
COMMON-ISDN-API

Version 2.0

Final Draft

January 1994



Author:
COMMON-ISDN-API working group
all rights preserved

Editor:
AVM GmbH
Voltastr. 5
D-13355 Berlin
Germany 

First Edition (January 1994)

published by:
Telekom ROLAND
Eurolab
COMMON-ISDN-API working group
Postfach 91 00
D-55541 Bad Kreuznach



Germany



Contents

µSpecial Notices.......................................................................................................................iii

Preface........................................................................................................................................1

1 Introduction............................................................................................................................3
1.1 Scope..............................................................................................................................3
1.2 Features..........................................................................................................................3

2 Overview.................................................................................................................................5

3 Message Overview..................................................................................................................7
3.1 General Message Protocol.............................................................................................7
3.2 Type Definitions............................................................................................................7
3.3 Message Structure..........................................................................................................8
3.4 Manufacturer Specific Expansion..................................................................................8
3.5 Table of Messages..........................................................................................................9

4 Exchange Mechanism..........................................................................................................11
4.1 Message Queues...........................................................................................................11
4.2 Operations on Message Queues...................................................................................11

4.2.1 Registering an Application...........................................................................................................12
4.2.2 Messages from Application to COMMON-ISDN-API................................................................12
4.2.3 Messages from COMMON-ISDN-API to Application................................................................12
4.2.4 Releasing an Application.............................................................................................................12
4.2.5 Other Operations...........................................................................................................................12
4.2.6 Manufacturer Specific Expansion................................................................................................12

4.3 Table of Operations.....................................................................................................12

5 Message Descriptions...........................................................................................................15

6 Parameter Descriptions.......................................................................................................65

7 State Diagram.......................................................................................................................91
7.1 User's Guide.................................................................................................................91
7.2 Explanation..................................................................................................................92
7.3 Diagrams......................................................................................................................93

7.3.1 LISTEN State Machine................................................................................................................93
7.3.2 PLCI State Machine.....................................................................................................................94
7.3.3 NCCI State Machine.....................................................................................................................96

8 Specifications for commercial Operating Systems...........................................................98
8.1 MS-DOS......................................................................................................................98

8.1.1 Message Operations......................................................................................................................99
8.1.2 Other Functions..........................................................................................................................104

COMMON-ISDN-API Version 2.0 i



8.2 Windows (application level)......................................................................................113
8.2.1 Message Operations....................................................................................................................114
8.2.2 Other Functions..........................................................................................................................118

8.3 OS/2 (application level).............................................................................................127
8.3.1 Message Operations....................................................................................................................128
8.3.2 Other Functions..........................................................................................................................132

8.4 OS/2 (device driver level)..........................................................................................141
8.4.1 Message Operations....................................................................................................................142
8.4.2 Other Functions..........................................................................................................................147

8.5 UNIX.........................................................................................................................155
8.5.1 Message Operations....................................................................................................................156
8.5.2 Other Functions..........................................................................................................................160

8.6 NetWare.....................................................................................................................165
8.6.1 Message operations.....................................................................................................................168
8.6.2 Other functions...........................................................................................................................174

Annex A (Informative): Sample Flow Chart Diagrams....................................................179
A.1 Outgoing call.............................................................................................................179
A.2 Incoming call............................................................................................................180
A.3 Transmitting Data.....................................................................................................181
A.4 Receiving Data..........................................................................................................182
A.5 Active disconnect......................................................................................................183
A.6 Passive disconnect.....................................................................................................184
A.7 Disconnect Collision.................................................................................................185

Annex B (Normative): SFF Format....................................................................................187
B.1 Introduction...............................................................................................................187
B.2 SFF coding rules.......................................................................................................187

B.2.1 Document header.......................................................................................................................187
B.2.2 Page header................................................................................................................................188
B.2.3 Page data....................................................................................................................................188

Index.......................................................................................................................................191

ii COMMON-ISDN-API Version 2.0



Special Noticesinhalt "Special Notices" \l1§

READER'S GUIDE

THIS DOCUMENT SPECIFIES COMMON-ISDN-API Version 2.0. Readers should be generally
familiar with ISDN concepts.

Chapter 1 serves as an introduction into the general concepts of COMMON-ISDN-API as an
application  interface from a global  point  of  view.  Chapter  2  provides  a  detailed  look at
COMMON-ISDN-API's  position  relative  to  the  OSI  layers  and  introduces  the  different
supported protocol options. Chapter 3 describes the basic mechanisms that ensure operating
system independence such as messages, message structures and the used message protocol.
Chapter  4  describes  the  operations  which  are  necessary  to  exchange  messages  between
COMMON-ISDN-API and applications. Chapter 5 and 6 specify in detail the functionality
and coding of each message and parameter. Chapter 7 defines the allowed actions in different
states of  a connection by introducing a presentation of state diagrams. Chapter 8 includes all
operating system dependent  COMMON-ISDN-API operations to exchange messages. It is
divided into  subchapters  for  each operating  system supported  by  COMMON-ISDN-API.
Annex A gives an intuitive understanding of how to connect, exchange data and disconnect,
exemplified by arrow diagrams. Annex B is added for providing a coding scheme used by
COMMON-ISDN-API to exchange fax G3 documents between COMMON-ISDN-API and
applications.  The  following  index  lists  every  message,  parameter  and  operation  of
COMMON-ISDN-API.

Disclaimer

Whilst every care has been taken in the preparation and publication of this document, errors
in content,  typographical  or  otherwise,  may occur.  If  you have comments  concerning its
accuracy,  please  write  to  "Telekom  ROLAND,  Eurolab,  COMMON-ISDN-API  working
group" at the address shown on the back of the title page.

The  COMMON-ISDN-API  working  group  makes  no  representations  or  warranties  with
respect to the contents or use of this manual, and specially disclaims any express or implied
warranties of merchantability or fitness for any particular purpose. Further, the COMMON-
ISDN-API working group reserves the right to revise this publication and to make changes to
its content, at any time, without obligation to notify any person or entity of such revisions and
changes.

Preface iii



Trademarks

The following terms are trademarks of companies, but they are not explicitly shown in this
text.

MS-DOS is a registered trademark of Microsoft Corporation.
NetWare is a registered trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc.
OS/2 is a trademark of International Business Machines Corporation.
UNIX is a registered trademark of UNIX Systems Laboratories Inc.
Windows is a trademark of Microsoft Corporation.

iv COMMON-ISDN-API Version 2.0



Preface v



Prefaceinhalt "Preface" \l1§

COMMON-ISDN-API (CAPI)  is an application programming interface standard used to
access ISDN equipment connected to basic rate interfaces (BRI) and primary rate interfaces
(PRI). By adhering to the standard, applications can make use of well defined mechanism for
communications over  ISDN lines,  without  being forced to  adjust  to  the idiosyncrasies of
hardware  vendor  implementations.  ISDN equipment  vendors  in  turn  will  benefit  from  a
wealth of  applications, ready to run with their equipment.

COMMON-ISDN-API is now a well established standard. Potential cost savings were the
driving  force  for  COMMON-ISDN-API controller  and  application  development.
Commercial  users in Germany are rapidly migrating to ISDN (Integrated  Services  Digital
Network) as the principal vehicle for data exchange of a wide range of formats.

In 1989 manufacturers started to define an application interface which would be accepted in
the growing ISDN market.  To get an acceptable result,  the focus of this standard was the
possibility of running the national ISDN protocol, for an ETSI ISDN protocol standard was
not available at this time. Work on this application interface was finished in 1990 by a CAPI
working  group consisting  of  application  providers,  ISDN equipment  manufacturers,  large
customers / user groups and DBP Telekom. COMMON-ISDN-API Version 1.1 was a great
step  towards  opening  the  national  ISDN  market  in  Germany.  Meanwhile  almost  every
German  ISDN solution  as  well  as  an  increasing  count  of  international  ones  is  based  on
COMMON-ISDN-API Version 1.1; there exists a well accepted conformance test laboratory
at DBP Telekom.

To reflect on the current situation it can be stated that the international protocol specification
is finished and almost every telecommunication provider offers BRI /  PRI with protocols
based on Q.931 / ETS 300 102.  COMMON-ISDN-API will be additionally needed for the
DSS1 protocol. Experience in ISDN application interface design, knowledge of the market
needs and a large installed base of COMMON-ISDN-API solutions (hardware controller and
applications on top of different operating systems) result in the necessity of  developing a
new application interface, usable in international ISDNs.

COMMON-ISDN-API  Version  2.0 includes  more  than  5  years  of  ISDN  business
implementation experience in an exploding market. It covers all benefits of CAPI Version 1.1
plus new aspects of ISDN (e.g.  Facsimile Group 3 connectivity or video telephony).  It  is
based on Q.931 / ETS 300 102 but not limited to these. It  simplifies the development of
ISDN  applications  through  many  defaults  which  need  not  to  be  programmed.  It  keeps
applications free of ISDN protocol knowledge and thus makes many applications possible.

By  using  COMMON-ISDN-API  Version  2.0 the  international  market  can  exploit  the
available experience and realise a large growth.

Chapter 2: Overview 1



Chapter 1: Introduction 2



1 Introductioninhalt "1 Introduction" \l1§

COMMON-ISDN-API enables  applications  to  access  ISDN  adapter  boards  in  a
straightforward manner and allows unrestricted use of their functions through a standardised
software interface.

Applications which use this interface will not be affected by future expansions or hardware
changes. COMMON-ISDN-API makes the changes transparent to  user application. Future
expansions that retain compatibility with  existing software base are possible.

COMMON-ISDN-API provides an abstraction of ISDN services that is independent from
the underlying network and from the adapters used to connect to the network. It provides an
easy-to-use  interface  for  applications  and  offers  a  unique  access  to  the  different  ISDN
services like data, voice, fax, video, telephony, etc..

COMMON-ISDN-API provides  a  base  for  modular  applications  development  in  ISDN
systems.

1.1 Scopeinhalt "1.1 Scope" \l2§

This document describes COMMON-ISDN-API, the application programming interface for
ISDN.  COMMON-ISDN-API is  designed  in  a  message-oriented,  event  driven  way.
COMMON-ISDN-API will be described in two parts: the main part defines each message
used and its message parameter. This part is entirely operating system independent. The other
part deals with operations needed to exchange these messages.

The specification of COMMON-ISDN-API as such is an application interface, however the
implementation of  COMMON-ISDN-API designates  a  kind  of  instantiation,  which  is
actually  seen  by  an  application  dealing  with  ISDN  communications.  The  state  diagrams
shown in chapter 7 explain behaviour of COMMON-ISDN-API from a point of view which
is set at  interface level, but also take the implementation of COMMON-ISDN-API as an in-
stantiation (for real states)  into consideration.

1.2 Featuresinhalt "1.2 Features" \l2§

COMMON-ISDN-API includes a number of important features.

· Support for  basic call features, such as call setup and clearing

· Support for several B channels for data and/or voice connections

· Support for several logical connections for data links within a physical connection

· Possibility of selecting different services and protocols during connection setup 

Chapter 3: Message Overview 3



and incoming call

· Transparent interface for protocols above layer 3

· Support for one or more Basic Rate Interfaces (Basic Access) as well as Primary 
Rate Interfaces (Primary Access) on one or more ISDN adapters

· Support of multiple applications

· Operating-system independent messages

· Operating-system dependent exchange mechanism for optimum operating system 
integration

· Asynchronous event driven mechanism, resulting in high throughput

· Well defined mechanism for manufacturer specific expansions



Chapter 4: Exchange Mechanism 5



2 Overviewinhalt "2 Overview" \l1§

COMMON-ISDN-API provides  a  standardised  interface  for  any  number  of  application
programs (applications) to any number of ISDN drivers and ISDN controllers. Applications
can be freely assigned to drivers and controllers.

· One application can use one controller

· One application can use more than one controller

· Several applications can share a single controller

· Several applications can share more than one controller

Applications can use different protocols at different protocol levels, COMMON-ISDN-API
provides a selection mechanism in support of this. COMMON-ISDN-API also performs an
abstraction  from  different  protocol  variants,  creating  a  standardised  network  access.  All
connection  related  data  such  as  connection  state,  display  messages  etc.  is  available  to
applications at any time.

µ §

Figure 1: Position of COMMON-ISDN-API 

COMMON-ISDN-API covers the whole signalling protocol as well as protocol layer 1 to 3
(physical  and  framing  layer,  data  link  layer  and  network  layer)  for  data  channels.  The
interface of COMMON-ISDN-API is located between layer 3 and layer 4 and provides the
point of reference for applications and higher level protocols.

COMMON-ISDN-API offers many currently used protocols to applications without deep
protocol  knowledge.  The default  protocol  is  ISO 7776 (X.75 SLP),  i.e.  framing protocol
HDLC, data link protocol ISO 7776 (X.75 SLP), and a transparent network layer.

Other supported variants of framing layer are:  HDLC inverted,  PCM (bit transparent with
byte  framing)  64/56 kBit,  V.110 sync  /  async.  COMMON-ISDN-API integrates  the
following  data  link  and network  layers:  LAPD according  to  Q.921  for  X.25 D-channel
implementation,  PPP (Point  to Point  protocol),  ISO 8208 (X.25 DTE-DTE),  X.25 DCE,
T.90NL (with compatibility to T.70NL) and T.30 ( fax group 3).

Even if not all protocols can be fit completely within the OSI scheme,  COMMON-ISDN-
API will always support three layers. Each layer can be configured by applications. In case of
illegal or meaningless combinations of protocol stack combinations (e.g. bit transparency 56
kBit and X.25 DCE) COMMON-ISDN-API will report this error.

The following chapter first presents the basic mechanism used for COMMON-ISDN-API. It
is based on message queues provided for the exchange of commands and data. The operations

Chapter 5: Message Descriptions 7



on these message queues are described, the structure of exchanged messages is indicated.
Afterwards  the  description  of  other  functions  for  identification  and  the  mechanism  for
manufacturer specific expansions will be provided.



3 Message Overviewinhalt "3 Message Overview" \l1§

THE TERM message is a fundamental one to define COMMON-ISDN-API. An asynchronous
mechanism,  used  to  exchange  information  only  defined  by  COMMON-ISDN-API
(messages), achieves operating system independence.. 

3.1 General Message Protocolinhalt "3.1 General Message Protocol" \l2§

Communication between application and COMMON-ISDN-API always uses the following
general protocol:

A message is always followed by a corresponding response. Messages from an application
going  to  COMMON-ISDN-API are  called  REQUESTs,  the  appropriate  answer  from
COMMON-ISDN-API is called CONFIRMATION. On the other side messages originating
from  COMMON-ISDN-API are called  INDICATIONs, the corresponding reactions of an
application are called RESPONSEs. This also is reflected in the naming convention of mes-
sages: every message name ends with the appropriate suffix (_REQ, _CONF, _IND, _RESP).

Each message contains a message number.  COMMON-ISDN-API will  always return the
number  used  in  the  REQUEST  message  in  the   corresponding   CONFIRMATION.
Applications may choose unique message numbers to identify message correlations before
interpreting  incoming  messages.  INDICATIONS  from  COMMON-ISDN-API will  be
numbered so that an application is guaranteed to get different message numbers for every
incoming INDICATION.

An  application  is  not  allowed  to  send  RESPONSE  messages  without  receiving  an
INDICATION. COMMON-ISDN-API will ignore these illegal messages.

3.2 Type Definitionsinhalt "3.2 Type Definitions" \l2§

Parameters are associated with every message exchanged.  To describe the message and its
parameters, only few basic types are used:

· byte coded as one octet

· word coded as two contiguous octets, least significant first

· dword coded as two contiguous words, least significant first

· struct coded as an array of octets, the first octet containing the length of 
following data. If the first octet has the value 255 (0xFF), it indicates 
an escape character for interpreting the following word as containing 
the length of the data. An empty struct will be coded as one single 
octet with value 0.

Chapter 6: Parameter Descriptions - CIP Value 9



Every message will be described in terms of these basic types.

3.3 Message Structureinhalt "3.3 Message Structure" \l2§

All messages exchanged between application and COMMON-ISDN-API consist of a fixed-
length header and a parameter area of variable length, parameter followed by parameter. No
padding occurs in the message or parameter area.

Message
header

Parameter
1

Parameter
2

..... Parameter
n

Figure 2: Message Layout

In  order  to  facilitate  future  extensions  of  this  standard,  messages  containing  additional
parameters shall be treated as valid messages.  COMMON-ISDN-API implementations and
applications shall ignore all additional parameters.

The message header has the following layout:

Total
length

ApplID Command Sub-
command

Message
number

Figure 3: Message Header Layout

Explanation of message header:

Message Type Contents

Total length word Total length of the message including the complete mes-
sage header.

ApplID word Identification of the application. The application number
is assigned to the application by COMMON-ISDN-API 
in the CAPI_REGISTER operation

Command byte Command

Subcommand byte Command extension

Message number word Message number as described above



3.4 Manufacturer Specific Expansioninhalt "3.4 Manufacturer Specific 
Expansion" \l2§

Manufacturer specific expansions of COMMON-ISDN-API will be possible without altering
the basic structure. They are identified by an appropriate command/subcommand field in the
message.

3.5 Table of Messagesinhalt "3.5 Table of Messages" \l2§

Messages are logically grouped into three kinds:

· messages concerning the signalling protocol of the ISDN (D channel)

· messages concerning logical connections (B channel)

· administrative and other messages

The following table gives an overview of the defined messages and their functionality. The
complete description of each message will be given in chapter 5. 

Messages concerning signalling protocol:

Message Description

CONNECT_REQ initiates an outgoing physical connection

CONNECT_CONF local confirmation of request

CONNECT_IND indicates an incoming physical connection

CONNECT_RESP response to indication

CONNECT_ACTIVE_IND indicates the activation of a physical 
connection

CONNECT_ACTIVE_RESP response to indication

DISCONNECT_REQ initiates clearing of a physical connection

Chapter 6: Parameter Descriptions 11



DISCONNECT_CONF local confirmation of request

DISCONNECT_IND indicates the clearing of a physical 
connection

DISCONNECT_RESP response to indication

ALERT_REQ initiates sending of ALERT, i.e. 
compatibility to call

ALERT_CONF local confirmation of request

INFO_REQ selects indication of signalling information

INFO_CONF local confirmation of request

INFO_IND indicates signalling information

INFO_RESP response to indication

Table 1: Messages concerning signalling protocol

Messages concerning logical connections:

Message Description

CONNECT_B3_REQ initiates an outgoing logical connection

CONNECT_B3_CONF local confirmation of request

CONNECT_B3_IND indicates an incoming logical connection

CONNECT_B3_RESP response to indication



CONNECT_B3_ACTIVE_IND indicates the activation of a logical 
connection

CONNECT_B3_ACTIVE_RESP response to indication

CONNECT_B3_T90_ACTIVE_I
ND

indicates switching from T.70NL to T.90NL

CONNECT_B3_T90_ACTIVE_R
ESP

response to indication

DISCONNECT_B3_REQ initiates clearing of a logical connection

DISCONNECT_B3_CONF local confirmation of request

DISCONNECT_B3_IND indicates the clearing of a logical connection

DISCONNECT_B3_RESP response to indication

DATA_B3_REQ initiates sending of data on a logical 
connection

DATA_B3_CONF local confirmation of request

DATA_B3_IND indicates incoming data on a logical 
connection

DATA_B3_RESP response to indication

RESET_B3_REQ initiates the reset of a logical connection

RESET_B3_CONF local confirmation of request

RESET_B3_IND indicates the reset of a logical connection

RESET_B3_RESP response to indication

Chapter 6: Parameter Descriptions 13



Table 2: Messages concerning logical connections

Administrative and other messages:

Message Description

LISTEN_REQ activates call indications

LISTEN_CONF local confirmation of request

FACILITY_REQ requests additional facilities (e.g. ext. 
equipment)

FACILITY_CONF local confirmation of request

FACILITY_IND indicates additional  facilities (e.g. ext. 
equipment)

FACILITY_RESP response to indication

SELECT_B_PROTOCOL_REQ selects current protocol stack of a logical 
connection

SELECT_B_PROTOCOL_CONF local confirmation of request

MANUFACTURER_REQ manufacturer specific operation

MANUFACTURER_CONF manufacturer specific operation

MANUFACTURER_IND manufacturer specific operation

MANUFACTURER_RESP manufacturer specific operation

Table 3: Administrative and other messages



4 Exchange Mechanisminhalt "4 Exchange Mechanism" \l1§

4.1 MESSAGE QUEUESinhalt "4.1 Message Queues" \l2§

Communication between an application program and COMMON-ISDN-API takes place via
message queues. As shown in figure 4, there is exactly one message queue for COMMON-
ISDN-API and for each registered application program. Messages are exchanged between the
applications  programs  and  COMMON-ISDN-API via  these  message  queues.  For  data
transfer the messages are used for control purposes only, and the data itself is transferred via
a data area common to the application and COMMON-ISDN-API. The queues are organised
first  in -  first  out,  so  COMMON-ISDN-API will  process messages in  the order  of their
arrival.

An application issues commands to an ISDN driver or controller by placing an appropriate
message in the  COMMON-ISDN-API  message queue. In the reverse direction, a message
from an ISDN driver  or  controller  is  transferred  to  the  message  queue of  the  addressed
application.

This method, used in higher-level protocols and modern operating systems, allows flexible
access by several applications to different ISDN drivers and controllers. It also provides a
powerful mechanism for processing events that arrive asynchronously, which is a paramount
requirement for high speed data transfer.

The message queue structure is not specified. It is manufacturer-dependent and is transparent
to  the application  program.  The necessary  access operations  are  defined by  COMMON-
ISDN-API.

µ §

Figure 4: Message queues in COMMON-ISDN-API

4.2 Operations on Message Queuesinhalt "4.2 Operations on Message 
Queues" \l2§

The message queues described represent the link between an application and  COMMON-
ISDN-API with  its  connected  ISDN  drivers  and  controllers.  Only  four  operations  are
required to use the message queues. The operations on the message queues are not restricted
to a particular system specification. Their respective characteristics and implementation are
operating system specific.  At the same time, these operations form the complete interface
which has to be matched to the particular operating system. The four operations are described
below.

Chapter 7: State Diagram 15



4.2.1 Registering an Applicationinhalt "4.2.1 Registering an Application" \l3§

Before an application can issue commands to COMMON-ISDN-API it must be registered at
COMMON-ISDN-API.  The  CAPI_REGISTER function  is  used  to  do  this.  COMMON-
ISDN-API  uses  this  function  to  assign  a  unique  application  number  (ApplID)  to  the
application. The message queue for the application is set up at the same time.

4.2.2 Messages from Application to COMMON-ISDN-APIinhalt "4.2.2 Messages 
from Application to COMMON-ISDN-API" \l3§

All messages from an application to COMMON-ISDN-API are put in the message queue of
COMMON-ISDN-API. The operation CAPI_PUT_MESSAGE is provided for this purpose.
When this operation is used, the application transfers the message. If COMMON-ISDN-API
message  queue  cannot  accept  any  more  messages,  the  operation  CAPI_PUT_MESSAGE
returns an error.

4.2.3 Messages from COMMON-ISDN-API to Applicationinhalt "4.2.3 Messages 
from COMMON-ISDN-API to Application" \l3§

COMMON-ISDN-API manages a message queue for each application;  COMMON-ISDN-
API puts  all  messages  to  the  application  in  this  queue.  The  operation
CAPI_GET_MESSAGE is provided for reading new messages from this queue. When this
operation is used, it returns the received message. If an application does not retrieve these
messages and message queue size was configured too small, this queue may overflow. In this
case one or more messages from COMMON-ISDN-API are lost. The application is informed
of this error on the next CAPI_GET_MESSAGE operation.

4.2.4 Releasing an Applicationinhalt "4.2.4 Releasing an Application" \l3§

If a registered application wants to terminate  COMMON-ISDN-API usage, the connection
to  COMMON-ISDN-API must be released.  This can be done with the CAPI_RELEASE
operation.  Releasing  the  application  releases  the  previously  used  message  queue.  An
application has to disconnect all  existing connections before issuing an CAPI_RELEASE,
otherwise the behaviour of COMMON-ISDN-API is undefined. This is valid only for non-
external equipment, external devices controlled by COMMON-ISDN-API (e.g. phone) may
allow releasing from COMMON-ISDN-API without terminating existing calls.

4.2.5 Other Operationsinhalt "4.2.5 Other Operations" \l3§

Additional Operations are available to get information about manufacturer, software releases,
configuration  and serial  numbers.  Depending on the operating  system there  exists  also a
possibility to register a call-back function which will be activated if a new message is put in
the application's message queue.



4.2.6 Manufacturer Specific Expansioninhalt "4.2.6 Manufacturer Specific 
Expansion" \l3§

There also exists a manufacturer specific operation, e.g. to configure ISDN controller.

4.3 Table of Operationsinhalt"4.3 Table of Operations" \l2§

Operation Description

CAPI_REGISTER Register an application

CAPI_RELEASE Release an application

CAPI_PUT_MESSAGE Transfer message to CAPI

CAPI_GET_MESSAGE Get message from CAPI

CAPI_SET_SIGNAL Register call-back function

CAPI_GET_MANUFACTURER Get manufacturer identification

CAPI_GET_VERSION Get CAPI version numbers

CAPI_GET_SERIAL_NUMBER Get serial number

Chapter 8.1: MS-DOS 17



CAPI_GET_PROFILE Get capabilities of CAPI implementa-
tion

CAPI_MANUFACTURER Manufacturer specific function

Table 4: Operations defined in COMMON-ISDN-API



Chapter 8.1: MS-DOS 19



5 Message Descriptionsinhalt "5 Message Descriptions" \l1§

THE FOLLOWING SECTION DEFINES ALL COMMON-ISDN-API messages with their respec-
tive parameters. Parameters are explained more detailed in chapter 6.

Messages  are  sorted  alphabetically  irrespective  of  the  extension,  which  defines  the
originator and direction of the message.  The following order always will be used for
basic names: REQUEST, CONFIRMATION, INDICATION, RESPONSE.

5.1 ALERT_REQXE "ALERT_REQ"§

Description

This message should be used by applications to indicate compatibility to an incoming
call. It will send an ALERT to the network and so trigger network timer. If an applica-
tion is able to accept the call immediately it is not necessary to use this message; the
application can issue immediately a CONNECT_RESP to COMMON-ISDN-API.

ALERT_REQ Command 0x01

Subcommand 0x80

Parameter Type Comment

PLCI dword Physical Link Connection Identifier

Additional info struct Additional info elements 

Note

The parameter Additional info will be a coded as an empty structure if no additional in-
formation (e.g. user data) has to be transmitted.

Chapter 8.2: Windows 21



5.2 ALERT_CONFXE "ALERT_CONF"§

Description

This message confirms the reception of an ALERT_REQ.

ALERT_CONF Command 0x01

Subcommand 0x81

Parameter Type Comment

PLCI dword Physical Link Connection Identifier

Info word 0: alert initiated
0x0003: alert already sent by another application
0x2001: message not supported in current state
0x2002: illegal PLCI
0x2007: illegal message parameter coding

Note

Info 0x0003 will be returned if another application already initiated the sending of an ALERT
message to the network. In this case the parameter  Additional info  of the corresponding
REQUEST has been ignored.

See also

Description of broadcast mechanism in LISTEN_REQ



5.3 CONNECT_REQXE "CONNECT_REQ"§

Description

This message initiates the set-up of a physical connection. An application only has to of-
fer the relevant  parts of  the parameters,  i.e.  Controller,  CIP Value,  B protocol   and
normally called party number. Every other structure can be empty (length of 0). In this
case the default values as described in chapter 6 will be used.

CONNECT_REQ Command 0x02

Subcommand 0x80

Parameter Type Comment

Controller dword

CIP Value word Compatibility Information Profile

Called party number struct Called party number

Calling party 
number

struct Calling party number

Called party 
subaddress

struct Called party subaddress

Calling party 
subaddress

struct Calling party subaddress

B protocol struct B protocol to be used

BC struct Bearer Capability

Chapter 8.3: OS/2 (application level) 23



LLC struct Low Layer Compatibility 

HLC struct High Layer Compatibility

Additional Info struct Additional information elements

Note

If  an  application  offers  BC, LLC and/or  HLC,  the  parameter  will  be  used  without
checking the resulting combination.

The absence (i.e. coding as an empty structure) of  B protocol will result in the default
protocol behaviour:  ISO 7776 (X.75)  and window size 7.  This is  a recommended se-
lection to get overall connectivity with the benefits of HDLC error recovery. Note that
ISO 7776 deals with a default maximum data length of 128 octets, whereas COMMON-
ISDN-API is able to handle up to at least 2048 octets, depending on CAPI_REGISTER
values of an application.



5.4 CONNECT_CONFXE "CONNECT_CONF"§

Description

This message confirms the initiation of a call set-up. This connection is assigned a PLCI
which  serves  as  an  identifier  in  further  processing.  Errors  are  returned  in  the
parameter info.

CONNECT_CONF Command 0x02

Subcommand 0x81

Parameter Type Comment

PLCI dword Physical Link Connection Identifier

Info word 0: connect initiated
0x2002: illegal controller
0x2003: out of PLCI
0x2007: illegal message parameter coding
0x3001: B1 protocol not supported
0x3002: B2 protocol not supported
0x3003: B3 protocol not supported
0x3004: B1 protocol parameter not supported
0x3005: B2 protocol parameter not supported
0x3006: B3 protocol parameter not supported
0x3007: B protocol combination not supported
0x300A: CIP Value unknown

Note

The connection is in the set-up phase at this point in time. Subsequent successful switching is
indicated by the message CONNECT_ACTIVE_IND.

If an application has to identify the corresponding REQUEST to this message, it can use
the message number mechanism described in chapter 3.

Chapter 8.3: OS/2 (application level) 25



5.5 CONNECT_INDXE "CONNECT_IND"§

Description

This message indicates an incoming call for a physical connection. For the incoming call
a PLCI is assigned which is used to identify this connection in subsequent messages.

CONNECT_IND Command 0x02

Subcommand 0x82

Parameter Type Comment

PLCI dword Physical Link Connection Identifier

CIP Value word Compatibility Information Profile

Called party number struct Called party number

Calling party 
number

struct Calling party number

Called party 
subaddress

struct Called party subaddress

Calling party 
subaddress

struct Calling party subaddress

BC struct Bearer compatibility

LLC struct Low Layer Compatibility

HLC struct High Layer Compatibility

Additional Info struct Additional information elements



Note

To activate the signalling of incoming calls, the message LISTEN_REQ must be sent to the
controller.

Every information  available  from the  network at  this  point  will  be signalled  to  the
application. Empty structs will show the absence of this information.

Chapter 8.3: OS/2 (application level) 27



5.6 CONNECT_RESPXE "CONNECT_RESP"§

Description

This message is used to accept or reject an incoming call on behalf of the application.
The incoming call is identified via parameter PLCI. The parameter reject is used to ac-
cept, reject or ignore the call. In case of ignoring the call, other ISDN equipment con-
nected on the same bus (basic access) will have the chance to accept this call, whereas
the rejection of this incoming call will try to terminate the call on the entire bus. For
primary access, these parameter values of parameter Reject will behave identically.

CONNECT_RESP Command 0x02

Subcommand 0x83

Parameter Type Comment

PLCI dword Physical Link Connection Identifier

Reject word 0: accept call
1: ignore call
2: reject call, normal call clearing
3: reject call, user busy
4: reject call, requestet circuit/channel not 
available
5: reject call, facility rejected
6: reject call, channel unacceptable
7: reject call, incompatible destination
8: reject call, destination out of order

B protocol struct B protocol to be used

Connected party 
number

struct Connected party number

Connected party 
subaddress

struct Connected party subaddress

LLC struct Low Layer Compatibility



Additional Info struct Additional information elements

Note

The parameter  LLC can optionally  be  used for  LLC negotiation  if  supported by the
network.

Any unknown reject value will be mapped to normal call clearing.

Any reject value other than accept call will cause a DISCONNECT_IND to be sent to the
application. 

The absence (i.e. coding as an empty structure) of  B protocol will result in the default
protocol behaviour:  ISO 7776 (X.75)  and window size 7.  This is  a recommended se-
lection to get overall connectivity with the benefits of HDLC error recovery. Note that
ISO 7776 deals with a default maximum data length of 128 octets, whereas COMMON-
ISDN-API is able to handle up to at least 2048 octets, depending on CAPI_REGISTER
values of an application.

Chapter 8.3: OS/2 (application level) 29



5.7 CONNECT_ACTIVE_INDXE "CONNECT_ACTIVE_IND"§

Description

This message indicates the physical connection of a B channel. The connection is iden-
tified by the parameter PLCI.

CONNECT_ACTIVE_IND Command 0x03

Subcommand 0x82

Parameter Type Comment

PLCI dword Physical Link Connection Identifier

Connected party 
number

struct Connected party number

Connected party 
subaddress

struct Connected party subaddress

LLC struct Low Layer Compatibility

Note

The parameter connected party number/subaddress and LLC will be filled in completely if
this information is provided by the network. The absence of network information will
be indicated by empty structures.



5.8 CONNECT_ACTIVE_RESP

Description

With this message the application confirms the receipt of a CONNECT_ACTIVE_IND.

CONNECT_ACTIVE_RESP Command 0x03

Subcommand 0x83

Parameter Type Comment

PLCI dword Physical Link Connection Identifier

Chapter 8.3: OS/2 (application level) 31



5.9 CONNECT_B3_ACTIVE_INDXE "CONNECT_B3_ACTIVE_IND"§

Description

This message indicates the logical connection of a B channel. The connection is identi-
fied by the parameter NCCI. The parameter NCPI is used to transfer additional proto-
col dependent information.

CONNECT_B3_ACTIVE_IND Command 0x83

Subcommand 0x82

Parameter Type Comment

NCCI dword Network Control Connection Identifier

NCPI struct Network Control Protocol Information

Note

The meaning of the parameter NCPI depends on the protocol used.

After this message incoming data can be indicated to the application.

In case of protocol T.30 and outgoing calls, this message does not imply the successful
training  between both  fax  stations.  This is  to  enable  an application to  send data  to
COMMON-ISDN-API without waiting for termination of training phase. If this training
phase is not successful, corresponding indications will be given by COMMON-ISDN-API
in the message DISCONNECT_B3_IND.



5.10 CONNECT_B3_ACTIVE_RESPXE "CONNECT_B3_ACTIVE_RESP"§

Description

With this message the application confirms the receipt of a  CONNECT_B3_ACTIVE_-
IND.

CONNECT_B3_ACTIVE_RESP Command 0x83

Subcommand 0x83

Parameter Type Comment

NCCI dword Network Control Connection Identifier

Chapter 8.3: OS/2 (application level) 33



5.11 CONNECT_B3_REQXE "CONNECT_B3_REQ"§

Description

This  message initiates  the  set-up of  a  logical  connection.  The physical  connection  is
identified by the parameter  PLCI. Additional protocol dependent information can be
transferred with the parameter NCPI.

CONNECT_B3_REQ Command 0x82

Subcommand 0x80

Parameter Type Comment

PLCI dword Physical Link Connection Identifier

NCPI struct Network Control Protocol Information

Note

The meaning of the parameter NCPI depends on the protocol used.



5.12 CONNECT_B3_CONFXE "CONNECT_B3_CONF"§

Description

With this message the initiation of a logical connection set-up is confirmed. This con-
nection is assigned a NCCI, which subsequently identifies this logical connection. Errors
are supplied in the parameter info.

CONNECT_B3_CONF Command 0x82

Subcommand 0x81

Parameter Type Comment

NCCI dword Network Control Connection Identifier

Info word 0: connect initiated
0x0001: NCPI not supported by current protocol, 
NCPI ignored
0x2001: message not supported in current state
0x2002: illegal PLCI
0x2004: out of NCCI
0x3008: NCPI not supported

Note

The connection is in the set-up phase at this stage. The successful set-up will be indicated by
the message CONNECT_B3_ACTIVE_IND.

If parameter info returns 0x0001, the set-up of a logical connection is initiated, but pa-
rameter NCPI has been ignored. In that case the used layer 3 protocol does not support
the usage of NCPI (e.g. the transparent mode of layer 3).

Chapter 8.3: OS/2 (application level) 35



5.13 CONNECT_B3_INDXE "CONNECT_B3_IND"§

Description

This message indicates an incoming call for a logical connection. For this incoming call
a NCCI is assigned, which subsequently identifies the call. Additional protocol depend-
ent information will be transferred with parameter NCPI if available.

CONNECT_B3_IND Command 0x82

Subcommand 0x82

Parameter Type Comment

NCCI dword Network Control Connection Identifier

NCPI struct Network Control Protocol Information

Note

The meaning of the parameter NCPI depends on the protocol used.

The connection is in the set-up phase at this stage. The successful set-up will be indi-
cated by the message CONNECT_B3_ACTIVE_IND.



5.14 CONNECT_B3_RESPXE "CONNECT_B3_RESP"§

Description

With this message the application accepts or rejects an incoming logical call. The incom-
ing call is identified via the parameter NCCI. The call can be accepted or rejected via
the parameter reject. The parameter NCPI can be used to transfer additional protocol
dependent information.

CONNECT_B3_RESP Command 0x82

Subcommand 0x83

Parameter Type Comment

NCCI dword Network Control Connection Identifier

Reject word 0: accept call
2: reject call, normal call clearing

NCPI struct Network Control Protocol Information

Note

The meaning of the parameter NCPI depends on the protocol used.

Any other value of reject will result in rejecting the call.

Chapter 8.3: OS/2 (application level) 37



5.15 CONNECT_B3_T90_ACTIVE_INDXE 
"CONNECT_B3_T90_ACTIVE_IND"§

Description

This message indicates the switching from T.70 to T.90 within a logical connection of a
B channel. The connection is identified by the parameter NCCI. The parameter NCPI is
used to transfer additional T.90 information.

CONNECT_B3_T90_ACTIVE_IND Command 0x88

Subcommand 0x82

Parameter Type Comment

NCCI dword Network Control Connection Identifier

NCPI struct Network Control Protocol Information

Note

This message will only be generated if the selected protocol is T.90NL with compatibility to
T.70NL according to T.90 Appendix II. In this case the initially used protocol is T.70. This
message indicates the negotiation and switching to T.90.



5.16 CONNECT_B3_T90_ACTIVE_RESPXE 
"CONNECT_B3_T90_ACTIVE_RESP"§

Description

With this message the application confirms the receipt of a  CONNECT_B3_T90_AC-
TIVE_IND.

CONNECT_B3_T90_ACTIVE_RESP Command 0x88

Subcommand 0x83

Parameter Type Comment

NCCI dword Network Control Connection Identifier

Chapter 8.3: OS/2 (application level) 39



5.17 DATA_B3_REQXE "DATA_B3_REQ"§

Description

This message sends data within the logical connection identified by the NCCI. Data to be
sent is referenced via the parameter  data/data length. The data is not part of the mes-
sage, a 32-bit pointer is used to transfer the address of the data area. The application is-
sues  a  unique  identifier  for  this  data  in  the  parameter  data  handle.  On  subsequent
confirmation by a DATA_B3_CONF this handle is used. It is possible to set additional
information,  such as more data,  delivery confirmation etc.  via parameter  flags.  The
flags are not supported by all protocols.

DATA_B3_REQ Command 0x86

Subcommand 0x80

Parameter Type Comment

NCCI dword Network Control Connection Identifier

Data dword Pointer to the data to be sent

Data length word Size of data area to be sent

Data handle word Referenced in DATA_B3_CONF

Flags word [0]: qualifier bit
[1]: more data bit
[2]: delivery confirmation bit
[3]: expedited data
[4] to [15]: reserved

Note

The data transfer does not support assembly or re-assembly of data.

An  application  must  not  change  or  free  the  data  area  until  the  corresponding
DATA_B3_CONF is received.



Flags are protocol dependent.  If an application set reserved bits in parameter  Flags,
COMMON-ISDN-API will reject the DATA_B3_REQ. This is to allow future expansion
of this parameter. If an application set bits in parameter Flags, which are not supported
by the current protocol,  COMMON-ISDN-API will accept the DATA_B3_REQ but will
return this information in the corresponding DATA_B3_CONF.

Chapter 8.3: OS/2 (application level) 41



5.18 DATA_B3_CONFXE "DATA_B3_CONF"§

Description

This message confirms the acceptance of a data package to be sent. The logical con-
nection is identified by the parameter  NCCI. The parameter  data handle supplies the
identifier used by the application in the associated DATA_B3_REQ as reference to the
transferred data area. After receiving this message, the application can reuse the refer-
enced data area.

DATA_B3_CONF Command 0x86

Subcommand 0x81

Parameter Type Comment

NCCI dword Network Control Connection Identifier

Data handle word Identifies the data area of corresponding 
DATA_B3_REQ

Info word 0: data transmission initiated
0x0002: flags not supported by current protocol, 
flags ignored
0x2001: message not supported in current state
0x2002: illegal NCCI
0x2007: illegal message parameter coding
0x300A: flags not supported (reserved bits)
0x300C: data length not supported by current 
protocol

Note

Every  DATA_B3_REQ will  result  in  a  corresponding  DATA_B3_CONF  exept  in  the
following  case:  after  transmitting  the  message  DISCONNECT_B3_IND to  an  appli-
cation,  COMMON-ISDN-API is not allowed to send any other message concerning this
logical connection identified by the parameter NCCI. So in this case the application has
to make sure that resources or buffer management will be reset correctly.

If  an  application  sets  the  delivery  confirmation  bit  in  the  corresponding
DATA_B3_REQ and the  selected  protocol  supports  this  mechanism it  is  guaranteed



that  this confirmation will  be given to  the  application after the delivery of  the sent
packet is confirmed by the used protocol.

Seven unconfirmed DATA_B3_REQ messages will be supported.

Chapter 8.3: OS/2 (application level) 43



5.19 DATA_B3_INDXE "DATA_B3_IND"§

Description

This message displays incoming data within a logical connection. The logical connection
is identified via the NCCI. The length of the incoming data area is indicated via the pa-
rameter data length. The incoming data area can be referenced by the parameter data.
The data is not part of the message, a 32-bit pointer is used to transfer the address of
the data area. COMMON-ISDN-API issues a handle to this data area via the parameter
data handle. On subsequent confirmation by a DATA_B3_RESP, this handle must also
be supplied by the application. Additional information - such as more data,  delivery
confirmation etc. - is supplied by parameter flags, if available.

DATA_B3_IND Command 0x86

Subcommand 0x82

Parameter Type Comment

NCCI dword Network Control Connection Identifier

Data dword Pointer to data received

Data length word Size of data area received

Data handle word handle to data area, referenced in 
DATA_B3_RESP

Flags word [0]: qualifier bit
[1]: more-data bit
[2]: delivery confirmation bit
[3]: expedited data
[4 to 14]: reserved
[15]: framing error bit, data may be invalid (only 
with corresponding B2 protocol)

Note

The data transfer does not support re-assembly functions.



The  data  area  which  contains  the  data  remains  allocated  until  the  corresponding
DATA_B3_RESP is  received.  However,  expedited  data  is  only  valid  until  the  next
CAPI_GET_MESSAGE is performed by the application.

In case of receiving DATA_B3_IND messages with reserved bits switched on in the flags
parameter an application must ignore the data area but process the message, i.e. send a
DATA_B3_RESP to COMMON-ISDN-API. This is to allow future expansion of the flags
parameter.

Chapter 8.3: OS/2 (application level) 45



5.20 DATA_B3_RESPXE "DATA_B3_RESP"§

Description

With this message the application confirms acceptance of an incoming data package.
The logical connection is identified by the parameter NCCI. The parameter data handle
identifies  the  data  handle  used  by  COMMON-ISDN-API in  the  corresponding
DATA_B3_IND as the reference to the transferred data area.

DATA_B3_RESP Command 0x86

Subcommand 0x83

Parameter Type Comment

NCCI dword Network Control Connection Identifier

Data handle word Data area reference in corresponding 
DATA_B3_IND

Note

This message frees the data buffer referenced by  Data handle for reuse by  COMMON--
ISDN-API.

Data throughput depends on an application's rapid response to DATA_B3_IND mes-
sages. Failure to do so will trigger flow control on the line (for protocols supporting flow
control such as ISO 7776(X.75) or ISO8208(X.25) ) and may cause loss of incoming data
for protocols without flow control mechanism.



5.21 DISCONNECT_B3_REQXE "DISCONNECT_B3_REQ"§

Description

This message initiates the clearing of a logical connection identified via the parameter
NCCI. The parameter NCPI can be used to transfer additional protocol dependent in-
formation.

DISCONNECT_B3_REQ Command 0x84

Subcommand 0x80

Parameter Type Comment

NCCI dword Network Control Connection Identifier

NCPI struct Network Control Protocol Information

Note

The meaning of the parameter NCPI depends on the protocol used.

In case of fax group 3 (B protocol T.30) and speech (B1 protocol bit transparent, B2/B3
protocol transparent)  data already given to transmission via  DATA_B3_REQ will  be
sent before disconnecting the logical connection.

Chapter 8.3: OS/2 (application level) 47



5.22 DISCONNECT_B3_CONFXE "DISCONNECT_B3_CONF"§

Description

With this message the initiation of clearing a logical connection is confirmed. Any errors
are coded in the parameter info.

DISCONNECT_B3_CONF Command 0x84

Subcommand 0x81

Parameter Type Comment

NCCI dword Network Control Connection Identifier

Info word 0: disconnect initiated
0x0001: NCPI not supported by current protocol, 
NCPI ignored
0x2001: message not supported in current state
0x2002: illegal NCCI
0x2007: illegal message parameter coding
0x3008: NCPI not supported



5.23 DISCONNECT_B3_INDXE "DISCONNECT_B3_IND"§

Description

This message indicates the clearing of a logical connection identified via the parameter
NCCI. The parameter Reason_B3 indicates if this clearing is caused by wrong protocol
behaviour. The parameter NCPI is used to indicate additional protocol dependent infor-
mation if available. 

DISCONNECT_B3_IND Command 0x84

Subcommand 0x82

Parameter Type Comment

NCCI dword Network Control Connection Identifier

Reason_B3 word 0: clearing according to protocol 
0x3301: protocol error layer 1 
0x3302: protocol error layer 2
0x3303: protocol error layer 3
protocol dependent values are described in chapter 
6

NCPI struct Network Control Protocol Information

Note

The meaning of the NCPI parameter depends on the protocol used.

After this message no other message concerning this  NCCI will be sent to the applica-
tion. The application has to answer this message with DISCONNECT_B3_RESP to free
the resources allocated to the NCCI.

Chapter 8.3: OS/2 (application level) 49



5.24 DISCONNECT_B3_RESPXE "DISCONNECT_B3_RESP"§

Description

With this message the application confirms the clearing of a logical connection.

DISCONNECT_B3_RESP Command 0x84

Subcommand 0x83

Parameter Type Comment

NCCI dword Network Control Connection Identifier

Note

With this message resources allocated to the NCCI are released.

If  an  application  fails  to  send  this  message  after  receiving  DISCONNECT_B3_IND,
COMMON-ISDN-API will  eventually  reject  subsequent  CONNECT_B3_REQ with  the
info value out of NCCI (0x2004).



5.25 DISCONNECT_REQ XE "DISCONNECT_REQ "§

Description

This message initiates the clearing of a physical connection, identified by the parameter
PLCI.

DISCONNECT_REQ Command 0x04

Subcommand 0x80

Parameter Type Comment

PLCI dword Physical Link Connection Identifier

Additional Info struct Additional information elements

Note

Existing logical connections will  be cleared by COMMON-ISDN-API using the message
DISCONNECT_B3_IND  containing  the  cause  protocol  error  layer  1 (0x3301)  before
clearing the physical connection.

Chapter 8.3: OS/2 (application level) 51



5.26 DISCONNECT_CONFXE "DISCONNECT_CONF"§

Description

This message confirms the initiation of clearing a physical connection. Any errors are
coded in the parameter info.

DISCONNECT_CONF Command 0x04

Subcommand 0x81

Parameter Type Comment

PLCI dword Physical Link Connection Identifier

Info word 0: disconnect initiated
0x2001: message not supported in current state
0x2002: illegal PLCI
0x2007: illegal message parameter coding



5.27 DISCONNECT_INDXE "DISCONNECT_IND"§

Description

This message indicates the clearing of the physical channel identified via the parameter
PLCI. The parameter reason indicates the network delivered cause or if this clearing is
caused by wrong protocol behaviour

DISCONNECT_IND Command 0x04

Subcommand 0x82

Parameter Type Comment

PLCI dword Physical Link Connection Identifier

Reason word 0: no cause available
0x3301: protocol error layer 1 
0x3302: protocol error layer 2
0x3303: protocol error layer 3
0x3304: another application gets that call
0x34xx: disconnect cause from the network 
according to Q.931/ETS 300 102-1. In the field 
'xx' the cause value received within a cause 
information element (octet 4) from the network is 
indicated.

Note

After this message no other message concerning this PLCI will be sent to the application.
The  application  has  to  answer  this  message  with  DISCONNECT_RESP to  free  the
resources allocated to the PLCI.

Chapter 8.3: OS/2 (application level) 53



5.28 DISCONNECT_RESPXE "DISCONNECT_RESP"§

Description

With this message the application confirms the clearing of the physical channel.

DISCONNECT_RESP Command 0x04

Subcommand 0x83

Parameter Type Comment

PLCI dword Physical Link Connection Identifier

Note

With this message the PLCI is released.

If an application fails to send this message after receiving DISCONNECT_IND resources
bound to this  PLCI will not be freed. This may lead to  COMMON-ISDN-API resource
problems (indicated by info value out of PLCI), affecting other applications too.



5.29 FACILITY_REQXE "FACILITY_REQ"§

Description

This message is used to handle optional facilities on the controller or facilities related on
connections identified by PLCI or NCCI. The struct facility request parameters is defined
for each facility.  At the moment facilities Handset  Support  and DTMF are defined.
Handset Support is used to support external ISDN equipment, DTMF (Dual Tone Multi
Frequency) is used in the PSTN (Public  Switched Telephone Network) to select  and
control several provided services (e.g. automatic answering service).

Handset Support as well as DTMF support are optional COMMON-ISDN-API features.
In  case  COMMON-ISDN-API does  not  support  these  facilities,  an  appropriate
information value is returned in the FACILITY_CONF.

DTMF can not be used with all B protocols. Normally it is used with B protocol 64/56
kBit/sec bit transparent (speech) and T.30.

FACILITY_REQ Command 0x80

Subcommand 0x80

Parameter Type Comment

Controller/PLCI/
NCCI

dword Depending on the facility selector

Facility selector word 0: Handset Support
1: DTMF
2 to n: reserved

Facility request 
parameter

struct Facility depending parameters  

Chapter 8.3: OS/2 (application level) 55



5.30 FACILITY_CONFXE "FACILITY_CONF"§

Description

This message confirms the acceptance of the FACILITY_REQ. The event is identified by
Controller/PLCI/NCCI,  depending  on  the  facility.  The  struct  facility  confirmation
parameters is defined for every facility. Any error is coded in the parameter info.

FACILITY_CONF Command 0x80

Subcommand 0x81

Parameter Type Comment

Controller/PLCI/
NCCI

dword Depending on the facility selector

Info word 0: request accepted
0x2001: message not supported in current state
0x2002: incorrect Controller/PLCI/NCCI
0x2007: illegal message parameter coding
0x300B: facility not supported

Facility selector word 0: Handset Support
1: DTMF
2 to n: reserved

Facility confirmation
parameter

struct Facility-depending parameters  



5.31 FACILITY_INDXE "FACILITY_IND"§

Description

This message is used to indicate a facility dependent event originating from a controller
or connections identified via controller/PLCI/NCCI, depending on the facility. The struct
facility indication parameter is defined for every facility.

FACILITY_IND Command 0x80

Subcommand 0x82

Parameter Type Comment

Controller/PLCI/
NCCI

dword Depending on the facility selector

Facility selector word 0: Handset Support
1: DTMF
2 to n: reserved

Facility indication 
parameter

struct Facility-depending parameters  

Note

In case of facility selector 0 (Handset Support) this message may allocate a new PLCI (in
case  of  off-hooking  the  handset)  which  has  to  be  released  afterwards  by  means  of
DISCONNECT_IND / DISCONNECT_RESP.

Chapter 8.3: OS/2 (application level) 57



5.32 FACILITY_RESPXE "FACILITY_RESP"§

Description

With this message the application confirms receipt of a facility indication message. The
struct facility response parameters is defined for every facility.

FACILITY_RESP Command 0x80

Subcommand 0x83

Parameter Type Comment

Controller/PLCI/
NCCI

dword Depending on the facility selector

Facility selector word 0: Handset Support
1: DTMF
2 to n: reserved

Facility response pa-
rameters

struct Facility-depending parameters  



5.33 INFO_REQXE "INFO_REQ"§

Description

This message permits sending of protocol information for a the physical connection, e.g.
overlap sending.

INFO_REQ Command 0x08

Subcommand 0x80

Parameter Type Comment

Controller/PLCI dword See note

Called party number struct Called party number

Additional Info struct Additional information elements

Note

The first  parameter  identifies a physical connection (if  a PLCI is given) or the addressed
controller  (if  the  PLCI  field  of  parameter  Controller/PLCI is  zero).  Depending  on  the
parameter different messages will be sent to the network.

Chapter 8.3: OS/2 (application level) 59



5.34 INFO_CONFXE "INFO_CONF"§

Description

This message confirms acceptance of INFO_REQ. If in the corresponding INFO_REQ a
controller is given as an addressing parameter, this connection is assigned a PLCI which
serves as an identifier in further processing. Any error is coded in the parameter info.

INFO_CONF Command 0x08

Subcommand 0x81

Parameter Type Comment

PLCI dword Physical Link Connection Identifier

Info word 0: transmission of information initiated
0x2001: message not supported in current state
0x2002: illegal Controller/PLCI
0x2003: out of PLCI
0x2007: illegal message parameter coding



5.35 INFO_INDXE "INFO_IND"§

Description

This message indicates an event for a physical connection as expressed by an informa-
tion element (info element) whose coding is described by the parameter  info number.
The connection is identified via the parameter controller/PLCI.

INFO_IND Command 0x08

Subcommand 0x82

Parameter Type Comment

Controller/PLCI dword Physical Link Connection Identifier

Info number word Information element identifier

Info element struct Information element dependent structure

Note

An individual INFO_IND is displayed for each information element. To enable indication
of events, the info mask parameter of the message LISTEN_REQ has to be used.

If the PLCI field in the address parameter is 0, the network has sent information not as-
sociated with a physical connection.

In case of getting information from the network which will lead to other  COMMON-
ISDN-API messages  (e.g.  receiving  a  RELEASE  from  the  network  which  includes
charging information) it is guaranteed that an application will get the INFO_IND first,
followed by the corresponding COMMON-ISDN-API message.

Chapter 8.3: OS/2 (application level) 61



5.36 INFO_RESPXE "INFO_RESP"§

Description

With this message the application confirms the receipt of an INFO_IND.

INFO_RESP Command 0x08

Subcommand 0x83

Parameter Type Comment

Controller/PLCI dword As in INFO_IND



5.37 LISTEN_REQXE "LISTEN_REQ"§

Description

This message is used to activate signalling of incoming events from  COMMON-ISDN-
API to the application. Info mask is used to define which signalling protocol events are
indicated to the application. These events are normally associated with physical connec-
tions.  CIP mask defines selection criteria based upon Bearer Capability and High Layer
Compatibility, thus indicating which incoming calls are signalled to an application.

More than one application may listen to the same CIP Values. Every application listen-
ing to a matching value will be informed about incoming calls. In case more than one
application wants to accept the call, the first CONNECT_RESP received by COMMON-
ISDN-API as a reaction to the CONNECT_IND will be accepted. Every other application
will get the message DISCONNECT_IND with a Parameter reason which indicates this
situation.

This scenario is similar to the situation where more than one set of compatible ISDN
equipment on an ISDN line attempts to accept an incoming call.

LISTEN_REQ Command 0x05

Subcommand 0x80

Parameter Type Comment

Controller dword

Info mask dword Bit field, coding as follows:
[0]: cause
[1]: date/Time
[2]: display
[3]: user-user information
[4]: call progression
[5]: facility
[6]: charging
[7 to 31]: reserved

CIP Mask dword explained below

CIP Mask 2 dword reserved for additional services

Chapter 8.3: OS/2 (application level) 63



Calling party 
number

struct Calling party number

Calling party 
subaddress

struct Calling party subaddress



Explanation of CIP Mask:

Parameter Type Comment

CIP Mask dword Bit field, coding as follows:
[0]: any match
[1]: speech
[2]: unrestricted digital information
[3]: restricted digital information
[4]: 3.1 kHz audio
[5]: 7.0 kHz audio
[6]: video
[7]: packet mode
[8]: 56 kBit/s rate adaptation
[9]: unrestricted digital information with 
tones/announcements
[10..15]: reserved
[16]: telephony
[17]: fax group 2/3
[18]: fax group 4 class 1
[19]: Teletex service (basic and mixed), fax group 
4 class 2
[20]: Teletex service (basic and processable)
[21]: Teletex service (basic)
[22]: Videotex
[23]: Telex
[24]: message handling systems according X.400
[25]: OSI applications according X.200
[26]: 7 kHz Telephony
[27]: Video Telephony F.721, first connection
[28]: Video Telephony F.721, second connection
[29 to 31]: reserved

Note

Clearing all bits in the CIP mask disables the signalling of incoming calls to the applica-
tion.

Calling party number/subaddress are only used for external ISDN equipment (handsets),
which might need the own (local) address to handle outgoing calls.

Chapter 8.3: OS/2 (application level) 65



5.38 LISTEN_CONFXE "LISTEN_CONF"§

Description

This message confirms the acceptance of the LISTEN_REQ. Any errors are coded in the
parameter info.

LISTEN_CONF Command 0x05

Subcommand 0x81

Parameter Type Comment

Controller dword

Info word 0: listen is active
0x2002: illegal controller
0x2005: out of LISTEN-Resources
0x2007: illegal message parameter coding



5.39 MANUFACTURER_REQXE "MANUFACTURER_REQ"§

Description

This message is used to transfer manufacturer specific information.

MANUFACTURER_REQ Command 0xFF

Subcommand 0x80

Parameter Type Comment

Controller dword

Manu ID dword Manufacturer specific ID (should be unique)

Manufacturer 
specific

Manufacturer specific data

Note

This message should not be used, for it is a non compatible message. Applications which use
this message will only work with one manufacturer of ISDN equipment.

A manufacturer will choose one manufacturer specific ID for all of that COMMON-ISDN-
API implementations.  This  manufacturer  specific  ID shall  be unique.  A shortcut  or
nickname based on the manufacturer's initials might be a good choice.

The  behaviour  of  COMMON-ISDN-API  is  not  defined after  receiving  any  MANU-
FACTURER_REQ.

Chapter 8.3: OS/2 (application level) 67



5.40 MANUFACTURER_CONFXE "MANUFACTURER_CONF"§

Description

This message confirms the reception of a MANUFACTURER_REQ.

MANUFACTURER_CONF Command 0xFF

Subcommand 0x81

Parameter Type Comment

Controller dword

Manu ID dword Manufacturer specific ID (should be unique)

Manufacturer 
specific

Manufacturer specific data



5.41 MANUFACTURER_INDXE "MANUFACTURER_IND"§

Description

This message is used to indicate manufacturer specific information to an application.
COMMON-ISDN-API must  not  generate  this  message  except  it  is  requested  by  a
MANUFACTURER_REQ.

MANUFACTURER_IND Command 0xFF

Subcommand 0x82

Parameter Type Comment

Controller dword

Manu ID dword Manufacturer specific ID (should be unique)

Manufacturer 
specific

Manufacturer specific data

Note

This  message  shall  not  be  sent  from  COMMON-ISDN-API without  initial  application
request from an application by means of MANUFACTURER_REQ.

Chapter 8.3: OS/2 (application level) 69



5.42 MANUFACTURER_RESPXE "MANUFACTURER_RESP"§

Description

With this message an application confirms receipt of a MANUFACTURER_IND.

MANUFACTURER_RESP Command 0xFF

Subcommand 0x83

Parameter Type Comment

Controller dword

Manu ID dword Manufacturer specific ID (should be unique)

Manufacturer 
specific

Manufacturer specific data



5.43 RESET_B3_REQXE "RESET_B3_REQ"§

Description

With this message the specified  logical  connection is  reset.  The logical  connection is
identified by the parameter NCCI.

RESET_B3_REQ Command 0x87

Subcommand 0x80

Parameter Type Comment

NCCI dword Network Control Connection Identifier

NCPI struct Network Control Protocol Information

Note

The meaning of the parameter NCPI depends on the protocol used.

The reaction to a RESET_B3_REQ depends on the selected layer 3 protocol. If ISO 8208,
T.90, X.25 DCE or X.25 PLP in the D channel was selected, the reset procedure is per-
formed in  accordance with  the  protocol  recommendations.  In case of  a  transparent
layer 3, a reset procedure in layer 2 is initiated.

If a reset procedure is not defined for the protocol a  RESET_B3_REQ causes the con-
troller to generate a RESET_B3_CONF with info value reset procedure not supported by
current protocol (0x300D). No further action is taken.

After successfully initiating a reset on a logical connection, an application is not allowed
to  transmit  data  until  the  resulting  RESET_B3_IND  (or  DISCONNECT_B3_IND)
message is received.

Loss of data may occur during reset procedure!

Chapter 8.3: OS/2 (application level) 71



5.44 RESET_B3_CONFXE "RESET_B3_CONF"§

Description

With this message the controller confirms the initiation of resetting a logical connection.

RESET_B3_CONF Command 0x87

Subcommand 0x81

Parameter Type Comment

NCCI dword Network Control Connection Identifier

Info word 0: reset initiated
0x0001: NCPI not supported by current protocol, 
NCPI ignored
0x2001: message not supported in current state
0x2002: illegal NCCI
0x2007: illegal message parameter coding
0x3008: NCPI not supported 
0x300D: reset procedure not supported by current 
protocol



5.45 RESET_B3_INDXE "RESET_B3_IND"§

Description

With this message the resetting of a logical  connection is indicated.  The logical  con-
nection is identified by a NCCI.

RESET_B3_IND Command 0x87

Subcommand 0x82

Parameter Type Comment

NCCI dword Network Control Connection Identifier

NCPI struct Network Control Protocol Information

Note

The meaning of the parameter NCPI depends on the protocol used.

In case of transparent layer 3 the re-establishment of layer 2 is indicated.

This message may cause a loss of data!

Chapter 8.3: OS/2 (application level) 73



5.46 RESET_B3_RESPXE "RESET_B3_RESP"§

Description

With this message the application confirms the resetting of a logical connection.

RESET_B3_RESP Command 0x87

Subcommand 0x83

Parameter Type Comment

NCCI dword Network Control Connection Identifier



5.47 SELECT_B_PROTOCOL_REQXE "SELECT_B_PROTOCOL_REQ"§

Description

This message allows an application to change the current protocol during the lifetime of
a  physical  connection  after  receiving  the  message  CONNECT_ACTIVE_IND.  The
support  of  this  message is  optional.  If  a  particular  COMMON-ISDN-API implemen-
tation  does not  support  this  switching the  info  parameter  of  the  corresponding  SE-
LECT_B_PROTOCOL_CONF will  be  set  to  message  not  supported  in  current  state
(0x2001).

SELECT_B_PROTOCOL_REQ Command 0x41

Subcommand 0x80

Parameter Type Comment

PLCI dword Physical Link Connection Identifier

B protocol struct Protocol definition

Chapter 8.3: OS/2 (application level) 75



5.48 SELECT_B_PROTOCOL_CONFXE 
"SELECT_B_PROTOCOL_CONF"§

Description

This  message  confirms  the  execution  of  switching  the  protocol  stack  for  a  physical
connection. Any error will be shown in info.

SELECT_B_PROTOCOL_CONF Command 0x41

Subcommand 0x81

Parameter Type Comment

PLCI dword Physical Link Connection Identifier

Info word 0: protocol switch successful
0x2001: message not supported in current state
0x2002: illegal PLCI
0x2007: illegal message parameter coding
0x3001: B1 protocol not supported
0x3002: B2 protocol not supported
0x3003: B3 protocol not supported
0x3004: B1 protocol parameter not supported
0x3005: B2 protocol parameter not supported
0x3006: B3 protocol parameter not supported
0x3007: B protocol combination not supported



6 Parameter Descriptionsinhalt "6 Parameter Descriptions" \l1§

THIS SECTION DESCRIBES THE PARAMETERS USED IN COMMON-ISDN-API messages. Each
parameter is listed with its type, possible values and reference to the messages in which
the parameter appear.

Some parameter values are defined according to ETS 300 102-1 or Q.931. In that case
there is no private COMMON-ISDN-API coding for these parameters. These parameters
are  coded  as  COMMON-ISDN-API structures  starting  with  a  length  octet  and  the
remainder of the parameter being coded as defined in ETS 300 102-1 / Q.931 from octet
three onwards. References to the contents of a structure in this chapter always use index
0 to identify the first octet of information, i.e. the octet following the length octet.

Parameters may not be ommitted, instead an empty structure shall be used. An empty
structure shall be coded as a single octet containing a value of 0.

Default values as described in the following section have to be implemented in  COM-
MON-ISDN-API. They need not be valid for external ISDN equipment; in that case the
external equipment defines the default values for its usage.

Parameters may again contain parameters which are refered to as 'sub parameters'.

Additional InfoXE "Additional Info"§ (struct)

The purpose of the parameter additional info is to exchange signalling protocol 
specific information of the network. Depending on the signalling protocol only 
relevant elements of this structure will be used (e.g. the B channel information 
will be ignored in the message DISCONNECT_REQ).

The parameter has the following structure:

struct B channel information
struct Keypad data (coded according to ETS 300 102-1 / Q.931)
struct User user data (coded according to ETS 300 102-1 / Q.931)
struct Facility data array, which is used to transfer additional parameters coded according to ETS 300 

102-1 / Q.931 starting from Offset 0. This field is used to transport one or more complete facility
data information elements.

This information element appears in:

ALERT_REQ
CONNECT_REQ
CONNECT_IND
CONNECT_RESP
DISCONNECT_REQ
INFO_REQ

Chapter 8.4: OS/2 (device driver level) 77



B Channel InformationXE "B Channel Information"§ (struct)

The purpose of the sub parameter B channel information is to choose between 
B channel data exchange, D channel data exchange or pure user-user data 
exchange. If this struct is empty the default value is assumed.

This sub parameter is coded as a structure, to give an easy way of extending its
contents in future changes. At the moment, it is coded as a structure of two bytes
length and has one element:

word Channel:
0 : use B channel (default value)
1 : use D channel
2 : use neither B channel or D channel

This sub parameter appears in parameter:

Additional information

B ProtocolXE "B Protocol"§ (struct)

The purpose of the parameter B protocol is to select and configure the B 
channel protocols. There is a protocol identifier and configuration information for
each layer. If this struct is empty the default value is assumed.

The parameter has the following structure:

word B1 protocol : Physical layer and framing
word B2 protocol : Data link layer
word B3 protocol : Network layer
struct B1 configuration : Physical layer and framing parameter
struct B2 configuration : Data link layer parameter
struct B3 configuration : Network layer parameter

This information element appears in:

CONNECT_REQ
CONNECT_RESP
SELECT_B_PROTOCOL_REQ

B1 ProtocolXE "B1 Protocol"§ (word)

The purpose of the sub parameter B1 protocol is to specify the physical layer 
and framing used for this connection.



The following values are defined:

0: 64 kBit/s with HDLC framing. This is the default B1 protocol.
1: 64 kBit/s bit transparent operation with byte framing from the network
2: V.110 asynchronous operation with start/stop byte framing
3: V.110 synchronous operation with HDLC framing
4: T.30 modem for fax group 3
5: 64 kBit/s inverted with HDLC framing.
6: 56 kBit/s bit transparent operation with byte framing from the network

This sub parameter appears in parameter:

B protocol

B2 ProtocolXE "B2 Protocol"§ (word)

The purpose of the sub parameter B2 protocol is to specify the data link layer 
used for this connection.

The following values are defined:

0: ISO 7776 (X.75 SLP) This is the default B2 protocol.
1: Transparent
2: SDLC
3: LAPD according Q.921 for D channel X.25
4: T.30 for fax group 3
5: Point to Point Protocol (PPP)
6: Transparent (ignoring framing errors of B1 protocol)

This sub parameter appears in parameter:

B protocol

B3 ProtocolXE "B3 Protocol"§ (word)

The purpose of the sub parameter B3 protocol is to specify the network layer 
used for this connection.

The following values are defined:

0: Transparent. This is the default B3 protocol
1: T.90NL with compatibility to T.70NL according to T.90 Appendix II.
2: ISO 8208 (X.25 DTE-DTE)
3: X.25 DCE
4: T.30 for fax group 3

This sub parameter appears in parameter:

B protocol

Chapter 8.5: UNIX 79



B1 ConfigurationXE "B1 Configuration"§ (struct)

The purpose of the sub parameter B1 configuration is to offer additional 
configuration information for the B1 protocol. The parameter has the following 
structure:

word Rate This parameter has different meaning and 
default values depending on the selected B1 
protocol:
· B1 protocol 0: not applicable
· B1 protocol 1: not applicable
· B1 protocol 2: the maximum bit rate, 
coded as unsigned integer value. Default: 
adaptive
· B1 protocol 3: the maximum bit rate, 
coded as unsigned integer value. Default: 
56 kBit
· B1 protocol 4: the maximum bit rate, 
coded as unsigned integer value. Default: 
adaptive
· B1 protocol 5: not applicable
· B1 protocol 6: not applicable

word Bits per 
character/
Transmit Level

This parameter has different meaning and 
default values depending on the selected B1 
protocol:
· B1 protocol 0: not applicable
· B1 protocol 1: not applicable
· B1 protocol 2: bits per character, coded 

as unsigned integer value. Default: 8
· B1 protocol 3: not applicable
· B1 protocol 4: the level is coded as 

signed integer specifying dB's. If this 
parameter or its value is not supported 
by the ISDN controller, it is ignored.

· B1 protocol 5: not applicable
· B1 protocol 6: not applicable

word parity This parameter has different meaning and 
default values depending on the selected B1 
protocol:
· B1 protocol 0: not applicable
· B1 protocol 1: not applicable
· B1 protocol 2: Parity: 0: none, 1: odd, 2:

even. Default: no parity
· B1 protocol 3: not applicable
· B1 protocol 4: not applicable
· B1 protocol 5: not applicable
· B1 protocol 6: not applicable



word stop bits This parameter has different meaning and 
default values depending on the selected B1 
protocol:
· B1 protocol 0: not applicable
· B1 protocol 1: not applicable
· B1 protocol 2: stop bits: 0: 1 stop bit, 1: 

2 stop bit. Default: 1 stop bit
· B1 protocol 3: not applicable
· B1 protocol 4: not applicable
· B1 protocol 5: not applicable
· B1 protocol 6: not applicable

This sub parameter appears in parameter:

B protocol

B2 ConfigurationXE "B2 Configuration"§ (struct)

The purpose of the sub parameter B2 configuration is to offer additional 
configuration information for B2 protocol. It is only used for B2 protocols 0, 2 
and 3. The parameter has the following structure:

byte Address A This parameter has different meaning and 
default values depending on the selected B2 
protocol:
· B2 protocol 0: link Address A, default is

0x03
· B2 protocol 2: link Address, default is 

0xC1
· B2 protocol 3: bit 0: ´0´ - automatic TEI

assignment procedure shall be used. ´1´ 
- the TEI value shall be used as fixed 
TEI. In this case Bit 7 - Bit 1: TEI value

byte Address B This parameter has different meaning and 
default values depending on the selected B2 
protocol:
· B2 protocol 0: link Address B, default is 

0x01
· B2 protocol 2: not applicable
· B2 protocol 3: not applicable

byte Modulo Mode Mode of operation:
· 8 - normal operation (Default)

Chapter 8.5: UNIX 81



· 128 - extended operation

byte Window Size Window size, default is 7.

struct XID This parameter has different meaning and 
default values depending on the selected B2 
protocol:
· B2 protocol 0: not applicable
· B2 protocol 2: this is the content of the 

XID response which is sent when a XID
command is received.

· B2 protocol 3: not applicable

This sub parameter appears in parameter:

B protocol

B3 ConfigurationXE "B3 Configuration"§ (struct)

The purpose of the sub parameter B3 configuration is to offer additional 
configuration information for B3 protocol. Different structures of this parameter 
are defined, depending on the B3 protocol:



For B3 protocols 0 (transparent) this parameter does not apply (coded as an empty
structure).

For  B3  protocols  1,  2  and  3  (T.90NL,  ISO8208,  X.25  DCE)  )the  following
structure is defined:

word LIC Lowest incoming channel, default is 0

word HIC Highest incoming channel, default is 0

word LTC Lowest two-way channel, default is 1

word HTC Highest two-way channel, default is 1

word LOC Lowest outgoing channel, default is 0

word HOC Highest outgoing channel, default is 0

word Modulo Mode Mode of operation:
· 8 - normal operation (default)
· 128 - extended operation

word Window Size Used to configure non-standard defaults for 
the transmit window size, default is 2

For B3 protocol 4 (Fax G3) the following structure is used:

word resolution 0: standard
1: high

word format 0: SFF (Default, description in Annex B)
1: Plain FAX Format (modified Huffman 
coding)
2: PCX
3: DCX
4: TIFF
5: ASCII
6: Extended ANSI
7: Binary-File transfer

Chapter 8.5: UNIX 83



struct station id ID of the calling station. Coded in ASCII

struct head line Headline sent on each fax page. Coded in 
ASCII

This sub parameter appears in parameter:

B protocol

BCXE "BC"§ (struct)

The purpose of the parameter Bearer Capability (BC) information element is to
indicate a requested CCITT Recommendation 1.231 bearer service to be provided
by the network. It contains only information which may be used by the network. 
The information element is coded according to ETS 300 102-1 / Q.931.

This information element appears in:

CONNECT_IND
CONNECT_REQ

Called Party NumberXE "Called Party Number"§ (struct)

The purpose of the parameter called party number information element is to 
identify the called party of a call. The information element is coded according to 
ETS 300 102-1 / Q.931.



Byte 0 Type of number and numbering plan identification (byte 3 of 
the called party number information element, see ETS 300 
102).
At the calling side the value supplied by the application 
will be transmitted over the network, 0x80 is the suggested 
default value.
At the called side the value received from the network will 
be passed to the application.

Bytes 1..n Number digits of the called party number information 
element.

This information element appears in:

CONNECT_IND
CONNECT_REQ

Called Party SubaddressXE "Called Party Subaddress"§ (struct)

The purpose of the parameter called party subaddress is to identify the 
subaddress of the called party of a call. The information element is coded 
according to ETS 300 102-1 / Q.931.

Byte 0 Type of subaddress
At the calling side the value supplied by application will be 
transmitted over the network, 0x80 is the suggested default 
value (NSAP according X.213). In this case, the first 
subaddress information octet should have the value 0x50.
At the called side, the value received from the network will
be passed to the application. 

Bytes 1..n Contents of the called party subaddress information element.

This information element appears in:

CONNECT_REQ

Chapter 8.5: UNIX 85



CONNECT_IND

Calling Party NumberXE "Calling Party Number"§ (struct)

The purpose of the parameter calling party number information element is to 
identify the origin of a call. The information element is coded according to ETS 
300 102-1 / Q.931.

Byte 0 Type of number and numbering plan identification (byte 3 of 
the calling party number information element, see ETS 300 
102).
At the calling side the value supplied by the application 
will be transmitted over the network, 0x00 is the suggested 
default value.
At the called interface the value received from the network
will be passed to the application. The extension bit will 
always be cleared.

Byte 1 Presentation and screening indicator (byte 3a of the calling 
party number information element). This byte may be used 
to allow or suppress the presentation of the caller's number
in an incoming call.
At the originating interface the value supplied by the 
application will be transmitted over the network, 0x80 is 
the suggested default value. With this default value the 
presentation of the callers number is allowed. 0xA0 will 
suppress the presentation of the calling number, if the 
network supports this mechanism.
At the called interface the value received from the network
will be passed to the application. If this byte was not 
transmitted from the network, the controller inserts the 
valid default value 0x80 (user provided, not screened).

Bytes 2..n Number digits of the calling party number information 
element.

This information element appears in:

CONNECT_REQ
CONNECT_IND
LISTEN_REQ



Calling Party SubaddressXE "Calling Party Subaddress"§ (struct)

The purpose of the parameter calling party subaddress information element is 
to identify a subaddress associated with the origin of a call. The information 
element is coded according to ETS 300 102-1 / Q.931.

Byte 0 Type of subaddress
At the calling side the value supplied by application will be 
transmitted over the network, 0x80 is the suggested default 
value (NSAP according X.213). In this case, the first 
subaddress information octet should have the value 0x50.
At the called side, the value received from the network will
be passed to the application. 

Bytes 1..n Contents of the calling party subaddress information element.

This information element appears in:

CONNECT_IND
CONNECT_REQ
LISTEN_REQ

CIP ValueXE "CIP Value"§ (word)

The purpose of parameter CIP Value is to identify a complete profile of 
compatibility information (Bearer Capability, Low Layer Compatibility and High 
Layer Compatibility). With this parameter standard applications are not required 
to do complex coding and decoding of the above mentioned information 
elements.

Some of the CIP values only define a Bearer Capability (CIP 1 to 9) and some 
values define a combination of Bearer Capability and High Layer Compatibility 
(CIP 16 to 28). A Low Layer Compatibility information element is not defined 
with the CIP. The Low Layer Compatibility information element has to be 
provided by the application if necessary.

The following CIP values are defined:

Chapter 8.5: UNIX 87



CIP value Service Relation to BC/HLC

0 no predefined profile

1 Speech Bearer capability:
coding standard: CCITT
information transfer capability: speech
transfer mode: circuit mode
information transfer rate: 64 kBit/s
user information layer 1 protocol: 

G.711
Coding of BC:
<0x04, 0x03, 0x80, 0x90, 0xA3> or
<0x04, 0x03, 0x80, 0x90, 0xA2>(see 
note)

2 unrestricted 
digital 
information

Bearer capability:
coding standard: CCITT
information transfer capability: 

unrestricted digital information
transfer mode: circuit mode
information transfer rate: 64 kBit/s
Coding of BC:
<0x04, 0x02, 0x88, 0x90>

3 restricted 
digital in-
formation

Bearer capability:
coding standard: CCITT
information transfer capability: 

restricted digital information
transfer mode: circuit mode
information transfer rate: 64 kBit/s
Coding of BC:
<0x04, 0x02, 0x89, 0x90>
Note:
Not applicable in ISDNs conforming to 
ETS 300 102.

4 3.1 kHz audio Bearer capability:
coding standard: CCITT
information transfer capability: 3.1 

kHz audio
transfer mode: circuit mode
information transfer rate: 64 kBit/s
user information layer 1 protocol: 

G.711
Coding of BC:
<0x04, 0x03, 0x90, 0x90, 0xA3> or
<0x04, 0x03, 0x80, 0x90, 0xA2>(see 
note)



5 7 kHz audio Bearer capability:
coding standard: CCITT
information transfer capability: 

unrestricted digital information with
tones/announcements (this codepoint
was formally labelled '7 kHz audio')

transfer mode: circuit mode
information transfer rate: 64 kBit/s
Coding of BC:
<0x04, 0x02, 0x91, 0x90>

6 video Bearer capability:
coding standard: CCITT
information transfer capability: video
transfer mode: circuit mode
information transfer rate: 64 kBit/s
Coding of BC:
<0x04, 0x02, 0x98, 0x90>

7 packet mode Bearer capability:
coding standard: CCITT
information transfer capability: 

unrestricted digital information
transfer mode: packet mode
information transfer rate: packet mode
layer 2 protocol: X.25 layer 2
layer 3 protocol: X.25 layer 3
Coding of BC:
<0x04, 0x04, 0x88, 0xC0, 0xC6, 0xE6>

8 56 kBit/s rate 
adaptation

Bearer capability:
coding standard: CCITT
information transfer capability: 

unrestricted digital information
transfer mode: circuit mode
layer 1 protocol: CCITT standardised 

rate adaptation V.110/X.30
information transfer rate: packet mode
rate: 56 kBit/s
Coding of BC:
<0x04, 0x04, 0x88, 0x90, 0x21, 0x8F>

9 unrestricted 
digital 
information 
with 
tones/announc
ements

Bearer capability:
coding standard: CCITT
information transfer capability: 

unrestricted digital information with
tones/announcements (this codepoint
was formally labelled '7 kHz audio')

Chapter 8.5: UNIX 89



transfer mode: circuit mode
information transfer rate: 64 kBit/s
layer 1 protocol: H.221, H.242
Coding of BC:
<0x05, 0x02, 0x91, 0x90, 0xA5>

10..15 reserved

16 Telephony Bearer Capability according to CIP 1.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics 

identification is to be used
Presentation: High layer protocol 

profile
High layer characteristics 

identification: Telephony
Coding of HLC:
<0x7D, 0x02, 0x91, 0x81>

17 Facsimile 
Group 2/3

Bearer Capability according to CIP 4.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics 

identification is to be used
Presentation: High layer protocol 

profile
High layer characteristics 

identification: Facsimile Group 2/3
Coding of HLC:
<0x7D, 0x02, 0x91, 0x84>

18 Facsimile 
Group 4 Class 1

Bearer Capability according to CIP 2.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics 

identification is to be used
Presentation: High layer protocol 

profile
High layer characteristics 

identification: Facsimile Group 4 
Class 1

Coding of HLC:
<0x7D, 0x02, 0x91, 0xA1>

19 Teletex service Bearer Capability according to CIP 2.



basic and mixed
mode and 
facsimile serv-
ice Group 4 
Classes II and 
III

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics 

identification is to be used
Presentation: High layer protocol 

profile
High layer characteristics 

identification. Teletex service and 
facsimile service Group 4

Coding of HLC:
<0x7D, 0x02, 0x91, 0xA4>

20 Teletex service 
basic and 
processable 
mode

Bearer Capability according to CIP 2.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics 

identification is to be used
Presentation: High layer protocol 

profile
High layer characteristics 

identification. Teletex service basic 
and processable mode

Coding of HLC:
<0x7D, 0x02, 0x91, 0xA8>

21 Teletex service 
basic mode

Bearer Capability according to CIP 2.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics 

identification is to be used
Presentation: High layer protocol 

profile
High layer characteristics 

identification. Teletex service basic 
mode

Coding of HLC:
<0x7D, 0x02, 0x91, 0xB1>

22 International 
inter working 
for Videotex

Bearer Capability according to CIP 2.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics 

identification is to be used
Presentation: High layer protocol 

profile

Chapter 8.5: UNIX 91



High layer characteristics 
identification. International inter 
working for Videotex

Coding of HLC:
<0x7D, 0x02, 0x91, 0xB2>

23 Telex Bearer Capability according to CIP 2.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics 

identification is to be used
Presentation: High layer protocol 

profile
High layer characteristics 

identification: Telex
Coding of HLC:
<0x7D, 0x02, 0x91, 0xB5>

24 Message 
Handling 
Systems 
according to 
X.400

Bearer Capability according to CIP 2.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics 

identification is to be used
Presentation: High layer protocol 

profile
High layer characteristics 

identification: Message Handling 
Systems according X.400

Coding of HLC:
<0x7D, 0x02, 0x91, 0xB8>

25 OSI application
according to 
X.200

Bearer Capability according to CIP 2.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics 

identification is to be used
Presentation: High layer protocol 

profile
High layer characteristics 

identification: OSI application ac-
cording X.200

Coding of HLC:
<0x7D, 0x02, 0x91, 0xC1>

26 7 kHz 
Telephony

Bearer Capability according to CIP 9.

High Layer Compatibility:



coding standard: CCITT
interpretation: First characteristics 

identification is to be used
Presentation: High layer protocol 

profile
High layer characteristics 

identification: Telephony
Coding of HLC:
<0x7D, 0x02, 0x91, 0x81>

27 Video 
Telephony, first
connection

Bearer Capability according to CIP 9.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics 

identification is to be used
Presentation: High layer protocol 

profile
High layer characteristics 

identification: Video telephony (Rec.
F.721)

Extended high layer characteristics 
identification: Capability set of 
initial channel of H.221

Coding of HLC:
<0x7D, 0x03, 0x91, 0xE0, 0x01>

28 Video 
Telephony, 
second 
connection

Bearer Capability according to CIP 2

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics 

identification is to be used
Presentation: High layer protocol 

profile
High layer characteristics 

identification: Video telephony (Rec 
F.721)

Extended high layer characteristics 
identification: Capability set of 
subsequent channel of H.221

Coding of HLC:
<0x7D, 0x03, 0x91, 0xE0, 0x02>

Chapter 8.5: UNIX 93



Note

This coding applies to ISDN with a default of A-Law coding for 
speech/audio. For ISDN with a default of m Law coding the corresponding 
values will be used.

This information element appears in:

CONNECT_REQ
CONNECT_IND

CIP maskXE "CIP mask"§ (dword)

The purpose of the parameter CIP mask is to select basic classes of incoming 
calls. The bit position within this mask identifies the related CIP value. When an 
incoming call is received, COMMON-ISDN-API tries to match this incoming 
call to the defined CIP values (more than one value may match). A 
CONNECT_IND message is sent to the application when the bit position within 
the CIP mask of any matching CIP value is set to ´1´. The CIP value in the CON-
NECT_IND message is set to the highest matching CIP value.

The following rules are defined to find matching CIPs:

1. CIP values which define a Bearer Capability only (CIP 1 to CIP 9) will 
generate a match with any incoming call which includes a Bearer Capability 
with the same information. Additional information included in the Bearer 
Capability information element will be ignored. The match is generated 
regardless of any Low Layer Compatibility or High Layer Compatibility 
received.

2. CIP values which define a Bearer Capability and a High Layer Compatibility 
(CIP 16 to CIP 28) will generate a match with any incoming call which 
includes a Bearer Capability and a High Layer Compatibility with the same 
identical information. The match is generated regardless of any Low Layer 
Compatibility received.

Bit 0 in the CIP mask has a special meaning. When no other matching bit is set in 
the CIP mask but the Bit 0, a CONNECT_IND is sent to the application with 
a CIP value of 0. In this case the application has to evaluate the parameters 
Bearer Capability, Low Layer Compatibility and High Layer Compatibility to 
decide whether it is compatible to the call or not.



Examples:

Service Bits to be set in the CIP mask

Telephon
y 
Applicati
on

1 For calls within ISDN from equipment which does not 
send High Layer Compatibility info.

4 For calls from the analogue network.
16 For call within ISDN equipment which sends High 

Layer Compatibility info.

Fax Group
2/3 
Applicatio
n

4 For calls from the analogue network.
17 For calls within ISDN.

Non 
standard 
64 kBit/s 
data 
applicatio
ns

2 No checking of High Layer Compatibility information is 
provided. The application should verify that no High Layer
Compatibility information is received.

Non 
standard 
56 kBit/s 
data 
applicatio
ns

8 No checking of High Layer Compatibility information is 
provided. The application has to verify that no High Layer 
Compatibility information is received.

Fax Group
4 
applicatio
n

2 For calls from equipment which does not send High Layer 
Compatibility information. The application has to verify 
that no High Layer Compatibility information is received.

18 For call from equipment which sends High Layer 
Compatibility information.

This information element appears in:

LISTEN_REQ

Chapter 8.5: UNIX 95



Connected Party NumberXE "Connected Party Number"§ (struct)

The purpose of the parameter connected party number information element is 
to identify the called party of a call. The information element is coded according 
to ETS 300 097.

Byte 0 Type of number and numbering plan identification (byte 3 of 
the connected party number information element, see ETS 300
097).
In the direction application to COMMON-ISDN-API, the 
value supplied by the application will be transmitted over 
the network, 0x00 is the suggested default value.
In the direction COMMON-ISDN-API to application, the 
value received from the network will be passed to the 
application. The extension bit will always be cleared.

Byte 1 Presentation and screening indicator (byte 3a of the connected 
party number information element).
In the direction application to COMMON-ISDN-API, the 
value supplied by the application will be transmitted over 
the network, 0x80 is the suggested default value.
In the direction COMMON-ISDN-API to application, the 
value received from the network will be passed to the 
application. If this byte was not transmitted over the 
network, the controller provides the value 0x80 (user 
provided, not screened).

Bytes 2..n Number digits of the connected party number information 
element.

This information element appears in:

CONNECT_ACTIVE_IND
CONNECT_RESP



Connected Party SubaddressXE "Connected Party Subaddress"§ (struct)

The purpose of the parameter connected party subaddress information element 
is to identify the subaddress of the connected user of a call. The information 
element is coded according to ETS 300 097.

Byte 0 Type of subaddress
At the calling side the value supplied by application will be 
transmitted over the network, 0x80 is the suggested default 
value (NSAP according X.213). In this case, the first 
subaddress information octet should have the value 0x50.
At the called side, the value received from the network will
be passed to the application. 

Bytes 1..n Contents of the connected party subaddress information 
element.

This information element appears in:

CONNECT_ACTIVE_IND
CONNECT_RESP

ControllerXE "Controller"§ (dword)

The purpose of the parameter controller is to address a hardware unit, that give 
access to an ISDN at the application's disposal. A controller supports none, one or
several physical and logical connections. The parameter controller is a dword (to 
be compatible in size with PLCI and NCCI) with the range from 1 to 127 (0 
reserved). Bit 7 additionally contains the information, if the message is used for 
internal (0) or external (1) equipment. Controllers are numbered sequentially and 
can be designed to handle external equipment additional to internal functionality 
or exclusively provide access to external equipment. External equipment is e.g. a 
handset.

Definition of external equipment behaviour, e.g. B channel handling, is not 
covered by COMMON-ISDN-API. 

Format for controller: 0 0 0 Ext./Int. Controller

31 16 8 7 6               0

Chapter 8.5: UNIX 97



This information element appears in:

CONNECT_REQ
FACILITY_REQ
FACILITY_CONF
FACILITY_IND
FACILITY_RESP
LISTEN_REQ
LISTEN_CONF
MANUFACTURER_REQ
MANUFACTURER_CONF
MANUFACTURER_IND
MANUFACTURER_RESP

DataXE "Data"§ (dword)

The purpose of the parameter data is to exchange a 32 bit pointer to the data 
area containing the information.

This information element appears in:

DATA_B3_REQ
DATA_B3_IND

Data LengthXE "Data Length"§ (word)

The purpose of the parameter data length is to specify the length of the data.

This information element appears in:

DATA_B3_REQ
DATA_B3_IND

Data HandleXE "Data Handle"§ (word)

The purpose of the parameter data handle is to identify the data area in data 
exchange messages.

This information element appears in:

DATA_B3_REQ
DATA_B3_CONF
DATA_B3_IND
DATA_B3_RESP



Facility SelectorXE "Facility Selector"§ (word)

The purpose of the parameter facility selector is to identify the requested 
COMMON-ISDN-API facility.

The defined values are:
0 Handset (external ISDN equipment) support
1 DTMF (Dual Tone Multi Frequency)

This information element appears in:

FACILITY_REQ
FACILITY_CONF
FACILITY_IND
FACILITY_RESP

Facility Request ParameterXE "Facility Request Parameter"§ (struct)

The purpose of the parameter facility request parameter is to offer additional 
information concerning the message FACILITY_REQ.

This parameter is coded depending on  facility selector as a structure with 
following elements:

Facility selector:
0 Parameter does not apply (coded as empty structure)

1 DTMF (Dual Tone Multi Frequency):

Function word 1: Start DTMF listen on B channel data
2. Stop DTMF listen
3: Send DTMF digits
4 to n: Reserved

Tone-Duration word Time in ms for one digit, default is 40 ms

Gap-Duration word Time in ms between the digits, default is 40 
ms

DTMF-Digits struct Characters to be sent, coded as IA5-char. '0' 
to '9', '*', '#', 'A', 'B', 'C' or 'D', each character
generates a unique DTMF- Tone.

Sending of DTMF characters will interrupt the transmission of DATA_B3_REQ. 
After DTMF generation, the data transmission will be resumed

Chapter 8.5: UNIX 99



This information element appears in:

FACILITY_REQ

Facility Confirmation ParameterXE "Facility Confirmation Parameter"§ (struct)

The purpose of the parameter facility confirmation parameter is to offer 
additional information concerning the message FACILITY_CONF.

This parameter is coded depending on  facility selector as a structure with 
following elements:

Facility selector:
0 Parameter does not apply (coded as structure with a length of 0 )

1 DTMF (Dual Tone Multi Frequency):

DTMF 
information

word 0: sending of DTMF info successfully 
initiated
1: incorrect DTMF digit
2: unknown DTMF request

This information element appears in:

FACILITY_CONF

Facility Indication ParameterXE "Facility Indication Parameter"§ (struct)

The purpose of the parameter facility indication parameter is to offer additional
information concerning the message FACILITY_IND.

This parameter is coded depending on  facility selector as a structure with 
following elements:

Facility selector:
0 Handset Support:

handset digits byte array Received characters, coded as IA5-char. '0' 
to '9', '*', '#', 'A', 'B', 'C' or 'D'; or
'+': Handset off-hook
'-': Handset on-hook

Facility selector:
1 DTMF (Dual Tone Multi Frequency):

DTMF digits byte array Received characters, coded as IA5-char. '0' 
to '9', '*', '#', 'A', 'B', 'C' or 'D'



This information element appears in:

FACILITY_IND

Facility Response ParameterXE "Facility Respond Parameter"§ (struct)

The purpose of the parameter facility respond parameter is to offer additional 
information concerning the message FACILITY_RESP.

This parameter is coded depending on  facility selector as a structure with 
following elements:

Facility selector:
0 Parameter does not apply (coded as structure with a length of 0 )

1 Parameter does not apply (coded as structure with a length of 0 )

This information element appears in:

FACILITY_RESP

FlagsXE "Flags"§ (word)

The purpose of the parameter flags is to exchange additional protocol 
dependent information about the data.

Bit 0 qualifier bit

Bit 1 more data bit

Bit 2 delivery confirmation bit

Bit 3 expedited data bit

Bit 15 framing error bit, data may be invalid (only with 
corresponding B2 protocol)

Chapter 8.5: UNIX 101



This information element appears in:

DATA_B3_REQ
DATA_B3_IND

HLCXE "HLC"§ (struct)

The purpose of the parameter High Layer Compatibility (HLC) information 
element is to provide a means which should be used by the remote user for 
compatibility checking. The information element is coded according to ETS 300 
102-1 / Q.931.

This information element appears in:

CONNECT_IND
CONNECT_REQ

InfoXE "Info"§ (word)

The purpose of the parameter info is to provide error information to the 
application. For each error which can be detected by the controller a unique code 
is defined, independing from the context of the error.

COMMON-ISDN-API shall not generate other information values as defined 
below. In case of future extension of possible information values however an 
application should interpret any information value except class 0x00xx as an 
indication that the corresponding request was rejected from COMMON-ISDN-
API. Class 0x00xx indicates the successful handling of the corresponding request 
and returns additional information.

class 0x00xx: information values (corresponding message was processed)
Value Reason

0 request accepted

0x0001 NCPI not supported by current protocol, NCPI ignored

0x0002 flags not supported by current protocol, flags ignored

0x0003 alert already sent by another application



class 0x10xx: error information concerning CAPI_REGISTER
Value Reason

0x1001 too many applications

0x1002 logical block size too small, must be at least 128 bytes

0x1003 buffer exceeds 64 kByte

0x1004 message buffer size too small, must be at least 1024 bytes

0x1005 max. number of logical connections not supported

0x1006 reserved

0x1007 the message could not be accepted because of an internal busy 
condition

0x1008 OS Resource error (e.g. no memory)

0x1009 COMMON-ISDN-API not installed

0x100A Controller does not support external equipment

0x100B Controller does only support external equipment

class 0x11xx: error information concerning message exchange functions
Value Reason

0x1101 illegal application number

0x1102 illegal command or subcommand or message length less than 
12 octets

0x1103 the message could not be accepted because of a queue full 
condition. The error code does not imply that COMMON-
ISDN-API cannot receive messages directed to another 

Chapter 8.5: UNIX 103



controller, PLCI or NCCI.

0x1104 queue is empty

0x1105 queue overflow, a message was lost. This indicates a 
configuration error. The only recovery from this error is to 
perform a CAPI_RELEASE.

0x1106 unknown notification parameter

0x1107 the message could not be accepted because of an internal busy 
condition

0x1108 OS Resource error (e.g. no memory)

0x1109 COMMON-ISDN-API not installed

0x110A Controller does not support external equipment

0x110B Controller does only support external equipment



class 0x20xx: error information concerning resource / coding problems
Value Reason

0x2001 message not supported in current state

0x2002 illegal Controller/PLCI/NCCI

0x2003 out of PLCI

0x2004 out of NCCI

0x2005 out of LISTEN

0x2006 out of FAX resources (protocol T.30)

0x2007 illegal message parameter coding

class 0x30xx: error information concerning requested services
Value Reason

0x3001 B1 protocol not supported

0x3002 B2 protocol not supported

0x3003 B3 protocol not supported

0x3004 B1 protocol parameter not supported

0x3005 B2 protocol parameter not supported

0x3006 B3 protocol parameter not supported

0x3007 B protocol combination not supported

Chapter 8.5: UNIX 105



0x3008 NCPI not supported

0x3009 CIP Value unknown

0x300A flags not supported (reserved bits)

0x300B facility not supported

0x300C data length not supported by current protocol

0x300D reset procedure not supported by current protocol

This information element appears in:

CONNECT_B3_CONF
CONNECT_CONF
INFO_CONF
DATA_B3_CONF
DISCONNECT_B3_CONF
DISCONNECT_CONF
LISTEN_CONF
RESET_B3_CONF
SELECT_B_PROTOCOL_CONF

Info ElementXE "Info Element"§ (word)

The purpose of the parameter info element depends on the value of the 
parameter info number.

If the info number specifies an information element, the info element contains that
information element with the coding as defined in ETS 300 102-1 / Q.931.

If the info number specifies a charging information info element contains a dword
indicating the sum of charges accumulated by the network up to this moment.

If the info number specifies a message type the info element is an empty 
COMMON-ISDN-API struct.

This information element appears in:

INFO_IND



Info MaskXE "Info Mask"§ (dword)

The parameter info mask specifies which type of information for a physical 
connection or controller  will be provided by COMMON-ISDN-API. The 
selected information will be indicated within the message INFO_IND to the 
application. A given info mask (set in LISTEN_REQ) is valid until it is 
superseded by another LISTEN_REQ and applies to all information concerning 
the corresponding application. The info mask is coded as a bit field. A bit set to 1 
means that corresponding INFO_IND messages will be generated, a bit set to 0 
means the specified information will be suppressed. In the default info mask all 
bits are set to 0. If an application wants to change this value it has to send a LIS-
TEN_REQ message even if it does not want to be informed about incoming calls.

Bit 0 Cause; cause information given by the net during 
disconnection. The parameter info element of the 
corresponding INFO_IND message is a COMMON-ISDN-API
struct which contains the cause information element 
defined in ETS 300 102-1 and Q.931 (both 4.5.12).

Bit 1 Date/time; date/time information indicated by the net. The 
parameter info element of the corresponding INFO_IND 
message contains the date/time information element defined in 
ETS 300 102-1 and Q.931 (both 4.6.1).

Bit 2 Display; display information to be displayed to the user. The 
parameter info element of the corresponding INFO_IND 
message contains the display information element defined in 
ETS 300 102-1 and Q.931 (both 4.5.15).

Bit 3 User-user; user-user information that is transparently carried 
by the net. The parameter info element of the corresponding 
INFO_IND message contains the user-user information 
element defined in ETS 300 102-1 and Q.931 (both 4.5.29).

Bit 4 Call progression; information referring to the progress of the 
call. There are five different INFO_IND messages that 
correspond to this information type, each with a unique info 
number.
The first indication contains the information element progress 
indicator as defined in ETS 300 102-1 and Q.931. The other 
four messages indicate the occurrence of  the network events 
SETUP ACKNOWLEDGE, CALL PROCEEDING, 
ALERTING and PROGRESS. In these cases the parameter 
info number indicates the corresponding message type and the 
info element is an empty COMMON-ISDN-API struct.

Bit 5 Facility; facility information to indicate the invocation and 

Chapter 8.5: UNIX 107



operation of supplementary services. The parameter info 
element of the corresponding INFO_IND message contains the
facility information element defined in ETS 300 102-1 and 
Q.931 (both 4.6.2).

Bit 6 Charging information; connection oriented charging 
information provided by the net. There are two different 
INFO_IND messages with unique info number values that 
correspond to this information type. The first one shows 
the sum of charging units indicated by the net up to this 
moment, the second the sum of  charges in the national 
currency indicated by the net up to this moment. In both 
cases the parameter info element is coded as a COMMON-
ISDN-API struct containing a dword. It is highly 
recommended to provide only one of this two types of 
charging information to the user and to transform one type
to the other. However, in some networks this might be 
impossible due to the information provided from the net. 
In these cases it is not defined, if the current charges are 
represented by only one or both or the sum of this 
indicated charges.

Bits 7-31 Reserved, must be set to 0

This information element appears in:

LISTEN_REQ

Info NumberXE "Info Number"§ (word)

The purpose of the parameter info number specifies the coding of the parameter
info element and the type of information which is carried by this INFO_IND 
message. The high byte is structured as a bit field and indicates which type of 
information is held in the low byte.

Bit 15 If this bit set to 1 the low byte contains a message type, if it is 
set to 0 the low byte represents an information element type.

Bits 14 If this bit is set to 1 the low byte indicates supplementary 
information not covered by network events or information 
elements. In this case bit 15 must be set to 0.

Bits 13-8 Reserved, set to 0.



If bit 15 is set, the low byte containing the message type is coded according to 
ETS 300 102-1 / Q.931. In this case the INFO_IND message indicates the 
occurrence of a network event according to the specified message and the 
parameter info element is an empty COMMON-ISDN-API struct. 

If bits 14 and 15 are cleared, the low byte represents an information element type 
coding according to ETS 300 102-1 / Q.931. The parameter info element contains 
the content of the information element.

If bit 14 is set, the low byte represents supplementary information. The defined 
values are

0 sum of charges in charging units.  In this case the parameter info element contains the content of 
the information element.

1 sum of charges in national currency. In this case the parameter info element contains the 
content of the information element.

formation element appears in:

INFO_IND

LLCXE "LLC"§ (struct)

The purpose of the parameter Low Layer Compatibility (LLC) information 
element is to provide a means which should be used for compatibility checking by
an addressed entity (e.g. a remote user or an inter working unit or a high layer 
function network node addressed by the calling user). The Low Layer 
Compatibility information element is transferred transparently by ISDN between 
the call originating entity (e.g. the calling user) and the addressed entity. If Low 
Layer Compatibility negotiation is allowed by the network, the Low Layer 
Compatibility information element is also passed transparently from the addressed
entity to the originating entity. The information element is coded according to 
ETS 300 102-1 / Q.931.

This information element appears in:

CONNECT_ACTIVE_IND
CONNECT_IND
CONNECT_REQ
CONNECT_RESP

Manu IDXE "Manu ID"§ (dword)

The purpose of the parameter Manu ID is to exchange a dword inside 
MANUFACTURER-Messages which identifies the manufacturer. Every 
manufacturer offering MANUFACTURER-Messages should choose a unique 
value (e.g. shortcut of company name).

Chapter 8.5: UNIX 109



This information element appears in:

MANUFACTURER_REQ
MANUFACTURER_RESP
MANUFACTURER_CONF
MANUFACTURER_IND

Manufacturer SpecificXE "Manufacturer Specific"§

The purpose of the parameter manufacturer Specific is to exchange 
manufacturer specific information.

This information element appears in:

MANUFACTURER_REQ
MANUFACTURER_RESP
MANUFACTURER_CONF
MANUFACTURER_IND

NCCIXE "NCCI"§ (dword)

The purpose of the parameter NCCI is to identify a logical connection. The 
NCCI is given by COMMON-ISDN-API during creation of the logical 
connection. Depending on the layer 3 protocol selection (e.g. ISO 8208), it is 
possible to have multiple NCCIs based on one PLCI. The NCCI is a dword with a 
range from 1 to 65535 (0 reserved), coded as described below, and includes 
additionally the corresponding PLCI and controller.

Format for NCCI: NCCI PLCI Ext./Int. Controller

31 16 8 7 6               0

This information element appears in:

CONNECT_B3_ACTIVE_IND
CONNECT_B3_ACTIVE_RESP
CONNECT_B3_CONF
CONNECT_B3_IND
CONNECT_B3_RESP
DATA_B3_CONF
DATA_B3_IND
DATA_B3_REQ
DATA_B3_RESP
DISCONNECT_B3_CONF
DISCONNECT_B3_IND
DISCONNECT_B3_REQ
DISCONNECT_B3_RESP
FACILITY_REQ
FACILITY_CONF
FACILITY_IND
FACILITY_RESP
RESET_B3_CONF
RESET_B3_IND
RESET_B3_REQ



RESET_B3_RESP

 NCPIXE "NCPI"§ (struct)

The purpose of the parameter NCPI is to provide additional protocol specific 
information.

For the layer 3 protocols ISO 8208 and X.25 the parameter data of structure NCPI
are coded as follows:

Byte 0 Bit field

[0]: Enable the usage of the delivery confirmation 
procedure in call set-up and data packets (D-Bit).

[1..7]: Reserved.

Byte 1 Logical channel group number of the permanent virtual circuit 
(PVC) to be used. In the case of virtual calls (VC) this number 
must be set to zero.

Byte 2 Logical channel number of the permanent virtual circuit (PVC)
to be used. In the case of virtual calls (VC) this number must 
be set to zero.

Bytes 3..n Bytes following the packet type identifier field in the X.25 
PLP packets.

For layer 3 protocol T.30 (fax group 3) the parameter data of structure NCPI are 
valid only for DISCONNECT_B3_IND and coded as follows (in every other 
message the structure is empty):

word Rate actual used bit rate, coded as unsigned in-
teger value

word resolution 0: standard
1: high

word format 0: SFF (Default, description in Annex A)
1: Plain FAX Format (modified Huffman 
coding)
2: PCX
3: DCX

Chapter 8.5: UNIX 111



4: TIFF
5: ASCII
6: Extended ANSI
7: Binary-File transfer

word pages number of pages, coded as unsigned integer 
value

struct receive id id of remote side

This information element appears in:

CONNECT_B3_ACTIVE_IND
CONNECT_B3_T90_ACTIVE_IND
CONNECT_B3_IND
CONNECT_B3_REQ
CONNECT_B3_RESP
DISCONNECT_B3_IND
DISCONNECT_B3_REQ
RESET_B3_REQ
RESET_B3_RESP

PLCIXE "PLCI"§ (dword)

The purpose of the parameter PLCI is to describe a physical connection 
between two endpoints. The PLCI is given by COMMON-ISDN-API during 
creation of the physical connection. The PLCI is a dword with the range from 1 to
255 (0 reserved), coded as described below, and includes additionally the 
controller.

Format for PLCI: 0 0 PLCI Ext./Int. Controller

31 16 8 7 6               0

This information element appears in:

CONNECT_ACTIVE_IND
CONNECT_ACTIVE_RESP
CONNECT_B3_REQ
CONNECT_CONF
CONNECT_IND
CONNECT_RESP
DISCONNECT_REQ
DISCONNECT_CONF
DISCONNECT_IND
DISCONNECT_RESP
FACILITY_REQ
FACILITY_CONF
FACILITY_IND
FACILITY_RESP
INFO_REQ
INFO_CONF
INFO_IND



INFO_RESP
SELECT_B_PROTOCOL_REQ
SELECT_B_PROTOCOL_CONF

ReasonXE "Reason"§ (word)

The purpose of the parameter reason is to provide error information to the 
application regarding the clearing of a physical connection . The defined values 
are:

0 normal clearing, no cause available
0x3301 protocol error layer 1
0x3302 protocol error layer 2
0x3303 protocol error layer 3
0x3304 another application gets that call (see LISTEN_REQ)
0x34xx disconnect cause from the network according to ETS 300 102-1 / Q.931. In the field 'xx' the 

cause value received within a cause information element (octet 4) from the network is indicated.

This information element appears in:

DISCONNECT_IND

Reason_B3XE "Reason_B3"§ (word)

The purpose of the parameter reason is to provide error information to the 
application regarding the clearing of a logical connection . The defined values 
are:

protocol independent:
0 normal clearing, no cause available
0x3301 protocol error layer 1 (broken line or B channel removed by signalling protocol)
0x3302 protocol error layer 2
0x3303 protocol error layer 3

T.30 specific reasons:
0x3311 connecting not successful  (remote station is no fax G3 machine)
0x3312 connecting not successful  (training error)
0x3313 disconnected before transfer (remote station does not support transfer mode, e.g. resolution)
0x3314 disconnected during transfer (remote abort)
0x3315 disconnected during transfer (remote procedure error (e.g. unsuccessful repetition of T.30 

commands)
0x3316 disconnected during transfer (local tx data underrun)
0x3317 disconnected during transfer (local rx data overflow)
0x3318 disconnected during transfer (local abort)
0x3319 illegal parameter coding (e.g. SFF coding error)

RejectXE "Reject"§ (word)

The purpose of the parameter reject is to define the action of COMMON-
ISDN-API for incoming calls. 

The defined values are
0 Accept the call
1 Ignore the call
2 reject call, normal call clearing
3 reject call, user busy
4 reject call, requested circuit/channel not available
5 reject call, facility rejected

Chapter 8.5: UNIX 113



6 reject call, channel unacceptable
7 reject call, incompatible destination
8 reject call, destination out of order

This information element appears in:

CONNECT_B3_RESP
CONNECT_RESP



ANNEX A (Informative): Sample Flow Chart Diagrams 115



7 State Diagraminhalt "7 State Diagram" \l1§

7.1 USER'S GUIDEinhalt "7.1 User's Guide" \l2§

To explain the message exchange between CAPI and application,  a graphic description is
mandated.  In  the  absence  of  an  international  standard  for  the  description  of  a  message
exchange  between  two  local  entities,  a  new  way  of  presentation  was  created.  The  state
machines  on  the  following  pages  are  described  in  the  form of  a  state  diagram covering
application and controller. This state diagram is a monitor view of an idealised interface. In
reality the CAPI is not only an interface definition, it is also a concrete instantiation.

The state diagram on the following pages is split into three separate state machines:

1. LISTEN state machine

2. PLCI state machine (physical connections)

3. NCCI state machine (logical connections)

On every physical connection, identified by a PLCI, several logical layer 3 links could
exist,  identified  by  a  NCCI.  Therefore  a  splitting  into  PLCI  and  NCCI  state
machine is necessary. A description of "n" physical links with "m" logical links at
one time in one state  machine is  impossible.  Therefore only one PLCI or  one
NCCI at a time is considered in the state machine.

COMMON-ISDN-API messages  LISTEN_REQ  and  LISTEN_CONF  are  described  in  a
separate state machine, because the availability of a successful LISTEN setting exceeds the
lifetime of logical and/or physical connections.

µ §

Figure 5: Position of PCO (Point of Control and Observation)

7.2 Explanationinhalt "7.2 Explanation" \l2§

The  state  diagrams  define  a  faultless  exchange  of  messages.  The  point  of  control  and
observation  (PCO)  for  the  message  exchange  description  is  on  the  level  of  the  CAPI
operations.  For  real  implementations  it  is  not  allowed that  an  asynchronous exchange of
messages results in an error condition.

The state diagrams define the flow of the messages on the PCO without consideration of their

ANNEX B (Informative): SFF Format 117



possible asynchronicity in real implementations.

Confirmations and responses, which do not evoke a state transition, are not shown in this state
diagrams.

In  "ANY-State"  it  is  allowed that  an expected confirmation  on a  request  or  an expected
response appears.

The  messages  MANUFACTURER_REQ,  MANUFACTURER_CONF,
MANUFACTURER_IND and  MANUFACTURER_RESP  could  result  in  incompatibility.
They are not described in the state diagrams.

Requests with an invalid PLCI or an invalid NCCI are wrong messages and therefore are not
described in the state diagrams.

INFO_REQ and INFO_IND are network specific elements which can appear at any time. The
use of INFO_REQ especially for "overlap sending" is described in the PLCI-state machine
1/2.

FACILITY_REQ, FACILITY_CONF, FACILITY_IND and FACILITY_RESP are facility
specific messages which can appear at any time. Therefore they can occur in every state of
the LISTEN- , PLCI- and NCCI- state machine. Especially the FACILITY_IND concerning
"Handset Support" is described in the PLCI-state machine 1/2. The flow of the messages for
the  Handset  Support  depends  on  the  real  handset  interface  (e.g.  AEI,  i.e.  Additional
Equipment Interface) or manufacturer specific codecs. So it is possible, that only a part from
the described flow of the messages for the Handset Support is used. But it is not allowed to
use the FACILITY messages for the Handset Support in another way, as described in the
message definition and the state machines.



inhalt "7.3 Diagrams" \l2§inhalt "7.3.1 LISTEN State Machine" \l3§µ §

Index 119



inhalt "7.3.2 PLCI State Machine" \l3§
µ §



µ §

Index 121



inhalt "7.3.3 NCCI State Machine" \l3§
µ §



µ §

Index 123



8 Specifications for commercial Operating Systemsinhalt"8 
Specifications for commercial Operating Systems" \l1§

8.1 MS-DOSinhalt "8.1 MS-DOS" \l2§

As  MS-DOS  does  not  provide  any  multitasking  facilities,  COMMON-ISDN-API is
incorporated  into  the  system  as  a  background  driver  (terminate  and  stay  resident).  The
interface between the application and  COMMON-ISDN-API is implemented by way of a
software interrupt. The vector used for this must be configurable both in COMMON-ISDN-
API and in the application.  The default  value for the software interrupt is 241 (0xF1).  If
another value is to be used, it can be specified as a parameter when COMMON-ISDN-API is
installed.

The  functions  described  below  are  defined  by  appropriate  register  assignments  in  this
software  interrupt  interface.  The  return  values  and  parameter   are  normally  supplied  in
register AX and ES:BX. Registers AX, BX, CX, DX and ES can be modified, other registers
are retained.  COMMON-ISDN-API is  allowed to  enable  interrupts  during  processing of
these functions.

COMMON-ISDN-API requires a maximum stack area of 512 bytes for the execution of all
the  functions  incorporated.  This  stack  area  must  be  made  available  by  the  application
program. During processing the software interrupt COMMON-ISDN-API may enable and/or
disable interrupts.

The software interrupt for COMMON-ISDN-API is defined according to the BIOS interrupt
chaining structure.

API PROC FAR ; ISDN-API interrupt service

JMP SHORT doit ; jump to start of routine

DD ? ; chained interrupt

DW 424BH ; interrupt chaining signature

DB 80H ; first in chain flag

DW ? ; reserved, should be 0



DB 'CAPI' ; COMMON-ISDN-API signature

DB '20' ; Version number

doit:

The  characters  'CAPI20'  can  be  requested  by  the  application  to  check  the  presence  of
COMMON-ISDN-API.

The pointer stipulated in messages DATA_B3_REQ and DATA_B3_IND is implemented as
a FAR pointer under MS-DOS.

Memory layout is according to MS-DOS.

Index 125



8.1.1 Message Operationsinhalt "8.1.1 Message Operations" \l3§

CAPI_REGISTERXE "CAPI_REGISTER:MS-DOS"§

Description

This is the function the application uses to report its presence to COMMON-ISDN-API.
In doing so, the application provides COMMON-ISDN-API with a memory area. A FAR
pointer to this memory area is transferred in registers ES:BX. The size of the memory
area is calculated according to the following formula:

CX + (DX * SI * DI)

The size of the message buffer used to store messages is transferred to the
CX register. Choosing too small this value will result in messages being
lost..  A 'normal'  application  should  calculate  the  necessary  amount  of
memory according to following formula:
CX = 1024 + (1024 * DX)

In  the  DX register  the  application  indicates  the  maximum  number  of
logical  connections  opened  simultaneously.  An  attempt  to  open  more
logical  connections  than  stipulated  here  can  be  acknowledged  with  an
error message from COMMON-ISDN-API.

In the SI register the application sets the maximum number of received B3 data blocks
that can be reported to the application simultaneously. The number of simultaneously
available B3 data blocks has a decisive effect on the throughput of B3 data in the system
and should be between 2 and 7. There must be room for two B3 data blocks at least.

In the  DI register the application sets the maximum size of the application data to be
transmitted  and  received,  that  is  the  maximum  data  length parameter  in  messages
DATA_B3_REQ respectively.  DATA_B3_IND.  The default value for the protocol ISO
7776 (X.75) is 128 octets.  COMMON-ISDN-API will be able to support at least up to
2048 octets, if an application sets register DI with corresponding values.

The application number is supplied in the AX register. In the event of an error, the AX
register is returned with the value 0. The cause of the error is held in the BX register in
this case.



CAPI_REGISTER 0x01

Parameter Comment

AH Version number 20 (0x14)

AL Function code 0x01

ES:BX FAR pointer to a memory block provided by the 
application. This memory area can (but need not) 
be used by COMMON-ISDN-API to manage the 
message queue of the application. In addition, 
COMMON-ISDN-API can (but also need not) 
provide the received data in this memory area.

CX Size of message buffer

DX Maximum  number of level 3 connections

SI Number of B3 data blocks available 
simultaneously

DI Maximum size of a B3 data block

Return Value
Return Value Comment

AX <> 0 Application number  (ApplID) 

0x0000 Registration error, cause of error in BX register

BX if AX == 0, coded as described in parameter Info 
class 0x10xx



Note

If the application has opened a maximum of one layer 3 connection simultaneously and the
standard protocols are used, the following register assignment is recommended:

CX = 2048, DX = 1, SI = 7, DI = 128

The resulting memory requirement is 2944 bytes.



CAPI_RELEASEXE "CAPI_RELEASE:MS-DOS"§

Description

The application uses this function to log off from  COMMON-ISDN-API. The memory
area indicated in the CAPI_REGISTER is released. The application is identified by the
application number in the  DX register. Any errors that occur are returned in register
AX.

CAPI_RELEASE 0x02

Parameter Comment

AH Version number 20 (0x14)

AL Function Code 0x02

DX Application number

Return Value
Return Value Comment

AX 0x0000 no error 

<> 0 Registration error, coded as described in parameter
Info class 0x11xx



CAPI_PUT_MESSAGEXE "CAPI_PUT_MESSAGE:MS-DOS"§

Description

With this function the application transfers a message to COMMON-ISDN-API. A FAR
pointer  is  transferred  to  the  message  in  the  ES:BX  registers.  The  application  is
identified via application number in the DX register. Any errors that occur are returned
in register AX.

CAPI_PUT_MESSAGE 0x03

Parameter Comment

AH Version number 20 (0x14)

AL Function Code 0x03

ES:BX FAR pointer to the message

DX Application number

Return Value
Return Value Comment

AX 0x0000 No error

<> 0 Coded as described in parameter info class 0x11xx

Note

After CAPI_PUT_MESSAGE the application can use the memory area of the message
again. The message will not be changed by COMMON-ISDN-API.





CAPI_GET_MESSAGEXE "CAPI_GET_MESSAGE:MS-DOS"§

Description

With this function the application retrieves a message from COMMON-ISDN-API. The
application  can only  retrieve  those  messages  intended  for  the  stipulated  application
number. A FAR pointer is set to the message in the ES:BX registers. If there is no mes-
sage for the application, the function returns immediately. Register AX contains the cor-
responding error value. The application is identified via the application number in the
DX register. Any errors that occur are returned in register AX.

CAPI_GET_MESSAGE 0x04

Parameter Comment

AH Version number 20 (0x14)

AL Function Code 0x04

DX Application number

Return Value
Return Value Comment

AX 0x0000 No error

<> 0 Coded as described in parameter info class 0x11xx

ES:BX FAR pointer to message, if available

Note

The message may be invalidated the next time CAPI_GET_MESSAGE is called.





8.1.2 Other Functionsinhalt "8.1.2 Other Functions" \l3§

CAPI_SET_SIGNALXE "CAPI_SET_SIGNAL:MS-DOS"§

Description

The application can use this function to activate usage of the interrupt call-back func-
tion. A FAR pointer to an interrupt call-back function is specified in the ES:BX regis-
ters. The signalling function can be deactivated by a CAPI_SET_SIGNAL with register
assignment ES:BX = 0000:0000. The application is identified via the application number
in the DX register. Any errors that occurred are returned in the AX register.

CAPI_SET_SIGNAL 0x05

Parameter Comment

AH Version number 20 (0x14)

AL Function Code 0x05

DX Application number

SI:DI Parameter passed to call-back function

ES:BX FAR pointer to call-back function

Return Value
Return Value Comment

AX 0x0000 No error

<> 0 Coded as described in parameter info class 0x11xx



Note

The call-back function is called as an interrupt by COMMON-ISDN-API, after
· any message is queued in application's message queue
· a notified busy condition is cleared
· a notified queue full condition is cleared
Interrupts  are  disabled.  The  call-back  function  must  be  terminated  via

IRET.  All  registers  have  to  be  preserved.  At  the  time  of
calling, at least 32 bytes are available on the stack.

The call-back function will be called with interrupts disabled. COMMON-ISDN-API will
not call this function recursively, even if the call-back function enables interrupts. In-
stead, the call-back function will be called again after returning to  COMMON-ISDN-
API.

The  call-back  function  is  allowed  to  use  COMMON-ISDN-API operations
CAPI_PUT_MESSAGE,  CAPI_GET_MESSAGE, and  CAPI_SET_SIGNAL. In that case
the application must be aware that interrupts may be enabled by COMMON-ISDN-API.

In case of local confirmations (e.g. LISTEN_CONF) the call-back function may be ac-
tivated before the operation CAPI_PUT_MESSAGE returns to the application.

Parameter DX, SI and DI will be passed to the call-back function with the same values
of the corresponding parameters to CAPI_SET_SIGNAL.



CAPI_GET_MANUFACTURERXE "CAPI_GET_MANUFACTURER:MS-
DOS"§

Description

With  this  function  the  application  determines  the  manufacturer  identification  of
COMMON-ISDN-API. In registers ES:BX a FAR pointer is transferred to a data area of
64 bytes. The manufacturer identification, coded as a zero terminated ASCII string, is
present in this data area after the function has been executed.

CAPI_GET_MANUFACTURER 0xF0

Parameter Comment

AH Version number 20 (0x14)

AL Function Code 0xF0

ES:BX FAR pointer to buffer

Return Value
Return Comment

ES:BX buffer contains manufacturer identification with 
ASCII coding. The end of the identification is 
indicated with a 0 byte.



CAPI_GET_VERSIONXE "CAPI_GET_VERSION:MS-DOS"§

Description

With this function the application determines the version of  COMMON-ISDN-API as
well as an internal revision number.

CAPI_GET_VERSION 0xF1

Parameter Comment

AH Version number 20 (0x14)

AL Function Code 0xF1

Return Value
Return Comment

AH COMMON-ISDN-API major version: 2

AL COMMON-ISDN-API minor version: 0

DH Manufacturer specific major number

DL Manufacturer specific minor number



CAPI_GET_SERIAL_NUMBERXE "CAPI_GET_SERIAL_NUMBER:MS-
DOS"§

Description

With this function the application determines the (optional)  serial number of  COM-
MON-ISDN-API. In registers  ES:BX a FAR pointer is transferred to a data area of 8
bytes. The serial number, coded as a zero terminated ASCII string, is present in this
data area in the form of a seven-digit number after the function has been executed. If no
serial number is supplied, the serial number is an empty string.

CAPI_GET_SERIAL_NUMBER 0xF2

Parameter Comment

AH Version number 20 (0x14)

AL Functional Code 0xF2

ES:BX FAR pointer to buffer

Return Value
Return Comment

ES:BX The (optional) serial number is read in plain text in
the form of a 7-digit number. If no serial number is
to be used, a 0 byte must be written at the first 
position in the buffer. The end of the serial number
is indicated with a 0 byte.



CAPI_GET_PROFILEXE "CAPI_GET_PROFILE:MS-DOS"§

Description

The application uses this function to get  the capabilities  from  COMMON-ISDN-API.
Registers  ES:BX  contain  a  FAR pointer  to  a  data  area  of  64  bytes.  In  this  buffer
COMMON-ISDN-API copies  information  about  implemented  features,  number  of
controllers and supported protocols.  Register  CX contains the controller number (bit
0..6) for which this information is requested.

CAPI_GET_PROFILE 0xF3

Parameter Comment

AH Version number 20 (0x14)

AL Functional Code 0xF3

CX controller number (if 0, only number of controllers
is returned)

ES:BX FAR pointer to buffer

Return Value
Return Value Comment

AX 0x0000 No error

<> 0 Coded as described in parameter info class 0x11xx

Retrieved structure format:
Type Description

2 octets number of installed controller,  least significant octet first



2 octets number of supported B-channels, least significant octet first

4 octets Global Options (bit field):
[0]: internal controller supported
[1]: external equipment supported
[2]: Handset supported (external equipment must be set also)
[3]: DTMF supported
[4].[31]: reserved

4 octets B1 protocols support (bit field):
[0]: 64 kBit/s with HDLC framing, always set.
[1]: 64 kBit/s bit transparent operation with byte framing from the 
network
[2]: V.110 asynchronous operation with start/stop byte framing
[3]: V.110 synchronous operation with HDLC framing
[4]: T.30 modem for fax group 3
[5]: 64 kBit/s inverted with HDLC framing.
[6]: 56 kBit/s bit transparent operation with byte framing from the 
network
[7]..[31]: reserved

4 octets B2 protocol support (bit field):
[0]: ISO 7776 (X.75 SLP), always set
[1]: Transparent
[2]: SDLC
[3]: LAPD according Q.921 for D channel X.25
[4]: T.30 for fax group 3
[5]: Point to Point Protocol (PPP)
[6]: Transparent (ignoring framing errors of B1 protocol)
[7]..[31]: reserved

4 octets B3 protocol support (bit field):
[0]: Transparent, always set
[1]: T.90NL with compatibility to T.70NL according to T.90 
Appendix II.
[2]: ISO 8208 (X.25 DTE-DTE)
[3]: X.25 DCE
[4]: T.30 for fax group 3
[5]..[31]: reserved

24 octets reserved for COMMON-ISDN-API  usage

20 octets manufacturer specific information



Note

This function can be extended, so an application has to ignore unknown bits. COMMON-
ISDN-API will set every reserved field to 0.



CAPI_MANUFACTURERXE "CAPI_MANUFACTURER:MS-DOS"§

Description

This function is manufacturer specific.

CAPI_MANUFACTURER 0xFF

Parameter Comment

AH Version number 20 (0x14)

AL Function Code 0xFF

Manufacturer specific

Return Value
Return Comment

Manufacturer specific





8.2 Windows (application level)inhalt "8.2 Windows (application level)" \l2§

In  a  PC  environment  with  the  MS-DOS  extension  Windows  an  application  can  access
COMMON-ISDN-API services via a DLL (Dynamic Link Library). The interface between
applications and  COMMON-ISDN-API is realised as a function interface. An application
can  issue  COMMON-ISDN-API function  calls  to  perform  COMMON-ISDN-API
operations.

The DLL providing the function interface has to be named "CAPI20.DLL".  All functions
exported by this library have to be called with a FAR call according to the PASCAL calling
convention.  This means all  parameters are pushed on the stack (first  parameter  is pushed
first), the called function has to clear up the stack before it returns to the caller. 

The functions are exported under following names and ordinal numbers:

CAPI_MANUFACTURER (reserved) CAPI20.99
CAPI_REGISTER CAPI20.1
CAPI_RELEASE CAPI20.2
CAPI_PUT_MESSAGE CAPI20.3
CAPI_GET_MESSAGE CAPI20.4
CAPI_SET_SIGNAL CAPI20.5
CAPI_GET_MANUFACTURER CAPI20.6
CAPI_GET_VERSION CAPI20.7
CAPI_GET_SERIAL_NUMBER CAPI20.8
CAPI_GET_PROFILE CAPI20.9
CAPI_INSTALLED CAPI20.10

These functions can be called by an application according to the DLL conventions as
imported functions.  If  an application calls any function of the DLL with whatever
function it must ensure that there are at least 512 bytes left on the stack.

All pointers that are passed from the application program to COMMON-ISDN-API, or vice
versa, in function calls or in messages are 16:16 segmented protected mode pointers. This
especially applies to the data pointer in DATA_B3_REQ and DATA_B3_IND messages.

In the Windows 3.x environment following types are used to define the functional interface:

WORD 16 bit unsigned integer
DWORD 32 bit unsigned integer
LPVOID 16:16 (segmented) protected mode pointer to any memory location
LPVOID * 16:16 (segmented) protected mode pointer to a LPVOID
LPBYTE 16:16 (segmented) protected mode pointer to a character string
LPWORD 16:16 (segmented) protected mode pointer to a 16 bit unsigned integer value
CAPIENTRY WORD FAR PASCAL (according to Windows DLL calling convention)



8.2.1 Message Operationsinhalt "8.2.1 Message Operations" \l3§

CAPI_REGISTERXE "CAPI_REGISTER:Windows"§

Description

This is the operation the application uses to report its presence to COMMON-ISDN-API.
By  passing  the  four  parameters  MessageBufferSize,  maxLogicalConnection,
maxBDataBlocks and maxBDataLen the application describes its needs.

For a 'normal' application the size of the message buffer should be calculated using fol-
lowing formula:

MessageBufferSize = 1024 + (1024 * maxLogicalConnection)

Function call
CAPIENTRY CAPI_REGISTER ( WORD MessageBufferSize,

WORD maxLogicalConnection,
WORD maxBDataBlocks,
WORD maxBDataLen,
LPWORD pApplID);

Parameter Comment

MessageBufferSize Size of Message Buffer

maxLogicalConnectio
n

Maximum  number of logical connections

maxBDataBlocks Number of data blocks available simultaneously

maxBDataLen Maximum size of a data block

pApplID Pointer to the location where COMMON-ISDN-API should 
place the assigned application identification number

Return Value
Return Value Comment



0x0000 Registration successful - application identification number has 
been assigned

All other values Coded as described in parameter info class 0x10xx



CAPI_RELEASEXE "CAPI_RELEASE:Windows"§

Description

The application uses this operation to log off from  COMMON-ISDN-API.  COMMON-
ISDN-API will release all resources that have been allocated for the application.

The application is identified by the application identification number that had been as-
signed in the previous CAPI_REGISTER operation.

Function call

CAPIENTRY CAPI_RELEASE (WORD ApplID);

Parameter Comment

ApplID Application identification number that had been assigned by 
call of the function CAPI_REGISTER

Return Value
Return Value Comment

0x0000 Release of the application successful

All other values Coded as described in parameter info class 0x11xx



CAPI_PUT_MESSAGEXE "CAPI_PUT_MESSAGE:Windows"§

Description

With this operation the application transfers a message to  COMMON-ISDN-API. The
application identifies itself with an application identification number.

Function call

CAPIENTRY CAPI_PUT_MESSAGE( WORD ApplID,
LPVOID pCAPIMessage);

Parameter Comment

ApplID Application identification number that had been assigned by 
call of the function CAPI_REGISTER

pCAPIMessage 16:16 (segmented) protected mode pointer to the message that 
is passed to COMMON-ISDN-API

Return Value
Return Value Comment

0x0000 No error

All other values Coded as described in parameter info class 0x11xx

Note

When the process returns from the function call the message memory area can be reused by
the application.



CAPI_GET_MESSAGEXE "CAPI_GET_MESSAGE:Windows"§

Description

With this operation the application retrieves a message from COMMON-ISDN-API. The
application  can only  retrieve  those  messages  intended  for  the  stipulated  application
identification number. If there is no message waiting for retrieval, the function returns
immediately with an error code.

Function call

CAPIENTRY CAPI_GET_MESSAGE ( WORD ApplID,
LPVOID *ppCAPIMessage);

Parameter Comment

ApplID Application identification number that had been assigned by 
call of the function CAPI_REGISTER

ppCAPIMessage 16:16 (segmented) protected mode pointer to the memory 
location where COMMON-ISDN-API should place the 16:16 
(segmented) protected mode pointer to the retrieved message

Return Value
Return Value Comment

0x0000 Successful - Message was retrieved from COMMON-ISDN-
API

All other values Coded as described in parameter info class 0x11xx

Note

The  received  message  may  become  invalid  the  next  time  the  application  issues  a
CAPI_GET_MESSAGE  operation  for  the  same  application  identification  number.  This
especially matters in multi threaded applications where more than one thread may execute
CAPI_GET_MESSAGE operations. The synchronisation between threads has to be done by
the application.





8.2.2 Other Functionsinhalt "8.2.2 Other Functions" \l3§

CAPI_SET_SIGNALXE "CAPI_SET_SIGNAL:Windows"§

Description

This operation is used by the application to install a mechanism which signals the appli-
cation the availability of a message or the clearing of an internal busy/queue full condi-
tion. All restrictions of interrupt context will apply to the call-back function.

Function call

CAPIENTRY CAPI_SET_SIGNAL ( WORD ApplID,
VOID (FAR PASCAL *CAPI_Callback)

(WORD ApplID, DWORD Param),
DWORD Param

);

Parameter Comment

ApplID Application identification number that had been assigned by 
call of the function CAPI_REGISTER

CAPI_Callback address of the call-back function. The function will be called 
in an interrupt context (see note).  Value 0x00000000 will 
disable the call-back notification.

Param additional parameter of call-back function

Return Value
Return Value Comment

0x0000 No error

All other values Coded as described in parameter info class 0x11xx



Note

The notification will take place, after
· any message is queued in application's message queue
· a notified busy condition is cleared
· a notified queue full condition is cleared
In case of local confirmations (e.g. LISTEN_CONF) the notification may be

activated  before  the  operation  CAPI_PUT_MESSAGE
returns to the application.

The call-back function will be called using following conventions:
VOID FAR PASCAL CAPI_Callback (

WORD ApplID,
DWORD Param

);

Data segment register DS is undefined (use MakeProcInstance() or _setds). A stack of at
least 512 bytes is set up by COMMON-ISDN-API.

The call-back function may be called at interrupt context (i.e., every data and code ac-
cessed by the call-back function has to be prevented from being paged out by Windows'
VMM,  e.g.  by  using  fixed segments  in  its  own  DLL  and/or  by  applying  Global-
PageLock() to used selectors).

PostMessage() and PostAppMessage() are the only windows API functions which can be
called.

CAPI_PUT_MESSAGE,  CAPI_GET_MESSAGE  and  CAPI_SET_SIGNAL  are  the
only COMMON-ISDN-API functions which can be called.

The call-back function will not be re-entered by COMMON-ISDN-API. Instead it will be
called again after returning, if a new event has occurred during processing.



CAPI_GET_MANUFACTURERXE 
"CAPI_GET_MANUFACTURER:Windows"§

Description

With  this  operation  the  application  determines  the  manufacturer  identification  of
COMMON-ISDN-API (DLL). SzBuffer on call is a 16:16 (segmented) protected mode
pointer to a buffer of 64 bytes.  COMMON-ISDN-API copies the identification string,
coded as a zero terminated ASCII string, to this buffer.

Function call

CAPIENTRY CAPI_GET_MANUFACTURER (LPBYTE SzBuffer);

Parameter Comment

SzBuffer 16:16 (segmented) protected mode pointer to a buffer of  64 
bytes

Return Value
Return Value Comment

0x0000 No error



CAPI_GET_VERSIONXE "CAPI_GET_VERSION:Windows"§

Description

With this function the application determines the version of  COMMON-ISDN-API as
well as an internal revision number.

Function call

CAPIENTRY CAPI_GET_VERSION ( LPWORD pCAPIMajor,
LPWORD pCAPIMinor,
LPWORD pManufacturerMajor,
LPWORD pManufacturerMinor);

Parameter Comment

pCAPIMajor 16:16 (segmented) protected mode pointer to a WORD 
receiving COMMON-ISDN-API major version number: 2

pCAPIMinor 16:16 (segmented) protected mode pointer to a WORD 
receiving COMMON-ISDN-API minor version number: 0

pManufacturerMajor 16:16 (segmented) protected mode pointer to a WORD 
receiving manufacturer specific major number

pManufacturerMinor 16:16 (segmented) protected mode pointer to a WORD 
receiving manufacturer specific minor number

Return Value
Return Comment

0x0000 No error, version numbers are copied



CAPI_GET_SERIAL_NUMBERXE 
"CAPI_GET_SERIAL_NUMBER:Windows"§

Description

With this operation the application determines the (optional) serial number of  COM-
MON-ISDN-API. SzBuffer on call is a 16:16 (segmented) protected mode pointer to a
string buffer of 8 bytes.  COMMON-ISDN-API copies the serial number string to this
buffer. The serial number, coded as a zero terminated ASCII string, represents seven
digit number after the function has returned.

Function call

CAPIENTRY CAPI_GET_SERIAL_NUMBER (LPBYTE SzBuffer);

Parameter Comment

SzBuffer 16:16 (segmented) protected mode pointer to a 
buffer of  8 bytes

Return Value
Return Comment

0x0000 No error
SzBuffer contains the serial number in plain text in the form of
a 7-digit number. If no serial number is provided by the 
manufacturer, an empty string is returned.



CAPI_GET_PROFILEXE "CAPI_GET_PROFILE:Windows"§

Description

The application uses this function to get  the capabilities  from  COMMON-ISDN-API.
SzBuffer on call is a 16:16 (segmented) protected mode pointer to a buffer of 64 bytes.
In  this  buffer  COMMON-ISDN-API copies  information  about  implemented  features,
number of controllers and supported protocols.  CtrlNr contains the controller number
(bit 0..6), for which this information is requested.

CAPIENTRY CAPI_GET_PROFILE ( LPBYTE SzBuffer,
WORD CtrlNr
);

Parameter Comment

SzBuffer 16:16 (segmented) protected mode pointer to a 
buffer of  64 bytes

CtrlNr Number of Controller. If 0, only number of 
installed controller is given to the application.

Return Value
Return Value Comment

AX 0x0000 No error

<> 0 Coded as described in parameter info class 0x11xx

Retrieved structure format:
Type Description

WORD number of installed controller,  least significant octet first

WORD number of supported B-channels, least significant octet first



DWORD Global Options (bit field):
[0]: internal controller supported
[1]: external equipment supported
[2]: Handset supported (external equipment must be set also)
[3]: DTMF supported
[4].[31]: reserved

DWORD B1 protocols support (bit field):
[0]: 64 kBit/s with HDLC framing, always set.
[1]: 64 kBit/s bit transparent operation with byte framing from 
the network
[2]: V.110 asynchronous operation with start/stop byte framing
[3]: V.110 synchronous operation with HDLC framing
[4]: T.30 modem for fax group 3
[5]: 64 kBit/s inverted with HDLC framing.
[6]: 56 kBit/s bit transparent operation with byte framing from 
the network
[7]..[31]: reserved

DWORD B2 protocol support (bit field):
[0]: ISO 7776 (X.75 SLP), always set
[1]: Transparent
[2]: SDLC
[3]: LAPD according Q.921 for D channel X.25
[4]: T.30 for fax group 3
[5]: Point to Point Protocol (PPP)
[6]: Transparent (ignoring framing errors of B1 protocol)
[7]..[31]: reserved

DWORD B3 protocol support (bit field):
[0]: Transparent, always set
[1]: T.90NL with compatibility to T.70NL according to T.90 
Appendix II.
[2]: ISO 8208 (X.25 DTE-DTE)
[3]: X.25 DCE
[4]: T.30 for fax group 3
[5]..[31]: reserved

6 DWORDs reserved for COMMON-ISDN-API  usage

5 DWORDs manufacturer specific information

Note

This function can be extended, so an application has to ignore unknown bits. COMMON-
ISDN-API will set every reserved field to 0.





CAPI_INSTALLEDXE "CAPI_INSTALLED:Windows"§

Description

This function can be used by an application to determine if the ISDN hardware and
necessary drivers are installed.

Function call

CAPIENTRY CAPI_INSTALLED (void)

Return Value
Return Comment

0x0000 COMMON-ISDN-API is installed

any other value Coded as described in parameter info class 0x10xx





8.3 OS/2 (application level)inhalt "8.3 OS/2 (application level)" \l2§

In a PC environment with operating system OS/2 Version 2.x an application program can
access  COMMON-ISDN-API services via a DLL (Dynamic Link Library).  The interface
between  applications  and  COMMON-ISDN-API is  realised  as  a  function  interface.  An
application can issue  COMMON-ISDN-API function calls to perform  COMMON-ISDN-
API operations.

The DLL providing the function interface has to be named "CAPI20.DLL". It is a 32 bit DLL
exporting  32  bit  functions  with  System-Call-Convention.  This  means  all  parameters  are
pushed on the stack, the calling process has to clear up the stack after it returns from the
function call.

The functions are exported under following names and ordinal numbers:

CAPI_MANUFACTURER (reserved) CAPI20.99
CAPI_REGISTER CAPI20.1
CAPI_RELEASE CAPI20.2
CAPI_PUT_MESSAGE CAPI20.3
CAPI_GET_MESSAGE CAPI20.4
CAPI_SET_SIGNAL CAPI20.5
CAPI_GET_MANUFACTURER CAPI20.6
CAPI_GET_VERSION CAPI20.7
CAPI_GET_SERIAL_NUMBER CAPI20.8
CAPI_GET_PROFILE CAPI20.9
CAPI_INSTALLED CAPI20.10

These functions can be called by an application according to the DLL conventions as
imported functions. If an application calls the DLL it has to ensure that there are at
least 512 bytes left on the stack.

All pointers that are passed from the application program to COMMON-ISDN-API, or vice
versa, in function calls or in messages are 0:32 flat pointers. This especially applies to the
data pointer in  DATA_B3_REQ and  DATA_B3_IND messages. The referenced data shall
not cross a 64 kByte boundary in the flat address space because the DLL may convert the
passed flat pointer to a 16:16 bit segmented pointer.

In the OS/2 environment following types are used to define the functional interface:

word 16 bit unsigned integer
dword 32 bit unsigned integer
void* 0:32 flat pointer to any memory location
void** 0:32 flat pointer to a void *
char* 0:32 flat pointer to a character string
dword* 0:32 flat pointer to a 32 bit unsigned integer value



8.3.1 Message Operationsinhalt "8.3.1 Message Operations" \l3§

CAPI_REGISTERXE "CAPI_REGISTER:OS/2"§

Description

This is the operation the application uses to report its presence to COMMON-ISDN-API.
By  passing  the  four  parameters  messageBufferSize,  maxLogicalConnection,
maxBDataBlocks and maxBDataLen the application describes its needs.

For a 'normal' application the size of the message buffer should be calculated using the
following formula:

MessageBufferSize = 1024 + (1024 * maxLogicalConnection)

Function call
dword FAR PASCAL CAPI_REGISTER ( dword messageBufferSize,

dword maxLogicalConnection, 
dword maxBDataBlocks,
dword maxBDataLen,
dword* pApplID);

Parameter Comment

messageBufferSize Size of Message Buffer

maxLogicalConnectio
n

Maximum number of logical connections

maxBDataBlocks Number of data blocks available simultaneously

maxBDataLen Maximum size of a data block

pApplID Pointer to the location where COMMON-ISDN-API should 
place the assigned application identification number

Return Value
Return Value Comment

0x0000 Registration successful - application identification number has 



been assigned

All other values Coded as described in parameter info class 0x10xx



CAPI_RELEASEXE "CAPI_RELEASE:OS/2"§

Description

The application uses this operation to log off from  COMMON-ISDN-API.  COMMON-
ISDN-API will release all resources that have been allocated.

The application is identified by the application identification number that had been as-
signed in the previous CAPI_REGISTER operation.

Function call

dword FAR PASCAL CAPI_RELEASE (dword ApplID);

Parameter Comment

ApplID Application identification number that had been assigned by 
call of the function CAPI_REGISTER

Return Value
Return Value Comment

0x0000 Release of the application successful

All other values Coded as described in parameter info class 0x11xx



CAPI_PUT_MESSAGEXE "CAPI_PUT_MESSAGE:OS/2"§

Description

With this operation the application transfers a message to  COMMON-ISDN-API. The
application  identifies  itself  with  an  application  identification  number.  The  message
memory area must not cross a 64 kByte boundary (e.g.  use  tiled memory) in the flat
address space because the DLL may convert the passed flat pointer to a 16:16 bit seg-
mented  pointer.  The  same  applies  to  B3  data  blocks  that  are  passed  within
DATA_B3_REQ messages.

Function call

dword FAR PASCAL CAPI_PUT_MESSAGE ( dword ApplID,
void* pCAPIMessage);

Parameter Comment

ApplID Application identification number that had been assigned by 
call of the function CAPI_REGISTER

pCAPIMessage 0:32 (flat) pointer to the message that is passed to COMMON-
ISDN-API

Return Value
Return Value Comment

0x0000 No error

All other values Coded as described in parameter info class 0x11xx

Note

When the process returns from the function call the message memory area can be reused by
the application.





CAPI_GET_MESSAGEXE "CAPI_GET_MESSAGE:OS/2"§

Description

With this operation the application retrieves a message from COMMON-ISDN-API. The
application  can only  retrieve  those  messages  intended  for  the  stipulated  application
identification number. If there is no message waiting for retrieval, the function returns
immediately with an error code.

Function call

dword FAR PASCAL CAPI_GET_MESSAGE ( dword ApplID,
void** ppCAPIMessage);

Parameter Comment

ApplID Application identification number that had been assigned by 
call of the function CAPI_REGISTER

ppCAPIMessage 0:32 (flat) pointer to the memory location where COMMON-
ISDN-API should place the 0:32 (flat) pointer to the retrieved 
message

Return Value
Return Value Comment

0x0000 Successful - Message was retrieved from COMMON-ISDN-
API

All other values Coded as described in parameter info class 0x11xx

Note

The  received  message  may  become  invalid  the  next  time  the  application  issues  a
CAPI_GET_MESSAGE operation for the same application identification number. This
especially matters in multi threaded applications where more than one thread may exe-
cute CAPI_GET_MESSAGE operations. The synchronisation between threads has to be
done by the application.





8.3.2 Other Functionsinhalt "8.3.2 Other Functions" \l3§

CAPI_SET_SIGNALXE "CAPI_SET_SIGNAL:OS/2"§

Description

This operation is used by the application to install a mechanism which signals the appli-
cation the availability of a message.

In OS/2 2.x this is done best by using a fast 32 bit system event semaphore. The applica-
tion  has to  create  the  used semaphore by calling  the  DosCreateEventSem() function
which is part of the OS/2 system application program interface. This routine provides a
semaphore handle which is passed as a parameter in the CAPI_SET_SIGNAL call.

In  that  case  each  time  COMMON-ISDN-API places  a  message  in  the  application's
message queue the specified semaphore is "posted" increasing a post-count value that is
associated  to  the  semaphore.  To  do  so  COMMON-ISDN-API executes  the
DosPostEventSem() function of the OS/2 system API.

The application thread may wait until the post-count of the semaphore is larger than 0
using the DosWaitEventSem() OS/2 system call. It can determine the current post count
and simultaneously reset the post count executing the DosResetEventSem() OS/2 system
API call.

By issuing this function call with a semaphore handle of 0 the signalling mechanism is
deactivated.

Function call

dword FAR PASCAL CAPI_SET_SIGNAL ( dword ApplID,
dword hEventSem);

Parameter Comment

ApplID Application identification number that had been assigned by 
call of the function CAPI_REGISTER

hEventSem Event Semaphore handle assigned by operating system

Return Value
Return Value Comment



0x0000 No error

All other values Coded as described in parameter info class 0x11xx



CAPI_GET_MANUFACTURERXE "CAPI_GET_MANUFACTURER:OS/2"§

Description

With  this  operation  the  application  determines  the  manufacturer  identification  of
COMMON-ISDN-API (DLL). SzBuffer on call is a 0:32 (flat) pointer to a buffer of 64
bytes. COMMON-ISDN-API copies the identification string, coded as a zero terminated
ASCII string, to this buffer.

Function call

void FAR PASCAL CAPI_GET_MANUFACTURER (char* SzBuffer);

Parameter Comment

SzBuffer 0:32 (flat) pointer to a buffer of  64 bytes



CAPI_GET_VERSIONXE "CAPI_GET_VERSION:OS/2"§

Description

With this function the application determines the version of  COMMON-ISDN-API as
well as an internal revision number.

Function call

dword FAR PASCAL CAPI_GET_VERSION ( dword* pCAPIMajor,
dword* pCAPIMinor,
dword* pManufacturerMajor,
dword* pManufacturerMinor);

Parameter Comment

pCAPIMajor 0:32 (flat) protected mode pointer to a dword receiving 
COMMON-ISDN-API major version number: 2

pCAPIMinor 0:32 (flat) protected mode pointer to a dword receiving 
COMMON-ISDN-API minor version number: 0

pManufacturerMajor 0:32 (flat) protected mode pointer to a dword receiving 
manufacturer specific major number

pManufacturerMinor 0:32 (flat) protected mode pointer to a dword receiving 
manufacturer specific minor number

Return Value
Return Comment

0x0000 No error, version numbers are copied.



CAPI_GET_SERIAL_NUMBERXE "CAPI_GET_SERIAL_NUMBER:OS/2"§

Description

With this operation the application determines the (optional) serial number of  COM-
MON-ISDN-API.  SzBuffer on call  is a 0:32 (segmented) protected mode pointer to a
buffer of 8 bytes.  COMMON-ISDN-API copies the serial number string to this buffer.
The serial  number,  coded as a zero terminated ASCII string,  represents seven digit
number after the function has returned.

Function call

dword FAR PASCAL CAPI_GET_SERIAL_NUMBER (char* SzBuffer);

Parameter Comment

SzBuffer 0:32 (flat) pointer to a buffer of  8 bytes

Return Value
Return Comment

0x0000 No error
SzBuffer contains the serial number in plain text in the form of
a 7-digit number. If no serial number is provided by the 
manufacturer, an empty string is returned.



CAPI_GET_PROFILEXE "CAPI_GET_PROFILE:OS/2"§

Description

The application uses this function to get  the capabilities  from  COMMON-ISDN-API.
SzBuffer on call is a 0:32 (flat) protected mode pointer to a buffer of 64 bytes. In this
buffer COMMON-ISDN-API copies information about implemented features, number of
controllers and supported protocols. CtrlNr contains the controller number (bit 0..6), for
which this information is requested.

dword FAR PASCAL CAPI_GET_PROFILE ( LPBYTE SzBuffer,
WORD CtrlNr
);

Parameter Comment

SzBuffer 0:32 (flat) protected mode pointer to a buffer of  
64 bytes

CtrlNr Number of Controller. If 0, only number of 
installed controller is given to the application.

Return Value
Return Value Comment

AX 0x0000 No error

<> 0 Coded as described in parameter info class 0x11xx

Retrieved structure format:
Type Description

WORD number of installed controller,  least significant octet first

WORD number of supported B-channels, least significant octet first



DWORD Global Options (bit field):
[0]: internal controller supported
[1]: external equipment supported
[2]: Handset supported (external equipment must be set also)
[3]: DTMF supported
[4].[31]: reserved

DWORD B1 protocols support (bit field):
[0]: 64 kBit/s with HDLC framing, always set.
[1]: 64 kBit/s bit transparent operation with byte framing from 
the network
[2]: V.110 asynchronous operation with start/stop byte framing
[3]: V.110 synchronous operation with HDLC framing
[4]: T.30 modem for fax group 3
[5]: 64 kBit/s inverted with HDLC framing.
[6]: 56 kBit/s bit transparent operation with byte framing from 
the network
[7]..[31]: reserved

DWORD B2 protocol support (bit field):
[0]: ISO 7776 (X.75 SLP), always set
[1]: Transparent
[2]: SDLC
[3]: LAPD according Q.921 for D channel X.25
[4]: T.30 for fax group 3
[5]: Point to Point Protocol (PPP)
[6]: Transparent (ignoring framing errors of B1 protocol)
[7]..[31]: reserved

DWORD B3 protocol support (bit field):
[0]: Transparent, always set
[1]: T.90NL with compatibility to T.70NL according to T.90 
Appendix II.
[2]: ISO 8208 (X.25 DTE-DTE)
[3]: X.25 DCE
[4]: T.30 for fax group 3
[5]..[31]: reserved

6 DWORDs reserved for COMMON-ISDN-API  usage

5 DWORDs manufacturer specific information

Note

This function can be extended, so an application has to ignore unknown bits. COMMON-



ISDN-API will set every reserved field to 0.



CAPI_INSTALLEDXE "CAPI_INSTALLED:OS/2"§

Description

This function can be ued by an application to determine if the ISDN hardware and nec-
essary drivers are installed.

Function call

dword FAR PASCAL CAPI_INSTALLED (void)

Return Value
Return Comment

0x0000 COMMON-ISDN-API is installed

Any other value Coded as described in parameter info class 0x11xx





8.4 OS/2 (device driver level)inhalt "8.4 OS/2 (device driver level)" \l2§

In a PC environment with operating system OS/2 Version 2.x there may exist  COMMON-
ISDN-API applications in form of OS/2 physical device drivers (PDD). Those applications
are referred as "application PDDs" in the following sections. This specification describes the
interface of an OS/2 2.x physical device driver offering COMMON-ISDN-API services to
other device drivers.  COMMON-ISDN-API PDD is called "CAPI PDD" in the following
sections.

Physical Device Drivers under OS/2 2.x are 16:16 segment modules, thus all functions in this
specification are 16 bit functions, all pointers are 16:16 segmented. 

In this chapter following data types are used to define the interface:

word 16 bit unsigned integer
dword 32 bit unsigned integer
void* 16:16 (segmented) pointer to any memory location
char* 16:16 (segmented) pointer to a character string

The CAPI PDD offers its services to application PDDs via the Inter Device Driver Interface.
An application PDD issues an inter device driver call (IDC) to execute CAPI operations. 

The CAPI PDD name which is contained in its device driver header has to be "CAPI20  "
(blank extended to 8 characters). The CAPI PDD header must contain the offset to its inter
device driver call entry point. The IDC bit of the Device Attribute Field in the device driver
header has to be set to 1.

An application PDD gains access to the CAPI PDD by issuing an AttachDD device help call.
This call returns the protected mode IDC entry point as a 16:16 segmented pointer and the
data segment of the CAPI PDD. Before calling the IDC entry point of the CAPI PDD the
application PDD has to set-up the data segment register DS appropriately.

This is the prototype of the CAPI PDD IDC function:

word CAPI20_IDC (word funcCode, void *funcPara);

The function is called with C calling convention, thus the calling application PDD has
to clear up the stack. When the application PDD calls the IDC function there has to be
at least a space of 512 bytes left on the stack. The parameter funcCode selects the
CAPI operation to  take place,  the parameter  funcPara contains a 16:16 segmented
pointer to the CAPI operation specific parameters. The structure of these parameters is
defined in the following sections. The function returns an error code which is 0 if no
error occurred. Which CAPI operations may cause which error codes is also defined in
the following sections.



8.4.1 Message Operationsinhalt "8.4.1 Message Operations" \l3§

CAPI_REGISTERXE "CAPI_REGISTER:OS/2 PDD"§

Description

This is  the operation the application PDD uses to report  its  presence to  COMMON-
ISDN-API. By passing the four parameters messageBufferSize, maxLogicalConnection,
maxBDataBlocks and maxBDataLen the application PDD describes its needs. By use of
the parameter Buffer the application PDD passes a memory area to COMMON-ISDN-
API.  COMMON-ISDN-API uses this  memory area to store messages and data blocks
destined to the application PDD. The passed memory has to be either fixed or locked.
COMMON-ISDN-API does not need to verify if this storage really exists.

The size of the memory area is calculated according to the following formula:
MessageBufferSize + (maxLogicalConnection * maxBDataBlocks * maxBDataLen)

Choosing too small the value will result in messages being lost. The size of
the message buffer should be calculated for a 'normal' application PDD
according to following formula:
MessageBufferSize = 1024 + (1024 * maxLogicalConnection)

CAPI_REGISTER 0x01

Structure of command specific parameters:
Parameter Type Comment

Buffer void* 16:16 (segmented) pointer to a memory region 
provided by the application PDD. COMMON-
ISDN-API uses this memory area to store 
messages and data blocks destined for the 
application PDD.

messageBufferSize word Size of Message Buffer

maxLogicalConnectio
n

word Maximum  number of logical connections

maxBDataBlocks word Number of data blocks available simultaneously



maxBDataLen word Maximum size of a data block

pApplID word* 16:16 (segmented) pointer to the location where 
COMMON-ISDN-API should place the assigned 
application identification number

Return Value
Return Value Comment

0x0000 Registration successful - application identification number has 
been assigned

All other values Coded as described in parameter info class 0x10xx



CAPI_RELEASEXE "CAPI_RELEASE:OS/2 PDD"§

Description

The  application  PDD  uses  this  operation  to  log  off  from  COMMON-ISDN-API..
COMMON-ISDN-API will  release  all  resources  that  have been  allocated  for  the  ap-
plication.

The application PDD is identified  by the application identification number that  had
been assigned in the previous CAPI_REGISTER operation.

CAPI_RELEASE 0x02

Structure of command specific parameters:
Parame-
ter

Type Comment

ApplID word Application identification number that had been assigned by 
call of the function CAPI_REGISTER

Return Value
Return Value Comment

0x0000 Release of the application successful

All other values Coded as described in parameter 0x11xx



CAPI_PUT_MESSAGEXE "CAPI_PUT_MESSAGE:OS/2 PDD"§

Description

With this operation the application PDD transfers a message to  COMMON-ISDN-API.
The application identifies itself with an application identification number. The pointer
passed  to  COMMON-ISDN-API is  a  16:16  segmented  pointer.  The  pointer  in  a
DATA_B3_REQ message also is 16:16 segmented. The memory area of the message and
the data block have to be either fixed or locked. 

CAPI_PUT_MESSAGE 0x03

Structure of command specific parameters:
Parameter Type Comment

ApplID word Application identification number that had been 
assigned by call of the function CAPI_REGISTER

pCAPIMessage void* 16:16 segmented pointer to the message that is 
passed to COMMON-ISDN-API

Return Value
Return Value Comment

0x0000 No error

All other values Coded as described in parameter 0x11xx

Note

When the process returns from the function call the message memory area can be reused by
the application.



CAPI_GET_MESSAGEXE "CAPI_GET_MESSAGE:OS/2 PDD"§

Description

With this operation the application PDD retrieves a message from COMMON-ISDN-
API. The application PDD can only retrieve those messages intended for the stipulated
application identification number. If there is no message waiting for retrieval, the func-
tion returns immediately with an error.

CAPI_GET_MESSAGE 0x04

Structure of command specific parameters:
Parameter Type Comment

ApplID word Application identification number that had been 
assigned by call of the function CAPI_REGISTER

ppCAPIMessage void** 16:16 segmented pointer to the memory location 
where COMMON-ISDN-API should place the 
16:16 segmented pointer to the retrieved message

Return Value
Return Value Comment

0x0000 Successful - Message was retrieved from COMMON-ISDN-
API

All other values Coded as described in parameter info class 0x11xx

Note

The  received  message  may  become  invalid  the  next  time  the  application  issues  a
CAPI_GET_MESSAGE operation for the same application identification number.



8.4.2 Other Functionsinhalt "8.4.2 Other Functions" \l3§

CAPI_SET_SIGNALXE "CAPI_SET_SIGNAL:OS/2 PDD"§

Description

This operation is used by the application PDD to install a mechanism which signals the
application PDD the availability of a message.

A call back mechanism is used between COMMON-ISDN-API and an application PDD.
By calling the IDC function with CAPI_SET_SIGNAL function code the application
PDD passes a 16:16 (segmented) pointer to a call back function to COMMON-ISDN-API.

CAPI_SET_SIGNAL 0x05

Structure of command specific parameters:
Parameter Type Comment

ApplID word Application identification number that had been 
assigned by call of the function 
CAPI_REGISTER

signFunc void* 16:16 segmented pointer to the call-back function

Return Value
Return Value Comment

0x0000 No error

All other values Coded as described in parameter info class 0x11xx

Note

The call-back function is called by COMMON-ISDN-API, after
· any message is queued in application's message queue
· a notified busy condition changed



· a notified queue full condition changed
Interrupts  are  disabled.  The  call-back  function  must  be  terminated  via

RETF.  All  registers  have to  be  preserved.  At the  time  of
calling, at least 32 bytes are available on the stack.

The call-back function will be called with interrupts disabled. COMMON-ISDN-API will
not call this function recursively, even if the call-back function enables interrupts. In-
stead the call-back function will  be called again after returning to  COMMON-ISDN-
API.

The  call-back  function  is  allowed  to  use  COMMON-ISDN-API operations
CAPI_PUT_MESSAGE,  CAPI_GET_MESSAGE, and  CAPI_SET_SIGNAL. In that case
the call-back function must be aware that interrupts may be enabled by  COMMON-
ISDN-API.

In case of local confirmations (e.g. LISTEN_CONF) the call-back function may be ac-
tivated before the operation CAPI_PUT_MESSAGE returns to the application.



CAPI_GET_MANUFACTURERXE "CAPI_GET_MANUFACTURER:OS/2 
PDD"§

Description

With  this  operation  the  application  determines  the  manufacturer  identification  of
COMMON-ISDN-API (DLL). SzBuffer on call is a 16:16 (segmented) pointer to a buffer
of  64  bytes.  COMMON-ISDN-API copies  the  identification  string,  coded  as  a  zero
terminated ASCII string, to this buffer.

Function call

CAPI_GET_MANUFACTURER 0x06

Structure of command specific parameters:
Parameter Comment

SzBuffer 16:16 (segmented) pointer to a buffer of  64 bytes



CAPI_GET_VERSIONXE "CAPI_GET_VERSION:OS/2 PDD"§

Description

With this function the application determines the version of  COMMON-ISDN-API as
well as an internal revision number.

Function call

CAPI_GET_VERSION 0x07

Structure of command specific parameters:
Parameter Comment

pCAPIMajor 16:16 (segmented) protected mode pointer to a word receiving 
COMMON-ISDN-API major version number: 2

pCAPIMinor 16:16 (segmented) protected mode pointer to a word receiving 
COMMON-ISDN-API minor version number: 0

pManufacturerMajor 16:16 (segmented) protected mode pointer to a word receiving 
manufacturer specific major number

pManufacturerMinor 16:16 (segmented) protected mode pointer to a word receiving 
manufacturer specific minor number

Return Value
Return Comment

0x0000 No error, version numbers are copied



CAPI_GET_SERIAL_NUMBERXE "CAPI_GET_SERIAL_NUMBER:OS/2 
PDD"§

Description

With this operation the application determines the (optional) serial number of  COM-
MON-ISDN-API. SzBuffer on call is a 16:16 (segmented) protected mode pointer to a
buffer of 8 bytes.  COMMON-ISDN-API copies the serial number string to this buffer.
The serial  number,  coded as a zero terminated ASCII string,  represents seven digit
number after the function has returned.

Function call

CAPI_GET_SERIAL_NUMBER 0x08

Structure of command specific parameters:
Parameter Comment

SzBuffer 16:16 (segmented) pointer to a buffer of  8 bytes

Return Value
Return Comment

0x0000 No error
SzBuffer contains the serial number in plain text in the form of
a 7-digit number. If no serial number is provided by the 
manufacturer, an empty string is returned.



CAPI_GET_PROFILEXE "CAPI_GET_PROFILE:OS/2 PDD"§

Description

The application uses this function to get  the capabilities  from  COMMON-ISDN-API.
SzBuffer on call is a 16:16 (segmented) protected mode pointer to a buffer of 64 bytes.
In  this  buffer  COMMON-ISDN-API copies  information  about  implemented  features,
number of controllers and supported protocols.  CtrlNr contains the controller number
(bit 0..6), for which this information is requested.

CAPI_GET_PROFILE 0x09

Structure of command specific parameters:
Parameter Comment

SzBuffer 0:32 (flat) protected mode pointer to a buffer of  
64 bytes

CtrlNr Number of Controller. If 0, only number of 
installed controller is given to the application.

Return Value
Return Value Comment

AX 0x0000 No error

<> 0 Coded as described in parameter info class 0x11xx

Retrieved structure format:
Type Description

WORD number of installed controller,  least significant octet first

WORD number of supported B-channels, least significant octet first



DWORD Global Options (bit field):
[0]: internal controller supported
[1]: external equipment supported
[2]: Handset supported (external equipment must be set also)
[3]: DTMF supported
[4].[31]: reserved

DWORD B1 protocols support (bit field):
[0]: 64 kBit/s with HDLC framing, always set.
[1]: 64 kBit/s bit transparent operation with byte framing from 
the network
[2]: V.110 asynchronous operation with start/stop byte framing
[3]: V.110 synchronous operation with HDLC framing
[4]: T.30 modem for fax group 3
[5]: 64 kBit/s inverted with HDLC framing.
[6]: 56 kBit/s bit transparent operation with byte framing from 
the network
[7]..[31]: reserved

DWORD B2 protocol support (bit field):
[0]: ISO 7776 (X.75 SLP), always set
[1]: Transparent
[2]: SDLC
[3]: LAPD according Q.921 for D channel X.25
[4]: T.30 for fax group 3
[5]: Point to Point Protocol (PPP)
[6]: Transparent (ignoring framing errors of B1 protocol)
[7]..[31]: reserved

DWORD B3 protocol support (bit field):
[0]: Transparent, always set
[1]: T.90NL with compatibility to T.70NL according to T.90 
Appendix II.
[2]: ISO 8208 (X.25 DTE-DTE)
[3]: X.25 DCE
[4]: T.30 for fax group 3
[5]..[31]: reserved

6 DWORDs reserved for COMMON-ISDN-API  usage

5 DWORDs manufacturer specific information

Note

This function can be extended, so an application has to ignore unknown bits. COMMON-



ISDN-API will set every reserved field to 0.





8.5 UNIXinhalt "8.5 UNIX" \l2§

COMMON-ISDN-API is incorporated in the UNIX environment as a kernel driver using
streams facilities. Communication between such kernel drivers and applications are typically
based on system calls open, ioctl, putmsg, getmsg, and close. To register at a device driver,
an application opens a stream (open()),  to deregister the system call  close() is used. Data
transfer from and to the driver is achieved by the calls  putmsg() and  getmsg(). Additional
information exchange is done with the ioctl() system call.

COMMON-ISDN-API uses  this  standardised  driver  access.  Therefore  the  following
specification does not define a complete functional interface (which will not be accepted by
UNIX  applications,  which  always  are  -  and  have  to  be  -  file  I/O  oriented).  Instead
COMMON-ISDN-API system call  level interface will  be introduced,  which every UNIX
like application can use to exchange  COMMON-ISDN-API messages and associated data.
Of course it is possible to offer a functional interface (e.g. according to chapter 8.2), but that
would  not  be  the  appropriate  solution  for  an  application  interface  for  communication
applications  running  under  UNIX.  Nevertheless the  following  specification  will  offer  the
complete functionality of  COMMON-ISDN-API  access operations used in other operating
systems.

COMMON-ISDN-API's device name  is /dev/capi20. To allow multiple access of different
UNIX processes, the device is realised as a clone streams device.

An application (in terms of COMMON-ISDN-API) can register at  COMMON-ISDN-API
(CAPI_REGISTER) by opening the device /dev/capi20 and issuing the relevant parameters
via the system call ioctl() to the opened device. Note that the result of this operation is a file
handle,  not  an  application  ID.  So  in  UNIX environment  the  application  ID  included  in
COMMON-ISDN-API messages will not be used to identify CAPI applications. The only
valid handle between the COMMON-ISDN-API kernel driver and the application based on a
system call level interface is a UNIX file handle. To release from  COMMON-ISDN-API
(CAPI_RELEASE), an application just has to close the opened device.  COMMON-ISDN-
API operations CAPI_PUT_MESSAGE and CAPI_GET_MESSAGE are achieved by system
calls  putmsg() and getmsg(). The functionality of CAPI_SET_SIGNAL need not be offered
by COMMON-ISDN-API; instead the UNIX signalling and/or waiting mechanism based on
file descriptors can be used by applications. This includes the multiple wait on different file
descriptors ( poll() ); a functionality which is not offered by COMMON-ISDN-API based on
other  operating  systems.  Every  other  COMMON-ISDN-API operation  is  realised by the
system call ioctl() with appropriate parameters.

All messages are passed transparently through the UNIX driver interface.

To define the system call level interface in the UNIX envirmonment, following data types
imply following size:

ushort 16 bit unsigned integer
unsigned 32 bit unsigned integer



8.5.1 Message Operationsinhalt "8.5.1 Message Operations" \l3§

CAPI_REGISTERXE "CAPI_REGISTER:UNIX"§

Description

This is the operation the application uses to report its presence to COMMON-ISDN-API.
By  passing  the  three  parameters  maxLogicalConnection,  maxBDataBlocks  and
maxBDataLen the application describes its needs for the connections it is going to ac-
cept or it will try to establish itself. 

CAPI_REGISTER ioctl(): 0x01

Implementation

The following code fragment  depicts  the UNIX implementation of COMMON-ISDN-API
register functionality:

#include <sys/fcntl.h> /* open() parameters */
#include <sys/stropts.h> /* streams ioctl() constants */
#include <sys/socket.h> /* streams ioctl() macros */
...
struct capi_register_params {

unsigned level3cnt;
unsigned datablkcnt;
unsigned datablklen;

} rp;
int fd;
struct strioctl strioctl;

/* open device */
fd = open("/dev/capi20", O_RDWR, 0);

 /* set register parameters */
rp.level3cnt = No. of simultaneous user data connections
rp.datablkcnt = No. of buffered data messages
rp.datablklen = Size of buffered data messages

 /* perform CAPI_REGISTER */
strioctl.ic_cmd = ( 'C' << 8) | 0x01; /* CAPI_REGISTER */
strioctl.ic_timout = 0;
strioctl.ic_dp = (void *)(&rp);
strioctl.ic_len = sizeof(struct capi_register_params);
ioctl(fd, I_STR, &strioctl);

For simplicity, no error checking is shown in the example.



CAPI_RELEASEXE "CAPI_RELEASE:UNIX"§

Description

The application uses this operation to log off from COMMON-ISDN-API. This way the
application signals COMMON-ISDN-API that all resources that have been allocated by
COMMON-ISDN-API for the application can be released again.

The application is identified by the application identification number that had been as-
signed in the previous CAPI_REGISTER operation.

CAPI_RELEASE close()

Implementation

To  release  a  connection  between  an  application  and  COMMON-ISDN-API driver,  the
system call close() is used. All related resources are released.



CAPI_PUT_MESSAGEXE "CAPI_PUT_MESSAGE:UNIX"§

Description

With this operation the application transfers a message to  COMMON-ISDN-API. The
application identifies itself with an application identification number. 

CAPI_PUT_MESSAGE putmsg()

Implementation

To  transfer  a  message  from  an  application  to  COMMON-ISDN-API driver  and  the
controller behind, the system call putmsg() is used.

The application puts COMMON-ISDN-API message into the ctl part of the putmsg() call.
Parameter  data and  data length  of message  DATA_B3_REQ  have to be stored in the
data part of putmsg().

Note

COMMON-ISDN-API message  is  stored  in  the  ctl  part  of  putmsg().  In  case  of
DATA_B3_REQ parameters  data and  data length in this ctl  part of  putmsg() are not
interpreted from COMMON-ISDN-API implementations.



CAPI_GET_MESSAGEXE "CAPI_GET_MESSAGE:UNIX"§

Description

With this operation the application retrieves a message from COMMON-ISDN-API. The
application retrieves all messages associated with the corresponding file descriptor from
operation CAPI_REGISTER.

CAPI_GET_MESSAGE getmsg()

Implementation

To  receive  a  message from COMMON-ISDN-API the  application  uses the  system call
getmsg().

The application has to supply sufficient buffers for receiving the ctl and data parts of
the  message.  In  case  of  receiving  COMMON-ISDN-API message  DATA_B3_IND,
parameter data and data length of this message are not supported. Instead the data part
of getmsg() is used to offer the transferred data.

Note

To receive a message from  COMMON-ISDN-API the application uses the system call
getmsg().



8.5.2 Other Functionsinhalt "8.5.2 Other Functions" \l3§

CAPI_GET_MANUFACTURERXE "CAPI_GET_MANUFACTURER:UNIX"§

Description

With  this  operation  the  application  determines  the  manufacturer  identification  of
COMMON-ISDN-API.  The  offered  buffer  must  have  a  size  of  at  least  64  bytes.
COMMON-ISDN-API copies the identification string, coded as a zero terminated ASCII
string, to this buffer.

CAPI_GET_MANUFACTURER ioctl(): 0x06

Implementation

This operation is realised using ioctl(0x06). The caller must supply a buffer in struct strioctl
ic_dp and ic_len.

int fd; /* a valid COMMON-ISDN-API handle */
struct strioctl strioctl;
char buffer[64];

strioctl.ic_cmd = ( 'C' << 8) | 0x06; /* CAPI_GET_MANUFACTURER */
strioctl.ic_timout = 0;
strioctl.ic_dp = buffer;
strioctl.ic_len = sizeof(buffer);
ioctl(fd, I_STR, &strioctl);

The manufacturer identification is transferred to the given buffer. The string is always zero-
terminated.



CAPI_GET_VERSIONXE "CAPI_GET_VERSION:UNIX"§

Description

With this function the application determines the version of  COMMON-ISDN-API as
well  as  an  internal  revision  number.  The  offered  buffer  must  have  a  size  of  4  *
sizeof(unsigned).

CAPI_GET_VERSION ioctl(): 0x07

Implementation

This operation is realised using ioctl(0x07). The caller must supply a buffer in struct strioctl
ic_dp and ic_len.

int fd; /* a valid COMMON-ISDN-API handle */
struct strioctl strioctl;
unsigned unsigned buffer[4];

strioctl.ic_cmd = ( 'C' << 8) | 0x07; /* CAPI_GET_VERSION */
strioctl.ic_timout = 0;
strioctl.ic_dp = buffer;
strioctl.ic_len = sizeof(buffer);
ioctl(fd, I_STR, &strioctl);

The buffer consists of four elemtents:
first COMMON-ISDN-API major version: 0x02
second COMMON-ISDN-API minor version: 0x00
third manufacturer-specific major number
fourth manufacturer-specific minor number



CAPI_GET_SERIAL_NUMBERXE "CAPI_GET_SERIAL_NUMBER:UNIX"§

Description

With this operation the application determines the (optional) serial number of  COM-
MON-ISDN-API. The offered buffer must have a size of 8 bytes.  COMMON-ISDN-API
copies  the  serial  number  string  to  this  buffer.  The  serial  number,  coded  as  a  zero
terminated ASCII string, represents seven digit number after the function has returned.

CAPI_GET_SERIAL_NUMBER ioctl(): 0x08

Implementation

This operation is realised using ioctl(0x08). The caller must supply a buffer in struct strioctl
ic_dp and ic_len.

int fd; /* a valid COMMON-ISDN-API handle */
struct strioctl strioctl;
char buffer[8];

strioctl.ic_cmd = ( 'C' << 8) | 0x08; /* CAPI_GET_SERIAL_NUMBER */
strioctl.ic_timout = 0;
strioctl.ic_dp = buffer;
strioctl.ic_len = sizeof(buffer);
ioctl(fd, I_STR, &strioctl);

The serial number consists of up to seven decimal-digit ASCII characters. It is always zero-
terminated.



CAPI_GET_PROFILEXE "CAPI_GET_PROFILE:UNIX"§

Description

The application uses this function to get the capabilities from COMMON-ISDN-API. In
the  allocated  buffer  of  64  byte  COMMON-ISDN-API copies  information  about
implemented features, number of controllers and supported protocols. CtrlNr, which is
an input parameter for  COMMON-ISDN-API, is coded in the first bytes of the buffer
and contains the controller number (bit 0..6), for which this information is requested.

CAPI_GET_PROFILE 0x09

Implementation

This operation is realised using ioctl(0x09). The caller must supply a buffer in struct strioctl
ic_dp and ic_len.

int fd; /* a valid COMMON-ISDN-API handle */
struct strioctl strioctl;
char buffer[64];

/* Set Controller number */
* ( (unsigned*)(&buffer[0])) = CtrlNr;

strioctl.ic_cmd = ( 'C' << 8) | 0x09; /* CAPI_GET_PROFILE */
strioctl.ic_timout = 0;
strioctl.ic_dp = buffer;
strioctl.ic_len = sizeof(buffer);
ioctl(fd, I_STR, &strioctl);

Structure of command specific parameters:
Parameter Comment

CtrlNr Number of Controller. If 0, only number of 
installed controller is given to the application.

Retrieved structure format:
Type Description

ushort number of installed controller,  least significant octet first



ushort number of supported B-channels, least significant octet first

unsigned Global Options (bit field):
[0]: internal controller supported
[1]: external equipment supported
[2]: Handset supported (external equipment must be set also)
[3]: DTMF supported
[4].[31]: reserved

unsigned B1 protocols support (bit field):
[0]: 64 kBit/s with HDLC framing, always set.
[1]: 64 kBit/s bit transparent operation with byte framing from 
the network
[2]: V.110 asynchronous operation with start/stop byte framing
[3]: V.110 synchronous operation with HDLC framing
[4]: T.30 modem for fax group 3
[5]: 64 kBit/s inverted with HDLC framing.
[6]: 56 kBit/s bit transparent operation with byte framing from 
the network
[7]..[31]: reserved

unsigned B2 protocol support (bit field):
[0]: ISO 7776 (X.75 SLP), always set
[1]: Transparent
[2]: SDLC
[3]: LAPD according Q.921 for D channel X.25
[4]: T.30 for fax group 3
[5]: Point to Point Protocol (PPP)
[6]: Transparent (ignoring framing errors of B1 protocol)
[7]..[31]: reserved

unsigned B3 protocol support (bit field):
[0]: Transparent, always set
[1]: T.90NL with compatibility to T.70NL according to T.90 
Appendix II.
[2]: ISO 8208 (X.25 DTE-DTE)
[3]: X.25 DCE
[4]: T.30 for fax group 3
[5]..[31]: reserved

6 unsigned reserved for COMMON-ISDN-API  usage

5 unsigned manufacturer specific information



Note

This function can be extended, so an application has to ignore unknown bits. COMMON-
ISDN-API will set every reserved field to 0.



8.6 NetWareinhalt "8.6 NetWare" \l2§

The  NetWare  server  operating  system  provides  an  open,  non-preemptive,  multitasking
platform including file, print, communications and other services. A typical NetWare server
can support tens to hundreds of simultaneous users. Extensibility of communication services
in particular is accommodated through open service interfaces allowing integration of third
party  hardware  and  software.  Therefore  when  considering  the  addition  of  a  new
communications subsystem to the NetWare operating system, scalability and flexibility are
considered primary design goals. 

This  implementation  of  COMMON-ISDN-API  in  the  NetWare  server  operating  system
addresses both scalability and flexibility by allowing concurrent operation of multiple CAPI
compliant applications and multiple ISDN controllers provided by different manufacturers.
COMMON-ISDN-API service provider in the NetWare operating system environment is a
subset  of  the  overall  NetWare  CAPI  Manager  subsystem.  The  NetWare  CAPI  Manager
includes all standard functions defined by COMMON-ISDN-API v2.0 as well as auxiliary
functions  providing  enhanced  ISDN  resource  management  for  NetWare  systems  running
multiple concurrent CAPI applications. The NetWare CAPI Manager subsystem also includes
a secondary service interface which integrates each manufacturer specific ISDN controller
driver  below COMMON-ISDN-API.  Although  the  driver  interface  maintains  the  general
structure and syntax of CAPI functions and messages, it is not part of COMMON-ISDN-API
v2.0  definition.  The  driver  interface  is  unique  to  the  NetWare  CAPI  Manager
implementation.

The following  description  of  COMMON-ISDN-API  within  the  NetWare  server  operating
system  provides  a  detailed  description  of  each  standard  COMMON-ISDN-API  function
which makes up the application programming interface, containing sufficient information to
implement  CAPI  compliant  applications  within  the  NetWare  environment.  A  general
overview of  the  NetWare  CAPI  Manager  is  also provided to  identify  which services are
standard  COMMON-ISDN-API  and  which  are  unique  to  the  NetWare  CAPI  Manager
subsystem.  Detailed  description  of  the  NetWare  CAPI  Manager  unique  functions  for
enhanced resource management and ISDN controller software integration is beyond the scope
of this document. The complete definition is contained in the Novell specification NetWare
CAPI Manager and CAPI Driver specification (Version 2.0).

Architectural Overview

The NetWare CAPI Manager, which is implemented as a NetWare Loadable Module (NLM)
acts  as  a  service  multiplexer  and  common  interface  point  between  CAPI  compliant
applications  and  each  manufacturer  specific  ISDN  controller  driver  residing  below
COMMON-ISDN-API. Each CAPI application and each controller driver is implemented as
separate  NLM  which  independently  registers  with  the  NetWare  CAPI  Manager  at
initialization  time.  COMMON-ISDN-API  exists  between  the  CAPI  applications  and  the
NetWare CAPI Manager. NetWare CAPI Manager auxiliary management functions also exits
at this point. A Novell defined service interface exists between the NetWare CAPI Manager
and the ISDN controller drivers however applications have no knowledge of this lower level
interface.  From the application  perspective,  the lower level driver  interface is  an internal
detail of the NetWare CAPI Manager implementation of COMMON-ISDN-API.



Figure 1 illustrates the relationship between CAPI applications, the NetWare CAPI Manager,
and manufacturer specific controller drivers and controller hardware. 

‘µ §
Figure 1: Architectural Overview

Services provided by the CAPI Manager are presented as a set of exported public symbols.
To avoid public symbol conflicts within the server environment, services provided by each
controller driver are presented as a set of entry point addresses supplied to the NetWare CAPI
Manager at driver registration time. CAPI Manager services include the standard COMMON-
ISDN-API function set, auxiliary functions supporting driver registration and deregistration
of controller services and auxiliary management functions referenced by CAPI applications. 

The additional management functions implement a powerful search mechanism for locating
specific  controller  resources and a locking mechanism to  reserve controller  resources  for
exclusive use by an application. The CAPI_GetFirstCntlrInfo searches for the first occurrence
of a controller whose capabilities match the search criteria specified by the application. The
search criteria can include a symbolic controller name, specific protocols, required bandwidth
etc. The CAPI_GetNextCntlrInfo function searches for additional controllers which meet the
previously  specified  search  criteria.  The  CAPI_LockResource  function  is  provided  for
applications which must have guaranteed access to a previously identified controller channel
or protocol resources. The specified resource remains reserved until the application calls the
CAPI_FreeResource  function.  These  additional  management  functions  are  intended  to
provide enhanced management capabilities in server systems configured with a variety of
controllers or a large number of concurrently executing applications. 

To insure efficient operation of multiple applications and drivers in the server environment,
inbound message signaling is required by the NetWare CAPI Manager. The CAPI_Register
function  defines  additional  signal  parameters  must  be  provided  by  the  application  to
successfully register. Applications are not permitted to poll for inbound messages. Because
signaling  is  required  and  signal  parameters  are  specified  at  registration  time,  the
CAPI_SetSignal function is not included in this implementation of COMMON-ISDN-API.

Refer  to  the  NetWare  CAPI  Manager  &  CAPI  Driver  Specification for  a  complete
definition of the auxiliary and driver functions.  The function descriptions provided in this
section reflect only the standard COMMON-ISDN-API function set provided by the NetWare
CAPI Manager. Note that in some cases the  parameter lists required by the NetWare CAPI
Manager  version  of  COMMON-ISDN-API  functions  are  different  from  other  operating
system implementations.

Function Call Conventions in NetWare environment:

· All interface functions conform to standard C language calling conventions.
· All functions can be called from either a process or interrupt context. 
· COMMON-ISDN-API defines a standard 16 bit error code format where bits 8-15 identify the error 



class and bits 0-7 identify the specific error. With one exception, this approach is used throughout this
specification. The exception is that all functions return either a DWORD (unsigned long) or a void 
type rather than a 16 bit WORD type. Bits 31-16 of the return value will always be zero. 

Data Type Conventions in NetWare environment:

· Structures were used with byte alignment.
· The following additional simple data types were used:

BYTE unsigned 8 bit integer value
WORD unsigned 16 bit integer value
DWORD unsigned 32 bit integer value
BYTE * 32 bit pointer to an unsigned char
WORD * 32 bit pointer to an unsigned 16 bit integer 
VOID * 32 bit pointer
VOID ** 32 bit pointer to a 32 bit pointer



8.6.1 Message operationsinhalt "8.6.1 Message operations" \l3§

CAPI_RegisterXE "CAPI_REGISTER:NetWare (CAPI_Register)"§XE 
"CAPI_Register"§

Description

Applications use  CAPI_Register to  register their  presence with  COMMON-ISDN-API.
Registration  parameters  specify  the  maximum number  of  ISDN logical  connections,
message  buffer  size,  number  of  data  buffers  and  data  buffer  size  required  by  the
application. Message buffer size is normally calculated according to following formula:

Message buffer size = 1024 + ( 1024 * number of ISDN logical connections )

Inbound  message  signalling  parameters  are  also  supplied.  Successful
registration  causes  COMMON-ISDN-API  to  assign  a  system  unique
application identifier to the caller.  The application identifier is  used in
subsequent  COMMON-ISDN-API function calls as well as in  COMMON-
ISDN-API defined messages. Two inbound message availability signalling
options  are  supported.  The  signalType  and  signalHandle  parameters
allow an  application  to  select  either  CLIB Local  Semaphore  or  direct
function  call-back  notification.  Application  polling  of  the  inbound
message  queue  is  not  permitted.  Successful  application  registration
requires selection of an inbound message signalling mechanism. 

Applications which maintain a CLIB process context  should select Local Semaphore
signalling via the signalType parameter and supply a previously allocated Local Sema-
phore handle as the signalHandle parameter. The application receive process can then
wait on the local semaphore. When an inbound message is available, the CAPI driver
will signal the local semaphore causing the application process to wakeup and retrieve a
message, by calling the CAPI_GetMessage function.

Applications which do not maintain a CLIB process context should select direct call-
back signalling via the signalType parameter, supply a pointer to an application resi-
dent notification function as the signalHandle parameter and an application defined
context value as the signalContext parameter. When an inbound message is available,
COMMON-ISDN-API will call the specified application notification  function, supplying
the application context value. The application has to call the CAPI_GetMessage function
to retrieve any available messages. 



Function call
DWORD CAPI_Register( WORD messageBufSize,

WORD connectionCnt,
WORD dataBlockCnt,
WORD dataBlockLen,
WORD *applicationID
WORD signalType,
DWORD signalHandle,
DWORD signalContext,
);

Parameter Comment

messageBufSize specifies the message buffer size

connectionCnt specifies the maximum number of logical connections this 
application can concurrently maintain. Any application attempt
to exceed the logical connection count by accepting or 
initiating additional connections will result in a connection 
establishment failure and an error indication from the CAPI 
driver

dataBlockCnt specifies the maximum number of received data blocks that 
can be reported to the application simultaneously for each B 
channel connection. The number B channel data blocks has a 
decisive effect on the throughput of  B channel data in the 
system and should be between 2 and 7. At least two  B channel
data block must be specified

dataBlockLen specifies maximum size of a B channel data unit which can be 
transmitted and received. Selection of  a protocol that requires 
larger data units and attempts to transmit or receive larger data
units will result in an error from COMMON-ISDN-API.

applicationID this parameter specifies a pointer to a location where the CAPI
Manager will place the assigned application identifier during 
registration . This value is valid only if the registration 
operation was successful, as indicated by a return code of 
0x0000.

signalType specifies the inbound message signalling mechanism selected 
by the application. The signalling mechanism is used by the 
driver to notify the application when inbound control or data 
messages are available or when queue full / busy conditions 
change. The signalType parameter also defines the meaning of 
the signalHandle parameter. Two signalType constants are de-
fined as follows:
0x0001 SIGNAL_TYPE_LOCAL_SEMAPHORE



0x0002 SIGNAL_TYPE_CALLBACK

signalHandle depending on the value of the signalType parameter, 
signalHandle specifies either the local semaphore handle 
previously allocated by the application or the address of an 
application resident receive notification function with the 
following format:
void CAPI_ReceiveNotify(DWORD signalContext ); (see 
below)

signalContext if the signalType parameter contains 
SIGNAL_TYPE_CALLBACK, the signalContext specifies an 
application defined context value. This value will be passed to 
the application notification function. The signalContext value 
has no meaning to the CAPI. It may be used by an application 
to reference internal data structures etc during receive 
notification callback process.  If the signalType parameter 
specifies SIGNAL_TYPE_LOCAL_SEMAPHORE this value 
is ignored.

Return Value
Return Value Comment

0x0000 Registration successful - application identification number has 
been assigned

All other values Coded as described in parameter info class 0x10xx

CAPI_ReceiveNotify

Description

This optional application resident receive notification function is called by the NetWare CAPI
Manager  implementation  of  the  COMMON-ISDN-API  whenever  an  inbound  message
addressed  to  the  application  is  available.  This  function  is  intended  for  exclusive  use  by
NetWare system applications which do not maintain a CLIB context. Use of this function is
enabled  at  application  registration  time  by  specifying  the  CAPI_Register  signalType
parameter as SIGNAL_TYPE_CALLBACK. Note that non system level applications should
always  use  local  semaphores  for  receive  message  notification  by  specifying  the
CAPI_Register signalType parameter as SIGNAL_TYPE_LOCAL_SEMAPHORE.

Each  time  the  CAPI_ReceiveNotify  function  is  called,  it  should  in  turn  call  the



CAPI_GetMessage to retrive the next available message addressed to the application.  The
signalContext parameter passed to the CAPI_ReceiveNotify function contains an application
defined  context  value  previously  supplied  to  the  CAPI_Register  function.  This  value  is
meaningful only to the application, for example as an internal data structure pointer 

Note

The CAPI_ReceiveNotify function can be called from either the process or interrupt context.
To avoid adverse system impact, blocking operations such as disk input output should not
performed by the receive notify function. If blocking operations are required they should be
executed from a separate application supplied process. 



CAPI_ReleaseXE "CAPI_RELEASE:NetWare (CAPI_Release)"§XE 
"CAPI_Release"§

Description

Applications uses  CAPI_Release to deregister from  COMMON-ISDN-API. All memory
allocated on behalf of the application by COMMON-ISDN-API will be released.

Function call

DWORD CAPI_Release (WORD ApplID);

Parameter Comment

ApplID Application identification number that had been assigned by 
call of the function CAPI_Register

Return Value
Return Value Comment

0x0000 Release of the application successful

All other values Coded as described in parameter info class 0x11xx



CAPI_PutMessageXE "CAPI_PUT_MESSAGE:NetWare 
(CAPI_PutMessage)"§XE "CAPI_PutMessage"§

Description

Applications call  CAPI_PutMessage to  transfer a single message to  COMMON-ISDN-
API.

Function call

DWORD CAPI_PutMessage( WORD ApplID,
VOID *pCAPIMessage
);

Parameter Comment

ApplID Application identification number that had been assigned by 
call of the function CAPI_Register

pCAPIMessage points to a memory block which contains a message for the 
CAPI Driver

Return Value
Return Value Comment

0x0000 No error

All other values Coded as described in parameter info class 0x11xx

Note

When the process returns from the function call the message memory area can be reused by
the application.





CAPI_GetMessageXE "CAPI_GET_MESSAGE:NetWare 
(CAPI_GetMessage)"§XE "CAPI_GetMessage"§

Description

Applications call CAPI_GetMessage to retrieve a single message from COMMON-ISDN-
API.  If  a  message  is  available,  it  address  is  returned  to  the  application  in  location
specified by the ppCAPIMessage parameter. If there are no messages available from any
of the registered drivers, CAPI_GetMessage returns with an error indication

The contents of the message blocks returned by this function is valid until  the same
application calls CAPI_GetMessage again. In cases where the application will process the
message  asynchronously  or  needs  to  maintain  the  message  beyond  the  next  call  to
CAPI_GetMessage, a local copy of the message has to be made by the application.

Function call

DWORD CAPI_GetMessage( WORD ApplID,
VOID** ppCAPIMessage
);

Parameter Comment

ApplID Application identification number that had been assigned by 
call of the function CAPI_Register

ppCAPIMessage pointer to the memory location where the CAPI Manager 
should place the retrieved message address. The contents of 
the output variable specified by msgPtr is valid only if the 
return code indicates no error

Return Value
Return Value Comment

0x0000 Successful - Message was retrieved from COMMON-ISDN-
API

All other values Coded as described in parameter info class 0x11xx





8.6.2 Other functionsinhalt "8.6.2 Other functions" \l3§

CAPI_GetManufacturerXE "CAPI_GET_MANUFACTURER:NetWare 
(CAPI_GetManufacturer)"§XE "CAPI_GetManufacturer"§

Description

Applications call CAPI_GetManufacturer to retrieve manufacturer specific identification
information from the specified ISDN controller.

Function call

DWORD CAPI_GetManufacturer( DWORD Controller,
BYTE *szBuffer
);

Parameter Comment

Controller specifies the system unique controller number for which the 
manufacturer information is to be retrieved. Coding is 
described in Chapter 6.

szBuffer specifies a pointer to an application data area 64 bytes long 
which will contain the manufacturer identification information 
upon successful return. The identification information is 
represented as a zero terminated ASCII text string.

Return Value
Return Value Comment

0x0000 Successful - information was retrieved from COMMON-
ISDN-API

All other values Coded as described in parameter info class 0x11xx



CAPI_GetVersionXE "CAPI_GET_VERSION:NetWare 
(CAPI_GetVersion)"§XE "CAPI_GetVersion"§

Description

Applications call  CAPI_GetVersion to retrieve version information from the specified
ISDN controller. Major and minor version numbers are returned for both COMMON-
ISDN-API and the manufacturer specific implementation.

Function call

DWORD CAPI_GetVersion( DWORD Controller,
WORD* pCAPIMajor,
WORD* pCAPIMinor,
WORD* pManufacturerMajor,
WORD* pManufacturerMinor
WORD *pManagerMajor
WORD *pManagerMinor
);

Parameter Comment

Controller specifies the system unique controller number for which the 
manufacturer information is to be retrieved. Coding is 
described in Chapter 6.

pCAPIMajor pointer to a WORD receiving COMMON-ISDN-API major 
version number:  0x0002

pCAPIMinor pointer to a WORD  receiving COMMON-ISDN-API minor 
version number: 0x0000

pManufacturerMajor pointer to a WORD receiving manufacturer specific major 
number

pManufacturerMinor pointer to a WORD receiving manufacturer specific minor 
number

pManagerMajor pointer to a WORD receiving CAPI Manager major version 
number

pManagerMinor pointer to a WORD receiving CAPI Manager minor version 
number



Return Value
Return Comment

0x0000 No error, version numbers are copied

All other values Coded as described in parameter info class 0x11xx



CAPI_GetSerialNumberXE "CAPI_GET_SERIAL_NUMBER:NetWare 
(CAPI_GetSerialNumber)"§XE "CAPI_GetSerialNumber"§

Description

Applications call  CAPI_GetSerialNumber to retrieve the optional serial number of the
specified ISDN controller.

Function call

DWORD CAPI_GetSerialNumber( DWORD Controller,
BYTE *szBuffer
);

Parameter Comment

Controller specifies the system unique controller number for which the 
serial number information is to be retrieved. Coding is 
described in Chapter 6.

szBuffer pointer to a buffer of  8 bytes

Return Value
Return Comment

0x0000 No error
szBuffer contains the serial number in plain text in the form of 
a 7-digit number. If no serial number is provided by the 
manufacturer, an empty string is returned.

All other values Coded as described in parameter info class 0x11xx



CAPI_GetProfileXE "CAPI_GET_PROFILE:NetWare 
(CAPI_GetProfile)"§XE"CAPI_GetProfile"§

Description

The application uses this function to get  the capabilities  from  COMMON-ISDN-API.
Buffer on call is a pointer to a buffer of 64 bytes. In this buffer  COMMON-ISDN-API
copies information about implemented features, number of controllers and supported
protocols.  Controller  contains  the  controller  number  (bit  0..6),  for  which  this  in-
formation is requested.

DWORD CAPI_GetProfile ( VOID *Buffer,
DWORD Controller
);

Parameter Comment

Buffer pointer to a buffer of  64 bytes

Controller Number of Controller. If 0, only number of installed controller
is given to the application.

Return Value
Return Comment

0x0000 No error
Buffer contains the requested information.

All other values Coded as described in parameter info class 0x11xx

Retrieved structure format:
Type Description

WORD number of installed controller,  least significant octet first



WORD number of supported B-channels, least significant octet first

DWORD Global Options (bit field):
[0]: internal controller supported
[1]: external equipment supported
[2]: Handset supported (external equipment must be set also)
[3]: DTMF supported
[4].[31]: reserved

DWORD B1 protocols support (bit field):
[0]: 64 kbit/s with HDLC framing, always set.
[1]: 64 kbit/s bit transparent operation with byte framing from 
the network
[2]: V.110 asynchronous operation with start/stop byte framing
[3]: V.110 synchronous operation with HDLC framing
[4]: T.30 modem for fax group 3
[5]: 64 kbit/s inverted with HDLC framing.
[6]: 56 kbit/s bit transparent operation with byte framing from 
the network
[7]..[31]: reserved

DWORD B2 protocol support (bit field):
[0]: ISO 7776 (X.75 SLP), always set
[1]: Transparent
[2]: SDLC
[3]: LAPD according Q.921 for D channel X.25
[4]: T.30 for fax group 3
[5]: Point to Point Protocol (PPP)
[6]: Transparent (ignoring framing errors of B1 protocol)
[7]..[31]: reserved

DWORD B3 protocol support (bit field):
[0]: Transparent, always set
[1]: T.90 NL with compatibility to T.70 NL according to T.90 
Appendix II.
[2]: ISO 8208 (X.25 DTE-DTE)
[3]: X.25 DCE
[4]: T.30 for fax group 3
[5]..[31]: reserved

6 DWORDs reserved for COMMON-ISDN-API  usage

5 DWORDs manufacturer specific information



Note

This function can be extended, so an application has to ignore unknown bits. COMMON-
ISDN-API will set every reserved field to 0.



ANNEX A (Informative): Sample Flow Chart Diagrams inhalt 
"Annex A (Informative): Sample Flow Chart Diagrams" \l1§

A.1 OUTGOING CALLinhalt "A.1 Outgoing call" \l2§

µ §



A.2 Incoming callinhalt "A.2 Incoming call" \l2§

µ §



A.3 Transmitting Datainhalt "A.3 Transmitting Data" \l2§

µ §



A.4 Receiving Datainhalt "A.4 Receiving Data" \l2§

µ §



A.5 Active disconnectinhalt "A.5 Active disconnect" \l2§

µ §



A.6 Passive disconnectinhalt "A.6 Passive disconnect" \l2§

µ §



A.7 Disconnect Collisioninhalt "A.7 Disconnect Collision" \l2§

Simultaneous release of a physical connection by application and COMMON-ISDN-API

µ §

also possible:

µ §

illegal:

µ §

after DISCONNECT_IND no more message 
will be sent to applications, so DISCON-
NECT_REQ will not be confirmed

after DISCONNECT_IND no more message 
will be sent to applications, so DISCON-
NECT_REQ will not be confirmed

invalid, after DISCONNECT_IND no more 
message concerning this PLCI will be sent to 
application





Annex B (Normative): SFF Formatinhalt "Annex B (Normative): SFF
Format" \l1§XE "SFF Format"§

B.1 INTRODUCTIONinhalt "B.1 Introduction" \l2§

SFF (Structured Fax File) is a representation specially for fax group 3 documents. It
consists of information concerning the page structure and compressed line data of the
fax document.  A SFF formatted document always starts with a header, valid for the
complete document. Every page will start with a page header. After this the pixel in-
formation follows line by line.  As the SFF format is a file format specification, some
entries in header structures (e.g. double chaining of pages) may not used or supported
by COMMON-ISDN-API. 

document
header

page 1
header

page 1
data

page 2
header

page 2
data

..... page n
data

Figure 6: SFF format

B.2 SFF coding rulesinhalt "B.2 SFF coding rules" \l2§

Following type conventions are used:
byte 8 bit unsigned
word 16 bit unsigned integer, least significant octet first
dword 32 bit unsigned integer, least significant word first

B.2.1 Document headerinhalt "B.2.1 Document header" \l3§

Parameter Type Comment

SFF_Id dword magic value (identification) of SFF Format: coded 
as 0x66666653 ("SFFF")

Version byte version number of SFF document: coded 0x01

reserved byte reserved for future extensions, coded 0x00

User Information word manufacturer specific user information (not used 
by COMMON-ISDN-API, coded as 0x0000)

Page Count word number of document's pages. If not known (in case
of  receiving a document) it has to be coded 
0x0000.

OffsetFirstPageHeade word byte offset of first page header from start of 



r document header. This value is normally equal to 
the size of the document header (0x14), but there 
might be additional user specific data between 
document header and first page header. 
COMMON-ISDN-API will ignore and not offer 
such additional data.

OffsetLastPageHeader dword byte offset of last page header from start of 
document header.  If not known (in case of 
receiving a document) it has to be coded 
0x00000000.

OffsetDocumentEnd dword byte offset to document end from start of 
document header.  If not known (in case of 
receiving a document) it has to be coded 
0x00000000.

B.2.2 Page headerinhalt "B.2.2 Page header" \l3§

Parameter Type Comment

PageHeaderID byte 254 (Record Type of Page Data)

PageHeaderLen byte 0: Document end
1..255: byte offset of first page data from entry 
Resolution Vertical of page header. This value is 
normally equal to the size of the following part of 
the header (0x10), but there might be additional 
user specific data between page header and page 
data. COMMON-ISDN-API will ignore and not 
offer such additional data.

Resolution Vertical byte definition of vertical resolution; different 
resolutions in one document may be ignored by 
COMMON-ISDN-API.
0: 98 lpi (standard)
1:: 196 lpi (high resolution)
2..254: reserved
255: end of document (should not be used, instead 
PageHeaderLen should be coded 0)

Resolution Horizontal byte definition of horizontal resolution
0: 203 dpi (standard)
1..255: reserved

Coding byte definition of pixel line coding
0: modified Huffman coding
1..255: reserved



reserved byte coded as 0

Line Length word number of pixels per line
1728: standard fax g3
2048: B4 (optional)
2432: A3 (optional)
Support of other values also is optional for 
COMMON-ISDN-API.

Page Length word number of pixel lines per page. If not known, 
coded as 0x0000.

OffsetPreviousPage dword byte offset to previous page header or 0x00000000.
Coded as 0x00000001 if first page.

OffsetNextPage dword byte offset to next page header or 0x00000000. 
Coded as 0x00000001 if last page.

B.2.3 Page datainhalt "B.2.3 Page data" \l3§

Page data is coded line by line, i.e. for each pixel row exists a data definition. Lines are coded
as records with variable  length,  each line is  coded according to  element  coding in  page
header.  For the moment  only modified Huffman coding is  supported.  MH-coding is
byte oriented, the first bit or a code word is stored least significant first. There are no
EOL code words or fill  bits  included.  If  data include EOL code words,  COMMON-
ISDN-API will ignore these coding.

Each record is identified by the first byte:
· 1..216: pixel row with 1..216 MH-coded bytes are following immediately
· 0: escape for pixel row with more than 216 bytes MH-coding. In this case, a following word 

in the range 217..32767 defines the number of MH-coded bytes, which are following.
· 217..253: white skip, 1..37 empty lines
· 254: start or page header (see there)
· 255: if followed by a byte with value 0, illegal line coding. An application can decide if this 

line should be interpreted empty or as a copy of the previous line. If this byte is followed by a
byte with a value 1..255, 1..255 bytes additional user information are following (reserved for 
future extensions).





Indexinhalt "Index" \l1§

µ
Additional Info........................................................................................................................................................65
ALERT_CONF.......................................................................................................................................................16
ALERT_REQ..........................................................................................................................................................15

B Channel Information...........................................................................................................................................66
B Protocol...............................................................................................................................................................66
B1 Configuration....................................................................................................................................................68
B1 Protocol.............................................................................................................................................................66
B2 Configuration....................................................................................................................................................69
B2 Protocol.............................................................................................................................................................67
B3 Configuration....................................................................................................................................................69
B3 Protocol.............................................................................................................................................................67
BC...........................................................................................................................................................................70

Called Party Number..............................................................................................................................................70
Called Party Subaddress.........................................................................................................................................71
Calling Party Number.............................................................................................................................................71
Calling Party Subaddress........................................................................................................................................71
CAPI_GET_MANUFACTURER
MS-DOS................................................................................................................................................................106
NetWare (CAPI_GetManufacturer).....................................................................................................................174
OS/2.......................................................................................................................................................................134
OS/2 PDD..............................................................................................................................................................149
UNIX.....................................................................................................................................................................160
Windows...............................................................................................................................................................120
CAPI_GET_MESSAGE
MS-DOS................................................................................................................................................................103
NetWare (CAPI_GetMessage).............................................................................................................................173
OS/2.......................................................................................................................................................................131
OS/2 PDD..............................................................................................................................................................146
UNIX.....................................................................................................................................................................159
Windows...............................................................................................................................................................117
CAPI_GET_PROFILE
MS-DOS................................................................................................................................................................109
NetWare (CAPI_GetProfile)................................................................................................................................177
OS/2.......................................................................................................................................................................137
OS/2 PDD..............................................................................................................................................................152
UNIX.....................................................................................................................................................................163
Windows...............................................................................................................................................................123
CAPI_GET_SERIAL_NUMBER
MS-DOS................................................................................................................................................................108
NetWare (CAPI_GetSerialNumber).....................................................................................................................176
OS/2.......................................................................................................................................................................136
OS/2 PDD..............................................................................................................................................................151
UNIX.....................................................................................................................................................................162
Windows...............................................................................................................................................................122
CAPI_GET_VERSION
MS-DOS................................................................................................................................................................107
NetWare (CAPI_GetVersion)...............................................................................................................................175



OS/2.......................................................................................................................................................................135
OS/2 PDD..............................................................................................................................................................150
UNIX.....................................................................................................................................................................161
Windows...............................................................................................................................................................121
CAPI_GetManufacturer........................................................................................................................................174
CAPI_GetMessage................................................................................................................................................173
CAPI_GetProfile...................................................................................................................................................177
CAPI_GetSerialNumber.......................................................................................................................................176
CAPI_GetVersion.................................................................................................................................................175
CAPI_INSTALLED
OS/2.......................................................................................................................................................................139
Windows...............................................................................................................................................................125
CAPI_MANUFACTURER
MS-DOS................................................................................................................................................................111
CAPI_PUT_MESSAGE
MS-DOS................................................................................................................................................................102
NetWare (CAPI_PutMessage)..............................................................................................................................172
OS/2.......................................................................................................................................................................130
OS/2 PDD..............................................................................................................................................................145
UNIX.....................................................................................................................................................................158
Windows...............................................................................................................................................................116
CAPI_PutMessage................................................................................................................................................172
CAPI_REGISTER
MS-DOS..................................................................................................................................................................99
NetWare (CAPI_Register)....................................................................................................................................168
OS/2.......................................................................................................................................................................128
OS/2 PDD..............................................................................................................................................................142
UNIX.....................................................................................................................................................................156
Windows...............................................................................................................................................................114
CAPI_Register......................................................................................................................................................168
CAPI_RELEASE
MS-DOS................................................................................................................................................................101
NetWare (CAPI_Release).....................................................................................................................................171
OS/2.......................................................................................................................................................................129
OS/2 PDD..............................................................................................................................................................144
UNIX.....................................................................................................................................................................157
Windows...............................................................................................................................................................115
CAPI_Release.......................................................................................................................................................171
CAPI_SET_SIGNAL
MS-DOS................................................................................................................................................................104
OS/2.......................................................................................................................................................................132
OS/2 PDD..............................................................................................................................................................147
Windows...............................................................................................................................................................118
CIP mask.................................................................................................................................................................76
CIP Value................................................................................................................................................................72
CONNECT_ACTIVE_IND....................................................................................................................................22
CONNECT_B3_ACTIVE_IND.............................................................................................................................24
CONNECT_B3_ACTIVE_RESP...........................................................................................................................25
CONNECT_B3_CONF..........................................................................................................................................27
CONNECT_B3_IND..............................................................................................................................................28
CONNECT_B3_REQ.............................................................................................................................................26
CONNECT_B3_RESP............................................................................................................................................29
CONNECT_B3_T90_ACTIVE_IND.....................................................................................................................30
CONNECT_B3_T90_ACTIVE_RESP..................................................................................................................31
CONNECT_CONF.................................................................................................................................................18
CONNECT_IND.....................................................................................................................................................19
CONNECT_REQ....................................................................................................................................................17
CONNECT_RESP..................................................................................................................................................20
Connected Party Number........................................................................................................................................77
Connected Party Subaddress...................................................................................................................................77
Controller................................................................................................................................................................78



Data.........................................................................................................................................................................78
Data Handle............................................................................................................................................................79
Data Length.............................................................................................................................................................78
DATA_B3_CONF..................................................................................................................................................33
DATA_B3_IND......................................................................................................................................................34
DATA_B3_REQ.....................................................................................................................................................32
DATA_B3_RESP...................................................................................................................................................35
DISCONNECT_B3_CONF....................................................................................................................................37
DISCONNECT_B3_IND........................................................................................................................................38
DISCONNECT_B3_REQ.......................................................................................................................................36
DISCONNECT_B3_RESP.....................................................................................................................................39
DISCONNECT_CONF...........................................................................................................................................41
DISCONNECT_IND..............................................................................................................................................42
DISCONNECT_REQ.............................................................................................................................................40
DISCONNECT_RESP............................................................................................................................................43

Facility Confirmation Parameter............................................................................................................................80
Facility Indication Parameter.................................................................................................................................80
Facility Request Parameter.....................................................................................................................................79
Facility Respond Parameter....................................................................................................................................81
Facility Selector......................................................................................................................................................79
FACILITY_CONF..................................................................................................................................................45
FACILITY_IND.....................................................................................................................................................46
FACILITY_REQ....................................................................................................................................................44
FACILITY_RESP...................................................................................................................................................47
Flags........................................................................................................................................................................81

HLC.........................................................................................................................................................................81

Info..........................................................................................................................................................................82
Info Element...........................................................................................................................................................83
Info Mask................................................................................................................................................................84
Info Number............................................................................................................................................................84
INFO_CONF...........................................................................................................................................................49
INFO_IND..............................................................................................................................................................50
INFO_REQ.............................................................................................................................................................48
INFO_RESP............................................................................................................................................................51

LISTEN_CONF......................................................................................................................................................54
LISTEN_REQ.........................................................................................................................................................52
LLC.........................................................................................................................................................................85

Manu ID..................................................................................................................................................................86
Manufacturer Specific............................................................................................................................................86
MANUFACTURER_CONF...................................................................................................................................56
MANUFACTURER_IND.......................................................................................................................................57
MANUFACTURER_REQ......................................................................................................................................55
MANUFACTURER_RESP....................................................................................................................................58



NCCI.......................................................................................................................................................................86
NCPI........................................................................................................................................................................87

PLCI........................................................................................................................................................................88

Reason.....................................................................................................................................................................88
Reason_B3..............................................................................................................................................................88
Reject......................................................................................................................................................................89
RESET_B3_CONF.................................................................................................................................................60
RESET_B3_IND.....................................................................................................................................................61
RESET_B3_REQ....................................................................................................................................................59
RESET_B3_RESP..................................................................................................................................................62

SELECT_B_PROTOCOL_CONF.........................................................................................................................64
SELECT_B_PROTOCOL_REQ............................................................................................................................63
SFF Format...........................................................................................................................................................187












	Special Noticesinhalt "Special Notices" l1§
	Reader's Guide
	Disclaimer
	Trademarks

	Prefaceinhalt "Preface" l1§
	1 Introductioninhalt "1 Introduction" l1§
	1.1 Scopeinhalt "1.1 Scope" l2§
	1.2 Featuresinhalt "1.2 Features" l2§
	· Support for basic call features, such as call setup and clearing
	· Support for several B channels for data and/or voice connections
	· Support for several logical connections for data links within a physical connection
	· Possibility of selecting different services and protocols during connection setup and incoming call
	· Transparent interface for protocols above layer 3
	· Support for one or more Basic Rate Interfaces (Basic Access) as well as Primary Rate Interfaces (Primary Access) on one or more ISDN adapters
	· Support of multiple applications
	· Operating-system independent messages
	· Operating-system dependent exchange mechanism for optimum operating system integration
	· Asynchronous event driven mechanism, resulting in high throughput
	· Well defined mechanism for manufacturer specific expansions


	2 Overviewinhalt "2 Overview" l1§
	· One application can use one controller
	· One application can use more than one controller
	· Several applications can share a single controller
	· Several applications can share more than one controller

	3 Message Overviewinhalt "3 Message Overview" l1§
	3.1 General Message Protocolinhalt "3.1 General Message Protocol" l2§
	3.2 Type Definitionsinhalt "3.2 Type Definitions" l2§
	· byte coded as one octet
	· word coded as two contiguous octets, least significant first
	· dword coded as two contiguous words, least significant first
	· struct coded as an array of octets, the first octet containing the length of following data. If the first octet has the value 255 (0xFF), it indicates an escape character for inter­preting the following word as containing the length of the data. An empty struct will be coded as one single octet with value 0.

	3.3 Message Structureinhalt "3.3 Message Structure" l2§
	3.4 Manufacturer Specific Expansioninhalt "3.4 Manufacturer Specific Expansion" l2§
	3.5 Table of Messagesinhalt "3.5 Table of Messages" l2§
	· messages concerning the signalling protocol of the ISDN (D channel)
	· messages concerning logical connections (B channel)
	· administrative and other messages


	4 Exchange Mechanisminhalt "4 Exchange Mechanism" l1§
	4.1 Message Queuesinhalt "4.1 Message Queues" l2§
	4.2 Operations on Message Queuesinhalt "4.2 Operations on Message Queues" l2§
	4.3 Table of Operationsinhalt"4.3 Table of Operations" l2§

	5 Message Descriptionsinhalt "5 Message Descriptions" l1§
	5.1 ALERT_REQXE "ALERT_REQ"§
	5.2 ALERT_CONFXE "ALERT_CONF"§
	5.3 CONNECT_REQXE "CONNECT_REQ"§
	5.4 CONNECT_CONFXE "CONNECT_CONF"§
	5.5 CONNECT_INDXE "CONNECT_IND"§
	5.6 CONNECT_RESPXE "CONNECT_RESP"§
	5.7 CONNECT_ACTIVE_INDXE "CONNECT_ACTIVE_IND"§
	5.8 CONNECT_ACTIVE_RESP
	5.9 CONNECT_B3_ACTIVE_INDXE "CONNECT_B3_ACTIVE_IND"§
	5.10 CONNECT_B3_ACTIVE_RESPXE "CONNECT_B3_ACTIVE_RESP"§
	5.11 CONNECT_B3_REQXE "CONNECT_B3_REQ"§
	5.12 CONNECT_B3_CONFXE "CONNECT_B3_CONF"§
	5.13 CONNECT_B3_INDXE "CONNECT_B3_IND"§
	5.14 CONNECT_B3_RESPXE "CONNECT_B3_RESP"§
	5.15 CONNECT_B3_T90_ACTIVE_INDXE "CONNECT_B3_T90_ACTIVE_IND"§
	5.16 CONNECT_B3_T90_ACTIVE_RESPXE "CONNECT_B3_T90_ACTIVE_RESP"§
	5.17 DATA_B3_REQXE "DATA_B3_REQ"§
	5.18 DATA_B3_CONFXE "DATA_B3_CONF"§
	5.19 DATA_B3_INDXE "DATA_B3_IND"§
	5.20 DATA_B3_RESPXE "DATA_B3_RESP"§
	5.21 DISCONNECT_B3_REQXE "DISCONNECT_B3_REQ"§
	5.22 DISCONNECT_B3_CONFXE "DISCONNECT_B3_CONF"§
	5.23 DISCONNECT_B3_INDXE "DISCONNECT_B3_IND"§
	5.24 DISCONNECT_B3_RESPXE "DISCONNECT_B3_RESP"§
	5.25 DISCONNECT_REQ XE "DISCONNECT_REQ "§
	5.26 DISCONNECT_CONFXE "DISCONNECT_CONF"§
	5.27 DISCONNECT_INDXE "DISCONNECT_IND"§
	5.28 DISCONNECT_RESPXE "DISCONNECT_RESP"§
	5.29 FACILITY_REQXE "FACILITY_REQ"§
	5.30 FACILITY_CONFXE "FACILITY_CONF"§
	5.31 FACILITY_INDXE "FACILITY_IND"§
	5.32 FACILITY_RESPXE "FACILITY_RESP"§
	5.33 INFO_REQXE "INFO_REQ"§
	5.34 INFO_CONFXE "INFO_CONF"§
	5.35 INFO_INDXE "INFO_IND"§
	5.36 INFO_RESPXE "INFO_RESP"§
	5.37 LISTEN_REQXE "LISTEN_REQ"§
	5.38 LISTEN_CONFXE "LISTEN_CONF"§
	5.39 MANUFACTURER_REQXE "MANUFACTURER_REQ"§
	5.40 MANUFACTURER_CONFXE "MANUFACTURER_CONF"§
	5.41 MANUFACTURER_INDXE "MANUFACTURER_IND"§
	5.42 MANUFACTURER_RESPXE "MANUFACTURER_RESP"§
	5.43 RESET_B3_REQXE "RESET_B3_REQ"§
	5.44 RESET_B3_CONFXE "RESET_B3_CONF"§
	5.45 RESET_B3_INDXE "RESET_B3_IND"§
	5.46 RESET_B3_RESPXE "RESET_B3_RESP"§
	5.47 SELECT_B_PROTOCOL_REQXE "SELECT_B_PROTOCOL_REQ"§
	5.48 SELECT_B_PROTOCOL_CONFXE "SELECT_B_PROTOCOL_CONF"§

	6 Parameter Descriptionsinhalt "6 Parameter Descriptions" l1§
	7 State Diagraminhalt "7 State Diagram" l1§
	7.1 User's Guideinhalt "7.1 User's Guide" l2§
	7.2 Explanationinhalt "7.2 Explanation" l2§

	8 Specifications for commercial Operating Systemsinhalt"8 Specifications for commercial Operating Systems" l1§
	8.1 MS-DOSinhalt "8.1 MS-DOS" l2§
	CAPI_REGISTERXE "CAPI_REGISTER:MS-DOS"§
	CAPI_RELEASEXE "CAPI_RELEASE:MS-DOS"§
	CAPI_PUT_MESSAGEXE "CAPI_PUT_MESSAGE:MS-DOS"§
	CAPI_GET_MESSAGEXE "CAPI_GET_MESSAGE:MS-DOS"§
	CAPI_SET_SIGNALXE "CAPI_SET_SIGNAL:MS-DOS"§
	CAPI_GET_MANUFACTURERXE "CAPI_GET_MANUFACTURER:MS-DOS"§
	CAPI_GET_VERSIONXE "CAPI_GET_VERSION:MS-DOS"§
	CAPI_GET_SERIAL_NUMBERXE "CAPI_GET_SERIAL_NUMBER:MS-DOS"§
	CAPI_GET_PROFILEXE "CAPI_GET_PROFILE:MS-DOS"§
	CAPI_MANUFACTURERXE "CAPI_MANUFACTURER:MS-DOS"§

	8.2 Windows (application level)inhalt "8.2 Windows (application level)" l2§
	CAPI_REGISTERXE "CAPI_REGISTER:Windows"§
	CAPI_RELEASEXE "CAPI_RELEASE:Windows"§
	CAPI_PUT_MESSAGEXE "CAPI_PUT_MESSAGE:Windows"§
	CAPI_GET_MESSAGEXE "CAPI_GET_MESSAGE:Windows"§
	CAPI_SET_SIGNALXE "CAPI_SET_SIGNAL:Windows"§
	CAPI_GET_MANUFACTURERXE "CAPI_GET_MANUFACTURER:Windows"§
	CAPI_GET_VERSIONXE "CAPI_GET_VERSION:Windows"§
	CAPI_GET_SERIAL_NUMBERXE "CAPI_GET_SERIAL_NUMBER:Windows"§
	CAPI_GET_PROFILEXE "CAPI_GET_PROFILE:Windows"§
	CAPI_INSTALLEDXE "CAPI_INSTALLED:Windows"§

	8.3 OS/2 (application level)inhalt "8.3 OS/2 (application level)" l2§
	CAPI_REGISTERXE "CAPI_REGISTER:OS/2"§
	CAPI_RELEASEXE "CAPI_RELEASE:OS/2"§
	CAPI_PUT_MESSAGEXE "CAPI_PUT_MESSAGE:OS/2"§
	CAPI_GET_MESSAGEXE "CAPI_GET_MESSAGE:OS/2"§
	CAPI_SET_SIGNALXE "CAPI_SET_SIGNAL:OS/2"§
	CAPI_GET_MANUFACTURERXE "CAPI_GET_MANUFACTURER:OS/2"§
	CAPI_GET_VERSIONXE "CAPI_GET_VERSION:OS/2"§
	CAPI_GET_SERIAL_NUMBERXE "CAPI_GET_SERIAL_NUMBER:OS/2"§
	CAPI_GET_PROFILEXE "CAPI_GET_PROFILE:OS/2"§
	CAPI_INSTALLEDXE "CAPI_INSTALLED:OS/2"§

	8.4 OS/2 (device driver level)inhalt "8.4 OS/2 (device driver level)" l2§
	CAPI_REGISTERXE "CAPI_REGISTER:OS/2 PDD"§
	CAPI_RELEASEXE "CAPI_RELEASE:OS/2 PDD"§
	CAPI_PUT_MESSAGEXE "CAPI_PUT_MESSAGE:OS/2 PDD"§
	CAPI_GET_MESSAGEXE "CAPI_GET_MESSAGE:OS/2 PDD"§
	CAPI_SET_SIGNALXE "CAPI_SET_SIGNAL:OS/2 PDD"§
	CAPI_GET_MANUFACTURERXE "CAPI_GET_MANUFACTURER:OS/2 PDD"§
	CAPI_GET_VERSIONXE "CAPI_GET_VERSION:OS/2 PDD"§
	CAPI_GET_SERIAL_NUMBERXE "CAPI_GET_SERIAL_NUMBER:OS/2 PDD"§
	CAPI_GET_PROFILEXE "CAPI_GET_PROFILE:OS/2 PDD"§

	8.5 UNIXinhalt "8.5 UNIX" l2§
	CAPI_REGISTERXE "CAPI_REGISTER:UNIX"§
	CAPI_RELEASEXE "CAPI_RELEASE:UNIX"§
	CAPI_PUT_MESSAGEXE "CAPI_PUT_MESSAGE:UNIX"§
	CAPI_GET_MESSAGEXE "CAPI_GET_MESSAGE:UNIX"§
	CAPI_GET_MANUFACTURERXE "CAPI_GET_MANUFACTURER:UNIX"§
	CAPI_GET_VERSIONXE "CAPI_GET_VERSION:UNIX"§
	CAPI_GET_SERIAL_NUMBERXE "CAPI_GET_SERIAL_NUMBER:UNIX"§
	CAPI_GET_PROFILEXE "CAPI_GET_PROFILE:UNIX"§

	8.6 NetWareinhalt "8.6 NetWare" l2§
	CAPI_RegisterXE "CAPI_REGISTER:NetWare (CAPI_Register)"§XE "CAPI_Register"§
	CAPI_ReceiveNotify
	CAPI_ReleaseXE "CAPI_RELEASE:NetWare (CAPI_Release)"§XE "CAPI_Release"§
	CAPI_PutMessageXE "CAPI_PUT_MESSAGE:NetWare (CAPI_PutMessage)"§XE "CAPI_PutMessage"§
	CAPI_GetMessageXE "CAPI_GET_MESSAGE:NetWare (CAPI_GetMessage)"§XE "CAPI_GetMessage"§
	CAPI_GetManufacturerXE "CAPI_GET_MANUFACTURER:NetWare (CAPI_GetManufacturer)"§XE "CAPI_GetManufacturer"§
	CAPI_GetVersionXE "CAPI_GET_VERSION:NetWare (CAPI_GetVersion)"§XE "CAPI_GetVersion"§
	CAPI_GetSerialNumberXE "CAPI_GET_SERIAL_NUMBER:NetWare (CAPI_GetSerialNumber)"§XE "CAPI_GetSerialNumber"§
	CAPI_GetProfileXE "CAPI_GET_PROFILE:NetWare (CAPI_GetProfile)"§XE"CAPI_GetProfile"§


	ANNEX A (Informative): Sample Flow Chart Diagrams inhalt "Annex A (Informative): Sample Flow Chart Diagrams" l1§
	A.1 Outgoing callinhalt "A.1 Outgoing call" l2§
	A.2 Incoming callinhalt "A.2 Incoming call" l2§
	A.3 Transmitting Datainhalt "A.3 Transmitting Data" l2§
	A.4 Receiving Datainhalt "A.4 Receiving Data" l2§
	A.5 Active disconnectinhalt "A.5 Active disconnect" l2§
	A.6 Passive disconnectinhalt "A.6 Passive disconnect" l2§
	A.7 Disconnect Collisioninhalt "A.7 Disconnect Collision" l2§

	Annex B (Normative): SFF Formatinhalt "Annex B (Normative): SFF Format" l1§XE "SFF Format"§
	B.1 Introductioninhalt "B.1 Introduction" l2§
	B.2 SFF coding rulesinhalt "B.2 SFF coding rules" l2§

	Indexinhalt "Index" l1§

