
The Help Project
Welcome to Help Assistant 3.0. This Word for Windows 6.0 macro greatly facilitates the
development of Windows Help files, and provides an easy access to most of the functions
supported by the Microsoft Help Compiler.

Help Assistant requires that a Project consisting of the following be created:

- the Topic files written in Rich Text Format (.RTF)
- any graphics files and video files (AVI) required for your Help file
- a Help Project Configuration file (.HPJ)
- a Setup file (.INI)

The Help Compiler links the graphics files with the topic files using the information contained in
the Help Project Configuration file (.HPJ) and generates a Windows compatible Help file with
the .HLP extension. (See Diagram). Video for Windows files (AVI) can be displayed within the
Help file; however, they are not integrated within the resulting .HLP file, and must be distributed
along with the help file.

Using the Help Assistant, you may Open/Edit existing projects or Create new ones. Help
Assistant automatically tracks the project you are working on, as well as its settings. The basic
setup parameters required by Help Assistant are automatically recorded in the Setup file (.INI).

Although this is not required, it is recommended that each project be kept in a separate directory.
This greatly facilitates the management of the project. When creating a new project, Help
Assistant will automatically create a new directory if the specified Project Directory doesn't
already exist.

To create a Windows Help file, you must first setup your project. Then you simply add one or
more topic files to the project, and edit their contents, setting up Jumps and Pop-ups as required.
Finally, you compile the project to generate the .HLP file.

See Also: Setting-up The Help project, Setting-up Topics, Creating Jumps, Creating Pop-ups

Help Compiler
Help Assistant must use the Microsoft Help Compiler for
Windows 3.1. It is recommended that the Microsoft (R) Help
Compiler Extended Version; HCP.EXE be used. HCP.EXE runs
as a DOS program in protected mode and generates help files
for Windows 3.1.

Handling Topic Files
To add or remove topic files from the project, or edit a topic file; select "HA Files Setup" from the
"File" pull-down menu. Help Assistant will display the Files Setup dialog box.

Short Cut: Click on the button on the Toolbar to call up the "File Setup" dialog box..
For more information click on any fields of the following Files Setup dialog box:

When Help Assistant displays the "Files Setup" dialog box, select one of the topic files displayed
in the list box, and click on the desired option.

To add a new file to the project, click on the "NEW" button. Help Assistant will create an empty
.rtf file with the specified filename, and add it to the project. To add an existing file to the project,
click on the "ADD" button. Help Assistant displays the standard WinWord "Open" dialog box.
Enter *.rtf to locate topic files in the selected directories, and click on the "OK" button once a file
has been selected.

Topic files must be saved in the Rich Text Format (RTF). You must therefore ensure that topic
files are not overwritten in Word for Windows format during the editing process.

Quick Save: Click on the button to save and close an open RTF file. Use this button
carefully as Help Assistant will not prompt for a confirmation before saving the file. This also
ensure the you do not accidentally save the current file in a different format.

It is highly recommenced that the Help Assistant - Files Setup options be used at all time when working
with a specific Help Project. When creating a New file with Help Assistant, it is automatically added to
the project's files list. However, you may create a new RTF topic file using the Word for Windows "File -
New" menu item using the helpass template. If you do so, you must add these files to the project using
the Help Assistant - Files Setup Add option.

Changes to the project file list will not be written to the HPJ project file until you save the project.
Therefore, if you made any changes to the file content of the project, Help Assistant will prompt
you to save the project before you can exit Help Assistant.

Topic Files List Box
This box displays all the topic files found in the specified "Root"
directory for which the extension matches the .RTF file format.

Click on this button to edit the selected topic file.

Click on this button to add a topic file to the project. The Open
dialog box will appear. Enter *.RTF to locate Topic files in the
selected directories.

Click on this button to remove the selected Topic file from the
project. Help Assistant requests confirmation before deleting
the file from the project directory . Answer "No" to keep the file.
Answering "Yes" will permanently delete the file from the project
directory.

Click on this button to create a new .rtf topic file and add it to the
project.

Click on this button to abort operations.

Compiling a Help Project
To compile the Help file, the Microsoft Help compiler must be installed in a directory that is in the
file path. Select "Compile" from the "Tools" pull-down menu to compile the current project. Help
Assistant can compile either the entire Project, or only the current File, Topic, or Selection.

Short Cut: Click on the button on the Toolbar.
When selecting this option the following dialog box will appear. By default, Help Assistant compile the
entire project. However, you may want to quickly view only the current file, topic, or selection:

Compiling only the current file, topic, or selection is much faster than compiling the entire project.
This is a useful feature to verify that the desired result is obtained. However, this type of
compilation does not change the help file defined by the project. Therefore, you must compile
the entire project if you want the changes to take effect.

The Compiler's error messages will be written in a file with the .err extension in the project
directory. When creating a new project, Help Assistant automatically set this file name to
projectname.err if a different filename is not specified in the "Options - Setup" dialog box. This
file is a standard ASCII file that can be opened using WinWord or Notepad to view error
messages and warnings. It is by default automatically displayed upon compilation. You can
disable the automatic display of the error message file in the "Options - Setup" dialog box.

When either the Medium or High Compress option is selected, Help Compiler creates a phrase-
table file with the .ph extension in the Root directory if one does not already exist. If the compiler
finds a file with the .ph extension, it uses that file for the current compilation. Because the .ph file
speeds up the compression process when little text has changed since the last compilation, you
might want to keep the phrase file if you compile the same Help file several times with
compression. However, you will get maximum compression if you disabled the "Use Old Key
Phrases" in the "Project Setup Dialog Box" before compiling.

Upon compilation, Help Assistant will automatically launch the resulting Help file. You may
disable this option for the Project compilation in the "Options - Setup" dialog box. You cannot
disable this option for the File, Topic or Selection compilation.

Running a Help Project File
The Help file can be run directly from within WinWord. Select "Run" from the "Tools" pull-down
menu. Windows Help files can also be run from within the WinHelp utility or by double-clicking
on the filename in the File Manager. For more information on how to run/set programs see the
Windows User Manual.

Short Cut: Click on the button on the Toolbar (or Ctrl+R).
Upon compilation, Help Assistant will automatically launch the resulting Help file. You may disable this
option for the Project compilation in the "Options - Setup" dialog box. You cannot disable this option for
the File, Topic or Selection compilation.

Help Button
Click on this button to access context sensitive help.

Setting-up Options
It is possible to enable, or disable a number of options using the Help Assistant - Option Setup
dialog box. To set-up options, select "Tools - Options" from the pull-down menu, and Help
Assistant will display the following dialog box:

For more information click on any fields of the following Options Setup dialog box:

Disable Opening Screen
Select this option to disable the display of the Opening Screen
when launching Help Assistant, or creating a new topic.

Update Topic Title
Select this option if you want Help Assistant to replace the topic
title with the content of the Topic Title ($) field in the Topic Setup
dialog box, and set its style to Topic Heading.

It may not be desirable to set this option when you want for
instance, have a section heading appear in a non-scrolling
region, and the actual topic in the scrolling region. In such case,
Help Assistant would replace the section heading with the current
topic heading. To avoid this problem, deselect this option.

Search for Topic
When this option is set, Help Assistant search for existing topics
in the Topic List when creating Jumps or Pop-ups. If the time
required to search the topic list becomes excessive, you may
want disable this option.

Update Topic List
By default, Help Assistant writes new topics to the Topic List.
You may want to disable this option if you are creating a serie of
pop-up topic for instance and you don't want their titles to appear
in the main topic list. You may also disable this option each time
in the Topic Setup dialog box.

Display Compilation Messages
This option enable/disable the automatic display of compilation
messages upon compilation.

Display Help File After Compiling
Help Assistant displays by default the newly compiled help file.
You may disable this option only when Help Assistant is
compiling the entire project.

Write compilation messages to:
Specify the name of the file where the Help Compiler writes the
compilation messages. By default this file is named after the
Help Project filename with the .err extension.

Click on this button to accept the selected options.

Click on this button to abandon the changes.

Help Project Functions
 Setting-up The Help Project

 Handling Topic Files

 Setting-up Topic Windows

 Using Help Project Macros

 Setting-up Options

 Compiling The Project

 Running The Help Project File

Topic Editing Functions
 Creating And Setting-up Topics

 Creating Jumps

 Creating Pop-ups

 Using Help Macros

 Inserting Bitmaps

 Inserting Video

Other

 The Help Project

 Advanced Techniques

All rights reserved, TecKnow Logic 1993

Advanced Programming Techniques
Non-Scrolling Windows

It is possible to specify a non-scrolling window region which will appear in the upper region of the
Windows Help display window. Non-scrollable windows may contain anything that is normally
displayed in the Client Window (scrollable window); including hypergraphics, Jumps and Pop-ups.
Its size is defined by its content, and its color specified in the Window Definition (See: Setting Up
Topic Windows).

To incorporate elements (titles, bitmaps etc.) in a non-scrolling window you must set their
paragraph style with the "Keep With Next" attribute. All items to be included in this non-scrolling
region must have this attribute. These paragraphs must be at the very top of the topic. The
Help Compiler will generate an error message if a "Keep With Next" paragraph comes after a
paragraph without the attribute, and will not create a non-scrolling window.

To set the "Keep With Next" paragraph attribute, position the cursor on the paragraph, select
"Format"-"Paragraph" and check the "Keep With Next" check box, or change the paragraph style
through the "Style..." menu option.

Displaying a Button Bar in a Non-Scrolling Region:
Using the non-scrolling window feature you can easily display a button bar at the top of a topic as
depicted in the following figure.

This example was created this way:

- In Window Setup, set the color for non-scrolling window to light-grey in .
- Using PaintBrush, created a bitmap image of the buttons.
- Generated a segmented graphic image using the MS Hot-Spot Editor, and created a

"Hot-Spot" for each button that Jumps to a particular topic.
- Inserted this *.SHG image in the topic using the "Bitmap" feature of Help

Assistant at the top of the topic.
- Set the paragraph "Keep With Next" Attribute for the reference to this bitmap (e.g. "bmc

BTTNBAR.SHG")

Setting-up The Help Project
Each project requires that its characteristics be specified before it can be compiled (here the term
project describes the making of a Help file). The file containing all the information required (topic
files, title, options etc.) is generally referred to as the project file, and has the .hpj extension.
Although this file can be created or edited manually, it is recommended not to since it is much
easier to let Help Assistant do it for you.

When starting a new project, Help Assistant creates two files: the project file with the .hpj
extension, and the Help Assistant setup file with the .ini file extension. The first file is used by
the Microsoft Help Compiler while the second is used by Help Assistant to track changes to the
project itself, options, settings and any other information that is required by Help Assistant itself.
Throughout the Help file creation process, Help Assistant will maintain the project file for you; and
unless you wish to use advance programming techniques, you will never have to edit the project
file manually.

To setup a project, select "Project..." from the "HA" pulldown menu. Help Assistant displays the
"Project Setup" dialog box from which most of the options offered by the Microsoft Help Compiler
can be set.

Short Cut: Click the button on the Toolbar to access the "Help Assistant Project Setup"
dialog box.

For more details about each feature, click on the desired elements of the "Help Assistant Project Setup"
dialog box:

When creating a new project, all the parameters specified in the setup dialog box are
automatically written to the Help Assistant setup file .ini and the project file .hpj; however, further
changes will only be written to the project file .hpj when the project is compiled. When compiling
a project that has been changed, Help Assistant requests if you wish to write the information to
the project file before compiling. If you answer no, Help Assistant will not update the project file
used by the Microsoft Help Compiler, and changes will not be reflected in the compiled Help file.
However, the changes will be kept in the Help Assistant setup file and may be saved at a later
compilation. If you do not wish to keep the changes made to a project, and that project has not
been saved yet, re-open the project and answer no when requested if you wish to use the current
.ini file. Help Assistant will then read again all the information contained in the .hpj project file
and create a new clean .ini setup file. (This approach is used to increase performance and
security)

Project
In this box type the filename for the current Help project. Help
Assistant will automatically set the default .HPJ file extension.

Example: myhelp.hpj

Title
This is the text that will appear in the Title Bar of the Help
window.

Example: This is my Help File Title

Press this button to access the Directory Setup text fields where
the location of the Project, Bitmaps and Video files can be
specified.

See Also: Setting Up Directories

Citation
The citation differs from the Copyright notice in two
ways: the text specified will not appear in the about
dialog box, but is appended at the end of the topic when
the "Copy" function is used, and will generally be much
longer than the Copyright notice.

Example: Copyright (c) 1993, Cie X , All rights
reserved. Cannot be reproduced without prior
authorisation.

Contents
This is a string (#) that identifies the Topic used as an index.
The Index Topic is the topic that first appears when WinHelp is
run. If no Contents String is specified, the first topic of the first
topic file specified in the project file will be used as the Index
Topic.

Example: TopicIndex

See Also: Setting-up Topics.

Copyright
This text appears in the About Dialog Box of WinHelp.

Example: Copyright (c) 1993, MyName

Icon
This is the name of the icon to associate with the Help
application. The icon file must be in the Root directory.

Example: MyIcon.ico

Map
Enter the name of the header file (*.h) where context strings with context
numbers are defined for context-sensitive Help. The context number
corresponds to a value the parent application passes to Windows Help in
order to display a particular topic.

This file must contain one or more #define statement(s) (Ex. #define
ContextString 2), and can have additional #include statements as well.
However, files may not be nested in this way more than five levels deep.

Example: include.h

Include Multimedia Options
Select this option if you want to be able to play Windows
wav files within a given topic. The multimedia option is
not required to play AVI files. However, most future
multimedia options will be accessible via this option.

See Also: Using Help Macros, Playing AVI files

Use Old Key Phrases option
This option is ON by default. If you want the Help compiler to generate
new Key Phrases, desable this option. Desabling the Use Old Key
Phrases option will increase the compilation time when the "Compress"
option is used. However, it is recommended to desable this option
whenever significant changes have been made to the topic files.

Click on this button to access the Windows
Setup dialog box.

Click on this button to edit or create the header file (*.h) defined
in the "Map" section.

Click on this button to exit the Help Assistant Project Setup
dialog box and save changes you made to the setup parameters.
Help Assistant ask if you wish to update the current project.
Answer "Yes" to make the changes effective. Answer "No" to
keep working on the current project.

Click on this button to exit the Help Assistant Project Setup
dialog box without saving changes made to the setup
parameters.

Click on this button to generate a new Help Project (*.HPJ) file. Help
Assistant will ask if you wish the new project to be the current project.
Select "No" to generate a new project file but keep the project you are
currently working on as the current project. If the project name already
exists, Help Assistant will ask if you wish to replace the current project.
Select "Yes" to erase all changes to the Help Project file. Select "No" to
specify a different Help Project file name. Select "Cancel" to abort the
operation.

Click on this button to select and make an existing project the
current project. The standard WinWord Open dialog box
appears. Enter *.HPJ to locate project files in the selected
directories.

Once an existing project is selected, Help Assistant resets the
current project parameters to those found in the selected project
file.

Click on this button to edit the current Help Project file (.HPJ file).
Help Assistant will not delete any additions to the project, unless
they are overwritten during the "create new project" process.

Click on this button to access the Project Macro Setup dialog
box. Using this option, Project Macros may be modified, added,
or removed from the project definition file (project.hpj file).

Click on this button too insert / delete a file, or edit an existing file
in the project.

See Also: Handling Topic Files.

Include Glossary Button
Check this option to automatically include a "Glossary" button to the Help
application window. This glossary is the standard Windows Glossary. To
access you own glossary file, changes to the "CreateButton ("btn_up" ,
"&Glossary" ...)" statement must be made manually.

Include CD-ROM Option
Check this option to automatically include the OPTCDROM
option. This option optimizes a help file for display on CD-ROM
by aligning topic files on pre-defined block boundaries.

Include Browse Buttons
Check this option to automatically include the browse buttons.

Warning LOW
The "WARNING" parameter specifies the amount of debugging
information the Help compiler is to report. Check this option to
generate report only on the most severe errors.

Warning MEDIUM
The "WARNING" parameter specifies the amount of debugging
information the Help compiler is to report. Check this option to
generate report on an intermediate number of errors.

Warning HIGH
The "WARNING" parameter specifies the amount of debugging
information the Help compiler is to report. Check this option to
report all errors and warnings.

Compress OFF
This option specifies that no compression is to be used when
building the help file.

When developing a Help file, selecting "Compress OFF" provides
the shortest compilation time.

Compress MEDIUM
This option specifies that approximately 40% compression is to
be used when building the help file.

Compression increases the compilation time.

Compress HIGH
This option specifies that approximately 50% compression is to
be used when building the help file.

This level produces the smallest help file, but also increases the
compilation time significantly.

Bitmaps Directory
This is the directory where Help Assistant locates the bitmaps to
be included in the topic files. All bitmaps must be in the same
directory.

Although bitmaps can be directly inserted into the topic files, it is
recommended that they be included during the compilation
process. This significantly reduces the amount of memory
required to compile the project.

Example: c:\bitmaps

See Also: Handling Bitmaps.

Project Directory
This is the directory where all your topic files for the current
project are stored. It must be created manually using the File
Manager. See the Windows User Manual for more details on how
to create a new directory.

Help Assistant automatically searches this directory for topic
files. To facilitate project management, it is recommended that
each project be assigned its own directory.

Example: c:\myproject

AVI Files Directory
This is the directory where all the Video for Windows AVI files for
the current project are stored. This directory must be created
manually using the File Manager. See the Windows User
Manual for more details on how to create a new directory.

Help Assistant automatically searches this directory for AVI files.
To facilitate project management, it is recommended that each
project be assigned its own directory. Also, each video file used
in the project must also be distributed with the project Help file.

Example: c:\avifiles

Setting Up Directories
You must indicate where Help Assistant will look to find the Project files, Bitmaps and Video files
in the following dialog box:

For more details, select any of the elements found in the "Help Assistant - Directories Setup"
dialog box:

Click on this button to accept the current directory
selection. Help Assistant will return to the Setup dialog
box upon completion.

Click on this button to cancel any changes to the
directory selection. Help Assistant will return to the
Setup dialog box.

Creating Jumps
Clicking on underlined green text causes Help to jumps to the topic associated with the word or
phrase selected. To create "Jumps" with Help Assistant, select the word or phrase to be used as
the jump "hot-text" and select "Jump" from the "Insert" pull-down menu.

Example:

Help Assistant displays the "Jump to Topic" dialog box. Specify the context string referencing the
topic page to jump to when the underlined green text is selected.

Short Cut: Click on the button on the Toolbar.
Click on any field of the "Jump to Topic" dialog box to obtain more details:

Context String
Identifies the topic page to jump to when the underlined green
text is selected.

Example: SetupIndex

Click on this button to accept the context string. Help Assistant
will set the attributes of the selected text to green double
underlined, and insert the context string as hidden text right next
to the selected text.

Click on this button to cancel operations.

Click on this button to select a topic from the topic list.

Selection
This text box presents the current text selection which will be use
as the "hot text" for the jump. It is used as a reference only, and
changes to the text will not be reflected in the topic file.

File Name
The default file name for the jump is the current project.
However, to jump to another help file, enter the name of
the file where Windows Help will jump to.

Example: helpfile.hlp

Keep Attributes Option
Windows Help use green underlined text as the default
format for Jump Text. Select this option if the current
features (font, style, color, underline) of the Jump text
are to be preserved.

Window
This ComboBox lists all the window styles defined in
your project. To Jump to a topic within the current topic
window, do not specify any window style. To Jump from
a Secondary window to the Main window, select the
"main" window style.

See Also: Setting-up Topic Windows

Creating and Setting-up Topics
The topic pages are the individual sections of the help text that appear in a single scrollable
window. Each topic page is identified by a context string (a unique character string like "Index")
and is separated from other topic pages by a Hard Page Break (Ctrl-Enter). Each topic page
may have the following features: a title, keywords, a browse sequence number, macros, jumps
and pop-ups. Single files may contain as many topic as desired.

To set a topic, position the cursor anywhere within the page, and select "Topic" from the "Insert"
pull-down menu. Help Assistant displays the Topic Setup dialog box from which the Topic
features are specified. Those are inserted as footnotes, with one of the following signs as the
footnote marker: #, $, K, +, !, *, and @.

Example:

Short Cut: Click on the button on the Toolbar.
Click on any field of the "Topic Setup" dialog box to obtain more details.

Note that the last paragraph of each topic should be terminated with at least one <RETURN>,
otherwise Word for Windows and Help Assistant will not recognize the following topic.

By default, Help Assistant does not insert the content of the Topic Title ($) field at the beginning of
the topic. You may change this behaviour by selecting the "Update Title" option in the Option
Setup dialog box. (See also: Setting-up Options)

Each time a topic is created, Help Assistant writes its title and context string to the topic list. You
may disable/enable this feature with the "Update Topic List" option in the Option Setup dialog box.
(See also: Setting-up Options)

You may also add new features to a topic (e.g. Help Macros !) at any time. However, the Topic
Title ($) field of the "Topic Setup" dialog box should be cleared. If you don't, Help Assistant will
either assume you wish to replace the current topic features with the new settings and title, and
delete all previous settings, or insert a second Topic Title ($) statement that includes the footnotes
references.

Context String (#)
This is the topic page ID. To tell Windows Help where to Jump
to, or what topic to Pop-up, reference the Topic Page's context
string.

Example: SetupIndex

Topic Title ($)
It appears in the Help Bookmark menu, and in the Show topics
list when a keyword search is performed in the Help file.
Usually, the topic title is the same as the topic page's heading.

Example: Setting-up your Help Project

Keywords (K)
Keywords can be assigned to each topic. They are used to
search through a Help file for a specific topic. More than one
keyword can be assigned to a topic. Each keyword are
separated by a semicolon (;). They are not case-sensitive, but
will appear in the Search dialog box exactly as they are entered.

Example: Setup; Help Project

Browse Sequence (+)
The browse sequence numbers organize topic pages in relation
to one another. Help files can be browsed through in the order of
the assigned sequential numbers. More than one browse
sequence may be assigned. Each sequence must be identified
by a specific keyword.

The Help Compiler sorts browse sequence numbers
alphanumerically; therefore to achieve a proper sort, the same
number of digits for all the sequence numbers must be used.
For example, 090 is used instead of 90 to ensure that the Help
Compiler places topic 090 before 100.

Example: FirstSequence:010, FirstSequence:020...,
SecondSequence:010, SecondSequence:020...

Build Tag (*)
Build tags may be added to a topic.

Comment (@)
Comments may be added to each topic. Those comments will
not appear anywhere in the compiled Help file.

Example: This is my comment for this topic...

Help Macro (!)
WinHelp Macros can be associated with a particular topic. Each
time this topic is accessed, the specified macro is executed.

Example: ExecProgram(`clock.exe', 1)

Click on this button to accept all entries. It is not necessary to
complete all fields. Help Assistant automatically creates
footnotes for each field.

Click on this button to abort the operation.

Update Topic List
De-select this option if you do not wish to automatically create an
entry in the topic list for this Topic. This function is particularly
useful for pop-ups which are generally not main subject
headings. Adding each pop-up to the topic list, may increase
the size of the list substantially, and also the time required to
read the list when setting up Jumps or Pop-ups. If the Topic
Title field is empty, Help Assistant will not add any statement to
the topic list.

Creating Pop-ups
Clicking on dotted-underline green text causes Help to pop-up to the topic associated with the
word or phrase selected, but the original topic page remains visible in the Help window. To
create "Pop-ups" with Help Assistant, select the word or phrase to be used as the pop-up "hot-
text" and then select "Popup" from the "Insert" pull-down menu.

Example:

Help Assistant displays the "Pop-up Topic" dialog box. You must specify the context string
referencing the topic page to pop-up. If Help Assistant finds the text selected in the list of topics,
pop-ups can be created automatically. You may also select a topic from the topic list if you don't
know the Context String.

Short Cut: Click on the button on the Toolbar.
Click on any field of the "Pop-up Definition" dialog box to obtain more details:

Context String
Identifies the topic page you wish to pop-up when the dotted-
underlined green text is selected.

Example: SetupIndex

Click on this button to accept the current information. Help
Assistant will set the correct attributes for the selected text, and
insert the pop-up string as hidden text next to the selected text.

Click on this button to cancel operations.

Click on this button to select a topic from the
topic list:

See Also: Setting-up Topics

Selection
This text box presents the current text selection which will be use
as the "hot text" for the Pop-up. It is used as a reference only,
and changes to the text will not be reflected in the topic file.

File Name
The default file name for the pop-up is the current
project. However, to pop-up a topic contained in
another help file, enter the name of the file where
WinHelp will find the topic.

Example: helpfile.hlp

Keep Attributes Option
Windows Help uses green dotted-underlined text as the
default format for Pop-up Text. Select this option if the
current features (font, style, color, underline) of the pop-
up text are to be preserved.

Inserting Bitmaps
To insert a Bitmap or metafile anywhere in your topic, select "Bitmap" from the "Insert" pull-down

menu, or click on the button on the HA Quick Edit Toolbar.

Select one of the bitmap files displayed in the list box and the desired justification, and click on
the "INSERT" button to insert the bitmap reference at the cursor position. To edit the selected
bitmap file, click on the "EDIT" button. To preview the selected bitmap before inserting it, select
the Preview Bitmaps option.

Help Assistant will not insert the bitmap image selected, but will rather insert the bml, bmc, or
bmr statements along with the name of the graphics file selected at the specified position.
Although a bitmap image can be inserted directly in the text, it will consume a great amount of
memory and limit the size of the individual topics. Only 16-colors can be displayed by Windows
Help; however, bitmaps may have more than 16 colors.

Bitmap Image Formats
Select one of the following formats:

Windows Bitmaps (.BMP)
Segmented-graphic bitmaps (.SHG)
Placeable Windows Metafiles (.WMF)
Multiple-resolution Bitmaps (.MRB)
Device-independent Bitmaps (.DIB)

Click on this button to accept the file format
selection.

File List Box
This box displays all the files found in the specified "Bitmaps"
directory for which the extension matches the graphics file format
selected. Use File Manager to move graphics files in the
selected "Bitmaps" directory if they are to appear in this List Box.

Character Justification
A bitmap can be inserted into a paragraph as if it were a character by using the
default center justification. The bottom of the bitmap aligns with the base line of
the current line of text and the left edge aligns with the next character position.

Paragraph properties also apply to the bitmap. Windows Help places text
following the bitmap on the same base line at the next available character
position.

In general, bitmaps inserted as characters, should be clipped to the smallest
possible size. Extra white space at the top or bottom of the bitmap image affects
the alignment of the bitmap with the text and may affect the spacing between
lines.

Left and Right Justification

A bitmap can be placed at the left or right margin of the Help window. Use the
Left or Right justification to wrap text around the bitmap. The left justification
inserts a bitmap at the left margin; right justification inserts it at the right.

To wrap text around a bitmap, insert the left of right justified bitmap at the
beginning of a paragraph. Windows Help aligns the start of the paragraph with
the top of the bitmap and wraps around the left or right edge of the bitmap.

If a left of right justified bitmap is placed at the end of a paragraph, Windows Help
places the bitmap under the paragraph instead of wrapping the text around the
bitmap. To avoid wrapping text around a bitmap, insert a paragraph immediately
before and after the bitmap insertion point.

Click on this button to insert the selected bitmap / metafile at the
cursor's position with the specified justification.

Click on this button to edit the selected bitmap. At this time, only
the .bmp and .shg formats are supported. You must have the
Hot Spot Editor to be able to edit segmented-graphics
bitmaps.

Click on this button to abort the current
operation.

Preview Bitmaps
Select this option to preview the selected bitmap image.
Only the .bmp format is supported.

Selected Bitmap
If the Preview Bitmap option is selected, the bitmap file
currently selected will be displayed.

Setting-up Topic Windows
The size, position, colors, caption, and display mode for each topic window can be specified
individually. Each new window name will appear in the window list of the "Jump to Topic" dialog
box, where it is possible to specify the destination window used to display the topic identified by
the context string. By default, WinHelp displays topics in the primary window. However, if you
want to change its default characteristics, or define a number of secondary windows (secondary
windows differ from the primary window by their lack of button and menu bar), you can specify
their characteristics using the Windows Setup dialog box.

To access the Topic Windows Setup dialog box, select "Window Setup..." from the "Format" pull-
down menu. Help Assistant will display the "Window Setup" dialog box shown below:

Short Cut: Click on the button on the Toolbar.
Select one of the options. If you selected "Add" or "Setup", Help Assistant will display the Window Setup
dialog box from which you can specify the selected topic window parameters.
For more details on each setting, click on the desired option:

Windows List Box
Select from this list the Topic Window to Setup
or Remove.

Click on this button to "Add" a Topic Window
definition to the project.

Click on this button to "Setup" the selected Topic
Window.

Click on this button to "Remove" the selected
Topic Window from the Project.

Click on this button to "Cancel" operations.

Window Name
Indicates the name of the Topic Window. The name
"main" is reserved for the primary display window. Any
other name will be interpreted as a secondary window.

Window Caption
Indicates the caption that will appear in the title bar of the
selected window. If the "main" window was selected,
this field contains the title specified in the "Title" field of
the "Project Setup" dialog box.

Color - Client Window
Specify in those fields the Red, Green, and Blue color
components of the main topic window (also call
scrollable window). These values must be between 0
and 255.

Color - Non Scrollable Window
Specify in those fields the Red, Green, and Blue color
components of the non-srollable topic window. These
values must be between 0 and 255. The text appearing
in a non-scrollable window must have its paragraph
pagination set to "Keep With Next".

Window Metrics - Position
Specify in those fields the X and Y position of the left
corner of the window. These values are specified in
percentage (0%-100%) of the screen area. If the sum
of window size (Width and Height) and window position
(X and Y) exceed 100, Help Assistant will calculate the X
and Y values required to center the window on the
screen.

Window Metrics - Size
Specify in those fields the Width and Height of the
window. These values are specified in percentage (0%-
100%) of the screen area. They cannot exceed 100%.

Option - Maximize Initially
If this option is selected, Windows Help will ignore the
values specified for the size and position of the window.

Option - Keep on Top
If this option is selected, Windows Help will keep the
window on top of any other windows.

Click on this button to accepts entries.

Click on this option to cancel operations.

Inserting Video for Windows (AVI)
To insert a Video for Windows sequence in your topic, select "Video" from the "Insert" pull-down
menu. Help Assistant inserts either the ewl, ewc, or ewr statements along with the name of the
DLL, function call and the filename selected at the specified position.

Short Cut: Click on the button on the Toolbar to call up the "Play AVI" dialog box..
Help Assistant displays the "Play AVI..." dialog box. Select one of the video files displayed in the list box,
click on the desired justification and click on the "INSERT" button to insert the required statement at the
cursor position.

For more details on inserting Video for Windows, click on any of the "Insert Bitmap" dialog box
feature:

To play Video for Windows sequences in Help files, the end user must have Microsoft Video for
Windows driver installed on their system, and all avi files used with a given Help file must reside
in the same directory as the Help file. Also, helpass.dll must also be in this directory. The
helpass.dll can be freely distributed.

Video Files List Box
This box displays all the AVI files found in the specified "Root"
directory for which the extension matches the avi file format.
Use File Manager to move video files in the "Root" directory if
they are to appear in this List Box.

Character Justification
A Video Frame can be inserted into a paragraph as if it were a character by using
the default center justification. The bottom of the frame aligns with the base line
of the current line of text and the left edge aligns with the next character position.

Paragraph properties also apply to the Video Frame. Windows Help places text
following the frame on the same base line at the next available character
position.

Left and Right Justification

A Video Frame can be placed at the left or right margin of the Help window. Use
the Left or Right justification to wrap text around the frame. The left justification
inserts a frame at the left margin; right justification inserts it at the right.

To wrap text around a Video Frame, insert the left of right justified frame at the
beginning of a paragraph. Windows Help aligns the start of the paragraph with
the top of the frame and wraps around its left or right edge.

If a left of right justified frame is placed at the end of a paragraph, Windows Help
places the frame under the paragraph instead of wrapping the text around the
bitmap. To avoid wrapping text around a frame, insert a paragraph immediately
before and after the frame insertion point.

Click on this button to insert the selected Video for Windows
frame (AVI) at the cursor's position with the specified justification.

Click on this button to abort the current
operation.

{bmc TITLE.BMP}

Using Help Macros

Help Macros can enhance significantly your help file. Among other thing, they can be used to
add menus and push-buttons to the main help topic window, as well as adding multimedia
capability to your project. Help Macros can be used in the same way as Jumps and Pop-ups, or
added to the topic definition.

Adding Macros to the Project definition file
Macros may be specified in the [CONFIG] section of the Project (.hpj) definition file to add/modify
menus and buttons in the WinHelp application, as well as registering dynamic link libraries (DLLs)
to access additional functions. For instance the following macro registers the Message Box
function from the USER.EXE dll provided with windows.

Example: RegisterRoutine("USER.EXE", "MessageBox", "uSSu")

To add macros to the [CONFIG] section of the Project definition file, select Project Macro from the
Insert pull-down menu. Help Assistant displays the Project Macro Setup dialog box from which
you can add, modify or remove macros from the project.

Short Cut: Click on the button on the Toolbar.
Click on any field of the "Project Macro Setup" dialog box to obtain more details:

Adding Macros to a Topic
Macros which are specified with the topic definition will be executed each time the selected topic
is displayed. On the other hand, macros could also be associated with a "hot-spot". This "hot-
spot" can be either a bitmap image, or underlined green text. Clicking on a "hot-spot" causes
Help to play the macro associated with the graphic image, word or phrase selected.

To insert "Macros" with Help Assistant, select the bitmap image, word or phrase to be used as the
macro "hot-spot" and select "Macro" from the "Insert" pull-down menu.

Example:

Help Assistant displays the "Macro Setup" dialog box. Then select the macro to play when the
underlined green text is selected. Macros may require that extra parameters be specified. In

such case, parameters may be specified either before or after the macro has been inserted in the
document.

Short Cut: Click on the button on the Toolbar.
Click on any field of the "Macro Setup" dialog box to obtain more details:

Playing Sound WAV files using macros
It is easy to play sound wav files using the macro features of WinHelp. Help Assistant provides
access to the sndPlaySound macro function in the Macro List box found in the "Macro Setup"
dialog box. Select this macro, and specify the name of the sound file to be played in
replacement of the `sound.wav' filename found in the first macro statement.

The sndPlaySound macro statement specify the asynchronous playback mode as default. If
synchronous playback is the desired mode, replace the 0x0001 parameter with 0x0000.

Example: !sndPlaySound(`tada.wav', 0x0001)

It is necessary that the Multimedia Option be selected in the Help Assistant Setup dialog box to
play sound wav files. (See Setting-up The Help Project)

Help Macro List-Box
The Help Macro List-Box presents the custom macros
found in the [CONFIG] section of the project file. Select
from the list the macro you wish to remove or update.

Click on this button to ADD a custom macro to the [CONFIG]
section of the project file.

Click on this button to REMOVE the selected custom macro from
the [CONFIG] section of the project file.

Click on this button to UPDATE the selected custom macro.

Click on this button to CANCEL operations.

Help Macro (!) Combo-Box
Select from the list or specify the macro you wish to
insert in your application. Some macros require that
certain parameters be specified. Parameters may be
specified either in the edit field, or after inserting its
template in the document.

Click on this button to accept the selection.

Click on this button to cancel operations.

Keep Attributes Option
Select this option to conserve the current "hot-text"
attributes (Style, Color, Font, Size).

About()
This macro displays the "About" dialog box. This macro has the same effect as choosing the "About"
command on the Help menu.

Syntax
About()

Parameter Description

none

AddAccelerator(key, shift-state, macro)
This macro Assigns an accelerator key (keyboard access) or key combination to a Help macro. The user
can then execute the macro by pressing the defined key(s).

Syntax
AddAccelerator(key, shift-state, "macro")

AA(key, shift-state, "macro")

Parameter Description

key Windows virtual-key value of the accelerator

shift-state Number specifying the modifier key(s) to use with the accelerator key.
Valid modifier keys are ALT, SHIFT, and CTRL.

Number Modifier key(s)

0 (No modifier key)

1 SHIFT

2 CTRL

3 SHIFT+CTRL

4 ALT

5 ALT+SHIFT

6 ALT+CTRL

7 ALT+SHIFT+CTRL

macro Help macro to be executed when pressing the accelerator key(s). The
macro must be enclosed in quotation marks. Separate multiple macros in
a string with semicolons (;).

Example
The following macro assigns ALT+F10 key combination to the JumpContents macro:

AddAccelerator(0x79, 4, "JumpContents(`Index.hlp')")

Comments
This Help macro might not work in secondary windows.

See Also: RemoveAccelerator

Annotate()
This macro displays the "Annotate" dialog box. This macro has the same effect as choosing the Annotate
command on the Edit menu.

Syntax
Annotate()

Parameter Description

none

Comments
If this macro is executed from a pop-up window, the annotation is attached to the parent topic that
contains the pop-up hot spot.

AppendItem(menu-id, item-id, item-name, macro)
This macro appends a menu item at the end of a menu created with the InsertMenu macro.

Syntax
AppendItem("menu-id", "item-id", "item-name", "macro")

Parameter Description

menu-id Menu-ID used when creating the menu with the InsertMenu macro.
When using mnu_floating as the menu-id Windows Help creates a popup
Help menu that can be activated with the right mouse button.

item-id Name which identify the menu item. This name is case sensitive.

item-name Name displayed on the menu for the item. This name is case sensitive
and must be enclosed in quotation marks. Within the quotation marks,
place an ampersand (&) before the character you want to use for the
macros accelerator key.

macro Help macro to be executed when selecting the menu item. The macro
must be enclosed in quotation marks. Separate multiple macros in a
string with semicolons (;).

Example
The following macro appends a menu item labeled "Video" to the menu "'View" identified by the
mnu_view context string:

AppendItem("mnu_view", "mnu_video", "&Video", "PI(`movie.hlp', `video')")

Choosing the menu item "View - Video" pops-up the topic identified by the "video" context string in the
MOVIE.HLP file. Note that the letter V serves as the accelerator key for this menu item.

Comments
This macro cannot be executed in a secondary window.

See Also: ChangeItemBinding, CheckItem, DeleteItem, DisableItem, EnableItem, InsertItem,
InsertMenu, UncheckItem, FloatingMenu, ResetMenu

Back()
This macro has the same effect as selecting the "Back" button on the WinHelp toolbar, and displays the
previous topic.

Syntax
Back()

Parameter Description

none

Comments
This macro is ignored if it is executed in a secondary window.

See Also: History

BookmarkDefine()
This macro displays the "Bookmark Define" dialog box. It has the same effect as selecting the "Define"
command on the Bookmark menu.

Syntax
BookmarkDefine()

Parameter Description

none

Comments
If this macro is executed from a pop-up window, the bookmark is attached to the parent topic that contains
the pop-up hot spot.

BookmarkMore()
This macro displays the "Bookmark" dialog box. It has the same effect as choosing the "More" command
on the Bookmark menu. (Note: This command appears on the Bookmark menu only if the user defines
more than nine bookmarks.)

Syntax
BookmarkMore()

Parameter Description

none

Comments
If this macro is executed in a secondary window, Help displays the bookmarked topic in the secondary
window, regardless of where the topic appeared when the user set the bookmark. For that reason, using
this macro in secondary windows is not recommended.

BrowseButtons()

This macro adds browse buttons to the button bar in WinHelp.
Syntax

BrowseButtons()

Parameter Description

none

Comments
If the BrowseButtons macro is used with the CreateButton macro, the order of the browse buttons on the
WinHelp button bar is determined by the order of the CreateButton and BrowseButtons macros.

Depending on how its used, the BrowseButtons macro may interfere with the DisableButton macro. This
macro is ignored when it is executed in a secondary window.

See Also: CreateButton, DisableButton

ChangeButtonBinding(button-id, macro)
This macro changes the assigned function of a standard Help button or any button created with the
CreateButton macro.

Syntax
ChangeButtonBinding("button-id", "button-macro")

CBB("button-id", "button-macro")

Parameter Description

button-id Button-ID assigned to the button in the CreateButton macro, or one of the
following standard Help button IDs:

Button Button ID

 btn_contents

 btn_search

 btn_back

 btn_history

 btn_previous

 btn_next

button-macro Help macro that executes when the user chooses the button. The macro
must be enclosed in quotation marks.

Example
The following macro changes the function of the Contents button so that choosing it causes a jump to the
Table of Contents topic (identified by the tbl_of_contents context string) in the BOOK.HLP file:

ChangeButtonBinding("btn_contents", "JI(`BOOK.HLP', `tbl_of_contents')")

Comments
This macro is ignored when it is executed in a secondary window.

See Also: CreateButton, DestroyButton, DisableButton, EnableButton

ChangeItemBinding(item-id, macro)
This macro changes the assigned function of a menu item added to a WinHelp menu with the AppendItem
macro. This macro can also change the "How To Use Help" standard Help menu item: .

Syntax
ChangeItemBinding("item-id", "item-macro")

CIB("item-id", "item-macro")

Parameter Description

item-id Item-ID assigned to the item in the AppendItem macro. For the standard
"How To Use Help" menu item, use mnu_helpon as the identifier.

item-macro Help macro that executes when the user chooses the item.

Example
The following macro changes the menu item identified by time_item so that it starts the Clock application:

ChangeItemBinding("time_item", "ExecProgram(`clock', 0)")

The following macro changes the "How To Use Help" menu item so that it opens a custom Help file:

ChangeItemBinding("mnu_helpon", "JC(`myhelp.hlp')")

Comments
Use the DeleteItem macro to remove the standard "How To Use Help" item from the Help menu. Use the
SetHelpOnFile macro to specify the custom "How To Use Help" file you want to use. Then use the
InsertItem macro to place the new menu item on the Help menu. This macro is ignored if it is executed
in a secondary window.

See Also: AppendItem, CheckItem, DeleteItem, DisableItem, EnableItem, InsertItem, InsertMenu,
SetHelpOnFile, UncheckItem, FloatingMenu, ResetMenu

CheckItem(item-id)
This macro displays a check mark next to a menu item added to a WinHelp menu with the AppendItem
macro.

Syntax
CheckItem("item-id")

CI("item-id")

Parameter Description

item-id Item-ID assigned to the item in the AppendItem macro.

Example
The following macro checks the menu item identified by time_item:

CheckItem("time_item")

Comments
To clear the check mark from the item, use the UncheckItem macro. This macro is ignored if it is
executed in a secondary window.

See Also: AppendItem, ChangeItemBinding, DeleteItem, DisableItem, EnableItem, InsertItem,
InsertMenu, UncheckItem, FloatingMenu, ResetMenu

CloseWindow(window-name)
This macro closes the specified Help window.

Syntax
CloseWindow("window-name")

Parameter Description

window-name Name of the window to close. The name main is reserved for the primary
Help window. For secondary windows, the window name is defined in the
Help Assistant "Window Setup" dialog box.

Example
The following macro closes the main window:

CloseWindow("main")

Comments
This macro is ignored if the specified window does not exist.

See Also: Exit

Contents()
This macro displays the Contents topic of the Help file that executes the macro. The Contents topic is
specified in the Help Assistant "Project Setup" dialog box.

Syntax
Contents()

Parameter Description

none

Comments
If no Contents is specified in the Help project file, Help displays the first topic of the first RTF file specified
in the Help project. This macro is ignored if it is executed in a secondary window.

See Also: JumpContents, SetContents

CopyDialog()
This macro has the same effect as choosing the "Copy" command on the Edit menu. It displays the
"Copy" dialog box and places the text from the current topic in the copy box where the user can select
text to copy to the Clipboard.

Syntax
CopyDialog()

Parameter Description

none

Comments
This macro and the CopyTopic() macro is the only way by which a user can copy the text displayed in a
secondary window. It does not copy bitmaps or any other images in the Help topic. If this macro is
executed from a pop-up window, only the text from the parent topic that contains the macro hot spot is
copied to the "Copy" dialog box.

CopyTopic()
This macro copies all the text in the currently displayed topic to the Clipboard. This macro as the same
effect as pressing CTRL+INS in the main Help window.

Syntax
CopyTopic()

Parameter Description

none

Comments
This macro and the CopyDialog() macro is the only way by which a user can copy the text displayed in a
secondary window. It does not copy bitmaps or any other images in the Help topic. If this macro is
executed from a pop-up window, only the text from the parent topic that contains the macro hot spot is
copied to the Clipboard.

CreateButton(button-id, name, macro)
This macro creates a new button and adds it to the WinHelp button bar.

Syntax
CreateButton("button-id", "name", "macro")

CB("button-id", "name", "macro")

Parameter Description

button-id Name that WinHelp uses to identify the button.

name Label that is displayed on the button. Place an ampersand (&) before
the character you want to use for the buttons accelerator key. The button
name is case sensitive and can have as many as 29 characters.

macro Help macro or macro string that is executed when the user selects the
button. Separate multiple macros in a string with semicolons (;).

Example
The following macro creates a new button labeled "Info". Selecting this button causes WinHelp to jump
to the topic identified by the "Info_topic" context string in the BOOK.HLP file:

CreateButton("btn_info", "&Info", "JI(`book.hlp', `Info_topic')")

Notice that the letter I serves as the buttons accelerator key.

Comments
A maximum of 16 buttons may be defined on the button bar, making a total of 22 buttons, including the
Browse buttons. If several buttons are created using project macros, the order of the buttons on the
WinHelp button bar is determined by the order of the CreateButton and BrowseButtons macros.

This macro is ignored if it is executed in a secondary window.

See Also: BrowseButtons, ChangeButtonBinding, DestroyButton, DisableButton, EnableButton

DeleteItem(item-id)
This macro removes a menu item added with the AppendItem macro.

Syntax
DeleteItem("item-id")

Parameter Description

item-id Item-ID used in the AppendItem macro.

Example
The following macro removes the "Video" menu item that was created in the example for the AppendItem
macro:

DeleteItem("mnu_video")

Comments
This macro is ignored if it is executed in a secondary window.

See Also: AppendItem, ChangeItemBinding, CheckItem, DisableItem, EnableItem, InsertItem,
InsertMenu, UncheckItem, FloatingMenu, ResetMenu

DeleteMark(marker-text)
This macro removes a text marker added with the SaveMark macro.

Syntax
DeleteMark("marker-text")

Parameter Description

marker-text Text marker previously added by the SaveMark macro.

Example
The following macro removes the "Help on Video" marker from a Help file:

DeleteMark("Help on Video")

Comments
WinHelp displays the "Topic not found" error message if the marker does not exist when the DeleteMark
macro is executed, .

See Also: GotoMark, IfThen, IfThenElse, IsMark, Not, SaveMark

DestroyButton(button-id)
This macro removes a button added with the CreateButton macro.

Syntax
DestroyButton("button-id")

Parameter Description

button-id Button-ID assigned to the button in the CreateButton macro.

Example
The following macro removes the "Info" button that was created in the example for the CreateButton
macro:

DestroyButton("btn_info")

Comments
This macro cannot be used to remove a standard Help button. This macro is ignored if it is executed in a
secondary window.

See Also: ChangeButtonBinding, CreateButton, DisableButton, EnableButton

DisableButton(button-id)
This macro disables and greys out a button added with the CreateButton macro.

Syntax
DisableButton("button-id")

DB("button-id")

Parameter Description

button-id Button-ID assigned to the button in the CreateButton macro.

Example
The following macro disables the "Info" button that was created in the example for the CreateButton
macro:

DisableButton("btn_info")

Comments
This macro cannot be used to disable a button in a topic until the button has been enabled using the
EnableButton macro. If you use this macro to disable a standard Help button (Contents, Search, Back,
or History), the users next action may reactivate the button. When the BrowseButtons macro follows the
DisableButton macros, it forces the standard buttons to refresh, creating the same effect as if the
DisableButton macro had failed. Consequently, to ensure that the DisableButton macro works as you
intend, it must be placed after the BrowseButtons macro:

BrowseButtons()
DisableButton("btn_contents")

You can also disable the Search button in a Help file by not assigning any keywords to the topics. This
macro is ignored if it is executed in a secondary window.

See Also: BrowseButtons, ChangeButtonBinding, CreateButton, DestroyButton, EnableButton

DisableItem(item-id)
This macro disables and greys out a menu item added with the AppendItem macro.

Syntax
DisableItem("item-id")

DI("item-id")

Parameter Description

item-id Item-ID assigned to the menu item in the AppendItem macro.

Example
The following macro disables the "Video" menu item that was created in the AppendItem macro example:

DisableItem("mnu_video")

Comments
You cannot use this macro to disable a menu item in a topic until the item has been enabled using the
EnableItem macro. This macro is ignored if it is executed in a secondary window.

See Also: AppendItem, ChangeItemBinding, CheckItem, DeleteItem, EnableItem, InsertItem,
InsertMenu, UncheckItem, FloatingMenu, ResetMenu

EnableButton(button-id)
This macro re-enables a button disabled with the DisableButton macro.

Syntax
EnableButton("button-id")

EB("button-id")

Parameter Description

button-id Button-ID assigned to the button in the CreateButton macro.

Example
The following macro re-enables the "Info" button that was disabled in the DisableButton macro example:

EnableButton("btn_info")

Comments
When a standard Windows Help button (Contents, Search, Back, or History) is enabled using this macro,
the next action may disable the button. For example, if the Contents button is enabled in one topic, it
may be disabled again when jumping to a different topic. This macro is ignored if it is executed in a
secondary window.

See Also: ChangeButtonBinding, CreateButton, DestroyButton, DisableButton

EnableItem(item-id)
This macro re-enables a menu item disabled with the DisableItem macro.

Syntax
EnableItem("item-id")

EI("item-id")

Parameter Description

item-id Item-ID assigned to the menu item in the AppendItem macro.

Example
The following macro enables the "Video" menu item that was disabled in the DisableItem macro example:

EnableItem("mnu_video")

Comments
This macro is ignored if it is executed in a secondary window.

See Also: AppendItem, ChangeItemBinding, CheckItem, DeleteItem, DisableItem, InsertItem,
InsertMenu, UncheckItem, FloatingMenu, ResetMenu

ExecProgram(command-line, display-state)
This macro run an application.

Syntax
ExecProgram("command-line", display-state)

EP("command-line", display-state)

Parameter Description

command-line Command line for the application to be started.

display-state This value indicates how the application is displayed when it is launched:

Value Display

0 Normal

1 Minimized

2 Maximized

Example
The following macro runs the Notepad program in its normal window size:

ExecProgram("notepad.exe", 0)

Comments
If you specify a path and command-line parameters, you must use double backslashes as showns in this
example:

ExecProgram("c:\\editors\\notepad.exe textfile.txt", 0)

If you must use quotation marks as part of the command-line parameter, you can enclose the entire
parameter in single quotation marks and omit the backslash escape character required for the double
quotation marks delimiting the string, as shown in this example:

ExecProgram(`command "string as parameter"', 0)

Exit()
This macro causes WinHelp to terminate. This macro has the same effect as choosing the "Exit"
command on the File menu.

Syntax
Exit()

Parameter Description

none

Comments
This macro will close any secondary windows associated with the open Help file.

See Also: CloseWindow

FileOpen()
This macro displays the "Open" dialog box. It has the same effect as choosing the "Open" command on
the File menu.

Syntax
FileOpen()

Parameter Description

none

Comments
When using this macro in secondary windows, the user may be left without Help menus and navigation
buttons.

FocusWindow(window-name)
This macro changes the focus to the specified window.

Syntax
FocusWindow("window-name")

Parameter Description

window-name Name of the window to receive the focus. The name main is reserved
for the primary Help window. For secondary windows, the window name
is defined in the Help Assistant "Window Setup" dialog box.

Example
The following macro changes the focus to the "index" secondary window:

FocusWindow("index")

Comments
If the window does not exist, WinHelp ignores this macro.

See Also: CloseWindow, PositionWindow

GotoMark(marker-text)
This macro causes WinHelp to Jump to a marker set with the SaveMark macro.

Syntax
GotoMark("marker-text")

Parameter Description

marker-text Text marker previously defined by the SaveMark macro.

Example
The following macro jumps to the "Help on Video" marker:

GotoMark("Help on Video")

Comments
WinHelp displays the "Topic not found" error message if the GotoMark macro specifies a marker that has
not been previously defined by the SaveMark macro.

See Also: DeleteMark, IfThen, IfThenElse, IsMark, Not, SaveMark

HelpOn()
This macro displays the How To Use Help file for the Windows Help application. This macro has the same
effect as choosing the How To Use Help command on the Help menu.

Syntax
HelpOn()

Parameter Description

none

Comments
If the default How To Use Help file (WINHELP.HLP) is replaced with a custom version using the
SetHelpOnFile macro, executing this macro will display the custom version of How To Use Help.

See Also: SetHelpOnFile

HelpOnTop()
This macro changes the state of all Help windows to "on-top". An on-top window remains on top of other
application windows, except certain windows that may also use the topmost window attribute. This macro
has the same effect as choosing the Always On Top command on the Help menu.

Syntax
HelpOnTop()

Parameter Description

none

Comments
Microsoft does not recommend executing this macro in the main Help window. Instead use the on-top
attribute when defining secondary windows.

History()
This macro displays the history list, which shows the last 40 topics the user has viewed since opening a
Help file. This macro has the same effect as choosing the History button.

Syntax
History()

Parameter Description

none

Comments
This macro is ignored if it is executed in a secondary window.

See Also: Back

IfThen(test, macro)
This macro executes a Help macro if a given marker exists. It uses the IsMark macro to make the test.
You can also use a DLL function as a condition for this macro.

Syntax
IfThen(IsMark("marker-text"), "macro")

Parameter Description

marker-text Text marker previously created by the SaveMark macro. The IsMark
macro tests the marker you specify. If the marker value that the test
returns is zero, the macro does not execute. If the value is something
other than zero, the macro executes. The marker text must be enclosed
in quotation marks.

macro Help macro or macro string that executes if the marker exists. Separate
multiple macros in a string with semicolons (;).

Example
The following macro jumps to the topic with the play_video context string if the SaveMark macro has set a
marker named "Help on Video":

IfThen(IsMark("Help on Video"), "JI(book.hlp', `video_topic')")

Comments
You can use the IfThen macro to create many custom effects in your Help file. For example, you can use
it to add a button to some topics and not have it appear in other topics. In the topic(s) where you want the
button to appear, you create a macro footnote with a macro string similar to this example:

IfThen(Not(IsMark(`Help on Video')), "SaveMark(`Help on Video) : CreateButton(``video_btn',
`&Video, `JumpContents(`book.hlp')')")

In the topics where you dont want the button to appear, you create a macro footnote with this macro
string:

IfThen(IsMark(`Help on Video), "DeleteMark(`Help on Video) : DestroyButton(`video_btn')")

If a topic does not have this footnote, it will have the same button characteristics as the previously viewed
topic.

See Also: DeleteMark, GotoMark, IfThenElse, IsMark, Not, SaveMark

IfThenElse(test, macro1, macro2)
This macro executes one of two Help macros depending on whether a marker exists. It uses the IsMark
macro to make the test. You can also use a DLL function as a condition for this macro.

Syntax
IfThenElse(IsMark("marker-text"), "macro1", "macro2")

Parameter Description

marker-text Text marker previously created by the SaveMark macro. The IsMark
macro tests the marker you specify.

macro1 WinHelp executes macro1 if the test returns a nonzero marker value.
Separate multiple macros in the string with semicolons (;).

macro2 WinHelp executes macro2 if the test returns a marker value of zero.
Separate multiple macros in the string with semicolons (;).

Example
The following macro jumps to the topic with the man_mem context string if the SaveMark macro has set a
marker named "Help on Video". If the marker does not exist, the macro jumps to the Contents topic in the
BOOK.HLP file:

IfThenElse(IsMark("Help on Video"), "JI(`book.hlp', `video_topic')","JumpContents(`book.hlp')")

See Also: DeleteMark, GotoMark, IfThen, IsMark, Not, SaveMark

InsertItem(menu-id, item-id, item-name, macro, position)
This macro inserts a menu item at a given position on an existing menu. The menu can either be one you
create with the InsertMenu macro or a standard Windows Help menu.

Syntax
InsertItem("menu-id", "item-id", "item-name", "macro", position)

Parameter Description

menu-id Menu-ID used in the InsertMenu macro to create the menu or the name
of a standard Windows Help menu. Standard menu names and
identifiers are:

Name
IdentifierFile
mnu_fileEdit
mnu_editBookmark
mnu_bookmarkHelp
mnu_helpon
mnu_floating

item-id Name used to identify the menu item.

item-name Label that WinHelp displays on the menu for the item. This name is case
sensitive. Place an ampersand (&) before the character you want to use
for the items accelerator key.

macro Help macro or macro string that is executed when the user chooses the
menu item. Separate multiple macros in a string with semicolons (;).

position Number specifying the position in the menu where the new item will
appear. The number must be an integer. Position 0 is the first or topmost
position in the menu.

Example
The following macro inserts a menu item labeled "Video" as the fourth item on a View menu that has a
mnu_view identifier:

InsertItem("mnu_view", "mnu_video", "&Video", "JI(`book.hlp', `video_topic')", 3)

Choosing the "Video" menu item causes WinHelp to jump to the topic with the "video_topic" context string
in the BOOK.HLP file. In this case the letter V serves as the items accelerator key.

Comments
The access key assigned to a menu item must be unique.

See Also: AppendItem, ChangeItemBinding, CheckItem, DeleteItem, DisableItem, EnableItem,
InsertMenu, UncheckItem, FloatingMenu, ResetMenu

InsertMenu(menu-id, menu-name, menu-position)
This macro adds a new menu to the WinHelp menu bar.

Syntax
InsertMenu("menu-id", "menu-name", menu-position)

Parameter Description

menu-id String which identifies the menu. Use this identifier in the AppendItem
macro to add menu items (commands) to the menu.

menu-name Label for the menu that WinHelp displays on the menu bar. This label is
case sensitive. Place an ampersand (&) before the character used for
the menus accelerator key.

menu-position Number which specifies the position on the menu bar. This number
must be an integer. Positions are numbered from left to right, with
position 0 being the leftmost menu.

Example
The following macro adds a menu named "Volumes" to WinHelp:

InsertMenu("menu_vols", "&Volumes", 3)

"Volumes" appears as the fourth menu on the WinHelp menu bar, between the Bookmark and Help
menus. The user presses ALT+V to open the menu.

Comments
The accelerator key assigned to a menu must be unique.This macro is ignored if it is executed in a
secondary window.

See Also: AppendItem, ChangeItemBinding, CheckItem, DeleteItem, DisableItem, EnableItem,
InsertItem, UncheckItem, FloatingMenu, ResetMenu

IsMark(marker-text)
This macro tests whether a marker set by the SaveMark macro exists. This macro is used as a parameter
to the conditional macros IfThen and IfThenElse. The IsMark macro returns nonzero if the marker exists
or zero if it does not.

Syntax
IsMark("marker-text")

Parameter Description

marker-text Text string tested by the IsMark macro.

Example
The following macro jumps to the topic with the "video_topic" context string if the SaveMark macro has
set a marker named "Help on Video". The IsMark macro tests for the "Help on Video" marker:

IfThen(IsMark("Help on Video"), "JI(`book.hlp', `video_topic')")

Comments
The "Not" macro can be used to reverse the results of the IsMark macro.

See Also: DeleteMark, GotoMark, IfThen, IfThenElse, Not, SaveMark

JumpContents(filename)
This macro causes WinHelp to jump to the Contents topic of a specified Help file. The Contents topic is
defined in the Help Assistant "Project Setup" dialog box.

Syntax
JumpContents("filename")

Parameter Description

filename Name of the destination Help file for the jump.

Example
The following macro jumps to the Contents topic of the BOOK.HLP file:

JumpContents("book.hlp")

Comments
If no Contents is specified in the Help project file, Help displays the first topic of the first RTF file specified
in the Help project.

See Also: Contents, SetContents

JumpContext(filename, context-number)
This macro causes WinHelp to jump to a specific context within a Help file. The context is identified by an
entry in the [MAP] section of the Help project file.

Syntax
JumpContext("filename", context-number)

JC("filename", context-number)

Parameter Description

filename Name of the destination Help file for the jump.

context-number Context number of the topic in the destination Help file. This number
must be defined in the [MAP] section of the destination Help files project
file.

Example
The following macro jumps to the topic mapped to the 22 context ID number in the BOOK.HLP file:

JumpContext("BOOK.HLP", 22)

Comments
If the context number does not exist or cannot be found in the [MAP] section, WinHelp jumps to the
Contents topic or the first topic in the Help file and displays an error message.

See Also: JumpId, PopupContext

JumpHelpOn()
This macro causes WinHelp to jump to the Contents topic of the "How To Use Help" file.

Syntax
JumpHelpOn()

Parameter Description

none

Comments
The "How To Use Help" file is either WINHELP.HLP or the Help file designated by the SetHelpOnFile
project macro.

See Also: HelpOn, SetHelpOnFile

JumpId(filename, context-string)
This macro causes WinHelp to jump to the topic with the specified context string in the specified Help file.

Syntax
JumpId("filename", "context-string")

JI("filename", "context-string")

Parameter Description

filename Name of the Help file where the topic is located.

context-string Context string of the topic.

Example
The following macro jumps to a topic with the "video_topic" context string in the BOOK.HLP file:

JumpId("book.hlp", "video_topic")

Comments
You can use the JumpId macro to display topics in secondary windows by adding the window name to the
filename parameter, as in this example:

JumpId("book.hlp>wnd_two", "video_topic")

The topic identified by the "video_topic" context string would appear in the "wnd_two" secondary window.

If the JumpId macro is used without specifying a filename, WinHelp performs the jump in the current Help
file, as in this example:

JumpId("", "video_topic")

However, this method is not recommended.

See Also: JumpContext, PopupId

JumpKeyword(filename, keyword)
This macro opens the specified Help file, searches through the keyword table, and displays the first topic
which contains the keyword specified in the macro.

Syntax
JumpKeyword("filename", "keyword")

JK("filename", "keyword")

Parameter Description

filename Name of the Help file.

keyword Keyword to search for.

Example
The following macro displays the first topic with "video" as a keyword in the BOOK.HLP file:

JumpKeyword("book.hlp", "video")

Comments
If WinHelp finds more than one keyword match, the first match found will be displayed. If it does not find
a match, the Contents topic of the destination Help file will be displayed.

See Also: Search

Next()
This macro displays the next topic in the browse sequence for the Help file. This macro has the same

effect as choosing the Browse next button .
Syntax

Next()

Parameter Description

none

Comments
This macro is ignored if it is executed in a secondary window.

See Also: BrowseButtons, Prev

Not(test)
This macro reverses the result returned by the IsMark macro. It is used with the IsMark macro as a
parameter to the conditional macros IfThen and IfThenElse.

Syntax
Not(IsMark("marker-text"))

Parameter Description

marker-text Text marker previously created by the SaveMark macro.

Example
The following macro executes a jump to the topic with the "video_topic" context string if the SaveMark
macro has not set a marker named "Help on Video":

IfThen(Not(IsMark("Help on Video")), "JI(`book.hlp', `video_topic')")

Comments
The IsMark macro tests the specified marker. The Not macro returns zero if the mark exists (IsMark
returns nonzero) or nonzero if the mark does not exist (IsMark returns zero).

See Also: DeleteMark, GotoMark, IfThen, IfThenElse, IsMark, SaveMark

PopupContext(filename, context-number)
This macro displays a pop-up window containing the topic identified by a specific context number. The
context is identified by an entry in the [MAP] section of the Help project file.

Syntax
PopupContext("filename", context-number)

PC("filename", context-number)

Parameter Description

filename Name of the Help file that contains the topic to be displayed in the pop-up
window.

context-number Context number of the topic to be displayed in the pop-up window. This
number must be defined in the [MAP] section of the specified Help files
project file..

Example
The following macro displays in a pop-up window the topic mapped to the 22 context ID number in the
BOOK.HLP file:

PopupContext("book.hlp", 22)

Comments
If the context number does not exist or cannot be found in the [MAP] section, WinHelp displays the
Contents topic or the first topic in the Help file.

See Also: JumpContext

PopupId(filename, context-string)
This macro displays a pop-up window containing the topic identified by a specific context string. Unlike
the PopupContext macro,

Syntax
PopupId("filename", "context-string")

PI("filename", "context-string")

Parameter Description

filename Name of the Help file which contains the topic.

context-string Context string which identifies the topic

Example
The following macro displays in a pop-up window a topic identified by the "video_topic" context string in
the BOOK.HLP file:

PopupId("book.hlp", "video_topic")

Comments
If the context string does not exist or cannot be found, WinHelp displays the Contents topic or the first
topic in the Help file.

See Also: JumpId

PositionWindow(x-coord, y-coord, width, height, window-state, window-name)
This macro sets the size and position of a window.

Syntax
PositionWindow(x-coord, y-coord, width, height, window-state,

"window-name")

PW(x-coord, y-coord, width, height, window-state,

"window-name")

Parameter Description

x-coord X-coordinate, in Help units, of the upper-left window corner.

y-coord Y-coordinate, in Help units, of the upper-left window corner.

width Default width, in Help units, of the window.

height Default height, in Help units, of the window.

window-state Specifies the windows state when it is displayed. The values for the
ShowWindow function are explained in the following table.

VALUE CONSTANT ACTION

0 SW_HIDE Hides the window and passes activation
to another window.

1 SW_SHOWNORMAL Activates and displays a window. If the
window is minimized or maximized,
Windows restores it to its original size
and position (same as SW_RESTORE).

2 SW_SHOWMINIMIZED Activates a window and displays it as an
icon.

3 SW_SHOWMAXIMIZED Activates a window and displays it as a
maximized window. WinHelp ignores
the x-coord, y-coord, width, and height
parameters.

4 SW_SHOWNOACTIVATE Displays a window in its most recent size
and position. The window that is currently
active remains active.

5 SW_SHOW Activates a window and displays it in its
current size and position.

6 SW_MINIMIZE Minimizes the specified window and
activates the top-level window in the
systems list.

7 SW_SHOWMINNOACTIVE Displays a window as an icon. The
window that is currently active remains
active.

8 SW_SHOWNA Displays a window in its current state.
The window that is currently active
remains active.

9 SW_RESTORE Activates and displays a window. If the
window is minimized or maximized,
Windows restores it to its original size

and position (same as
SW_SHOWNORMAL).

window-name Name of the window to position. The name main is reserved for the
primary Help window. Secondary window names are defined in the Help
Assistant "Window Setup" dialog box.

Example
The following macro displays and positions the "Index" secondary window in the upper-left corner (0,0)
with half the width and height of the display:

PositionWindow(0, 0, 512, 512, 5, "Index")

Comments
Help Units are defined in a 1024-by-1024 coordinate system, regardless of screen resolution.

See Also: CloseWindow, FocusWindow

Prev()
This macro displays the previous topic in the browse sequence for the Help file. This macro has the same

effect as choosing the Browse previous button.
Syntax

Prev()

Parameter Description

none

Comments
This macro is ignored if it is executed in a secondary window.

See Also: BrowseButtons, Next

Print()
This macro prints the currently displayed topic. It has the same effect as selecting the "Print Topic"
command on the File menu.

Syntax
Print()

Parameter Description

none

Comments
This macro should be used only to print topics in windows other than the main Help window. If the macro
is executed from a pop-up window, WinHelp prints the topic that contains the pop-up hot spot.

PrinterSetup()
This macro displays the "Print Setup" dialog box. It has the same effect as choosing the "Print Setup"
command on the File menu.

Syntax
PrinterSetup()

Parameter Description

none

RegisterRoutine(DLL-name, function-name, format-spec)
This macro registers a function within a dynamic-link library (DLL) as a Help macro. These functions can
be used in macro hot spots or footnotes within topic files or in the [CONFIG] section of the Help project
file, the same as standard Help macros.

Note: This macro ignores all return values.

Syntax
RegisterRoutine("DLL-name", "function-name", "parameter-spec")

RR("DLL-name", "function-name", "parameter-spec")

Parameter Description

DLL-name String specifying the filename of the DLL being called. You can omit
the .DLL filename extension. Specify the directory only if necessary.

function-name String specifying the name of the function you want to use as a Help
macro.

parameter-spec String specifying the formats of parameters passed to the function.
Characters in the string represent C parameter types. Valid parameter
types include the following:

CHARACTER DATA TYPE Equivalent Windows data type

u Unsigned short integer UINT, WORD, WPARAM

U Unsigned long integer DWORD

i Signed short integer BOOL (also C int or short)

I Signed long integer LONG, LPARAM, LRESULT

s Near pointer to a null-
terminated text string

PSTR, NPSTR

S Far pointer to a null-
terminated text string

LPSTR, LPCSTR

v Void (means no type;
used only with return
values)

None. Equivalent to C void data
type.

Example
The following DLL call, registers a routine named sndPlaySound in the DLL named MMSYSTEM.DLL:

RegisterRoutine("mmsystem.dll","sndPlaySound","Su")

Comments
Generally, DLLs are installed in the directory where WinHelp resides. If WinHelp cannot find the DLL, it
displays an error message and does not perform the call.

RemoveAccelerator(key, shift-state)
This macro removes an accelerator keyboard (access) key or key combination assigned to a Help macro.

Syntax
RemoveAccelerator(key, shift-state)

RA(key, shift-state)

Parameter Description

key Windows virtual-key value assigned to the macro using the
AddAccelerator macro.

shift-state Number specifying the key or key combination to use with the accelerator
key. Valid modifier keys are ALT, SHIFT, and CTRL:

Number Modifier key(s)

0 (No modifier key)

1 SHIFT

2 CTRL

3 SHIFT+CTRL

4 ALT

5 ALT+SHIFT

6 ALT+CTRL

7 ALT+SHIFT+CTRL

Example
The following macro removes the ALT+F10 key combination that was assigned in the AddAccelerator
macro example:

RemoveAccelerator(0x79, 4)

Comments
This macro is ignored if the author attempts to remove an unassigned accelerator key.

See Also: AddAccelerator

SaveMark(marker-text)
This macro saves the location of the currently displayed topic and associates a text marker with that
location. The GotoMark macro can then be used to jump to this location.

Syntax
SaveMark("marker-text")

Parameter Description

marker-text Text marker used to identify the topic location.

Example
The following macro saves the "Help on Video" marker in the current topic in the BOOK.HLP file:

SaveMark("Help on Video")

Comments
Text markers are not saved if the user exits and then restarts WinHelp. If the same text is used for more
than one marker, WinHelp uses the most recently entered marker.

See Also: DeleteMark, GotoMark, IfThen, IfThenElse, IsMark, Not

Search()
This macro displays the "Search" dialog box, which allows users to search for topics using keywords. It
has the same effect as choosing the Search button.

Syntax
Search()

Parameter Description

none

Comments
This macro is ignored if it is executed in a secondary window.

See Also: JumpKeyword

SetContents(filename, context-number)
This macro designates a specific topic as the Contents topic in the specified Help file.

Syntax
SetContents("filename", context-number)

Parameter Description

filename Name of the Help file containing the desired Contents topic.

context-number Context number of the topic. This number must be defined in the [MAP]
section of the specified Help files project file.

Example
The following macro sets the topic mapped to the 22 context ID number in the BOOK.HLP file as the
Contents topic:

SetContents("book.hlp", 22)

After this macro executes, choosing the Contents button causes a jump to the topic mapped to 22.

Comments
If the context number does not exist or cannot be found in the [MAP] section, WinHelp displays an error
message.

See Also: Contents, JumpContents

SetHelpOnFile(filename)
This macro designates the Help file that is to replace WINHELP.HLP, the "How To Use Help" Help file.

Syntax
SetHelpOnFile("filename")

Parameter Description

filename Name of the new "How To Use Help" Help file.

Example
The following macro sets the "How To Use Help" file as BOOKHLP.HLP:

SetHelpOnFile("bookhlp.hlp")

To ensure that the "How To Use Help" file is always displayed in the main Help window, add the window
name "main" to the macro and add this macro to the list of project macros in the Help Assistant "Project
Macro Setup" dialog box:

SetHelpOnFile("bookhlp.hlp>main")

Comments
If this macro is executed from a secondary window, the "How To Use Help" file will appear in the
secondary window.

See Also: HelpOn, JumpHelpOn

sndPlaySound(filename, flag)
This macro plays the specified waveform sound.

Syntax
sndPlaySound("filename", flag)

Parameter Description

filename Specifies the name of the sound to play.

flag Specifies option for playing the sound using one of the following flags:

VALUE CONSTANT ACTION

0 SND_SYNC The sound is played synchronously and
the function does not return until the
sound ends.

1 SND_ASYNC The sound is played asynchronously and
the function returns immediately after
beginning the sound. To terminate an
asynchronously-played sound, call
sndPlaySound with filename set to
NULL..

Example
The following macro will play the file tada.wav asynchronously:

sndPlaySound(`tada.wav', 1)

Comments
The sound must fit in available physical memory and be playable by an installed waveform audio device
driver.

UncheckItem(item-id)
This macro removes the check mark from a menu item added to a WinHelp menu with the CheckItem
macro.

Syntax
UncheckItem("item-id")

UI("item-id")

Parameter Description

item-id Item-ID assigned to the menu item in the AppendItem macro.

Example
The following macro removes the check mark from the menu item identified by vide_video:

UncheckItem("view_video")

Comments
To check a menu item, use the CheckItem macro. This macro is ignored if it is executed in a secondary
window.

See Also: AppendItem, ChangeItemBinding, CheckItem, DeleteItem, DisableItem, EnableItem,
InsertItem, InsertMenu, FloatingMenu, ResetMenu

Help Macros Reference
The following list organize the Help macros according to function which provides a quick overview of the
related macros.

 Button Macros
 Menu Macros
 Linking Macros
 Window Macros
 Keyboard Macros
 Auxiliary/Multimedia Macros
 Text-Marker Macros

Button Macros
The following macros are used to access the standard Help buttons, create new buttons, or to modify a
button's functionality. Click on a macro to obtain more details:

MACRO FUNCTION

Back Displays the previous topic in the Back list.

BrowseButtons Adds the Browse buttons to the Help button bar.

ChangeButtonBinding Changes the assigned function of a Help button.

Contents Displays the Contents topic of the current Help file.

CreateButton Creates a new button and adds it to the button bar.

DestroyButton Removes a button from the button bar.

DisableButton Disables a button on the button bar.

EnableButton Enables a disabled button.

History Displays the history list.

Next Displays the next topic in a browse sequence.

Prev Displays the previous topic in a browse sequence.

Search Displays the Search dialog box.

SetContents Designates a specific topic as the Contents topic.

Menu Macros
The following macros are used to access the standard Help menu items, create new menus and menu
items, or to modify menus and menu items. Click on a macro to obtain more details:

MACRO FUNCTION

About Displays the About dialog box.

Annotate Displays the Annotate dialog box.

AppendItem Appends a menu item to the end of a custom
menu.

BookmarkDefine Displays the Bookmark Define dialog box.

BookmarkMore Displays the Bookmark dialog box.

ChangeItemBinding Changes the assigned function of a menu
item.

CheckItem Displays a check mark next to a menu item.

CopyDialog Displays the Copy dialog box.

CopyTopic Copies the current topic to the Clipboard.

DeleteItem Removes a menu item from a menu.

DisableItem Disables a menu item.

EnableItem Enables a disabled menu item.

Exit Exits the Windows Help application.

FileOpen Displays the Open dialog box.

FloatingMenu Displays a floating menu if defined.

HelpOn Displays the How To Use Help file.

InsertItem Inserts a menu item at a given position on a
menu.

InsertMenu Adds a new menu to the Help menu bar.

Print Sends the current topic to the printer.

PrinterSetup Displays the Print Setup dialog box.

ResetMenu Resets the entire standard WinHelp menu to
its default state.

SetHelpOnFile Specifies a custom How To Use Help file.

UncheckItem Removes a check mark from a menu item.

Linking Macros
The following macros can be used to create hypertext links to specific Help topics. Click on a macro to
obtain more details:

MACRO FUNCTION

JumpContents Jumps to the Contents topic of a specific Help
file.

JumpContext Jumps to the topic with a specific context
number.

JumpHelpOn Jumps to the Contents of the How To Use
Help file.

JumpId Jumps to the topic with a specific context
string.

JumpKeyword Jumps to the first topic containing a specified
keyword.

PopupContext Displays the topic with a specific context
number in a pop-up window.

PopupId Displays the topic with a specific context
string in a pop-up window.

Window Macros
The following macros can be used to control or modify the behavior of the main Help window or
secondary Help windows. Click on a macro to obtain more details:

MACRO FUNCTION

CloseWindow Closes the main or secondary Help window.

FocusWindow Changes the focus to a specific Help window.

HelpOnTop Places all Help windows on top of other
windows.

PositionWindow Sets the size and position of a Help window.

Keyboard Macros
The following macros can be used to add keyboard access to a Help macro. Click on a macro to obtain
more details:

MACRO FUNCTION

AddAccelerator Assigns an accelerator key to a Help macro.

RemoveAccelerator Removes an accelerator key from a Help
macro.

Auxiliary/Multimedia Macros
The following macros can be used to access applications and functionality not available in Windows Help.
Click on a macro to obtain more details:

MACRO FUNCTION

ExecProgram Starts an application.

RegisterRoutine Registers a function within a DLL as a Help
macro.

sndPlaySound Play a wave audio file

Text-Marker Macros
The following macros can be used to create and manipulate text markers. Click on a macro to obtain
more details:

MACRO FUNCTION

DeleteMark Removes a marker added by SaveMark.

GotoMark Executes a jump to a marker set by
SaveMark.

IfThen Executes a Help macro if a given marker
exists.

IfThenElse Executes one of two macros if a given marker
exists.

IsMark Tests whether a marker set by SaveMark
exists.

Not Reverses the result returned by IsMark.

SaveMark Saves a marker for the current topic and Help
file.

FloatingMenu()
This macro displays the floating menu. It has the same effect as clicking the right mouse button. A
floating menu must be defined using the AppendItem macro.

Syntax
FloatingMenu()

Parameter Description

none

ResetMenu()
This macro displays resets the entire standard WinHelp menu to its default state.

Syntax
ResetMenu()

Parameter Description

none

