
 VBZ Table of Contents

VBZ
The Electronic Journal on Visual Basic

Copyright 1993 User Friendly, Inc.
Issue 01: January/February 1993

Welcome to the first issue of VBZ, the electronic journal on Visual Basic. Bear in mind
that this issue is bigger than others will be as it represents a compilation of most of our
submissions to Compuserve and elsewhere over the past year. Please feel free to contact us with
your suggestions for ways to improve the journal. Our goal is to make this the premier resource
to Visual Basic programmers. Enjoy the first issue and keep in touch!

Jonathan Zuck, President
User Friendly, Inc.
CIS: 76702,1605

Table of Contents
About VBZ

Features
System Level Hotkeys
Aldus Format Metafiles
Creating a Drag 'n Drop Server Application
Creating a Drag 'n Drop Client Application
Status Bar Help on Controls and Cursors
A PLAY Command for Visual Basic
Musical MsgBox and Beep Commands
Creating Windows 3.1 Screen Savers

Departments
The VBZ Utility Library
Recent Press Releases
What's Coming Up?
What's Gone Before?
Letters
Fixes and Updates

 About VBZ

VBZ is a completely electronic journal for Visual Basic programmers. Each issue is in the
form of a help file, such as the one you are reading, with lots of techniques, sample code, DLLs,
custom controls and reviews. An issue of VBZ will come out every two months unless there is
great demand for greater frequency at the expense of content in each issue. We think it's better to
wait and get some substantial stuff into the journal rather than just try to get it out every month as
some others do.

Subscribing to VBZ
License Information
Using VBZ DLLs
Writing for VBZ

 Subscribing to VBZ

If you are not currently a subscriber, you should be. To subscribe to VBZ, send check,
money order or purchase order for $69 + $4 s/h for the first subscription, $49 + $4 s/h for each
additional subscription, to:

VBZ Subscription
User Friendly, Inc.
1718 M Street, N.W.
Suite 291
Washington, DC 20036
(202) 387-1949
(202) 785 - 3607 FAX
CIS: 76702, 1605

Please specify whether you would like to receive VBZ via email, in which case include
your Compuserve account number, or US Post, in which case please include your preference as
to media size.

 License Information

Just like a paper journal, VBZ should not be in two places at once. Therefore, the license
information is quite simple. If you pass the journal around, you must do it in its entirety, erasing
it from your own hard disk. In this way, many can read a single issue of VBZ but only one at a
time.

As a subscriber you have full rights to distribute the DLLs in their binary form (no source
code) with your programs. You may not document their internal use, however. If more than one
developer will be actively using the DLLs than each developer needs a subscription to VBZ.

Disclaimer
The techniques and software, presented in this journal, are offered "as is" with no warrenty
expressed or implied as to the suitability to the task at hand or reliability under diverse
conditions. The primary purpose of this journal is education. You use the software and techniques
in this journal at your own risk.

 Using VBZ Dynamic Link Libraries

Each DLL that comes with an issue of VBZ contains a version resource so that you can
use the Windows version verification procedures when installing one of our DLLs over an
existing one as part of a setup procedure. Please make every effort not to overwrite a newer copy
with an older one that another developer might have installed on the users system.

Whenever a DLL is fixed, only the minor version of the DLL will go up. Only when
substantial functionality has been added to the library will the major version increase.

Each DLL also has a module (.BAS) of the same file name with the necessary
declarations and constants so that you can simply add this file to your project and start
programming. Let us know if there is anything else we can do to make the use of our DLLs any
easier.

 Writing for VBZ

If you are interested in getting your name in print or simply looking for a way to share
your findings, we are interested in hearing from you. Because of the format, there is no real limit
as to the number or size of submissions. Even if it's just a little technique you have discovered,
I'm sure readers would be interested in hearing about it.

In addition to the notoriety, one benefit of using VBZ to get your idea out is that you have
an organized way to fix or improve the idea later on. We will do our best to work with you to get
your idea working in the first place but we will also make sure that corrections go out to all our
subscribers. This kind of dynamic approach is one of the unique benefits of electronic
publishing.

If you wish to make a submission of some sort, please try to make it problem-solution
oriented versus "general discussion." We will be happy to look at anything but the journal is
targeted at those with specific problems and needs.

Please send your ideas, either by mail or email. We look forward to getting your name in
print!

VBZ Submission
User Friendly, Inc.
1718 M Street, N.W.
Washington, DC. 20036
(202) 387-1949
(202) 785-3607 FAX
CIS: 76702,1605

 System Level Hotkeys

 HOTKEY.DLL is designed to provide hotkey support to Visual Basic (VB) as this is not
directly supported in VB. You can define multiple hot keys in your application and the DLL can
be used by multiple applications simultaneously.

The Point:
 The point is that you might want to create a TSR type utility in VB that "pops up" or
performs some background task given a certain "hot key." For example, let's say that you want
to be able to insert the current date at the cursor location of whatever text editor you are using.
This is normally impossible to accomplish in VB. Not anymore! Now you can create a utility
that has a hot key of Ctrl-D that, while as an icon, inserts today's date in whatever application
you are using. Another example might be a popup calendar application. Normally, the user
would have to double-click on your icon, but now you can define a key that brings your
application to the fore front for immediate use. I am certain that when you think about it, you
will be able to come up with much more interesting ideas, but those are just a couple.

How Do You Do It?
 Well, HOTKEY.DLL has two functions: CreateHK and KillHK. The former establishes
a hotkey and the latter gets rid of them. The syntax for them is as follows:

 hHotKey = CreateHK (VKCode, Shift, Wnd, UserVK)

where VKCode is an valid virtual key code. These are the same codes
 used in the KeyDown and KeyUp event handlers. The values
 for the different keys can be found in CONSTANT.TXT with
 the KEY_ prefix.

 Shift is the mask for the shift keys you want included in your
 hot key. These are the same as those used in the KeyDown
 and KeyUp events in the "Shift" parameter. These values
 can be added together for multiple shift keys. This
 concept is explained on page 277 of the Programmer's
 Guide.

 Wnd is the hWnd property of the Form that you want to receive
 "hot key events." Therefore, you would normally simply
 pass hWnd as this parameter.

 UserVK is the value you want sent to your window when your hot
 key comes up. This can be any value you want.
 It is best to start with values over 144 as this is where
 the normal Key_Codes end. This can be *any* valid integer.

 hHotKey is returned by the function as the "handle" to the hotkey.
 This is used only to "kill" the hotkey later on. This

 will be set to (-1) if the hot key you selected is
 already in use. It will return a (-2) if there are no
 more hot keys. You are limited to 1024 simultaneous hot
 keys on your desktop. Note: this does not include any
 hot keys that might be defined in the Windows Macro
 Recorder. Those are independent of HOTKEY.DLL. Also,
 HOTKEY.DLL *cannot* detect if a hot key is already taken
 by the Windows Macro Recorder. Be careful of overlap!

Once you have created as many hot keys as you want, you need to create a KeyDown
event handler for that form. This event is rarely used because normally it requires that the form
have focus. This can only happen when there are no controls on the form or they are all
disabled. Never fear, however; HOTKEY.DLL can easily coexist with normal KeyDown
processing as long as you define UserVK codes that do not represent valid virtual key codes.
Anyway, in the KeyDown handler, you will see two parameters: KeyCode and Shift. The only
one of interest to us is KeyCode because the event will only be triggered if all the proper shift
keys are pressed! What the KeyCode parameter will contain is the UserVK code that you
specified when creating your hot key. You can then use SELECT CASE or something to
process the different hot keys that you have created. All this can transpire with your app as an
icon and without your app ever receiving focus!

When Unloading Your Form:
 When you are unloading your form, please call KillHK and pass the "handle" returned to
you by CreatHK. Not only will this allow other applications to use those hot keys but
HOTKEY.DLL does a lot of cleanup when a hot key is "killed" so that key processing is as fast
as possible. When you consider that the DLL has to filter *every* keystroke, it is imperative to
process keys as fast as possible. I think it's pretty quick but I would like to hear comments from
you on any performance hits you feel you are taking. I don't think the human eye will be able to
notice.

The Example:
 HOTKEY demo (HOTDEMO.* source files) is a very simplistic demo of some of the
features of HOTKEY.DLL. Essentially, it loads itself and looks for two hot keys: Ctrl-Alt-F1
and Shift-F12 and displays a message box when those keys are detected. This takes place
whether the demo application is the active one or not.

How did I do it? (For those who care...)

 HOTKEY was written in Turbo Pascal for Windows. I like Pascal better than C and, as
a matter of principle, I would choose to use the tool that cost me $199 and included a compiler,
windows based debugger, the Whitewater Resource Toolkit all in a Windows based development
environment (hey, I thought it was MS who was hot on Windows!) that allows me to create
one source file instead of four (with all sorts of crazy link options and import libraries!). The
C/SDK combo cost me close to $1,000 and it is a PITA to use.

 HOTKEY was not implemented as a custom control because: 1) it would have been

more trouble than it was worth; 2) it probably would have required multiple keyboard hooks
instead of one, which would degrade performance; 3)it would only work with VB and we use
lots of other similar tools; and finally 4) it would have to have been done in C! Argh! Besides,
Crescent is creating a low-level keyboard handler control that I will simply buy.

 Essentially, HOTKEY has four routines. There is an initialization routine that dims an
array of record variables (you know TYPE..END TYPE) to 1024 elements. It then sets some
global variables. Finally, it makes a call out to SetWindowsHook, telling it to trap all keys and
to filter them through my keyboard handler: KBProc

 CreateHK searches through the array to see if the hot key is already taken. If not, it
inserts the passed parameters into the next possible element of the record variable array and
increments the count of hotkeys in the system. The long integer returned by CreateHK is
actually a combination of your hWnd and your UserVK. This way, the hotkey is uniquely
identified.

 KillHK moves everything, below the hot key being removed, up one element in the
record variable array and decrements the total. I chose to take the extra time to do this here
rather than make the search longer for every keystroke.

 KBProc constructs a mask using GetKeyState for the SHIFT and Ctrl keys and using
lParam for the ALT key. It then scans through the record variable array looking for the same
keycode and mask. If KBProc finds it, it passes the WM_KEYDOWN message to the
corresponding hWhd, passing the UserVK that you provided as the parameter. If the key is not
found, it is passed on to the next keyboard handler, which is usually the application you are
working in.

 The exit procedure unhooks KBProc from the keyboard chain and frees up the memory
taken by the record variable array. That's about it. I hope you are able to find this useful in
your applications and I welcome any suggestions or comments.

 Aldus Format Metafiles

A number of advanced users have been creating metafile pictures on the fly in Visual
Basic. There are a number of advantages to metafiles and VB only has the ability to retrieve
them from disk or the clipboard. There is no way to save them if you create or modify them. In
order to modify a metafile, you would need to be able to load them via code rather than into a
picture box. To save them you need to be able to save them from code, rather than from the
contents of a picture box. Therefore, I have provided AMETA.DLL, which will take a metafile
handle and save it to disk or retrieve a metafile into a memory. For more information on creating
and modifying metafiles, I recommend getting a copy of Visual Basic Programmer's Guide to the
Windows API, by Dan Appleman, from Ziff-Davis Press.

Using the DLL
Using the functions in AMETA.DLL is simplicity itself. If you know how to manipulate

metafiles (which is explained in Appleman's book and not here!), a single function call is all that
is required to save your metafile in the placeable format or to load metafiles stored in this format.

Function Summary:
Meta2Aldus Creates a Disk Metafile from a Metafile Handle
LoadWMF Loads a Disk Metafile into a Metafile Handle

The functions are declared in VB in the following fashion:

Declare Sub Meta2Aldus Lib "ameta.dll" (ByVal hMeta, Place As Rect, ByVal nUnit, ByVal
FName$)

Declare Function LoadWMF Lib "ameta.dll" (ByVal FName$, Place As Rect, nUnitInteger%)

The Place parameter in each case is the bounding rectangle for the metafile so that the relative
size and aspect ratio of the metafile is preserved. nUnit specifies the units that are to be used.

Sample Files
META.MAK is the sample that demonstrates how to create a metafile and save it to disk.

A Meta-WHAT?
Perhaps it would be helpful to begin with a brief discussion of metafiles and their

function: how they exist in memory. Metafiles, or Windows vector images, are a special picture
format that have a number of advantages over bitmaps. The two primary benefits of metafiles are
that they are a fixed size in memory and their scale mode is set dynamically at playback time,
allowing for run-time flexibility, fixed resolution and device independence. Bitmaps, on the other
hand, while they can attain higher resolutions, can grow to be very large and the flexibility with
which they can be displayed is severely limited.

When you make a call to CreateMetafile, an hDC is returned to you. This is not really a
true hDC but rather an alias to which you send graphics commands to be "compiled" into p-code.
Therefore, when you issue a command like LineTo or Circle, rather than executing the command,

Windows compiles and stores the command in the metafile. It is only with a call later to
PlayMetafile that these commands are actually interpreted and executed. In essence, you are
creating a kind of script that will be used later to actually draw an image.

If Memory Serves...
Metafiles are actually stored in a kind of p-code, much like the code generated by a

product like VB or MSC7. In memory, or on disk, metafiles begin with a header of type
METAHEADER which is prototyped like this, C:

typedef struct tagMETAHEADER {
 WORD mtType;
 WORD mtHeaderSize;
 WORD mtVersion;
 DWORD mtSize;
 WORD mtNoObjects;
 DWORD mtMaxRecord;
 WORD mtNoParameters;
} METAHEADER;

The most important field for us here is the mtSize parameter which will tell us how many bytes
to read from a file. More on that later. After this header there are a series of variable length
records that contain the p-code implementation of the metafile. The typical record looks like this:

struct {
 DWORD rdSize;
 WORD rdFunction;
 WORD rdParm[];
}

where rdSize is the size of the record, rdFunction is the id of the function (ex. 0x0817 is the
ARC function) and rdParm is an array of integer containing the parameters to the function, in
reverse order.

A metafile, therefore, is an array of these structures that are interpreted and played back,
using the PlayMetafile function. The hDC returned by CreateMetafile is actually a handle to a
blob of memory that contains this format. The Aldus Placeable Metafile format, as we will see,
simply adds a header to the top of this format.

The Aldus Advantage
Missing from the METAHEADER structure is any sort of information about the original

size or aspect ratio of the metafile. Therefore, the Placeable Metafile format was born. This
format adds the following 22-byte header to the top of the METAHEADER:

typedef struct {
 DWORD key;
 HANDLE hmf;
 RECT bbox;

 WORD inch;
 DWORD reserved;
 WORD checksum;
} ALDUSHEADER;

where key is a reserved value that is intended to identify the Aldus format: 0x9AC6CDD7L,
hMF is unused and should be set to zero, bbox is the bounding rectangle of the metafile used for
reproducing the aspect ratio and position of the metafile, inch refers to the number of metafile
units (remember that they are all relative) to the inch, reserved should be zero and checksum is
the checksum of the first 10 words of the header. Once we know this much, we're half way there
so let's get started with the DLL: AMETA.DLL.

Loading Metafiles
Because I can't be sure that the WMF extension is necessarily an Aldus Placeable

Metafile, I need to determine which metafile format a file contains, or give it my best shot,
anyway. The first step is to try and read the first 22 bytes into an AldusHeader. The Key field is
then checked for the special constant: $9AC6CDD7. If I find the key, I copy the rectangle in
BBox to the rectangle passed to the routine. Next the value of the Inch field is copied into the
nUnit parameter. This way, the caller can make use of the aspect ratio and size information. Next,
the METAHEADER is read into the MHeader structure and the cursor is repositioned at the top
of the METAHEADER in the file.

If the Aldus key is not found, the cursor is repositioned to the start of the file, the
METAHEADER is read and the cursor is again moved to the beginning of the file. There is no
good way to identify a non-aldus metafile so you will need to hope that the metafile is stored in
one of these two formats. In either case, the net result is that the MHeader record variable has
been populated and the cursor moved to the beginning of this header in the file.

At this point, the process of creating either type of metafile is identical so I use the
mtSize field to determine the amount of memory that I need to allocate and load those many
bytes into the memory area. I have used the new Windows 3.1 _hRead function so that I can
accommodate metafiles greater than 64k such as Corel might produce. If you plan to run on
Windows 3.0, you will have to do a little more checking of the size and use the lRead function,
simply preventing users from loading large metafiles. Finally, I use SetMetaFileBits to create the
actual metafile that is returned by the function. The memory is not then freed because is used to
contain the contents of the metafile, the handle of which is returned as the function result.

Saving the Metafile
The process of saving the metafile is more direct because I know what format I want. It is

merely the process of populating the Aldus header with the correct information, most of which is
passed by the calling program, and calculating the checksum value by Xor-ing everything. Next I
write out the Aldus header, followed by the data returned by the GetMetafileBits function, again
using the new Win 3.1 huge memory routine: _hWrite.

 Creating a Drag 'n Drop Server Application

While the process of being a Drag 'n Drop client application is clearly documented for C
programmers, the process of becoming a server application isn't documented at all, even for
those using the SDK. Therefore, I have written a DLL which provides the necessary functionality
to Visual Basic. D&DSERVE.DLL is designed to take all of the heartache out of being a D&D
server. Once you get a _MouseDown event, the DLL takes over and does the rest, including the
changing the cursor and eventually dropping the files.

Function Summaries:
DropSelItems Drops the selected files in a multi-select List Box
DropAllItems Drops all the files in a list box
DropBuff Drops files contained in a passed buffer

Function Declarations:
Declare Function DropSelItems Lib "D&DSERVE.DLL" (ByVal hList, ByVal Path$, ByVal
nButton)
Declare Function DropAllItems Lib "D&DSERVE.DLL" (ByVal hList, ByVal nButton)
Declare Function DropBuff Lib "D&DSERVE.DLL" (ByVal Buff$, ByVal nButton)

Function Details:

DropSelItems: (D&DTEST1.MAK)
 You must use a multi-select list box to use this function. The demo code for this function
looks something like this:

Sub MyFileList_MouseDown (Button As Integer, X As Single, Y as Single)
 Path$ = Dir1.Path + "\"
 hTarget = DropSelItems (MyFileList.hWnd, Path$, Button)
End Sub

where hTarget will be the hWnd of the Window on which the selected files were dropped or Zero
if the mouse was not released over a valid window. One caveat is that the left mouse button will
generally remove the selections from an extended selection list box (the File Manager does a ton
of special processing). Therefore, you might want to specify for the user that the Right mouse
button be used to drag from the list box.

DropAllItems: (D&DTEST2.MAK)
 This function has two advantages. First, it does not require a multi-select list box so
those of you still using VB1.0 and without add-ons will be able to use it. Second, it is capable of
dealing with files from multiple directories which DropSelItems (or even FileManager) is not
capable of. Keep in mind that since you do not pass the path to this function, each file name in
the list must be fully qualified. When used, this function will drop all of the items in the list on
the target window.

DropBuff: (D&DTEST3.MAK)
 This function is provided primarily for those programming systems that are not able to
use a standard list box or have special needs. In this case, you are essentially constructing the
buffer that will be sent to the target window. The format of this buffer is a fully qualified
filename, followed by a null, followed by another filename+NULL, etc., and finally terminated
by another null.
 Visual Basic will add the terminating null so you don't need to worry about the second
one. You just need to construct a string like so:

N$ = Chr$(0)
Buff$ = "C:\AUTOEXEC.BAT" + N$ + "C:\DOS\README.TXT" + N$

and then pass it ByVal to the function. I don't generally recommend this function as it is the least
intuitive to the user but it might be helpful under special circumstances.

Testing your Code:
 I have found WRITE to be the best place to test these functions as it is one of the only
WINAPPs that supports the dropping of multiple files (into the client area, *not* on the icon!).

Source Code:
The source code for D&DSERVE.DLL was written in Turbo Pascal for Windows.

 Creating a Drag 'n Drop Client Application

One of the most exciting new features of Windows 3.1 is support for an inter-application
Drag 'n Drop protocol. When working in the File Manager utility that ships with Windows 3.1,
you can select one or more files and, using the mouse, "drag" those files and drop them on
another application. The program from which the files are dragged is called the D&D Server and
the program which receives the files is referred to as the D&D Client. The examples of clients
that ship with Windows 3.1 include Notepad, PaintBrush, Write, Program Manager and Print
Manager. In the case of Notepad and PaintBrush, the dropped file is simply loaded. In Write, if a
file is dropped in the client area (the editing area) than the file is added as a packaged OLE
object in the open document. Only if the file is dropped in the non-client area (the title bar or
perhaps the icon of a minimized instance of Write) is it actually loaded as the active document.
Dragging a file to the Program Manager adds it to a group and dropping a file on the Print
Manager queues that file for printing.

While these applications only scratch the surface of the potential of Drag and Drop, they
do fall neatly into three general categories of D&D functionality: document loading, document
embedding and document management. The purpose of this article is to reveal what is involved
in exploiting this technology from Visual Basic as well as some of the considerations that need to
be addressed when providing functionality in one of these three categories.

Ease vs. Flexibility
We are often confronted with a trade-off between ease of use and flexibility. Such a

conflict becomes obvious to Visual Basic programmers with the introduction of version 3.1 of
Windows. Because VB is designed to hide much of the intricacy of the operating system, it is
consequently resistant to improvements or additions to that system. Drag and Drop is an example
of added functionality that is easy for a typical C programmer to implement but difficult for a VB
programmer because Windows is not designed around the VB programming paradigm.

Communication with applications under Windows is accomplished via series of messages
that are sent either by other applications or by the operating system itself. A typical C program is
built around a single routine. This function has the equivalent of an enormous SELECT CASE
statement that takes action based on received messages. Because these messages are sent with a
standard set of parameters, it is often the job of the C programmer to manipulate these
parameters depending on the message. For example, the last parameter is always a long integer
but sometimes it need to be treated as a pointer to an array or perhaps as two short integers.

In VB these messages have all been built into the development environment as standard
events with meaningful names and parameters. For example, when a C programmer deals with
the WM_MOUSEDOWN message, he must remember that the wParam specifies which mouse
button and the lParam contains the X and Y coordinates of the mouse. The VB programmer
simply gets the _MouseDown (Button, X, Y) event. This makes the processing of events a much
more straightforward exercise. The problem arises, however, when a particular message isn't
supported by VB such as the new WM_DROPFILES in Windows 3.1. While a C programmer
would simply add another test to the big switch statement, there is no way to add events to a
form in Visual Basic...or is there?

Trapping Messages Directly
There are two ways that a message gets to a Windows application. It is either "sent" or

"posted." High priority messages are sent by the operating system simply by calling the main
window procedure (the one with the big Select Case statement). Lower priority messages are
posted to the application and sit in a queue of up to eight messages and are retrieved when the
application has a chance to get to them. Ultimately, the application retrieves the messages from
the queue and sends them to itself but that doesn't really concern us here. What does concern us
is that we can't touch messages that are sent to a VB application (unless we use a custom control
like CSFORM in Crescent Software's QuickPak or the subclass control in Desaware's Spyworks
-- look for a generic subclass control in a future issue of VBZ) but we can take a peek at the
queue for messages that have been posted to us. Luckily, the WM_DROPFILES message gets
posted so we can intercept it.

The API function we use to peek in on the queue of waiting messages is appropriately
named PeekMessage. This function is declared as follows:

Declare Function PeekMessage Lib "User" (lpMsg As Msg, ByVal hwnd%, ByVal
wMsgFilterMin%, ByVal wMsgFilterMax%, ByVal wRemoveMsg%)

where Msg is a record variable which is defined in the following manner:

Type Msg
 hWnd As Integer
 MsgNum As Integer
 wParam As Integer
 lParam As Long
 Time As Long
 Pt As POINTSTRUC
End Type

and POINTSTRUC is another record variable which is simply two integer values used to specify
the X and Y coordinates of the message:

Type POINTSRUC
 X As Integer
 Y As Integer
End Type

PeekMessage is a boolean function that returns a 1 if the first message in the queue for
the window specified with hWnd% is within the range we set with wMsgFilterMin% and
wMsgFilterMax%. The Msg structure is then populated with the information about the message
and its parameters. The problem arises, however, when we need to look at the next message in
the queue, since PeekMessage only looks at the first message. The only way to look at the next
message is to allow the application to process the first message. However, your application will
not pull messages from the queue (using GetMessage coincidentally) until your routine is
finished processing. The way to make your routine take a gasp is with a call to DoEvents.
Therefore, you would construct a loop to look for the WM_DROPFILES message (563) like this:

While DoEvents ()

Res = PeekMessage(NewMsg, hWnd, 563, 563, 3)
if Res <> 0 then

'process message here...
end if

Wend

The best place to put this sort of loop is Sub Main in a VB program. This allows us to minimize
the code in the form and keep it separate. A number of messages are posted to applications and
are therefore accessible from a PeekMessage loop. For example, it is possible to centralize
keyboard handling in a VB program using this same technique.

Handling the WM_DROPFILES Message
Now that you have looked at the micro level and determined how to handle message

processing in VB, the next step is to determine what's involved in processing files dropped on
your application by the File Manager. There are four important functions in the new
SHELL.DLL for use when providing D&D functionality. These functions are listed in Table 1.

The first step is to register your window as a recipient of files. You don't want the user
dropping files on just any old application and the way to alert the system to your willingness to
accept files is to call the DragAcceptFiles function which is declared the following way:

Declare Sub DragAcceptFiles Lib "Shell" (ByVal Wnd%, ByVal Accept%)

where Wnd is the hWnd of the form that is to receive files and Accept is a boolean value which
specifies whether or not to accept files. Once you have made a call to this function, File Manager
knows that it can drop files on your form or icon and will send you the WM_DROPFILES
message to notify you that it has done so. Using the PeekMessage loop outlined above, you will
be able to determine when this happens

 Now that you have the message, you need to process it. That's actually the easy part!
Once you know that you have the message you need, you use the various fields in the MSG
structure to determine which files were dropped on your window. Actually, the only field of
importance here is the wParam which contains a handle to an internal data structure containing
information about the files that have been dropped. This is actually just a handle to global
memory that we could walk directly but since SHELL.DLL provides an API for using this
handle, who am I to do something else?

The first function of interest is the DragQueryPoint function which is declared like so:

Declare Function DragQueryPoint Lib "Shell" (ByVal hDrop%, lpPNT as POINTSRUC)

where hDrop% is the handle that was sent as the wParam of the WM_DROPFILES message and
lpPNT is a long pointer to a POINT structure (shown above). The lpPNT will be populated with
the X and Y coordinates of the dropped files relative to the client area of the window. The
DragQueryPoint function is a boolean function that specifies whether the files were dropped in
the client area of the window or not. It is with this information that WRITE decides whether to
load the file, if it's in the non-client area, or to simply add the file as an OLE object at the
appropriate location in the document.

Now that you know where the files were dropped, you need to find out which files were

dropped -- and that is the purpose of the DragQueryFile function which is declared as below:

Declare Function DragQueryFile Lib "Shell" (ByVal hDrop%, ByVal iFile%, ByVal lpBuff$,
ByVal BuffSize%)

where iFile% is the file number (zero based), lpBuff$ is a pointer to a buffer in which to place
the file name and BuffSize% is the size of the buffer. You first call the function with a -1 as the
file number and it will return the total number of files. If iFile% contains a valid number then
DragQueryFile returns the number of bytes that were copied into the buffer.

Finally, you will want to free the dropfile handle and this is accomplished with a simple
call to the DragFinish function in SHELL.DLL.

A Generalized Module
Whenever I implement new technology in VB, I try to encapsulate it entirely into a

module that can be reused. Sometimes this is more difficult than others. This module,
~D&DMAIN.BAS (the tilde forces the module to the bottom of the project module list), can be
added to any project to add client Drag and Drop capability. This module contains a fairly
generic Sub Main that can be added to your project. Of course to make it work, you will have to
specify that Sub Main should be the "Startup Form." To a make a re-usable module I had to use a
couple of tricks (see the Sidebar entitled Stack Substitution) and make a couple of assumptions.

The first assumption is that the FormName property of the main form is set to
"ClientForm" rather than its default "Form1." There is no clean way to determine the FormName
dynamically and this method allows you to be certain about which form is being used for Drag
and Drop purposes.

The second assumption is that you have a subroutine in another module called
Form_FileDrop which is prototyped as follows:

Sub Form_FileDrop (FileArr$(), nFiles%, X%, Y%, Client%)

where FileArr$() is a string array that will contain the names of the files that were dropped,
nFiles% contains the number of files (I suppose you could use UBOUND but this seemed
cleaner when I wrote it), X% and Y% contain the point at which the files were dropped and
Client% is a boolean variable which specifies whether or not the files were dropped into the
client area of the target window. I chose to name the routine this way in hopeful anticipation of
this becoming a standard event in the next version of VB. You need a separate module because,
while you can create a routine of this name as part of your form code, it cannot be called from an
outside module. Bummer.

At first glance this seems like extra work because you need to have two different module
in your project and, in fact, it is more work initially. However, after you have built a module of
this sort once, the process of building a D&D client application becomes trivial as you will see in
the two examples below.

A Punk Rock Trash Can (an esoteric New Wave reference?)
As I said earlier, one of the type of applications that take advantage of D&D is File

Management. By this I mean that the utility exists simply as an icon at the bottom of the screen
and when one or more files is dropped on the icon, something gets done with them. A classic

example would be a trash can which deleted the files that were dropped on it. Other examples
include loading multiple instances of the application that uses that file (because you can only
drag one file to Notepad and PaintBrush, for example), zipping the files, appending the files and
many more. For my example, I chose to write a trash can utility because the amount of
processing code is minimal.

My first goal was to create a program that existed only as a utility that couldn't be
restored to a normal window by double-clicking. Once again, this is a task which is easily
accomplished in C. You just return a zero when you get the WM_QUERYOPEN message. At
first, you might think that you could use the PeekMessage method to deal with this message but
there are two problems. First, this message is sent so you can't see it and second, there is no good
way for you to respond to a message. Therefore I needed an alternative. Through
experimentation I found that as I removed elements from the window such as .MinBox,
corresponding options disappeared from the system menu. Accordingly, I tool this to an extreme
and turned off everything and -- wouldn't you know -- the restore option disappeared as well and
double-clicking to restore went away in the bargain. Table 1 contains the definition of
VBTRASH.FRM and if you set these properties the only options in the system menu are Move,
Close and Switch To... Cool!

Table 1. VBTRASH.FRM Definition

Property Setting
BorderStyle 1 - Fixed Single
Caption TRASH
FormName ClientForm
Icon Icon {icons\computer\trash01.ico}
MaxButton False
MinButton False
WindowState 1 - Minimized

One thing that requires care is the WindowState property. It seems to change back to
normal when you least expect it. Therefore, make sure that you set it to "1-Minimized" just
before you build your EXE. Don't forget that the Sub Main depends on the fact that FormName
is set to "ClientForm."

The final set is to add a new module to the project. I called mine VBTRASH.BAS. As
you can see, the process of deleting all of the files is simply a matter of a stepping through the
FileArr string array. Creating new utilities is simply a matter of changing the contents of this
module and the icon property of the form. It took me an hour to write the first utility and fifteen
minutes to write three more!

 Status Bar Help on Controls and Cursors

The Problem:
 A number of people have asked for a way to provide a status bar for the user, depending
on the position of the mouse. There are two aspects to this. First, it is necessary to know when a
menu item has been highlighted by the user (although not yet selected). Both MS EXCEL and
MS WORD for WINDOWS provide a short help prompt depending on which menu item is
highlighted.
 The second part of this task is to provide some help prompt when the mouse is hovering
over a particular control. While the Mouse_Enter event is available under HyperCard and
Toolbook, it is missing from VB (and from Windows, in general).

The Solution:
 As you might guess, MWATCH.DLL is the solution! <g> -- or at least a partial one.
Once you register your Form with MWATCH, specifying the control (or form to be notified) a
_KeyDown event will be triggered every time the cursor is someplace different, either over a
new control or in a menu. If the cursor has been moved over a control, the hWnd of that control
is passed to the _KeyDown event in the KeyCode parameter. If a menu item has been selected
than the Menu ID of that menu item is passed as a negative number in the KeyCode parameter.

The Cursor Enters a Control:
 Once the cursor moves over a control, the _KeyDown event is triggered with the hWnd
of the control in the KeyCode parameter, as noted above. You can determine the hWnd of various
controls at start-up and then use a Select Case loop to determine the help text to display.
 Alternatively, MWATCH also exports a couple of useful utility functions to assist you:
HWndCtlName and HWndTag. HWndCtlName$ will return the name of a control, given its
hWnd and HWndTag will return the text in the .Tag property of the passed hWnd. Using this
technique, you can either use a Select Case loop through the CtlName's to determine the help text
or, if you don't need the .Tag property for something else, the easiest thing is to put your help text
in the .Tag property and simply use HWndTag to retrieve this text at run-time. Please see the
sample app MENTER.MAK for demonstrates of these functions in context.

The Cursor Enters a Menu:
 Once the cursor highlights a menu item (or it is triggered with the keyboard), the
Form_KeyDown event is triggered with the MenuId in the KeyCode parameter. Once again, you
can check these once when you are finished designing your menu because they will be the same
(except for the top-level menu heading) every time the app is run. You could then set up a Select
Case statement to check KeyCode against various MenuIds.
 Alternatively, MWATCH exports a function called: MenuCaption. The MenuCaption$
function takes a MenuId as a parameter and returns the caption of the menu item. See
MENTER.MAK for an example of this function in use. PLEASE NOTE: the MenuCaption
function was written specifically for this DLL to save you calling a bunch of Windows API
functions and it WILL NOT work outside of your Form_KeyDown handler! The HWndCtlName
and HWndTag functions can be used in other contexts but this is NOT THE CASE with the
MenuCaption function.
 Also, at this point, MWATCH doesn't generate an event when the user is in the system

(or control) menu. I was just lazy. If a lot of people request it, I can add it.

 A PLAY Command for Visual Basic

Those of you familiar with the PLAY statement already know how to use it. However, it
is missing from VB. WINPLAY.DLL provides this function in a DLL that can be called easily
from VB.

Function Declaration:
Declare Sub Play Lib "WINPLAY.DLL" (ByVal Song$)

For those of you who are not familiar with the syntax of the PLAY statement, here is a
table of the things you can use when constructing this string:

Table 2 PLAY Commands
Command Action
A-Gnn Play that note for that length
#,+ Sharp the immediately previous note.
- Flat the immediately previous note.
. Dot the immediately previous note. (3/2 length)
 > Up one octave
 < Down one octave
Lnn Set default length for notes that follow.Default is L4.
MB Music in background
MF Music in foreground (default)
ML Music Legato (full length)
MN Music Normal (7/8 length)
MS Music Staccato (3/4 length)
Nnn Play this numeric note (1-84)
On Set Octave. (0 - 6).Default is O4, where C is an

octave above middle C. Pitches in an octave begin at
C and work upwards to B.

Pnn Pause for that duration
Tnnn Set tempo (32-255). The number of quarter notes in

one minute. Default is T120.

Details:
This function is not entirely self-contained as it is in QuickPak and VBTOOLS. The

reason was to provide complete flexibility, in terms of the buffer used by Windows to hold the
notes. When playing notes in the background, a bigger buffer allows more notes to be stored and
the function returns to the calling program *much* faster.

Therefore, you need to call a couple of Windows API function to actually make this DLL
work. Of course, you could make your own PLAY function in VB which encapsulates all of this.

Here is a summary of the Windows API functions that you will need to use:

Table 1. Sound Functions in the Windows API
OpenSound Opens the sound driver for exclusive use

CloseSound Closes the sound driver, making it available
SetVoiceQueue Sets the size of the voice queue

Hopefully the PLAYDEMO.MAK sample will be sufficient to explain the use of each of
these functions. One caveat that you should keep in mind, however, is that once you have opened
the sound queue with OpenSound it is not available to other programs until you issue a
closesound. For this reason, it is a good idea to call CloseSound as soon as possible after you are
done making a particular sound.

Source Code:
The source code for WINPLAY.DLL is in Turbo Pascal for Windows.

 Musical MsgBox and Beep Commands

Under Windows 3.1 we have seen that the wType parameter of the MessageBeep
statement is to play a particular .WAV file and that these same constants correspond to the ones
used to put icons in message boxes. For those without Windows 3.1, or without Sound cards, I
have written these functions to provide similar functionality.

Function Summaries:
MusicBeep Same as MessageBeep but plays a sound
MusicBox Same as MessageBox but plays a sound

Function Declarations:
Declare Sub MusicBeep Lib "msgmusic.dll" (ByVal wType)
Declare Function MusicBox Lib "msgmusic.dll" (ByVal hWnd, ByVal Text$, ByVal Caption$,
ByVal wType)

The wType parameter in both cases corresponds to the values used with a MessageBox (MsgBox
in VB). They are the following:

Const MB_ICONSTOP = 16 ' Critical message
Const MB_ICONQUESTION = 32 ' Warning query
Const MB_ICONEXCLAMATION = 48 ' Warning message
Const MB_ICONINFORMATION = 64 ' Information message

which you "Or" with other constants to specify which buttons should be displayed in the
message box and which button should be the default.

The DLL functions work in an identical fashion except that they produce a sound which
roughly corresponds to the icon that appears in the message box. These are the constants and the
sounds that they produce with these functions:

MB_NOICON (&H0) Doorbell
MB_ICONSTOP (&H10) British 2-tone siren
MB_ICONQUESTION (&H20) "Huh?!"
MB_ICONEXCLAMATION (&H30) "Oh, oh!"
MB_ICONINFORMATION (&H40) Phone

Differences with VB:
The BEEP statement in VB actually calls the MessageBeep function in the Windows API

and passes a 0 as the wType. You will need to use the declaration as above when calling
MusicBeep instead. This can be useful if you want to associate these sounds with something
other than a message box, perhaps your own VB form. I also use them a lot in debugging code.
Please note that none of these constants actually produces the boring beep. You will have to call
out to BEEP to accomplish that.

The MessageBox statement in the Windows API has an additional parameter at the

beginning which is the hWnd of the parent window that is to own the MessageBox. This can be
set to the hWnd of the current form or even to zero. It is in this function to maintain
compatibility with the MessageBox statement in the API. You could construct a function in VB
which is similar to the MsgBox function in the following way:

Function MusicMsgBox (Msg$, Type%, Title$)
MusicMsgBox = MusicBox (Screen.ActiveForm.hWnd, Msg$, Title$, Type%)

End Function

Please note that none of these parameters are optional as they are in VB.

As you can see, it's possible to get some pretty nice sound effects out of Windows without using
any multimedia functions.

Source Code:
The course code for MSGMUSIC was written in QuickC for Windows

 Creating Windows 3.1 Screen Savers

A great many people have asked about how to create a Windows 3.1 screen saver in VB.
It's actually not so tough. There are only a few things you need to know.

Command Line Parameters
First, screen savers are really just EXEs that have been renamed. Second, when these

EXEs are run, they are called with command line arguments based on what operation is needed.
If the screen is to be saved, the "-s" parameter is passed on the command line (retrievable via
COMMAND$). If the screen saver is to be configured, a "-c" is passed on the command line.
Therefore, your "Startup Form" should be Sub Main in a module rather than a form. From within
this routine, you check Command$ and .Show either the save form or the config form.

The Configuration Form
The config form should have some way of saving configuration info like a private INI

file (I don't believe in adding things to the WIN.INI that don't represent system information but
that's just me).

The Screen Save Form
The "save" form should be created without the title bar, the control box, without a border

and without the Min/Max buttons. When launched, it should maximize to take up the whole
screen. You can then draw all over it in any way you wish. The _KeyDown, _MouseMove and
_MouseDown events should all have the END statement in them.

Showing up in Control Panel
The final tidbit is that you need to specially name the EXE in the

"Make EXE" dialog. The name must be in the form

 SCRNSAVE SaverName

where SaverName is the name you want to have appear in the control panel.
After you create the EXE, you rename it to .SCR and copy it to the
Windows directory and you're done.

Using the Windows Screen Saver Password
You will notice that the screen savers that come with Windows give you the option of

using a password for re-entry into the desktop after the screen save is finished. This process is
provided to C developers via a static link library SCRNSAVE.LIB. Accordingly, since this
library is useless to VB programmers, I have written SSAVE.DLL to provide the password
dialogs and functionality. There are two functions in this DLL. One is GetSSPassword which you
call when you are about to end the screen saving process. This will put up a dialog box,
prompting the user for a password. The function will return True if the correct password was
entered, otherwise it will return False. The second function is SetSSPassword which is a
subroutine which will put up a dialog box for the user to change the screen save password. There
is no return from this as this activity is independent of your application.

Building a Screen Saver
I have tried to provide a generalized module for creating screen savers called

SCRNSAVE.BAS. You need to add this to your project and take the following steps:

1. Create a config dialog and call it ConfigForm. Note that this is the "name" of the form, not the
file name.

2. Create a saver form (no caption, control box, min/max buttons and maximized) and call it
SaveForm.

3. In the _KeyDown, _MouseDown and _MouseMove event handles of SaveForm, you need to
make a call to TryToGo. This will pop up the dialog to retrieve the password, if there is one and
end the program if there isn't.

4. Set the startup form of your application to Sub Main.

SCRNSAVE.BAS will handle the command line parameters and launch the appropriate form of
the screen saver. This module also disables screen saving when you are running so that multiple
instances will not be called and restores the screen saver functionality when you call TryToGo.

 The VBZ Utility Library

Every so often, there are functions that become necessary to throw in a DLL. Many of
you have requested that we stop creating one-function DLLs and this makes sense. The result of
this request is VBZUTIL.DLL which is designed to contain all of these little utility functions that
don't quite belong anywhere else. Don't mistake these for trivial functions because if they were,
they wouldn't have to be in a DLL. In fact, it is in this library that some of the most important
and creative functions will be found.

What goes into this DLL is guided both by our discoveries and needs and requests from
you. All that we ask is that you don't request standard functions that can be found in any
commercial add-on package. In other words, don't look for a routine to sort integer arrays any
time soon. Other than that, the sky's the limit. You never know what's possible unless you ask
and we can never anticipate people's needs. The functions in this library will often be used in
context in the samples programs that come with VBZ but there will be no samples devoted to
these functions. If you would like this to be otherwise, let us know.

The function reference for VBZUTIL.DLL will always be updated instead of being
fragmented over every issue. This is the one example where you can get the latest issue and
know that you are not missing anything which is not the case for the DLLs and samples in the
features.

VBZUTIL Function Reference
The declarations can be found in VBZUTIL.BAS

CtlName
Returns the name of a control as a string.

Prototype
Declare Function CtlName$ Lib "VBZUTIL.DLL" (C As Control)

Usage

tbName$ = CtlName$ (Text1)

Comments
This function exists because of the unavailability of the .Name property of a control at

runtime. You use it in much the same way you would a control, however.

CtlUBound & CtlLBound
Returns the upper and lower bounds of a control array.

Prototypes
Declare Function CtlUBound Lib "VBZUTIL.DLL" (C As Control)
Declare Function CtlLBound Lib "VBZUTIL.DLL" (C As Control)

Usage

UpperBound% = CtlUBound (MyControl (0))
LowerBound% = CtlLBound (MyControl (7))

Comments
Don't pass a control to either of these functions unless you know it to be a member of a

control array. *Don't* pass the control array with an open paren. You must pass a valid control to
the function but it can be any element in the array.

GetHInstance
Returns the instance handle of your current application.

Prototype
Declare Function GetHInstance Lib "VBZUTIL.DLL" ()

Usage
myhInstance% = GetHInstance()

Comments
This value is necessary for a number of Windows API functions so it is provided here.

HWnd2Ctl
Returns the element into the VB2 .Controls() collection of a form, given the control's

hWnd.

Prototype:
Declare Function HWnd2Ctl% Lib "VBZUTIL.DLL" (ByVal hWnd%)

Usage:
 Dim C As Control
 'you got the Wnd% from someplace, like MWATCH
 El = HWnd2Ctl% (Wnd%)
 If El > -1 then Set C = Me.Controls(El)

Comments:
At this point, you may use C as if it were a normal control and access all of its properties

directly. This function is very useful in applications when you have an hWnd but you need access
to the underlying properties of the control.

HIWORD & LOWORD
Returns the HiWord or LoWord of a LONG integer.

Prototypes
Declare Function HIWORD Lib "VBZUTIL.DLL" (ByVal LongVal&)
Declare Function LOWORD Lib "VBZUTIL.DLL" (ByVal LongVal&)

Usage

HW% = HIWORD (MyLong&)
LW% = LOWORD (MyLong&)

Comments
Often a DLL function will return a long integer which contains two short integers. These

functions will help you to parse out those values.

LPSTR2Str
Creates a Visual Basic string from an C null terminated string (LPSTR)

Prototype
Declare Function LPSTR2Str$ Lib "VBZUTIL.DLL" (ByVal LPSTR&)

Usage
MyString$ = LPSTR2Str$ (lpstr&)

Comments
Sometimes a DLL function will return a C language string and you will want to get this

into a VB string.

LP2Str
Creates a VB language string from any block of memory.

Prototype
Declare Function LP2Str$ Lib "VBZUTIL.DLL" (lp As Any, ByVal nBytes)

Usage
MyString$ = LP2Str$ (ByVal lp, 283)
MKI$ = LP2Str$ (MyInt, 2)

MAKELONG
Create a LONG integer from two short integers.

Prototype
Declare Function MAKELONG Lib "VBZUTIL.DLL" (ByVal loword%, ByVal hiword%) As
Long

Usage
MyLong& = MAKELONG (Var1%, Var2%)

Comments
Often a DLL function requires a LONG integer parameter which is really two short

integers. This function will allow you to call those functions. It is identical to the MAKELONG
macro which is listed in the SDK documentation but that is unavailable in a Windows DLL.

ReCreateControlhWnd

Recreates the hWnd associated with a particular control.

Prototype
Declare Sub ReCreateControlhWnd Lib "VBZUTIL.DLL" (C As Control)

Usage
This sample changes a single-column, single-select list box to multi-column, multi-select. While
this is no longer necessary with a standard list in VB2 (though File Lists still can't be multi-
column for some reason), it demonstrates the use of the DLL.

 OldLong& = GetWindowLong&(File1.hWnd, GWL_STYLE)
 OldLong& = OldLong& Or LBS_EXTENDEDSEL Or LBS_MULTICOLUMN
 SetWindowLong File1.hWnd, GWL_STYLE, OldLong&
 RecreateControlHwnd File1
 File1.Refresh

You can also look at the D&DTEST1.MAK sample that came with VBZ01.

Comments
This function is useful when you need to change a pre-hwnd style of a control

dynamically or when you need to gain access to a style that has not been exposed by VB, such as
justification in a text box. This is an advanced function. Use it with care!

Str2Ctl
Returns the element into the VB2 .Controls() collection of a form, given the control name

as a string.

Prototype:
Declare Function Str2Ctl% Lib "VBZUTIL.DLL" (Frm As Form, CtlName$)

Usage:
 Dim C As Control
 CtlName$ = "Text1"
 El = Str2Ctl% (Me, CtlName$)
 If El > -1 then Set C = Me.Controls(El)

Comments:
 At this point, you may use C as if it were a normal control and access all of its properties
directly. This function is very useful in database applications when you want to be able to relate
control names to corresponding column names in a database table.

USHORT
Returns the unsigned version of an integer into a long integer.

Prototype:
Declare Function USHORT& Lib "VBZUTIL.DLL" (ByVal Word)

Usage:
Unsigned& = USHORT& (MyWord%)

Comments:
VB lacks the unsigned integer data type (often called a WORD). This function will allow

you to calculate the actual value from an integer, even one which has moved into negative
numbers.

 Recent Press Releases

This space will contain press releases for recent VB-related products. If you have a press
release that you would like included in this section, please send it via email to CIS:76702.1605
or on disk to:

User Friendly, Inc.
1718 M Street, N.W.
Suite 291
Washington, DC 20036

We will not transcribe press releases from hard copy, so you must get it to us in binary
form. Thanks a lot!

 What's Coming Up?

While we have a lot already in the works, the content of VBZ is largely up to you, the
reader, to dictate. If you are having a problem, send it in. If you want more of a particular type of
article -- beginner, advanced, more DLLs, more VB code -- let us know and we'll do our best to
accommodate your needs and wants. Here's our list thus far:

VB Developers Utilities
Button Bitmap Builder
Palette Builder (for PicClip among other things)
Stub Replacement
Object Manager
Code Generators
...and much more!

Visual Basic Techniques
Making VB Applications Behave
Calling DLL functions
Advanced Printing
Metafile Creation
Simplified Hotkeys
An Improved FindWindow Function
Waiting for other Apps to Execute
...and much more!

Dynamic Link Libraries
Custom Cursors
Tile/Cascade
SendKeys function for DOS Applications
Replacement for missing QB Functions (QBFUNC.DLL)
Additional VBZUTIL functions
...and much more!

Custom Controls
Generic Subclassing Control
Clipboard Viewer Control
Huge Scrollbars
...and many other specialized controls!

Improved Help Files
Binary Sample Extraction
More links

The rest is up to you! Be sure and let us know which of these things are of greatest
interest to you so that we can bump them to the top of the list to complete.

 What's Gone Before?

This section will be devoted to a summary of the features in previous issues. As there are
no previous issues at this time, there's nothing here but this boring explanation. With a little
research, we might use this space to actually launch the appropriate issue of VBZ and jump right
to the article of interest.

 Letters

No letters in this issue! Write soon and write often. We want to hear your suggestions on
how to improve the journal, topics you want covered, solutions you have come up with, mistakes
we have made or anything else you can come up with. We look forward to hearing from you and
making VBZ the best it can be for you! Some possible suggestions might be:

More standardized look and feel for the journal
Shorter/Longer Articles
Articles Broken up into sub-topics (good for browsing, bad for printing)
Better Explanation of the workings of the DLLs/Controls
More/Fewer Add-On Reviews
Inclusion of the sample code in the VBZ??.HLP file

Address letters to:

VBZ Response
User Friendly, Inc.
1718 M Street, N.W.
Suite 291
Washington, DC 20036

or fax them to:

(202) 785-3607
Attn: VBZ Response

or email them to Jonathan Zuck on Compuserve:
76702,1605

 Fixes and Updates

This section is reserved for the inevitable fixes and upgrades that will be necessary to the
samples, custom controls and DLLs that will be posted. Included will be a new version number
(as is in the version resource), updated files, and a list of things that have changed. This will not
be complete documentation for the files so this section will be primarily for those of you with the
original issue.

