
F-Secure SSH On-Line Help
Table of Contents
Introduction

Welcome!
About This Guide
System Requirements
Support
Web Club

Introducing F-Secure SSH
Transparent Security
The SSH Protocol

Installation Guide
Workstation Setup
F-Secure SSH Wizard

User's Guide
Basic Features
RSA Authentication
Forwardings
Appendices

Administrator's Guide
UNIX Setup
Tool and Utility Overview
EDD
MAKE-SSH-KNOWN-HOSTS
SCP
SSH
SSH-ADD
SSH-AGENT
SSHD
SSH-KEYGEN

Welcome!
Welcome to F-Secure SSH the secure remote login program. F-Secure SSH has been designed to
completely replace your existing terminal applications to provide you with secure encrypted, and
authenticated connections to your UNIX host computers.

About This Guide
This Guide is divided into three main sections:

· Introducing F-Secure SSH introduces some of the most important things you need to
know about the F-Secure SSH products and the SSH protocol: how the security has
been built, and which cryptographic methods are used.

· Installation Guide walks you through the installation process of the F-Secure SSH for
Windows client program.

· User's Guide describes the various tasks you will face when using remote systems
with F-Secure SSH. These include RSA Identity generation, RSA authentication,
terminal settings, etc.

· Administrator's Guide presents the various UNIX utilities that are shipped with F-
Secure SSH UNIX distribution. This section also includes printed manual pages for all
F-Secure SSH UNIX programs.

System Requirements
To install and use F-Secure SSH for Windows, you need a laptop or personal computer, running a
Windows operating system, with a 386 or higher microprocessor, a minimum of 4 Megabytes of RAM, and
about 3 MB of disk space.

Support
If you have a question about F-Secure SSH that the documentation does not address, please feel free to
contact your local F-Secure SSH distributor or Data Fellows directly.
Should you need to call the technical support team, please try to be at your computer to facilitate the call.
Having the following information available will make it easier for your technical support representative to
answer your questions:

· Any specific error messages.
· F-Secure SSH version number.
· Computer make and model.
· Any other information you may think useful in resolving the problem.

Data Fellows provides technical support through a variety of electronic services:
Support: F-Secure-SSH-Support@DataFellows.com
World-Wide Web: http://www.DataFellows.com,

http://www.Europe.DataFellows.com
Anonymous FTP: ftp.DataFellows.com,

ftp.Europe.DataFellows.com

You may also contact us by mail or phone and ask to speak to our technical support staff:
USA: Europe:
Data Fellows Inc. Data Fellows Ltd.
F-Secure SSH Sales F-Secure SSH Sales
4000 Moorpark Avenue, Suite 207 Paivantaite 8
San Jose, CA 95117 FIN-02210 Espoo
USA FINLAND
tel (408) 244 9090 tel +358 9 478 444
fax (408) 244 9494 fax +358 9 478 445 99

Note: Consult the README file for latest information and instructions.

Web Club
One of the most convenient ways to reach Data Fellows Ltd. and to obtain the required information or
technical support is through the World-Wide Web. Your F-Secure SSH client program allows you to reach
our web site right from your F-Secure SSH Help menu.
To connect to F-Secure SSH Web Club:

1. From the Help menu, choose Web Club.
2. In the Select Web Browser dialog box, enter the path and filename for the Web

browser you would like to use to access the Data Fellows WWW server.
3. Select the closest Data Fellows mirror site.
4. Choose the OK button to connect.

Transparent Security
Overview of the F-Secure Product Family
Overview of the F-Secure SSH Server
Overview of the F-Secure SSH Client Products
Authentication, Privacy, and Integrity Protection

Overview of the F-Secure Product Family
F-Secure products utilize the SSH protocol as a generic transport-layer encryption mechanism, providing
both host authentication and user authentication, together with privacy and integrity protection.
The encryption technology has been developed in Europe and thus does not fall under the US ITAR
export regulations. F-Secure products can be used in every country where encryption is legal, including
the United States of America. F-Secure products are sold with pre-licensed patented encryption
algorithms to provide the best possible security.
The F-Secure SSH UNIX Server can be used together with F-Secure SSH Clients for Windows,
Macintosh, and UNIX to make secure remote login connections to remote offices. The F-Secure SSH
Server for UNIX includes tools for secure systems administration; tools are provided for secure file
transfer and to secure backups using public-key encryption.

Overview of the F-Secure SSH Server
F-Secure SSH server for UNIX provides the users with secure login connections, file transfer, X11, and
TCP/IP connections over untrusted networks. The server uses cryptographic authentication, automatic
session encryption, and integrity protection for all transferred data. RSA is used for key exchange and
authentication, and symmetric algorithms, Blowfish or three-key triple-DES (3DES), for encrypting
transferred data.
System administrators can use tools provided in the server package to replace existing RSH, RLOGIN,
RCP, RDIST, and TELNET protocols. This will enable administrators to perform all remote system
administration tasks over secure connections. A tool is also included for making secure backups with RSA
based public-key encryption.
The F-Secure SSH server for UNIX supports TCP/IP port forwarding technology to connect arbitrary
otherwise insecure connections over a secure channel.

Overview of the F-Secure SSH Client Products
F-Secure SSH clients provide the users with secure login connections over untrusted networks. The F-
Secure SSH client acts as a replacement for the TELNET protocol taking advantage of the cryptographic
authentication, automatic session encryption, and integrity protection methods that are defined by the
SSH protocol. F-Secure SSH clients fully support VT100 terminal emulation and ANSI colors.
The F-Secure SSH clients also support TCP/IP port forwarding technology to connect arbitrary otherwise
insecure connections over a secure channel. TCP/IP port forwarding works by creating a proxy server for
a source port that a TCP/IP service uses. The proxy server waits on the local machine for a connection
from a client program to the source port. F-Secure SSH then forwards the request and the data over the
secure channel to the remote system. The F-Secure SSH server on the remote system makes the final
connection to the destination host and the destination port.
Most remote services that use TCP/IP can be secured, including custom client-server applications,
database systems, and services like HTTP, TELNET, POP, SMTP, etc. FSecure SSH also provides
automatic forwarding for the X11 Windowing System commonly used on UNIX machines.

Authentication, Privacy, and Integrity Protection
The industry-standard IP protocol does not in any way guarantee any aspect of information security (e.g.,
authentication, privacy, data integrity). The higher level protocols are no more reliable since they are
customarily based on the assumption that the lower level protocols can be trusted. Therefore, if security is
needed, it must be implemented entirely on the application level.
The SSH protocol is an application level protocol used by all F-Secure products. SSH guarantees
simultaneous authentication of both ends of the connection, secrecy of transmitted information, and
integrity of transmitted data.
See section The SSH Protocol for more information.

The SSH Protocol
SSH is a packet-based binary protocol that works on top of any transport that will pass a stream of binary
data. Normally, TCP/IP is used as the transport, but the implementation also permits using an arbitrary
proxy program to pass data to/from the server.
The packet mechanism and related authentication, key exchange, encryption, and integrity mechanisms
implement a transport-layer security mechanism, which is then used to implement the secure connection
functionality.

More:
Host Authentication
User Authentication
Cryptographic Methods

Host Authentication
The server sends its public RSA host key and another public RSA key "server key" that changes every
hour. The client compares the received host key against its own database of known host keys.
F-Secure SSH Server will normally accept the key of an unknown host and store it in its database for
future reference (this makes use of SSH practical in most environments). However, F-Secure SSH Server
can also be configured to refuse access to any hosts whose key is not known.

The client generates a 256 bit random number using a cryptographically strong random number
generator, and chooses an encryption algorithm from those supported by the server, normally Blowfish or
three-key triple-DES (3DES). The client encrypts the random number (session key) with RSA using both
the host key and the server key, and sends the encrypted key to the server.
The purpose of the host key is to bind the connection to the desired server host (only the server can
decrypt the encrypted session key). The hourly changed second key, the server key, is used to make
decrypting recorded historic traffic impossible in the event that the host key becomes compromised. The
host key is normally a 1024 bit RSA key, and the server key is 768 bits. Both keys are generated using a
cryptographically strong random number generator.
The server decrypts the RSA encryption and recovers the session key. Both parties start using the
session key and the connection is now encrypted. The server sends an encrypted confirmation to the
client. Receipt of the confirmation tells the client that the server was able to decrypt the key, and thus
holds the proper private keys.
At this point, the server machine has been authenticated, and transport-level encryption and integrity
protection are in use.

User Authentication
The user can be authenticated by the server in a number of ways. The user authentication dialogue is
driven by the client which sends requests to the server. The first request always declares the user name
to log in as. The server responds to each request with either success or failure (further authentication is
required).
Supported authentication methods are:

· Traditional password authentication. The password is transmitted over the encrypted
channel, and thus cannot be seen by outsiders.

· Pure RSA authentication. The idea is that possession of a particular private RSA key
serves as authentication. The server has a list of accepted public keys.

Cryptographic Methods
The SSH protocol provides strong security with cryptographic methods.
SSH uses RSA for host authentication and user authentication. Host keys and user authentication keys
are 1024 bits.
The server key that changes every hour is 768 bits by default. It is used to protect intercepted historical
sessions from being decrypted if the host key is later compromised. The server key is never saved on
disk.
Key exchange is performed by encrypting the 256-bit session key twice using RSA. It is padded with non-
zero random bytes before each encryption. Server host authentication happens implicitly with the key
exchange (the idea is that only the holder of the valid private key can decrypt the session key, and receipt
of the encrypted confirmation tells the client that the session key was successfully decrypted).
Client host authentication and RSA user authentication are done using a challenge-response exchange,
where the response is MD5 of the decrypted challenge plus data that binds the result to a specific session
(host key and anti-spoofing cookie).
The key exchange transfers 256 bits of keying data to the server. Different encryption methods use
varying amounts of the key: Blowfish uses 128 bits and three-key triple-DES (3DES) 168 bits.
All random numbers used in SSH are generated with a cryptographically strong random number
generator.

Workstation Setup
Before starting the F-Secure SSH installation process, close all running applications.

1. Insert the F-Secure SSH setup disk into the floppy disk drive.
2. If you're running Windows 95 or Windows NT 4.0, choose Run from the Start menu.

Otherwise, choose Run from the File menu.
3. Type "a:setup" and press Enter. If your floppy disk drive is associated to another drive

letter, use that instead of "a:".
4. Follow the instructions of the setup program to install F-Secure SSH on your

computer.
The F-Secure SSH Wizard will be launched automatically after the setup to help you generate an RSA
Identity. See Creating an RSA Identity with the F-Secure SSH Key Generation Wizard for more
information.

Note: You will be able to quit the installation at any time by pressing the Exit button displayed in every
dialog box. You can also move back and forth to review your settings by clicking the Back and Next
buttons.

F-Secure SSH Wizard

Creating an RSA Identity
The SSH protocol implements RSA authentication as the strongest means for user authentication. To use
RSA authentication you must create an RSA key pair with the help of the F-Secure SSH Key Generation
Wizard.
To use F-Secure SSH Key Generation Wizard, you can double-click the F-Secure SSH Wizard icon in the
F-Secure SSH program group. The wizard is also started automatically during setup.
Below is a short step-by-step guide to the F-Secure SSH Key Generation Wizard and the key generation
process.
Please read the information displayed on the first Wizard page and press Next.
Enter the file name you would like to use for your identity files. No file extension is required. The public
key file will be distinguished by a .PUB extension. It is recommended that you use the default file name
IDENTITY.
Choose the Next button.
Enter a comment for the RSA Identity file. A recommended comment would be your user name and the
host name holding the identity files, e.g. "bob@pc1.company.com".
A passphrase will be used to protect your RSA Identity file. Enter your passphrase into the Passphrase
and Passphrase Confirmation fields. The fields differentiate between uppercase and lowercase letters.
The passphrase should not be less than 6 characters long.
Choose the Next button.
Specify the number of bits you would like to be used as the key length for the RSA key pair. 1024 is
recommended, key sizes above that do not greatly improve security. The longer the key is the higher the
security is, with the drawback that long keys make the RSA authentication process slower. Minimum
length is 512 bits.
Choose the Next button.
If you have created a random seed by moving your mouse cursor on to of a random number generation
dialog box, go directly to the next step. Otherwise move your mouse randomly in the dialog box to
generate random mouse movements, which will be used to create a random seed for F-Secure SSH's
cryptographically strong random number generator.
Choose the Next button.
F-Secure SSH Key Generation Wizard generates two prime numbers, then calculates and tests an RSA
key pair to be used as the identity. This can take anything from 1 minute to 15 minutes. Do not reboot
your machine even if it does not respond.
Choose Start and then wait for the key generation to finish and press the Next button.
F-Secure SSH Key Generation Wizard is now ready to save the identity files, Choose the Finish button to
save the RSA Identity.

Basic Features
F-Secure SSH provides you with a secure, encrypted, authenticated channel for connecting to remote
UNIX hosts. This software is intended as a replacement for insecure terminal applications, such as
TELNET and RLOGIN.
Furthermore, X11 connections and arbitrary TCP/IP connections can be secured with the port forwarding
feature of F-Secure SSH.

More:
Connecting to a Remote Host
Creating Connection Templates
Working with Text in the Terminal Window
Setting Connection Properties
Disconnecting

Connecting to a Remote Host
To start F-Secure SSH, double-click the F-Secure SSH icon in the F-Secure SSH program group.
To connect to a remote computer using password authentication:

1. From the Edit menu, choose Properties.
2. In the Connection tab, type the name of the remote host you want to connect to, and

the user name for your account.
3. From the options group select Password as your authentication type.
4. Choose the OK button.
5. Press Enter or from the File menu, choose connect.
6. Type in the password for your account to the Connect Using Password Authentication

dialog box.
7. Choose the OK button to connect.

If this is the first time you're connecting to the host, SSH may ask you to accept the host's previously
unknown host key.

Note: The easiest and quickest way to make a connection is to press Enter once in the empty terminal
window. This causes F-Secure SSH to display a Connection dialog box.

Creating Connection Templates
Connection templates allow you to save different sets of settings for your connections. In addition, they
can help you open multiple connections with different host names, user names and passwords without
visiting the Properties dialog multiple times. You can create a connection template from an existing
connection you have open or from a previously saved connection template.
To create a connection template:

1. From the Edit menu, choose Properties.
2. Make the changes you want. You can edit the Connection, RSA Identity, Forward,

Font, Terminal, and Keyboard properties.
3. Choose the OK button on the property pages to activate the changes.
4. From the File menu, choose Save. F-Secure SSH saves all changes to a new

connection template or to the previous connection template you were editing.

Note: The saved connection templates are associated with the F-Secure SSH program. You can create
icons on the Windows desktop for the connection template files (.SSH files) and double click the icons to
launch the saved connection.

Working with Text in the Terminal Window
Copying Text onto the Clipboard
Selecting All Lines on the Screen
Selecting All Lines in the Scrollback Buffer

Copying Text onto the Clipboard
To copy text onto the Clipboard:

1. Select the text you want to copy by dragging the mouse across it with the button held
down.

2. From the Edit menu, choose Copy.
Once a selection is copied, you can insert it in SSH or another Windows application by using the Paste
command.

Note: You can also click the right mouse button to access most of the Edit menu commands from a pop-
up menu.

Selecting All Lines on the Screen
From the Edit menu, choose Select Screen.
Using the Select Screen command selects all lines currently visible on the terminal window. After
selecting the text, you can copy or paste the selection directly

Selecting All Lines in the Scrollback Buffer
From the Edit menu, choose Select All.
Using the Select All command has the same result as selecting the entire contents of the scrollback buffer
by using the mouse. After selecting the text, you can copy or paste the selection directly.

Setting Connection Properties
Properties command (Edit menu) modifies F-Secure SSH settings that control terminal appearance,
connection information, keyboard settings, secure TCP/IP connections, and other options.

Property Sheet Description

Connection Specifies information about the host, user, authentication type,
compression, support for X11 Windowing System, port and cipher used
when connecting to a remote system.

RSA Identity Specifies information about your RSA Identity. This sheet allows you to
select the location of the identity files, change the passphrase used to
protect your RSA identity, and generate a new RSA key pair.

Forward Specifies the local and remote TCP/IP connections that are to be secured
by forwarding them through the F-Secure SSH connection. Identifies the
names and connection parameters for the forwarded connections.

Font Specifies the font, and the text, background, and inactivity color.

Terminal Specifies information about the number of lines stored in the scrollback
buffer, and also settings that control terminal window behavior.

Keyboard Specifies the keyboard map file used to translate user key presses and
received terminal data to characters displayed in the terminal window. The
Keyboard Property Sheet allows you to customize the keyboard behavior
to best suite your taste.

More:
Connection Property Sheet
RSA Identity Property Sheet
Forward Property Sheet
Font Property Sheet
Terminal Property Sheet
Keyboard Property Sheet

Connection Property Sheet
Connection tab of Properties command (Edit menu). Specifies options for a remote connection.

Remote System Option Function

Host Name Specifies the host name or the IP address of the remote machine to log in
to.

User Name Specifies the user name to log in as, on the remote machine.

Other Options Function

Compression Requests compression of all data and data for forwarded X11 and TCP/IP
connections. The compression algorithm is the same as used by the gzip
program.

Forward X11 Instructs F-Secure SSH to create a proxy X server on the server machine
for forwarding the X11 connections over the encrypted channel.

Port Port to connect to on the remote host.

Cipher Selects the cipher to use for encrypting the session. 3DES is used by
default.

Authentication Selects the authentication method to be used for the session. RSA
authentication is only available if you have specified an identity file to be
used on the RSA Identity property page. Password authentication is the
default.

RSA Identity Property Sheet
RSA Identity tab of Properties command (Edit menu). Specifies information about your RSA Identity.

Option Function

RSA Identity File Selects the file from which the identity (private key) for RSA authentication
is read. Default is identity in the installation directory. Different identity files
may also be specified on a per-connection basis.

Comment An optional comment in the identity.pub file. This typically specifies the
user and the host that created the RSA Identity file.

Button Function

Browse Displays a browse dialog box to browse and select the RSA Identity file
from locations other than the default location.

Copy Copies the RSA public key and the comment to the Clipboard. You can
then paste the public key to the authorized_keys file on the server.

New Runs the Key Generation Wizard to create a new RSA key pair to serve as
your RSA Identity.

Passphrase To prevent unauthorized people from using your RSA Identity and gaining
access to your connections, you can use a passphrase to protect the
identity file. It is recommended that you change your passphrase
periodically.

Forward Property Sheet
Forwardings tab of Properties command (Edit menu). Specifies options for the local and remote TCP/IP
connections that are to be secured by F-Secure SSH.

Option Function

Local Forwardings Displays the local TCP/IP ports that have been forwarded. The New, Edit,
and Delete buttons then apply to local forwardings.

Remote Forwardings Displays the local TCP/IP ports that have been forwarded. The New, Edit,
and Delete buttons then apply to remote forwardings.

Button Function

New Define a new TCP/IP connection to be secured. A dialog box to enter
source port, destination host and port parameters is displayed.

Edit Edit a previously defined forwarding. A dialog box to edit source port,
destination host and port parameters is displayed.

Delete Deletes the currently selected forwarding.

Choosing the New or Edit button will display a dialog box called: Forward a TCP/IP Connection.
Forward a TCP/IP Connection dialog box specifies the local and remote ports for the connection, the
remote system to forward the connection to, and a descriptive name for the forwarded TCP/IP connection.

Local or Remote Option Function

Name Each forwarding can be given a descriptive name that is displayed in the
forwardings list box.

Source Port Number Source port is the port used by the clients to connect to.

Destination host Specify the host that runs the target TCP/IP service here. The destination
host can be specified as 127.0.0.1 (i.e. localhost), if the service is running
on the same remote system that is used by the user terminal session.

Destination Port Number Destination port is the port used by the TCP/IP service on the destination
host.

Allow local connections only This check box should be checked to protect your forwarded connections
from being used from any where else except from your PC. Checking this
option disallows any connection other that those from the localhost
address 127.0.0.1.

Font Property Sheet
Font tab of Properties command (Edit menu). Specifies options for terminal window font and colors.

Font Option Function

Name Type or select a font name. The Font property page lists currently
available fonts for the terminal window.

Size Type or select a font size.

Color Option Function

Font Type or select one of the 16 predefined colors to be used with the
characters displayed on the screen.

Background Type or select one of the 16 predefined colors to be used as the
background color.

Disconnected Type or select one of the 16 predefined colors to be used to indicate that a
connection has been disconnected.

Terminal Property Sheet
Terminal tab of Properties command (Edit menu). Specifies options for the terminal window.

Option Function

Scrollback Buffer Lines The number of lines to be allocated for the scrollback buffer.

Scroll to End on Output This option instructs F-Secure SSH to scroll to the end of the scrollback
buffer when data is received from the connection.

Scroll to End on Key Press This option instructs F-Secure SSH to scroll to the end of the scrollback
buffer when you press a key.

Auto Wrap This option indicates that auto-wraparound should be allowed. The cursor
will automatically wrap to the beginning of the next line when it is at the
rightmost position of a line and text is output.

Reverse Auto Wrap This option indicates that reverse-wraparound should be allowed. The
cursor will back up from the leftmost column of one line to the rightmost
column of the previous line.

Inverse Video Display the terminal window characters with the background color and the
background with the font color.

Status Line Displays a VT100 status line on the terminal window.

Keyboard Property Sheet
Keyboard tab of Properties command (Edit menu). Specifies options used to translate user key presses
and received terminal data to characters displayed in the terminal window.

Option Function

Keyboard Map File Selects the file from which the keymap for keyboard remapping is read.
Default is keymap.map in the installation directory. Different keymap files
may also be specified on a per-connection basis.

Auto Linefeed This option toggles automatic insertion of linefeeds after each carriage
return.

Backspace Sends Delete Instructs the backspace key to send the delete key code.

Delete Sends Backspace Instructs the delete key to send the backspace key code.

Lock Function Keys Locks all VT100 functions keys F1…F20 in order to prevent them from
being programmed by VT100 escape codes.

Application Cursor Keys This option toggles between the application cursor key mode and the
VT100 cursor key mode.

Application Numeric Keypad This option toggles between the application numeric keypad mode and the
VT100 numeric keypad mode.

Button Function

Browse Displays a browse dialog box to browse and select the keymap file from
locations other than the default location.

Disconnecting
Consider saving the connection settings for future use as an F-Secure SSH connection template file.
From the File menu, choose the Save As command to save the connection settings.
To disconnect your connection:

1. If you have a terminal session active in the terminal window, enter the command to
logout from the remote system. Typically, this command is called logout, exit or quit.

2. If you have any applications running that are using the forwarded TCP/IP connections,
close them.

3. From the File menu, choose Disconnect.
If you did not close all forwarded TCP/IP connections, these forwardings will be listed on the terminal
screen. The F-Secure SSH client will wait for the forwardings to close after closing the terminal
connection.

RSA Authentication
Creating an RSA Identity
Setting Up Your Account for RSA Authentication
Connecting Using RSA Authentication
Changing Your RSA Identity Passphrase

Creating an RSA Identity
The SSH protocol implements RSA authentication as the strongest means for user authentication. To use
RSA authentication you must create an RSA key pair with the help of the F-Secure SSH Key Generation
Wizard.
The F-Secure SSH Key Generation Wizard creates two files: the private key is stored in a file called
identity and the public key in a file called identity.pub.
To use F-Secure SSH Key Generation Wizard, you can double-click the F-Secure SSH Wizard icon in the
F-Secure SSH program group.
To create an RSA Identity:

1. Please read the information displayed on the first Wizard page and press Next.
2. Enter the file name you would like to use for your identity files. No file extension is

required. The public key file will be distinguished by a .PUB extension. It is
recommended that you use the default file name IDENTITY.

3. Choose the Next button.
4. Enter a comment for the RSA Identity file. A recommended comment would be your

user name and the host name holding the identity files, e.g.
"bob@pc1.company.com".

5. A passphrase will be used to protect your RSA Identity file. Enter your passphrase into
the Passphrase and Passphrase Confirmation fields. The fields differentiate between
uppercase and lowercase letters. The passphrase should not be less than 6
characters long.

6. Choose the Next button.
7. Specify the number of bits you would like to be used as the key length for the RSA

key pair. 1024 is recommended, key sizes above that do not greatly improve security.
The longer the key is the higher the security is, with the drawback that long keys
make the RSA authentication process slower. Minimum length is 512 bits.

8. Choose the Next button.
9. If you have created a random seed by moving your mouse cursor on to of a random

number generation dialog box, go directly to step 11. Otherwise move your mouse
randomly in the dialog box to generate random mouse movements, which will be
used to create a random seed for F-Secure SSH's cryptographically strong random
number generator.

10. Choose the Next button.
11. F-Secure SSH Key Generation Wizard generates two prime numbers, then calculates

and tests an RSA key pair to be used as the identity. This can take anything from 1
minute to 15 minutes. Do not reboot your machine even if it does not respond.

12. Choose the Next button.
13. F-Secure SSH Key Generation Wizard is now ready to save the identity files, Choose

the Finish button to save the RSA Identity.

Note: You can also generate the identity files on a UNIX host running ssh-keygen version 1.3 or later. You
can transfer the generated identity file from $HOME/.ssh/identity to the F-Secure SSH installation
directory on your computer.

Setting Up Your Account for RSA Authentication
SSH protocol implements RSA authentication automatically. You create your personal RSA key pair by
running the F-Secure SSH Key Generation Wizard during setup. The RSA identity files are saved to the
installation directory, the private key in a file called identity and the public key in a file called identity.pub.
You can then add the contents of the identity.pub file to the authorized_keys file on the remote host
(normally, $HOME/.ssh/authorized_keys).
Adding an RSA public key to the authorized_keys file:

1. Connect to your account using password authentication. See Connecting Using
Password Authentication.

2. Select Edit | Properties | RSA Identity
3. If the Comment field is empty, browse for the RSA identity file or create a new RSA

identity by pressing the New button, then repeat step two. If the RSA Identity
Comment field is non-empty go to step four.

4. Press the Copy button to copy the RSA public key to the clipboard.
5. Change to the .ssh directory in your home directory on the remote system.
6. Load the authorized_keys file to a text editor. If the file does not exists, create it with

a text editor.
7. Paste the RSA public key from the clipboard to the end of the authorized_keys file. Be

careful if your editor has automatic word wrapping, as the key must not be wrapped
to several lines. The file has precisely one line per public key entry.

8. Save the authorized_keys file and exit the text editor.

Note: Now the account is ready to be accessed using RSA authentication from a client machine that
contains the correct RSA identity file (the private and the public key pair.)

Connecting Using RSA Authentication
RSA authentication is based on public-key cryptography: there are cryptosystems where encryption and
decryption are done using separate encryption and decryption keys, and it is not possible to derive the
decryption key from the encryption key. RSA is one such system.
During the installation of F-Secure SSH, you generate a public/private key pair to serve as your RSA
identity to be used for user authentication. The server knows the public part of your RSA identity, but you
are the only one who knows the private key.
When you log in, the F-Secure SSH program tells the server which key pair it would like to use for
authentication. The server verifies that this key is permitted, and if so, sends the SSH client a challenge,
which is a random number encrypted by your public key. The challenge can only be decrypted using the
correct private key.
To respond to the challenge the F-Secure SSH client prompts you to enter your passphrase to unlock
the RSA Identity. The F-Secure SSH client then decrypts the challenge using the private key, proving that
you have the correct identity but without disclosing the private key to the server or anybody else.

Note: The file $HOME/.ssh/authorized_keys on the server lists the public keys of the users that are
permitted to log into the system.

To connect to a remote computer using RSA authentication:
1. From the Edit menu, choose Properties.
2. In the Connection tab, type the name of the remote system you want to connect to,

and the user name for your account.
3. From the options group select RSA authentication as your authentication type. If RSA

authentication is not available, please refer back to section Setting Up Your Account
for RSA Authentication.

4. Choose the OK button.
5. From the File menu, choose connect. Wait for F-Secure SSH to establish the

connection and ask for your passphrase. The passphrase is the one you gave the F-
Secure SSH Key Generation Wizard to protect the RSA identity file.

6. Type your passphrase to the requesting dialog box for user authentication.
7. Choose OK button to connect.

Note: If RSA authentication fails, F-Secure SSH reverts to password authentication and prompts you for
a password. The password is sent to the remote host for checking; however, since all communication is
encrypted, the password cannot be seen by someone spying the traffic on the network.

Changing Your RSA Identity Passphrase
To prevent unauthorized people from using your RSA Identity and gaining access to your connections,
you should use a passphrase to protect the identity file. It is recommended that you change your
passphrase periodically.
To change your RSA Identity passphrase:

1. Select Edit | Properties | RSA Identity
2. In the RSA Identity property page, choose the Passphrase button.
3. Your RSA Identity Comment should by displayed in the Change RSA Identity

Passphrase dialog box.
4. In the Change RSA Identity Passphrase dialog box, type your current passphrase and

new passphrase, and then retype the new passphrase to confirm it.
5. Choose the OK button. Your new RSA Identity passphrase takes effect immediately.
6. In the RSA Identity property page, choose the OK button.

Forwardings
Securing X11 Connections
Securing Arbitrary TCP/IP Connections

Securing X11 Connections
F-Secure SSH can secure X11 connections to a X Window System Server running on your computer.
If you have turned on the Forward X11 option in the Connection tab (Properties command, Edit menu) all
connections to the X11 display are automatically forwarded through the encrypted channel.
You should not manually set the DISPLAY environment variable. The DISPLAY value set by F-Secure
SSH will point to the server machine, but with a display number greater than zero. This is normal, and
happens because F-Secure SSH creates a proxy X server on the server machine for forwarding the
connections over the encrypted channel.
F-Secure SSH will also automatically set up Xauthority data on the server machine. For this purpose, it
will generate a random authorization cookie, store it in Xauthority on the server, and verify that any
forwarded connections carry this cookie and replace it by the real cookie when the connection is opened.
The real authentication cookie is never sent to the server machine (and no cookies are sent in the plain).
To use F-Secure SSH terminal connection for secure X11 connections from a remote host to a X Window
System Server running in your Windows computer, do the following:

1. Start your PC X Window System Server.
2. Check that connections to the PC X Window System Server are allowed from the IP

address 127.0.0.1 (i.e. localhost).
3. From the Edit menu, choose Properties.
4. In the Connection tab, select Forward X11.
5. Choose the OK button.
6. From the File menu, choose connect and make the connections as specified in

Connecting Using Password Authentication, or Connecting Using RSA Authentication.
7. Type a command in the terminal windows to start any X11 application (e.g. xterm &).

Note: It is recommended that you use a fast cipher (i.e. Blowfish) for best performance with forwarded
X11 connections.

Securing Arbitrary TCP/IP Connections
F-Secure SSH can secure arbitrary TCP/IP connections. The technology used is called TCP/IP port
forwarding.
TCP/IP port forwarding works by creating a proxy server for a source port that a TCP/IP service uses. The
proxy server waits on the local machine for a connection from a client program to the source port. F-
Secure SSH then forwards the request and the data over the secure channel to the remote system. The
F-Secure SSH server on the remote systems then makes the connection to the destination host and the
destination port.
Most remote services that use TCP/IP can be secured, including custom client-server applications,
database systems, and services like HTTP, TELNET, POP, SMTP, etc.
FSecure SSH provides automatic forwarding for the X11 Windowing System commonly used on UNIX
machines. To forward other TCP/IP connections, you must configure them manually.
To connect securely to a remote TCP/IP service (a secure HTTP connection is used as a sample):

1. Determine the port numbers used by the service (e.g. port 80 is used by the HTTP
protocol and the Web servers.) See the /etc/services file on your remote system for
default UNIX service and port configurations.

2. From the Edit menu, choose Properties.
3. In the Forward tab, select Local and press the New to define the TCP/IP connections to

be secure.
4. Specify a descriptive name for the forwarded connection (e.g. Secure Intranet

Connection.)
5. Specify the source port, the port to be used for the client connection (e.g. 80 for the

secure Intranet connection.)
6. Specify the destination host, the host that runs the service. If it is the same host the

you will connect to for your terminal session, then use 127.0.0.1 (i.e. localhost) to
specify that the connection should be forwarded through the secure terminal
connection, and then connect immediately to the service.
If the service is running on another host you must specify the forwarding to that host.
Note that connection from the terminal session host onward will not be encrypted.

7. Specify the destination port, the port used by the server to wait for connections (e.g.
80 for Web servers.)

8. If you are specifying a local forwarding, then check that the Allow local connection
only checkbox is checked to protect your forwarded connections from being used
from any where else except from your PC. See the security note at the end of this
section.

9. Choose the OK button.
10. From the File menu, choose connect and make the connections as specified in

Connecting Using Password Authentication, or Connecting Using RSA Authentication.

Note: Forwarding a connection to any host other than the terminal session host, will only encrypt the
forwarded connection up to the terminal session host. The connection from there on will not be encrypted
to the destination host. The destination host should always be in a trusted network or be the host for the
terminal session.

Note: SECURITY NOTICE: If you do not check the Allow local connection only check box in the Edit
Local Forwarding dialog box, then any host can connect to the forwarded source port on your computer
and get a connection to the remote machine through your secured connection.

Appendices
Appendix A: F-SECURE.INI
Appendix B: DEFAULTS.SSH

Appendix A: F-SECURE.INI
F-SECURE.INI is a shared initialization file for all Data Fellows' F-Secure applications. It contains a
number of settings such as the default language and directories.
When F-Secure SSH is installed the setup program checks for the existence of the F-SECURE.INI file in
the Windows directory. If the file does not exist it is created. If the file exists and contains the settings from
a previous installation, setup will check for a previous installation and use its settings as the basis for the
new installation.
During the installation process the following entries are written to the F-SECURE.INI file:

Setting Description

Language Language setting indicates the preferred language. If the language is not
available for one of the F-Secure products US English (ENU) is used by
default.

RandomSeed The seed value for the cryptographically strong random number generator,
that is updated every time an F-Secure application closes.

InstallDirectory Install Directory is the location for the README.TXT file and other
additional files like connection template files (.SSH files), RSA identity files
(identity and identity.pub), and the SSH.INI file. Install Directory is also the
preferred working directory that will be set to SSH.EXE when a program
manager icon is created.

ProgramDirectory Program Directory is the directory that contains the F-Secure SSH
executables and libraries (e.g. SSH.EXE, GMP.DLL, KEYGEN.EXE,
FSSENU.DLL, etc.)

More:
Sample F-SECURE.INI file:

Sample F-SECURE.INI file:
[Settings]
RandomSeed=f69f64...
[F-Secure SSH]
Language=ENU
DefaultUser=root
InstallDirectory=C:\F-SECURE\SSH
ProgramDirectory=C:\F-SECURE\SSH\PROGRAM
[F-Secure SSH Recent Host List]
DefaultHost=ssh.company.com
NumHosts=3
Host1=ssh.company.com
Host2=www.company.com
Host3=ftp.company.com
[F-Secure SSH Recent File List]
File1=C:\F-SECURE\SSH\CONNECT.SSH
[Web Connection Settings]
BrowserDefault=C:\NETSCAPE\PROGRAMS\NETSCAPE.EXE
BrowserArea=Europe
BrowserConfigured=Yes

Note: If the F-SECURE.INI file is not located in the Windows directory, it is looked for in the directory of
the executable SSH.EXE file. If it is not found there a new F-SECURE.INI file is created in the WINDOWS
directory.

Appendix B: DEFAULTS.SSH
The DEFAULTS.SSH file is a connection template file that is used to load default settings each time SSH
is run.
You can edit DEFAULTS.SSH by opening the file as a normal connection template. After making your
changes and saving the file back to the disk, all new SSH sessions will have these settings loaded as
default.

Note: If the DEFAULTS.SSH file does not exist, "hard-coded" defaults are used. To create a new
DEFAULTS.SSH file edit a connection template and save it to the Install Directory (e.g. C:\F-Secure\SSH\
DEFAULTS.SSH).

UNIX Setup
Installation
Configuration Options
Configuration Files
Makefile
Portability
Hints and Tips
Libwrap And Identd
Starting The Server
Replacing Rlogin And Rsh
Client Suid Root, Server Run As Root
Common Problems
Reporting Problems And Other Contacts

Installation
For most machines and configurations, the following is all you need to do:

1. Unpack the distribution file with gzip and tar
2. Compile the source code using the following commands in the distribution directory:

./configure
make
make install

In a networked environment with shared binary directory, it is enough to do "make install" on one
machine, and then "make hostinstall" on others to generate host keys and install configuration files.
Then check (and edit if needed) the following files:

· /etc/sshd_config (server configuration file)
· /etc/ssh_config (client configuration file - defaults for users)

You may also want to create the /etc/ssh_known_hosts for your site and update it periodically. See the
manual page for make-ssh-known-hosts on how to do this easily. The file format is documented on the
sshd manual page.
You should also edit /etc/rc.local or equivalent to start sshd at boot.
The source is written in ANSI C, and requires an ANSI C compiler or GCC.
A copy of GCC is available on all major FTP sites (e.g., in ftp://prep.ai.mit.edu:/pub/gnu).

Configuration Options
The package comes with an Autoconf-generated configure script. The script accepts several options All
standard options, including:

 --prefix=PREFIX where to install files (default: subdirs of /usr/local)

 --exec_prefix=PREFIX where to install executables (default: same as prefix)

 --srcdir=DIR find sources in DIR (default: where configure is) Specific options:

 --with-rsh=PATH Use rsh specified by PATH when needed

 --with-etcdir=PATH Store system files in the given dir (default: /etc)

 --with-path=PATH Default path to pass to user shell.

 --with-rsaref Use rsaref2 from rsaref2 subdirectory (see below).

 --with-libwrap[=PATH] Use libwrap (tcp_wrappers) and identd (see below).

 --with-socks4[=PATH] Include SOCKS (firewall traversal) support.

 --with-socks5[=PATH] Include SOCKS5 (firewall traversal) support.

--with-securid[=PATH] Support for the SecurID card (see README.SECURID).

 --enable-warnings Adds -Wall to CFLAGS if using gcc.

You may also want to configure the following variables:
 CC=compiler specify name of the C compiler (default: gcc or cc)

 CFLAGS=flags specify flags to C compiler (default: -O -g or just -O)

 LDFLAGS=flags specify flags to linker (default: none)

Alternate values can be given to configure in the environment, e.g.:
 CC=xcc CFLAGS="-O2" LDFLAGS="-L/lib/zzz" ./configure

(Note that if you have already configured, and later decide to give some values on the command line, you
may need to say "make distclean" before reconfiguring.)

Configuration Files
The server has a configuration file /etc/sshd_config, which specifies the permitted authentication
methods, hosts, port number, etc. The defaults are acceptable for most sites, but you may want to check
this file. Its format is documented on the sshd manual page.
The client reads a configuration file /etc/ssh_config, which gives site-wide defaults for various options.
Options in this file can be overridden by per-user configuration files. The file is documented on the ssh
manual page.

Makefile
The Makefile is generated from Makefile.in by running configure. It supports the following targets:

 all: compile everything

 install: install in $exec_prefix/bin and $prefix/man/man1.

 hostinstall: generate host key and install config files

 uninstall: remove installed files

 clean: remove object files and executables

 distclean: remove anything not in the distribution

Portability
This software has been used at least in the following environments.

· 386BSD 0.1; i386
· AIX 3.2.5, 4.1, 4.2; RS6000, PowerPC
· BSD 4.4; several platforms
· BSD/OS 1.1, 2.0.1; i486
· BSD/386 1.1; i386
· ConvexOS 10.1; Convex
· DGUX 5.4R2.10; DGUX
· FreeBSD 1.x, 2.x; Pentium
· HPUX 7.x, 9.x, 10.0; HPPA
· IRIX 5.2, 5.3; SGI Indy
· IRIX 6.0.1; Mips-R8000
· Linux 1.2.x, 2.0.x Slackware 2.x, 3.x, RedHat 2.1, 3.0; i486
· Linux/Mach3, Macintosh(PowerPC)
· Mach3; Mips
· Mach3/Lites; i386
· Machten 2.2VM (m68k); Macintosh
· NCR Unix 3.00; NCR S40
· NetBSD 1.0A, 1.1, 1.2; Pentium, Sparc, Mac68k, Alpha
· NextSTEP 3.3; i486
· OSF/1 3.0, 3.2, 3.2; Alpha
· Sequent Dynix/ptx 3.2.0 V2.1.0; i386
· SCO Unix; i386 (client only)
· SINIX 5.42; Mips R4000
· Solaris 2.3, 2.4, 2.5; Sparc, i386
· Sony NEWS-OS 3.3 (BSD 4.3); m68k
· SunOS 4.1.1, 4.1.2, 4.1.3, 4.1.4; Sparc, Sun3
· SysV 4.x; several platforms
· Ultrix 4.1; Mips
· Unicos 8.0.3; Cray C90

Please report back any other environments where you have used ssh, and send back any patches you
had to do so that they can be integrated to the distribution. The proper address is F-Secure-SSH-
BUGS@DataFellows.com
Always remember to mention the ssh version number and machine type in your bug reports. Please
include also the output of the -v option from the client side, and the output of the -d option from the server,
if applicable.

Hints and Tips
Linux note: Some linux systems have a bug which causes an error about libc.so.4 when compiling ssh.
This can be solved by any of the following ways:

· Do "ln -s libc.sa /usr/lib/libg.sa" as root.
· Install gcc-2.7.0.
· Configure ssh with "CFLAGS=-O ./configure" (i.e., without debug info).

More information on this problem is available in ftp://ftp.netcom.com/pub/ze/zenon/linux.
BSDI BSD/OS note: Apparently the gcc that comes with BSD/OS is broken. Use "CC=cc ./configure" or
"setenv CC cc; ./configure" when configuring to force it to use cc instead of gcc.
ConvexOS note: Convex "make" is broken. Install GNU make first if you have trouble compiling ssh.
Ultrix note: Ultrix /bin/sh is broken. Run configure with "/bin/sh5 configure [options]" if you are on Ultrix.
On alpha, one should edit rsaref2/source/global.h, and make UINT4 "unsigned int" instead of "unsigned
long int".

Libwrap And Identd
Sshd does not normally use identd or tcp-wrappers. However, it can be compiled to use these by adding
--with-libwrap on the command line. This requires that the tcp_wrappers libwrap.a library and the
associated tcpd.h have been installed somewhere where the compiler can find them. With libwrap
support, ssh will process the /etc/hosts.allow and /etc/hosts.deny files, and use identd if required by them.
The name of the user on the client side (as returned by identd) will be logged if requested by the
configuration files. See tcp_wrappers documentation for more information.

Starting The Server
The server should be started at boot from /etc/rc or equivalent. It need not be given any arguments;
however, an optional "-b bits" flag may be used to specify RSA key size (default is 768). Key sizes less
than 512 can be broken; larger key sizes generally mean more security but require more time to generate
and use. 1024 bits is secure for any practical time with current technology.
The server is not started using inetd, because it needs to generate the RSA key before serving the
connection, and this can take about a minute on slower machines. On a fast machine, and small
(breakable) key size (< 512 bits) it may be feasible to start the server from inetd on every connection. The
server must be given "-i" flag if started from inetd.

Replacing Rlogin And Rsh
This software has been designed so that it can be installed with the names rlogin, rsh, and rcp, and it will
use the SSH protocol whenever the remote machine supports it, and will automatically execute rlogin/rsh
(after displaying a warning that there is no encryption) if the remote host does not support SSH.
Rlogin/rsh replacement is done as follows:

 ./configure --with-rsh=RSH-PATH
--program-transform-name='s/^s/r/'
 make install

where RSH-PATH is the complete pathname of the real rsh program. The rlogin program is searched from
the same directory, with the name "rlogin". Note that this means that you need to copy both rsh and rlogin
to the same directory, with these names. It is not sufficient to just rename them to e.g. rsh.old.
This will create links for rlogin, rsh, and rcp. If you are installing them in the same directory where rlogin
etc. normally are (e.g., /usr/bin), you must first move the original programs to some other directory
(e.g., /usr/lib/rsh).
When doing this, you should also build a file containing the host keys of all machines in your organization,
and copy this file to /etc/ssh_known_hosts on every machine. This will make .rhosts and /etc/hosts.equiv
authentication work for users without any changes to the user configuration, but will be much more secure
than conventional .rhosts and /etc/hosts.equiv authentication. This will also protect the users against
router attacks where someone (perhaps remotely) reconfigures the routers to direct connections to a
certain host to a different machine, which can then grab any passwords which the user types thinking
he/she is connected to the real machine.

Client Suid Root, Server Run As Root
This package installs two programs that need special privileges. Ssh is the client program, and it is by
default installed as suid root, because it needs to create a privileged port in order to use .rhosts files for
authentication. If it is not installed as suid root, it will still be usable, but .rhosts authentication will not be
available. Also, the private host key file is readable by root only.
Sshd is the daemon that listens for connections. It should preferably be run as root, because it is by
normally listening on a privileged port, and it needs to be able to do setuid(), update utmp, chown ptys
etc. when a user logs in. If it is not run as root, explicit "-p port" option must be given to specify an
alternate port (same port must also be specified for clients), "-h host_key_file_path" must be given to
specify an alternate host key file, and it cannot be used to log in as any other user than the user running it
(because it cannot call setuid()). Also, if your system uses shadow passwords, password authentication
will not work when running as someone else than root.
Both the server and the client have been carefully screened for possible security problems, and are
believed to be secure. However, there can be no guarantee. If you find any problems, please report them
immediately.

Common Problems
This section lists some common installation problems.

Shadow passwords There are many different shadow password schemes. Ssh currently
recognizes and supports many of them; however, there are probably still
many that it does not understand. This may not be visible at compile time.
If your system uses shadow passwords, and password authentication
does not work even if sshd is running as root, this is probably your
problem. Please contact the author if this happens. Code to recognize
(configure.in) and use (auth-passwd.c) the shadow password mechanism
on new systems is highly welcome.

login.c does not compile, or logging of logins does not work properly

Mechanisms for updating wtmp, utmp, lastlog, and similar mechanisms are
not standardized. Ssh substitutes many of the functions of the
conventional login program. These functions are implemented in login.c.
You may need to modify this file to make it work on exotic systems. Please
send any modifications and bug fixes back to the author for inclusion in the
distribution. If you just want to try ssh, and cannot get this file to compile, if
is safe to define all of the functions as empty; however, in that case logins
will not be logged.

Sshd does not start or dies immediately

The easiest thing to do is to give the -d option to sshd. It will then send
debugging output to stderr (and syslog). The -d option also has other side
effects, e.g. the daemon will not fork and will only serve a single
connection before exiting. However, it is very useful for debugging
problems.

Sshd sends debugging output to the system log.

Check your system log (and syslogd configuration) to see why it dies. One
possible reason is that your system does not have a proper host key in
/etc/ssh_host_key. You can either generate a key with ssh-keygen (it is
automatically generated by "make install"), or specify an alternative key
with the -h option to the server. Another reason could be that the port
which the server tries to listen is already reserved by some other program.

Rhosts authentication does not work

By default, the server does not accept normal .rhosts or /etc/hosts.equiv
authentication, because they are fundamentally insecure and can be
spoofed by anyone with access to the local network. Rhosts authentication
can be enabled at compile time by giving the --with-rhosts option to
configure.

The preferred alternative is to collect the public host keys of the entire site
to a file, and copy this to /etc/ssh_known_hosts on every machine in the
organization running sshd. This will prevent all IP spoofing attacks and
provides improved security (provided rshd, rlogind, and rexecd are
disabled).

Opening connections is too slow On very slow machines, encrypting and decrypting the session key may
be too slow. For example, on a heavily loaded sun3 it took several minutes
to log in with the default key sizes. When we changed it to use shorter host
key (512 bits) and server key (384 bits), login time dropped to about a
second. A symptom of this problem is that "ssh -v hostname" waits for a
long time after printing "Sent encrypted session key".

Shorter host keys can be generated with "ssh-keygen -b 512", giving
/etc/ssh_host_key as the file in which to save the key (with empty

passphrase). The server key size can be specified with the -b option on
sshd command line (typically, in /etc/rc.local). The server must be restarted
for changes to take effect.

The program complains "Could not set controlling tty" or something similar

There are many different styles of pseudo ttys. Ssh currently supports
about five different styles (plus variations of them). It is quite possible that
there are more variations, some of which are not supported by existing
code. Fixing the problem may require adding new code in pty.c and
configure.in. You are encouraged to write the needed code and send a
patch to the author, or at least report the problem.

General problem solving The client has -v option, which sends verbose output to stdout. It is very
helpful in solving problems.

The server has -d option, which causes it to send verbose debugging
output to system log and stderr. This option also causes the server to only
serve a single connection and not fork, which helps debugging.

Reporting Problems And Other Contacts
Please report any bugs, problems, and enhancements to
F-Secure-SSH-Bugs@DataFellows.com.
Data Fellows also provides technical support through a variety of electronic services:
Support: F-Secure-SSH-Support@DataFellows.com
World-Wide Web: http://www.DataFellows.com,

http://www.Europe.DataFellows.com
Anonymous FTP: ftp.DataFellows.com,

ftp.Europe.DataFellows.com

Tool and Utility Overview
EDD
MAKE-SSH-KNOWN-HOSTS
SCP
SSH
SSH-ADD
SSH-AGENT
SSHD
SSH-KEYGEN

EDD
Edd (Encrypting Data Dump) reads data from its input stream (stdin by default), encrypts or decrypts it,
and writes the resulting data back to its output stream (stdout by default). Edd is intended to be used as a
filter in backup scripts and other similar applications.
Edd generates a random encryption key every time it is called. The encryption key is generated in the
same way as in ssh. The random key is encrypted with a public key using RSA. The encrypted key is
stored in a fixed-size 4096 byte header at the beginning of the output.

MAKE-SSH-KNOWN-HOSTS
Make-ssh-known-hosts is a perl5 script that helps create the /etc/ssh_known_hosts file, which is used by
F-Secure SSH to contain the host keys of all publicly known hosts. Ssh does not normally permit login
using rhosts or /etc/hosts.equiv authentication unless the server knows the client's host key. In addition,
the host keys are used to prevent man-in-the-middle attacks.
The make-ssh-known-hosts program finds all the hosts in a domain by making a DNS query to the master
domain name server of the domain. The master domain name server is located by searching for the SOA
record of the domain from the initial domain name server After getting the hostname list make-ssh-known-
hosts tries to get the public key from every host in the domain and create the /etc/ssh_known_hosts file.

SCP
Scp copies files between hosts on a network. It uses ssh for data transfer, and uses the same
authentication and provides the same security as F-Secure SSH. Scp asks for passwords or passphrases
if they are needed for authentication.
Any file name may contain a host and user specification to indicate that the file is to be copied to/from that
host, also copies between two remote hosts are permitted.

SSH
Ssh is a program for logging into a remote machine and for executing commands in a remote machine. It
is intended to replace rlogin and rsh, and provide secure encrypted communications between two
untrusted hosts over an insecure network. X11 connections and arbitrary TCP/IP ports can also be
forwarded over the secure channel.
Ssh connects and logs into the specified hostname. The user must prove his/her identity to the remote
machine using one of several methods. One of these is RSA based authentication. The scheme is based
on public-key cryptography.

SSH-ADD
Ssh-add adds identities to the authentication agent, ssh-agent. When run without arguments, it adds the
file $HOME/.ssh/identity. Alternative file names can be given on the command line. If any file requires a
passphrase, ssh-add asks for the passphrase from the user. If the user is using X11, the passphrase is
requested using a small X11 program; otherwise it is read from the user's tty.

SSH-AGENT
Ssh-agent is a program to hold authentication private keys. The idea is that ssh-agent is started in the
beginning of an X-session or a login session, and all other windows or programs are started as children of
the ssh-agent program (the command normally starts X or is the user shell). Programs started under the
agent inherit a connection to the agent, and the agent is automatically used for RSA authentication when
logging to other machines using ssh.
The agent initially does not have any private keys. Keys are added using ssh-add. When executed
without arguments, ssh-add adds the $HOME/.ssh/identity file. If the identity has a passphrase, ssh-add
asks for the passphrase (using a small X11 application if running under X11, or from the terminal if
running without X). It then sends the identity to the agent. Several identities can be stored in the agent;
the agent can automatically use any of these identities.
The idea is that the agent is run in the user's local PC, laptop, or terminal. Authentication data need not
be stored on any other machine, and authentication passphrases never go over the network. However,
the connection to the agent is forwarded over ssh remote logins, and the user can thus use the privileges
given by the identities anywhere in the network in a secure way.

SSHD
Sshd (F-Secure SSH Daemon) is the daemon program for F-Secure SSH. Together these programs
replace rlogin and rsh programs, and provide secure encrypted communications between two untrusted
hosts over an insecure network. The programs are intended to be as easy to install and use as possible.
Sshd is the daemon that listens for connections from clients. It is normally started at boot from /etc/rc.local
or equivalent. It forks a new daemon for each incoming connection. The forked daemons handle key
exchange, encryption, authentication, command execution, and data exchange.
Sshd works as follows. Each host has a host-specific RSA key (normally 1024 bits) used to identify the
host. Additionally, when the daemon starts, it generates a server RSA key (normally 768 bits). This key is
normally regenerated every hour if it has been used, and is never stored on disk.
Whenever a client connects the daemon, the daemon sends its host and server public keys to the client.
The client compares the host key against its own database to verify that it has not changed. The client
then generates a 256 bit random number. It encrypts this random number using both the host key and the
server key, and sends the encrypted number to the server. Both sides then start to use this random
number as a session key which is used to encrypt all further communications in the session. The rest of
the session is encrypted using a conventional cipher. Currently, 3DES, Blowfish, DES, and as an option
IDEA. 3DES is used by default. The client selects the encryption algorithm to use from those offered by
the server.
Next, the server and the client enter an authentication dialog. The client tries to authenticate itself
using .rhosts authentication, .rhosts authentication combined with RSA host authentication, RSA
challenge-response authentication, or password based authentication.

SSH-KEYGEN
Ssh-keygen generates and manages authentication keys for ssh. Normally each user wishing to use ssh
with RSA authentication runs this once to create the authentication key in $HOME/.ssh/identity.
Additionally, the system administrator may use this to generate host keys.

EDD
NAME
SYNOPSIS
DESCRIPTION
OPTIONS
ENVIRONMENT
DATA FORMAT
RETURN VALUE
DIAGNOSTICS
SEE ALSO

NAME
edd - encrypting data dump

SYNOPSIS
edd [-c cipher] [-e] [-s block_size] [-C stream_comment] [-D
diagnostics] [-f input_file] [-o output_file] [-F
mag_ical_input_file] [bits mod exp [key_comment]] [keyfile]
edd [-d] [-f input_file] [-o output_file] [-F
magi_cal_input_file] [-s block_size] [-B] [-D diagnostics] [-P
passphrase] [keyfile]
edd -I
edd -q [-D diagnostics]

DESCRIPTION
Edd (Encrypting Data Dump) reads data from its input stream (stdin by default), encrypts or decrypts it,
and writes the resulting data back to its output stream (stdout by default). Edd is intended to be used as
a filter in backup scripts and other similar applications.
Edd generates a random encryption key every time it is called. The encryption key is generated in the
same way as ssh(1) generates its session key. This means that the same random number seed file
$HOME/.ssh/random_seed is used if available. Edd will however work without the seed file. The random
key is encrypted with the given public key using RSA. The encrypted key is stored in a fixed-size 4096
byte header at the beginning of the output. Edd then reads data from input stream until it receives EOF. It
encrypts all data using the selected cipher (3des by default) and writes it to the output stream.
Upon encryption, the RSA public key may be given either as a command line argument bits, mod and
exp, or the ssh keyfile containing the key may be given as the argument keyfile. If both are omitted, edd
will try to consult the environment variable EDD_PUBLIC. If it contains a valid ssh key file name, the key
will be read from the file pointed to by EDD_PUBLIC.
Upon decryption, ssh reads the RSA private key from the key file (which is in the format used by ssh(1)
- see ssh-keygen(1)), the name of which given in the argument key_file. If no keyfile argument is
present, edd will try to consult the environment variable EDD_PRIVATE. If it contains a valid ssh key file
name, the key will be read from the file pointed to by EDD_PRIVATE. The file may optionally be protected
by a passphrase; edd prompts for the passphrase from the user unless -B (for batch mode) was specified
on the command line. It then decrypts the random key used to encrypt the data, and uses it to decrypt the
data. Edd writes decrypted data to the output stream.
Additionally, edd provides the -q option to query which RSA public key was used to encrypt a particular
data stream.

OPTIONS
-c cipher Selects the cipher to use for encrypting or decrypting the data stream.

cipher must be a cipher supported by the implementation. Supported
ciphers may be queried with -I command (see below).

-f input_file Makes edd use input_file as the input stream instead of stdin. The file is
tried to open with shared lock acquired. If your file system supports locks,
and the lock cannot be acquired, edd will block.

-o output_file Makes edd use output_file as the output stream instead of stdout. The file
is tried to open for writing with explicit lock acquired. If your file system
supports locks, and the lock cannot be acquired, edd will bail out and not
block in this case. This is as to detect the vain attempt to read and write
the same file.

-F magical_input_file Makes edd use magical_input_file as the input stream instead of stdout.
Moreover, edd will try to guess the output file name using the following
rules: if magical_input_file ends with suffix .edd, edd will use that file
name, with the suffix stripped off, as the output file name (and choose
automagically decryption, unless user has specified the mode of operation
to be encryption explicitly with -e option). If the file name doesn't end
with .edd, the output file name will be the given name with that suffix
appended. In this case edd will choose automagically the encryption
mode, unless user has specified the decryption mode explicitly with -d
option.

If edd is not able to deduce a good output file name, it will prompt the user
for one unless batch mode was selected with -B option (in this case edd
will bail out).

-d Selects decryption and forces it to be used even if magical_input_file does
not end with the suffix .edd.

-e Selects encryption and forces it to be used even if magical_input_file has
suffix .edd. Encryption is the default, altough it is not implicitly forced.

-C stream_comment Supplies an optional comment to be stored in plain text in the header of
the encrypted data. The comment can be queried either with -q or
diagnostics flag c (see below). The maximum length of comment is
restricted to 1024 bytes.

-s block_size Selects the internal buffer size. This should be a multiple of eight; if it isn't,
it will automatically be grown to be a multiple of eight. Larger buffer size
will reduce the amount of system calls.

-D diagnostics Selects the diagnostics flags to use. diagnostics is a string which may
contain any ascii characters. However, only the following are recognized: n
for normal messages (quite rare), f for fatal errors, e for other errors, c for
displaying comments and t for trace information (debugging).

Given characters control which diagnostics messages will be shown. If you
want absolutely quiet operation, use -Dq for example. This works because
q is not recognized and so it will turn no flags on. -Dcefnt may be
abbreviated with -Dall. Default is -Defn. All diagnostics messages will be
printed to stderr.

-q Queries information about the incoming data stream. Displays the key
used to encrypt the system, and the optional comment supplied when
creating the stream.

-B Specifies batch mode. With this flag, edd will never try to read a
passphrase or output file name from the user but instead exit if a
passphrase or output file name is required but not given.

-P passphrase Specifies a passphrase for the RSA private key. If the passphrase is not
specified, the user will be prompted and the passphrase will be read from
/dev/tty (unless -B was specified).

-I Displays information about edd and exists. This information includes
program version; data quantization; default, minumum and maximum block
sizes; default cipher; ciphers supported; header size; maximal length of
key and stream comments.

ENVIRONMENT
Edd uses the following environment variables:

EDD_PUBLIC File where the RSA public key will read if no key or key file is supplied to
edd. Note that this file must currently be in binary format.

EDD_PRIVATE File where the RSA private key will be read if no file is supplied to edd.

DATA FORMAT
Format of the encrypted data is as follows. Data types coding is as given in the ssh protocol specification.
1. The string "EDD FILE V1.0" (only one null character)
2. 32-bit integer: version (must be 0 for now)
3. 32-bit integer: flags (must be 0 for now)
4. 32-bit integer: cipher type (as in ssh)
5. mp-int: public exponent of RSA key
6. mp-int: public modulus of RSA key
7. string: comment of RSA key
8. string: comment supplied with -C
9. mp-int: encrypted random key
Encrypted data bytes immediately follow this header.
The data stream will be padded with some scratch bytes if the length of the stream is not a multiple of
eight bytes. After the data stream, one last byte is emitted indicating the amount of padding bytes at the
end of the stream. So the total size of the encrypted data stream with header and padding will be 4096 +
length of stream + (8 - length of stream mod 8) mod 8 + 1 bytes.

RETURN VALUE
Edd will return zero if it succeeded in the operation requested, 1 if the argument list was inappropriate, 2
if the program has some unknown severe bug and 255 if some other error occurred.

DIAGNOSTICS
Diagnostics messages should be self-explanatory. For control over messages, see -D option (above).

SEE ALSO
ssh(1)

MAKE-SSH-KNOWN-HOSTS
NAME
SYNOPSIS
DESCRIPTION
OPTIONS
EXAMPLES
FILES
SEE ALSO

NAME
make-ssh-known-hosts - make ssh_known_hosts file from DNS data

SYNOPSIS
make-ssh-known-hosts
 [--initialdns initial_dns]
 [--server domain_name_server]
 [--subdomains comma_separated_list_of_subdomains] [--debug
debug_level]
 [--timeout ssh_exec_timeout]
 [--pingtimeout ping_timeout]
 [--passwordtimeout timeout_when_asking_password] [--
notrustdaemon]
 [--norecursive]
 [--domainnamesplit]
 [--silent]
 [--keyscan]
 [--nslookup path_to_nslookup_program] [--ssh
path_to_ssh_program]
 domain_name [take_regexp [remove_regexp]]

DESCRIPTION
Make-ssh-known-hosts is a perl5 script that helps create the /etc/ssh_known_hosts file,
which is used by ssh to contain the host keys of all publicly known hosts. Ssh does not
normally permit login using rhosts or /etc/hosts.equiv authentication unless the server
knows the client's host key. In addition, the host keys are used to prevent man-in-the-middle
attacks.
In addition to /etc/ssh_known_hosts, ssh also uses the $HOME/.ssh/known_hosts file.
This file, however, is intended to contain only those hosts that the particular user needs but
are not in the global file. It is intended that the /etc/ssh_known_hosts file be maintained
by the system administration, and periodically updated to contain the host keys for any new
hosts.
The make-ssh-known-hosts program finds all the hosts in a domain by making a DNS
query to the master domain name server of the domain. The master domain name server is
located by searching for the SOA record of the domain from the initial domain name server
(which can be specified with the --initialdns option). The master domain name server can
also be given directly with the --server option.
After getting the hostname list make-ssh-known-hosts tries to get the public key from
every host in the domain. It first tries to connect ssh port to check check if the host is alive,
and if so, it tries to run the command cat /etc/ssh_host_key.pub on the remote machine
using ssh. If the command succeeds, it knows the remote machine has ssh installed
properly, and it then extracts the public key from the output, and prints the
/etc/ssh_known_hosts entry for it to STDOUT. Because make-ssh-known-hosts is
usually run before remote machines have /etc/ssh_known_hosts file you may have to use
RSA-authentication to allow access to hosts.
If the command fails for some reason, it checks if the ssh client still got the public key from
the remote host in the initial dialog, and if so, it will print a proper entry, and if --
notrustdaemon option is given comment it out.
Domain_name is the domain name for which the file is to be generated. By default make-
ssh-known-hosts extracts also all subdomains of domain. Many sites will want to include
several domains in their /etc/ssh_known_hosts file. The entries for each domain should be
extracted separately by running make-ssh-known-hosts once for each domain. The results
should then be combined to create the final file.
Take_regexp is a perl regular expression that matches the hosts to be taken from the
domain. The data matched contains all the DNS records in the form ``fieldname=value".
The fields are separated with newline, and the perl match is made in multiline mode and it is
case insensetive. The multiline mode means that you can use a regexp like
``^wks=.*telnet.*$'' to match all hosts that have WKS (well known services) field that
contains value ``telnet".
Remove_regexp is similar but those hosts that match the regexp are not added (it can be
used for example to filter out PCs and Macs using the hinfo field: ``^hinfo=.*(mac|pc)").

OPTIONS
--initialdns initial_dns

-i initial_dns Set the initial domain name server used to query the SOA record of the
domain.

--server domain_name_server

-se domain_name_server Set the master domain name server of the domain. This host is used to
query the DNS list of the domain.

--subdomains subdomainlist

-su subdomainlist Comma separated list of subdomains that are added to hostnames. For
example, if subdomainlist is ``,foo, foo.bar, foo.bar.zappa,
foo.bar.zappa.hut.fi'' then when host foobar is added to
/etc/ssh_known_hosts file it has aliases ``foobar, foobar.foo,
foobar.foo.bar, foo_bar.foo.bar.zappa, foobar.foo.bar.zappa.hut.fi". The
default action is to take all subparts of the host but the second last on a
host by host basis. (The last element is usually the country code, and
something like foobar.foo.bar.zappa.hut would not make sense.)

--debug debug_level

-de debug_level Set the debug level. Default is 5, bigger values give more output. Using a
big value (like 999) will print lots of debugging output.

--timeout ssh_exec_timeout

-ti ssh_exec_timeout Timeout when executing ssh command. The default is 60 seconds.

--pingtimeout ping_timeout

-pi ping_timeout Timeout when trying to ping the ssh port. The default is 3 seconds.

--passwordtimeout timeout_when_asking_password

-pa timeout_when_asking_password
 Timeout when asking password for ssh command. Default is that no
passwords are queried. Use value 0 to have no timeout for password
queries.

--notrustdaemon

-notr If the ssh command fails, use the public key stored in the local known
hosts file and trust it is the correct key for the host. If this option is not
given such entries are commented out in the generated
/etc/ssh_known_hosts file.

-norecursive

-nor Tell make-ssh-known-hosts that it should only extract keys for the given
domain, and not to be recursive.

--domainnamesplit

-do Split the domainname to get the list of subdomains. Use this option if you
don't want hostname to splitted to pieces automatically. Default splitting is
done host by host basis. If the domain is zappa.hut.fi, and the host name
is foo.bar then default action adds entries ``foo, foo.bar, foo.bar.zappa,
foo.bar.zappa.hut.fi'' and this options adds entries ``foo.bar, foo.bar.zappa,
foo.bar.zappa.hut.fi").

--silent

-si Be silent.

--keyscan

-k Output list of all hosts in format ``ipaddr1,ipaddr2,...ipaddrn
hostname.domain.co,host-
name,ipaddr1,ipaddr2,all_other_hostname_entries". The output of this can
be feeded to ssh-keyscan to fetch keys.

--nslookup path_to_nslookup_program

-n path_to_nslookup_program Path to the nslookup program.

--ssh path_to_ssh_program

-ss path_to_ssh_program Path to the ssh program, including all options.

EXAMPLES
The following command:

example# make-ssh-known-hosts cs.hut.fi > /etc/ssh_known_hosts
finds all public keys of the hosts in cs.hut.fi domain and put them to /etc/ssh_known_hosts file splitting
domain names on a per host basis. The command

example% make-ssh-known-hosts hut.fi `^wks=.*ssh' > hut-hosts
finds all hosts in hut.fi domain, and its subdomains having own name server (cs.hut.fi, tf.hut.fi, tky.hut.fi)
that have ssh service and puts their public key to huthosts file. This would require that the domain name
server of hut.fi would define all hosts running ssh to have entry ssh in their WKS record. Because nobody
yet adds ssh to WKS, it would be better to use command

example% make-ssh-known-hosts hut.fi `^wks=.*telnet' > hut-hosts
that would take those host having telnet service. This uses default subdomain list.
The command:

example% make-ssh-known-hosts hut.fi `dipoli.hut.fi'
`^hinfo=.*(mac|pc)' > dipoli-hosts

finds all hosts in hut.fi domain that are in dipoli.hut.fi subdomain (note dipoli.hut.fi does not have own
name server so its entries are in hut.fi-server) and that are not Mac or PC.

FILES
/etc/ssh_known_hosts Global host public key list

SEE ALSO
ssh(1), sshd(8), ssh-keygen(1), ping(8), nslookup(8), perl(1), perlre(1)

SCP
NAME
SYNOPSIS
DESCRIPTION
OPTIONS
DERIVATION
SEE ALSO

NAME
scp - secure copy (remote file copy program)

SYNOPSIS
scp [-prvC] [-P port] [-c cipher] [-i identity]
[[user@]host1:]filename1... [[user@]host2:]filename2

DESCRIPTION
Scp copies files between hosts on a network. It uses ssh for data transfer, and uses the same
authentication and provides the same security as ssh. Unlike rcp, scp will ask for passwords or
passphrases if they are needed for authentication.
Any file name may contain a host and user specification to indicate that the file is to be copied to/from that
host. Copies between two remote hosts are permitted.

OPTIONS
-c cipher Selects the cipher to use for encrypting the data transfer. This option is

directly passed to ssh.

-i identity_file Selects the file from which the identity (private key) for RSA authentication
is read. This option is directly passed to ssh.

-p Preserves modification times, access times, and modes from the original
file.

-r Recursively copy entire directories.

-v Verbose mode. Causes scp and ssh to print debugging messages about
their progress. This is helpful in debugging connection, authentication, and
configuration problems.

-B Selects batch mode (prevents asking for passwords or passphrases).

-C Compression enable. Passes the -C flag to ssh to enable compression.

-P port Specifies the port to connect to on the remote host. Note that this option is
written with a capital P, because -p is already reserved for preserving the
times and modes of the file in rcp.

DERIVATION
Scp is based on the rcp program in BSD source code from the Regents of the University of
California.

SEE ALSO
ssh(1), sshd(8), ssh-keygen(1), ssh-agent(1), ssh-add(1), rcp(1)

SSH
NAME
SYNOPSIS
DESCRIPTION
OPTIONS
CONFIGURATION FILES
ENVIRONMENT
FILES
INSTALLATION
SEE ALSO

NAME
ssh - F-Secure SSH client (remote login program)

SYNOPSIS
ssh [-l login_name] hostname [command]

ssh [-a] [-c 3des|blowfish|des|none] [-e escape_char] [-i
identity_file] [-l login_name] [-n] [-o option] [-p port] [-q] [-
t] [-v] [-x] [-C] [-L port:host:hostport] [-R port:host:hostport]
hostname [command]

DESCRIPTION
Ssh    is a program for logging into a remote machine and for executing commands in a
remote machine. It is intended to replace rlogin and rsh, and provide secure encrypted
communications between two untrusted hosts over an insecure network. X11 connections
and arbitrary TCP/IP ports can also be forwarded over the secure channel.
Ssh connects and logs into the specified hostname. The user must prove his/her identity to
the remote machine using one of several methods.
First, if the machine the user logs in from is listed in /etc/hosts.equiv or /etc/shosts.equiv
on the remote machine, and the user names are the same on both sides, the user is
immediately permitted to log in. Second, if .rhosts or .shosts exists in the user's home
directory on the remote machine and contains a line containing the name of the client
machine and the name of the user on that machine, the user is permitted to log in. This form
of authentication alone is normally not allowed by the server because it is not secure.
The second (and primary) authentication method is the rhosts or hosts.equiv method
combined with RSA-based host authentication. It means that if the login would be permitted
by .rhosts, .shosts, /etc/hosts.equiv, or /etc/shosts.equiv, and additionally it can verify
the client's host key (see $HOME/.ssh/known_hosts and /etc/ssh_known_hosts in the
FILES section), only then login is permitted. This authentication method closes security
holes due to IP spoofing, DNS spoofing and routing spoofing. [Note to the administrator:
/etc/hosts.equiv, .rhosts, and the rlogin/rsh protocol in general, are inherently insecure
and should be disabled if security is desired.]
As a third authentication method, ssh supports RSA based authentication. The scheme is
based on public-key cryptography: there are cryptosystems where encryption and decryption
are done using separate keys, and it is not possible to derive the decryption key from the
encryption key. RSA is one such system. The idea is that each user creates a public/private
key pair for authentication purposes. The server knows the public key, and only the user
knows the private key. The file $HOME/.ssh/authorized_keys lists the public keys that are
permitted for logging in. When the user logs in, the ssh program tells the server which key
pair it would like to use for authentication. The server checks if this key is permitted, and if
so, sends the user (actually the ssh program running on behalf of the user) a challenge, a
random number, encrypted by the user's public key. The challenge can only be decrypted
using the proper private key. The user's client then decrypts the challenge using the private
key, proving that he/she knows the private key but without disclosing it to the server.
Ssh implements the RSA authentication protocol automatically. The user creates his/her RSA
key pair by running ssh-keygen(1). This stores the private key in .ssh/identity and the
public key in .ssh/identity.pub in the user's home directory. The user should then copy the
identity.pub to .ssh/authorized_keys in his/her home directory on the remote machine
(the authorized_keys file corresponds to the conventional .rhosts file, and has one key per
line, though the lines can be very long). After this, the user can log in without giving the
password. RSA authentication is much more secure than rhosts authentication.
The most convenient way to use RSA authentication may be with an authentication agent.
See ssh-agent(1) for more information.
If other authentication methods fail, ssh prompts the user for a password. The password is
sent to the remote host for checking; however, since all communications are encrypted, the
password cannot be seen by someone listening on the network.
When the user's identity has been accepted by the server, the server either executes the
given command, or logs into the machine and gives the user a normal shell on the remote
machine. All communication with the remote command or shell will be automatically
encrypted.
If a pseudo-terminal has been allocated (normal login session), the user can disconnect with

``~.", and suspend ssh with ``~^Z". All forwarded connections can be listed with ``~#",
and if the session blocks waiting for forwarded X11 or TCP/IP connections to terminate, it can
be backgrounded with ``~&'' (this should not be used while the user shell is
active, as it can cause the shell to hang). All available escapes can be listed with ``~?".
A single tilde character can be sent as ``~~'' (or by following the tilde by a character other
than those described above). The escape character must always follow a newline to be
interpreted as special. The escape character can be changed in configuration files or on the
command line.
If no pseudo tty has been allocated, the session is transparent and can be used to reliably
transfer binary data. On most systems, setting the escape character to ``none'' will also
make the session transparent even if a tty is used.
The session terminates when the command or shell in on the remote machine exists and all
X11 and TCP/IP connections have been closed. The exit status of the remote program is
returned as the exit status of ssh.
If the user is using X11 (the DISPLAY environment variable is set), the connection to the X11
display is automatically forwarded to the remote side in such a way that any X11 programs
started from the shell (or command) will go through the encrypted channel, and the
connection to the real X server will be made from the local machine. The user should not
manually set DISPLAY. Forwarding of X11 connections can be configured on the command
line or in configuration files.
The DISPLAY value set by ssh will point to the server machine, but with a display number
greater than zero. This is normal, and happens because ssh creates a ``proxy" X server on
the server machine for forwarding the connections over the encrypted channel.
Ssh will also automatically set up Xauthority data on the server machine. For this purpose, it
will generate a random authorization cookie, store it in Xauthority on the server, and verify
that any forwarded connections carry this cookie and replace it by the real cookie when the
connection is opened. The real authentication cookie is never sent to the server machine
(and no cookies are sent in the plain).
If the user is using an authentication agent, the connection to the agent is automatically
forwarded to the remote side unless disabled on command line or in a configuration file.
Forwarding of arbitrary TCP/IP connections over the secure channel can be specified either
on command line or in a configuration file. One possible application of TCP/IP forwarding is a
secure connection to an electronic purse;
another is going trough firewalls.
Ssh automatically maintains and checks a database containing RSA-based identifications for
all hosts it has ever been used with. The database is stored in .ssh/known_hosts in the
user's home directory. Additionally, the file /etc/ssh_known_hosts is automatically checked
for known hosts. Any new hosts are automatically added to the user's file. If a host's
identification ever changes, ssh warns about this and disables password authentication to
prevent a trojan horse from getting the user's password. Another purpose of this mechanism
is to prevent man-in-the-middle attacks which could otherwise be used to circumvent the
encryption. The StrictHostKeyChecking option (see below) can be used to prevent logins
to machines whose host key is not known or has changed.

OPTIONS
-a Disables forwarding of the authentication agent connection. This may also

be specified on a perhost basis in the configuration file.

-c 3des|blowfish|des|none
Selects the cipher to use for encrypting the session. 3des is used by
default. 3des is believed to be very secure (triple-des) is encrypt-decrypt-
encrypt triple with three different keys. It is presumably more secure than
DES. des is the data encryption standard, but is breakable by
governments, large corporations, and major criminal organizations.
blowfish is a very fast block cipher algorithm invented by Bruce Schneier.
It uses 128 bit keys. none disables encryption entirely; it is only intended
for debugging, and it renders the connection insecure.

-e ch|^ch|none Sets the escape character for sessions with a pty (default: ~). The escape
character is only recognized at the beginning of a line. The escape
character followed by a dot (.) closes the connection, followed by control-Z
suspends the connection, and followed by itself sends the escape
character once. Setting the character to `none' disables any escapes and
makes the session fully transparent.

-f Requests ssh to go to background after authentication is done and
forwardings have been established. This is useful if ssh is going to ask for
passwords or passphrases, but the user wants it in the background. This
may also be useful in scripts. This implies -n. The recommended way to
start X11 programs at a remote site is with something like ``ssh -f host
xterm".

-i identity_file Selects the file from which the identity (private key) for RSA authentication
is read. Default is .ssh/identity in the user's home directory. Identity files
may also be specified on a per-host basis in the configuration file. It is
possible to have multiple -i options (and multiple identities specified in
configuration files).

-l login_name Specifies the user to log in as on the remote machine. This may also be
specified on a per-host basis in the configuration file.

-n Redirects stdin from /dev/null (actually, prevents reading from stdin). This
must be used when ssh is run in the background. A common trick is to use
this to run X11 programs in a remote machine. For example, ``ssh -n
shadows.cs.hut.fi emacs &'' will start an emacs on shadows.cs.hut.fi, and
the X11 connection will be automatically forwarded over an encrypted
channel. The ssh program will be put in the background. (This does not
work if ssh needs to ask for a password or passphrase; see also the -f
option.)

-o `option' Can be used to give options in the format used in the config file. This is
useful for specifying options for which there is no separate command-line
flag. The option has the same format as a line in the configuration file.

-p port Port to connect to on the remote host. This can be specified on a per-host
basis in the configuration file.

-q Quiet mode. Causes all warning and diagnostic messages to be
suppressed. Only fatal errors are displayed.

-t Force pseudo-tty allocation. This can be used to execute arbitrary screen-
based programs on a remote machine, which can be very useful e.g. when
implementing menu services.

-v Verbose mode. Causes ssh to print debugging messages about its
progress. This is helpful in debugging connection, authentication, and

configuration problems.

-x Disables X11 forwarding. This can also be specified on a per-host basis in
a configuration file.

-C Requests compression of all data (including stdin, stdout, stderr, and
data for forwarded X11 and TCP/IP connections). The compression
algorithm is the same used by gzip, and the ``level'' can be controlled by
the CompressionLevel option (see below). Compression is desirable on
modem lines and other slow connections, but will only slow down things on
fast networks. The default value can be set on a host-by-host basis in the
configuration files; see the Compress option below.

-L source port: destination host:destination port
Specifies that the given source port on the local (client) host is to be
forwarded to the given destination host and destination port on the
remote side. This works by allocating a socket to listen to the source port
on the local side, and whenever a connection is made to this port, the
connection is forwarded over the secure channel, and a connection is
made to the destination host:destiation port from the remote machine.
Port forwardings can also be specified in the configuration file. Only root
can forward privileged ports.

-R source port: destination host:destination port
Specifies that the given source port on the remote (server) host is to be
forwarded to the given destination host and destination port on the local
side. This works by allocating a socket to listen to the source port on the
remote side, and whenever a connection is made to this port, the
connection is forwarded over the secure channel, and a connection is
made to the destination host:destination port from the local machine.
Port forwardings can also be specified in the configuration file. Privileged
ports can be forwarded only when logging in as root on the remote
machine.

CONFIGURATION FILES
Ssh obtains configuration data from the following sources (in this order): command line options, user's
configuration file ($HOME/.ssh/config), and system-wide configuration file (/etc/ssh_config). For each
parameter, the first obtained value will be used. The configuration files contain sections bracketed by
"Host" specifications, and that section is only applied for hosts that match one of the patterns given in the
specification. The matched host name is the one given on the command line.
Since the first obtained value for each parameter is used, more host-specific declarations should be given
near the beginning of the file, and general defaults at the end.
The configuration file has the following format:
Empty lines and lines starting with `#' are comments.
Otherwise a line is of the format ``keyword arguments". The possible keywords and their meanings are as
follows (note that the configuration files are case-sensitive):
Host Restricts the following declarations (up to the next Host keyword) to be only for those hosts that
match one of the patterns given after the keyword. `*' and `?' can be as wildcards in the patterns. A single
`*' as a pattern can be used to provide global defaults for all hosts. The host is the hostname argument
given on the command line (i.e., the name is not converted to a canonicalized host name before
matching).

BatchMode If set to ``yes", passphrase/password querying will be disabled. This option
is useful in scripts and other batch jobs where you have no user to supply
the password. The argument must be ``yes'' or ``no".

Cipher Specifies the cipher to use for encrypting the session. Currently, 3des,
blowfish, des, and none are supported. The default is "3des". Using "none"
(no encryption) is intended only for debugging, and will render the
connection insecure.

Compression Specifies whether to use compression. The argument must be ``yes'' or
``no".

CompressionLevel Specifies the compression level to use if compression is enable. The
argument must be an integer from 1 (fast) to 9 (slow, best). The default
level is 6, which is good for most applications. The meaning of the values
is the same as in GNU GZIP.

ConnectionAttempts Specifies the number of tries (one per second) to make before falling back
to rsh or exiting. The argument must be an integer. This may be useful in
scripts if the connection sometimes fails.

EscapeChar Sets the escape character (default: ~). The escape character can also be
set on the command line. The argument should be a single character, '^'
followed by a letter, or "none" to disable the escape character entirely
(making the connection transparent for binary data).

FallBackToRsh Specifies that if connecting via ssh fails due to a connection refused error
(there is no sshd listening on the remote host), rsh should automatically
be used instead (after a suitable warning about the session being
unencrypted). The argument must be ``yes'' or ``no".

ForwardAgent Specifies whether the connection to the authentication agent (if any) will
be forwarded to the remote machine. The argument must be ``yes'' or
``no".

ForwardX11 Specifies whether X11 connections will be automatically redirected over
the secure channel and DISPLAY set. The argument must be "yes" or
"no".

GlobalKnownHostsFile Specifies a file to use instead of /etc/ssh_known_hosts.

HostName Specifies the real host name to log into. This can be used to specify
nicnames or abbreviations for hosts. Default is the name given on the
command line. Numeric IP addresses are also permitted (both on the
command line and in HostName specifications).

IdentityFile Specifies the file from which the user's RSA authentication identity is read
(default .ssh/identity in the user's home directory). Additionally, any
identities represented by the authentication agent will be used for
authentication. The file name may use the tilde syntax to refer to a user's
home directory. It is possible to have multiple identity files specified in
configuration files; all these identities will be tried in sequence.

KeepAlive Specifies whether the system should send keepalive messages to the
other side. If they are sent, death of the connection or crash of one of the
machines will be properly noticed. However, this means that connections
will die if the route is down temporarily, and some people find it annoying.

The default is "yes" (to send keepalives), and the client will notice if the
network goes down or the remote host dies. This is important in scripts,
and useful to many users too.

To disable keepalives, the value should be set to "no" in both the server
and the client configuration files.

LocalForward Specifies that a TCP/IP port on the local machine be forwarded over the
secure channel to given destination host:destination port from the
remote machine. The first argument must be a port number, and the
second must be destination host:destination port. Multiple forwardings
may be specified, and additional forwardings can be given on the
command line. Only the root can forward privileged ports.

PasswordAuthentication Specifies whether to use password authentication. The argument to this
keyword must be "yes" or "no".

Port Specifies the port number to connect on the remote host. Default is 22.

ProxyCommand Specifies the command to use to connect to the server. The command
string extends to the end of the line, and is executed with /bin/sh. In the
command string, %h will be substituted by the host name to connect and
%p by the port. The command can be basically anything, and should read
from its stdin and write to its stdout. It should eventually connect an sshd
server running on some machine, or execute "sshd -I" somewhere. Host
key management will be done using the HostName of the host being
connected (defaulting to the name typed by the user).

Note that ssh can also be configured to support the SOCKS system using
the --with-socks4 or --with socks5 compile-time configuration option.

RemoteForward Specifies that a TCP/IP port on the remote machine be forwarded over the
secure channel to given destination host:destination port from the local
machine. The first argument must be a port number, and the second must
be destination host:destination port. Multiple forwardings may be
specified, and additional forwardings can be given on the command line.
Only the root can forward privileged ports.

RhostsAuthentication Specifies whether to try rhosts based authentication. Note that this
declaration only affects the client side and has no effect whatsoever on
security. Disabling rhosts authentication may reduce authentication time
on slow connections when rhosts authentication is not used. Most servers
do not permit RhostsAuthentication because it is not secure (see
RhostsRSAAuthentication). The argument to this keyword must be "yes"
or "no".

RhostsRSAAuthentication Specifies whether to try rhosts based authentication with RSA host
authentication. This is the primary authentication method for most sites.

The argument must be "yes" or "no".

RSAAuthentication Specifies whether to try RSA authentication. The argument to this keyword
must be "yes" or "no". RSA authentication will only be attempted if the
identity file exists, or an authentication agent is running.

StrictHostKeyChecking If this flag is set to "yes", ssh will never automatically add host keys to the
$HOME/.ssh/known_hosts file, and refuses to connect hosts whose host
key has changed. This provides maximum protection against trojan horse
attacks. However, it can be somewhat annoying if you don't have good
/etc/ssh_known_hosts files installed and frequently connect new hosts.
Basically this option forces the user to manually add any new hosts.
Normally this option is disabled, and new hosts will automatically be added
to the known host files. The host keys of known hosts will be verified
automatically in either case. The argument must be "yes" or "no".

User Specifies the user to log in as. This can be useful if you have a
different user name in different machines. This saves the trouble of having
to remember to give the user name on the command line.

UserKnownHostsFile Specifies a file to use instead of $HOME/.ssh/known_hosts.

UseRsh Specifies that rlogin/rsh should be used for this host. It is possible that the
host does not at all support the ssh protocol. This causes ssh to
immediately exec rsh. All other options (except HostName) are ignored if
this has been specified. The argument must be "yes" or "no".

ENVIRONMENT
DISPLAY The DISPLAY variable indicates the location of the X11 server. It is

automatically set by ssh to point to a value of the form "hostname:n"
where hostname indicates the host where the shell runs, and n is an
integer >= 1. Ssh uses this special value to forward X11 connections over
the secure channel. The user should normally not set DISPLAY explicitly,
as that will render the X11 connection insecure (and will require the user to
manually copy any required authorization cookies).

HOME Set to the path of the user's home directory.

LOGNAME Synonym for USER; set for compatibility with systems that use this
variable.

MAIL Set to point the user's mailbox.

PATH Set to the default PATH, as specified when compiling ssh or, on some
systems, /etc/environment or /etc/default/login.

SSH_AUTHENTICATION_FD This is set to an integer value if you are using the authentication agent and
a connection to it has been forwarded. The value indicates a file descriptor
number used for communicating with the agent. On some systems,
SSH_AUTHENTICATION_SOCKET may be used instead to indicate the
path of a unixdomain socket used to communicate with the agent (this
method is less secure, and is only used on systems that don't support the
first method).

SSH_CLIENT Identifies the client end of the connection. The variable contains three
space-separated values: client ip-address, client port number, and server
port number.

SSH_TTY This is set to the name of the tty (path to the device) associated with the
current shell or command. If the current session has no tty, this variable is
not set.

TZ The timezone variable is set to indicate the present timezone if it was set
when the daemon was started (e.i., the daemon passes the value on to
new connections).

USER Set to the name of the user logging in.

Additionally, ssh reads /etc/environment and $HOME/.ssh/environment,
and adds lines of the format VAR_NAME=value to the environment. Some
systems may have still additional mechanisms for setting up the
environment, such as /etc/default/login on Solaris.

FILES
$HOME/.ssh/known_hosts Records host keys for all hosts the user has logged into (that are not in

/etc/ssh_known_hosts). See sshd manual page.

$HOME/.ssh/random_seed Used for seeding the random number generator. This file contains
sensitive data and should read/write for the user and not accessible for
others. This file is created the first time the program is run and updated
automatically. The user should never need to read or modify this file.

$HOME/.ssh/identity Contains the RSA authentication identity of the user. This file contains
sensitive data and should be readable by the user but not accessible by
others. It is possible to specify a passphrase when generating the key; the
passphrase will be used to encrypt the sensitive part of this file using
3des.

$HOME/.ssh/identity.pub Contains the public key for authentication (public part of the identity file in
human-readable form). The contents of this file should be added to
$HOME/.ssh/authorized_keys on all machines where you wish to log in
using RSA authentication. This file is not sensitive and can (but need not)
be readable by anyone. This file is never used automatically and is not
necessary; it is only provided for the convenience of the user.

$HOME/.ssh/config This is the per-user configuration file. The format of this file is described
above. This file is used by the ssh client. This file does not usually contain
any sensitive information, but the recommended permissions are
read/write for the user, and not accessible by others.

$HOME/.ssh/authorized_keys
Lists the RSA keys that can be used for logging in as this user. The format
of this file is described in the sshd manual page. In the simplest form the
format is the same as the .pub identity files (that is, each line contains the
number of bits in modulus, public exponent, modulus, and comment fields,
separated by spaces). This file is not highly sensitive, but the
recommended permissions are read/write for the user, and not accessible
by others.

/etc/ssh_known_hosts System-wide list of known host keys. This file should be prepared by the
system administrator to contain the public host keys of all machines in the
organization. This file should be world-readable. This file contains public
keys, one per line, in the following format (fields separated by spaces):
system name, number of bits in modulus, public exponent, modulus, and
optional comment field. When different names are used for the same
machine, all such names should be listed, separated by commas. The
format is described on the sshd manual page.

The canonical system name (as returned by name servers) is used by
sshd to verify the client host when logging in; other names are needed
because ssh does not convert the user-supplied name to a canonical
name before checking the key, because someone with access to the name
servers would then be able to fool host authentication.

/etc/ssh_config System-wide configuration file. This file provides defaults for those values
that are not specified in the user's configuration file, and for those users
who do not have a configuration file. This file must be world-readable.

$HOME/.rhosts This file is used in .rhosts authentication to list the host/user pairs that are
permitted to log in. (Note that this file is also used by rlogin and rsh,
which makes using this file insecure.) Each line of the file contains a host
name (in the canonical form returned by name servers), and then a user
name on that host, separated by a space. This file must be owned by the
user, and must not have write permissions for anyone else. The
recommended permission is read/write for the user, and not accessible by

others.

Note that by default sshd will be installed so that it requires successful
RSA host authentication before permitting .rhosts authentication. If your
server machine does not have the client's host key in
/etc/ssh_known_hosts, you can store it in $HOME/.ssh/known_hosts.
The easiest way to do this is to connect back to the client from the server
machine using ssh; this will automatically add the host key in
$HOME/.ssh/known_hosts.

$HOME/.shosts This file is used exactly the same way as .rhosts. The purpose for having
this file is to be able to use rhosts authentication with ssh without
permitting login with rlogin or rsh.

/etc/hosts.equiv This file is used during .rhosts authentication. It contains canonical hosts
names, one per line (the full format is described on the sshd manual
page). If the client host is found in this file, login is automatically permitted
provided client and server user names are the same. Additionally,
successful RSA host authentication is normally required. This file should
only be writable by root.

/etc/shosts.equiv This file is processed exactly as /etc/hosts.equiv. This file may be useful
to permit logins using ssh but not using rsh or rlogin.

/etc/sshrc Commands in this file are executed by ssh when the user logs in just
before the user's shell (or command) is started. See the sshd manual
page for more information.

$HOME/.ssh/rc Commands in this file are executed by ssh when the user logs in just
before the user's shell (or command) is started. See the sshd manual
page for more information.

INSTALLATION
Ssh is normally installed as suid root. It needs root privileges only for rhosts authentication
(rhosts authentication requires that the connection must come from a privileged port, and
allocating such a port requires root privileges). It also needs to be able to read
/etc/ssh_host_key to perform RSA host authentication. It is possible to use ssh without
root privileges, but rhosts authentication will then be disabled. Ssh drops any extra
privileges immediately after the connection to the remote host has been made.
Considerable work has been put into making ssh secure. However, if you find a security
problem, please report it immediately to <F-Secure-SSH-Bugs@DataFellows.com>.

SEE ALSO
sshd(8), ssh-keygen(1), ssh-agent(1), ssh-add(1), scp(1), make-ssh-known-hosts(1),
rlogin(1), rsh(1), telnet(1)

SSH-ADD
NAME
SYNOPSIS
DESCRIPTION
OPTIONS
RETURN STATUS
FILES
SEE ALSO

NAME
ssh-add - adds identities for the authentication agent

SYNOPSIS
ssh-add [-l] [-d] [-D] [file...]

DESCRIPTION
Ssh-add adds identities to the authentication agent, ssh-agent. When run without
arguments, it adds the file $HOME/.ssh/identity. Alternative file names can be given on
the command line. If any file requires a passphrase, ssh-add asks for the passphrase from
the user. If the user is using X11, the passphrase is requested using a small X11 program;
otherwise it is read from the user's tty. (Note: it may be necessary to redirect stdin from
/dev/null to get the passphrase requested using X11.)
The authentication agent must be running and must be an ancestor of the current process
for ssh-add to work.

OPTIONS
-l Lists all identities currently represented by the agent.

-d Instead of adding the identity, removes the identity from the agent.

-D Deletes all identities from the agent.

RETURN STATUS
Ssh-add returns one of the following exit statuses. These may be useful in scripts.

0 The requested operation was performed successfully.

1 No connection could be made to the authentication agent. Presumably
there is no authentication agent active in the execution environment of
ssh-add.

2 The user did not supply a required passphrase.

3 An identify file could not be found, was not readable, or was in bad format.

4 The agent does not have the requested identity.

5 An unspecified error has occurred; this is a catchall for errors not listed
above.

FILES
$HOME/.ssh/identity Contains the RSA authentication identity of the user. This file should not be

readable by anyone but the user. It is possible to specify a passphrase
when generating the key; that passphrase will be used to encrypt the
private part of this file. This is the default file added by ssh-add when no
other files have been specified.

If ssh-add needs a passphrase, it will read the passphrase from the
current terminal if it was run from a terminal. If ssh-add does not have a
terminal associated with it but DISPLAY is set, it will open an X11 window
to read the passphrase. This is particularly useful when calling ssh-add
from a .Xsession or related script. (Note that on some machines it may be
necessary to redirect the input from /dev/null to make this work.)

SEE ALSO
ssh-agent(1), ssh-keygen(1), ssh(1), sshd(8)

SSH-AGENT
NAME
SYNOPSIS
DESCRIPTION
FILES
SEE ALSO

NAME
ssh-agent - authentication agent

SYNOPSIS
ssh-agent command

DESCRIPTION
Ssh-agent is a program to hold authentication private keys. The idea is that ssh-agent is started in the
beginning of an X-session or a login session, and all other windows or programs are started as children of
the ssh-agent program (the command normally starts X or is the user shell). Programs started under the
agent inherit a connection to the agent, and the agent is automatically used for RSA authentication when
logging to other machines using ssh.
The agent initially does not have any private keys. Keys are added using ssh-add. When executed
without arguments, ssh-add adds the $HOME/.ssh/identity file. If the identity has a passphrase, ssh-
add asks for the passphrase (using a small X11 application if running under X11, or from the terminal if
running without X). It then sends the identity to the agent. Several identities can be stored in the agent;
the agent can automatically use any of these identities. Ssh-add -l displays the identities currently held by
the agent.
The idea is that the agent is run in the user's local PC, laptop, or terminal. Authentication data need not
be stored on any other machine, and authentication passphrases never go over the network. However,
the connection to the agent is forwarded over ssh remote logins, and the user can thus use the privileges
given by the identities anywhere in the network in a secure way.
A connection to the agent is inherited by child programs. There are two alternative methods for inheriting
the agent. The preferred method is to have an open file descriptor which is inherited, and have an
environment variable (SSH_AUTHENTICATION_FD) contain the number of this descriptor. This restricts
access to the authentication agent to only those programs that are siblings of the agent, and it is fairly
difficult even for root to get unauthorized access to the agent.
On some machines, an alternative method is used. A unixdomain socket is created (/tmp/ssh_agent.*),
and the name of this socket is stored in the SSH_AUTHENTICATION_SOCKET environment variable.
The socket is made accessible only to the current user. This method is easily abused by root or another
instance of the same user. The socket is only used if ssh is unable to find a file descriptor that would not
be closed by shells.
The agent exits automatically when the command given on the command line terminates.

FILES
$HOME/.ssh/identity Contains the RSA authentication identity of the user. This file should not be

readable by anyone but the user. It is possible to specify a passphrase
when generating the key; that passphrase will be used to encrypt the
private part of this file. This file is not used by ssh-agent, but is normally
added to the agent using ssh-add at login time.

/tmp/ssh_agent.<pid> Unix-domain sockets used to contain the connection to the authentication
agent. These sockets should only be readable by the owner. The sockets
should get automatically removed when the agent exits.

SEE ALSO
ssh-add(1), ssh-keygen(1), ssh(1), sshd(8)

SSHD
NAME
SYNOPSIS
DESCRIPTION
OPTIONS
CONFIGURATION FILE
LOGIN PROCESS
AUTHORIZED_KEYS FILE FORMAT
Examples
SSH_KNOWN_HOSTS FILE FORMAT
Examples
FILES
INSTALLATION
SEE ALSO

NAME
sshd - F-Secure SSH daemon

SYNOPSIS
sshd [-b bits] [-d] [-f config_file] [-g login_grace_time] [-h
host_key_file] [-i] [-k key_gen_time] [-p port] [-q]

DESCRIPTION
Sshd (F-Secure SSH Daemon) is the daemon program for F-Secure SSH. Together these programs
replace rlogin and rsh programs, and provide secure encrypted communications between two untrusted
hosts over an insecure network. The programs are intended to be as easy to install and use as possible.
Sshd is the daemon that listens for connections from clients. It is normally started at boot from
/etc/rc.local or equivalent. It forks a new daemon for each incoming connection. The forked daemons
handle key exchange, encryption, authentication, command execution, and data exchange.
Sshd works as follows. Each host has a host-specific RSA key (normally 1024 bits) used to identify the
host. Additionally, when the daemon starts, it generates a server RSA key (normally 768 bits). This key is
normally regenerated every hour if it has been used, and is never stored on disk.
Whenever a client connects the daemon, the daemon sends its host and server public keys to the client.
The client compares the host key against its own database to verify that it has not changed. The client
then generates a 256 bit random number. It encrypts this random number using both the host key and the
server key, and sends the encrypted number to the server. Both sides then start to use this random
number as a session key which is used to encrypt all further communications in the session. The rest of
the session is encrypted using a conventional cipher. Currently, 3DES, Blowfish, DES, and IDEA as an
option. 3DES is used by default. The client selects the encryption algorithm to use from those offered by
the server.
Next, the server and the client enter an authentication dialog. The client tries to authenticate itself
using .rhosts authentication, .rhosts authentication combined with RSA host authentication, RSA
challenge-response authentication, or password based authentication.
Rhosts authentication is normally disabled because it is
fundamentally insecure, but can be enabled in the server configuration file if desired. System security is
not improved unless rshd(8), rlogind(8), rexecd(8), and rexd (8) are disabled (thus completely disabling
rlogin(1) and rsh(1) into that machine).
If the client successfully authenticates itself, a dialog for preparing the session is entered. At this time the
client may request things like allocating a pseudo-tty, forwarding X11 connections, forwarding TCP/IP
connections, or forwarding the authentication agent connection over the secure channel.
Finally, the client either requests a shell or execution of a command. The sides then enter session mode.
In this mode, either side may send data at any time, and such data is forwarded to/from the shell or
command on the server side, and the user terminal in the client side.
When the user program terminates and all forwarded X11 and other connections have been closed, the
server sends command exit status to the client, and both sides exit.
Sshd can be configured using command-line options or a configuration file. Command-line options
override values specified in the configuration file.
Sshd rereads its configuration file if it is sent the hangup signal, SIGHUP.

OPTIONS
-b bits Specifies the number of bits in the server key (default 768).

-d Debug mode. The server sends verbose debug output to the system log,
and does not put itself in the background. The server also will not fork and
will only process one connection. This option is only intended for
debugging for the server.

-f configuration_file Specifies the name of the configuration file. The default is
/etc/sshd_config.

-g login_grace_time Gives the grace time for clients to authenticate themselves (default 600
seconds). If the client fails to authenticate the user within this many
seconds, the server disconnects and exits. A value of zero indicates no
limit.

-h host_key_file Specifies the file from which the host key is read (default
/etc/ssh_host_key). This option must be given if sshd is not run as root (as
the normal host file is normally not readable by anyone but root).

-i Specifies that sshd is being run from inetd. Sshd is normally not run from
inetd because it needs to generate the server key before it can respond to
the client, and this may take tens of seconds. Clients would have to wait
too long if the key was regenerated every time. However, with small key
sizes (e.g. 512) using sshd from inetd may be feasible.

-k key_gen_time Specifies how often the server key is regenerated (default 3600 seconds,
or one hour). The motivation for regenerating the key fairly often is that the
key is not stored anywhere, and after about an hour, it becomes
impossible to recover the key for decrypting intercepted communications
even if the machine is cracked into or physically seized. A value of zero
indicates that the key will never be regenerated.

-p port Specifies the port on which the server listens for connections (default 22).

-q Quiet mode. Nothing is sent to the system log. Normally the beginning,
authentication, and termination of each connection is logged.

CONFIGURATION FILE
Sshd reads configuration data from /etc/sshd_config (or the file specified with -f on the
command line). The file contains keyword-value pairs, one per line. Lines starting with `#'
and empty lines are interpreted as comments.

AllowHosts This keyword can be followed by any number of host name patterns,
separated by spaces. If specified, login is allowed only from hosts whose
name matches one of the patterns. `*' and `?' can be used as wildcards in
the patterns. Normal name servers are used to map the client's host into a
canonical host name. If the name cannot be mapped, its IP-address is
used as the host name. By default all hosts are allowed to connect.

Note that sshd can also be configured to use tcp_wrappers using the --
with-libwrap compile-time configuration option.

DenyHosts

This keyword can be followed by any number of host name patterns,
separated by spaces. If specified, login is disallowed from the hosts whose
name matches any of the patterns.

FascistLogging Specifies whether to use verbose logging. Verbose logging violates the
privacy of users and is not recommended. The argument must be ``yes'' or
``no" (without the quotes). The default is ``no".

HostKey Specifies the file containing the private host key (default
/etc/ssh_host_key).

IgnoreRhosts Specifies that rhosts and shosts files will not be used in authentication.
/etc/hosts.equiv and /etc/shosts.equiv are still used. The default is ``no".

KeepAlive Specifies whether the system should send keepalive messages to the
other side. If they are sent, death of the connection or crash of one of the
machines will be properly noticed. However, this means that connections
will die if the route is down temporarily, and some people find it annoying.
On the other hand, if keepalives are not send, sessions may hang
indefinitely on the server, leaving ``ghost'' users and consuming server
resources.

The default is ``yes'' (to send keepalives), and the server will notice if the
network goes down or the client host reboots. This avoids infinitely
hanging sessions.

To disable keepalives, the value should be set to ``no'' in both the server
and the client configuration files.

KeyRegenerationInterval The server key is automatically regenerated after this many seconds (if it
has been used). The purpose of regeneration is to prevent decrypting
captured sessions by later breaking into the machine and stealing the
keys. The key is never stored anywhere. If the value is 0, the key is never
regenerated. The default is 3600 (seconds).

LoginGraceTime The server disconnects after this time if the user has not successfully
logged in. If the value is 0, there is no time limit. The default is 600
(seconds).

PasswordAuthentication Specifies whether password authentication is allowed. The default is
``yes".

PermitEmptyPasswords When password authentication is allowed, it specifies whether the server
allows login to accounts with empty password strings. The default is ``yes".

PermitRootLogin Specifies whether the root can log in using ssh. May be set to ``yes",
``nopwd", or ``no". The default is ``yes", allowing root logins through any of
the authentication types allowed for other users. The ``nopwd'' value
disables password-authenticated root logins. The ``no'' value disables root
logins through any of the authentication methods. ("nopwd'' and ``no'' are
equivalent unless you have a .rhosts, .shosts, or .ssh/authorized_keys file
in the root home directory.)

Root login with RSA authentication when the ``command" option has been
specified will be allowed regardless of the value of this setting (which may
be useful for taking remote backups even if root login is normally not
allowed).

PidFile Specifies the location of the file containing the process ID of the master
sshd daemon (default: /etc/sshd.pid or /var/run/sshd.pid, depending on the
system).

Port Specifies the port number that sshd listens on. The default is 22.

PrintMotd Specifies whether sshd should print /etc/motd when a user logs in
interactively. (On some systems it is also printed by the shell, /etc/profile,
or equivalent.) The default is ``yes".

QuietMode Specifies whether the system runs in quiet mode. In quiet mode, nothing is
logged in the system log, except fatal errors. The default is ``no".

RandomSeed Specifies the file containing the random seed for the server; this file is
created automatically and updated regularly. The default is
/etc/ssh_ran_dom_seed.

RhostsAuthentication Specifies whether authentication using rhosts or /etc/hosts.equiv files is
sufficient. Normally, this method should not be permitted because it is
insecure. RhostsRSAAuthentication should be used instead, because it
performs RSA-based host authentication in addition to normal rhosts or
/etc/hosts.equiv authentication. The default is ``no".

RhostsRSAAuthentication Specifies whether rhosts or /etc/hosts.equiv authentication together with
successful RSA host authentication is allowed. The default is ``yes".

RSAAuthentication Specifies whether pure RSA authentication is allowed. The default is
``yes".

ServerKeyBits Defines the number of bits in the server key. The minimum value is 512,
and the default is 768.

StrictModes Specifies whether ssh should check file modes and ownership of the
user's home directory and rhosts files before accepting login. This is
normally desirable because novices sometimes accidentally leave their
directory or files world-writable. The default is ``yes".

SyslogFacility Gives the facility code that is used when logging messages from sshd.
The possible values are: DAEMON, USER, AUTH, LOCAL0, LOCAL1,
LOCAL2, LOCAL3, LOCAL4, LOCAL5, LOCAL6, LOCAL7. The default is
DAEMON.

X11Forwarding Specifies whether X11 forwarding is permitted. The default is ``yes". Note
that disabling X11 forwarding does not improve security in any way, as
users can always install their own forwarders.

LOGIN PROCESS
When a user successfully logs in, sshd does the following:
1. If the login is on a tty, and no command has been specified, prints last login time and /etc/motd (unless
prevented in the configuration file or by $HOME/.hushlogin; see the FILES section).
2. If the login is on a tty, records login time.
3. Checks /etc/nologin; if it exists, prints contents and quits (unless root).
4. Changes to run with normal user privileges.
5. Sets up basic environment.
6. Reads /etc/environment if it exists.
7. Reads $HOME/.ssh/environment if it exists.
8. Changes to user's home directory.
9. If $HOME/.ssh/rc exists, runs it (with the user's shell); else if /etc/sshrc exists, runs it (with /bin/sh);
otherwise runs xauth. The ``rc'' files are given the X11 authentication protocol and cookie in standard
input.
10. Runs user's shell or command.

AUTHORIZED_KEYS FILE FORMAT
The $HOME/.ssh/authorized_keys file lists the RSA keys that are permitted for RSA authentication.
Each line of the file contains one key (empty lines and lines starting with a `#' are ignored as comments).
Each line consists of the following fields, separated by spaces: options, bits, exponent, modulus,
comment. The options field is optional; its presence is determined by whether the line starts with a
number or not (the option field never starts with a number). The bits, exponent, modulus and comment
fields give the RSA key; the comment field is not used for anything (but may be convenient for the user to
identify the key).
Note that lines in this file are usually several hundred bytes long (because of the size of the RSA key
modulus). You don't want to type them in; instead, copy the identity.pub file and edit it.
The options (if present) consists of comma-separated option specifications. No spaces are permitted,
except within double quotes. The following option specifications are supported:

from="pattern-list" Specifies that in addition to RSA authentication, the canonical name of the
remote host must be present in the comma-separated list of patterns ('*'
and `?' serve as wildcards). The list may also contain patterns negated by
prefixing them with `!'; if the canonical host name matches a negated
pattern, the key is not accepted. The purpose of this option is to optionally
increase security: RSA authentication by itself does not trust the network
or name servers or anything (but the key); however, if somebody somehow
steals the key, the key permits an intruder to log in from anywhere in the
world. This additional option makes using a stolen key more difficult (name
servers and/or routers would have to be compromised in addition to just
the key).

command="command" Specifies that the command is executed whenever this key is used for
authentication. The command supplied by the user (if any) is ignored. The
command is run on a pty if the connection requests a pty; otherwise it is
run without a tty. A quote may be included in the command by quoting it
with a backslash. This option might be useful to restrict certain RSA keys
to perform just a specific operation. An example might be a key that
permits remote backups but nothing else. Notice that the client may
specify TCP/IP and/or X11 forwardings unless they are explicitly
prohibited.

environment="NAME=value" Specifies that the string is to be added to the environment when logging in
using this key. Environment variables set this way override other default
environment values. Multiple options of this type are permitted.

no-port-forwarding Forbids TCP/IP forwarding when this key is used for authentication. Any
port forward requests by the client will return an error. This might be used
e.g. in connection with the command option.

no-X11-forwarding Forbids X11 forwarding when this key is used for authentication. Any X11
forward requests by the client will return an error.

no-agent-forwarding Forbids authentication agent forwarding when this key is used for
authentication.

no-pty Prevents tty allocation (a request to allocate a pty will fail).

Examples
1024 33 12121...312314325 ylo@foo.bar
from="*.niksula.hut.fi,!pc.niksula.hut.fi'' 1024 35 23...2334
ylo@niksula
command="dump /home",no-pty,no-port-forwarding 1024 33 23...2323
backup.hut.fi

SSH_KNOWN_HOSTS FILE FORMAT
The /etc/ssh_known_hosts and $HOME/.ssh/known_hosts files contain host public keys for all known
hosts. The global file should be prepared by the admistrator (optional), and the per-user file is maintained
automatically: whenever the user connects an unknown host its key is added to the per-user file. The
recommended way to create /etc/ssh_known_hosts is to use the make-ssh-known-hosts command.
Each line in these files contains the following fields: hostnames, bits, exponent, modulus, comment. The
fields are separated by spaces.
Hostnames is a comma-separated list of patterns ('*' and `?' act as wildcards); each pattern in turn is
matched against the canonical host name (when authenticating a client) or against the user-supplied
name (when authenticating a server). A pattern may also be preceded by `!' to indicate negation: if the
host name matches a negated pattern, it is not accepted (by that line) even if it matched another pattern
on the line.
Bits, exponent, and modulus are taken directly from the host key; they can be obtained e.g. from
/etc/ssh_host_key.pub. The optional comment field continues to the end of the line, and is not used.
Lines starting with `#' and empty lines are ignored as comments.
When performing host authentication, authentication is accepted if any matching line has the proper key.
It is thus permissible (but not recommended) to have several lines or different host keys for the same
names. This will inevitably happen when short forms of host names from different domains are put in the
file. It is possible that the files contain conflicting information;
authentication is accepted if valid information can be found from either file.
Note that the lines in these files are typically hundreds of characters long, and you definitely don't want to
type in the host keys by hand. Rather, generate them by a script (see make-ssh-known-hosts(1)) or
by taking /etc/ssh_host_key.pub and adding the host names at the front.

Examples
closenet,closenet.hut.fi,...,130.233.208.41 1024 37 159...93
closenet.hut.fi

FILES
/etc/sshd_config Contains configuration data for sshd. This file should be writable by root

only, but it is recommended (though not necessary) that it be
worldreadable.

/etc/ssh_host_key Contains the private part of the host key. This file is normally created
automatically by ``make install", but can also be created manually using
ssh-keygen(1). This file should only be owned by root, readable only by
root, and not accessible to others.

/etc/ssh_host_key.pub Contains the public part of the host key. This file is normally created
automatically by ``make install", but can also be created manually. This file
should be world-readable but writable only by root. Its contents should
match the private part. This file is not really used for anything; it is only
provided for the convenience of the user so its contents can be copied to
known hosts files.

/etc/ssh_random_seed This file contains a seed for the random number generator. This file should
only be accessible by root.

/var/run/sshd.pid Contains the process id of the sshd listening for connections (if there are
several daemons running concurrently for different ports, this contains the
pid of the one started last). The contents of this file are not sensitive; it can
be world-readable.

$HOME/.ssh/authorized_keys Lists the RSA keys that can be used to log into the user's account. This file
must be readable by root (which may on some machines imply it being
worldreadable if the user's home directory resides on an NFS volume). It is
recommended that it not be accessible by others. The format of this file is
described above.

/etc/ssh_known_hosts and $HOME/.ssh/known_hosts These files are
consulted when using rhosts with RSA host authentication to check the
public key of the host. The key must be listed in one of these files to be
accepted. (The client uses the same files to verify that the remote host is
the one we intended to connect.) These files should be writable only by
root/the owner. /etc/ssh_known_hosts should be world-readable, and
$HOME/.ssh/known_hosts can but need not be worldreadable.

/etc/nologin If this file exists, sshd refuses to let anyone except root log in. The
contents of the file are displayed to anyone trying to log in, and non-root
connections are refused. The file should be worldreadable.

$HOME/.rhosts This file contains host-username pairs, separated by a space, one per line.
The given user on the corresponding host is permitted to log in without
password. The same file is used by rlogind and rshd. Ssh differs from
rlogind and rshd in that it requires RSA host authentication in addition to
validating the host name retrieved from domain name servers (unless
compiled with the --with-rhosts configuration option). The file must be
writable only by the user; it is recommended that it not be accessible by
others.

If is also possible to use netgroups in the file. Either host or user name
may be of the form +@groupname to specify all hosts or all users in the
group.

$HOME/.shosts For ssh, this file is exactly the same as for .rhosts. However, this file is not
used by rlogin and rshd, so using this permits access using ssh only.

/etc/hosts.equiv This file is used during .rhosts authentication. In the
simplest form, this file contains host names, one per line. Users on those
hosts are permitted to log in without a password, provided they have the

same user name on both machines. The host name may also be followed
by a user name; such users are permitted to log in as any user on this
machine (except root). Additionally, the syntax +@group can be used to
specify netgroups. Negated entries start with `-'.

If the client host/user is successfully matched in this file, login is
automatically permitted provided the client and server user names are the
same. Additionally, successful RSA host authentication is normally
required. This file must be writable only by root; it is recommended that it
be world-readable.

Warning: It is almost never a good idea to use user names in
hosts.equiv. Beware that it really means that the named user(s) can log in
as anybody, which includes bin, daemon, adm, and other accounts that
own critical binaries and directories. Using a user name practically grants
the user root access. The only valid use for user names that I can think of
is in negative entries. Note that this warning also applies to rsh/rlogin.

/etc/shosts.equiv This is processed exactly as /etc/hosts.equiv. However, this file may be
useful in environments that want to run both rsh/rlogin and ssh.

/etc/environment This file is read into the environment at login (if it exists). It can only
contain empty lines, comment lines (that start with `#'), and assignment
lines of the form name=value. This file is processed in all environments
(normal rsh/rlogin only process it on AIX and potentially some other
systems). The file should be writable only by root, and should be world-
readable.

$HOME/.ssh/environment This file is read into the environment after /etc/environment. It has the
same format. The file should be writable only by the user; it need not be
readable by anyone else.

$HOME/.ssh/rc If this file exists, it is run with the user's shell after reading the environment
files but before starting the user's shell or command. If X11 spoofing is in
use, this will receive the ``proto cookie'' pair in standard input (and
DISPLAY in environment). This must call xauth in that case.

The primary purpose of this file is to run any initialization routines which
may be needed before the user's home directory becomes accessible;
AFS is a particular example of such an environment.

This file will probably contain some initialization code followed by
something similar to: ``if read proto cookie; then echo add $DISPLAY
$proto $cookie | xauth -q -; fi".

If this file does not exist, /etc/sshrc is run, and if that does not exist either,
xauth is used to store the cookie.

This file should be writable only by the user, and need not be readable by
anyone else.

/etc/sshrc Like $HOME/.ssh/rc, but run with /bin/sh. This can be used to specify
machine-specific login-time initializations globally. This file should be
writable only by root, and should be world-readable.

INSTALLATION
Sshd is normally run as root. If it is not run as root, it can only log in as the user it is running as, and
password authentication may not work if the system uses shadow passwords. An alternative host key file
must also be used.
Sshd is normally started from /etc/rc.local or equivalent at system boot.
Considerable work has been put to making sshd secure. However, if you find a security problem, please
report it immediately to <F-Secure-SSH-Bugs@DataFellows.com>.

SEE ALSO
ssh(1), make-ssh-known-hosts(1), ssh-keygen(1), sshagent(1), ssh-add(1),
scp(1), rlogin(1), rsh(1)

SSH-KEYGEN
NAME
SYNOPSIS
DESCRIPTION
OPTIONS
FILES
SEE ALSO

NAME
ssh-keygen - authentication key pair generator

SYNOPSIS
ssh-keygen [-b bits] [-f file] [-N new_passphrase] [-C comment]
ssh-keygen -p [-P old_passphrase] [-N new_passphrase]
ssh-keygen -c [-P passphrase] [-C comment]
ssh-keygen -u [-f file] [-P passphrase]

DESCRIPTION
Ssh-keygen generates and manages authentication keys for ssh(1). Normally each user
wishing to use ssh with RSA authentication runs this once to create the authentication key
in $HOME/.ssh/identity. Additionally, the system administrator may use this to generate host
keys.
Normally this program generates the key and asks for a file in which to store the private key.
The public key is stored in a file with the same name but ".pub'' appended. The program also
asks for a passphrase. The passphrase may be empty to indicate no passphrase (host keys
must have empty passphrase), or it may be a string of arbitrary length. Good passphrases
are 10-30 characters long and are not simple sentences or otherwise easily guessable
(English prose has only 1-2 bits of entropy per word, and provides very bad passphrases).
The passphrase can be changed later by using the -p option.
There is no way to recover a lost passphrase. If the passphrase is lost or forgotten, you will
have to generate a new key and copy the corresponding public key to other machines.
Using good, unguessable passphrases is strongly recommended. Empty
passphrases should not be used.
There is also a comment field in the key file that is only for convenience to the user to help
identify the key. The comment can tell what the key is for, or whatever is useful. The
comment is initialized to user@host when the key is created, but can be changed using the -
c option.
The cipher to be used when encrypting keys with a passphrase is by default 3des. Using the
-u option, keys encrypted in any supported cipher can be updated to use this default cipher.

OPTIONS
-b bits Specifies the number of bits in the key to create. Minimum is 512 bits.

Generally 1024 bits is considered sufficient, and key sizes above that no
longer improve security but make things slower. The default is 1024 bits.

-c Requests changing the comment in the private and public key files. The
program will prompt for the file containing the private keys, for passphrase
if the key has one, and for the new comment.

-f Specifies the file name in which to load/store the key.

-p Requests changing the passphrase of a private key file instead of creating
a new private key. The program will prompt for the file containing the
private key, for the old passphrase, and twice for the new passphrase.

-u Requests that the key's cipher is changed to the current default cipher
(determined at compile-time currently 3des).

-C Provides the new comment.

-N Provides the new passphrase.

-P Provides the (old) passphrase.

FILES
$HOME/.ssh/random_seed Used for seeding the random number generator. This file should not be

readable by anyone but the user. This file is created the first time the
program is run, and is updated every time.

$HOME/.ssh/identity Contains the RSA authentication identity of the user. This file should not be
readable by anyone but the user. It is possible to specify a passphrase
when generating the key; that passphrase will be used to encrypt the
private part of this file using 3DES. This file is not automatically accessed
by ssh-keygen, but it is offered as the default file for the private key.

$HOME/.ssh/identity.pub Contains the public key for authentication. The contents of this file should
be added to $HOME/.ssh/authorized_keys on all machines where you
wish to log in using RSA authentication. There is no need to keep the
contents of this file secret.

SEE ALSO
ssh(1), sshd(8), ssh-agent(1), ssh-add(1)

