
in

in ii

COLLABORATORS

TITLE :

in

ACTION NAME DATE SIGNATURE

WRITTEN BY January 18, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

in iii

Contents

1 in 1

1.1 main . 1

1.2 legal . 2

1.3 scripts . 2

1.4 bux . 2

1.5 future . 3

1.6 history . 3

1.7 window . 4

1.8 introduction . 4

1.9 flags . 5

1.10 usage . 6

1.11 reference . 6

1.12 sorry . 7

1.13 email . 7

1.14 additions . 7

1.15 tooltypes . 10

in 1 / 12

Chapter 1

in

1.1 main

Argue 1.0 documentation
(c) Thorsten "Flavour" Stocksmeier

Readme first!
<- legal stuff / license

Introduction

ReadArgs()

Usage

Additions

Tooltypes

Main window

History

Future

Known bugs

Argue scripts

Sorry!

The author
Note: I’m not a good guide writer, and I know that ;-) If you miss ←↩

something
then it’s no problem to include it in the guide.

Please remember:
Argue is written in hours of hard work :-)

in 2 / 12

1.2 legal

The software "Argue" is copyrighted. The distribution itself may not
be modified. (This excludes archivers, of course)

All users may spread Argue as far as they can, meaning BBSs and
ftp sites and whatever they can think of.

This tool may be put on any CD if unmodified. The CD makers should
check whether they got a modified version.

Regular (i.e. official) versions of Argue are _first_ pushed to
Aminet and THEN spread around, not the other way round.

There will *never* be Argue beta versions available to the public.
If you get one, tell me where you got it immediately.

1.3 scripts

For advanced users or developers, Argue can do a very nice job when
used in shell or arexx scripts.

Argue parses the template from the TEMPLATE shell argument, so in
such a script file you might write

ed blablabla
argue >t:argue_out "DUMDUM/K/A,AMAZING/S"
c:fascinator ‘type t:argue_out‘ blurk

Well, this is a rather silly example, but perhaps it shows, what you
can do with Argue in a script file. You may even use it as a GUI
interpreter to ask the user for settings (like RequestFile or so)

It would even be possible to write a preferences editor with Argue
and store the result in env:xxx.config.

Just try to experiment :-)

1.4 bux

- Argue doesn’t free all its memory. I’m hunting for those leaks,
but far not all are yet localized. (Argue uses E’s memory tracking
to avoid dramatic leaks ;-)

in 3 / 12

1.5 future

Big parts of the new things in Argue 1.0 were suggested by its users,
and I think this is the best kind of cooperation developers can have.

I hope a lot of people have now realized they can help to make Argue
better and better. As long as I get feedback, as long as I know
folks still use Argue and are interested in further development, I
will spend my time for them and build in what you like.

(BTW: In the worst of all cases (if I sell my Amiga ;) I will release
the complete sourcecode to allow others to include the neat features
of a new OS or GUI system. Argue should not die :-)

Now my hopes are that Argue’s users get creative and think about what
they would like to have in a new Argue. Feel free to flame :-)

You see, the future of Argue is in your hands. From version to version
I get more replies, and I hope this will continue.

Tell me! Write to: flavour@aventure.teuto.de and inform yourself
about the newest Argue on http://www.teuto.de/~flavour/in_argue.html

1.6 history

... to be continued ...

1.0 - complete argument parsing rewritten, interface contents can be
easily load and saved, cycle gadget now features as many items
as specified, shell mode disabled, hoard of new examples supplied,
user defined bubble help, arguments may now be linked to a helpnode
in an AmigaGuide document, template file configuration now amazingly
user friendly ;-), shell mode enabled again, but former icon
config no more supported, MUI layout completely reworked (should
do a much better job with patterns now.) [August 1996]

0.9 - ASL multiselect for the /M multiple gadget causing two new internal
hooks :), screenmode popup works now, failed New()s and String()s
raise an IMEM (insufficient memory) exception. (for safety), added
the new cycle switch, output string size now 10kb., new drive list
popup, help file support added for the example scripts, string
gadgets advance on carriage return (MUIA_String_AdvanceOnCR)

[July 1996]

0.8 - major improvements: pre-settable switches and string gadgets,
windowID no more "MAIN" but "ARG!", five new popup buttons
for several arguments containing keywords. (PubScreen etc.)
[Argue 0.8 distribution contained the 0.3 executable. Silly thing....]

0.7 - template parsing has been widely extended to allow min/max/actual
extensions for integer arguments. fixed this and that bug. (as
always :) [June 1996]

in 4 / 12

0.6 - new release version, added multi argument list, help bubbles,
unix/nospaces routines rewritten, lets the user decide whether
he likes the arguments in a register group or not [June 1996]

0.5 - all argue development was switched to MUI, which is really
predestinated for those dynamic gadget things ;)

0.4 - interim release of 0.3 :)))

0.3 - first release version using the nicegui system. not a very good gui
layout system, but it did the job [April 1996]

0.2 - again some alpha things. they DID work, but how...

0.1 - never released alpha version (didn’t work ;-) [January 1996]

1.7 window

When all startup things worked, Argue will now begin to prepare
its window, work a bit on it and then open that main window.

You will see the interface elements in a virtual group. Slide
the scroller at the side down and up to reach all elements.

It is now finally possible to save the actual state of the interface,
meaning ALL the stuff you entered and clicked. Just click "Save this"
in the Project-menu. This nice feature is again a neat MUI feature
I saw when flying over the autodocs ;-)

The saved configuration is load at startup time and dominates the
predefined configuration in the template file.

You may manually reload your settings with "Load" from the menu.

1.8 introduction

It was around 1992 when Commodore released their new Amiga OS 2.0. With
this, there were amazing changes for developers and users. All looked
a bit more professional, and a lot of things were just easy and better
to handle than in former times.

Earlier, developers had to write their own argument reading system. Often
it was really unpractically and difficult to understand.

The guys at Commodore knew that and thought about a new standard for
argument parsing to avoid confusion about all that. What they finally
got was ReadArgs(), a system function that parses arguments automatically.

Developers now only had to write a template to specify, what arguments
they would like to have. A template looks like this: FILE/A,SWITCH/S...

in 5 / 12

From now on, all the users could have a look at this template by adding
a question mark to the program’s name to execute.

But all in all, there was a problem. Folks still had to go "down" into
a shell and type in all the arguments by hand.

So there are still a lot of people that write external interfaces for
a specific tool. Some of them are even shareware!

This was really annoying as there was no tool that could manage ALL
tools.

In early 1996 I developed a GUI layout system called NiceGUI. It was
crap, but on this way I created the first version of Argue.

Argue’s job was and is to read other tool’s argument templates and
prepare a nice user interface where the user can decide what he would
like to have as arguments. Argue 0.3 was quite bad, but it was the
first basis for further development.

Some months later I invented how to write MUI applications. It was
very easy, and I implemented a new version of Argue with it. This
was called Argue 0.6 and released to some BBSs here in Germany.

From then on Argue made giant steps towards user friendliness and
efficiency. New features were added in masses, and now, at the time
of Argue 1.0, there is a (near ;) complete interface creation system.

1.9 flags

ReadArgs(), the function that eats the templates, supports ←↩
several flags

that are linked to the argument name in the template. So a switch will be
called switch/S.

The most important flags:

/M a multiple gadget. Can be fed with as much arguments as
given by the user.

/A this argument MUST be given.

/S this is a switch.

/T rarely used. same as /S. You should write /S.

/N a number. may be positive or negative.

If no /N or /S flags are given, the argument is meant to be a
string.

Argue even offers a new flag (just for its template)

/C offers a nice cycle gadget with as many items as you like.
These items are specified by

in 6 / 12

Additions
Please note Argue does NOT support:

/M/N this is absolutely rarely used.

/T write /S in the template instead :-)

Abbrevations may be done with the "=". So "FI=File/A" is perfectly OK.
This is important in UNIX mode!

1.10 usage

Argue prefers to read its arguments as tooltypes from a project icon
with itself as the standard tool. It will also accept shell arguments,
but you should no more use them.

First it looks, whether there is a TEMPLATE tooltype. This specifies
the template it should build a user interface around. But even this
is now out of date.

Argue likes to parse the template from a file with the same name as
the icon. (So if the icon is called foo.info, the template would be
in the file foo)

The syntax of such a template file is easy. Look:

you may add some comments at the beginning!
blah...

@NEWFASHION <- the marker
<- one empty line

FILE/A
SWITCH/S
INTEGER/N

.

.

. <- do not leave a blank line at the end!

This is the basic template file. Please do NOT forget the @NEWFASHION
marker, as it is very important.

1.11 reference

Template additions are read by ReadArgs() with this template:

fl=FILEPOPUP/S,fn=FONTPOPUP/S,ps=PUBSCREENPOPUP/S,
sm=SCREENMODEPOPUP/S,sc=SECRETPOPUP/S,dr=DRIVEPOPUP/S,
no=NOPOPUP/S,de=DEVICEPOPUP/S,can=CANDIDATEPOPUP/K,

in 7 / 12

min=MINIMUM/K/N,def=DEFAULT/K/N,max=MAXIMUM/K/N,
cc=CYCLECHOICES/K/M,on=SWITCHACTIVE/S,help=BUBBLEHELP/K,
preset=PRESETSTRING/K,node=HELPNODE/K

1.12 sorry

A big sorry to all my users. I was not able to keep compatibility
to former Argue versions when used with templates in a file because
there were major changes in reading the minimal and maximal values
for integers and so on.

Argue will refuse any interface that has REQUIRED set to something
less than 10.

But I promise, all version from now on WILL support your Argue 1.0
interfaces! Really! :-)

1.13 email

Argue is submitted "as is", the author is not responsible for any
damage this tool may cause.

Argue is EMailware. If you use it, you should write an EMail to
the author. I’ll be VERY happy if you send me your own Argue
interfaces you made and I’ll add them to the examples drawer
at once ;-)

Write to: flavour@aventure.teuto.de

And see Argue’s information bulletin for newest information about
development.

Have a look at http://www.teuto.de/~flavour/in_argue.html

1.14 additions

(For quick reference, click
here
.)

Argue likes to have specifications for each argument. This offers a
great compatibility for a lot of tools.

So if I now write, "xyz" should be added, then

Switch/S

becomes

Switch/S (xyz).

in 8 / 12

And if I write, you should also add "blah", then

Switch/S (xyz)

becomes

Switch/S (xyz blah).

Please do NOT use commas in brackets, this will confuse Argue and
disturb the whole interface. Not even in help strings. If you
get weird problems, this may be the cause!

Argue features nice popup buttons for string gadgets. This means
if you press it and select something from the list comming up, it
will be taken to the string line. This is very useful!

Please note you may only add ONE popup for each argument.

You may add...

"nopopup" is the default and disables any popup buttons the
string gadget might have.

"filepopup" for a file popup button. When the user presses it,
an ASL requester will open and he can click on a
file. The filename will then be added to the
string gadget.

"screenmodepopup" if a tool wants to have the name of a monitor
(for example "Multiscan: Productivity") then
this will help. A screenmode popup will open.

"devicepopup" nice for terminal programs etc. You may choose
from a list of *.device files that are available
on your computer. (This list is read from DEVS:
when Argue initializes)

"pubscreenpopup" do you have lots of tools being able to open
their window on a public screen? With this
popup button you can choose one out. Note:
The public screen list is just read once.

"secretpopup" is for arguments that have something to do with
passwords etc. Every character will be represented
by a dot, not by a character, so nobody will
see what you enter.

"drivepopup" offers a nice drive list when popped up.

So "File/A" would get "File/A (filepopup)". Please DO leave a space
between the first bracket and the argument’s name/flags.

in 9 / 12

You may also preset string gadgets to ease the use of your interface.

Now if you’d like to have File/A the preset "foo.bar", why not write

File/A (preset="foo.bar")

Now there are /N gadgets. They specify integer values. If you want
to limit, how far they may go or what the default shall be, there
are again things you may add in brackets after the argument’s
name. (For one argument all the additions are ALL in ONE pair of
brackets!)

Let’s say you want to limit Int/N to 80 and the default shall be
20. Its negative limit must be -50. No problem. Int/N will then be

Int/N (min=-50 default=20 max=80)

Switches like Blah/S may be pre-clicked if they are very useful :-)

Just add "on" to the brackets. So "Blah/S" will be

Blah/S (on)

Do you know MUI’s help bubbles? They look really nice and may be
very important to give a short help to the user of your interface.

So if you want File/A to have the help text "tictac", just write

File/A (help="tictac").

Perhaps you already read Argue supports a new cycle gadget. The
elements for it are also specified as additions in brackets.

So you may write

Numbers/C (cyclechoices "one" "two" "three").

If you specify an AmigaGuide document with the GUIDE tooltype,
you may give each object a specific AmigaGuide node it belongs
to.

Now if you have a Blgrmbl/S switch and you want to reference
to a AmigaGuide node that explains it, why not add

Blgrmbl/S (node="Switches")

Where "Switches" is a valid node in an AmigaGuide document.

If you didn’t understand everything I wrote here, why not have
a look to all the Argue examples that come with it? Nearly
all features described above are in them, and you may learn
a lot more than from this guide :-))

in 10 / 12

1.15 tooltypes

Argue also likes tooltypes at the project icon.

If you have a tool that persists on old UNIX argument style like

+c24 +F

there is the UNIX switch. Argue will stop using ""s to cover
arguments and use the abbrevations of argument names for the
output.

So if the old program awaits a file name after +r, just write

+r=File/S.

If your tool even does not like spaces between the argument
identifier (+r) and the filename, use the NOSPACES tooltype.
This will disable argument spacing.

Argue has three modes of output. If you press the "Try" button
the tool will be executed with Argue’s output as arguments,
but Argue will not pop down. If you press "Use", the arguments
you enter are pushed in right order and written to the
output shell.

If you would like Argue also to execute the command when "Use"
is pressed, add the COMMAND tooltype and in follow the commmand
name.

Why not write "COMMAND=list all" :)

MUI offers nice looking integer gadgets that look like knobs.
If you like them and want Argue to use them for any integer,
add the USEKNOBS tooltype.

Argue puts a title above your interface. For default this is
something like "Argue x.x" (where x.x is the version)

But if you want to specify an own title (you might explain
what a GUI this is ;) write

TITLE=blahblah

in 11 / 12

If you have a big bunch of arguments for Argue it may be wise
to divide them into three groups and put them into a register
group. Just add PAGEGROUP to do that.

Argue usally won’t add integer arguments to the template if
they are NULL. If your tool needs even the nulls, add the
ADDNULLS tooltype.

You hate help bubbles? Specify the NOHELP tooltype :)

If you have a string gadget that has a font popup, MUI will
add the font name and the font size to it. Argue’s default
handling will cut off the size when you press "Use" or
"Try". If your tool awaits the font size, just add the
ADDFONTSIZE tooltype.

You find this damn Argue logo a waste of space? Simply add the
NOLOGO tooltype and it will vanish like magic ;-)

The MIXTURE tooltype enables Argue’s native mode. It will
not sort arguments from the template file any more and
display any argument as it comes.

You need some help text below the interface? No problem.
Write that text to a file and add its name after the
HELPFILE tooltype.

To make MUI remember your interface window as a unique one,
add a nice identification string after WINDOW_ID. Argue will
use "ARGUE [your id]" as window id.

Always write Argue’s version behind the REQUIRES tooltype
that you used to create the interface.

If you have an AmigaGuide document that explains some of your
arguments, add its name after the GUIDE tooltype.

If you then want to reference to a specific node for an

in 12 / 12

argument, add (node="mynode") behind the argument’s name in
the template file.

	in
	main
	legal
	scripts
	bux
	future
	history
	window
	introduction
	flags
	usage
	reference
	sorry
	email
	additions
	tooltypes

