable - any element of a control array

\UReturns\u
Integer - the highest or lowest array index of control array

\UUsage\u



UpperBound% = CtlUBound (MyControl (0))
LowerBound% = CtlLBound (MyControl (7))

\UComments\u
Don't pass a control to either of these functions unless you know it to be a member of a 
control array.    *Don't* pass the control array with an open paren.    You must pass a valid
control to the function, but it can be any element in the array.

\BThe \IVBZ\i Utility Library:    GetHInstance\b

\UPurpose\u
Returns the instance handle of your current application.

\UDeclaration\u
Declare Function GetHInstance Lib "VBZUTIL.DLL" ()

\UReturns\u
Integer - the instance handle of the current application

\UUsage\u
myhInstance% = GetHInstance()

\UComments\u
This value is necessary for a number of Windows API functions, so it is provided here.

\BThe \IVBZ\i Utility Library:    HWnd2Ctl\b

\UPurpose\u
Returns the element into the VB2 .Controls() collection of a form, given the control's 
hWnd.

\UContained in\u
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

\UDeclaration\u
Declare Function HWnd2Ctl% Lib "VBZUTIL.DLL" (ByVal hWnd%)

\UParameters\u
\BParameter\b \BDescription\b
hWnd% Integer - hWnd of a control

\UReturns\u
Integer - the index of the control array to which a given control belongs



\UUsage\u
Dim C As Control
'you got the Wnd% from someplace, like MWATCH
El = HWnd2Ctl% (Wnd%)
If El > -1 then Set C = Me.Controls(El)

\UComments\u
At this point, you may use C as if it were a normal control and access all of its properties 
directly.    This function is very useful in applications when you have an hWnd but you 
need access to the underlying properties of the control.

\BThe \IVBZ\i Utility Library:    HIWORD & LOWORD\b

\UPurpose\u
Returns the HiWord or LoWord of a LONG integer.

\UContained in\u
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

\UDeclarations\u
Declare Function HIWORD Lib "VBZUTIL.DLL" (ByVal LongVal&)
Declare Function LOWORD Lib "VBZUTIL.DLL" (ByVal LongVal&)

\UParameters\u
\BParameter\b \BDescription\b
LongVal& Long integer - the integer for which you want low or high word

\UReturns\u
Integer - the HiWord or LoWord

\UUsage\u
HW% = HIWORD (MyLong&)
LW% = LOWORD (MyLong&)

\UComments\u
Often a DLL function will return a long integer which contains two short integers.    
These functions will help you to parse out those values.

\BThe \IVBZ\i Utility Library:    LPSTR2Str\b

\UPurpose\u
Creates a Visual Basic string from a C null terminated string (LPSTR).

\UContained In\u



VBZUTIL.BAS
(Requires VBZUTIL.DLL)

\UDeclarations\u
Declare Function LPSTR2Str$ Lib "VBZUTIL.DLL" (ByVal LPSTR&)

\UParameters\u
\BParameter\b \BDescription\b
Lpstr& Long integer - pointer to a string

\UReturns\u
String - VB string created from C-type null-terminated string

\UUsage\u
MyString$ = LPSTR2Str$ (lpstr&)

\UComments\u
Sometimes a DLL function will return a C language string and you will want to get this 
into a VB string.

\UThe \IVBZ\i Utility Library:    LP2Str\u

\UPurpose\u
Creates a VB language string from any block of memory.

\UContained In\u
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

\UDeclaration\u
Declare Function LP2Str$ Lib "VBZUTIL.DLL" (lp As Any, ByVal 

nBytes)
\UParameters\u

\BParameter\b \BDescription\b
lp Variant - pointer to a memory location 
nBytes Integer - number of bytes to retrieve into string

\UReturns\u
String - VB string created from a number of bytes starting at a given memory location.

\UUsage\u
MyString$ = LP2Str$ (ByVal lp, 283)
MKI$ = LP2Str$ (MyInt, 2)

\BThe \IVBZ\i Utility Library:    MAKELONG\b



\UPurpose\u
Create a LONG integer from two short integers.

\UContained In\u
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

\UDeclaration\u
Declare Function MAKELONG Lib "VBZUTIL.DLL" (ByVal loword%, 

ByVal hiword%) As Long

\UParameters\u
\BParameter\b \BDescription\b
loword% Integer - Short integer to become the low word of a long
hiword% Integer - Short integer to become the hi word of a long

\UReturns\u
Long integer - The long made from two short integers

\UUsage\u
MyLong& = MAKELONG (Var1%, Var2%)

\UComments\u
Often a DLL function requires a LONG integer parameter which is really two short 
integers.    This function will allow you to call those functions.    It is identical to the 
MAKELONG macro which is listed in the SDK documentation, but that is unavailable in 
a Windows DLL.

\BThe \IVBZ\i Utility Library:    ReCreateControlhWnd\b

\UPurpose\u
Recreates the hWnd associated with a particular control.

\UContained In\u
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

\UDeclaration\u
Declare Sub ReCreateControlhWnd Lib "VBZUTIL.DLL" (C As 

Control)

\UParameters\u
\BParameter\b \BDescription\b
C Control variable - Control for which you want to recreate an hWnd



\UUsage\u
This sample changes a single-column, single-select list box to multi-column, multi-select.
While this is no longer necessary with a standard list in VB2 (though File Lists still can't 
be multi-column for some reason), it demonstrates the use of the DLL.

OldLong& = GetWindowLong&(File1.hWnd, GWL_STYLE)
OldLong& = OldLong& Or LBS_EXTENDEDSEL Or LBS_MULTICOLUMN
SetWindowLong File1.hWnd, GWL_STYLE, OldLong&
RecreateControlHwnd File1
File1.Refresh

You can also look at the D&DTEST1.MAK sample that came with VBZ01.

\UComments\u
This function is useful when you need to change a pre-hwnd style of a control 
dynamically or when you need to gain access to a style that has not been exposed by VB, 
such as justification in a text box.    This is an advanced function.    \BUse it with care!\b

\BThe \IVBZ\i Utility Library:    Str2Ctl\b

\UPurpose\u
Returns the element into the VB2 .Controls() collection of a form, given the control name
as a string.

\UContained In\u
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

\UDeclaration\u
Declare Function Str2Ctl% Lib "VBZUTIL.DLL" (Frm As Form, 

ByVal CtlName$)
\UParameters\u

\BParameter\b \BDescription\b
Frm Form variable - the form with the control array
CtlName$ String - the name of the control array

\UReturns\u
Integer - the element within the Controls collection that is a given control

\UUsage\u
Dim C As Control
CtlName$ = "Text1"
El = Str2Ctl% (Me, CtlName$)
If El > -1 then Set C = Me.Controls(El)

\UComments\u



At this point, you may use C as if it were a normal control and access all of its properties 
directly.    This function is very useful in database applications when you want to be able 
to relate control names to corresponding column names in a database table.

\BThe \IVBZ\i Utility Library:    USHORT\b

\UPurpose\u
Returns the unsigned version of an integer into a long integer.

\UContained In\u
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

\UDeclaration\u
Declare Function USHORT& Lib "VBZUTIL.DLL" (ByVal Word)

\UParameters\u
\BParameter\b \BDescription\b
Word Integer - an unsigned integer you wish to convert to a long integer

\UReturns\u
Long integer - A long integer created from an unsigned integer

\UUsage\u
Unsigned& = USHORT& (MyWord%)

\UComments\u
VB lacks the unsigned integer data type (often called a WORD).    This function will 
allow you to calculate the actual value from an integer, even one which has moved into 
negative numbers.

\UThe \IVBZ\i Utility Library:    GetRValue\u

\UPurpose\u
Returns the amount of Red (0-255) in a color value.

\UDeclaration\u
Declare Function GetRValue Lib "VBZUTIL.DLL" Alias 

"GetRedValue" (ByVal RGBVal&)

\UParameters\u
\BParameter\b \BDescription\b
RGBVal& Long integer - a VB color value

\UReturns\u



Integer - the amount of red (0-255) in a given VB color value

\UUsage\u
RValue% = GetRValue (ClrValue&)

\UComments\u
While the RGB function exists to construct a color from it's component Red, Green and 
Blue parts, there are no functions to split these values back out.    Therefore we are 
providing you with GetRValue, GetGValue and GetBValue.

\BThe \IVBZ\i Utility Library:    GetGValue\b

\UPurpose\u
Returns the amount of Green (0-255) in a color value.

\UContained In\u
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

\UDeclaration\u
Declare Function GetGValue Lib "VBZUTIL.DLL" Alias 

"GetRedValue" (ByVal RGBVal&)
\UParameters\u

\BParameter\b \BDescription\b
RGBVal& Long integer - a VB color value

\UReturns\u
Integer - the amount of green (0-255) in a given VB color value

\UUsage\u
GValue% = GetGValue (ClrValue&)

\UComments\u
While the RGB function exists to construct a color from it's component Red, Green and 
Blue parts, there are no functions to split these values back out.    Therefore we are 
providing you with GetRValue, GetGValue and GetBValue.

\UThe \IVBZ\i Utility Library:    GetBValue\u

\UPurpose\u
Returns the amount of Blue (0-255) in a color value.

\UContained In\u
VBZUTIL.BAS
(Requires VBZUTIL.DLL)



\UDeclaration\u
Declare Function GetBValue Lib "VBZUTIL.DLL" Alias 

"GetRedValue" (ByVal RGBVal&)
\UParameters\u

\BParameter\b \BDescription\b
RGBVal& Long integer - a VB color value

\UReturns\u
Integer - the amount of blue (0-255) in a given VB color value

\UUsage\u
BValue% = GetBValue (ClrValue&)

\UComments\u
While the RGB function exists to construct a color from it's component Red, Green and 
Blue parts, there are no functions to split these values back out.    Therefore we are 
providing you with GetRValue, GetGValue, and GetBValue.

\BThe \IVBZ\i Utility Library:    CtlTypeOf\b

\UPurpose\u
Returns the class name of the control.

\UContained In\u
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

\UDeclaration\u
Declare Function CtlTypeOf$ Lib "VBZUTIL.DLL" (C As Control)

\UParameters\u
\BParameter\b \BDescription\b
C Control variable - the control for which you want a control-type

\UReturns\u
String - the control-type of a given control

\UUsage\u
CtlType$ = CtlTypeOf$ (Screen.ActiveControl)

\UComments\u
The TypeOf syntax in VB is alien to the rest of the BASIC language.    Instead of being 
able to do a simple select case statement, you need to do as series of checks using the 
syntax \BIf TypeOf Ctl Is "CtlType" then\b.    With the CtlTypeOf$ function, you can 
employ a more familiar syntax such as:



Select Case TypeOf$ (Screen.ActiveControl)
Case "ListBox"
Case "ComboBox"

etc.

\BThe \IVBZ\i Utility Library:    CtlParentClass\b

\UPurpose\u
Returns the name of the parent class, if any, of a control.

\UContained In\u
VBZUTIL.BAS
(Requires VBZUTIL.DLL)

\UDeclaration\u
Declare Function CtlParentClass$ Lib "VBZUTIL.DLL" (C As 

Control)
\UParameters\u

\BParameter\b \BDescription\b
C Control variable - the control for which you seek the parentclass

\UReturns\u
String - the name of the parentclass of a given control

\UUsage\u
Class$ = CtlParentClass$ (List1)

\UComments\u
There are two trends that require this function.    The first is the proliferation of custom 
controls and the other is the increasing use of Windows API functions.    If you want to 
write a generic routine to to search either a list box or combo box, you would have a lot 
of work ahead of you.    If you just wanted it to work with the standard VB controls, you 
could use our CtlTypeOf function.    However, if you wanted it to work with third-party 
custom controls, it would be a little tougher to determine whether the control was a list 
box or combo box.    There is where CtlParentClass comes in.    It returns the name of the 
control class (in Windows) on which a custom control is based.    It will work with 
standard VB controls and with third party custom controls.

\BThe \IVBZ\i Utility Library:    MakeArray\b

\UPurpose\u
Dimensions and assigns array of type Control from a control array.

\UContained in\u
VBZUTIL.BAS



\UDeclaration\u
Function MakeArray (F as Form, C() as Control, ctrlS$)

\UParameters\u
\BParameter\b \BDescription\b
F form variable - form that contains the control array
C() control variable array - array to be assigned controls
ctrls$ string - name of control

\UReturns\u
Integer - the number of elements of the control variable array

\UUsage\u
Make every element in a control array blue:

For i = 0 to MakeArray (form1, C(), (entry.text))
C(i).BackColor = &HFF

Next




