
Coding Conventions for MFC
Extensions

Coding Conventions
While this chapter is a precursor to a practical example of writing an MFC extension, you can apply the
information contained to any project you care to write, whether you use the MFC or not. I suppose what
I'm going to talk about is how Microsoft wrote MFC, giving you the opportunity to write code in the same
style. The merits (or lack of) of this style have been debated heatedly several times in newsgroups and
mailing lists, so whether you like it or not, it is Microsoft's style. So please, no flames!

What is an MFC Extension?
When you're developing Windows applications with MFC, you may not realize it, but 90% of the code
you write is extending MFC. Since MFC is a set of 'Foundation' classes, an MFC application comprises a
set of MFC derivatives that enhance MFC to provide the functionality you're after.

In short, an MFC extension is a C++ class that is derived from an existing MFC class and extends that
class by adding some new (usually application-specific) functionality. MFC itself is mostly extensions.
You can think of the 'core' MFC classes (CObject, CWnd, etc.) as the underlying framework and classes
like CSplitterWnd, CView as extensions on this framework layer. Since MFC extensions borrow lots of
their logic from MFC itself, they are the easiest way to extend MFC and add reusable functionality to
your applications. If you've been around the Windows programming block, you've probably written
controls or subclassed existing Windows controls to add new GUI functionality to your programs. MFC
makes doing this much easier. The functionality provided in classes like CWnd can easily be extended by
creating a derivative, overriding some virtual functions or handling various messages in a map. You no
longer have to worry about things like the Windows process or making sure that all of the default
windows procedures are getting called. MFC takes care of all this for you!

In this chapter we'll give you some helpful design techniques and rules of thumb to help you write better
MFC extensions. Before we start, let's answer one of the most common questions that MFC developers
are faced with:

How do MFC extensions compare with the OLE controls?

MFC Extensions versus OLE Controls
The answer to this question lies in the basic architecture of each approach. An MFC extension is usually
tightly bound to MFC and can't be used in another programming environment like Delphi. An OLE
control, on the other hand, is a very general component and can be used in a variety of applications, such
as Delphi, Visual Basic and Visual C++. Every feature has a drawback, though. While OLE controls are
compatible with many environments, they're not as flexible as something written specifically for one
environment. You can't create an OLE control derivative and easily modify its behavior beyond the
properties provided. Enough high level gobbledy-gook, let's look at an example.

Let's say that you're working on a real-time control application and you need a gauge display that shows

the heat of a nuclear reactor. If you write this gauge as an OLE control, developers working in any
environment will be able to use it, but, if you write the gauge as an MFC extension, you can only use the
control in an MFC application.

Now let's say you write the gauge as an OLE control and one of the users wants to add a little picture of a
nuclear mushroom cloud instead of a 'too hot' area on the dial. If you haven't specified this as a property
for your OLE control, the developer will have to come back to you and ask for you to enhance your OLE
control. If you had implemented the gauge as an MFC extension with a virtual OnDrawTooHotZone()
function, the developer would be able to easily extend the gauge to display the mushroom cloud.

The point is that it's best to use OLE controls when you're writing for multiple development tools, but
MFC extensions are best when you want to provide much more flexibility and object-oriented features
like inheritance. Another solution to the question of MFC extensions vs. OLE controls is to write MFC
extensions first and then wrap them with an OLE control. This provides the best of both worlds.

Writing Great MFC Extensions
Now let's focus on some of the issues that you'll face when you're writing MFC extensions. In some cases,
the decisions are very cut and dried. You use ClassWizard to create your new class and fill in the //TODO
sections. You're extending MFC, but it feels just like writing C functions, because there aren't many
object-oriented hurdles to leap.

However, once you start working on larger classes and leave behind the safety net of ClassWizard's
//TODO sections, the number of decisions that you have to make about your MFC extension class can be
mind boggling:

What do you name everything?
Which MFC class do you derive from?
Should you derive from CObject?
What should be private/protected/public?

If you want your classes to be useful to other developers, there are even more issues that you need to
focus on for that object-oriented mantra, reuse:

What member functions should be virtual?
How can I best document my classes for readability?
What C++ features should I use/avoid to help other developers?

The MFC Extension Golden Rule
The best way to approach MFC extension class design issues is to look at what Microsoft's own MFC
team do in the MFC classes. If you follow the design conventions used by Microsoft, other MFC
developers will stand a better chance of using and reading your class.

So, the MFC extension golden rule is:

Write MFC extensions that follow Microsoft's conventions.

You may have heard this before as, "When in Rome, do as the Romans do."

Microsoft don't reveal much about how they design MFC, but some fishing around the MFC source code
shows that there is indeed a method to their madness.

MFC Coding Conventions
Before we delve into hard-core MFC class design issues, lets first look at the coding conventions used by
the MFC team when they write classes. Even if you're just starting MFC development, you've probably
noticed that ClassWizard automatically generates some comments in your class declarations. These
comments are used by the MFC team to split the class declaration into the following subsections, which
are usually in this order:

// Constructors
// Attributes
// Operations
// Overrides
// Implementation

When you're doing a quick CDialog derivative, these subsection comments may seem like overkill, but
when you start writing classes with tens or hundreds of member functions and data, using them makes
your life much easier and your class much more understandable.

Here's a quick run-down of what each class declaration subsection comment means and some examples of
what you should put in that subsection:

// Constructors - obviously, your C++ constructors live in this subsection, but, not so obviously,
this is where MFC usually puts any other 'initialization' type member functions, such as Create().

// Attributes - member data lives here, along with member functions that manipulate (Set or
Get) member data. These member functions are sometimes called mutator (Set) accessor (G
et) functions.

// Operations - place member functions that other classes will directly call to perform an
operation in this section. In some cases, there are enough operations that you might want to
subdivide this subsection even further. (e.g. //Operations - Grid functions, //Operations -
Graphing functions, etc.)

// Overrides - you should place functions that are meant to be overridden by derived classes here
(i.e. virtual functions).

// Implementation - implementation-specific member functions should live in this subsection. In
MFC, overridden functions from virtual base class members go in this section too, since they are
considered an implementation detail.

One nice side-effect from the ordering of these subsection comments is that when another MFC developer
looks through your class declaration, class members are presented in a very logical order, starting with
their creation and ending with their implementation. Although these subsection comments cover the
majority of class member functions that you'll write, there are some gray areas that might come up. For
example:

Destructors - Microsoft places all destructors in the // Implementation section, even if they can

be overridden. They are usually the first entry in the // Implementation section.

Pure virtual functions - these should live in the // Overrides section, but you may want to make
them stand out by adding a // Overrides - pure virtual subsection as well.

Message map functions - ClassWizard automatically places these below the // Implementation
section in a section called // Generated message map functions.

Debug specific functions - most MFC classes have Dump() and AssertValid() member
functions. Microsoft places these in the // Implementation section, even though some of them
are overridable.

Variable Naming - Think Hungarian!
If you learned Windows programming reading the good ol' Petzold book, you'll already be very familiar
with Hungarian notation. In a nutshell, it's a variable naming convention that prefixes variable names with
the type of the variable. After the prefix, you should capitalize the next letter and also capitalize the first
letter of any new words in the variable name. The following table gives a quick recap of the variable
name prefixes suggested for the basic C++ types, with examples:

Type Prefix Example Comment
char c cDirSeparator
BOOL b bIsSending
int n nVariableCount
float f fAngle
double d dSalary
UINT n nMyUnsignedInt
WORD w wListID
LONG l lAxisRatio
DWORD dw dwPackedmessage
* (pointer) p pWnd
FAR * lp lpWnd Interchangeable with p under

Win32
LPSTR lpsz lpszFileName z indicates null terminated.
handle h hWnd
callback lpfn lpfnHookProc Pointer to a function

MFC adds some twists to the Hungarian naming conventions. To start with, you should prefix each class
with C and member data with m_; for example: CObject, m_hWnd. Also, there are 'standard' prefixes for
some of the more common MFC classes:

Class prefix Example

CRect rect rectScroll
CPoint pt ptMouseClick
CSize sz szRectangle
CString str strFind
CWnd wnd wndControl
CWnd * pWnd pWndDialog
CDialog dlg dlgFileOpen

To avoid collision with Microsoft classes and to make your classes stand out, I recommend that you come
up with some other character or combinations of characters, rather than C, for the class name; for
example, CWroxMyClass. If you use a company-specific class prefix, when you pass your application to
Joe (he's the new guy with very little experience) he'll know that "Hey! CWroxMyClass must be one of our
reusable MFC extensions!"

Symbol Naming Conventions
MFC also follows a strict set of conventions for naming resource symbols. ClassWizard/AppWizard will
automatically generate these symbol prefixes, but knowing what they stand for and the ranges they cover
will help you use the correct prefixes in your extension classes:

Type Prefix Example Range

Shared by multiple resources IDR_ IDR_MAINFRAME 1 - 0x6FFF
Dialog resource IDD_ IDD_ABOUT 1 - 0x6FFF
Dialog resource help context ID
(for context-sensitive help)

HIDD_ HIDD_HELP_ABOUT 0x2001 - 0x26FF

Bitmap resource IDB_ IDB_SMILEY 1 - 0x6FFF
Cursor resource IDC_ IDC_HAND 1 - 0x6FFF
Icon resource IDR_ IDI_ICON 1-0x6FFF
Menu or toolbar command ID_ ID_CIRCLE_TOOL 0x8000 - 0xDFFF
Command help context HID_ HID_CIRCLE_TOOL 0x1800 - 0x1DFFF
Message box prompt IDP_ IDP_FATALERROR 8 - 0xDFFF
Message box help context HIDP_ HIDP_FATALERROR 0x30008 - 0x3DFFF
String resource IDS_ IDS_ERROR12 1 - 0x7FFF
Control in dialog template IDC_ IDC_COMBO1 8 - 0xDFFF

Technote 20 (InfoView/Visual C++ Books/MFC 4.1/MFC Technical Notes/MFC Technical Notes Index/TN020) gives
more details on resource ranges. Be sure to read it if you're concerned about your resources colliding with
those provided by whoever uses your MFC extension class.

Follow the Leader
If you understand and follow Microsoft's conventions for MFC class declaration, variable naming and
symbol naming, you'll already have taken the important first step of making your classes much more

usable. Other MFC programmers will be able to immediately understand your class interface and should
also be able to pick up on the implementation quickly.

Following these coding conventions is just the tip of the iceberg of writing great MFC extension classes.
It's the design and behavior of the class, or the semantics, that generate the hard questions that the MFC
extension class designer must answer.

Design Issues
The best way for us to look at the different issues that you'll will encounter as you design MFC extension
classes is to answer the questions that you'll be asking yourself during the design process.

What C++ language features should I use/avoid?
MFC doesn't use any multiple inheritance and you should avoid it in your extension classes if you can. If
you choose to use multiple inheritance, be careful! Since almost all of the MFC classes share the single
CObject root, things get messy very quickly. (OK, now I think that's silly because now the user's going to
want an example of how to get around this problem and that's another story for another day. 99% of
people will do just fine without having to mess with multiple inheritance in MFC.) Also, MFC uses only
public inheritance. For example:

class CMyView : public CView

Non-public inheritance provides stricter member access, but confuses many C++ newcomers. Follow the
MFC convention and use only public inheritance in your extension classes.

Another source of confusion for C++ beginners are templates. Templates are good for writing generic
well-typed classes, but you must weigh the complexity of using templates against the advantage of this
type safety. In most MFC extension classes, using templates is definitely over-kill unless you're writing
collections or some other class that you want to operate on a wide variety of data types.

Should I derive from CObject?
Yes, you should. The only cases that don't warrant CObject derivation are usually type-like classes like
CString. For example, a complex number class, or a large integer class might benefit from CObject
derivation, as it gives you serialization, while small helper classes, like locking resources, gains nothing.

When you derive from CObject, your class gains serialization, run-time class information and object
debug diagnostics. You may be asking yourself, "But what's the cost of deriving from CObject?"

If you already have virtual functions in your classes, the cost of deriving from CObject is the addition
of four more virtual member functions. Since you already have virtual functions, the cost of having a
vtable pointer has already been added and four entries in your vtable is a small object-size price to pay for
the features you gain from CObject.

In summary, the cost of CObject derivation is not as expensive as some people would have you believe,
especially if you already have some virtual functions.

Which members should I make
private/public/protected?
You may have noticed that MFC has very few private members. While this doesn't provide strict data
hiding, it does let MFC users examine and modify the behavior of classes that they're using in ways the
class designer might not have anticipated. For example, all of the window classes let you access the

m_hWnd member data, which lets you quickly and easily call the Windows API with the handle if you need
to, but it's up to the user to not change the member data and totally hose the internals of the object.
Avoiding the use of private class security will make your classes more usable for your users, but you
have to trust them (some ASSERTs help too) not to modify member data in dangerous ways. Of course, if
you're a die-hard, OO, Booch-diagrammer, you're probably cringing at this statement. That doesn't change
the fact that this is how every class in MFC is implemented and we're just reporting Microsoft's style for
writing MFC extensions. Of course it's entirely up to you to decide which (if any) of these conventions to
follow.

As for public and protected class security, you can use the class definition subsections described earlier
as a guideline:

// Constructors - public
// Attributes - public/protected
// Operations - public
// Overrides - protected (should only be called/overridden by derivatives)
// Implementation - protected/public/private

The // Attributes and // Implementation sections are where you have to make the most class
security choices. If you think any user classes will need access to data members or implementation-
specific members, use public. If you think that only derivative classes will need access, use protected.
Finally, if you think some implementation-specific member is going to change soon, or you don't want to
grant access to it, make it private (but remember that Microsoft uses private very sparingly).

Which member functions should be virtual?
The more virtual functions you provide, the more behavior a deriving class can modify for their use.
For example, in MFC, many print-preview functions are not virtual, so to change the look and feel of
print preview, you have to cut and paste code from the MFC source (which could change in the next
version) and then modify it in your own routines. Most areas of MFC don't have this problem, but you can
avoid it by making everything but very implementation-specific functions virtual. Here are the member
functions that Microsoft makes virtual by class definition subsection comment:

// Constructors - these functions aren't virtual as the derived class calls the base constructor.
// Attributes - these aren't virtual as they shouldn't change.
// Operations - can be virtual or not; it's up to you as the designer.
// Overrides - always virtual.
// Implementation -can be virtual or not; it's up to you as the designer.

Finally, if your class uses virtual functions, make sure that it has a virtual destructor, so you can
destroy objects without knowing their type. The virtual (polymorphic) mechanism will call the correct
destructor for you. Note that Microsoft use all virtual destructors for this very reason.

Should I provide a copy constructor?
No. You should avoid them because they confuse the user and don't fit in with MFC's two-phase
construction (see the next question).

If you haven't been exposed to copy constructors, they are declared to take a const reference to the object
and are used by the compiler to create copies of an object. If no copy constructor is provided, the
compiler uses a member-wise copy. In MFC, only non-CObject objects (i.e. type classes) have copy
constructors. In fact, CObject has these lines which makes sure a CObject derivative never calls a copy
constructor:

private:
 CObject(const CObject& objectSrc); // no implementation
 void operator=(const CObject& objectSrc); // no implementation.

Why does Microsoft do this? The reason is because there is no clear semantic meaning for something
like:

CWnd myCwnd = yourCWnd;

So, instead of letting the MFC user get into trouble by trying something like this, Microsoft make both the
copy constructor and = operator private, so that, instead of undefined behavior, you'll get a compiler
error when you try something like this.

The only MFC extensions that you would need copy constructors for are type-like classes (CString) that
you choose not to inherit from CObject.

What constructors should I provide?
In MFC's two-phase construction model, Microsoft provide a default constructor (one that takes no
arguments) that initializes the C++ object and also a Create() function that takes arguments for
initializing the Windows object (the graphical part of the class, e.g. window creation etc.). You should
follow this technique in any framework extension classes. The exception is type-like extensions. You
might want to provide constructors that take arguments, since two-phase construction isn't really
necessary.

For example, a CView derivative should definitely adhere to MFC's two-phase construction, but a complex
number class' constructor would most likely take two arguments: the real and imaginary numbers.

How should I pass parameters to member
functions?
MFC follows different rules of thumb depending on the purpose of the parameter (input/output/input-
output) and the type of the parameter (i.e. is it a framework class or a type/type-like class?).

In general, since you can't copy framework objects, you should never pass them by value. Passing by
pointer works, but can be misleading because it appears that the function is going to modify the parameter
to give a result. You should pass by const pointer.

For type and type-like parameters, if the data is small, you should pass by value. If the data is large, you
should pass by const reference instead.

Here are some examples of how to apply these rules:

For input parameters:

If you're using a type or type-like class, pass it by value. If the object is large, pass by const
reference:

void MyFunction(int nType); void MyFunction(const CBigDataRecord & bigtype);

For framework objects, pass in as a const pointer:

void MyFunction(const CMyView * pMyView);

For output parameters:

Pass always as a pointer:

void RetrieveData(int* pInt);
void RetrieveData(CMyView* pView);

Note that the lack of const informs your callers that you'll be modifying the data.

For input-output parameters:

You should avoid passing types/type-like objects as input-output parameters, as the side effect of
both using and changing a parameter is often unclear to the caller. If you must, use a pointer without
a const:

void UpdateCount(int *nCount);

For framework objects, use a pointer too:

void UpdateView(CMyView *myView);

Should I return values or pointers?
For framework classes, the return type should be a pointer to the object. For type-like classes, you should
return the value of the object. Some examples:

CRect GetMyRect();
int GetNumDocuments();
CPoint GetCenterPoint();
CView * GetCurrentView();

What operators should I provide?
Usually, in framework classes, there is no logical meaning for most operators (e.g. CMyView +
CYourView, or CMyDocument == CYourDocument are meaningless operations), so you shouldn't have
operators in your framework classes. No operators are defined in the MFC framework classes.

In your type-like classes, you can follow the MFC type-like classes, CRect, CSize, and CPoint as
examples. They define operators that make sense for the type and also serialization operators.

Should I use char * or CString?

Internally, you should use CString whenever possible because it handles all memory allocation,
localization and destruction for you. Since you want your classes to be very flexible, you may want to
provide both char* and CString versions of some member functions so that you can handle both. For
example, in MFC's CDC, there are two versions of TextOut():

virtual BOOL TextOut(int x, int y, LPCTSTR lpszString, int nCount);
BOOL TextOut(int x, int y, const CString& str);

In the implementation, the TextOut() that takes a CString performs a cast which invokes the CString to
char* conversion operator and then calls the virtual TextOut() which takes a char*:

BOOL CDC::TextOut(int x, int y, const CString& str)
{
 ASSERT(m_hDC != NULL); return TextOut(x, y, (LPCTSTR)str, str.GetLength());
} // call virtual

This 'trick' keeps your users from having to typecast between char* and CString when they call your
member functions.

What accessor/mutator functions should I provide?
Some object-oriented gurus suggest that you make all member data private and provide access only
through accessor /mutator (i.e. Get/Set) functions. MFC takes a more laid back approach by making the
member data public and then providing access functions for the data that 'add value'. For example, in
class CWnd, you can get directly to the member data via m_hWnd, or you can call the access function
GetSafeHwnd(). This accessor function adds value by verifying the state of the class and the state of the
window handle before returning it. It's left up to the class user to decide whether or not they need this
level of checking for their particular situation.

Which class members should be declared const?
Apart from using const to protect arguments against side affects, you can make entire member functions
const, to guarantee that they don't change the object member data. MFC designates all Get accessor
functions as const and other functions that are appropriate.

Some examples of const member functions in MFC are:

CMenu* GetMenu() const;
CMenu* GetSystemMenu(BOOL bRevert) const;
BOOL IsIconic() const;
BOOL IsZoomed() const;
BOOL operator==(POINT point) const;
BOOL operator!=(POINT point) const;

If you know that a function is not going to change any member data, marking it const will ensure that a
derived class doesn't override the function and add dangerous side effects to it. It also gives users a
valuable clue about the member function and its behavior.

Data members that are const are vary rare, since the data usually changes during the life of an object
MFC only uses them for message map entries and interface maps. You probably won't need const data
members in your class unless you're really pushing the MFC envelope.

Which class members should be static?
MFC only has a few static class member functions. Because there's only one copy of the state of a
static member function for multiple instantiations, the static functions in MFC are functions that don't
pertain to a single instance of a class. For example:

static CWnd* PASCAL FromHandle(HWND hWnd);
static CGdiObject* PASCAL FromHandle(HGDIOBJ hObject);
static CBitmap* PASCAL FromHandle(HBITMAP hBitmap);
static CGdiObject* PASCAL SelectGdiObject(HDC hDC, HGDIOBJ h);

The behavior of these functions depends only on the arguments and not on the current object they are
being called against.

MFC declares all message maps, which are members, as static. Aside from that, there aren't many data
members in MFC that are non-unique between different instances.

Use static members in your classes to conserve space like MFC does, and be sure that you are not
making something that is instance-specific into a static member. If you're going to be doing any
multithreaded programming, you should also consider making the ThreadProc()function a static
member. This puts it in the namespace of the class, but still allows you to take the address of the function
properly to pass to CreateThread().

Should I provide default arguments?
Definitely! MFC uses default arguments to make the user's life much easier. In most cases, you only have
to supply MFC framework member functions with a couple of arguments and the defaults are sane
enough so that you only have to provide non-default arguments a small percentage of the time.

For example, CWnd::SendMessageToDescendants() is declared:

void SendMessageToDescendants(UINT message, WPARAM wParam = 0,
 LPARAM lParam = 0, BOOL bDeep = TRUE, BOOL bOnlyPerm = FALSE);

So, in cases where the caller doesn't need to supply a wParam, lParam, bDeep or bOnlyPerm argument, C+
+ fills in the defaults automatically.

Use default arguments in your member functions as much as possible and be sure to document them.

Lessons from the Field
When we put out our first MFC extension class library, we followed the previous rules of thumb to the
letter. After releasing the libraries, we quickly got feedback from our users that made us amend the rules
of thumb with some lessons learned the hard way:

ASSERT Yourself
Be liberal with ASSERTions. Check all arguments and internal state where applicable. The sooner you can
let the user know that they've made a mistake, the better.

Be sure to include an AssertValid() and Dump() for every MFC extension you write. Your
AssertValid() should validate the state of the class' data members and ASSERT if there's a problem.
Developers using the ASSERT_VALID macro will appreciate you including this member. In your Dump()
member function, display the state of the class in a printf() style. Not many people use the dump
diagnostics, but, in a sticky situation, they may resort to this and your class will need to help by
displaying its state.

Leverage MFC
Use CDC, CString and other MFC classes internally whenever possible. There are thousands of lines of
well-written and tested code in MFC, so leverage them whenever possible and avoid using Windows API
calls if you can. Sure, you're a macho programmer from the Windows 2.x days and can do things much
better than MFC, but sticking to MFC is a good idea because everyone else on the project probably won't
understand your more arcane approach to Windows programming ("Why is he using a switch for
messages?!").

Const Correctness
The const keyword is both powerful and rather confusing in C++ programming. Microsoft uses const
carefully in MFC to give the class user a hint about what a member function or argument is doing. Here's
a look at some of the best uses of const:

Use const to let a member function caller know that an argument won't be modified. For example:

 void SetWindow(const CWnd * pWnd); //Won't change pWnd on you!

Mark member functions with const if they don't change the state of the object (e.g. if they don't change
any data members). For example:

 CTime GetTime() const;

This immediately lets the class user know that they can call this member function without having to worry
about any side affects.

Use enum and const declarations instead of #defines if you can. It's much safer to have:

typedef enum {MODE_ONE,MODE_TWO} myModeType;
void SetMode(myModeType newMode);

rather than

#define MODE_ONE 1
#define MODE_TWO 2
void SetMode(int nMode);

With the first version, C++ will catch any modes that don't exist and in the second version, you'll have to
check that the modes are in range. When you're using enum, instead of making them global, place them
inside of a class declaration if they are class-local. This causes less name space pollution.

Also, use this,

const int MIN_INT = 2500;

instead of:

#define MIN_INT 2500

Again, the C++ type checking will catch type mistakes for you and your user.

Virtual Functions Rule!
The votes are in and MFC class users unanimously vote for more virtual functions. Here are some lessons
we learned about virtuals:

Class users will customize things you never imagined. Try and break up every class operation into
smaller functions and make key functions virtual. For example, instead of having a big Draw()
routine that draws a gauge, break the routine into virtual members, such as DrawBackground(),
DrawNeedle(), DrawTicks(), DrawLabel(), etc.. This gives users more opportunities to jump
into the drawing loop and customize to their heart's content.

Use virtuals as callbacks instead of sending messages or calling CALLBACK functions. For
example, if you were writing a serial communication class, you could internally call a function
DataReady(). While your implementation of DataReady() doesn't do anything, the user can
override this virtual function in a derivative and do something in DataReady().

Instead of embedding an object in your class, create a virtual function that returns the object. This
lets users override the virtual to return a customized derivative (polymorphism at its finest!), thus
letting them customize the embedded object. OK, that description is a little hard to grab the first
time, so here's an example. Let's say you write a class that creates a file dialog. The first reaction is
to write:

CMyClass::MyFunction(int nSomething)
{
 //...
 //Embedded member

 if (myDialog.DoModal() != IDOK)
 return;
 //...
}

But what if the user has a specialized CFileDialog for their application that provides a preview of

files? Instead of embedding objects as above, you could give the user the flexibility to override this
embedded object by writing the above snippet as:

class CMyClass : public CSomeClass {
 //
 // CFileDialog customization members
 virtual CFileDialog * GetFileDialog();
 virtual void ReleaseFileDialog(CFileDialog* pDlg);
 // ...
};
CFileDialog * CMyClass::GetFileDialog()
{
 CFileDialog pDialog = new CFileDialog(TRUE,"*.ext","foobar.ext",0,,this);
 //TODO - verify
 ASSERT(pDialog != NULL);
 return pDialog;
}
void CMyClass::ReleaseFileDialog(CFileDialog * pDlg)
{
 ASSERT_KINDOF(CFileDialog,pDlg);
 delete pDlg;
}
CMyClass::MyFunction(int nSomething)
{
 //…
 //Use to have an embedded member…
 CFileDialog * pDialog = GetFileDialog();
 ASSERT_KINDOF(CFileDialog,pDialog);

 BOOL bResult = (pDialog->DoModal() == IDOK);
 ReleaseFileDialog(pDialog);
 //…
}

Now, instead of having to hack up the MyFunction() code, the user can add a custom
CFileDialog derivative by overriding the virtual GetFileDialog() and
ReleaseFileDialog() members. For an example of where MFC itself uses this technique, check
out CDocument::GetFile(), CDocument::ReleaseFile() and
CDocument::OnOpenDocument() in Mfc\Src\Doccore.cpp.

The bottom line is you can't have too many virtual functions. It's nearly impossible to get this right the
first time, but try putting yourself in a class user's shoes and look at your class from different angles to
make sure that you've built in flexibility.

Internationalization
The subject of internationalization in MFC is enough to fill several chapters of this book, so here are
some quick tips and pointers to other information:

DBCS or UNICODE? Since Win95 doesn't support UNICODE, using this makes internationalization
much more complex.
How complex? Check out the Visual C++ Technotes 57 and 59.
Place any end-user visible strings in a resource. This makes internationalization much easier, since
you won't have to search around the source code for all of the strings.
If you don't follow the above suggestion, use the _T macro to convert your inline strings to
UNICODE strings. For example: _T("blah");
CString is already internationalized, so use it instead of char* type strings.

Use LPTSTR instead of LPSTR.
Use LPTCSTR instead of LPCSTR.
Use TCHAR instead of char
All of the above are #defined to different values depending on a UNICODE definition.

Multithreading
You'll often come across the question, "What do you need to do to make a class multithread safe?" In
MFC, the philosophy is that a class is guaranteed to work inside a thread, but not to be sharable between
threads. In the sharing case, it's up to the class user to protect any critical data with synchronization
objects. A clear example of this philosophy is the MFC CString class. It has no special code for
multithread support. However, MFC maintains internal maps of window handles to CWnds that has tons of
synchronization code so that it will work properly when accessed between different threads.

Portability
When you were writing classes for earlier versions of MFC, portability wasn't a concern, but today's MFC
has leapt the surly bounds of the Windows operating system and now acts as a portable class library for
the Macintosh using Microsoft's cross-platform Visual C++ system, and even to UNIX using third party
tools. For most of you writing MFC extensions, this isn't a big deal, but if you do have plans to move to
one of these non-Windows environments, here are some pointers:

Use #ifdef _MAC_ for the Macintosh and #ifdef _UNIX_ for UNIX platforms.
The Win32 implementations on these platforms generally lag Windows by six months to two years.
For example OLE, OCX, MAPI, TAPI, ODBC and other Win32 extensions are probably pushing the
envelope. This means that you'll have to either choose a safe subset of functionality or be prepared to
#ifdef out areas that use additional functionality. Be sure to research your options before going too
far down the path and having to rip out some key feature because it's not supported on another
platform.
Use _MFC_VER_ for any MFC-version specific differences if there are any.

Packaging
The 'neatest' way to package an MFC extension is to write a Component Gallery Gizmo. Unfortunately,
the interface to the Component Gallery is not public knowledge, so you have to resort to less exciting
packaging, such as Extension DLLs (formerly known as AFXDLLs). This is another topic that could take
a chapter on their own, so check out the VC++ Technote 33 for more information on Extension DLLs and
how to build one. In a nutshell, an Extension DLL is a special DLL that exports MFC classes and shares
an MFC DLL with your application. MFC automatically initializes Extension DLLs
for you and adds the resources in the DLLs to its list of places to look for resources.

Putting it All into practice
Once you've read this chapter, you might want to open up the MFC header files Afx.h or Afxwin.h and
search through them to locate an example of each MFC extension class design convention presented.
Then review your classes and see which conventions you follow and which you don't. In your next class,
try to use some of the conventions that you haven't used before. Who knows, if your MFC class design
skills are good enough, maybe Microsoft will eventually hire you for the MFC team! Once you know and

understand the conventions that MFC follows and start using them in your classes, you'll be able to spend
less time on class design and more time on class implementation. Plus, your class users will thank you for
writing classes that are easier to use and understand.

Summary
In this chapter, we've looked at the 'theory' of MFC extensions and some techniques for writing them. In
the next chapter, we put the pedal to the metal and look at some real-world examples of MFC extensions,
review some of the techniques introduced here and how they apply to these real-world classes. Stay
tuned!

Real-world MFC Extensions
The Game Plan
Now that we've looked at some tips for writing great MFC extensions, let's get to work and actually write
some, so that you get a feel of what's involved. In this chapter, we'll design and implement two 'real-
world' extensions (this means that they're not just some cheesy busy-work classes, but actually cool new
classes you can start using in your MFC programs today!). Along the way, I'll try and show you some of
the thought processes that go into each class, along with some pitfalls to avoid and even some new hints
that we didn't cover in the last chapter.

If you're impatient and want to start using the extensions, you can fire up the CD from the book and pull
them out of the Source\Chap02 directory. If you do that, I still urge you to read along and see how the
classes are developed. You could learn a lot here as we work through some of the decisions that are made
along the way.

Abandon Your Wizards!
Many MFC developers are hopelessly addicted to wizards. They can't generate a single class without the
help of ClassWizard, or an MFC application without using AppWizard. Now is the time to break the
Wizard crutches and start programming the old fashioned way. Why? Well, ClassWizard isn't particularly
helpful when it comes to extending MFC in ways that it's not familiar with. For example, what if you
want to create a CStatusBar derivative? Since this class isn't one of the base class options in
ClassWizard, you're on your own.

Once you start writing serious MFC extensions, you'll want to know exactly what's going on, so you'll
need to wean yourself from the wizards. With this in mind, take note that you won't be seeing any wizard
screen shots in this chapter!

Building a Better Status Bar
The MFC status bar is a pretty powerful tool that helps you set up panes of text which are updated
depending on different program states. MFC gives you a great deal of functionality in the status bar 'for
free'. For example, when the user moves through a series of menus, MFC automatically displays the menu
prompt in the status bar to give them a clear indication of what the menu does. The interface to the status
bar could be clearer, but most MFC programmers get around that by writing a quick routine that displays
some text in a pane, so they don't have to remember the rather arcane ways to do this through the
CStatusBar class.

Visual C++ even includes a component gallery wizard that adds a clock to a status bar that is updated
every second. What more could you want???

Have you ever noticed when you load a project or large-ish file in Visual C++ that the status bar displays
some text and a progress bar? Once the operation is over, the status bar resorts to the more familiar MFC-
like status bar that we all know and love. In fact, several Microsoft products exhibit this same behavior
(try it with Word, for example). Unfortunately, MFC's CStatusBar doesn't support a 'progress' mode that
lets you change the status bar into a quick progress-status bar.

Well, this certainly isn't fair. Why should Microsoft's applications have a nifty feature like this and not
yours? Let's put this right by extending MFC!

Designing a Progress-status Feature…
Wise men say that only fools rush in, and extending MFC is no exception. Before we start banging out the
code for our cool new feature, let's think about what class in MFC we want to extend.

Usually, an application's different 'bars' (status and tool) live in the CMainFrame CFrameWnd derivative
class. The first impulse may be to add some new members (e.g. DisplayProgress(),
IncreaseProgress(), HideProgress()) to CMainFrame that handle the progress-status feature. This
makes sense for several reasons:

The CMainFrame is easy to access from anywhere in the code with MFC's AfxGetMainWnd() call.
So, anywhere in your code, you could call something like:

 ((CMainFrame*)AfxGetMainWnd())->DisplayProgress();

This is certainly handy because most of the actions that you'll want to display a progress bar most
likely won't be in the CMainFrame, but in a CDocument or CView.

Since CStatusBar is embedded inside CMainFrame, there is access to the CStatusBar, so you
can easily get to its windows and draw the progress bar.

This is the perfect design, so let's get started…

Not!
OK, I have to admit that I've led you down the wrong path so far. Can you guess why this isn't the best
way to go? The problem is the CMainFrame solution is not object-oriented at all! What happens in six
months when you're working on a new product and you want it to also have the progress-status feature?
You have to copy all of that CMainFrame code out of the current application and paste it into the new one.
In the process, you're probably going to forget some code, have to dig back into the old code and waste a
lot of time on a feature that you've already implemented.

Also, what if Fred down the hall in the WinWin product group wants to use your progress-status feature
on his project? You'll have to point him to the important parts of your CMainFrame class and explain to
him how the whole thing works. When you're extending MFC, you have to get rid of those old C
Windows programming habits and think more object-oriented....

A Better Design
A much better solution to the problem is to extend the CStatusBar class. After all, aren't we adding
functionality to the status bar and not the frame window? Now, if Fred starts bugging you for your
progress-status code, you can e-mail him your enhanced CStatusBar and point out the enhancements.
The code is more self-contained and also easier to manage, so you're bound to get a promotion! In honor
of the book you're reading, let's call our CStatusBar derivative MCStatusBar, or the Master Class Status

Bar! Once you've decided where in the MFC class tree to plant your extension, the next step is to design
the interface.

This approach is more object-oriented, because we're encapsulating all the functionality of the new
status bar inside the MCStatusBar class. CMainFrame itself doesn't need to know how to
manipulate the progress control directly. You may still have CMainFrame::DisplayStatus(),
but this would simply call MCStatusBar::DisplayStatus().

The Progress-status Interface
There are a pretty small number of 'operations' that anyone who uses MCStatusBar will need to call:

1 Start the progress-status bar. This clears the current status bar and displays some
progress-status text, such as Saving: or Reading Project:. At this point, the user will probably want
to set up the size of the progress bar and perform other initializations. Let's go with
StartProgress() as a good first name for this action.

2Increment the progress-status-bar. You would make this operation in your saving or loading code
that increments the progress-status bar indicator and lets the user know what percentage of the action
is complete. Let's call this operation, IncrementProgress().

3 Stop the progress-status bar. Once the action whose progress is being shown in the
progress-status indicator is complete, the class user will want to return the status bar to its pre-
progress state. Yep, you guessed it, we'll call this StopProgress().

We could go crazy and add some accessors and virtual functions, but remember—these class interfaces
usually pop out after you've started writing code and find a nice member function that can be used for
customization, or a data member that needs an accessor.

So, keep the interface minimal. Don't add stuff unless you're sure that you need to.

Since this is our first extension, let's keep it simple for now and go with these three operations and see
where the design takes us from there. Now we can start thinking about how we're going to write these
operations.

Remember the Golden Rule
Take a few minutes to flip back to the last chapter and reread the MFC mantra, also known as the golden
rule, Write MFC extensions that follow Microsoft's conventions. Now with the golden rule in mind, let's
think about how we want to go about drawing a progress bar in a base class CStatusBar. There are two
approaches I can think of:

Be macho and write the drawing logic from scratch. This would be something like:

1 Create a progress area with a bevel that holds X progress 'ticks'.

2 Draw the 'X' ticks in the IncrementProgress() using a blue pen (user configurable
maybe?).

3 After drawing, erase the area and then redraw the status bar.

MFC already has a class for drawing progress bars: CProgressCtrl. I wonder if we could use that
here? If we could, we could do something like:

1 Create the CProgressCtrl.

2 Make some calls to it.

3 Destroy it when we're done.

What would Microsoft do? Of course, they would use the second approach because there's no reason to
recreate all of the logic that is nicely encapsulated by CProgressCtrl unless we hit some roadblock that
keeps us from using a CProgressCtrl in a CStatusBar derivative.

In fact, since we've decided that CProgressCtrl is going to be integral in MCStatusBar, let's think again
about our class interface. Instead of start/stop progress members, we could create/delete CProgressCtrl,
using the MFC new/create/delete paradigm. CStatusBar already has the members and we could override
them to take new arguments. The nice thing about keeping the start/stop progress member functions is
that it lets us keep the progress operations separate from the general creation logic of CStatusBar. For
example, what if someone uses MCStatusBar and doesn't want to create a progress bar? Another argument
for keeping separate progress member functions is that there could be other functionality added in the
future, and it would be easier to add more operations instead of changing the Create() every time and
potentially breaking old code. Let's stick to the original plan.

A CProgressCtrl has a range with an upper and lower limit. These are all good arguments to pass
through the StartProgress() function. CProgressCtrl can also have a different 'step' which defines
how many progress indicators are used to fill the progress area. The default is ten. This could be a good
default argument for StartProgress(), but it's also something that someone might want to call after
StartProgress(), so let's add a new operation, SetStep(),which lets the user set the step any time after
they've called StartProgress().

CProgressCtrl has two calls similar to the IncrementProgress() operation that we need in
MCStatusBar:

StepIt()This increments the progress indicator by the current step amount (set with SetStep()).
SetPos()This sets the progress indicator to a specified amount. For example, if a progress bar had a
minimum of 0 and a maximum of 100, SetPos(50), would set 1/2 of the progress indicator full (I'm
an optimist).

Since any MCStatusBar user could also be familiar with CProgressCtrl, let's rethink the
IncrementProgress() member function and, instead, go with StepIt() and SetProgressPos().Why
SetProgressPos() and not SetPos()? Well, in the context of MCStatusBar, SetPos() could mean set
the position of the status bar or a frame. Naming the member function SetProgressPos() clearly
indicates what's going to happen and keeps some remnants of the CProgressCtrl interface.

Remember the hint from the last chapter to leverage as much of MFC as possible? Using CProgressCtrl
and some of its class interface is a prime example of that.

The MCStatusBar Header

Now that we've designed the class' interface and made some key implementation decisions, it's time to
write the header for the class:

#ifndef _MC_SBAR_H_
#define _MC_SBAR_H_
///
// MCStatusBar class for VC++ MasterClass
class MCStatusBar : public CStatusBar
{
// Construction
public:
 MCStatusBar();
// Attributes -none
public:
// Operations
public:

 int SetProgressPos(int nPos);
 int StepIt();
 int SetStep(int nPos);
 void StopProgress();
// Overrides -none
// Implementation
public:
 virtual ~MCStatusBar();
#ifdef _DEBUG
 virtual void Dump(CDumpContext& dc) const;
 virtual void AssertValid() const;
#endif //_DEBUG
protected:
 // Pointer to our progress control.
 CProgressCtrl * m_pProgressCtrl;

 DECLARE_MESSAGE_MAP()
};
//
#endif //_MC_SBAR_H_

Some points of interest from the MCStatusBar definition are:

Notice that the class uses the MFC subsections introduced in the last chapter.
Every member function name, argument and member variable uses the extended Hungarian notation.
The interface we designed has been added to the //Operations section where it belongs.
There's a virtual public destructor in the //Implementation section.
There is a protected CProgressCtrl pointer in the //Implementation section.

We're not doing anything fancy, like redefining lots of the CStatusBar member functions. Be sure to keep
things as simple as possible and avoid unnecessary complexity whenever you can.

MCStatusBar Implementation Details
Now let's look at the implementation of each of the MCStatusBar member functions. One important
implementation decision is how to create/destroy the CProgressCtrl. One implementation could create

the control in the MCStatusBar constructor and destroy it in the destructor, but this could be wasteful if
the user never creates a progress-status.

Another implementation would be to create the CProgressCtrl in StartProgress() and delete it in
StopProgress(). What if the user wanted to draw 100 different progress-status indicators over the course
of the programs invocation? Creating and destroying that many CProgressCtrl objects could be pretty
time-consuming.

A good solution to the shortcomings of the above solutions is to create a CProgressCtrl in
StartProgress() and cache it until the MCStatusBar is destroyed where it can be freed. With this
caching scheme in mind, let's look at the implementation of each MCStatusBar member function.

MCStatusBar::StartProgress() Implementation
BOOL MCStatusBar::StartProgress(int nLower, int nUpper,
 CString strCaption)
{
 //Hey the user needs a progress bar - create him!
 if (m_pProgressCtrl == NULL)
 m_pProgressCtrl = new CProgressCtrl;

 ASSERT(m_pProgressCtrl != NULL);

 SetWindowText(strCaption);
 UpdateWindow(); //force update...
 CDC* pDC = GetDC();
 CSize sizeCaption = pDC->GetTextExtent(strCaption);
 CRect rectSB;
 GetWindowRect(&rectSB);

 CRect rectProgress;
 rectProgress.left = sizeCaption.cx + 10;
 rectProgress.right = rectProgress.left +
 rectSB.Width()/2; //about 1/2 width
 rectProgress.top = 5;
 rectProgress.bottom = rectProgress.top + rectSB.Height() - 5;

 // Create the control
 BOOL bResult = m_pProgressCtrl->Create(0, rectProgress, this, 1);
 ASSERT(bResult == TRUE);
 m_pProgressCtrl->SetRange(nLower, nUpper);
 m_pProgressCtrl->ShowWindow(SW_SHOW);

 return bResult;
}

StartProgress()is really the meat and potatoes of MCStatusBar, so let's take a second to analyze it in
detail.

First, the function checks to see whether a CProgressCtrl has been created already. If not, a new
CProgressCtrl is created and stored in the m_pProgressCtrl cache variable. Next, there's a seemingly
redundant ASSERT that double checks that the m_pProgressCtrl is non-NULL.

If you have some potentially confusing logic in a function, an extra ASSERT is always a good tool to help
keep anyone using or reading through your class on track about what the state should be at that point in
time. It's also a good sanity check to make sure you haven't messed up or some derivative has caused

some change in important behavior.

After creating the CProgressCtrl, StartProgress()sets the text of the status bar to the strCaption
string argument. Then StartProgress() makes a call to UpdateWindow() to force the status bar to
change.

Once the text is displayed, StartProgress() makes some calculations to determine where to place the
CProgressCtrl. First, the size of the caption string is used to determine where on the left to start the
progress control. Next, the length of the progress control is calculated to be about 1/2 the length of the
status bar. Finally, the top and bottom of the progress control are based on the height of the status bar, plus
a small border so that the progress control is clearly contained within the status bar but is still visible.

Once the size of the progress control has been calculated, StartProgress() creates the CProgressCtrl
with this (which is the status bar) as the parent window and the calculated rectangle as the dimensions of
the control.

Next, once the CProgressCtrl has been created, StartProgress() verifies that it was created with an
ASSERT (always call ASSERT after Create(); you'll track down many problems this way), then calls
SetRange()on the object to set the lower and upper bounds.

Finally, StartProgress() calls CProgressCtrl::ShowWindow() to display the CProgressCtrl inside of
the status bar.

MCStatusBar::SetStep(), MCStatusBar::StepIt() and
MCStatusBar::SetProgressPos() Implementations

int MCStatusBar::SetStep(int nPos)
{
 ASSERT(m_pProgressCtrl != NULL);
 // ASSERT->Did you call StartProgress First?
 return m_pProgressCtrl->SetStep(nPos);
}

int MCStatusBar::StepIt()
{
 ASSERT(m_pProgressCtrl != NULL);
 // ASSERT-> Did you call StartProgress first?!
 return m_pProgressCtrl->StepIt();
}

int MCStatusBar::SetProgressPos(int nPos)
{
 ASSERT(m_pProgressCtrl != NULL);
 // ASSERT-> Did you call StartProgress first!?
 return m_pProgressCtrl->SetPos(nPos);
}

SetStep(), StepIt() and SetProgressPos() are protected calls through the m_pProgressCtrl
CProgressCtrl pointer. Before calling through the data member, each function ASSERTs to make sure that
the user didn't call one of the operations before they called StartProgress(). Another option would be to
detect this situation and then automatically call StartProgress(), but let's stick to our basic interface for
now.

Note that the ASSERTs here are followed by a helpful comment that suggests to the user what is most
likely going wrong. It's always a good idea to describe possible ASSERT causes in your code after an

ASSERT if you have an idea of what could be wrong. If the class user hits the ASSERT, he or she will
hopefully fire up the debugger and see the comment that we've placed near the assertion. Most MFC
programmers are familiar with this procedure, since Microsoft usually comments each of their ASSERTs
with some possible reasons for the ASSERT.

You should also not that using ASSERTs doesn't protect your code in release build. Unless you can
guarantee that your code is fully tested, you may still have a situation that results in one of these
functions being called with m_pProgressCtrl set to NULL. With these functions, you can't return
an error condition back to the calling function, as a correct return value can be any valid integer. If
you want to add more protection, you'll have to throw an exception if m_pProgressCtrl is NULL.

MCStatusBar::StopProgress() Implementation
void MCStatusBar::StopProgress()
{
 ASSERT(m_pProgressCtrl != NULL);
 //ASSERT->Did you call StartProgress first?
 //Don't delete this guy - we've already incurred
 //the expense of displaying it, why do it again?
 //If the user's used it once, likely to do so again..

 // Cache that puppy and reset to the
 // CProgressCtrl defaults
 // for next time.
 m_pProgressCtrl->ShowWindow(SW_HIDE);

 // Refresh the status bar
 SetWindowText(NULL);
 UpdateWindow(); //force update

 //Nuke its window
 m_pProgressCtrl->DestroyWindow();

}

MCStatusBar::StopProgress() first hides the progress control, clears the caption from the status bar by
calling SetWindowText(NULL) and then calls UpdateWindow() to make the status bar redraw itself and its
panes. After redrawing the status bar, the Windows window is destroyed by calling
DestroyWindow().Note that the CProgressCtrl object is not destroyed, but the Windows window
associated with it is. This resets the m_pProgressCtrl object to be reused in the next call to
StartProgress().

MCStatusBar Constructor/Destructor Implementation
MCStatusBar::MCStatusBar()
{
 m_pProgressCtrl = NULL;
 //Create on an 'as-needed' basis...
}

MCStatusBar::~MCStatusBar()
{
 //Nuke it if it was ever created
 if (m_pProgressCtrl != NULL){
 delete m_pProgressCtrl;
 //Be sure to reset to NULL
 m_pProgressCtrl = NULL;
 }

}

The MCStatusBar constructor initializes the m_pProgressCtrl to NULL so that the progress-status
functions can detect that a CProgressCtrl has not been created, and create one. The MCStatusBar
destructor frees the CProgressCtrl if it has been created and resets the m_pProgressCtrl data member
back to NULL.

MCStatusBar Dump() and AssertValid()
As we mentioned in the previous chapter, every good MFC extension needs to implement a Dump() and
AssertValid() so that the user can use the standard MFC memory checking and debug output methods
on them. MCStatusBar is a good citizen and accordingly provides basic Dump() and AssertValid()
implementations:

#ifdef _DEBUG
void MCStatusBar::Dump(CDumpContext& dc)
{
 CStatusBar::Dump(dc);
 if (m_pProgressCtrl != NULL){
 dc << "\nMCStatusBar has a progress control--->\n";
 dc << m_pProgressCtrl;
 }
 else
 dc << "\nMCStatusBar has no progress control\n":

}
void MCStatusBar::AssertValid()
{
 CStatusBar::AssertValid();
 if (m_pProgressCtrl != NULL)
 ASSERT_VALID(m_pProgressCtrl);

}
#endif //_DEBUG

These implementations are pretty self explanatory. Notice how both Dump() and AssertValid() are sure
to call the overridden base class' function first, to catch errors in that class if they exist, before catching
the added functionality in MCStatusBar.

Using MCStatusBar
Now that we've implemented MCStatusBar, let's think about how the user will use it in a MFC
application.

First, the user will have to change the usual CStatusBar object in CMainFrame from,

CStatusBar m_wndStatusBar;

to,

MCStatusBar m_wndStatusBar

It's a good idea to have the user write an MCStatusBar accessor like,

MCStatusBar * GetStatusBar() {return &m_wndStatusBar;};

so that instead of calling,

AfxGetMainWnd()->m_wndStatusBar.StartProgress();

which wouldn't work, as m_wndStatusBar is a protected member of CMainFrame, the user can call:

AfxGetMainWnd()->GetStatusBar()->StartProgress();

You may even want to suggest that the user write wrappers around the progress-status APIs in the
CMainFrame such as:

BOOL StartProgress(int nLower, int nUpper, CString strCaption)
{
 return m_wndStatusBar::StartProgress(nLower,nUpper,strCaption);
};

Then the user can just call:

AfxGetMainWnd()->StartProgress();

Here's some sample code that simulates a lengthy action:

 m_wndStatusBar.StartProgress(0,10, "Doing something cool dude:");

 for (int i = 0; i < 10;i++){
 m_wndStatusBar.SetProgressPos(i);
 for(int j =0;j < 1000000;j++);
 }
 m_wndStatusBar.StopProgress();

The following figure shows MCStatusBar in action:

Improving MCStatusBar from Here
Now that we've written our extension and have a sample working with it, let's think about ways to
improve MCStatusBar. From a class user's standpoint, one of the biggest drawbacks of the class could be
the lack of a custom placement.

If you recall, in the StartProgress() implementation we calculated the position based on a pretty non-
scientific algorithm. (Beware whenever you see things like +10, -5. Unfortunately, MFC is full of these
kinds of hard-coded values.) For vanilla AppWizard- generated applications running on Windows 95, this
will probably be good enough, but what if someone has some panes in their status bar that they don't want
to be overwritten by the progress bar? What if some future operating system has a skinnier scroll bar
control and our progress bar turns out to be too big?

There are several ways to solve the problem. We could just have StartProgess() take a CRect&
argument and make the user always pass in the desired size. Unfortunately, only power users are likely to
make this calculation correctly, so it would be
nice to provide at least a default implementation to give the user a hand with the sizing.

This is a job for a virtual function! (Remember, virtuals rule!). What if we add a virtual function to
MCStatusBar like:

virtual CRect GetProgressRect() const; // Remember to be const correct!!

Then the implementation of StartProgress() and GetProgressRect() becomes:

BOOL MCStatusBar::StartProgress(int nLower, int nUpper,
 CString strCaption)
{
 //Hey the user needs a progress bar - create him!
 if (m_pProgressCtrl == NULL)
 m_pProgressCtrl = new CProgressCtrl;

 ASSERT(m_pProgressCtrl != NULL);

 SetWindowText(strCaption);
 UpdateWindow(); //force update...

 CDC* pDC = GetDC();
 CSize sizeCaption = pDC->GetTextExtent(strCaption);

 CRect rectSB = GetProgressRect();
 // Create the control
 BOOL bResult = m_pProgressCtrl->Create(0, rectProgress, this, 1);
 ASSERT(bResult == TRUE);

 m_pProgressCtrl->SetRange(nLower, nUpper);
 m_pProgressCtrl->ShowWindow(SW_SHOW);

 return bResult;
}

//Override GetProgressRect() to customize the progress bar
//placement. This default implementation works well on Win95
//with the normal MFC AppWizard status bar configuration…
CRect MCStatusBar::GetProgressRect() const
{
 CRect rectSB;
 GetWindowRect(&rectSB);

 CRect rectProgress;
 rectProgress.left = sizeCaption.cx + 10;
 rectProgress.right = rectProgress.left +
 rectSB.Width()/2; //about 1/2 width
 rectProgress.top = 5;
 rectProgress.bottom = rectProgress.top + rectSB.Height() - 5;
 return rectProgress;

}

If the user needs to customize the size of the progress indicator in the status bar, they just have to create a
quick MCStatusBar derivative, override GetProgressRect() and they're done. Before this change, they
would have had to manually change StartProgress() and potentially break some of the other logic in
there.

This example also illustrates another good MFC class writing habit: break up long functions with
embedded calculations and objects (e.g. a CFileDialog) into smaller virtual member functions. This
practice makes your classes more customizable and also makes them easier to understand for a novice.

Can you think of any other ways to enhance MCStatusBar? It might be interesting to try and make
MCStatusBar work in it's own thread and accept events as a signal to step to the progress indicator (there
could be other critical section issues if you want threads to share a MCStatusBar). This is a pretty
specialized implementation of the class, so we'll leave it up to you to implement the feature for a fun
homework assignment.

Now that you've seen how to add a progress indicator to your status bar, let's tackle a more complicated
problem: implementing customizable toolbars.

A Customizable Toolbar: MCCustToolBar
Most of Microsoft's applications include a facility that lets the end user customize toolbars. For example,
in Visual C++ 4.x, select Tools/Customize.../Toolbars and you'll see the toolbar customization dialog below:

You'll also find similar toolbar customization dialogs in Word, Excel and other Office products. Wouldn't
it be nice to be able to add this kind of functionality to your application so that your users could
customize toolbars to suit their needs?

MFC provides a pretty handy toolbar that is based on the Win32 common control toolbar. The Win32
common control toolbar supports customization, but, unfortunately, the MFC toolbar class doesn't, so
we're going to have to write an MFC extension to solve this. But before we do, let's answer an important
question:

How Do They Do That?
Now, the obvious question is "How do Microsoft implement these dialogs and how can we do the same
thing in our applications?" There are two possibilities:

Microsoft uses the Win32 common control toolbar which supports customization.
Microsoft has written custom code to do it.

How can you figure out what Microsoft is doing? Fire up Spy++ and take a look at the class name for the
Visual C++ toolbar. It turns out to be something like Afx:400000:b:14ee:10:0. Now do the same thing with a
normal MFC application and you'll see that the class name for the toolbar is ToolBarWindow32. This tells us
that Microsoft isn't using the MFC toolbar class in Visual C++, but has instead written their own
enhanced toolbar that supports customization.

Now we're faced with a dilemma: do we follow Microsoft's path and write our own toolbar, or do we
extend the MFC toolbar to use the Win32 common control customization? In this chapter, we'll take the
easy way out of the problem and use the functionality found in the Win32 common control. At the end of
the chapter, we'll look at what it would take to provide a 100% Visual C++ like customizable toolbar and
you'll see why we chose to leverage the Win32 common control functionality instead of writing a custom
toolbar.

Adding Customizability to MFC's CToolBar
Microsoft's CToolBar class is actually a thin implementation (that provides a MFC 3.x and lower
interface) wrapper around the Win32 toolbar common control. MFC provides an even thinner wrapper
around the Win32 toolbar, called CToolBarCtrl. You can access the underlying CToolBarCtrl control by
calling CToolBar::GetToolBarCtrl() to get a reference to a CToolBarCtrl.

One solution to the problem would be to switch your MFC applications to use CToolBarCtrl instead of
CToolBar. The problem with this solution is that most MFC applications use CToolBar plus CToolBar
provides lots of convenience that you would have to rewrite in a CToolBarCtrl extension.

So, to add customization to toolbars, we'll take the approach of extending CToolBar, using some of the
untapped CToolBarCtrl APIs in our implementation.

CToolBar Customization
Before we start thinking about how to extend CToolBar, we need to first understand how the Win32
common control customization works. What follows are the highlights that you'll need to know to
understandthe CToolBar customization. If you have any questions, detailed information is contained in
the Visual C++ online help.

CToolBarCtrl lets a user move a tool by dragging it while they hold down the Shift or Alt key. A
customization dialog (that also supports drag-and-drop) is displayed via the
CToolBarCtrl::Customize() API. To enable the CToolBarCtrl customization functionality, you have to
create the control with the CCS_ADJUSTABLE style bit set. The TBSTYLE_ALTDRAG bit flag can be used to
specify Alt key dragging versus Shift key dragging.

Once the user starts customizing the CToolBarCtrl, the control sends a variety of notifications via
WM_NOTIFY messages to the parent window. The wParam of the WM_NOTIFY contains different notification
codes and the lParam contains either a TBNOTIFY or a NMHDR structure pointer. NMHDR is a generic
notification structure and TBNOTIFY is a toolbar-specific structure that contains a NMHDR plus toolbar
specific notification information (more on this later).

The notifications serve many purposes. In some cases, they let the application know that the user is doing
something and gives the app a chance to stop the action. In other cases, the notifications are requesting
information from the application, or simply providing some information about a user's action. The
notification messages of interest are:

Notification Message Meaning
TBN_BEGINADJUST The user is starting a customization. lParam is a NMHDR pointer.
TBN_BEGINDRAG The user is starting a drag operation. lParam is a TBNOTIFY pointer.
TBN_CUSTHELP The user selected Help in the customize dialog. lParam is a NMHDR

pointer.
TBN_ENDADJUST The user has stopped customizing the toolbar. lParam is a NMHDR

pointer.
TBN_ENDDRAG The user has stopped a drag (dropped). lParam is a TBNOTIFY pointer.
TBN_GETBUTTONINFO Retrieves information about the toolbar from the application. lParam

is a TBNOTIFY pointer. This message is usually sent to query the
parent for the items to be displayed in the customize dialog.

TBN_QUERYDELETE Asks the application if a button can be deleted. The application can
return TRUE to allow the button to be deleted or FALSE to stop a button
from being deleted. lParam is a TBNOTIFY pointer.

TBN_QUERYINSERT Asks the application if a button can be inserted in a certain position.
The application can return TRUE/FALSE to accept/deny an insertion.
lParam is a TBNOTIFY pointer.

TBN_RESET The user has reset the toolbar. lParam is a NMHDR pointer.
TBN_TOOLBARCHANGE Notification that the toolbar has changed. lParam is a NMHDR pointer.

The TBNOTIFY structure is defined as:

typedef struct {
 NMHDR hdr;
 int iItem;
 TBBUTTON tbButton;
 int cchText;
 LPTSTR pszText;
} TBNOTIFY, FAR* LPTBNOTIFY;

Where NMHDR is a normal notification header, iItem specifies the button being customized, tbButton is a
TBBUTTON structure that contains toolbar button information, cchText contains a count of characters in the
toolbar button text and pszText is a NULL terminated string pointer that contains the button text.

The TBNOTIFY of each CToolBarCtrl() notification is context-sensitive. For example, in a
TBN_BEGINDRAG operation, the iItem field contains the zero-based index of the button being dragged and
the rest of TBNOTIFY is not used.

As well as TBNOTIFY, we'll need to know about TBBUTTON to add customization to CToolBar. The
TBBUTTON structure describes a toolbar button and is declared as:

typedef struct _TBBUTTON {
 int iBitmap;
 int idCommand;

 BYTE fsState;
 BYTE fsStyle;
 DWORD dwData;
 int iString;
} TBBUTTON,* LPTBBUTTON;

Member Meaning
iBitmap Zero-based index of the button bitmap.
IdCommand The command ID for the button.
fsState Holds the button state flags.
FsStyle Contains the button style flags.
dwData Holds application data.
iString Contains the index for the button string.

MCCustToolBar Implementation
Now we know enough about the underlying toolbar customization functionality to start implementing our
MCCustToolBar class, which is derived from CToolBar. We're going to take a different approach with this
class than we did with MCStatusBar. Instead of presenting the class and explaining how it works, we'll
implement the features of the class and then show how it fits together in the end. (You can peak ahead if
the suspense is too much for you.) The implementation of MCCustToolBar breaks down into these steps:

1 Initialization; making sure the toolbar is created in customize mode.

2 Message handling; implementing message handlers for the customization notifications
and helpers used in implementing them.

3 Toolbar persistence; implementing serialization for the toolbar so that customization is
not lost at application exit.

Each of these steps is covered in a section below.

MCCustToolBar Initialization
The first task in writing MCCustToolbar is making sure that the underlying CToolBarCtrl is created with
the style bits necessary to turn on the customization feature. Whenever you need to customize window
creation, you should override PreCreateWindow(). Here's the PreCreateWindow()for MCCustToolbar:

BOOL MCCustToolBar::PreCreateWindow(CREATESTRUCT& cs)
{
 cs.style |= CCS_ADJUSTABLE | TBSTYLE_ALTDRAG;
 return CToolBar::PreCreateWindow(cs);
}

All we do in PreCreateWindow() is add CCS_ADJUSTABLE and TBSTYLE_ALTDRAG to the CREATESTRUCT
style bits and then call the overridden CToolBar::PreCreateWindow().

As well as overriding PreCreateWindow(),we also need to override both CToolBar::LoadToolBar()
functions:

BOOL MCCustToolBar::LoadToolBar(UINT nIDResource)
{
 BOOL bResult = CToolBar::LoadToolBar(nIDResource);
 GetButtons(m_nSavedCount, m_pSavedButtons);
 return bResult;
}

BOOL MCCustToolBar::LoadToolBar(LPCTSTR lpszResource)
{
 BOOL bResult = CToolBar::LoadToolBar(lpszResource);
 GetButtons(m_nSavedCount, m_pSavedButtons);
 return bResult;
}

The reason for overriding LoadToolBar() is to store the initial precustomized state of the toolbar in the
m_nSavedCount and m_pSavedButtons data members. The GetButtons() helper is implemented as:

void MCCustToolBar::GetButtons(int& nSavedCount, TBBUTTON*& pSavedButtons)
{
 // delete previous state
 delete[] pSavedButtons;
 pSavedButtons = NULL;
 nSavedCount = 0;
 // capture current state
 int nButtonCount = GetToolBarCtrl().GetButtonCount();
 pSavedButtons = new TBBUTTON[nButtonCount];
 for (int i = 0; i < nButtonCount; i++)
 GetToolBarCtrl().GetButton(i, &pSavedButtons[i]);
 nSavedCount = nButtonCount;
}

GetButtons() takes two reference arguments: nSavedCount is a count of the number of buttons and
pSavedButtons is a pointer to an array of TBBUTTON structures (see earlier TBBUTTON discussion).

First, GetButtons() clears out the arguments and then initializes them, based on the number of buttons in
the CToolBarCtrl. After initializing the TBBUTTON array and saved count, GetButtons() iterates through
the CToolBarCtrl buttons and saves the button state. You'll see why we need to do this at initialization
later in the chapter.

Part of the initialization is making sure the customization dialog is created when the user right clicks on
the CToolBar. A simple OnRButtonDown() message map entry and message handler that calls
CToolBarCtrl::Customize() will take care of that (you should be able to handle the message map part
by now!):

void MCCustToolBar::OnRButtonDown(UINT nFlags, CPoint point)
{
 CToolBar::OnRButtonDown(nFlags, point);
 // display the toolbar customization dialog
 GetToolBarCtrl().Customize();
}

Once the toolbar has been created, it's initial state is stored, and the user can bring up the customize dialog
with the right mouse button. All we need to do is handle the customization messages and implement
persistence. Remember that after initialization, m_nSavedCount and m_pSavedButtons contain the initial
toolbar button state.

Message Handling
As we've said already, when the user begins customization, it's the application's responsibility to respond
to certain WM_NOTIFY messages. WM_NOTIFY messages are sent to a window's parent (in this case the
mainframe) instead of to the toolbar that generates them. This means that we'll have to make every
MCCustToolBar user add message handlers to their application's mainframe.

Luckily, the folks at Microsoft realized this was a problem and fixed it by adding something called
message reflection in MFC 4.0 and greater. Message reflection is implemented through special message
map entries that tell MFC to route a message to the control which generated the message instead of to its
parent window. Using message reflection, we can write a self-contained MCCustToolBar and not have to
worry about the class user handling the notifications.

Here are the message map entries for the toolbar reflected notifications we need to handle:

IMPLEMENT_DYNAMIC(MCCustToolBar, CToolBar)

BEGIN_MESSAGE_MAP(MCCustToolBar, CToolBar)
 //{{AFX_MSG_MAP(MCCustToolBar)
 ON_WM_RBUTTONDOWN()
 ON_NOTIFY_REFLECT(TBN_BEGINADJUST, OnBeginAdjust)
 ON_NOTIFY_REFLECT(TBN_BEGINDRAG, OnBeginDrag)
 ON_NOTIFY_REFLECT(TBN_CUSTHELP, OnCustHelp)
 ON_NOTIFY_REFLECT(TBN_ENDADJUST, OnEndAdjust)
 ON_NOTIFY_REFLECT(TBN_ENDDRAG, OnEndDrag)
 ON_NOTIFY_REFLECT(TBN_GETBUTTONINFO, OnGetButtonInfo)
 ON_NOTIFY_REFLECT(TTN_SHOW, OnToolTipShow)
 ON_NOTIFY_REFLECT(TBN_QUERYDELETE, OnQueryDelete)
 ON_NOTIFY_REFLECT(TBN_QUERYINSERT, OnQueryInsert)
 ON_NOTIFY_REFLECT(TBN_RESET, OnReset)
 ON_NOTIFY_REFLECT(TBN_TOOLBARCHANGE, OnToolBarChange)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

Since MCCustToolBar doesn't customize the default drag-and-drop or insertion/deletion operations, some
of the notification handler implementations are trivial. Here are the implementations for OnBeginDrag(),
OnEndDrag(), OnQueryDelete() and OnQueryInsert():

void MCCustToolBar::OnBeginDrag(NMHDR* pNMHDR, LRESULT* pResult)
{
 *pResult = FALSE;
}

void MCCustToolBar::OnEndDrag(NMHDR* pNMHDR, LRESULT* pResult)
{
 *pResult = FALSE;
}

void MCCustToolBar::OnQueryDelete(NMHDR* pNMHDR, LRESULT* pResult)
{
 // allow any button to be deleted
 *pResult = TRUE;
}

void MCCustToolBar::OnQueryInsert(NMHDR* pNMHDR, LRESULT* pResult)
{
 // allow button insertion anywhere
 *pResult = TRUE;
}

Another easy notification handler to implement is the OnCustHelp() which is called

whenever the user presses the Help button in the customize dialog. Here's an implementation that displays
a fun dialog and a trace statement:

void MCCustToolBar::OnCustHelp(NMHDR* pNMHDR, LRESULT* pResult)
{
 // Sample displays a message box but a valid help topic
 // can be displayed for the customize dialog
 AfxMessageBox(_T("This space for rent!"));
 TRACE("{ Help ID = %d }\n", pNMHDR->idFrom);
}

Now let's look at two of the more sophisticated handlers: OnBeginAdjust() and OnEndAdjust():

void MCCustToolBar::OnBeginAdjust(NMHDR* pNMHDR, LRESULT* pResult)
{
 // the customize dialog box is about to be displayed
 // save toolbar state before customization using the dialog
 GetButtons(m_nResetCount, m_pResetButtons);
}

OnBeginAdjust() saves the current state so that if the user presses Reset, we can make sure that the
toolbar is restored. In the first invocation of the customize dialog, m_pResetButtons and m_nResetCount
will be the same as the saved state, but having two variables allows us to maintain two states:

1 The original application invocation state (actually toolbar creation) stored in
m_nSavedCount and m_pSavedButtons.

2 The latest customized state stored in m_pResetButtons and m_nResetCount.

The implementation of EndAdjust() clears out the reset buffer since the user has left the customize
dialog and any reset operations have been performed.

void MCCustToolBar::OnEndAdjust(NMHDR* pNMHDR, LRESULT* pResult)
{
 delete[] m_pResetButtons;
 m_pResetButtons = NULL;
 m_nResetCount = 0;
}

Since we're on the subject of supporting the reset operation, here's the OnReset() handler. We've added a
special feature that resets the toolbar back to the original state (if there have been multiple state changes)
when the user presses the Ctrl key:

void MCCustToolBar::OnReset(NMHDR* pNMHDR, LRESULT* pResult)
{
 // restore button state to previous state
 if (::GetKeyState(VK_CONTROL) < 0) // CTRL-key
 SetButtons(m_nSavedCount, m_pSavedButtons);
 else
 SetButtons(m_nResetCount, m_pResetButtons);
 // let OnToolBarChange handle the layout changes
 OnToolBarChange(pNMHDR, pResult);
 *pResult = TRUE;
}

This function calls the SetButtons() helper with either the m_nSavedCount/m_pSavedButtons state or
the m_nResetCount/m_pResetButtons state depending on if the control key is pressed to restore the
stored TBBUTTON to the

CToolBarCtrl. After calling SetButtons(), OnReset() calls OnToolBarChange() to update the toolbar
and returns TRUE, indicating a successful reset, through the pResult pointer.

Before we look at more notification handlers, let's look at the implementation of SetButtons():

void MCCustToolBar::SetButtons(int nSavedCount, TBBUTTON* pSavedButtons)
{
 // remove all buttons
 int nButtonCount = GetToolBarCtrl().GetButtonCount();
 while (nButtonCount--)
 GetToolBarCtrl().DeleteButton(0);

 // add new state of buttons
 GetToolBarCtrl().AddButtons(nSavedCount, pSavedButtons);
}

First, SetButtons() deletes every button in the CToolBarCtrl, and then it adds the new buttons via the
AddButtons() API.

One of the most complex notification handlers is OnGetButtonInfo(). This notification is sent by the
customize dialog to get information about the buttons the user is adding, deleting and rearranging in the
dialog. The ID of the button is specified in a TBNOTIFY::iItem field and the return TBBUTTON information
needs to be returned in the TBNOTIFY::tbButton field. OnGetButtonInfo() also needs to copy a string
that describes the button into the TBNOTIFY::pszText buffer which is TBNOTIFY::cchText in length.

Here's the implementation of OnGetButtonInfo():
void MCCustToolBar::OnGetButtonInfo(NMHDR* pNMHDR, LRESULT* pResult)
{
 TBNOTIFY *pNotify = (TBNOTIFY*)pNMHDR;
 if (pNotify->iItem >= m_nSavedCount)
 {
 *pResult = FALSE;
 return;
 }
 // set the button info
 pNotify->tbButton = m_pSavedButtons[pNotify->iItem];
 // get the string associated with the command ID
 CString buffer;
 buffer.LoadString(pNotify->tbButton.idCommand);
 // use custom text if available, otherwise use tooltip
 CString descript;
 AfxExtractSubString(descript, buffer, 2);
 if (descript.IsEmpty())
 AfxExtractSubString(descript, buffer, 1);

 lstrcpyn(pNotify->pszText, descript, pNotify->cchText);
 *pResult = TRUE;
}

If the button requested in pNotify->iItem is larger than the initial button range, a FALSE indicating error
is returned. If that's not the case, OnGetButtonInfo() retrieves the button state from m_pSavedButtons.
Next, OnGetButtonInfo() gets a description string from the string table entry for the button's command
ID by calling LoadString().

OnGetButtonInfo()then calls the undocumented AfxExtractSubString() routine to grab the
description from a string that is formatted with \n as separators. If there isn't a string in the second section

of the string where it belongs, OnGetButtonInfo() tries gets the first string. If you're curious, you can
look at how AfxExtractSubString() is implemented in the MFC source file: Msdev\Mfc\Src\
Winstr.cpp.

Finally, OnGetButtonInfo() copies the button description string into pNotify->pszText and returns
TRUE (Success!) in the pResult pointer.

The only notification function we haven't covered so far is the OnToolBarChange() notification that is
called by both the customization logic and our OnReset() handler.

This function is called to let the toolbar know that the user has completed customizations and the toolbar
should update itself accordingly.

void MCCustToolBar::OnToolBarChange(NMHDR* /*pNMHDR*/,
 LRESULT* /*pResult*/)
{
 // make the frame recalculate the size of the toolbar
 GetParentFrame()->RecalcLayout();

 if (!m_strProfileName.IsEmpty())
 SaveState(m_strProfileName);
}

OnToolBarChange() calls the parent frame's RecalcLayout() routine to make sure the toolbar still fits in
the frame correctly and then calls SaveState()if a profile name is stored in m_strProfileName (we'll
come to this when we cover LoadState()). This brings us to an excellent segue for the next section:

MCCustToolbar Persistence
Customizable toolbars that don't maintain their customizations between application invocations aren't
very useful, so we need to add a mechanism to store and restore the state of the toolbars. The normal
MFC persistence mechanism is serialization (which we need to support in MCCustToolbar, of course)
which is great for storing information in a data file. We need to store the toolbar information in the
application's profile or registry entry, so let's implement that first and deal with serialization support later.
We could do something fancy like serialize to a memory file and then write the binary data to the
profile/registry, but for this example, we'll take a more brute force approach.

As we pointed out earlier, MCCustToolBar automatically stores its state in every OnToolBarChange()
notification if desired by calling SaveState(). Here's the implementation of SaveState():

void MCCustToolBar::SaveState(LPCTSTR lpszProfileName)
{
 // get state of the toolbar buttons (#buttons, button-content)
 BYTE* pState;
 UINT nSize = BuildStateBinary(pState);
 // store it in the registry or .INI file
 CString str;
 str.Format(_T("ToolBar State(0x%04X)"), (UINT)(WORD)GetDlgCtrlID());
 AfxGetApp()->WriteProfileBinary(lpszProfileName, str, pState, nSize);
 // free up the state
 delete[] pState;
}

SaveState()calls BuildStateBinary() to create an array of BYTEs that describe the toolbar state and
stores the state in pState. Next, SaveState() writes the binary state information in the

lpszProfileName entry under the ToolBar State(0x<control ID>) key of the registry or profile depending on
what the MFC application is using through the WriteProfileBinary() helper routine. Finally,
SaveState() destroys the state pointer.

Note that using the control ID in the registry could lead to the application not being able to find the
state information if the ID changes between versions of the app.

The BuildStateBinary() routine is important for understanding how MCCustToolBar persistence works.
Here's the implementation:

UINT MCCustToolBar::BuildStateBinary(BYTE*& pState)
{
 // get state of the toolbar buttons
 // e.g. number of buttons, button-content, etc..
 int nButtonCount = GetToolBarCtrl().GetButtonCount();
 UINT nSize = nButtonCount*sizeof(TBBUTTON)+sizeof(int);
 pState = new BYTE[nSize];

 (int)pState = nButtonCount;

 TBBUTTON* pButtons = (TBBUTTON*)(pState + sizeof(int));
 for (int i = 0; i < nButtonCount; i++)
 GetToolBarCtrl().GetButton(i, &pButtons[i]);
 return nSize;
}

BuildStateBinary()first allocates a BYTE buffer large enough to hold GetButtonCount() TBBUTTON
structures. Next, BuildStateBinary() stuffs the button count into the first four BYTEs and then iterates
through the buttons placing them into the BYTE array by calling GetButton().

The opposite of SaveState() is LoadState(). LoadState() knows how to retrieve the stored state from
the profile/registry and resets the toolbar with the loaded state. Here's the implementation of
LoadState():

void MCCustToolBar::LoadState(LPCTSTR lpszProfileName,
 BOOL bAutoSave /*=FALSE*/)
{
 if (bAutoSave)
 m_strProfileName = lpszProfileName; // save

 // attempt to get the state from registry or profile
 CString str;
 str.Format(_T("ToolBar State(0x%04X)"), (UINT)(WORD)GetDlgCtrlID());
 BYTE* pState;
 UINT nSize;
 if (!AfxGetApp()->GetProfileBinary(lpszProfileName, str, &pState,
 &nSize))
 return;
 // set it as the current state
 ParseStateBinary(pState, nSize);
}

First, LoadState() saves the profile name in m_strProfileName if the bAutoSave argument is specified.
Next, LoadState() formulates the registry/profile key, based on the toolbar's control ID and calls
GetProfileBinary() to load the information. Finally, LoadState()calls ParseStateBinary(), passing
it a pointer to the binary data from the registry/profile and the size of the data.

ParseStateBinary()is kind of the evil twin of BuildBinaryState(). It takes a BYTE array and decodes
it into a button count and TBBUTTON array. Here's the implementation:

void MCCustToolBar::ParseStateBinary(BYTE* pState, UINT nSize)
{
 // set it as the current state
 int nButtonCount = *(int*)pState;
 ASSERT(nButtonCount* sizeof(TBBUTTON)+sizeof(int) == nSize);
 TBBUTTON* pButtons = (TBBUTTON*)(pState + sizeof(int));
 SetButtons(nButtonCount, pButtons);
 // free up the state
 delete[] pState;
 OnToolBarChange(NULL, NULL);
}

Note that after decoding the nButtonCount and a TBBUTTON array pointer, ParseStateBinary()goes
ahead and calls SetButtons() and OnToolBarChange() to re-initialize the toolbar with the parsed state.

The last function to look at in the MCCustToolBar persistence implementation is the Serialize() routine.
Since we've done most of the leg work for Serialize() in the SaveState()/LoadState() member
functions, the serialization implementation is a breeze. Here it is:

void MCCustToolBar::Serialize(CArchive& ar)
{
 BYTE* pState = NULL;
 UINT nSize;
 int i;

 if (ar.IsStoring())
 {
 nSize = BuildStateBinary(pState);
 ar << (WORD) nSize;
 for (i=0; i < (int) nSize; i++)
 ar << pState[i];

 // free up the state
 delete[] pState;
 }
 else
 {
 TRY
 {
 // attempt to get the state from disk
 WORD w; ar >> w; nSize = (UINT) w;
 pState = new BYTE[nSize];
 for (i=0; i < (int) nSize; i++)
 ar >> pState[i];
 }
 CATCH(CArchiveException, e)
 {
 delete pState;
 return; // error
 }
 END_CATCH

 // set it as the current state
 ParseStateBinary(pState, nSize);
 }
}

The Serialize() implementation is pretty self explanatory. Now that we've seen how to implement
most of MCCustToolBar, let's look at the declaration for the class based on what we have so far:

MCCustToolBar Declaration/Interface
(Drum role please!) And now for the moment you've been waiting for, the MCCustToolBar class
declaration:

class MCCustToolBar : public CToolBar
{
 DECLARE_DYNAMIC(MCCustToolBar)
// Construction
public:
 MCCustToolBar();
 virtual BOOL LoadToolBar(UINT nIDResource);
 virtual BOOL LoadToolBar(LPCTSTR lpszResource);
// Operations
 // state save and restore
 virtual void SaveState(LPCTSTR lpszProfileName);
 virtual void LoadState(LPCTSTR lpszProfileName,
 BOOL bAutoSave = FALSE);
 virtual void Serialize(CArchive& ar);
// Overrides
 virtual void GetButtons(int& nSavedCount, TBBUTTON*& pSavedButtons);
 virtual void SetButtons(int nSavedCount, TBBUTTON* pSavedButtons);
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
// Implementation
public:
 virtual ~MCCustToolBar();
protected:
 // profile name for reg/prof entry.
 CString m_strProfileName;

 // starting state save
 int m_nSavedCount;
 TBBUTTON* m_pSavedButtons;

 // reset state save (used during customization)
 int m_nResetCount;
 TBBUTTON* m_pResetButtons;

 //Registry helpers.
 UINT BuildStateBinary(BYTE*& pState);
 void ParseStateBinary(BYTE* pState, UINT nSize);
protected:
 //{{AFX_MSG(MCCustToolBar)
 afx_msg void OnRButtonDown(UINT nFlags, CPoint point);
 afx_msg void OnBeginAdjust(NMHDR* pNMHDR, LRESULT* pResult);
 afx_msg void OnBeginDrag(NMHDR* pNMHDR, LRESULT* pResult);
 afx_msg void OnCustHelp(NMHDR* pNMHDR, LRESULT* pResult);
 afx_msg void OnEndAdjust(NMHDR* pNMHDR, LRESULT* pResult);
 afx_msg void OnEndDrag(NMHDR* pNMHDR, LRESULT* pResult);
 afx_msg void OnGetButtonInfo(NMHDR* pNMHDR, LRESULT* pResult);
 afx_msg void OnQueryDelete(NMHDR* pNMHDR, LRESULT* pResult);
 afx_msg void OnQueryInsert(NMHDR* pNMHDR, LRESULT* pResult);
 afx_msg void OnReset(NMHDR* pNMHDR, LRESULT* pResult);
 afx_msg void OnToolBarChange(NMHDR* pNMHDR, LRESULT* pResult);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

As you read through the declaration, try to think of any ways you can improve the interface and hold that
thought for a second while we look at how to use MCCustToolBar and then examine some ways to make it
better.

Using MCCustToolBar
To use MCCustToolBar, the user only has to make 3 or 4 changes to a standard MFC application:

1 Change CToolBar to MCCustToolBar in Mainfrm.h.

2 Add an #include "mc_tbar.h" at the top of Mainfrm.h.

3 Add a call to m_wndToolBar.LoadState() to CMainFrame::OnCreate(), passing
the name you wish to use for the storage, and TRUE if you want to automatically save the state.

4 If you didn't pass TRUE in LoadState(), add m_wndToolBar.SaveState() to a
handler for WM_CLOSE, passing the same name you used in LoadState().

Here's a figure of MCCustToolBar in action:

Extending MCCustToolBar Further…
At this point, we have a good start on a fully customizable toolbar. Here are some ideas for how you can
try and improve it:

Add virtual callbacks to hide message reflection. If a user wants to customize the drag-and-drop
support, they will have to understand message reflection. Instead, you could create a set of virtual
functions that are called from within the MCCustToolBar so that the class user only has to override
a virtual function instead of having to add message reflection to their MCCustToolBar class. For
example, you could overload the notification handler with a virtual function, then modify the original
handler to call this new function:

protected:

 virtual BOOL OnBeginDrag(NMHDR * pNMHDR) const;

BOOL MCCustToolBar::OnBeginDrag(NMHDR * pNMHDR) const
{
 // Default implementation - do nothing,
 // override this to customize OnBeginDrag().
 return FALSE;
}

void MCCustToolBar::OnBeginDrag(NMHDR* pNMHDR, LRESULT* pResult)
{
 //Give derived classes the opportunity to
 *pResult = OnBeginDrag(pNMHDR);
}

As presented, MCCustToolBar doesn't support non-button controls in the toolbar. Most advanced
applications have buttons, combos and other non-button controls in the toolbar. The
MCCustToolBar implementation on your CD has been enhanced to support a variety of different
controls.

Adding controls to the toolbar is also covered later in the section on enhancing Windows UI components.

For the MFC Developer Looking for a REAL Challenge..
Unfortunately, the Win32 common control customization isn't nearly as nice as the customization found in
Visual C++ and other Microsoft applications. You can't drag-and-drop between toolbars, the Visual C++
toolbar customization dialog is much nicer and easier to use than the Win32 implementation, etc..

 If you really want that level of customization, you'll have to:

Write your own toolbar that knows how to accept dragging and dropping of toolbar items in and out
of the bar.
Re-implement all of the normal MFC toolbar logic like docking, bitmap loading, disabling, etc..
Write your own dialog that enumerates the toolbars, tools and allows the user to drag and drop them.
The user can start a new toolbar by dragging a tool to the desktop.
Be sure to save the toolbar configurations out to the registry so that user customizations are
maintained.

Where Do I Go from Here?
Now that we've presented you with two fairly different MFC extensions, you should be ready to venture
forth on your own into the exciting world of MFC extension writing. Here are some of the key points to
take with you from this chapter:

MFC class design is iterative. Start out simple and enhance your class interfaces over time by adding
virtual functions and other conveniences that you missed in the first pass.

Be sure to follow Microsoft's conventions. They make it much easier to communicate your class
ideas to other MFC developers. Think of it as the Lingua Franca of Windows programmers.

Try using MCStatusBar and MCCustToolBar in your own projects and think of new and exciting
enhancements for them.

Have fun and happy MFC programming!

Special thanks goes to Harlan Seymour with HyperCube (http://www.hcube.com) an MFC
extension company. Harlan already had a good start on a customizable toolbar that he let me use
for the basis of MCToolBar in this chapter. There's a demo of HyperCube's HyperView++ product
on the book's CD-ROM for your enjoyment.

Porting from 16-bit to 32-bit
Judging from the abundance of talk concerning 32-bit development, it's inevitable that, some day, you'll have to port
your existing 16-bit code to 32-bit and carry on from there.

What you do with the code once it's in a 32-bit format is your business, but getting the code from a 16-bit to a 32-bit
format is my business, which is why I wrote this chapter.

We'll begin with the basics of porting your code. There are actually two avenues that you can take. The first is
porting your code from 16-bit C code to 32-bit C code. The second involves moving your code to the 32-bit version
of MFC. There are tools for each of these avenues to assist you in your porting efforts.

If you work for a corporate environment or release software for the retail market, you'll notice that management has
had to do some serious thinking about whether or not to move to a 32-bit operating system. The most common
question is, "What benefits will 32-bit development provide?". Well, let's step back for a second and consider the
limitations of 16-bit development first, then I'll explain how things are different (and better) with 32-bit
development.

On another note, some programmers might find that, to keep up with the growing market, they must port their
applications to a different Windows platform. Things change fast in this market, so, if you don't keep up with the
changes, you may lose your market value. (If you don't believe me, go ask all the COBOL programmers who are out
of work.)

An Overview
I have written applications under Windows 3.x that have dealt with graphics, data management, file I/O… and the
list goes on. When you're dealing with graphics, especially bitmaps that you're loading from a file, you have to
allocate sufficient memory for the bitmap's bits and parts (the header information, the color table, etc.). Once you
reach the 64K boundary, you have to use huge pointers (which are costly and slow) or manage segmentation
yourself (good luck to you if you do).

Managing memory under Win32 gives you less to worry about. There are no such things as memory models or far
pointers. There's actually no need whatsoever to deal with segments and boundaries. Win32 functions treat memory
as linear flat-memory and, since all the operating systems that will run Win32 support 32-bit registers, we're allowed
to address a much greater amount of memory (four gigabytes to be exact, although about two gigabytes out of the
four are used by the operating system).

Moving to a different platform involves treating data differently, since what might be 16 bits under one platform
could be 32 bits in another. For example, integers and unsigned integers are 16 bits under Windows 3.x, but 32 bits
under Win32. This means that you can pass a number like one billion to an integer under Win32, but, if you passed
this same number to an integer under 16-bit Windows, you would introduce bugs into your application.

There are also other data types that were introduced for Windows development. For example, HANDLE, UINT, BOOL,
and WORD. These types are 16 bits under Windows 3.x but 32 bits under Win32. The reason much of this has changed
from 16 to 32 bits is that you need 32 bits to address the memory that is now available to your application. It also
turns out that your code will be quicker. Instead of imposing something different, it's much faster to treat values as
their native size. Furthermore, the operating system is able to deal with data alignment much more efficiently. As a
result, 32-bit applications end up performing much better that their 16-bit counterparts, not only because the
processor can move greater amounts of memory faster, but also because the operating system has to do a lot less to
massage the data.

When you're developing your own structures to hold data for your application, start thinking in 32 bits. In other
words, try to make structures align with four-byte boundaries (or eight-byte boundaries). This will provide better

performance, because the operating system will attempt to move the chunks of data as four byte blocks anyway. Of
course, your programs will need a bit more memory, but you have got a lot more available to you with flat memory
addressing, so this shouldn't be a problem.

Basic Differences
The first difference between the two platforms (16-bit Windows versus 32-bit Windows) that you should be aware of
is that the calling conventions have changed from __pascal to __stdcall. It still has the same efficiency, but with
greater power. Most functions are declared with APIENTRY instead of PASCAL. APIENTRY breaks itself down to
__stdcall.

When WinMain() is called, the parameter names have remained the same but they have grown. The variable
hPrevInstance is always sent as NULL, so you'll have to find some other means of detecting whether an instance
of an application is already running (such as find a window by calling the FindWindow() function). The other
parameters still contain the same type of information.

The hInstance parameter has also changed slightly. In Windows 3.x, you could use hInstance to retrieve
resources. To do this in Win32, you need to pass an hModule. This is easy because Win32 passes the hModule as
the hInstance to WinMain() when it first loads the application. In other words, you can continue to use the
hInstance as you did under 16-bit Windows. You can also call GetModuleHandle() later in your application if
you don't save the handle to a global variable in WinMain().

Speaking of WinMain(), which is where most programmers place their message loops, things have also changed
slightly here. Because Windows 95 and NT now offer multitasking, you can create multiple threads with separate
message queues (one per thread).

This introduces a couple of points. Since the model is now multithreaded, different applications can process
messages at the same time (conceptually). The ramifications are that it's harder to manage the input model, because
more than one application might receive messages at the same time.

If you have written code to take advantage of messages and expect those messages to be sent out in a particular
order, forget it. You'll have to rewrite those pieces of code before you can port your application safely to a Win32
platform.

The bottom line is that when you begin to port your application to Win32, make sure you study how the application
receives input. It doesn't matter whether the input is mouse, keyboard, or the system, you still need to look at the
process and make sure that it will work properly under Win32.

Message Handling
Window procedures and the messages they receive have changed considerably from their 16-bit counterparts.
Instead of using WORDs for the message ID and wParam, you use UINT and WPARAM respectively. The lParam has
changed from a long to an LPARAM.

The information that wParam and lParam contain has also changed from their 16-bit counterparts. Certain messages
in 16-bit Windows send a handle packaged with something else (such as flags) in the lParam, and an ID in the
wParam. Since handles have grown from 16 bits to 32 bits, they now take up the whole lParam and the packaging is
performed in the wParam. Here's a list of the messages that have changed:

Message wParam lParam
WM_ACTIVATE LOWORD = activation flag

HIWORD = minimized flag
Window handle

WM_CHARTOITEM LOWORD = key value List box handle

HIWORD = caret position
WM_COMMAND LOWORD = item, control or accelerator ID

HIWORD = notification code
Control handle

WM_CTLCOLOR This message has been replaced with a series
of messages to handle the individual types of
controls. All the messages begin with
WM_CTLCOLORxxx, where xxx is BTN, DLG,
EDIT, LISTBOX, MSGBOX, SCROLLBAR or
STATIC.

WM_MENUSELECT LOWORD = menu item or pop-up menu index
HIWORD = menu flags

Menu handle

WM_MDIACTIVATE Child window handle being deactivated Child window handle being
activated

WM_MDISETMENU Frame menu handle Window menu handle
WM_MENUCHAR LOWORD = ASCII character

HIWORD = menu flags
Menu handle

WM_PARENTNOTIFY LOWORD = event flags
HIWORD = child ID

Window handle of the child or
cursor coordinates

WM_VKEYTOITEM LOWORD = virtual-key code
HIWORD = caret position

List box handle

WM_HSCROLL LOWORD = scroll bar value
HIWORD = scroll bar position

Scroll bar handle

WM_VSCROLL LOWORD = scroll bar value
HIWORD = scroll bar position

Scroll bar handle

EM_LINESCROLL Number of characters to scroll horizontally Number of characters to scroll
vertically

EM_SETSEL Starting position Ending position
EM_GETSEL Starting position Ending position

Therefore, if you want to support code for both 16-bit Windows and Win32, you'll have to provide a block of code
that is compiled for one compiler (e.g. 16-bit) and another block of code that can be compiled with another compiler
(e.g., 32-bit). There's a precompiler definition called WIN32 that does just this. The following code snippet shows
exactly how:

#ifdef WIN32
 // Code specific to Win32
#else
 // Code specific to Win16
#endif

There's also a header file that you can include and use in your source code that contains several macros to do this
exact same work for you. These macros are called message crackers. They basically wrap themselves around a
message and call a function that you must provide with the available variables independently. This obviates the need
to use the #ifdef WIN32 construct shown above when you are cracking messages. The header file is called
Windowsx.h and contains all of the crackers that you'll need for your application. You must catch the message ID in
a switch statement as a case, then crack the message while providing a handler for the message and parameters
(very similar to MFC message handlers). For example, if you're trying to catch the WM_MOVE message, you would
first catch the message:

switch(uMessage)
{
 case WM_MOVE:
 HANDLE_WM_MOVE(hWnd, wParam, lParam, OnMove);
 break;

 default:

 // Do something
}

Then you would provide the functionality to handle the WM_MOVE message in the function passed to the message
cracker:

void OnMove(HWND hWnd, int x, int y)
{
 // Do something
}

If I wish to pass on the message to another function (such as the default windows procedure), I would simply use the
FORWARD macro of the message cracker inside my function:

void OnMove(HWND hWnd, int x, int y)
{
 // Do something
 FORWARD_WM_MOVE(hWnd, x, y, DefWindowProc);
}

This code allows me to write my code independently of the compiler I'm using. Since the appropriate compiler
already ships with the respective version of Windowsx.h, I don't have too much to worry about. I simply recompile
my code in the appropriate compiler and I'm ready to ship.

You'll also have to worry about messages coming from menus. These message are now packaged differently. The
data contained in the wParam and lParam has been moved around to make up for the extra size in the handles.
Fortunately, there are some message crackers that we can use to pull the individual data pieces from the two
variables passed to the window procedures. For example:

WORD wCmd = GET_WM_COMMAND_CMD(wParam, lParam);
WORD wID = GET_WM_COMMAND_ID(wParam, lParam);
HWND hWndCtrl = GET_WM_COMMAND_HWND(wParam, lParam);

The last important message that has changed is WM_CTLCOLOR. There was just no way to fit all the necessary
information into two 32-bit fields, so Microsoft chose to send a message corresponding to the type of control for
which the color is being requested. For example, you'll receive WM_CTLCOLORBTN for a button, or
WM_CTLCOLOREDIT for an edit control. For this message, you'll have to provide the #ifdef WIN32 solution as
mentioned above, since the message is handled differently (even with the use of the wrappers).

API Functions
Messages aren't the only thing to change in your Win32 development efforts—API functions have also changed.
There are certain functions that carry the same name, but the parameter list or the functionality might have changed.
There are also many functions that now have extended capabilities. Extended functions are mostly implemented in
the GDI area. Several functions have also been dropped altogether, because they didn't make sense under a 32-bit
platform (such as many of the DOS functions).

One function that will cause a lot of headaches is GetWindowWord() or GetClassWord(). Much of the behavior
has now been implemented in GetWindowLong() and GetClassLong(). It makes sense after all, since many of
the data types have been expanded to 32 bits. If you need to have a code base that will work for both 16-bit and 32-
bit platforms, you'll need to use the preprocessor definition (WIN32) to determine which function should be used.
The table below is a list of all the window and class offsets. This list shows the replacements for the 16-bit offsets
and what they should be under the 32-bit platforms:

16-bit Index 32-bit Index Replacement

GCW_CURSOR GCL_CURSOR

GCW_HBRBACKGROUND GCL_HBRBACKGROUND
GCW_HICON GCL_HICON
GWW_HINSTANCE GWL_HINSTANCE
GWW_HWNDPARENT GWL_HWNDPARENT
GWW_ID GWL_ID
 GWW_USERDATA GWL_USERDATA

Capturing mouse messages is also different under Win32. If you capture the mouse while the mouse is not down
(WM_xBUTTONDOWN has not been received), you can only see mouse move messages while the mouse is above the
window that captured the mouse or any window owned by the same thread. Once the mouse moves to a window of
another thread, you no long receive mouse messages, but you can fix this by capturing the mouse after the user has
clicked the mouse button. Keep in mind that the user must continue to hold the mouse button down so that you can
receive messages even when the mouse moves over windows of other threads. Therefore, you should release the
captured mouse after a WM_xBUTTONUP message. For an example of this behavior, take a look at the Spy++
application that ships with Visual C++. In Spy++, when you're searching for a window, you must first click and hold
down the mouse on the Finder Tool: icon and then drag the mouse around to the other windows. This dialog box
from Spy++ contains the Finder Tool: icon:

As I mentioned above, some functions have been extended. There are different reasons for this. For example, the
CreateWindow() function has additional functionality in the extended version which is called
CreateWindowEx(). A set of GDI functions returned a packed 32-bit value containing possibly the x and y values
of the previous position before being moved to the new given position. For example, MoveTo()receives the new
position and returns a packed 32-bit long containing the previous position. This function can no longer be used,
since positions are now 32-bits for the x and y (not 16-bits). The new version, MoveToEx() receives an additional
parameter, a pointer to a POINT structure (which contains 32-bits for both the x and y members) that will contain the
previous position before moving to the new position.

There are several functions which have been extended to provide additional information. Under 16-bit Windows,
these functions returned 32-bit values which contained information packed into the double word value (as two 16-bit
values). In order to support real-world values (which can potentially be larger then a 16-bit value will support),
Win32 supports functions that can now return better (and wider band-width) information. For example, under 16-bit

Windows, the MoveTo() function returned a DWORD value that contained two 16-bit values (packed into the DWORD)
for the old x and y before the function was called. Under Win32, the MoveTo() function no longer exists (surprise,
surprise), so you have no choice but to use the MoveToEx() function. The difference is that the function now returns
a BOOL (for success or failure) and accepts a new parameter, a pointer to a POINT structure of which it will fill with
the old x and y position. Why a POINT structure? Well, if you think about it, a POINT structure contains two integers
(which means two 32-bit values). This is perfect for returning real-world coordinates (or simply wider values).
Second, the fewer parameters you have to pass to a function, the better.

The other functions available under this category also have an Ex extension and their 16-bit counterparts have been
dropped from Win32. Most of these functions are related to window management or graphics output. For example,
OffsetViewportOrg()has been changed to OffsetViewportOrgEx(), and GetBrushOrg() has been changed
to GetBrushOrgEx(). The main thing to remember is that these functions have not been included in the Win32
API, so, if you have used them in your 16-bit applications, you'll have to change them in your port from 16 bits to 32
bits. That's the bad news. The good news is that, if you've been using MFC all along to write your applications, you
won't have to change a thing. For example, if you call CDC::MoveTo(), the 16-bit version of MFC called the 16-bit
version of MoveTo() (implemented by Windows 3.1). Under the 32-bit version of MFC, it calls MoveToEx()
(implemented by Win32).

Here's a list of all of the 16-bit functions that that have been extended in Win32:

16-bit API Portable Extended API

DlgDirSelect DlgDirSelectEx
DlgDirSelectComboBox DlgDirSelectComboBoxEx
GetAspectRatioFilter GetAspectRatioFilterEx
GetBitmapDimension GetBitmapDimensionEx
GetBrushOrg GetBrushOrgEx
GetCurrentPosition GetCurrentPositionEx
GetTextExtent GetTextExtentPoint
GetTextExtentEx GetTextExtentExPoint
GetViewportExt GetViewportExtEx
GetViewportOrg GetViewportOrgEx
GetWindowExt GetWindowExtEx
GetWindowOrg GetWindowOrgEx
MoveTo MoveToEx
OffsetViewportOrg OffsetViewportOrgEx
OffsetWindowOrg OffsetWindowOrgEx
ScaleViewportExt ScaleViewportExtEx
ScaleWindowExt ScaleWindowExtEx
SetBitmapDimension SetBitmapDimensionEx
SetMetaFileBits SetMetaFileBitsEx
SetViewportExt SetViewportExtEx
SetViewportOrg SetViewportOrgEx
SetWindowExt SetWindowExtEx
SetWindowOrg SetWindowOrgEx

Finally, several functions were dropped from the API; those associated with DOS and the 16-bit architecture.
Because we're working on and developing applications for a 32-bit environment, functions like
GlobalDOSAlloc() or GlobalDOSFree() have no place in the 32-bit world. For example, the
AccessResource() function used DOS file handles and treated files in a way not supported by Win32. The

following table contains a list of functions that you should avoid like the plague in your own Win32 applications
(especially since they have not been implemented in Win32):

AccessResource GetInstanceData SetEnvironment
AllocDSToCSAlias GetKBCodePage SetResourceHandler
AllocResource GetModuleUsage SwitchStackBack
AllocSelector GlobalDOSAlloc SwitchStackTo
Catch GlobalDOSFree Throw
ChangeSelector GlobalNotify UnlockData
FreeSelector GlobalPageLock ValidateCodeSegments
GetCodeHandle IsGdiObject ValidateFreeSpaces
GetCodeInfo IsTask Yield
GetCurrentPDB LockData
GetEnvironment NetBIOSCall

Under Win16 development, you might have called several DOS file functions by calling Int21(). These functions
now have Win32 equivalents. For a list of these functions, see the section on long filenames, in Chapter 9 Windows
Shell Programming.

Memory Usage
Since applications are now given their own process address space in which to run, memory is no longer sharable by
default as it was in Windows 3.x. System memory is still shared amongst the different processes, but is mapped into
the appropriate place in the process's address space.
The rest of the applications using the same piece of memory are simply paged out to disk or are moved to a different
place in memory (in cases where they still need to access memory in the background). What makes all this possible
is the virtual memory manager. The following figure depicts how an application can use the same physical address
as another application but still access totally different data. In reality, it doesn't matter if two applications use the
same virtual addresses or the same physical addresses, the operating system will properly manage the addresses and
data for them. This is why several functions which allowed direct access to the memory pages have been dropped
from Win32's vocabulary.

The whole point is that you can't read or write to a piece of memory allocated by another process. Using
GMEM_DDESHARE or GMEM_SHARE when you're allocating memory to share with different processes doesn't work
anymore.

The only way to share memory now is to use memory-mapped files or Dynamic Data Exchange Management
Library (DDEML).

In Win32, the concept of global and local memory is gone. Both types of memory allocations are simply mapped to
the process's memory space, so you can now go back to using the old malloc() and free() C run-time functions.
There's no need to lock memory, since the linear addresses are guaranteed to remain the same withinthe process
space. However, the underlying physical address might (and most definitely will) change to provide for different
applications becoming active at different times. Since the memory will have to be paged (which by definition makes
the memory virtual), things will often move around in memory, causing the physical memory addresses to contain
different things depending on which process is active.

The good news is that, as a programmer, you don't have to worry about these details, since all of this is completely
hidden.

Where to Learn More
You can find all of the details for the individual messages and functions I have mentioned in the Win32 SDK
documentation (including what's now received via wParam and lParam for the individual messages).

When I first started working with Win32, I always tried to look up the functions or messages I was about to call or
receive in the help files, just to make sure that there weren't any changes I had to be aware of. This not only allowed
me to learn a lot about Win32 and its functionality, but it also caused me to drop functions from my vocabulary that
had better replacements in Win32.

Porting Tools
If you're moving 16-bit C code to a 32-bit environment such as Windows NT or Windows 95, you'll most likely
want to take advantage of any tools you have at your disposal. There are certain rules that you should follow to
make sure the port goes smoothly, with very few glitches.

First, I'll discuss a tool called PORTTOOL which ships with the Win32 SDK. You can also find it on the Microsoft
Developers Network CD (MSDN) or in the \msdev\samples\sdk\sdktools directory on the Visual C++ CD.
This tool ports your 16-bit C code to a 32-bit platform. There's also a tool that you can use to port your C code to
MFC. I'll discuss these tools in this section.

PORTTOOL
When PORTTOOL is used with an existing 16-bit source file, it flags where there might be problems when you
begin to convert the source, but it's not smart enough to make the changes for you. PORTTOOL isn't very
sophisticated. As a matter of fact, it's so simplistic that it will flag you on comments that have words which are
similar to keywords which are now incompatible with 32-bit development. If you want to add extra features to the
tool, Microsoft provides the source code so that you can modify it (but I wouldn't waste my time).

PORTTOOL displays a dialog box whenever it comes across a piece of code that you should be warned about. If you
have ever written code that involved splitting up the lParam to pull out things like handles and item IDs which were
crammed together under Windows 3.x., PORTTOOL will warn you of potential problems when you're splitting up
the lParam in your code.

PORTTOOL uses settings in the file Port.ini to determine what items to look for. This file is based on rules which
are summarized on the Visual C++ CD (it can be found in InfoView under Visual C++ Books; C/C++; Programming
Techniques; Porting 16-bit Code to 32-bit Windows; Summary of API and Message Differences).

When you start using the PORTTOOL on your files, you'll begin to receive all kinds of messages. It will flag you for
things like usage of the FAR keyword, alerting you that this keyword is no longer necessary for 32-bit development,
since all addresses are now linear (there is no local or global memory anymore).

One thing that you'll notice when you're running the tool is that it doesn't flag the PASCAL keyword. If you look
through the 32-bit Windows.h file, you'll find that this keyword is defined to be __stdcall. The same applies for
the lower case version, pascal.

Despite all the problems with PORTTOOL, it does suggest some helpful hints from time to time. For example, when
it finds window procedures declared using a WORD for the wParam, it will suggest that you use the portable type,
WPARAM. This means that your code would end up like this:

LONG FAR PASCAL _export MainWndProc(HWND hWnd,
UINT wMsgID, WPARAM wParam, LPARAM lParam);

Having said that, PORTTOOL isn't very consistent. It flags wParam, which made me assume that it would flag
lParam (from LONG to LPARAM), but it doesn't.

PORTTOOL will also alert you that you need to change the way you process menu commands, conversion of old
16-bit types to new 32-bit types (such as the MAKEPOINT macro which has now been replaced with the LONG2POINT
macro) and API calling with inappropriate data types or casts. If there are functions or macros that have been
replaced, you will need to use the preprocessor if you wish to maintain your code's portability.

If you're simply moving your C code from 16-bit to 32-bit Windows, the PORTTOOL is a good starting point,
despite the awful, inconsistent user interface. Also, keep in mind that PORTTOOL looks for issues using a standard
naming scheme. For example, it expects a Windows procedure to have the word WndProc somewhere in its name.
This also includes dialog box procedures.

MFC Migration Tool
The previous sections assumed that you have a bed of code which needs to be ported to a 32-bit Windows
environment. PORTTOOL works for C code and gives suggestions for making the C code compatible with 32-bit
Windows, but it hasn't got a clue about MFC (or C++ for that matter).

After hearing so much about MFC and its benefits, you might want to port your code directly from C to MFC. Keep
in mind that once you port your code to MFC, the job of getting the code to a 32-bit platform becomes much easier.
Microsoft has written a guide and a tool to help. The guide is called The MFC Migration Guide, and the tool is
called The MFC Migration Tool.

Together, these items help you to move a body of code from C to MFC. There are, however, some initial steps that
you must perform before you use the migration tool. Let's go over these steps in more detail. For the overall
procedures and more information, see The MFC Migration Guide in the Microsoft Developer's Network CD.

The first step in getting your code ported to MFC is to make the C code as clean as possible. The best way to
achieve this is by compiling the code with the highest possible warning level you can use (at least level 3).

Once the code is clean, you can begin to use the migration tool. The tool (Migrate.exe), looks at the code (like
PORTTOOL does) using a set of porting guidelines. It will alert you of any porting issues such as, "WinMain is not
needed in an MFC application". You're allowed to make the changes immediately, since the tool can act as a simple
editor.

When you're porting your code, the guide says that you should perform the task in three different phases. Phase one
involves migrating theWinMain() and WndProc() code. In phase two, you need to get rid of your message-
handling switch statements. Finally, in phase three, you integrate further with MFC. Following this set of phases
allows you to safely move your code while still allowing it to run correctly at each phase, enabling you to debug
your code immediately if something goes wrong.

Phase one begins with you having to rip out your WinMain() function, since MFC provides one for you. Since most
Win32/C applications receive their window messages into a window procedure, you'll likely have a large switch
statement with a long list of cases in between. You're probably wondering, "What the heck are you going to do with
this large switch statement once you port the code to MFC?". Well, the good news is that you simply move your
WndProc()code into MFC by overriding of the WindowProc() member function in your MFC-derived view class
and copying your window procedure code into the WindowProc() function. As for the command messages, you
should move those into another override, called OnCmdMsg(), which is another member function in your MFC-
derived view class. The case entries of the switch statement will later become individual message-mapped handler
functions in your application.

Another code section that you should move is the code provided for your WM_PAINT code. This code belongs in an

override of the OnDraw() member function in your MFC-derived view class.

Since MFC provides a thin wrapper for most of the Win32 APIs, there will be times when you end up with a
function call in your application that has already been included in a class with the same name (perhaps even a class
for which you're providing overrides). You should prefix these function calls with the C++ scope resolution operator
(::) to distinguish it from the MFC equivalent. For example, you might have called ShowWindow() or
GetClientRect() from your application without having any prior knowledge that the CWnd class has already
provided a function with the same name, that, as a matter of fact, ends up calling the actual Win32 function.
Furthermore, if you derive a class from CWnd and call one of these functions from within your member functions,
you might have problems, or, at the very least, someone else might not understand why you're not simply calling the
MFC equivalent.

You should make certain that you get rid of calls to DefWindowProc(). This function moves messages to their
appropriate place and disposes of messages back to the operating system for you. If you have registered your own
window classes (which most Win32/C applications do), you need to check these calls to make sure that they don't
collide and that they can coexist with the MFC registered window classes.

Phase two begins when you start to move Windows-based messages into their individual message response
functions. A case for WM_KEYDOWN should become ON_WM_KEYDOWN, WM_COMMAND should become ON_COMMAND
(one per command ID), and so on. Instead of handling your menu's user interface by responding to WM_INITMENU,
you should instead provide ON_UPDATE_COMMAND_UI handlers. The use of cbClsExtra and cbWndExtra should
also be replaced with another method, since the window class information is generated by MFC.

In phase three, you'll need to start changing your Win32 API function calls to MFC function calls. As I said before,
since MFC provides a thin layer of the Win32 API functions, you'll at some point need to start calling these
functions from or to the appropriate classes. There are two other areas where MFC provides great assistance;
printing and serialization. The printing work should be provided in your view class and the serialization work should
be performed in your document class. You'll need to look at the MFC documentation for more information on these
topics.

Once these phases are complete, you'll end up with an MFC application capable of performing any code that
involves document/view architecture coding. This means that you can add code to support OLE using the MFC
classes, or you can add code to support ODBC or DAO via the MFC classes as well.

The bottom line is that, once you get your application ported to MFC, it becomes much easier to move the
application to a 32-bit environment (such as NT or windows 95). It also becomes much easier to integrate new
features like OLE or ODBC into your application.

The extra power that your applications receive from MFC means that there's more room for things to go wrong. The
key to succeeding and delivering powerful solutions is to learn the application frameworks as much as possible. This
way, when something breaks, you can:

Take a deep breath.
Have a drink of caffeine.
Jump right in and fix the problem.

I'd advise that you get familiar with the MFC code, because I've found that this is what has helped me the most. I
often take the time to walk through the MFC source code that ships with VC++ (I guess that's the curious nature in
me). Try to understand the purpose of the main functions or overrides in MFC (such as
CWinApp::InitInstance() and CView::OnDraw()).

Having this knowledge will make the difference later on, when something breaks and you need to fix it or find a
way around it. Knowing how the MFC source code is arranged will also allow you to provide solutions faster. For
example, let's say that your boss asks that you make the dialog boxes in your application have a red background
instead of the normal gray. Where would you look for this setting so that you can change it? Or what if you had to

provide your own window class instead of the default? Simply spending sometime in the MFC code and getting to
know it a little better can really benefit you in the long run.

Porting MFC Applications to 32-bit
If you've been working with MFC for a while, you've probably built a lot of 16-bit code either into applications or
tools and libraries. Chances are that you'd like that code base to follow your development efforts and future
endeavors. The question is, "How do you move 16-bit MFC code to a 32-bit platform?".

I can personally tell you that I've had the wonderful experience of porting MFC code from 16-bit to 32-bit and it
turned out to be pretty easy, especially since there was very little to change in the first place. There are however, a
few things that you need to look out for.

Differences between MFC Versions
Some functions and classes have been added or deleted, and there are certain other changes that you need to be
aware of.

Porting applications from a 16-bit to a 32-bit version of MFC is painless if you haven't been using VBXs, inline
assembly code, 16-bit ints, or 16-bit only API calls (such as some of the DOS functions).

If you have ever used a view object in your application (instantiated from the CView class or one of its derivatives),
there are a few changes and additions in this area. First of all, the CEditView has a new parent (it has been
adopted). The new parent class is derived from CView and is called CCtrlView. Microsoft thought that CEditView
should share the light with a couple of sibling classes, so they made CCtrlView the parent to three new classes,
CListView, CRichEditView and CTreeView. In case you've gone ahead and provided your own control wrapper
classes (such as CEditView), to give your code more uniformity, you might want to rethink things and derive your
custom class from CCtrlView .

As you probably have already imagined, all of these classes have one thing in common: they all support a Windows
common control within their respective client areas. The CEditView class has always contained an edit control
within its client area, but now the other classes have followed suit.

The benefit of deriving all of these classes from a common base class is that now you can share common code with
all of them. If you need to provide a class that supports another control or maybe an OLE custom control, you can
simply derive your view from CCtrlView and implement code similar to the other control classes.

Project Conversion
The first thing you'll have to do is to convert the project file from its native 16-bit format to its 32-bit counterpart.
The VC++ environment will ask if you want to do this when you attempt to load the project file under the 32-bit
environment.

Whether you're converting the project from 16-bit VC++ or an older version of 32-bit VC++, the conversion will
still work.

No More VBXs
If you use VBX controls in your application (either for windows or dialog boxes), you'll need to remove them. You'll
also need to remove any calls to classes or functions involving VBX (since they don't exist in the 32-bit version of
MFC).

I once used VBX controls and found that it's not easy to move to 32-bit development without them. Fortunately,
most major VBX vendors have ported their VBXs to the 32-bit platform as 32-bit OLE custom controls (OCXs).

The best part of all is that, from version 4.0, Visual C++ has built-in support for OLE control containers, which
makes it easy to place the controls onto dialogs and windows.

This will alleviate the torture of replacing VBXs with OCXs. However, if the manufacturer who produced the VBX
that you were using has not written a 32-bit OCX equivalent, you have three choices. Number one, wait until the
manufacturer produces one; two, switch to using a different OCX from another manufacturer (which involves
rewriting some of your code to work with the new control); or three, write your own control (providing the same
interface as the VBX for the control).

Pen Computing
You'll also need to rip out any code that uses the 16-bit Windows for Pens extensions. The extensions are
implemented in the CHEdit and the CBEdit classes in MFC. As yet, these classes are not available for Win32 and,
therefore, 32-bit applications written using MFC (unless you implement your own classes for this purpose).

Assembly Language
You should replace any assembly language implemented in your code with C or C++ code. This makes your code
more portable across other Win32 platforms. If you want to keep your code as assembly language, keep in mind that
you'll have to provide assembly for all of the platforms that your code will run on (if it's on different hardware).
Using assembly language doesn't necessarily mean that you used the _asm keyword. You might have called an API
function to execute an Int21 function (for possible file I/O). You should replace these functions with the MFC or
Win32 equivalents.

In earlier versions of VC++, you had to explicitly tell the linker which library files it should link to the application.
This is no longer necessary, since VC++ now detects the libraries and links to the appropriate libraries. This means
that you should remove any list of libraries from your project and let VC++ do the work for you.

Strings
If you have done any OLE development, either under VC++ 1.x or VC++ 2.x, when you compile your code, you'll
probably get a bunch of errors. The reason is that MFC contained a DLL which converted MBCS characters to
Unicode (which is what OLE APIs and interfaces require). This DLL was calledMfcans32.dll and handled
converting back and forth between the character formats transparently. The advantage is pretty obvious: you didn't
have to perform the conversion yourself. However, there was a disadvantage: you were hit with a performance
overhead.

With the introduction of VC++ 4.x, Microsoft has stopped shipping the Mfcans32.dll and now requires that you
perform the conversions yourself. The MFC code has been revamped to support converting to the different character
formats, but if you make any calls to OLE API functions or interface functions, you'll also have to perform the
conversion when you call those functions.

Microsoft now provides some macros (we all know how much they love macros) to perform the conversion on the
fly. The macros are included in a header file, called Afxpriv.h, which you must include in your project if you want
to use them.

They have included macros to convert from MBCS to Unicode and Unicode to MBCS. As you might know, when
you work with OLE, it also supports a portable string type, called OLESTR, which actually is a Unicode string under
Win32.

Keep in mind that, to some degree, MFC also supports string portability in the CString class via the TCHAR type.
This type can be anything (MBCS or Unicode). If you need to send a string in a portable manner to a CString, you

simply use the _T macro as follows:

CString my_string = _T("This is a string");

The macro will automatically convert the string to the native format supported in the compilation (MBCS or
Unicode). You can control which format is used when you compile via the project settings.

Microsoft has also provided macros to convert from TCHARs to OLESTR, but these macros are not dependent on
some project setting or flag. Instead, they use the underlying Win32 conversion functions to perform their magic.
Here are the macros, with a short description:

Macro Name Description

A2CW MBCS to constant Unicode string
A2W MBCS to Unicode string
W2CA Unicode to constant MBCS
W2A Unicode to MBCS
T2COLE Portable type (TCHAR) to constant OLE (Unicode under Win32)
T2OLE Portable type to OLE (Unicode under Win32)
OLE2CT OLE to constant portable type
OLE2T OLE to portable type

When you use these macros, you must put a special macro, called USES_CONVERSION, at the top of the function
performing the conversion. This defines an automatic variable, called _convert, which is used by the other macros.
Don't forget to include the Afxpriv.h in the files that must make use of the string conversion macros.

The macros allocate a string to receive the converted value and then return it, so that any function making use of the
macro can convert on the fly, as follows:

USES_CONVERSION;
OLEAPI_FUNCTION(T2COLE(lpsz));

The memory allocated to contain the converted string is taken from the stack (not from the heap as in other
allocations). The reason for this is because allocating memory from the stack is much faster than allocating memory
from the heap, and you don't have to free the memory when you're done with it. When the function exits, the
memory will automatically be freed. Keep in mind that, since the memory is allocated from the stack, you don't want
to place calls to these macros in a loop. This can drain your stack, causing your application to crash. The following
code is a bad idea and an example of what you should not do:

void SomeFunction()
{
 USES_CONVERSION;
 for(int I = 0; I < nMax; I++)
 Call_OLEFunction(T2COLE(lpsz));
}

Instead, this should be coded like this:

void SomeFunction()
{
 USES_CONVERSION;
 LPCOLESTR lpszOLE = T2COLE(lpsz);
 for(int I = 0; I < nMax; I++)
 Call_OLEFunction(lpszOLE);
}

32-bit Issues
The address space issue is one that I can't stress enough. Basically, the segmented architecture is gone … for good
(thank goodness). You no longer have to worry about moving between 64K segments, memory models and far calls
(no more long pointers). Feel free to use things like CRect* instead of CRect FAR *.

Keep in mind that, since ints are now 32-bits long, the size of any structure containing them grows. This makes our
wParams, CPoints, and many more, much larger than they were under 16-bit Windows.

Since MFC manages unpacking wParam and lParam structures for notifications, events and commands internally,
you won't have to worry about this yourself. MFC automatically unpacks the values and passes them to functions
that you can override in your applications or allow them to perform their respective jobs. As I mentioned, this
involves taking the values and passing them to handler functions in your code (if the handlers exist).

The functions that you can override are CWnd::OnCommand(), CWnd::OnParentNotify(), and
CWnd::WindowProc(). When you follow The MFC Migration Guide, these are the functions that you will override
to get your code up and running as a base MFC application in your initial phase. If your application provides
message and command handlers using MFC's message maps, you obviously won't need to override these functions
(which is what we want to achieve in the second phase of the migration guide).

32-bit Issues and Platform Differences
After everything that has been said about porting your software between 16-bit and 32-bit Windows, you might
think that, by now, you should know everything there is to know about it. Well, guess again. Although, we've been
talking about the differences between 16-bit and 32-bit Windows, there are some differences that exist even within
the Win32 implementations.

Platform Differences
When you write an application using the Win32 API, chances are that your application will run on both Windows
NT and Windows 95. Microsoft has gone to great extremes to make sure that applications can be written using one
API that will be compatible with all Windows operating system implementations. In some instances, you don't even
have to recompile the source code to run the application on the target Windows platform. With other platforms,
making the application run normally is just a matter of recompiling the source code under the given platform.

If you're using MIPS or Alpha versions of Windows NT, this isn't strictly true, as both contain Intel
op-code emulation. However, this significantly reduces the performance of the application, so you
should avoid it if possible.

The Win32 API uses the same function names, messages and structures across the different flavors of Windows.
Although the Win32 may not be different, there are features that might not be completely implemented under a
particular version of Windows. For example, under Windows 95 and Win32s, there's no security or Unicode support.
In Win32s, there's no multitasking either. The most complete Win32 implementation can be found in Windows NT.
For this reason, I usually try to perform my Windows development under this platform (unless I'm implementing
something not supported under Windows NT, such as Windows 95 shell extensions).

If you intend to port your application to a standard version of Win32 using functions and messages supported by
both Windows 95 and NT, you need to understand the difference between the operating systems.

Windows 95 Limitations
As yet, Windows 95 doesn't contain a full implementation of the Win32 API. When you call a Win32 API function
not supported under the Windows 95 implementation, it provides a stub function which returns an error.

Unicode
One such limitation is Unicode, which Windows 95 doesn't currently support. Calling a Unicode function, however,
doesn't crash your application. As I mentioned before, Windows 95 provides stub functions. In the case of Unicode,
Windows 95 will return an error message back to the caller for most cases (or APIs). There are, however, a few
Unicode functions for which Windows 95 will provide limited implementation. These include:

ExtTextOut()
GetCharWidth()
GetTextExtentExPoint()
GetTextExtentPoint()
MessageBox()
MessageBoxEx()
TextOut()

In addition, Windows 95 implements theMultiByteToWideChar() and WideCharToMultiByte() functions for
converting strings to and from Unicode.

Window Management
Remember how they said that 16-bit limitations would go away with Windows 95? Well, I'm here to tell you that
some of these limitations still exist. For example, the standard edit control is still limited to a maximum of 64K of
data (in the multiline version, it's only 32K for single-line controls).

Some Win32 API functions are still limited to 16-bit values, even though they receive the values via a 32-bit integer.
The reason for the limitation is that Windows 95 still needs to store or process the value internally as a 16-bit value.
Some API functions even thunk down to a 16-bit API (that might have stuck around from Windows 3.x). An
example would be the GDI functions (more on GDI later). These limitations and restrictions are still around, due to
the fact that Windows 95 has to be more backward compatible with Windows 3.x and DOS than Windows NT.

In Windows 95, the wParam parameter in list box messages, such as LB_INSERTSTRING or LB_SETITEMDATA, is
limited to a 16-bit value. One effect of this limit is that list boxes cannot contain more than 32,767 items. Although
the number of items is restricted, the total size of the items in a list box, in bytes, is limited only by available
memory.

Although the limit of available window and menu handles has grown from the Windows 3.x days, the new limit is
still lower than Windows NT. Windows 95 is restricted to 16,364 window handles and 16,364 menu handles.

Windows 95 now makes use of values at WM_USER + 0 to about WM_USER + 99. Anything above WM_USER +
100 is safe for your applications to use as private messages. I personally prefer to use
RegisterWindowMessage()to retrieve a unique message ID from the system.

Graphics Device Interface (GDI)
Windows 95 uses a 16-bit world coordinate system and restricts x and y coordinates for text and graphics to the
range ±34,816. Windows NT uses a 32-bit world coordinate system and allows coordinates in the range ±2,097,152.
If you pass full 32-bit coordinates to text and graphics functions in Windows 95, the system truncates the upper 16
bits of the coordinates before carrying out the requested operation.

Windows 95 doesn't support world transformations that involve shearing or rotation. In addition, OpenGL, the
standard 3D graphics API under Windows NT, is not available for Windows 95 at the time of writing. However, I
understand it's in beta and will probably be available by the time you read this book.

There are a couple of limitations under Windows 95 for pens and pen styles. It doesn't support the dashed or dotted
pen styles, such as PS_DASH or PS_DOT, in wide lines. The BS_DIBPATTERN brush style is limited to an 8-by-8
pixel brush.

As far as brushes are concerned, Windows 95 doesn't support brushes from bitmaps or device-independent bitmaps
(DIBs) that are larger than 8-by-8 pixels. Although larger bitmaps can be passed to the CreatePatternBrush() or
CreateDIBPatternBrush() function, only a portion of the bitmap is used to create the brush.

The Kernel
Since the first version of Windows, the kernel has always handled things like file I/O, error handling, date functions,
memory management and couple of other duties. In Windows 95, this has not changed. However, there are a couple
of differences in the way that Windows NT and Windows 95 operate and accomplish these tasks.

If your application is calling either FileTimeToDosDateTime() or DosDateTimeToFileTime(), you can run
into trouble if you're not aware of the differences for the return values. In Windows NT, these functions allow dates
up to 12/31/2107. In Windows 95, these functions allow dates up to 12/31/2099.

Deleting files with DeleteFile()while the file is still open will fail under Windows NT and will succeed under
Windows 95. However, be aware that it's always a bad idea to delete a file while it's open, since you might cause bad

side effects across the rest of the system.

Memory-mapped Files
When you start to use memory-mapped files in your application, you'll find that there are a couple of differences
between Windows NT and Windows 95. I won't explain how to create memory-mapped files, since there are already
so many books that cover this topic in much more detail than I can provide in this section. Just remember that the
name space used for memory-mapped files, is the same as that used for events, semaphores and mutex, and it's not
possible to have objects with the same name in the same name space. If you attempt to create an object of one type
(such as a semaphore) with the same name as another object of another type (such as an event), you'll get an error
and the creation function will fail.

In Win32, you can open a disk file as a memory-mapped file and allow Windows to page the file blocks in and out
for you as you access different parts of the file. Both Windows NT and Windows 95 limit the size of a file mapping
by the available disk space. In Windows NT, the size of a mapped view of an object is limited to the largest
contiguous block of unreserved virtual memory in the process performing the mapping (at most, 2 GB minus the
virtual memory already reserved by the process). In Windows 95, it's limited to the largest contiguous block of
unreserved virtual memory in theshared virtual arena.

The shared virtual arena on Windows 95 is the area shared by certain components (such as 16-bit Windows-based
applications) and non-overlapping memory mapped views. Under Windows 95, these views are mapped to the 2-3
gigabyte address range (which is exactly where the shared virtual arena is located).

The arena will be at most 1 GB, minus any memory in use by other components of Windows 95 which use the
shared virtual arena (16-bit Windows-based applications). Each mapped view will use memory from this arena, so
this limit applies to the total size of all non-overlapping mapped views for all applications running on the system.

In Win32, you can also specify a larger size to CreateFileMapping() than the actual file being mapped. Under
normal conditions, Win32 will grow the file to match the size specified. However, NT will fail if you specify
PAGE_WRITECOPY as the fdwProtect parameter to CreateFileMapping(), whereas Windows 95 will not.

When you map a file to a view (as it's called), the view is created in the process space of the running application.
Under NT, the address falls within the range 0 – 2 GB. In Windows 95, it's between the range of 2 – 3 GB.

When you call MapViewOfFileEx(), you must specify the lpvBase. On Windows NT, not specifying such a value
will cause MapViewOfFileEx to fail. In Windows 95, the address is rounded down to the nearest integral multiple
of the system's allocation granularity. To determine the system's allocation granularity, call GetSystemInfo().

You can always fall back to using MapViewOfFile() instead of the extended version, which means that you don't
have to specify the base address. The operating system will determine the address of the view for you. There are a
couple of reasons why you might want this to happen.

You might think that you can use the same address for all mapping of a view from all applications wishing to share
memory with each other, but, on Windows NT, this might backfire. The specified virtual address range may not be
free in all of the processes involved and the mapping could fail for one of the processes.

In Windows 95, all views to the same file object are mapped to the same address by default. Therefore, it's useless to
try and map it yourself, since the operating system will do it for you. When you're attempting to map the first view
at a predetermined address, that address may already be in use by other components of Windows 95 which use the
shared virtual arena.

There are a few more items that we need to cover as we talk about using memory-mapped files under Windows 95.
First of all, as you know, one of the parameters to the MapViewOfFile() and the MapViewOfFileEx() functions
is the dwOffsetHigh parameter. If you're using it with Windows 95, you should set this parameter to zero, since
you shouldn't specify which byte to map onto the view because the byte that you would specify could potentially

map onto something being used already by another view.

The CreateFileMapping() function normally receives two parameters dwMaximumSizeHigh and
dwMaximumSizeLow. These parameters should be set to zero under Windows 95 so that the maximum size of the
file-mapping object will be the same size as that of the file specified. Another parameter to note is the fdwProtect
argument. This parameter is used to pass flags to the function. There are two flags that are the not supported under
Windows 95: SEC_IMAGE and SEC_NOCACHE.

When two or more processes in Windows 95 use a view that has been marked with the PAGE_WRITECOPY protection
flag, they are allowed to view the changes made to the data from another process. In other words, when one process
makes changes to the data in the view, the other application immediately sees the changes. However, because the
data is marked as PAGE_WRITECOPY, the changes are not written to disk.

In Windows NT, this scenario works a little differently. When a process viewing a named data map chooses to write
to the data, the process is given a separate copy of the data. Other processes are not effected, since they don't see the
changes to the data. The disk file isn't effected at all.

Multithreading
One of the major design changes implemented in Win32 is the asynchronous input model, whereby a single program
can have multiple threads of execution, each thread receiving its own message queue. The effects of this are seen in
APIs related to mouse capture, the active window and querying window focus.

The Win32 implementation of the Get APIs (GetFocus(), GetActiveWindow(), GetCapture()) query
information solely on the current thread. Now, in Win32, it's possible for GetFocus() to return NULL. This
occurswhen the thread that issues the GetFocus() doesn't own the window with focus. This same problem affects
the GetActiveWindow() and GetCapture() APIs. If a thread attempts to SetFocus() to a window that it didn't
create, the thread's focus status is set to NULL. The thread that owns the window specified by SetFocus() will have
its focus status set.If a thread attempts a SetActiveWindow() on a window not created by itself, the thread issuing
the API will have its active window status set to NULL. The thread that owns the window specified in
SetActiveWindow() will have its active window status set.

Any 16-bit Windows code that assumes the Get APIs always return a valid window handle will have to be modified
for Win32.

The Registry
When you begin to port your application to Windows 95 or Windows NT, your code is not the only thing you have
to worry about. You'll now have the pleasure of working with the system's registry. Although Windows 3.x had the
concept of a system registry, Win32's system registry is far more extensive and powerful.

The system registry is a place provided by the operating system to act as a database of information where the
system, applications, or users can place persistent information. This information has life across sessions and can be
accessed programmatically or via a tool provided by the system(Regedt32.exe in Windows NT or Regedit.exe
in Windows 95). You can also use the registry to store temporary data (although I'd prefer to use other tools for this
sort of stuff).

What do You Place in the Registry?
Windows 3.x had no central place to store configuration information. Although it had a registry, it was limited, so
was only used by the operating system for internal use.

Now the rules have changed. Any information that would have been place into .ini files under Windows 3.x should
now be placed in the registry for Win32-based applications. Most Windows 3.x applications kept the majority of
their configuration information in private .ini files, although some information was also placed in the system's
Win.ini and System.ini files.

Applications also created group (.grp) files which contain location and icon information for the application(s). All
of these files must be maintained using various methods and functions, which can add to confusion and problems.
The solution is to have one central place where all of the information can be placed and maintained in an organized
manner.

The registry provides a hierarchical view of the information. It's organized using nodes, where each node is called a
key and each key can contain values and/or other subkeys. Subkeys can also have other subkeys within them. The
registry has six main keys which are known as the root keys. The root keys provide an entry point for other keys.

Each key can have a default value and other named values associated with it. Note that the key doesn't need to have
any value at all. The figure below shows how the hierarchy is organized in the registry:

To use or modify the registry, you need to provide the handle of an open key. But how do you provide the handle of
an open key if you haven't opened the key yet? This is like asking, "Which came first, the chicken or the egg?". For
this very reason, Win32 automatically opens the six root keys and the handle of these keys is known at compile time.
These predefined root keys are stored in the Win32 SDK header files and are listed here:

Key Description

HKEY_CLASSES_ROOT Mostly used to provide OLE support. All OLE class IDs are stored
under this key. Type libraries, file viewers and Windows 95 shell
extensions are also stored under this key.

HKEY_LOCAL_MACHINE Contains information about the system's local state. Information
includes the computer hardware, drivers, I/O ports and other
operating system software components. This information is used for
whatever user is logged on.

HKEY_USERS This key contains a subkey, called .Default, which is used to create
a user's profile for users with no relevant profile on the system. In
addition to the .Default subkey, HKEY_USERS also contains all the
user profiles for the users that have logged on to the system.

HKEY_CURRENT_USER Contains the profile of the user who is currently logged on. If the
profile is available across the machines that the user can possibly log
on to, the user is guaranteed to always have the same user interface
settings. This key can be seen as containing the information
necessary to maintain environmental settings such as application
preferences, screen colors, and security access permissions.

HKEY_CURRENT_CONFIG This key contains hardware-specific information pertaining to the
current set of hardware plugged into the computer. This key is new to
Windows 95.

HKEY_DYN_DATA The information maintained in this key can change dynamically. It
plays an active role in the plug & play implementation. This key is
new to Windows 95.

Working with Keys and Paths
Although you can open a subkey from a root key, then open a subkey within the first subkey, there's a better way to
perform this task. Using a path (very similar in concept to disk-based paths), you can open a key three or four levels
down, directly. A path is a string containing the hierarchy of keys ending with the key that you wish to open. The
keys are separated in the string with a slash (\) character. This is a path to the information stored for the Microsoft
Access key in the HKEY_CURRENT_USER key:

\SOFTWARE\Microsoft\Access

By passing this path to the RegOpenKeyEx() function along with a handle to a key (HKEY) for
HKEY_CURRENT_USER, you would receive a HKEY back. You can then use the HKEY in any subsequent calls to the
Win32 registry API functions.

Using the Registry API
You should normally replace any calls to the .ini functions with the registry functions. Under Windows NT, you
can get Windows NT to do it automatically for you at the system level. This works out great if you need to use one
code base for both Windows 3.x and Windows NT. To achieve this, you must tell Windows NT the name of the .ini
file you would have created and place the name in the HKEY_LOCAL_MACHINE\Software\Microsoft\
WindowsNT\CurrentVersion\IniFileMapping key. For example, on my machine the Clock application that
ships with Windows NT has a subkey under this key, called Clock.ini. This key has a value of Software\

Microsoft\Clock. I then looked under the HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\CLOCK key and found
the following values:

 "Maximized: 0"
 "Options: 0, 1, 0, 0, 0, 0"
 "Position: 0, 0, 804, 476"

Windows 95 currently has no provision for achieving this, but if you use MFC, you can have this done for you. You
must call a function, named CWinApp::SetRegistryKey(), in your InitInstance()before calling any MFC
.ini functions. This will cause MFC to redirect any call to the Get/SetPrivateProfile()family of members of
CWinThread to the registry equivalents. The table below gives a brief description of the registry API functions. For
a more descriptive explanation of the API, see your books online or Win32 SDK reference manuals.

Registry API Description

RegCloseKey() Releases the handle of the given key.
RegConnectRegistry() Establishes a connection to a predefined registry handle on another

computer.
RegCreateKeyEx() Creates a specified key.
RegDeleteKey() Deletes the specified key.
RegDeleteValue() Removes a named value from a specified key.
RegEnumKeyEx() Enumerates the subkeys of a specified key.
RegEnumValue() Enumerates the values for a supplied open key.
RegFlushKey() Writes all the attributes of the given open key immediately (if any

information is still in the cache).
RegOpenKeyEx() Opens a specified key for subsequent operations.
RegQueryInfoKey() Retrieves information about the characteristics of a key.
RegQueryValueEx() Retrieves the type and the data associated with an unnamed value in a

registry key.
RegSetValueEx() Stores data in a value field of a specified registry key.

Dynamic-link Libraries
Applications aren't the only modules that need to be ported to Win32. Dynamic link libraries (DLLs) are also good
candidates for porting to Win32. Before you start the porting process for DLLs, there are a couple of things that you
should know about.

Memory Consumption
Although DLLs have not changed much since they were first introduced into Windows development, they have been
changed slightly to take advantage of some new features offered by Win32, such as memory management,
multitasking and separate process address spaces.

Since all memory owned by an application (including code) resides in the linear address space owned by the
process, it's not possible to share data with other applications. This causes Win32 to map a DLL into each process
space that must use that DLL. In essence, this causes the DLL to become reentrant, since each process can call the
DLL at virtually the same time (a.k.a. multitasking) from any thread.

The DLL isn't really copied to the address space of each process. Rather, it's loaded once into the global heap and
mapped to the address space of each application that loaded the DLL.

Global memory and global C++ objects (objects created globally in your application and stored in the data segment)
are treated differently in Win32. They aren't shared by default, as they were in Windows 3.x. A copy of the data is
actually copied for each process which loads the DLL. The memory is allocated from the global heap, but is marked
as non-sharable memory. It's simply mapped to the process space of each application. There's a way that you can
share data allocated within the DLL amongst the different processes. This involves marking the data as SHARED data
and dictating how you want to share the data (READ or WRITE).

If you decide to share data with several processes at the same time, it's imperative that you manage the shared data
very carefully. Since Win32 now has multitasking, two threads can access a piece of shared memory at the same
time. For this very reason, Win32 now supports synchronization objects which can be used to synchronize access to
shared memory.

The following figure illustrates how the DLL and memory is mapped into the address space of two different
processes:

Loading DLLs
As in Windows 3.x, when an application needs to communicate with a DLL, it first needs to have the DLL loaded.
You can load a DLL in two ways: implicitly and explicitly.

The implicit loading of a DLL takes place when you link to a library file created from the DLLs tokens. The tokens
are the pieces of information that describe the location of the functions in the DLL, as well as the DLL itself. Most
developers use Visual C++ to generate a library file containing information (the tokens) which allow applications to
call functions in the DLL. The functions simply act as stubs until run time, when the functions can then be linked in
dynamically.

An application can also load a DLL explicitly, which means that the application calls LoadLibrary() at run time.
This allows the application to link to any functions that are located in the DLL which the application is calling.
Loading a DLL like this allows you greater power, since the application can control when the DLL is loaded or
thrown out of memory. The downside is that you must call GetProcAddress()to retrieve the function's address in
the DLL.

You could, however, allow the DLL to set up the addresses to the functions in a structure using function pointers (or
a VTABLE in C++) and return a pointer to the structure containing the function pointers via a function you call in
the DLL. This procedure is illustrated in the following figure:

Calling functions using this procedure is very much how OLE allows applications to communicate via interfaces.
The interfaces are actually these function table structures (or VTABLEs in C++).

Win32 Entry Point
In Win32, LibMain() and WEP() (Windows 3.x's entry points) have gone away. Instead, Win32 DLLs can
implement a new function, called DllEntryPoint(), for both cases. The function receives a parameter, called
dwReason, which will contain one of four values: DLL_PROCESS_ATTACH, DLL_PROCESS_DETACH,
DLL_THREAD_ATTACH and DLL_THREAD_DETACH. Your application first determines why it's being called (startup or
shutdown), then, if it's being shutdown, it can proceed to allocate or deallocate resources.

Keep in mind that the DllEntryPoint() function for a DLL is called once for every process that loads the DLL
with DLL_PROCESS_ATTACH as the dwReason parameter. In response to this, the DLL should initialize the data that
the application will use, since the application will end up with its own copy of the data in the DLL. Similarly, when
you need to free resources, you should free them once per process, since memory will be allocated on behalf of each
process.

Since DLLs are reentrant, the entry point is called for each new thread that loads the DLL with
DLL_THREAD_ATTACH as the reason (except for the first thread which sends DLL_PROCESS_ATTACH). The DLL will
receive DLL_THREAD_DETACH when the thread lets go of the DLL or the thread is terminated. If the thread is the
primary thread of the process, the DLL will instead receive DLL_PROCESS_DETACH.

If a thread loads a library more than once, the DLL's entry point will only be called once (not once per load, only
once per thread). On the other hand, the DLL count will be incremented, so you should free the library as many

times as you load it. The system will automatically decrement the reference count on the DLL (the number of times
that the thread loaded the DLL) when a thread is terminated.

Exports and Imports
Functions that are currently declared with the __export keyword must be changed to be declared with
__declspec(dllexport) in Win32. You no longer have to explicitly declare an exported function in the .def
file. The __declspec keyword will automatically export the function for you.

You must convert any functions that were being imported with the __import keyword to use the
__declspec(dllimport) keyword. Using this keyword is not essential, but if you do use it, you'll get improved
performance.

You will also get compiler warnings about certain sections in your .def file that have changed for Win32
development. For example, the EXETYPE keyword has been dropped and is no longer necessary.

Summary of Changes
Building a DLL has actually become easier in Win32. There is no separate startup module. The DLL startup code is
handled for your DLL by the code that is linked to your DLL.

Global objects defined in the DLL are duplicated for each process. The DLL manages this by initializing and calling
the constructor for the objects automatically.

The entry point functions have been reduced to one function instead of several (as it was in Windows 3.x), and you
can name the startup function anything you want, as long as you include the appropriate parameters and return type
for the function.

Importing and exporting of functions has been simplified by the use of the _declspec keyword and there's no need
to place functions into a .def file.

Remember that memory is no longer shared by default. Shared memory can still be achieved, but you must manage
things more carefully if you choose this option.

COM and OLE
In this chapter, we'll examine COM and OLE. You'll see how MFC supports this object technology
through its classes and macros and how this allows you to implement advanced features in your own
applications. MFC includes support for many OLE features that we'll be looking at in this chapter,
including:

Aggregation
Structured Storage
Uniform Data Transfer
OLE clipboard operations
Drag-and-drop

If you're not already an OLE expert, you may have thought that you could keep holding out on learning
OLE forever, or at least until you really needed it for implementing compound document or automation
support. Well, I'm here to tell you that you can't put it off any longer.

You may have a basic knowledge of how MFC communicates with COM so that you can build your own
OLE objects, but if you don't have a comprehensive insight into precisely how MFC operates on your
behalf, you may have a hard time changing MFC's behavior or tracking down bugs if something goes
wrong. You might be asking yourself, "Why would I need to modify MFC's behavior if it provides
everything I need?" Well, if it does provide everything you need, that's fine, but MFC can't provide
classes for everything. There will be times when you need to provide your own interfaces to handle things
that MFC doesn't do very well (or doesn't do at all). Programming for the Windows 95 shell (covered
elsewhere in this book) is just one example.

COM Basics
COM is a protocol and a binary standard that allows software objects to communicate at run time without
any prior knowledge of what the other object can do. Since COM is a binary standard, objects written in
any language can communicate and interact with each other, regardless of whether the objects are in the
same process, in separate processes on the same machine or communicating across a network.

A COM object is made up of a collection of interfaces (to COM, an interface is simply a table of function
pointers). In C++, it's very easy to create a table of function pointers by using the vtable that is
automatically created when a class possesses virtual functions. In C++, an interface turns out to be
nothing more than an abstract class with a bunch of pure virtual functions. Now, as you know, you can't
have a C++ object instantiated from an abstract class, so to expose the interface in a useful way, you must
derive a new class from the interface (or abstract class) and implement every single one of the functions
before you can instantiate an object.

COM allows one object to communicate with another without knowing everything about its facilities by
defining a standard interface called IUnknown. IUnknown contains three functions: QueryInterface(),
AddRef() and Release(). AddRef() and Release() are used to manage the lifetime of an object.
QueryInterface() is used by a caller to request a pointer to a specific interface. If the object doesn't
support that interface, the function will return an error code. In this way, the caller can find out which of
the features that it's interested in are supported by the other object and use only the ones that are
supported.

Every COM object must implement at least the IUnknown interface. In fact, every other interface must

also contain the three functions that make up IUnknown. This means that a client can call
QueryInterface() on any interface in a server COM object to get a pointer to any other interface on that
object.

MFC COM Fundamentals
To see how MFC can help us create COM objects, let's start by considering how we might do it without
MFC's help. Suppose we wanted to create a simple COM object with a single interface. We might code it
something like this:

class MyDataObject : public IDataObject
{
public:
 MyDataObject();
 STDMETHOD_(ULONG, AddRef)();
 STDMETHOD_(ULONG, Release)();
 STDMETHOD(QueryInterface)(REFIID iid, LPVOID* ppvObj);
 STDMETHOD(GetData)(LPFORMATETC, LPSTGMEDIUM);
 // ...other functions specific to IDataObject
 STDMETHOD(EnumDAdvise)(LPENUMSTATDATA*);
 DWORD m_dwRef; // Used for reference counting.
};

Here, you can see that we can just derive a class from the interface. We'd have to implement the reference
counting and QueryInterface() functions ourselves, which is tedious, but the real problem is that most
objects have to expose more than one interface, making reference counting and interface lookup more
complicated.

Using Nested Classes
If we wanted to support more than one interface in our object, we could use nested classes to group the
interfaces into a single unit. Since each interface must implement the standard IUnknown functions
(QueryInterface(), AddRef() and Release()) we need to devise a method for handling reference
counting and interface querying that will work for the object as a whole, as well as each of its interfaces.
One way to do this would be to derive the main class from IUnknown:

class CComObject : public IUnknown
{
public:
 CComObject();
 STDMETHOD_(ULONG, AddRef)();
 STDMETHOD_(ULONG, Release)();
 STDMETHOD(QueryInterface)(REFIID iid, LPVOID* ppvObj);
 DWORD m_dwRef;
 class CDataObject : public IDataObject
 {
 public:
 CComObject* m_pParent;
 STDMETHOD_(ULONG, AddRef)();
 STDMETHOD_(ULONG, Release)();
 STDMETHOD(QueryInterface)(REFIID iid, LPVOID* ppvObj);
 // Define all IDataObject members here.
 } m_dataObject;

 class COleObject : public IOleObject
 {
 public:
 CComObject* m_pParent;
 STDMETHOD_(ULONG, AddRef)();
 STDMETHOD_(ULONG, Release)();
 STDMETHOD(QueryInterface)(REFIID iid, LPVOID* ppvObj);
 // Define all IOleObject members here.
 } m_oleObject;
};

The IUnknown functions in the main class must be responsible for maintaining the reference count for the
whole object and for returning pointers to any interface through QueryInterface(). We still have to
provide implementations for AddRef(), Release() and QueryInterface() for the nested classes, but
these can simply delegate to the functions in the main class, as shown:

STDMETHODIMP CComObject::CDataObject::QueryInterface(REFIID iid,
 LPVOID* ppvObj)
{
 // Delegate to the main object
 return m_pParent->QueryInterface(iid, ppvObj);
}

STDMETHODIMP CComObject::QueryInterface(REFIID iid, LPVOID ppvObj)
{
 \\ All interface queries are handled here
 if (iid == IID_IDataObject)
 *ppvObj = &m_dataObject;
 else if (iid == IID_IOleObject)
 *ppvObj = &m_oleObject;
 else
 {
 *ppvObj = NULL;
 return E_NOINTERFACE;
 }
 return S_OK;
}

AddRef() and Release() would act in a similar way. Since all the functions delegate to one IUnknown
implementation, reference counting and interface lookup is made much easier. Of course, this relies on
m_pParent being correctly set in the constructor for the main class:

CComObject::CComObject()
{
 m_dataObject.m_pParent = this;
 m_oleObject.m_pParent = this;
}

How Does MFC do it?
MFC works in a similar way, but offers a simpler and more complete solution by providing a class and a
number of macros to make your life easier. Two of these macros are BEGIN_INTERFACE_PART() and
END_INTERFACE_PART(), which are used to simplify the declaration of nested classes. They are used as
follows:

class CComObject : public CCmdTarget
{
public:
 CComObject();

 BEGIN_INTERFACE_PART(DataObject, IDataObject)
 STDMETHOD(GetData)(LPFORMATETC, LPSTGMEDIUM);
 // ...Other members
 END_INTERFACE_PART(DataObject)
 BEGIN_INTERFACE_PART(OleObject, IOleObject)
 STDMETHOD(SetClientSite)(LPOLECLIENTSITE);
 // ...Other members
 END_INTERFACE_PART(OleObject)
 DECLARE_INTERFACE_MAP()
};

The preprocessor will expand the macros into the following:

 class XDataObject : public IDataObject
 {
 public:
 STDMETHOD_(ULONG, AddRef)();
 STDMETHOD_(ULONG, Release)();
 STDMETHOD(QueryInterface)(REFIID iid, LPVOID* ppvObj);
 STDMETHOD(GetData)(LPFORMATETC, LPSTGMEDIUM);
 // ...Other members
 } m_xDataObject;
 friend class XDataObject;

As you can see, the macros declare the IUnknown functions for the nested class. They also make the class
a friend of the controlling class, so that the nested objects can see any private members of the
controlling class. Remember that only friends can see your private parts!

To get MFC's support for reference counting and interface lookup, you must derive your COM object
class from the CCmdTarget class and use an interface map. Interface maps are similar in concept to
message maps and dispatch maps, except they maintain the glue between an interface ID (IID) and the
data member of a COM object which implements the specified interface.

CCmdTarget has built-in support for IUnknown. It contains functions for performing AddRef(), Release()
and QueryInterface(). The QueryInterface() function built into CCmdTarget will use the interface
map to locate the appropriate member for the interface's implementation. For example, if I wanted to use
MFC's support for creating COM objects to implement the COM class specified above, I would create the
class as follows:

class CComObject : public CCmdTarget
{
public:
 CComObject();
 BEGIN_INTERFACE_PART(DataObject, IDataObject)
 STDMETHOD(GetData)(LPFORMATETC, LPSTGMEDIUM);
 STDMETHOD(GetDataHere)(LPFORMATETC, LPSTGMEDIUM);
 STDMETHOD(QueryGetData)(LPFORMATETC);
 // ...Other members
 END_INTERFACE_PART(DataObject)
 BEGIN_INTERFACE_PART(OleObject, IOleObject)
 STDMETHOD(SetClientSite)(LPOLECLIENTSITE);
 STDMETHOD(GetClientSite)(LPOLECLIENTSITE*);
 STDMETHOD(SetHostNames)(LPCOLESTR, LPCOLESTR);
 // ...Other members
 END_INTERFACE_PART(OleObject)
 DECLARE_INTERFACE_MAP()
};

// This goes in the implementation (.cpp) file
BEGIN_INTERFACE_MAP(CComObject, CCmdTarget)
 INTERFACE_PART(CComObject, IID_IDataObject, DataObject)
 INTERFACE_PART(CComObject, IID_IOleObject, OleObject)
END_INTERFACE_MAP()
STDMETHODIMP_(ULONG) CComObject::XDataObject::AddRef()
{
 METHOD_PROLOGUE(CComObject, DataObject)
 return (ULONG)pThis->ExternalAddRef();
}
STDMETHODIMP_(ULONG) CComObject::XDataObject::Release()
{
 METHOD_PROLOGUE(CComObject, DataObject)
 return (ULONG)pThis->ExternalRelease();
}
STDMETHODIMP CComObject::XDataObject::QueryInterface(
 REFIID iid, LPVOID* ppvObj)
{
 METHOD_PROLOGUE(CComObject, DataObject)
 return (HRESULT)pThis->ExternalQueryInterface(&iid, ppvObj);
}

In the implementation file, you must use the BEGIN_INTERFACE_MAP() and END_INTERFACE_MAP()
macros to let the CCmdTarget-derived class know of the interfaces that the controlling object will support.
In between these macros, entries are made for each interface. The entries are used by CCmdTarget to look
up the interface pointer when a QueryInterface() call is made. For example, if a client application calls
QueryInterface(), asking for IID_IDataObject, a pointer to the m_xDataObject member of the
controlling object will be returned. You don't need to include an entry for IID_IUnknown, since MFC will
return the first entry in the map. In our case, IID_IDataObject was placed as the first entry in the map, so
when the client asks for IID_IUnknown, MFC will return m_xDataObject's this pointer.

Although you don't need to declare AddRef(), Release() and QueryInterface() for the nested classes
(since this is done automatically by the BEGIN_INTERFACE_PART() macro), you do need to provide an
implementation for them. This is very easy, since all you have to do is retrieve a pointer to the controlling
object and call its IUnknown members:

STDMETHODIMP_(ULONG) CComObject::XDataObject::AddRef()
{
 METHOD_PROLOGUE(CComObject, DataObject)
 return (ULONG)pThis->ExternalAddRef();
}

This looks a bit different from the way we did it without MFC support, but the principle is the same.
METHOD_PROLOGUE() simply creates a local variable, called pThis, which contains a pointer to the main
object (equivalent to m_pParent in the earlier example). ExternalAddRef(), ExternalRelease()and
ExternalQueryInterface() are the CCmdTarget functions which implement the standard IUnknown
functions AddRef(), Release() and QueryInterface(). (We'll see why they have External in their
name in the section on aggregation later in this chapter.)

When you use the BEGIN_INTERFACE_MAP() macro, as well as specifying the controlling COM class, you
must specify the base class. This allows you to derive from an existing MFC/OLE class and add more
functionality to the class with new interfaces.

In other words, let's say I wanted to use the functionality of the MFC CDataSource class (which already
implements the IDataObject interface) from my own class which I plan to expose as a COM class. I
could derive my class from CDataSource, implement the interfaces I wish to add (such as

IPersistStorage or IOleObject) in my new class, and expose the class with its own CLSID. Then, any
client can simply create an instance of my COM class and access all the interfaces (including the ones in
CDataSource).

You can't, however, derive from one of the interfaces implemented by an MFC class. In other words, I
can't derive a class from the nested XDataObject class implemented within the CDataSource class.

Instantiating a COM Object
The question is, how do you create a COM object and get a pointer to an interface on it in the first place?
The answer is usually to call CoCreateInstance(), which (if all goes well) will create the object you
specify and return you a pointer to the interface that you require.

To access an object via CoCreateInstance(), you'll need a globally unique identifier (GUID) for the
class of object that you want OLE to create for you. The OLE libraries will then use that GUID to look in
the registry and find out more information about the class (if it exists), such as the location of the server
executable or DLL that contains the code which actually creates the object (and therefore, the interfaces).
The GUID that identifies an object class is called a class identifier (or CLSID for short).

Just as we have GUIDs for object classes, we also have GUIDs for the interfaces, called interface
identifiers (IID). IIDs are used to identify the interfaces that we request from a COM object.

There are several ways to create a GUID for your own custom COM classes and interfaces. One is to use
the Guidgen.exe application which is shipped with the Win32 SDK, as well as VC++. Another way to
generate them is to use the OLE API function CoCreateGUID().The last is to call Microsoft and request
256 unique GUIDs. Because GUIDs use a great algorithm and a 128-bit structure to store the identifier,
they're pretty much guaranteed to always be unique.

Using GUIDs and Class Factories
Fortunately, when you use ClassWizard to generate a class derived from CCmdTarget, you have the option
of telling ClassWizard that the class should be OLE Automation Creatable by type ID which means
ClassWizard will generate (among other things) two lines of code that look like this:

// In the header file:
DECLARE_OLECREATE(CComObject)

// In the implementation file:
// {15F3C485-30D8-11CF-97E6-444553540000}
IMPLEMENT_OLECREATE(CComObject, "COMOBJECT", 0x15f3c485, 0x30d8, 0x11cf, 0x97, 0xe6, 0x44,
0x45, 0x53, 0x54, 0x0, 0x0)

These two lines will ensure that the object has a class factory and that objects can be created from the
object class. Class factories are what actually create the instances of the OLE objects provided by the
server that OLE loads (when CoCreateInstance() is called by the client).

When an application calls OLE to get an interface on a newly created data object, OLE finds and loads
the server by using the information stored in the registry for the server. This information can be registered
in several ways. One way is to call COleObjectFactory::UpdateRegistryAll() to register all the class
factories. UpdateRegistryAll() is a static function within that class which updates the registry with
the appropriate information including the program ID, class ID and the full path to the in-process server.

COleObjectFactory::UpdateRegistryAll() is usually executed as part of the server application's
InitInstance() function if the server can also be run as a stand-alone executable. If it's an in-process
server, it will usually export a function, called DllRegisterServer(), that calls
COleObjectFactory::UpdateRegistryAll(). This function can be called by Regsvr32.exe, an
application that takes the path to an in-process server and calls DllRegisterServer() on it. You can find
Regsvr32.exe in your \Msdev\Bin directory.

Servers can also be registered, via a registration (.reg) file which can be merged with the registry by
double-clicking on it. .reg files are simple text files. The following is an example of a registration file
(this file is used in the aggregation example later in this chapter):

REGEDIT4

[HKEY_CLASSES_ROOT\CLSID\{591E69E7-63F0-11CF-B337-444553540000}]
@="Data Object Server"
[HKEY_CLASSES_ROOT\CLSID\{591E69E7-63F0-11CF-B337-444553540000}\InprocServer32]
@="c:\\msdev\\projects\\aggregation\\dataserv\\debug\\dataserv.exe"
[HKEY_CLASSES_ROOT\CLSID\{591E69E7-63F0-11CF-B337-444553540000}\ProgID]
@="DATASERV.DATAOBJ"

[HKEY_CLASSES_ROOT\STORSERV.STORAGEOBJ\CLSID]
@="{591E69E7-63F0-11CF-B337-444553540000}"

Aggregation
You can see that using CCmdTarget and an interface map frees you from the tedium (and potential
mistakes) of implementing your own reference counting and interface lookup functions. You can simply
delegate all the work to the functions provided by CCmdTarget. This becomes even more useful when you
consider aggregation, a much misunderstood technique.

If you've ever wished that you could use the functionality of some object as if it were part of your own
object then you have already started to dream about aggregation. In short, aggregation is the ability to use
the implementation of another object as if it were your own, and what's more, it's fast.

You're probably already familiar with a related technique—containment. With containment, you add
functions to your class' interface that mimic the functions of another object. The implementations of these
functions simply call the corresponding functions on a contained member of the other object. This
technique gives you exact control over which functions you expose and how they can be called, but it's
slow in terms of execution speed (an extra function call is made for each function in the contained object)
and it's also laborious to duplicate all the functions of the other object if it's rich and complex.

Aggregation solves both of these problems by providing clients with direct access to entire interfaces of
the object you wish to use. You can select which interfaces are available to the client, but once they have a
pointer to that interface, they can call the functions on it directly, as if the client had created the object
themselves. Thus, aggregation is faster than containment and, if you don't need to limit the functionality
of the aggregated object too much, it's a better solution. It does, however, require that the object you wish
to exploit was written ready to be aggregated. We'll see why as we examine exactly how aggregation
works.

Let's say that your department is going to create an application and management wants you to use a great
COM object (which we'll call Object-A) developed in another department for which you don't have any
source code. Object-A contains an implementation of IDataObject, but has no support for becoming an
embeddable OLE document. This is where aggregation comes in. By creating the code for another COM
object (Object-B) that implements all of the other necessary interfaces, you can use and expose the
IDataObject interface from Object-A and the IOleObject interface from Object-B as a single COM
object class. Then, all the client application has to do is create an instance of Object-B (which in turn
creates an instance of Object-A, although this is invisible to the client).

When you're implementing aggregation, there are always two sides to the story. There's the object that's
being aggregated (the aggregate, Object-A in our case) and there's the object that is aggregating other
objects (the aggregator, Object-B in our case). The aggregator's IUnknown is referred to as the outer
unknown because this is the only IUnknown that is available to the client. As far as the client is
concerned, the IUnknowns of any aggregated objects are hidden inside the virtual object represented by
the dashed line in the diagram. It doesn't know that more than one object is involved.

For an object to become an aggregate, it must adhere to a number of rules, all of which are designed to
ensure that the three following principles are implemented satisfactorily:

The use of aggregation should be transparent to the client.
The aggregator has complete control over the lifetime of the aggregate.
The aggregator has complete control over which of the aggregate's interfaces are exposed to the
client.

The first and foremost rule in aggregation is that the aggregate must let the aggregator handle any calls to
AddRef(), Release() or QueryInterface() made on its exposed interfaces. Clearly, this makes sense
when we consider the second and third of the principles above; AddRef() and Release() control an
object's lifetime and QueryInterface() controls an object's functionality, so the aggregator must handle
these functions. It makes even more sense that only the aggregator can handle calls to QueryInterface()

when you realize that an aggregated object has no way of knowing what interfaces the aggregator might
expose and, therefore, no way of returning pointers to them.

An aggregate simply delegates any calls made to these functions to the IUnknown interface of the
aggregator. This is known as the controlling or outer unknown. The aggregate will be passed a pointer
to the outer unknown when it is created via IClassFactory::CreateInstance() or
CoCreateInstance(). In fact, it's the presence of this pointer (in a parameter that would otherwise be
NULL),that tells the object that it is being aggregated and allows it to change its behavior accordingly.

Since aggregation is transparent to all clients, an aggregator might itself be aggregated, whether
knowingly or unknowingly. There's no limit to the levels of aggregation that can take place. There's no
easy way to tell whether an object that is about to be aggregated already uses aggregation, and, in fact,
there is no need to know. All aggregated objects must delegate their AddRef(), QueryInterface() and
Release() functions to a single IUnknown to ensure that there's only a single object to control the
functionality and lifetime of the object. This is handled by requiring all objects to pass their outer
unknowns to the creation function. It's only the outermost object that will be passing its own IUnknown
pointer to any objects it aggregates. You can see this situation in the figure below:

You can see that the lifetime and capabilities of the object as a whole are controlled from a single object
and that the client has no idea about whether aggregation is being used at all.

Of course, the aggregator must have a way to AddRef(), Release() and QueryInterface() the
aggregate without it delegating back to the outer unknown, otherwise there would be an endless loop.
This problem is solved by simply ensuring that these functions on the IUnknown interface never delegate,
whereas the same functions on any other interface do. The aggregator must ask for the IUnknown interface
when it creates an aggregate so that it can control its lifetime and functionality. In fact, if an aggregator
attempts to pass an outer unknown pointer when it creates an object, but fails to request the IUnknown
interface, the class factory responsible should fail to return a valid pointer and should return an error
instead.

In addition, the aggregate's class-factory should ensure that the first request for an interface doesn't
delegate an AddRef() call to the aggregator. Lucky for you, MFC already implements all of this work on
behalf of the class factory.

Aggregates in MFC
With MFC's help, creating an object that can be aggregated is easy.
If you're already using a CCmdTarget-derived class and the class factory supplied by
DECLARE_OLECREATE(), all you have to do is call EnableAggregation() from the object's constructor.
MFC will take care of the rest, including, as we've just mentioned, returning the correct pointer on object
creation and storing the outer IUnknown pointer to which calls must be delegated.

Now, maybe it's becoming apparent why the functions we called from the IUnknown functions in our
interfaces were called ExternalQueryInterface(), ExternalAddRef(), and ExternalRelease(). It just
so happens that these functions delegate to the outer unknown if the object is being aggregated, otherwise
they just call the inner IUnknown we considered before.

There are also internal versions of these functions called InternalAddRef(), InternalRelease(), and
InternalQueryInterface(). InternalAddRef() and InternalRelease() work on the inner unknown,
regardless of whether or not the object is being aggregated. The interface lookup in
InternalQueryInterface()is handled internally with no delegation, but it still calls ExternalAddRef()
if an interface is found, causing the outer unknown's reference count to be incremented. You can, of
course, call these functions directly if you need to be sure that your requests aren't delegated, but pretty
much all of the time you're going to want to call the External versions

Now you can see how MFC gives you aggregates for free, let's see how it makes your life easier when
you want to create an aggregator.

Aggregators in MFC
The first thing you'll need to do if you want to create an aggregator is to create some data members in the
controlling class of the aggregator for each IUnknown pointer that you expect to get back from the
aggregates. You'll also need to initialize these members to NULL in the aggregator's constructor.

As we've already mentioned, you need to call CoCreateInstance() to create the aggregates, passing it
the outer unknown pointer for your object and the data member that will be used to hold the returned
IUnknown pointer. When you call CoCreateInstance(), you should pass it the value returned from
CCmdTarget::GetControllingUnknown(), in case the aggregator is also being aggregated by another
object. By calling GetControllingUnknown(), you allow MFC to pass the appropriate IUnknown. If the
aggregator is not being aggregated, the function will return the this pointer of the controlling object,
otherwise it will return the IUnknown of the aggregating object.

To make your life particularly easy, CCmdTarget possesses a function called OnCreateAggregates()
where you should place your creation code. This is called by the framework when the aggregator is first
created.

With the aggregates created, the only thing left is to tie the interfaces in the aggregate into your object's
QueryInterface() function. Since all it took to hook our own object's interfaces up to
QueryInterface() was an entry in the interface map, it would be great if we could do the same for our
aggregates interfaces. This would allow the aggregator's QueryInterface() to check the interface map
and call the aggregate's inner unknown if it needs to.

In fact, we can use MFC's INTERFACE_AGGREGATE() macro to tell the CCmdTarget-derived class about
any objects that we're aggregating. This macro needs to be placed in between the
BEGIN_INTERFACE_MAP() and END_INTERFACE_MAP() macros after any INTERFACE_PART entries. You
must add an entry for each object that you're aggregating. The INTERFACE_AGGREGATE() macro requires
that you pass it the name of the CCmdTarget-derived class, and a pointer to the inner IUnknown of the
aggregate.

Your source code will look something like this:

CComObject::CComObject()
{
 m_lpAggregate = NULL;
}
BEGIN_INTERFACE_MAP(CComObject, CCmdTarget)
 INTERFACE_PART(CComObject, IID_IDataObject, DataObject)
 INTERFACE_PART(CComObject, IID_IOleObject, OleObject)
 INTERFACE_AGGREGATE(CComObject, m_lpAggregate)
END_INTERFACE_MAP()
BOOL CComObject::OnCreateAggregates()
{
 HRESULT hr = ::CoCreateInstance(CLSID_ObjectA,
 GetControllingUnknown(), CLSCTX_ALL, IID_IUnknown, &m_lpAggregate);
 if (FAILED(hr))
 return FALSE;
 return TRUE;
}

This lets CCmdTarget search through the map for any requested interfaces. If the interface isn't provided
in the controlling object, CCmdTarget will pass the request on to the inner unknown of any aggregates in
the list, searching through them until the interface is queried successfully or the list is exhausted.

This is great if you want to allow any interface request not handled by your own interfaces to be passed
on to an aggregate, but, if you want to be more selective, there's another way. When an MFC COM
object's QueryInterface() function is called, it will give you first crack at determining the interface
pointer to return, since it calls CCmdTarget::GetInterfaceHook() before using the interface map. If you
override this function, you have the option of returning an interface to an aggregate yourself.

Note that if you override GetInterfaceHook(), you shouldn't place the IUnknown of the aggregate for
which you want to expose a limited set of interfaces in the interface map. In other words, don't call
INTERFACE_AGGREGATE() for the aggregate.

LPUNKNOWN CComObject::GetInterfaceHook(const void* iid)
{
 HRESULT hr;
 LPVOID lpInterface;
 // Allow only one interface from the aggregate.
 if (*(IID*)iid == IID_ISomeInterface)
 hr = m_lpAggregate->QueryInterface(*(IID*)iid, &lpInterface);
 else
 return NULL;
 return FAILED(hr) ? NULL : lpInterface;
}

Aggregation through Example
Let's wrap this section up with an example. I'll demonstrate aggregation by implementing a client and two
servers with a COM object in each. We'll call the servers the data server (since it will expose an
IDataObject interface) and the storage server (since it exposes IPersistStorage).

The data server has its own user interface in the form of a dialog box and is implemented as an in-process
server (DLL), so it can't run stand-alone. Although the data server can provide data, it has no support for
file I/O and, therefore, cannot be told to save its data persistently. The storage server has been designed to
handle this task.

The storage server has been implemented as a local server (.exe) and its objects act as aggregators to
objects in the data server. The storage server adds the ability to store the data kept in the data server by
implementing the IPersistStorage interface in its objects.

The client application will create an object from the storage server (and implicitly one from the data
server as well) and will provide a compound file for the object to store its data. Although the data server
will provide the data, the actual storage of the data will be handled by the storage server.

Don't worry too much about what the different interfaces do and how the persistent storage works as we'll
cover that through the course of this chapter. For the moment, just accept this as an example of
aggregation.

The Data Server
The data server implements COM objects called data objects. Data objects provide two interfaces:
IUnknown and IDataObject. A client can ask for either one of these interfaces via CoCreateInstance(),
IClassFactory::CreateInstance(), or IUnknown::QueryInterface(). However, as we've seen, if the
object is being aggregated, the aggregator must always ask for IUnknown.

Internally, the data object creates a dialog box and displays it. This dialog box gathers information from
the user via three edit controls. You can see the dialog box below:

The information is then returned to a client when the client calls IDataObject::GetData(), which can
return the data in one of three different formats: metafile, bitmap or text. Later, when we meet the storage
server and the client, you'll see that the client will ask for the data as a bitmap to display it within its view,
and the storage server will ask for the data as text to save it into an IStorage provided by the client.

Besides gathering the information from the edit controls when the user types new information, the dialog
box class that I create in the data server also has the responsibility of rendering the data in all of the
different formats when a client calls IDataObject::GetData(), and displaying the data in the edit
controls when a client sends data to the data object via the IDataObject::SetData() function
(IDataObject is a standard Microsoft interface that we'll cover later in this chapter).

There are three functions which render the data: RenderBitmap(), RenderMetafilePict() and
RenderNative(). RenderNative() returns the data as one block of memory containing the data for all
three strings obtained from the edit controls. The strings are null-terminated within the memory block so
that they can be separated later on (if necessary).

The SetData() function within the dialog box class takes a block of memory (again, the strings are null-
terminated within the block of memory) and rips it apart into three individual strings. The strings are then
placed into the edit controls for the user to see.

These functions are called from the IDataObject implementation of the data object. The details of
IDataObject are discussed later in this chapter (see the section on Uniform Data Transfer for more
information).

As I said before, when an application calls OLE to get an interface on a newly created data object, OLE
finds and loads the server by using the information stored in the registry for the server. I provided three
methods to register the server. You can either use Regsvr32.exe (as explained above) or the registration
file that I provided, called Dataserv.reg (which was also shown above). Alternatively, the server will be
registered by a custom build step when you build it.

The only aggregation-specific item in the data server is the call to EnableAggregation() in the
CCmdTarget-derived class' constructor. Everything else is handled by CCmdTarget.

Any client that wants to create a data server object needs only to call CoCreateInstance() and pass it the
CLSID of CLSID_DataObject. I placed this CLSID, along with the storage object's CLSID, in a file
called Aggrguid.h. The client can then ask for a pointer to the IDataObject interface and start to call
members to set or get data from the object.

The Storage Server

The storage server implements objects called storage objects. These play the role of the aggregator and
they each create an instance of a data object for aggregation. I implemented the storage server as a local
server (.exe) because I wanted to show two ways of implementing COM objects, within an in-process
server and a local server.

When you're writing your own servers, you might be faced with the decision of determining where to
place your code. Do you place it in an in-process server or in a local server? There are several factors that
you'll have to consider before making that decision. For example, does your server ever have to run as a
stand-alone application (in which case, it has to be a local server), or will it always run on behalf of a
client (in which case, you can make it an in-process server). In-process servers execute and communicate
faster with clients because they need no marshaling support, but, if you have to write the server as a local
server, you'll have to provide the marshaling support yourself (which is not the easiest or the most
interesting thing to do).

This server can be registered using a registration file or by running the local server briefly to allow it to
register itself. Note that if you choose to run the server, MFC adds an entry to the registry that causes the
server to have an in-process handler and this entry causes problems later when the client attempts to
create an instance of the server. Therefore, you should remove the InprocHandler32 entry from the
registry for the server. I'd choose to save myself the headaches and use the registration file. The
registration file for the storage server is called Storserv.reg, and here's what it looks like:

REGEDIT4
[HKEY_CLASSES_ROOT\CLSID\{246135C9-67F6-11CF-B337-444553540000}]
@="Storage Object Server"
[HKEY_CLASSES_ROOT\CLSID\{246135C9-67F6-11CF-B337-444553540000}\LocalServer32]
@="c:\\msdev\\projects\\aggregation\\storserv\\debug\\storserv.exe"
[HKEY_CLASSES_ROOT\CLSID\{246135C9-67F6-11CF-B337-444553540000}\ProgID]
@="STORSERV.STORAGEOBJ"
[HKEY_CLASSES_ROOT\STORSERV.STORAGEOBJ\CLSID]
@="{246135C9-67F6-11CF-B337-444553540000}"

A storage object implements the IPersistStorage interface (which will be discussed in greater detail
later in this chapter). It also creates an aggregate object from the data server for the sole purpose of
exposing the data object's interfaces as if they were implemented by the storage object. When a client
application creates a storage object, the application can also ask for an interface pointer for the
IDataObject interface. Even though the storage object doesn't implement the interface, it can safely
return it since it acts as the aggregator to an object that does implement the IDataObject interface.

How did I manage this wizardry? Easy—I used MFC's macros and classes to my advantage, to implement
and expose the IPersistStorage interface. First of all, I declared a data member, m_lpAggregate, in the
class which would hold the inner IUnknown pointer returned from the aggregate's class factory when the
object is initially created. I also knew that I would be calling members of the IDataObject interface when
the storage object is told to load or save its data via the IPersistStorage interface. I declared a data
member to hold on to the IDataObject pointer which is immediately retrieved from the data object once
it's created and its IUnknown pointer has been received.

Here's an extract of the class definition for the data object:

class CStorageServObj : public CCmdTarget
{
// .
// . Other pieces of code are not shown here for simplicity.
// .

// Overrides
public:
 virtual void OnFinalRelease();
 BOOL OnCreateAggregates();
// Implementation
protected:
 LPUNKNOWN m_lpAggregate;
 LPDATAOBJECT m_lpDataObject;
// .
// . More code
// .
};

Note that the members are initialized to NULL in the class's constructor to prevent premature usage of the
m_lpAggregate data member within MFC.

To make MFC aware that there's an aggregate object whose QueryInterface() should be called for any
interface request, not implemented within the storage object, I used an INTERFACE_AGGREGATE() macro
within the BEGIN_INTERFACE_MAP() and END_INTERFACE_MAP() macros in the implementation file:

BEGIN_INTERFACE_MAP(CStorageServObj, CCmdTarget)
 .
 . Other Interface entries
 .
 INTERFACE_AGGREGATE(CStorageServObj, m_lpAggregate)
END_INTERFACE_MAP()

The next thing is to provide the override for the CCmdTarget::OnCreateAggregates() function where I
create the aggregate and retrieve its IDataObject interface:

BOOL CStorageServObj::OnCreateAggregates()
{
 HRESULT hr;
 hr = ::CoCreateInstance(CLSID_DataObject, GetControllingUnknown(),
 CLSCTX_INPROC_SERVER, IID_IUnknown, (LPVOID*)&m_lpAggregate);
 hr = m_lpAggregate->QueryInterface(IID_IDataObject,
 (LPVOID*)&m_lpDataObject);
 m_dwRef--;
 return TRUE;
}

By this point, you should be familiar with the elements of the CoCreateInstance() call. To let the
aggregate know of its aggregator, the storage object must pass its outer IUnknown pointer to
CoCreateInstance(). As I mentioned earlier in the chapter, this is easily done by calling
CCmdTarget::GetControllingUnknown().

The reason for decreasing the reference count of the aggregator has to do with the QueryInterface() call
to the data object's inner unknown. When the storage object calls the aggregate's QueryInterface()
asking for the IDataObject interface, it will delegate its AddRef() (which occurs if the interface is found)
to the aggregator (which is the storage object). This will happen even though the aggregator is calling the
inner unknown. As a result, we need to make sure that we reduce the reference count by one to make up
for the extra count on storage object. If we don't, the object will live forever.

Finally, we have one more function to discuss: OnFinalRelease(). In the data server, this function was

no big deal because all it did was call the base class' implementation, which simply called delete on the
object's this pointer. However, in the storage server, this function plays more of a role. Here is the
implementation:

void CStorageServObj::OnFinalRelease()
{
 // When the last reference for an object is released
 // OnFinalRelease is called. The base class will automatically
 // delete the object.
 // Before calling the IDataObject::Release(), we need to pump up our
 // own count, since the aggregate will delegate a Release() to us.
 // We need to pump by two, because if we added only one, we'd end
 // in this function again, and again, and again. Well, you get
 // the idea.
 m_dwRef += 2;
 // Release the interface and set the pointer to NULL.
 RELEASE_INTERFACE(m_lpDataObject);
 RELEASE_INTERFACE(m_lpAggregate);
 // .
 // . Other code here
 // .
 CCmdTarget::OnFinalRelease();
}

OnFinalRelease() is called when the reference count of the object has reached zero. Within the
implementation of OnFinalRelease(), I'd like to release the pointers to the inner IUnknown and the
IDataObject interfaces of the aggregate. The problem is that the aggregate will delegate its
IDataObject::Release() call to its outer unknown, which is the aggregator's IUnknown implementation,
causing OnFinalRelease() to be called over and over and over (well, you get the point, I hope).

We can't avoid having the aggregator's Release() function called, but we can prevent the infinite calls to
OnFinalRelease() by increasing the reference count back up to two. The reason I set it to two, and not to
one is because if we only set it to one, the reference count would be decreased to zero again, causing the
OnFinalRelease() function to be called as well.

Although the storage object's purpose is to provide an IPersistStorage implementation, the discussion
of this interface is deferred until later in this chapter (see the section on Structured Storage and
Compound Files).

The Client
The client plays the easiest role of all, simply using the services of the two servers. It never knows that it's
communicating with two servers. It creates an instance of a COM class it thinks supports three interfaces
(IUnknown, IDataObject and IPersistStorage) by calling CoCreateInstance() and asking for an
instance of CLSID_StorageObject:

HRESULT hr = ::CoCreateInstance(
 CLSID_StorageObject, // Class identifier
 NULL, // We aren't creating an aggregate
 CLSCTX_LOCAL_SERVER, // Context for running executable code
 IID_IUnknown, // Ask for IUnknown
 (LPVOID*)&m_lpUnknown); // Store interface pointer here.

Once the first interface pointer is retrieved, the client can then ask for IDataObject or IPersistStorage.

The following is a description of the steps that occur in order to obtain the appropriate interface pointer.

Achieving an IPersistStorage from the initial IUnknown:
1. The client calls QueryInterface() asking for the IPersistStorage interface on the

IUnknown pointer it obtained from CoCreateInstance().
2. The aggregator checks its interface map for a match and finds it.
3. The client receives the IPersistStorage interface from the storage object (which is the

object it originally created).

Achieving an IDataObject from the initial IUnknown:
1. The client calls QueryInterface(), asking for the IDataObject interface on the IUnknown

pointer it obtained from CoCreateInstance().
2. The aggregator checks its interface map for a match and doesn't find it.
3. Since the storage object (which is also the aggregator) doesn't implement IDataObject, MFC

next checks the aggregate in the map and calls its QueryInterface() function.
4. The aggregate checks its own interface map and finds the interface to return.
5. The aggregate then calls the AddRef() function of its controlling unknown (on the

aggregator), increasing the reference count in the storage object, not the data object.
6. The client receives the IDataObject interface.

Achieving an IPersistStorage from the IDataObject:
1. The client calls QueryInterface() on the IDataObject pointer asking for the

IPersistStorage interface.
2. Since the IDataObject interface is implemented by the data object (which is the aggregate),

the function will delegate to the outer unknown (the IUnknown of the aggregator).
3. The QueryInterface() call will end up in the storage object's controlling unknown where it

will find the interface in the interface map.
4. The client receives the IPersistStorage interface from the storage object (even though the

QueryInterface() was called on the IDataObject interface which lives in the data object).

Achieving an IDataObject from the IPersistStorage:
1. The client calls QueryInterface() on the IPersistStorage pointer asking for the

IDataObject interface.
2. The storage object checks its interface map for a match and doesn't find it.
3. Since the storage object (which is also the aggregator) doesn't implement IDataObject, MFC

next checks the aggregate in the map and calls its QueryInterface() function.
4. The aggregate checks its message map and finds the interface to return.
5. The aggregate then calls the AddRef() function of its controlling unknown (on the

aggregator). Therefore, the reference count is incremented in the storage object, not the data
object.

6. The client receives the IDataObject interface on the data object (which is the aggregate).

There's not much more to this fascinating story except for the actual details concerning the usage and
implementation of IDataObject, IPersistStorage, and compound documents. We'll come back to these
details in the sections to follow.

Structured Storage and Compound Files
There is an OLE technology, known as Structured Storage, which is used to persistently save objects
and data to a file with a hierarchical structure much like that of your file system. This technology uses a
system of storages and streams. Storages are comparable to the directories of a file system; they can hold
substorages and streams of data. Streams are comparable to the files of your file system; they can hold
data, with the structure of that data determined by the application. Here you can see this 'file system
within a file' concept:

The primary implementation of structured storage (provided by Microsoft) is called Compound Files.
The idea is to replicate the structure of a file system within a single file. Note that Compound Files is just
one possible implementation of structured storage. You could simply implement the necessary interfaces
yourself to provide your own implementation of structured storage.

The use of Compound Files is most widely associated with OLE Documents. It's ideal since it allows each
part of a compound document made up of linked or embedded objects to store itself in a single file. The
document's container passes each of the embedded or linked objects a storage in the file in which to store
itself via an interface called IPersistStorage.

If Compound Files only allowed the structured storage of information in a single file, it would be pretty
good, but, in fact, it does much more than that, which makes it pretty awesome. First of all, it allows
incremental saving of data (which increases performance), it allows several applications to share the same
files (for both reading and writing), and it allows buffering of data (or transaction support). With
transaction support, we could write several changes to a buffer which are not actually written to disk until
we commit the changes.

We'll discuss these topics a bit further in this section, but first we'll discuss how we open and access a
compound file. We'll then take a look at the interfaces used for dealing with structured storage and
compound files. Finally, we'll discuss the interfaces that we can implement in our component objects to
make them able to save themselves to a storage.

Using Structured Storage
You can create or open a compound file by using the OLE API functions StgCreateDocFile() and
StgOpenStorage() respectively. There's also a function, called StgIsStorageFile(), which allows you
to determine whether a file is in fact a compound file before you open it as one.

When you create or open a compound file, the system gives you back a pointer to an interface, called
IStorage. IStorage contains the necessary methods for accessing or creating other substorages or
streams.

Streams use an interface called IStream that allows you to read or write data to and from a stream. With
all of this in mind, you can start to see how the embedded OLE objects in a compound document save
themselves. The container simply passes an IStorage interface pointer to the objects and allows them to
do their work inside of the storages.

The topmost storage is known as the root storage and it allows you to access another interface on it,
known as the IRootStorage interface. This interface's only purpose is to allow you to switch the
underlying file to another file in your file system. The contents of the storage object, and everything under
it, are simply copied to the newly named file. The filename can't already exist. This is a great feature to
use under low-memory conditions where no memory can be used to save any changes. Sometimes, when
you attempt to save the data for a stream, you can get a low memory error. This is the perfect time to
make use of the IRootStorage interface.

When you use structured storage, you'll find there's an interface which IStorage and IStream make use
of to communicate with the underlying storage facility (whether it's a disk files, internal memory, or a
database). This interface is called ILockBytes, and is an implementation of a byte array which treats data
as a series of bytes. This interface is used primarily by the root storage to abstract the management of the
underlying storage.

IStream and COleStreamFile
If you're like me and write most of your code using MFC, you've certainly dealt with some of MFC's file
I/O classes, such as CFile, CArchive, or CMemFile. If you've already written some MFC code that uses
regular files and performs serialization from MFC based objects, you'll want to know more about a class
named COleStreamFile which derives from CFile. COleStreamFile has a member to hold an IStream
pointer and allows you to act upon the associated stream as if it was a file. This means that you can

replace the use of the CFile objects with COleStreamFile objects and continue to use the rest of the code
exactly as it stands.

This is the route that MFC takes with its implementation of compound documents. The COleDocument
class derives from CDocument and replaces the use of CFile objects with COleStreamFile objects. If you
turn your current application into an OLE aware application, it makes it very easy to deal with compound
files, since you can leave your current implementation of the Serialize() member function intact.

Microsoft's Implementation
Microsoft provides two implementations of structured storage; one for disk files and one for memory. The
memory implementation allows you to create compound files in memory and save them to anywhere you
like.

When you're using structured storage in memory you can make the embedded component objects think

that they're talking to disk-based files when they're really talking to RAM. You can do this by using
several OLE API functions, such as CreateILockBytesOnHGlobal(),
StgCreateDocfileOnILockBytes() and StgOpenStorageOnILockBytes(). Together, these functions
allow you to create an ILockBytes pointer on some global memory, create a compound file on the
ILockBytes pointer (which gives you back an IStorage pointer) and continue to use the IStorage
pointer, just as you would any other IStorage pointer, so you can create or access other substorages or
streams. We'll make use of this in the next chapter, where you'll see how to save embedded objects to a
database.

The Persistent Object
When you share data between two applications, there are times when you might know the structure of an
object. If you tell a server application to give you the data, you can deal with it accordingly, since you
know how the data is arranged. This is known as structured data.

However, there are other times when you might not know how the data is arranged, but still need to save
or load an object. Having OLE objects embedded in a compound document is just one example of this.
How do you do this if you don't know how the data is structured? OLE solves the problem by defining a
protocol along with a set of interfaces that allow an object to save or load itself.

This support is provided by the IPersistxxx interfaces, where xxx stands for File, Storage or Stream.
If an object supports one of these interfaces, you know that you can pass the object a file, storage or
stream respectively and ask it to save itself to it. The IPersistFile interface allows an object to save its
data to a file in your file system. The IPersistStorage allows an object to create streams within a given
storage and save its data however it sees fit. Finally, the IPersistStream interface allows an object to
save its data to a given stream.

For example, the IPersistStorage interface must be implemented by content objects embedded into a
compound document if they are to be saved in a compound file provided by the container.

In the earlier example that demonstrated aggregation, involving the client and the two servers, we also
made use of structured storage and compound files in a way that is different from the usual
implementation that MFC provides. The current MFC implementation handles compound files for OLE
embedding documents and servers, but in the example, all I wanted to do was get the data from the data
server to a compound file and back again. In this section, you'll see how I did it.

The Client Implementation
The client application provides a compound file and creates a storage that the storage object could use to
save the data however it sees fit. Because the client application uses the MDI model, a document in the
client application can be created in one of two ways: the user can choose File/Open... or File/New from the
menu. When a new document is created, the constructor creates a COM instance of
CLSID_StorageObject. This object implements IPersistStorage, an interface that allows a client to tell
the object to save itself to a storage the best way it knows how.

The client provides the object with a pointer to a storage created in a compound file. When the client
creates or opens any storages, it's given a pointer to an IStorage interface. The client can then call one of
two functions in the object's IPersistStorage interface and pass it the IStorage pointer. InitNew() is
called if the client is initializing the object from scratch. Load() is called when the client wants to
initialize the object from data that was saved during a previous session.

Persistent Object Initialization
Since a storage object is always available for every document created, I needed to initialize the storage
object as soon as it had been created (passing it the IStorage object). There are two places to handle the
initialization process. The first is OnNewDocument(), which is called if the user chooses to create a new
document. The second is OnOpenDocument(), which is called when the user chooses to open an existing
document file. This is what the OnNewDocument() function looks like:

BOOL CClientDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;
 LPSTORAGE lpStorage;
 LPPERSISTSTORAGE lpPersistStorage;
 HRESULT hr;
 hr = m_lpUnknown->QueryInterface(IID_IPersistStorage,
 (LPVOID*)&lpPersistStorage);
 if (FAILED(hr))
 return FALSE;
 hr = StgCreateDocfile(NULL, STGM_DIRECT | STGM_READWRITE
 | STGM_CREATE | STGM_DELETEONRELEASE | STGM_SHARE_EXCLUSIVE,
 0, &lpStorage);
 if (FAILED(hr))
 {
 RELEASE_INTERFACE(lpPersistStorage);
 return FALSE;
 }
 m_lpStorage = lpStorage;
 hr = lpPersistStorage->InitNew(lpStorage);
 RELEASE_INTERFACE(lpPersistStorage);
 if (FAILED(hr))
 return FALSE;
 return TRUE;
}

The function begins its work by asking the storage object for its IPersistStorage interface (which will
receive an IStorage pointer briefly after the storage has been created). It then creates a compound file on
the file system, using the StgCreateDocfile() OLE API function. Notice that we don't pass it a file
name. That's because at this point, we don't have a file name. The document title bar probably contains
something like untitled or document1 because the user hasn't saved the document yet, so we need to create
the compound file with a temporary name. OLE can do this for us if we pass it NULL for the file name.

The second thing to notice about the way the file is created is a flag named STGM_DELETEONRELEASE. This
flag allows OLE to delete the file as soon as the IStorage pointer is released. This works out great
because, when the user chooses to save the file for the first time, we'll receive a path name in the
OnSaveDocument() function. We can then use the path name to create a new compound file, copy the

content of the original temporary file into the new files and release the original temporary file (which
causes the file to be deleted).

The only unresolved matter is, how do we know in OnSaveDocument() that we should create a new
document and copy the data to the new document, as opposed to simply saving a document to the same
file obtained when the file was opened via File/Open... That's easy. We keep some type of flag around that
we can use to determine the outcome. I created a data member to keep the path name around when
OnOpenDocument() is called. However, since it's initialized to NULL in the constructor, I can compare the
cached path name against the passed in path name in OnSaveDocument() to determine whether to save the
file to a new file or the existing one. The same technique works for a File/Save As... operation, because the
path names will be different then too.

When the user chooses File/Open..., the OnOpenDocument() function is called. Here's my code for this
function:

BOOL CClientDoc::OnOpenDocument(LPCTSTR lpszPathName)
{
 USES_CONVERSION;

 if (!CDocument::OnOpenDocument(lpszPathName))
 return FALSE;

 // Save name for comparing later in OnSaveDocument.
 m_strPathName = lpszPathName;

 LPSTORAGE lpStorage;
 LPPERSISTSTORAGE lpPersistStorage;
 HRESULT hr;
 hr = m_lpUnknown->QueryInterface(IID_IPersistStorage,
 (LPVOID*)&lpPersistStorage);
 if (FAILED(hr))
 return FALSE;
 hr = StgOpenStorage(T2OLE(lpszPathName), NULL, STGM_DIRECT
 | STGM_READWRITE | STGM_SHARE_EXCLUSIVE, NULL, 0, &lpStorage);
 if (FAILED(hr))
 {
 RELEASE_INTERFACE(lpPersistStorage);
 return FALSE;
 }
 m_lpStorage = lpStorage;
 hr = lpPersistStorage->Load(lpStorage);
 RELEASE_INTERFACE(lpPersistStorage);
 if (FAILED(hr))
 return FALSE;
 return TRUE;
}

After gathering the IPersistStorage pointer from the storage object, I open the compound file and get
an IStorage pointer in return. I then take that storage pointer and pass it to the persistent interface by
calling its Load() function. Note that you can only call Load() or InitNew() once. If you call one of
these functions, you're not allowed to call the other.

Saving a Persistent Object
If the user wants to manipulate the data across sessions, they'll have to choose File/Save or File/Save As...,

which will result in a call to a function named OnSaveDocument(). I coded the function as follows:

BOOL CClientDoc::OnSaveDocument(LPCTSTR lpszPathName)
{
 USES_CONVERSION;

 LPSTORAGE lpStorage;
 LPPERSISTSTORAGE lpPersistStorage;
 HRESULT hr;
 BOOL bSameAsLoad;
 hr = m_lpUnknown->QueryInterface(IID_IPersistStorage,
 (LPVOID*)&lpPersistStorage);
 if (FAILED(hr))
 return FALSE;
 if (m_strPathName != lpszPathName) // Do we have a SaveAs case.
 {
 hr = StgCreateDocfile(T2OLE(lpszPathName), STGM_DIRECT
 | STGM_READWRITE | STGM_CREATE | STGM_SHARE_EXCLUSIVE
 , 0, &lpStorage);
 if (FAILED(hr))
 {
 RELEASE_INTERFACE(lpPersistStorage);
 return FALSE;
 }
 m_lpStorage->Release();
 m_lpStorage = lpStorage;
 bSameAsLoad = FALSE;
 m_strPathName = lpszPathName;
 }
 else
 bSameAsLoad = TRUE;

 hr = lpPersistStorage->Save(m_lpStorage, bSameAsLoad);
 if (SUCCEEDED(hr))
 {
 hr = lpPersistStorage->SaveCompleted(bSameAsLoad ? NULL
 : m_lpStorage);
 }
 RELEASE_INTERFACE(lpPersistStorage);
 if (FAILED(hr))
 return FALSE;
 SetModifiedFlag(FALSE);
 return TRUE;
}

As usual, I get the IPersistStorage interface from the object. The interface pointer will be used when
it's time to tell the object to save itself to the provided storage. Next, I compare the two path names and, if
they don't match, I need to create a new compound file, copy the contents from the original file to the new
file and close the old one. Either way, I need to tell the object whether it's saving itself to the original
storage that was passed to it in OnNewDocument() or OnLoadDocument().

When an object's IPersistStorage::Save() function returns, the object is not allowed to write any
incremental saves it might have otherwise performed until the IPersistStorage::SaveCompleted()
function is called. The reason for this is that the object might have just saved itself to a different storage
when Save() was called. If this is the case, the object is not allowed to hold on to the storage for
incremental saves until SaveCompleted() is called. At that point, the object has the opportunity to release
the old storage it was holding on to and cache the new storage that it's being passed.

But why do we have to call two functions to perform a save instead of simply calling one? Remember that
I mentioned that compound files support transactions. A container application might save its data
incrementally by calling all of the objects' IPersistStorage::Save() functions. Once done, it calls
IStorage::Commit() on the storages used by the objects. Finally, it would then call the objects'
IPersistStorage::SaveCompleted() to tell the them that the operation has been completed.

Now, let's say that the application is performing incremental saves based on a timer (say, every five
minutes). The user might change their mind and wish to revert the changes. If the application calls
IPersistStorage::Save() and then calls IPersistStorage::SaveComplete() with no call to
IStorage::Commit(), the application can save the data to a buffer without committing it, until the user is
ready to commit the data. (We'll discuss the code for IPersistStorage::Save() and
IPersistStorage::SaveCompleted() in the next section.)

The Storage Server Implementation
It's the storage object which implements the IPersistStorage interface. The implementation I provided
is fully featured and makes use of the aggregate data object to get and set the data seen through the data
object's dialog box and the client's view.

To safely get back all of the information to fill the dialog box provided by the data object (and the view
provided by the client), the storage object needs to save three pieces of information: the amount of
memory it will need to allocate for the data (when it's told to reload the data in later sessions), the data
itself and information about the type of data being stored in the storage provided.

The Storage Object's Constructor
The first thing I did in the header file was to define the interface that the COM object has to implement
with the following code:

 BEGIN_INTERFACE_PART(PersistStorage, IPersistStorage)
 STDMETHODIMP GetClassID(LPCLSID); // Defined in IPersist
 STDMETHODIMP IsDirty(void); // Members of IPersistStorage
 STDMETHODIMP InitNew(LPSTORAGE);
 STDMETHODIMP Load(LPSTORAGE);
 STDMETHODIMP Save(LPSTORAGE, BOOL);
 STDMETHODIMP SaveCompleted(LPSTORAGE);
 STDMETHODIMP HandsOffStorage(void);
 END_INTERFACE_PART(PersistStorage)

Once the definition has been created, the implementation must be provided. Let's start with the members I
initialized in the constructor:

CStorageServObj::CStorageServObj()
{
 EnableAggregation();
 AfxOleLockApp();
 // IPersistStorage Support
 m_szUserType = _T("Data/Storage Object");
 m_lpStorage = NULL;
 m_lpAggregate = NULL;
 m_lpDataObject = NULL;
 m_psState = PSSTATE_UNINIT;
}

OLE allows us to place a marker inside of a storage so that we can later check for this marker and
determine whether the storage does in fact have data we understand. This is done with an OLE API
function named WriteFmtUserTypeStg(). The function allows us to save vital information, such as the
clipboard format the data is in (this can also be a registered clipboard format), and a unique string that is
used to identify the type of object stored in the storage. For example, in our case, we're saving
information gathered from the data server, but it's the storage server that is performing the saving and
loading. Therefore, I named the type of object being stored, "Data/Storage Object". Later in this
section, you'll see when we call the WriteFmtUserTypeStg() and how we read the information back
using the ReadFmtUserTypeStg() API function.

I also needed to keep track of the state of the IPersistStorage implementation at all times, so I created a
member, called m_psState, to hold the current state. The states include:

PSSTATE_UNINIT, which means the object has not had its InitNew() or Load() function called
yet.
PSSTATE_SCRIBBLE, which means that one of its initialization functions has been called and the
object can feel free to incrementally save any information it sees fit.
PSSTATE_ZOMBIE, which this means that the object's Save() function has been called and the
object should stop performing incremental saves until its SaveCompleted() function is called.

PSSTATE_HANDSOFF, which means that the object's HandsOffStorage() function has been called
and it has released all of its streams and the primary storage it was holding on to. The object must
wait until its SaveCompleted() function is called again before it can hold onto a storage again.

As the client calls different functions of the IPersistStorage interface, the object will change states. All
of these values are defined as an enumeration in the file Ole2ext.h that is provided with the sample
code.

Initializing through IPersistStorage
When the client wants to initialize either a newly created storage object or an existing storage object
(obtained from a compound file), it will call InitNew() or Load(), respectively, using the object's
IPersistStorage interface.

The InitNew() function must create any streams it will need before its Save() function is called. This is
sort of a safety mechanism that almost guarantees that the object can save its data under low memory
conditions. If the streams are already there, all you have to do is copy the data from memory to the
streams and you're done. This assumes that the streams are pre-allocated with enough memory to hold the
data (and OLE does provide a means for doing this, using IStream::SetSize()). In my case, I didn't
know ahead of time how much memory I would need, since the strings could be any size, so I couldn't
pre-allocate the streams. That's life!

I also took the opportunity to call WriteFmtUserTypeStg() to save the object's information into the
storage (OLE does the work for you) and set the object's state to PS_SCRIBBLE. Here's what the code
looks like without error handling (you can find the complete code on the CD):

STDMETHODIMP CStorageServObj::XPersistStorage::InitNew(LPSTORAGE
 lpIStorage)
{
 USES_CONVERSION;
 METHOD_PROLOGUE(CStorageServObj, PersistStorage)
 pThis->m_SizeStream.CreateStream(lpIStorage, _T("SIZE"));
 pThis->m_ContentsStream.CreateStream(lpIStorage, _T("CONTENTS"));

 WriteFmtUserTypeStg(lpIStorage, CF_TEXT, T2OLE(pThis->m_szUserType));
 lpIStorage->AddRef();
 pThis->m_lpStorage = lpIStorage;
 pThis->m_psState = PSSTATE_SCRIBBLE;
 return NOERROR;
}

The Load() function has to open the existing streams within the provided storage, load the data from the
streams and pass the data to the data object (which is aggregated by the storage object, as we saw earlier
in the chapter). The following function contains the code for the Load() function with the exception of
the error checking code and the transferring of data to the data object using the IDataObject interface.
We'll discuss the IDataObject implementation when we cover Uniform Data Transfer. Here's what the
Load() function looks like:

STDMETHODIMP CStorageServObj::XPersistStorage::Load(LPSTORAGE lpIStorage)
{
 METHOD_PROLOGUE(CStorageServObj, PersistStorage)
 HGLOBAL hData;

 LPTSTR lpData;
 ULONG cb;
 pThis->m_SizeStream.OpenStream(lpIStorage, _T("SIZE"));
 pThis->m_ContentsStream.OpenStream(lpIStorage, _T("CONTENTS"));

 pThis->m_SizeStream.SeekToBegin();
 pThis->m_SizeStream.Read(&cb, sizeof(ULONG));
 hData = GlobalAlloc(GMEM_SHARE|GMEM_MOVEABLE, cb);
 lpData = (LPTSTR)GlobalLock(hData);
 pThis->m_ContentsStream.SeekToBegin();
 pThis->m_ContentsStream.Read(lpData, cb);
 GlobalUnlock(hData);
 pThis->m_lpStorage = lpIStorage;
 pThis->m_psState = PSSTATE_SCRIBBLE;
 lpIStorage->AddRef();
 // .
 // . Code for transferring data goes here.
 // .
 return NOERROR;
}

Saving through IPersistStorage
The OLE specification states that when a client saves an object, it must tell the object if the object is
being saved to the same storage as the one it was loaded from or if it's being saved to a brand new storage.

The object would obviously have to save itself to a new storage if the user chose the File/Save As...
command from the menu, or if the user originally created a new document using the File/New... choice and
is now saving the document for the first time. Therefore, the object would have to create the necessary
streams on the new storage before it can save its data. However, the object doesn't release its original
storage until the SaveCompleted() function is called, since the object might very well be instructed to
continue to use the same storage the next time Save() is called. In other words, the object doesn't always
release the storage. The object might be told to save itself to a new storage when the Save() function is
called, and then later it might be told to continue using the original storage when the SaveCompleted()
function is called.

The object does not have to release the storage or streams at all, if it's saving itself to the same storage
that it originally initialized itself from (even when SaveCompleted() is called).

The client has to call Save() before it calls SaveCompleted(). Inside of Save(), the object checks for a
different storage and acts appropriately. If it's a new storage, it creates the necessary streams, saves its
data and closes the old streams down, while creating pointers to new streams in the new storage. If it's the
original storage, it simply saves its data and returns. In either case, it has to set its state to PS_ZOMBIE
before returning back to the caller. Here's what the Save() function looks like without error handling:

STDMETHODIMP CStorageServObj::XPersistStorage::Save(LPSTORAGE lpIStorage,
 BOOL bSameAsLoad)
{
 USES_CONVERSION;
 METHOD_PROLOGUE(CStorageServObj, PersistStorage)
 ULONG cb;
 HRESULT hr;

 LPTSTR lpData;
 // These variables allow generic usage of streams.
 COleStreamFile* pSizeStream;
 COleStreamFile* pContentsStream;
 // These variables will be used if bSameAsLoad == FALSE.
 COleStreamFile NewSizeStream;
 COleStreamFile NewContentsStream;

 if (bSameAsLoad)
 {
 // Assign to generic pointers.
 PSizeStream = &(pThis->m_SizeStream);
 pContentsStream = &(pThis->m_ContentsStream);

 // Seek to beginning for writing.
 pSizeStream->SeekToBegin();
 pContentsStream->SeekToBegin();
 }
 else
 {
 // Create new streams in new storage.
 NewSizeStream.CreateStream(lpIStorage, _T("SIZE"));
 NewContentsStream.CreateStream(lpIStorage, _T("CONTENTS"));
 // Assign to generic pointers.
 pSizeStream = &NewSizeStream;
 pContentsStream = &NewContentsStream;

 WriteFmtUserTypeStg(lpIStorage, CF_TEXT,
 T2OLE(pThis->m_szUserType));
 }
 // .
 // . Code for obtaining data from data object goes here.
 // .
 // Lock the data and write the size and data to the streams.
 cb = GlobalSize(stm.hGlobal);
 lpData = (LPTSTR)GlobalLock(stm.hGlobal);
 pSizeStream->Write((LPVOID)&cb, sizeof(ULONG));
 pContentsStream->Write((LPVOID)lpData, cb);
 // Release the global data returned by the aggregate.
 GlobalUnlock(stm.hGlobal);
 ReleaseStgMedium(&stm);
 // Must Release the new streams on exit of function.
 if (!bSameAsLoad)
 {
 NewSizeStream.Close();
 NewContentsStream.Close();
 }

 // Set access mode to ZOMBIE.
 pThis->m_psState = PSSTATE_ZOMBIE;
 return NOERROR;
}

When the client calls SaveCompleted(), the OLE specification states that the client needs to pass in a
storage only if the object saved itself to a different storage than the one it was originally initialized from.
If this is the case, the object must release the streams and the storage it's holding on to and should hold
onto the new storage passed to SaveCompleted(). It should then reopen its streams appropriately. Finally,
the object has to reset its state to PS_SCRIBBLE. This is exactly what I did in my implementation of
SaveCompleted():

STDMETHODIMP CStorageServObj::XPersistStorage::SaveCompleted(LPSTORAGE
 lpIStorage)
{
 METHOD_PROLOGUE(CStorageServObj, PersistStorage)
 // Did we write to a new storage?
 if (NULL != lpIStorage)
 {
 // Stop all operations on current streams IMMEDIATELY!
 pThis->m_SizeStream.Abort();
 pThis->m_ContentsStream.Abort();

 // Open streams in new storage.
 pThis->m_SizeStream.OpenStream(lpIStorage, _T("SIZE"));
 pThis->m_ContentsStream.OpenStream(lpIStorage, _T("CONTENTS"));

 // Reassign storage.
 RELEASE_INTERFACE(pThis->m_lpStorage);
 lpIStorage->AddRef();
 pThis->m_lpStorage = lpIStorage;
 }
 // Change state back to scribble.
 pThis->m_psState = PSSTATE_SCRIBBLE;
 return NOERROR;
}

The last function to look at is HandsOffStorage(). After a client calls Save(), it might want to guarantee
that the object will not write any data to its storage. The client can call HandsOffStorage() and, at that
point, the object must release all of its pointers to any streams and the storage. The client might later call
SaveCompleted() to give control of a storage back to the object. This function is very easy to code.
Here's my implementation:

STDMETHODIMP CStorageServObj::XPersistStorage::HandsOffStorage(void)
{
 METHOD_PROLOGUE(CStorageServObj, PersistStorage)
 // Can only be in scribble or zombie mode otherwise there must
 // be a bug in the client
 if (PSSTATE_UNINIT == pThis->m_psState
 || PSSTATE_HANDSOFF == pThis->m_psState)
 return E_UNEXPECTED;
 // Shut down streams.
 pThis->m_SizeStream.Close();
 pThis->m_ContentsStream.Close();
 RELEASE_INTERFACE(pThis->m_lpStorage);
 pThis->m_psState = PSSTATE_HANDSOFF;
 return NOERROR;
}

The other functions in the IPersistStorage interface are trivial to code, so you shouldn't have a problem
understanding the code that I provided in my implementation.

Uniform Data Transfer
There might be times when an application exposes its data to another application in a structured manner.
In other words, both applications understand the format of the data. Since there are a number of ways in
which data might be exchanged between two applications (by drag-and-drop or via the clipboard, for
example), the underlying OLE technology that allows this transfer to take place is known as Uniform
Data Transfer.

Data objects exposed by servers implement an interface named IDataObject, which allows potential
clients to access or write data to and from the objects using uniform data transfer in a specified clipboard
format. In the case of embedded component objects, the data is usually never understood directly by the
containers (except for some intermediate clipboard formats such as CF_EMBEDDEDOBJECT). OLE however,
understands clipboard formats, such as CF_METAFILEPICT or CF_DIB, which OLE uses to get presentation
data from the objects.

In the aggregation example we've been looking at in this chapter, I implemented Uniform Data Transfer
(UDT) in the data server. This involved having the data server's objects include support for an interface
named IDataObject. The interface has several functions, of which two are necessary for transferring
information back and forth.

IDataObject::GetData() allows a caller to retrieve data in a specified format. If the server supports the
format, the data will be returned, otherwise an error is returned. The format is specified using a structure
named FORMATETC. In the old days, data was simply passed across applications using global memory. This
FORMATETC structure provides a more flexible way of asking for data, since it allows the caller to specify
the format the data should come back in, information about the device for which the data is to be rendered
(global memory, disk files, streams, or storages), the aspect of the data (whether it should be the complete
content, a portion, or an icon representation) and the type of medium that should be used for transferring
the data. The medium can be global memory, a file, a stream, a storage, a metafile picture, or a bitmap.
This is what the structure looks like:

typedef struct tagFORMATETC {
 CLIPFORMAT cfFormat;
 /* [unique] */ DVTARGETDEVICE __RPC_FAR *ptd;
 DWORD dwAspect;
 LONG lindex;
 DWORD tymed;
}FORMATETC;

When the client calls GetData(), it must provide a pointer to a STGMEDIUM variable. The data object will
then use this pointer to return the requested data:

typedef struct tagSTGMEDIUM {
 DWORD tymed;
 union {
 HBITMAP hBitmap;
 HMETAFILEPICT hMetaFilePict;
 HENHMETAFILE hEnhMetaFile;
 HGLOBAL hGlobal;
 LPOLESTR lpszFileName;
 IStream* pstm;
 IStorage* pstg;
 } u;
 IUnknown* pUnkForRelease;
}STGMEDIUM;

The first field determines the type of medium used for returning the data. The second field is a union of
the available types of medium, the data could possibly come back in. You can provide your own
registered clipboard format and return or get data in a format known only to the server and client.

The pUnkForRelease pointer is used in situations where the data returned to a client is being shared with
different applications and must not be freed until the last application has stopped using the data. When an
application no longer needs to use the data specified, it simply calls IUnknown::Release(), using the
pUnkForRelease pointer. The data is then freed when the reference count of the associated IUnknown
reaches zero.

In the client's view class, you'll notice that OnDraw() contains code similar to this:

STGMEDIUM stm;
FORMATETC fe;
fe.cfFormat = CF_BITMAP;
fe.ptd = NULL;
fe.dwAspect = DVASPECT_CONTENT;
fe.lindex = -1;
fe.tymed = TYMED_GDI;
pDataObject->GetData(&fe, &stm);

It initializes the FORMATETC structure, requesting for data to come back as a bitmap, and calls the
IDataObject::GetData() function. The storage server also contains similar code, which looks like this:

FORMATETC fe;
STGMEDIUM stm;
SETFORMATETC(fe, CF_TEXT, TYMED_HGLOBAL);
pThis->m_lpDataObject->GetData(&fe, &stm);

This time, I used a macro to initialize the FORMATETC structure. The storage object requests the data to
come back in the format of CF_TEXT using an HGLOBAL as the medium.

When the data server receives the GetData() call, it has to determine whether it supports the data format
being requested and return it using the stipulated medium. The following code is extracted from the data
object:

STDMETHODIMP CDataServObj::XDataObject::GetData(LPFORMATETC pFE,
 LPSTGMEDIUM pStm)
{
 METHOD_PROLOGUE(CDataServObj, DataObject)
 CDataServDlg* pDlg = &(pThis->m_DataServDlg);
 UINT uCF = pFE->cfFormat;
 // Check the aspects we support.
 if (!(DVASPECT_CONTENT & pFE->dwAspect))
 return DATA_E_FORMATETC;
 pStm->pUnkForRelease = NULL;
 // Go render the appropriate data for the format.
 switch (uCF)
 {
 case CF_METAFILEPICT:
 pStm->tymed = TYMED_MFPICT;
 return pDlg->RenderMetafilePict(&pStm->hGlobal);
 case CF_BITMAP:

 pStm->tymed = TYMED_GDI;
 return pDlg->RenderBitmap(&pStm->hGlobal);
 case CF_TEXT:
 pStm->tymed = TYMED_HGLOBAL;
 return pDlg->RenderNative(&pStm->hGlobal);
 }
 return DATA_E_FORMATETC;
}

Although we made use of UDT in the data server, storage server and the client for the simple purpose of
sharing data, there are other uses for UDT which allow us to share data in other ways. This is the next
topic of discussion.

Other Uses for UDT
Windows' multitasking ability means it's desirable to share data between applications. First came the
clipboard. The clipboard allows us to copy data from one application into a common place and then paste
the data to another application.

Next came DDE, which allowed us to share data with other applications programmatically. You could
request data from an application and establish links that acted as notifications of data changes.

Although these technologies have their advantages, they also inherited many disadvantages. For example,
the only way to pass a large bitmap around was to use global memory. There was no provision for passing
it via files on disk (which is where it will eventually end up anyway).

This is the reason Microsoft came up with UDT. Although UDT was originally created to support OLE
documents, it also plays a major role in clipboard transfers and drag-and-drop.

Using UDT with the Clipboard
Using OLE's support for the clipboard, applications can now place a pointer to an IDataObject interface
on the clipboard and the user can paste the object into another application. If one of the applications
doesn't support OLE's method of using the clipboard, they can still get back data in the expected format.
However, an application that understands and implements OLE clipboard support can extract the data
using the IDataObject interface. Providing that the object is capable of becoming an embedded object,
this allows the application to query the object for different formats and reactivate the server that originally
created it .

The non-OLE application has to communicate directly with the clipboard at all times. If the object
originally placed on the clipboard supports embedding, the server information is not attached to the data
pasted into the non-OLE application.

The application providing the object to be placed on the clipboard is known as the data source
application. It begins the process of placing the data on the clipboard by calling OleSetClipboard(),
passing it a pointer to the IDataObject interface. OleSetClipboard() calls AddRef() on the
IDataObject pointer it received. The source application can then release the object by calling its
IUnknown::Release() to free the application from any further responsibility for the object. At this point,
the OLE clipboard will be the only one holding a reference to the IDataObject.

Note that OLE uses a form of delayed rendering for the data offered by the object. This means that the

data is never placed on the clipboard until an application places a request to get a copy of the data from
the clipboard. If the source application needs to leave the data on the clipboard after the application has
been closed, it must call OleFlushClipboard() before closing down.

When OleSetClipboard() is called, OLE actually places a newly created object containing an
IDataObject interface on the clipboard. This allows it to hold on to the original object for other clipboard
requests. When a request comes in, OLE calls the original data object's GetData() function and copies
the data into the newly created object. It then sends the IDataObject pointer of the newly created object
to the destination application. If the destination application doesn't understand OLE, it gets a copy of the
actual data with no IDataObject support. When the created object is sent to an application, OLE creates
another one to place on the clipboard again.

Before OLE makes the data available to other applications, it first iterates through all of the clipboard
formats that the object supports and places them on the clipboard. If a client application requests the
current clipboard data in a particular format, OLE can check the available formats against the requested
one. The data will always be available via global memory as the medium. The good news is that OLE will
transfer the data upon request, back to its original storage medium when an OLE application gets the data
object from the clipboard.

When an application that implements OLE's support for the clipboard wants to paste data from the
clipboard, it calls OleGetClipboard(). OLE then sends the application the IDataObject sitting in the
clipboard.

If the data in the clipboard was placed there by an application that doesn't support OLE, the OLE-enabled
destination application will get back a synthesized IDataObject, which means that the object might not
contain accurate information about the creator of the object. This would make it difficult for the object's
server to become activated for updating the data.

Enough theory, let's find out how MFC makes all this easier.

Supporting the Clipboard Using MFC
MFC contains two classes that support transferring data objects via the clipboard. The first class,
COleDataSource, implements a COM object class with an implementation of the IDataObject interface.
The second class is called COleDataObject and simply provides a data member to hold a pointer to an
IDataObject interface obtained from the clipboard, or via a drag-and-drop operation, along with some
member functions to manipulate the contained IDataObject member.

The application that wishes to place data on the clipboard uses the COleDataSource class to do so. The
class has functions to cache the data and place it on the clipboard. When the source application is ready to
place the data on the clipboard, it will need to allocate memory for the data to place on the clipboard (by
calling GlobalAlloc() or something similar), create an instance of COleDataSource on the heap, cache
the data using one of the cache functions available and call COleDataSource::SetClipboard(). The
following code demonstrates this:

 HGLOBAL hGlobal = // Call some function which returns the data
 COleDataSource* pds = new COleDataSource;
 pds->CacheGlobalData(CF_TEXT, hGlobal);
 pds->SetClipboard();

On the destination side, the application that wants to get an IDataObject pointer from the clipboard will
need to create an instance of COleDataObject. It can then call its functions to attach to the clipboard and
get the data from the associated data object. The functions AttachClipboard() and GetGlobalData()
(or GetData(), which is another variant) will do the job:

COleDataObject dobj;
HGLOBAL hGlobal;
dobj->AttachClipboard();
hGlobal = dobj->GetGlobalData(CF_TEXT);

You can use these two classes to make your current applications OLE-aware and still continue to support
the clipboard with very little code on your part. The COleDataObject class even has support for querying
the object to find out whether the data can be returned in a format that your application can work with.
Check it out. You'll find that it'll be worth your time.

Supporting Drag-and-drop
Although sharing data using the clipboard is great, it does expect require the user to perform a number of
steps. They have to select the data in the source application, cut or copy the data to the clipboard, select
the destination application and, finally, paste the data into its client area.

Several applications have been using a home-brewed version of drag-and-drop within their windows for
some time now. The problem is that each implementation has always been different. Therefore, in order to
drag-and-drop between applications, a standard had to be developed.

This standard now lives in OLE as the Drag-and-drop technology. All that an application has to do is
support one of two interfaces, depending on whether it's acting as the source or the destination.

The first interface is called IDropSource and is implemented by the source application. It contains two
functions: QueryContinueDrag() and GiveFeedBack(). QueryContinueDrag() is used by OLE to
determine whether the drag-and-drop operation should continue or be canceled. GiveFeedBack() is called
continuously to set the mouse to the appropriate cursor. The mouse is changed, depending on the state of
the drag-and-drop operation. There are several states: DROPEFFECT_NONE, DROPEFFECT_MOVE,
DROPEFFECT_COPY, DROPEFFECT_LINK and DROPEFFECT_SCROLL.

The second interface is called IDropTarget and is implemented on the destination side. A window
wishing to receive drag-and-drop objects must be registered with OLE as a drop target. When the window
registers itself, it calls a function named RegisterDragDrop(), passing it two parameters. The first
parameter is the window handle and the second is a pointer to the IDropTarget interface implemented by
the target window. OLE keeps a map in memory (similar to the figure below) which maps the window
handle to the IDropTarget and calls the functions of the interface at different points, depending on what
the user is doing.

The IDropTarget interface contains four functions which must be implemented by the destination
application: DragEnter(), DragOver(), DragLeave() and Drop(). DragEnter() is called when the
mouse moves into the window associated with the drop target. Once the mouse is inside the window,
DragOver() is called for every move the mouse makes within the window. If the mouse exits the window,
DragLeave() is called. Finally, if the object is dropped within a registered target window, Drop() is
called.

When the source application is ready to initiate a drag-and-drop operation, it needs to create an object
which supports the IDataObject interface. Next, it must call DoDragDrop(), passing it the IDataObject
pointer, along with the IDropSource pointer implemented by the source application. The function will not
return until the drag-and-drop operation has been completed or canceled.

Supporting Drag-and-drop Using MFC
MFC contains two classes that wrap up the implementation of IDropSource and IDropTarget. These
classes are called COleDropSource and COleDropTarget respectively.

Initiating drag-and-drop operations in MFC involves using the COleDataSource class as we did for
supporting the clipboard. The difference is that we call COleDataSource::DoDragDrop() instead of
SetClipboard(). The following is an example of the code that the source application would have to
implement to begin a drag-and-drop operation:

 HGLOBAL hGlobal = // Call some function which returns the data
 COleDataSource ds;
 ds.CacheGlobalData(CF_TEXT, hGlobal);
 DROPEFFECT dropEffect = ds.DoDragDrop(DROPEFFECT_COPY |
 DROPEFFECT_MOVE, NULL, NULL);
 // Last two parameters would default to NULL if I didn't pass them.
 if ((dropEffect & DROPEFFECT_MOVE) == DROPEFFECT_MOVE)
 DeleteSelectedData(); // Call function to delete selected data

When the source application calls COleDataSource::DoDragDrop(), it has the option of passing a pointer
to a COleDropSource object as the final parameter. If you're happy with the current implementation of
IDropSource provided by MFC, you won't have to override the class or even create an instance of the
class. MFC will automatically create an instance inside of COleDataSource::DoDragDrop(). The default
implementation has enough functionality to perform a decent job for the drag-and-drop operation, so
unless you wish to display different cursors for it, you shouldn't need to override the class.

On the target side, the application must create an instance of the COleDropTarget class and pass it the
this pointer of the CWnd-derived class used for the target window. This is done by calling a function
named COleDropTarget::Register().

Internally, COleDropTarget::Register() calls RegisterDragDrop(), passing it the appropriate
information. The code to register the target should look like this:

class CDerivedView : public CScrollView
{
 // ...Other code
 COleDropTarget m_dropTarget;
 // ...Other code
};

class CDerivedView::OnCreate()
{
 m_dropTarget.Register(this);
}

If the window passed to Register() is a CView (or one of its derived classes), the drop target object will
attempt to call the view's functions with the same name as the target. In other words, when the target's
OnDragEnter() function is called, it will call the view's OnDragEnter() function. This allows you to
override one class instead of two. The view will receive an object of type COleDataObject with the
associated IDataObject pointer, contained within the object.

When the target application is ready to close down, it needs to call COleDropTarget::Revoke(). This
tells OLE to remove the entry from its map. If you don't call this function, OLE will continue to look for
it and really bad scary things might happen! Note that the source and target application can be the same,
allowing you to use drag-and-drop operations for moving objects between different windows of the
application, or even within the same window.

Once the target has been registered properly, the only thing left to do is override the appropriate members
in the view class and wait for someone to initiate a drag-and-drop operation. The following code shows
how the target view could handle the overrides:

DROPEFFECT CDerivedView::OnDragEnter(COleDataObject* pDataObject,
 DWORD dwKeyState, CPoint point)
{
 return OnDragOver(pDataObject, dwKeyState, point);
}
DROPEFFECT CDerivedView::OnDragOver(COleDataObject* pDataObject,
 DWORD dwKeyState, CPoint point)
{
 DROPEFFECT de;
 if ((dwKeyState & MK_CONTROL) == MK_CONTROL)
 de = DROPEFFECT_COPY;
 else
 de = DROPEFFECT_MOVE;

 return de;
}

Inside of OnDragEnter(), you can allocate any resources or initialize members before a drop is
performed. In the above code, I need to perform the same tasks as in OnDragOver(), so I just include the
code in one of the functions and call it from the other. All I did was to check if the control key is being
held so that when the IDropSource::GiveFeedBack() function is called in the source application, it will
receive the current state of the drag-and-drop operation. Basically, the drop source needs to know what
kind of drop would occur if the mouse was released at that point in time. The only one who can answer
that question is the target. For this reason, I send back an appropriate drop effect from the OnDragEnter()
and OnDragOver() functions.

The last thing to see is the handling of the OnDrop() function. This would, of course, look different for
your application because it really depends on what it intends to do with the COleDataObject:

BOOL CDerivedView::OnDrop(COleDataObject* pDataObject,
 DROPEFFECT dropEffect, CPoint point)
{
 CDerivedDoc* pDoc = GetDocument();
 HGLOBAL hGlobal = pDataObject->GetGlobalData(CF_TEXT);
 pDoc->PasteData(hGlobal); // Place data into document.
 pDoc->UpdateAllViews(NULL);
 return TRUE;
}

In the above example, I simply fetched the data from the COleDataObject and called a function in the
document to paste data into the document.

Summary
Once you know how to do it, implementing drag-and-drop operations is relatively simple. If you use
MFC, the task becomes even easier. Even if you don't use any other OLE functionality in your
application, clipboard support and drag-and-drop can add a lot of value to your application.

Now that you've seen some of the fundamental COM and OLE technologies, including aggregation,
structured storage and UDT, you'll be prepared for the next chapter where we look at some further uses of
OLE, particularly in the context of OLE document containers and servers.

OLE Containers and Servers
Combining multiple data formats in a single document has always been tricky, but it's something that
users have always tried to do. Since day one, Windows has allowed us to run multiple applications side-
by-side and, with the advent of the clipboard, users could cut and paste pieces of data from different
applications to form a whole, combining images and text into one document to produce a truly compound
document.

Although the flexibility that the clipboard offered was welcomed, there were some problems. For
example, let's say that you used your favorite painting application to create some pictures which will
eventually be pasted in your word processing application to complete a document. The document is
composed of its own data (the text you type in) and the pictures pasted into the document. But in what
form is the word processing application using the pictures and how does the application know how to
draw them?

When it gets the data from the clipboard, the word processing application has two choices. It can either
directly support the native format of the image (meaning the format that the painting application uses to
copy and paste its own data), or it can treat the data as one of the generic clipboard formats (such as a
metafile or device dependent bitmap). If the application chose the first choice, it has to be programmed to
understand the format for every single painting application in existence (and then some). Keep in mind
that I've only mentioned painting applications. If the application wants to support other kinds of
application, it would have to support the formats of those applications as well.

The second choice seems more reasonable, since we could treat data that the user has placed on the
clipboard in a very generic manner, but the data loses its roots when you do this. Once it's in a metafile or
bitmap format, there's no way to get it back to its original format for further editing. This brings us to the
third choice that applications have today: the OLE Documents technology.

OLE Documents allows an application to act as a container. Containers support the concept of an OLE
compound document by providing a page on which we can layout our content objects (or components as
we will often refer to them). The components consist of more than just the data of the other application;
they also contain information that links them back to the application that supports the data natively. The
application that creates the data natively and exposes it to other applications through the OLE Documents
interfaces is known as the component server.

In our example above, the painting application is our component server, and the word-processing
application is the container. The container allows the user to type in the text of the document (which is
what the word processing application does best), and then bring in pictures as components which can be
placed into the document in one of two ways, either linking or embedding.

An embedded object maintains its native data in the same compound file as the container application. A
linked object maintains its native data in a different file, but it stores a moniker in the container's
compound file, along with presentation data. The moniker names the data source and tells the
component where to locate the data when the user wants to edit it. The component uses the presentation
data in order to draw itself.

The component (or content object) is assigned a storage to use for saving its streams of data (we
discussed streams and storages in the last chapter). One of the component's streams will contain the
presentation data, which will be used when the component needs to be drawn. Here, you can see how
linked and embedded objects relate to a container:

In the beginning, OLE stood for Object Linking and Embedding, and really concentrated on the
technology now known as OLE Documents. Now that OLE covers a wider spectrum of technologies,
including OLE Controls and OLE Automation, its original meaning has been lost. It's just OLE.

There are several interfaces which the component must support so that it can be embedded into a
compound document. The figure below shows the interfaces which must be implemented by the
component object. In addition to these, the component also needs some interfaces to support drawing
itself and managing the presentation cache, but these interfaces are normally supplied by the OLE
libraries which provide a generic implementation.

You'll be familiar with the IDataObject and IPersistStorage interfaces from the last chapter, where we
saw them in the context of Uniform Data Transfer and Structured Storage. OLE Documents builds on
these foundations, so an understanding of that technology is crucial.

Thanks to these interfaces, containers can communicate with objects in a very generic manner. Even the
process of obtaining an object to begin with is done generically. There are many ways to obtain the
object; for example, drag-and-drop, via the clipboard, or from the Insert Object common dialog which uses
information stored in the registry to offer the user a selection of insertable components.

MFC Support
A large proportion of MFC's support for OLE relates to containers and servers. There are classes for
sending information back and forth, using Uniform Data Transfer, there are classes for Structured Storage
and Automation, but, without doubt, the biggest bed of code is for OLE Documents. It's a shame that a lot
of developers I speak to will tell me that they have no need for OLE Documents and end up using only
the OLE Automation and OLE control classes. I feel they haven't looked hard enough at the benefits of

OLE Documents, and by the time you've finished reading this chapter, I hope you'll start to see what I
mean.

During the course of the next few sections, I'll show you some interesting and useful ways to apply this
technology.

MFC has complete support for OLE embedding and linking documents, but, sometimes, the application
that we're writing might just not need everything that Microsoft has provided. In such a situation, you
definitely need an understanding of what's going on inside the classes, so that you can make an intelligent
decision as to whether you can simply inherit from a class and change certain functionality, or if you'll
need to come up with your own concoction from scratch.

A Full Server for OLE Documents
In the previous chapter, you learned about some of the technologies utilized by OLE Documents. Armed
with this knowledge, we can start to work with OLE document containers and servers, but one of our
primary tasks is to find a real use for this technology.

When I first started learning about the OLE technologies, I always asked myself, "This is great, but where
can I use it?" Now that I write about OLE and teach it to others, I'm often asked the same question.

A technology like OLE Documents can be easy to implement in applications like painting programs, word
processors, or spreadsheets, but when you're trying to implement it in a corporate environment,
supporting a database application, sometimes it's a little more difficult.

Having said that, though, I've recently started to see the light at the end of the tunnel. Users in a corporate
environment often have several applications that need to share a common source of data, stored on a
database server somewhere across a local area network. Programmers are often hired to provide a way to
retrieve the information and display or manipulate it. The average application must access a database
server, gather data from the server, present it to the user, allow the user to manipulate the data, and finally
save the data back to the server. If the user has to perform several different tasks, the chances are that they
will have to use several applications.

Having to add knowledge of the data source into each application makes them more complicated and also
accounts for the many client/server applications that never meet their deadlines.

The perfect solution would be to have a single application that contains the knowledge to access and
manipulate the data source. This server application would provide an interface to allow other applications
to use or contain the information provided by the server in their own documents. Furthermore, if this
server application uses OLE Documents technology, rather than a completely custom solution, it won't be
limited to use with custom containers; we could use any OLE container application (such as Word or
Excel) and still gather information from the database server via the OLE server application.

This would also make it very easy to replace the server application (perhaps with one that accesses the
data from a different source) and the container application(s) would have no knowledge that anything has
changed. This is component programming at its best.

For example, your users may want to type a letter using Microsoft Word and include all the names stored
in a customer database. Furthermore, if the address on the database changes, they'll want this change to be
reflected the next time that they print out the letter. We'll see exactly how we can create a server to
provide this functionality in the next section.

Adding OLE Server Support to an Existing
Application
Turning an existing database-aware application into an OLE server is easy, as you'll see in this section,
where I take an existing database application, written using MFC, and turn it into an OLE server. The
application uses the MFC ODBC (Open Database Connectivity) classes to communicate with an Access
database. Since I'm using ODBC, the underlying database could have been anything (provided I have an
ODBC driver for the database), including a LAN-based database such as SQL Server.

The application provides a user interface to a customer database with several customers. The user can
select a customer and view the associated order records by pressing the Orders button on the main screen.

Basically, I wanted to allow the application's data objects (the customer records) to be embedded into any
container application the user chooses (just as in the figure above). The user can then save the container's
document to a compound file for later use. If the user wants to change the embedded customer object,
they simply double-click on the customer object in the container's window, and the server application is

reopened with the appropriate record selected. The user can then change the record to another customer,
and the embedded object in the container reflects this change.

You can find the application I started with on the CD in the Acme directory. You can also find the
application I ended up with on the disc in AcmeSrv. Note that to use the examples, you should register
the database files as ODBC data sources. There are full instructions for this in the file AcmeSrv\
Instructions.txt.

Preparing the Application for OLE Support
The first thing I had to do was add the default OLE support to our non-OLE MFC application, starting
with the Stdafx.h file. Here, I needed to include the header file containing OLE functions and classes,
which is the Afxole.h file:

#include <afxole.h> // MFC OLE classes

All OLE applications must initialize the OLE DLLs at startup. You can do this from the top of
InitInstance() with one function call to AfxOleInit():

// Initialize OLE libraries
if (!AfxOleInit())
{
 AfxMessageBox(IDP_OLE_INIT_FAILED);
 return FALSE;
}

I also needed a class-factory; one that creates an instance of the document, view and frame window when
it's told to create an object. The class in MFC that will do this for us is COleTemplateServer. I first added
a COleTemplateServer member, m_server, to my CWinApp-derived class and then connected it to the
document template inside InitInstance():

 CSingleDocTemplate* pDocTemplate;
 pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CTestSrvDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CTestSrvView));
 pDocTemplate->SetServerInfo(IDR_SRVR_EMBEDDED);
 AddDocTemplate(pDocTemplate);
 // Connect the COleTemplateServer to the document template.
 // The COleTemplateServer creates new documents on behalf
 // of requesting OLE containers by using information
 // specified in the document template.
 m_server.ConnectTemplate(clsid, pDocTemplate, TRUE);

Notice the clsid value passed to the ConnectTemplate() function. Just like the other code above, this
value would usually be created in an application by AppWizard, but since I was adding OLE support to an
existing project, I had to add it myself using the Guidgen.exe application to generate a unique identifier.
The clsid, along with some other information, will need to be placed in the registry so that container
applications can use it to create instances of our object. This means that the Insert Object dialog, and
therefore the container applications, don't need to have any prior knowledge of our COM object.

When I call SetServerInfo(), this tells the framework that we're going to use different resources (such
as menus or icons) when the application is launched as a server (as opposed to being launched stand-
alone). IDR_SRVR_EMBEDDED identifies the resources. In my case, I provided a different menu (which we'll

see later in this section).

OLE servers written with MFC will expose the document template as the embeddable object, and since
we want to have the framework create a document, view and frame for us, we'll use the clsid to associate
the class factory with our template. This is the clsid that I generated with the Guidgen application:

 // {B3FC9600-5AFB-11CF-8208-08000996A1CC}
 static const CLSID clsid =
 { 0xb3fc9600, 0x5afb, 0x11cf, { 0x82, 0x8, 0x8, 0x0, 0x9, 0x96, 0xa1,
 0xcc } };

Next, we register the class factory with OLE, using a static function in the COleTemplateServer class:

 // Register all OLE server (factories) as running.
 COleTemplateServer::RegisterAll();

Finally, we need to make our server a self-registering application. This means that the application will
automatically register itself with the system registry whenever it's run as a stand-alone application. MFC
has built-in support for providing the registry with all the appropriate information needed for a server.
You simply call one function to perform this registration step:

 // When a server application is launched stand-alone, it is a
 // good idea to update the system registry
 m_server.UpdateRegistry(OAT_SERVER);

OAT_SERVER identifies the application as a server process.

Changes to the Document Class
The document needs to be able to keep a list of items for servicing containers. When a container
application creates an object from our server, the document will create an item which will handle
communication with the container application. In MFC, there's a class, called COleServerItem, that
handles the communication for us and implements several OLE interfaces necessary for communicating
with the container application, such as IDataObject, IOleObject, and so on.

When AppWizard generates an OLE server application for you, it usually creates a header file and an
implementation file containing a derived class of COleServerItem. However, since I added the OLE stuff
to my application after the fact, I had to create the file myself. In fact, I actually ended up creating a
temporary project with OLE support, then moving these files from the temporary project's directory to my
project's directory. Then, I simply added the files to my project.

I needed to code several minor functions in these files. For starters, the container application will request
a rendering of the data, and MFC will oblige by calling the OnDraw() function of the server item. There's
a catch here. The device context that is provided to the server item is, in fact, a metafile. As we all know,
you can't query a metafile for information in the same way that you would a regular device context. That's
why I usually create a CClientDC with no window. I then use the client device context to query it for
information and use the information for writing to the metafile. This will work because both the metafile
and the device context are set up to use the same mapping mode, extents and origins.

In the sample application, I needed information about the text that I wanted to write into the metafile,
including the vertical height and the horizontal width that the text would take up. I wrote a helper
function, called CalculateSize(), which would return the information in a CSize object. Here's what the

code looks like:

CSize CAcmeSrvrItem::CalculateSize()
{
 CAcmeDoc* pDoc = GetDocument();
 CClientDC dc(NULL);
 dc.SetMapMode(MM_ANISOTROPIC);
 dc.SelectStockObject(ANSI_FIXED_FONT);
 CStringArray& data = pDoc->GetAcmeData();
 // Find the widest record.
 int nCount = data.GetSize();
 CSize size = dc.GetTextExtent(data.GetAt(0),
 data.GetAt(0).GetLength());
 CSize sizeNew;
 if (nCount > 1)
 for (int i = 1; i < nCount; i++)
 {
 sizeNew = dc.GetTextExtent(data.GetAt(i),
 data.GetAt(i).GetLength());
 if (sizeNew.cx > size.cx)
 size.cx = sizeNew.cx;
 }
 dc.LPtoHIMETRIC(&size);
 return size;

The function determines the height of one string by using the height returned from GetTextExtent()
then it calculates the width by finding the longest string in the bunch.

CalculateSize() is called from several places in the application when information is needed about the
text to be drawn. When the container initially embeds the object into its document, it might want to know
how much screen real estate it should try to allocate in its window. The container will call the object's
IOleObject::GetExtent(), which results in a call to the server item's OnGetExtent() function. My
implementation calls CalculateSize(), multiplies the height returned by the number of strings and
returns the result. When you pass sizes across applications, OLE requires these sizes to be in
MM_HIMETRIC for the sake of uniformity.

Now let's take a look at the OnDraw() function in the server item. It sets the mapping mode and extents
for the metafile to use, and begins the process of painting the strings one by one. Here's the code:

BOOL CAcmeSrvrItem::OnDraw(CDC* pDC, CSize& rSize)
{
 CAcmeDoc* pDoc = GetDocument();
 CStringArray& data = pDoc->GetAcmeData();

 // TODO: set mapping mode and extent
 // (The extent is usually the same as the size OnGetExtent)
 CSize size;
 OnGetExtent(DVASPECT_CONTENT, size);
 pDC->SetMapMode(MM_ANISOTROPIC);
 pDC->SetWindowOrg(0,0);
 pDC->SetWindowExt(size);
 pDC->SelectStockObject(ANSI_VAR_FONT);
 int nCount = data.GetSize();
 int nPos = 0;
 for (int i = 0; i < nCount; i++)
 {

 pDC->TextOut(0, nPos, data.GetAt(i));
 nPos += m_cyHeight;
 }
 return TRUE;
}

For all the details, study the Srvritem.h and Srvritem.cpp files. Whenever a server item is created, it
requires that you pass it the this pointer of the document object that owns the server item. The server
item will then add itself to the document's list of server items.

The most important steps in creating the OLE server were to derive my document class from MFC's
COleServerDoc class and to override the OnGetEmbeddedItem() function:

COleServerItem* CAcmeDoc::OnGetEmbeddedItem()
{
 // OnGetEmbeddedItem is called by the framework to get the
 // COleServerItem that is associated with the document. It
 // is only called when necessary.
 CAcmeSrvrItem* pItem = new CAcmeSrvrItem(this);
 return pItem;
}

Note that if a document has already created the server item for an embedded object, the frame work won't
call OnGetEmbeddedItem(), since it holds onto the server item that is returned from
OnGetEmbeddedItem().

This function is the workhorse of this whole operation and it's actually how the item server is created to
begin with. When the client application chooses to embed a new object into its document, our server's
document is called upon to deliver an object. This object must support the appropriate interfaces and data
formats for it to be properly embedded into the container application. MFC will call the server document's
OnGetEmbeddedItem() function to provide the server object.

From within the server application, other modules can make use of the object by calling the document's
GetEmbeddedItem() function. This code exists to provide a type-safe path to the embedded item,
although I don't completely agree with Microsoft's implementation, since it seems to be a re-
implementation of a non-virtual function.

The function actually calls the GetEmbeddedItem() function in the base class, but the version in the base
class returns a generic type, COleServerItem to be exact. The base class checks to see whether a server
item has been created already and simply returns the same item. Otherwise, it calls down to
OnGetEmbeddedItem() in the derived document class, which creates the server item and returns it. You
can see all this in the code below:

class CAcmeDoc : public COleServerDoc
{
// Attributes
public:
 CAcmeSrvrItem* GetEmbeddedItem()
 { return (CAcmeSrvrItem*)COleServerDoc::GetEmbeddedItem(); }
 // ...and so on
}

class COleServerDoc : public COleLinkingDoc
{
// Attributes
 COleServerItem* GetEmbeddedItem();
 // ...and so on

}

COleServerItem* COleServerDoc::GetEmbeddedItem()
{
 // allocate embedded item if necessary
 if (m_pEmbeddedItem == NULL)
 {
 m_pEmbeddedItem = OnGetEmbeddedItem();
 m_pEmbeddedItem->ExternalAddRef();
 }
 return m_pEmbeddedItem;
}

COleServerItem* CAcmeDoc::OnGetEmbeddedItem()
{
 CAcmeSrvrItem* pItem = new CAcmeSrvrItem(this);
 return pItem;
}

This brings us to an interesting observation. When a server application is working on an object that has
been embedded into a container, each document can only work with one object at a time. Therefore, if the
application is using an SDI model, each embedded object must be serviced by a different instance of the
server. For an MDI server, each MDI child window must pertain to an embedded object. Try it with any
server application that you can think of and you'll see what I mean.

The document's Serialize() member function will be called from the item object whenever the
container requests that the embedded data object be placed on the clipboard, or when the container calls
the object's IPersistStorage::Save() function. In the AcmeSrv example, I took the liberty of passing
the Customer ID for the current record to the container. This way, next time the container asks us to load
ourselves (again, via the Serialize() member function), we can simply look through our records from
the database server for a match and display the appropriate record in our view window. This is what the
Serialize() function in the document looks like:

void CAcmeDoc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 ar << m_acmeSet.m_CustomerID;
 }
 else
 {
 long ID;
 ar >> ID;

 // ... Code to locate the appropriate record for displaying.

 UpdateAllViews(NULL);
 }
}

Resource Changes
I had to make a couple of changes to the resources. First of all, I needed to add a string to the string table
with an ID of IDP_OLE_INIT_FAILED and text "OLE initialization failed. Make sure that the OLE libraries are the
correct version.". Secondly, I needed to add a new menu resource with the ID of IDR_SRVR_EMBEDDED to be
used when the user is editing an Acme document embedded in a container. This menu is the same as the
existing menu, except that it also has an extra item in the File menu, Update, with an ID of

ID_FILE_UPDATE.

Adding Drag-and-drop Support
The last thing I did to my application was to add drag-and-drop support. If you select the icon on the main
window and drag it to a container application, you'll see the powerful drag-and-drop support that MFC
provides.

All of the code for the drag-and-drop operation is implemented in the view class. Since all I have on the
screen is a picture control displaying an icon, I needed some way to detect when the user held the mouse
button down on the icon and dragged it, so that I could begin the drag-and-drop operation. I did this by
testing the mouse in the WM_SETCURSOR handler, as follows:

BOOL CAcmeView::OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT message)
{
 if (message == WM_LBUTTONDOWN &&
 pWnd->m_hWnd == GetDlgItem(IDC_DRAGSOURCE)->m_hWnd)
 {
 m_bBeginDrag = TRUE;
 PostMessage(WM_LBUTTONDOWN, MK_LBUTTON, 0L);
 return TRUE;
 }

 return CRecordView::OnSetCursor(pWnd, nHitTest, message);
}

I found that if I wanted to use the MFC classes for drag-and-drop, I had to be within the context of a
WM_LBUTTONDOWN or a WM_RBUTTONDOWN message before calling the DoDragDrop() function. So, once I
know that I've got a hit, I post a WM_LBUTTONDOWN message to the view to simulate a mouse click. I then
respond to that WM_LBUTTONDOWN message and begin the drag-and-drop operation.

The COleServerItem class also has a function called DoDragDrop(), which works very similarly to the
COleDataSource class we saw in the last chapter. As a matter of fact, the server item creates a
COleDataSource object internally and calls its DoDragDrop() function. Here's the code for the
WM_LBUTTONDOWN override:

void CAcmeView::OnLButtonDown(UINT nFlags, CPoint point)
{
 if (m_bBeginDrag)
 {
 CAcmeDoc* pDoc = GetDocument();
 COleServerItem* pSrvrItem = pDoc->GetEmbeddedItem();
 pSrvrItem->DoDragDrop(CRect(0, 0, 1, 1), CPoint(0, 0),
 FALSE, DROPEFFECT_COPY);
 pDoc->SetModifiedFlag(FALSE);
 }
 m_bBeginDrag = FALSE;
 CRecordView::OnLButtonDown(nFlags, point);
}

Wrapping up the Server
As I mentioned, I've included both versions of the application (both before and after adding OLE support)
on the CD. The before picture is in a directory called Acme, and the after picture is in AcmeSrv. Before you
try to insert it into a container application, don't forget to run the application as a stand-alone process to
register it as a document server.

When you're ready to insert embeddable objects into a container, a good place to start is WordPad, which
ships with Windows 95 as an accessory. You can also find the code for WordPad as part of the samples
that ship with MFC. Simply run one of the applications, bring up the Insert Object dialog box and go for it.
You'll see the Acme object listed as Acme Document. Also try dragging and dropping an object into the
container application just to see that it works.

Implementing a Container
In OLE Documents, the container plays the role of a depot, storing objects regardless of what they are. As
far as the container is concerned, the data is unstructured, which means that it knows nothing about the
objects contained within its documents. It doesn't have to, since the objects are smart enough to know
how to save and load themselves, draw themselves and activate themselves for editing.

We'll look at an example called Depot, an MFC AppWizard-generated application. I added a few lines of
code to complete the OLE document container support necessary for a real container application.
However, the application doesn't provide any native functionality of its own. Its sole purpose is to store
all kinds of objects, as a depot stores all kinds of things. It uses the MFC support for compound
documents to store its objects persistently.

Later in this chapter, we'll convert the file support to store the objects persistently to a database. (You read
correctly, a database!) We're going to use the ODBC classes to read and write records to the Acme
database.

The Benefits of Compound Documents
In the old days, we could copy text and pictures to the clipboard and then paste those objects into a
cooperating application. The problem was that, because the objects didn't carry any information about
where they were created, the user would have to remember which application created them, and would
have to recreate the object in order to modify it. There was no way to reactivate the object's application so
that the object could be changed.

Copying the data back to the application that created it was not always possible, since, in many cases, the
native data was lost, and the only data that existed was a bitmap representation of the object. The
application that created the object originally couldn't make heads or tails of the bitmap representation and,
therefore, couldn't allow the original data to be edited.

With OLE Documents, content objects store information about their server (in particularly, the CLSID) so
that they can be reactivated for editing the original data at a later point. An embedded object must support
several interfaces: IDataObject, IOleObject, IViewObject2, IOleCache2, IRunnableObject,
IPersistStorage, and optionally, IOleCacheControl. There are also additional interfaces which must be
supported for in-place activation and linking.

A container will make use of these interfaces for communicating with the embedded objects. Since these
interfaces are part of a standard specification then once they have been implemented with the expected
functionality, both the container and the objects can communicate in a very generic manner.

Default Handler
Any content object that you create must provide implementations for at least IDataObject, IOleObject,
and IPersistStorage. It can rely on OLE's default handler for the other interfaces. OLE will create an
object which aggregates the content object and provides the other interfaces for the object. The object is
known as the default object and its implementation sits inside the default handler, which is registered with
the server in the registry. You can also provide your own handler and aggregate on the default handler for
some of the interfaces. Note that some interfaces, such as IViewObject2, must be in an in-process server
(in this case, because device context handles can't be marshaled across process boundaries).

IDataObjects exist so that the container or other interfaces can ask the objects for data in different
formats. As we saw in the last chapter, an object implementing IPersistStorage can be asked to
persistently save or load itself from a given storage (IStorage) provided by the container. The figure
below illustrates how the container, default handler and the content object server interact:

The default object's IOleCache2 interface will fetch renderings from the content object via its
IDataObject interface and store them in streams inside the object's storage in the compound file provided
by the container. Next time the object has to be loaded and drawn, the container will most likely call
OleLoad(), which will create a default handler object and assign its IPersistStorage interface the given
IStorage. When the container wishes to draw the object, the default object will load one of the
renderings and draw the rendering by calling IViewObject2's Draw() function, which renders the object
to a given device context provided by the container. This mostly goes on underneath the covers. MFC and
just about every OLE application that supports OLE Documents out there performs the same tasks.

Container Interfaces
The container needs to provide an object for each content object provided by the server. These client site
objects implement several interfaces, including IOleClientSite and IAdviseSink. The content object
will then use these interfaces to send notifications and request information from the container.

MFC makes handling the client site interfaces a piece of cake. It actually provides a class, called
COleClientItem, to perform most of the work for us. This class implements the IOleClientSite and the
IAdviseSink interfaces. If you derive a class from COleClientItem, you can override several virtual
functions which are called when the interface functions are called by the associated content object. For
example, when the IAdviseSink::OnDataChange() function is called, the framework calls
COleClientItem::OnChange() with an appropriate notification of the event that occurred.

When you generate an application with AppWizard and you select the option that allows your application
to become a container, AppWizard will create a class derived from COleClientItem, automatically. Most
of the default functionality of the class is great, but there are some areas where we can improve it.

Before we get to these improvements, let's look at the code generated by AppWizard. You can find all the
code for this example on the CD in the Depot directory.

The Skeleton Code
Just as we saw with the OLE server, the application class must always call AfxOleInit() in
InitInstance() in order to initialize the application with the OLE libraries. It also calls
CDocTemplate::SetContainerInfo() to assign the resources for the menu and accelerator that should be
used when the objects are being edited in place. The resources are called IDR_CNTR_INPLACE.

The view class is given a data member, called m_pSelection, to hold a pointer to the currently selected
item. In our example, it's a pointer to a CDepotItem (which is the class derived from COleClientItem).
When an item is selected, this member will point to the item; otherwise, it will contain NULL.

As for the view's OnDraw() function, AppWizard assumes that all you want to draw is the item pointed to
by m_pSelection. This is one of the things that we will change.

The view's IsSelected() function is called when a part of the application wants to compare a given item

against the currently selected item to verify whether the item is, in fact, selected. The current
implementation simply returns TRUE or FALSE and works well for containers that allow only one item to
be selected at a time. Containers that wish to allow more than one object to be selected at a time will have
to modify this code, but I didn't have to, since I only allow one object at a time to be selected.

AppWizard generates a message response function, OnInsertObject(), in the view for the Edit/Insert
menu item that responds by prompting the user with the Insert Object dialog box. When the user selects the
object they wish to insert, the default code creates and initializes a COleClientItem object, makes it the
currently selected item and updates the view. The document class maintains a list of all the items inserted
into the document. When the item is created, it is passed the document's this pointer, which it uses to call
the document and add itself to the document's list. The Insert Object dialog allows the user to insert a brand
new object or insert an object that already exists in another file. If the object is inserted as a new object,
it's immediately activated by calling the item's DoVerb() function to allow the user to edit the object.
Otherwise, the object is simply displayed (but not activated).

The AppWizard-generated code for the view's OnSetFocus() passes the focus to the in-place window
handling the active object, if an object is, in fact, being edited. This code will work for most containers
without any change.

Again, if an item is being edited in-place, we need to alert it of any changes to the window's size. That
way, the server can be aware of any clipping problems it might have to deal with. AppWizard generates
an OnSize() override for the view. The override determines if there's an object being edited in-place and
calls its SetItemRects() function.

When an item is added to the document (either from CDepotView::OnInsertObject(), the clipboard, or
via a drag-and-drop operation), a COleClientItem is created to handle communication with the OLE
content object. When the document is destroyed, so are its client items (but not before they're saved, if the
user saved the document).

AppWizard does override several functions of the COleClientItem class by providing a derived class;
CDepotItem in my case. The first function, OnChange(), simply calls the base class's OnChange()
function and then invalidates all the views of the document by calling
COleDocument::UpdateAllViews().

When the server is in-place, it will call the client site to find out the position and size of object as it
appears in the compound document. The server will then use the position and size to offset its in-place
window accordingly. The request for position and size result in a call to the client item's
OnGetItemPosition() function.

When the server application is editing the object in-place, COleClientItem::OnChangeItemPosition()
is called whenever the size of the object changes in the server's window. The default implementation calls
the base class which in turn calls COleClientItem::SetItemRects().

Adding Additional Support for Containers
The AppWizard generated code for containers is good, but it can still use improvements. First of all,
although you can insert objects, they are all placed on top of each other and there's no way to move them
around or even show the one currently selected. When it comes time to paint the objects, only one item is
ever painted. To improve the container support, we need to modify and add some code to the application .

We'll begin by allowing the objects to maintain their own position. This will allow us to move the objects
around and draw them at their correct position. First, we need to add a data member of type CRect to the
CDepotItem class, which will maintain the current position and size of the item. Then we need to add two
helper functions to the class. The first will help to optimize painting by causing the appropriate objects to
be invalidated. This function is called InvalidateItem():

void CDepotItem::InvalidateItem()
{
 GetDocument()->UpdateAllViews(NULL, HINT_UPDATE_ITEM, this);
}

InvalidateItem() calls the document's UpdateAllViews() in a very smart way. It passes a hint and its
this pointer to ensure that the area to be invalidated is the area contained by its rectangle. This
information is passed to the view's OnUpdate() function, which can then make use of the information and
invalidate the necessary area:

void CDepotView::OnUpdate(CView* pSender, LPARAM lHint, CObject* pHint)
{
 switch (lHint)
 {
 case HINT_UPDATE_WINDOW: // invalidate entire window
 Invalidate();
 break;
 case HINT_UPDATE_ITEM: // invalidate single item
 {
 CRectTracker tracker;
 SetupTracker((CDepotItem*)pHint, &tracker);
 CRect rect;
 tracker.GetTrueRect(rect);
 InvalidateRect(rect);
 }
 break;
 }
}

The second helper function for the client item is UpdateFromServerExtent(), which retrieves the extent
of the item in MM_HIMETRIC coordinates. It then stores the coordinates in device points in m_rect and
invalidates the item. Here's the source code of the function:

void CDepotItem::UpdateFromServerExtent()
{
 CSize size;
 if (GetCachedExtent(&size))
 {
 // We need pixels
 CClientDC dc(NULL);
 dc.HIMETRICtoDP(&size);

 // only invalidate if it has actually changed and also only
 // if it is not in-place active.
 if (size != m_rect.Size() && !IsInPlaceActive())
 {
 // invalidate old, update, invalidate new
 InvalidateItem();
 m_rect.bottom = m_rect.top + size.cy;
 m_rect.right = m_rect.left + size.cx;
 InvalidateItem();

 // mark document as modified
 GetDocument()->SetModifiedFlag();
 }
 }
}

When the object is activated in-place, the size of the object might change in the server window. This
change should be reflected and saved for further painting of the object. The framework will call
CDepotItem::OnChange() and our current implementation calls the base class. We need to modify the
code so that it calls our UpdateFromServerExtent()function. Here's what the code should look like:

void CDepotItem::OnChange(OLE_NOTIFICATION nCode, DWORD dwParam)
{
 ASSERT_VALID(this);
 COleClientItem::OnChange(nCode, dwParam);
 // When an item is being edited (either in-place or fully open)
 // it sends OnChange notifications for changes in the state of the
 // item or visual appearance of its content.
 switch (nCode)
 {
 case OLE_CHANGED:
 InvalidateItem();
 UpdateFromServerExtent();
 break;

 case OLE_CHANGED_STATE:
 case OLE_CHANGED_ASPECT:
 InvalidateItem();
 break;
 }
}

During in-place activation, the CDepotItem::OnChangeItemPosition() function will be called by the
server to change the position of the in-place object. This might have occurred if the extent of the object in
the server has been resized. We need to set our m_rect member to this new size and force the object to
repaint itself:

BOOL CDepotItem::OnChangeItemPosition(const CRect& rectPos)
{
 if (!COleClientItem::OnChangeItemPosition(rectPos))
 return FALSE;

 InvalidateItem();
 m_rect = rectPos;
 InvalidateItem();
 GetDocument()->SetModifiedFlag();
 return TRUE;
}

In the code above, I invalidate the old position and size, set the new size and repaint the object. We also
might be called to return the position and size. The code AppWizard generated for the
OnGetItemPosition() returns an arbitrary position and size, so I modified the code to return whatever is
in m_rect:

void CDepotItem::OnGetItemPosition(CRect& rPosition)
{
 rPosition = m_rect;
}

The last thing I did to the CDepotItem class was to serialize the m_rect field by modifying the
Serialize() member function:

void CDepotItem::Serialize(CArchive& ar)
{
 COleClientItem::Serialize(ar);
 // now store/retrieve data specific to CDepotItem
 if (ar.IsStoring())
 {
 ar << m_rect;
 }
 else
 {
 ar >> m_rect;
 }
}

The next and last class I had to modify is the CView-derived class, CDepotView. My first stop was the
drawing code which I modified so that it ran through the document's list of items and painted each one at
its appropriate position and size. I also made use of the CRectTracker class and initialized a
CRectTracker object by calling a helper function named SetupTracker(). Here's the code for OnDraw():

void CDepotView::OnDraw(CDC* pDC)
{
 CDepotDoc* pDoc = GetDocument();
 POSITION pos = pDoc->GetStartPosition();
 while (pos != NULL)
 {
 // draw the item
 CDepotItem* pItem = (CDepotItem*)pDoc->GetNextItem(pos);
 pItem->Draw(pDC, pItem->m_rect);

 // draw the tracker over the item
 CRectTracker tracker;
 SetupTracker(pItem, &tracker);
 tracker.Draw(pDC);
 }
}

The SetupTracker() helper function examines the client item it receives and initializes the tracker with
the styles necessary, so that the user will be able to determine the current state of the objects on the
screen. If the object is an embedded object, it's drawn with a solid line. If it's a linked object, it has a
dotted line. The currently selected object is drawn with resize handles inside the object and, if an object is
activated (as an opened object), it's drawn with hatch lines inside it.

I created one other important helper function: SetSelection(). This selects the given item and deselects
the currently selected item, causing both to be invalidated. It is called from several places in the view.

Finally, I added functionality to the view class for cutting, copying and pasting embedded objects from
the clipboard. Copying and cutting to the clipboard was easy. I simply called the currently selected item's
CopyToClipboard() function. Pasting from the clipboard was only a little more difficult. I had to create a
new CDepotItem, but instead of asking the dialog box to create the object and associate it with the client
item (as I did in OnInsertObject()), I had to call CDepotItem::CreateFromClipboard(). Next, I
retrieved the item's size, selected the item as the currently selected object and invalidated it.

I think the rest of the details are pretty simple to understand from the source code. This will provide a
basis for your own container applications. It uses compound files to serialize its data and objects, and
provides a solid user interface for containing objects.

Database Support in an OLE Container
Using compound files for storage is fine when your application is a commercial application sold at retail,
but what if it's used in the corporate environment? Furthermore, what if your application is using a
relational database to store and retrieve its data? In most cases, developers can't find a use for OLE
Documents in the corporate environment, because they can't see the point in using compound files. The
biggest reason for this is because it doesn't make sense to use files that will sit on someone's hard-drive
and can't be shared with other users on different machines. But what if I told you that you could share the
data via your back-end database?

If we could make content objects write their streams to a storage in memory, rather than in a compound
file, we could then take the bytes in memory and copy them into a database field. When we need to reload
the data, it would be great if we could load the bytes into memory and tell the content objects to recreate
themselves from the stream of bytes. Guess what? We can actually implement this very idea relatively
easily, using MFC and a few overridden functions.

Each database record has a binary field (BLOB) to hold the objects. We store the objects into a database
field by first creating an ILockBytes on an HGLOBAL (global memory) and creating or opening a
compound file on the ILockBytes. From that point on, any objects, storages and streams created by the
framework will actually store the information directly into internal memory. I can then take that memory
and store it in the binary field in the database.

Saving Embedded Objects to a Database
I took the Depot application and converted it to save and load its data in an Access database. This
database is the same as the one in the Acme server example, so you won't have to register another
database to get the new example, Dbdepot, working. The database contains one field that wasn't displayed
in the previous example—a long binary field, called Embeddings, that I added to the Customers table to
store OLE documents related to each customer. I can move from record to record, loading the binary
information stored in the records with a CLongBinary object.

I used ClassWizard to create a CRecordSet-derived class based on the Customers table and added a data
member of this class to the document class. I then opened the database in the document's constructor as
follows:

CDbDepotDoc::CDbDepotDoc()
{
 // Use OLE compound files
 EnableCompoundFile();
 // TODO: add one-time construction code here
 m_dbDepotSet.Open();
 m_lpRootStg = NULL;
}

Notice that I'm still calling EnableCompoundFile(). I do this to trick MFC into thinking that we're going
to allow it to save the content objects into the compound file that MFC provides. The key is that, before
MFC does any writing to its compound file, we're going to pull the old switcheroo and change its
compound file to our own file in memory.

MFC usually creates its compound files in OnNewDocument() and opens them in OnOpenDocument(). The
root storage pointer ends up in a member called m_lpRootStg. If we override those two functions and

place our own root storage (which is implemented in the internal memory) into m_lpRootStg, we can
make MFC think that it's still writing into the compound files that it provides (although it never got a
chance to create the file).

Since I provided my application's implementation in an SDI application, OnNewDocument() will always
be called. I take advantage of this fact and open the first record's content objects (if there's data in the long
binary field). Here's the code for OnNewDocument():

BOOL CDbDepotDoc::OnNewDocument()
{
 DisplayRecordName();
 if (!m_dbDepotSet.IsEOF() && !m_dbDepotSet.IsEOF())
 {
 VERIFY(OpenStorageOnRecord());
 // Force a load of the Embeddings.
 return OnOpenDocument(m_strPathName);
 }
 return TRUE;
}

I call a helper function, DisplayRecordName(), which takes the first name and last name fields of the
record and displays them in the caption bar of the window (along with the application name). I then call
another helper function, OpenStorageOnRecord(), which creates the ILockBytes pointer and then creates
a compound file in memory on top of the ILockBytes pointer. It does this only if the recordset didn't
come back with data in the long binary field:

BOOL CDbDepotDoc::OpenStorageOnRecord()
{
 // Create the ILockBytes in memory.
 HRESULT hr = ::CreateILockBytesOnHGlobal(
 m_dbDepotSet.m_Embeddings.m_hData,
 FALSE,
 &m_lpLockBytes);
 if (FAILED(hr))
 return FALSE;

 // Did we already get a docfile? If not create one.
 if (m_dbDepotSet.m_Embeddings.m_hData == NULL)
 {
 hr = ::StgCreateDocfileOnILockBytes(
 m_lpLockBytes,
 STGM_SHARE_EXCLUSIVE|STGM_CREATE|STGM_READWRITE,
 0, //Reserved; must be zero
 &m_lpRootStg);
 if (FAILED(hr))
 {
 m_lpLockBytes->Release();
 m_lpLockBytes = NULL;
 return FALSE;
 }
 }
 // Open storage if it wasn't created from scratch.
 if (m_lpRootStg == NULL)
 {
 HRESULT hr = ::StgOpenStorageOnILockBytes(m_lpLockBytes, NULL,
 STGM_SHARE_EXCLUSIVE|STGM_READWRITE, NULL, 0, &m_lpRootStg);
 if (FAILED(hr))
 return FALSE;
 }
 return TRUE;
}

When I call CreateILockBytesOnHGlobal(), I always pass it the long binary field's data handle. If this
handle is not NULL, it will be used for recreating the ILockBytes. Otherwise, OLE will allocate a new
shared memory block for us, on which it then bases a new ILockBytes. We'll see how we get to the
HGLOBAL of this block a little later when we need it to save the data from memory back to the database.

If the long binary field's handle isn't NULL, we know that it already points to a compound file in memory.
If it is NULL, we have to create a new memory compound file, hence the call to
StgCreateDocfileOnILockBytes(). If it isn't NULL, we know that we already have a memory-based
compound document from the database, but we still need to open it, hence the call to
StgOpenStorageOnILockBytes(). At the end of OpenStorageOnRecord(), we should have a valid
pointer to ILockBytes, a memory-based compound document and a pointer to its root storage.

We call OnOpenDocument() from OnNewDocument() to force the framework to reload the objects. I call
the base class's OnOpenDocument(), passing it NULL for its one and only parameter, which keeps the base
class from calling DeleteContents() (which would destroy my memory compound file).

BOOL CDbDepotDoc::OnOpenDocument(LPCTSTR lpszPathName)
{
 // Let the existing code do its thing.
 // Don't call DeleteContents.
 BOOL bRet = COleDocument::OnOpenDocument(NULL);
 return bRet;
}

When the base class is called, MFC will do its normal processing of the objects stored in the compound
file. It will assume that, since the m_lpRootStg member has a legitimate value, it is the compound file
that MFC normally creates. Keep in mind that, since we pass NULL to OnOpenDocument(),
DeleteContents() won't be called and MFC will continue to use the value in m_lpRootStg. Normally,
MFC destroys the compound file in m_lpRootStg, so it can open up the file specified in the parameter,
placing the new storage in m_lpRootStg.

I also provided a way to navigate through the other records via menu options or the tool bar.

When you choose to move to another record, one of the OnRecordxxx() functions will be called, where
xxx is First, Next, Prev, or Last. These functions will attempt to save any changes that have been made
to the current record by calling COleDocument::SaveModified() before moving to the next.
SaveModified() calls a function CDocument::DoFileSave() which can be a little troublesome, since it
looks for a file with the current filename on disk. If it doesn't find it, it calls CDocument::DoSave(). The
default version of DoSave() will display the common Open file dialog to ask the user for a file name to
save the data. Since this is not the behavior we want, we need to override DoSave() in our class. Here's
my implementation:

BOOL CDbDepotDoc::DoSave(LPCTSTR lpszPathName, BOOL bReplace)
{
 // If we try to close without saving, dialog box is displayed.
 // We override DoSave and the dialog never appears.
 return OnSaveDocument(lpszPathName);
}

Pretty complicated function, huh? I simply force it to call OnSaveDocument(). We'll look at the actual
saving code in a minute, but let's finish the record movement functions first. After SaveModified() has
been called, I call DeleteContent() which forces the objects in the document's list to be destroyed. Next,
I call a helper function which I provided, called CloseStorageOnRecord(). This handy function performs
cleanup for the m_lpRootStg member and the ILockBytes member (which, by the way, is called
m_lpLockBytes). It also frees the data held by the long binary field in the record of the recordset (since
the CLongBinary field won't do this on its own within the context of the recordset).

Back in the record movement function, I move to the next record in the record set and then call
OnNewDocument(). Here's one of the record movement functions (the rest are pretty much the same,
except they move to a different record in a different direction):

void CDbDepotDoc::OnRecordNext()
{
 if (!SaveModified())
 return;
 DeleteContents();
 CloseStorageOnRecord();
 m_dbDepotSet.MoveNext();
 OnNewDocument();
 UpdateAllViews(NULL, HINT_RESET_ITEM);
}

If the user selects the File/Save option from the menu, or presses the Save button on the toolbar, this
normally results in a call to a function called CDocument::OnFileSave(). This function also calls
CDocument::DoFileSave(), which I don't want to happen, since I don't need the framework to ask the
user whether they want to save the document, so I simply provided an override for the function and call
OnSaveDocument() directly. So let's look at OnSaveDocument().

OnSaveDocument() calls the base class to allow it to save the information for the embedded objects into
the compound file that we provided, and then I take over. Note that OnSaveDocument() in the base class
won't bother to look at the filename supplied, since first it looks at the m_lpStorage member and if it's
valid (and compound files have been enabled) it will use that. I get the HGLOBAL from the ILockBytes and
store it into the record of the recordset. The HGLOBAL will either be a brand new HGLOBAL, or it's the one
that I provided from the record in the recordset. I then take the record and write it back to the database
table, and I'm done. Here's the complete code for the OnSaveDocument() function I created:

BOOL CDbDepotDoc::OnSaveDocument(LPCTSTR lpszPathName)
{
 // Let the existing code do its thing.
 BOOL bRet = COleDocument::OnSaveDocument(lpszPathName);
 // Prepare for changes.
 m_dbDepotSet.Edit();

 // Get the HGLOBAL and store it.
 HRESULT hr = ::GetHGlobalFromILockBytes(m_lpLockBytes,
 &m_dbDepotSet.m_Embeddings.m_hData);
 m_dbDepotSet.m_Embeddings.m_dwDataLength =
 GlobalSize(m_dbDepotSet.m_Embeddings.m_hData);
 if (SUCCEEDED(hr))
 {
 // Commit changes to the database.
 m_dbDepotSet.SetFieldDirty(&m_dbDepotSet.m_Embeddings, TRUE);
 m_dbDepotSet.SetFieldNull(&m_dbDepotSet.m_Embeddings, FALSE);
 m_dbDepotSet.Update();
 }
 else
 bRet = FALSE;
 return bRet;
}

When you're working with the CLongBinary class, make sure that you always clear out the memory as
you move from record to record, as the framework won't do it for you. I found this out the hard way, and
I'm trying to save you a bunch of headaches. This is the code I use to clear my long binary field, which
you can find in the CloseStorageOnRecord() function in my document class:

 if (m_dbDepotSet.m_Embeddings.m_hData != NULL &&

 m_dbDepotSet.m_Embeddings.m_dwDataLength > 0)
 {
 ::GlobalFree(m_dbDepotSet.m_Embeddings.m_hData);
 m_dbDepotSet.m_Embeddings.m_hData = NULL;
 m_dbDepotSet.m_Embeddings.m_dwDataLength = 0;
 }

So there you have it. A real life situation where you can actually use embedded content objects and the
OLE Documents technology. As long as your database back-end can handle long binary fields, you can
implement this in your own code and get it working in a couple of hours. I've tried embedding all kinds of
objects, embedded or linked, and they all worked. Try it, you'll love it.

Monikers
Although I prefer to embed objects into a document, there are times when you might have an object
which needs to be linked to the document because you might want to share it with several documents. If
you do this, you would only need to update the object in one place and all references to the object would
automatically be updated via OLE.

This is possible because the only thing that lives in the documents is an object called a moniker and the
presentation data of the object. The native data of the object lives somewhere else, and the moniker points
to it. The information that the moniker maintains can be as simple as a file name, such as C:\My
Documents\Fourth Quarter 95.xls, or as complicated as including a range of cells within a
spreadsheet file that defines the object such as C:\My Documents\Fourth Quarter 95.xls!Sheet1!
A1:D5.

When the linked object is inserted into the container's document, a snap-shot of the object's rendering is
saved in the container's compound file. This is used for drawing or printing the object when the container
is told to print its document. If the original object changes in its native server application, the object's
presentation can be updated in the container.

Understanding Monikers
OLE maintains two monikers for a container: an absolute and a relative moniker to the linked object. For
example, if you have a container document with a path of C:\My Documents\Docs\ForSale.doc and this
document has a picture linked to a file named C:\My Documents\Pictures\My House.pic, OLE will
maintain a moniker for C:\My Documents\Pictures\My House.pic and one for ..\Pictures\My
House.pic.

This seeming redundancy helps linked objects find their data again. If you rename the directory structure
to C:\My New Documents, for example, the absolute moniker will fail, but the relative one will still
succeed. However, it's not foolproof. If you move My House.pic to a totally different directory (such as
C:\My Documents\All Pictures), both monikers will fail. As you can see, even with two monikers, it
can become difficult for the moniker to find its file for editing the actual data. In the future, Windows is
supposed to maintain the connection and update the information as the files are moved around on the
hard-drive, but for the meantime, we'll have to find our own solution. This solution comes in the form of a
custom moniker.

When you create monikers, you commonly use the Microsoft-provided monikers by calling the OLE API
functions which return a moniker of the requested type. You usually get an IMoniker interface pointer
which contains methods to bind to, or activate, the object. The IMoniker interface is derived from the
IPersistStream interface which contains methods for storing or loading data to and from a stream. This
gives the moniker the ability to become persistent. In other words, given a stream, a moniker can save
information to it, or load information from it. What kind of information you ask? Whatever it needs to
recreate or bind to the object that it points to.

Monikers also provide support for returning display names (text that gives a more descriptive title for the
linked data that can be shown to the user). Usually, the display names are nothing more then the file name
contained within the moniker. Monikers can also be told to create themselves based on a text string
(sometimes provided by the end user). The process of creating a moniker from a display name is called
parsing. Where would you use this feature? Well, let's say that you can't bind a moniker, what then? Why

not ask the user if they know where the linked object's data is? You can simply display a dialog box with
an edit control so the user can type the new location of the linked object's file. You then would need to
recreate the moniker, of course.

One of the most important functions in the IMoniker interface is BindToObject(). The function is called
when the container application needs to bind to the object (meaning load the object if it's not in memory
and connect to it) that the moniker points to, and return an interface requested by the container
application. The requested interface is normally IOleObject, which gives the container application the
power to activate or open the object to allow the user to edit it.

Also important is the BindToStorage() function, which allows a container with intimate knowledge of
the server to bind directly to an IStorage in the linked object's file, giving complete access to any of the
streams within it to the container.

Collectively, this technology is called the OLE Naming Technology. It gives programmers the ability to
name anything that can be categorized or labeled. For example, let's say that we have a database and
within that database, we have some tables. Within one of those tables, we'd like to execute a query,
returning a result set of the records that met the criteria. We can make our database/table/query into a
moniker that can then be bound to and a presentation of the data updated. Using monikers for object
location in a file system is probably the simplest form and yet many find the concepts difficult to
understand. I'll see if I can shed some light on the subject.

When programmers don't understand something, they usually go into a denial stage. You know that you're
there when you say things like, "I just don't understand why this even exists", or, "Why is this so difficult,
couldn't they have made it easier?" I'll have to admit that even I have been guilty of this from time to
time, but let me clear up one thing: monikers are very powerful. The reason they exist is to provide a level
of abstraction to the container application.

As we mentioned in the last section, containers are not supposed to be aware of the objects they contain in
their documents, but how do you achieve this level of abstraction if the object that is being displayed in
the document's window doesn't really live in the document. You could simply make the container aware
of that fact and have it maintain a path to the linked object's location and that would probably work for
file type objects, but what happens when you want to link to other types of object, such as
database/table/query objects or file/sheet/cells objects? Does that mean that you would reinvent the wheel
each time? I would rather have a solution that can be flexible enough to withstand the powers of progress
and future development. Monikers give us this flexibility.

By simply loading an object that always maintains the same interface, having the ability to call one
function, and letting it do its thing, we achieve a high level of abstraction from the container application.
No matter what kind of moniker the container is holding, it can always rely on the fact that all it has to do
is call IMoniker::BindToObject(), and the job will be done. The end result is that the container will get
back a pointer to an interface on the object, no matter where the object was created from.

The responsibilities of the container are pretty simple. It needs to obtain a pointer to one of the interfaces
on the object when it has been loaded. At some point, it might need to display text to be read by the user,
or a description of the moniker (for example, when the linked object is selected), or it might want to
activate the object, giving the user the opportunity to edit the data contained in the linked object.

The container begins this process by initially calling IMoniker::BindToObject() and requesting an
interface from the moniker. At this point, the moniker takes over and attempts to locate the file that it
points to and create a COM object that can handle the data maintained by the file. How does it find the

COM class for the object? Easy, by looking in the file for a registered CLSID. This is usually done with a
call to GetClassFile() which returns the CLSID associated with a file. This CLSID was most likely
written into the root storage of the file by the server application with a simple call to the
WriteClassStg() function.

Once the moniker knows the CLSID, it can call CoCreateInstance() and before you know it, we have
ourselves a COM object that can load the file. The next thing we do is ask for the IPersistFile interface
from the COM object and call the IPersistFile::Load() function to have the object load the file for the
moniker. Once Load() returns, the moniker can ask the COM object for the interface that the container
application requested. At this point, the moniker can simply drop out of the picture.

There are other situations that make the binding process much more difficult to achieve; for example, a
moniker that points to an item within an object within a file, or the database query example that I spoke
about before. We'll see how this is handled shortly.

Obtaining a Moniker
There are many ways that a container can obtain a moniker. It can create a moniker itself by calling one of
the many OLE API functions, such as CreateFileMoniker(), or it might receive one from a clipboard or
a drag-and-drop operation.

In any case, the role that the container plays is simple: it stores the moniker in its compound file or loads
it from its compound file, and when it's ready to talk to the object that the moniker points to, it binds the
moniker. Of course, there are other operations that the container might need to do, but I won't discuss
them here, as they don't relate directly to monikers.

The Standard Monikers
Before we learn about custom monikers, let's meet the current set of standard monikers. There are five
types of moniker available as part of the standard OLE implementation. The first is called a file moniker,
and its purpose is to store a path to the link source. File monikers are persistent (they can store their
internal data to a stream), they are bindable (you can call the BindToObject() and it will do something),
and they are useful outside of a composite moniker. (You'll understand the last point when we discuss
composites below.) You can create file monikers with a call to CreateFileMoniker().

I've already discussed the steps that the BindToObject() function will take when you call it. The second
moniker type is an item moniker, and its purpose is to provide links to pseudo objects within the link
source's file, such as a group of cells in a spreadsheet file. This moniker is also persistent, causing it to
store its internal data into a stream or load it from the stream, and it's bindable. However, unlike the file
moniker, it serves no purpose if it isn't joined by another item or a file moniker to its left.

For example, to identify a page within a document, you might need to maintain the filename, the section
of the document and, finally, the page itself. As you've just seen, we can use a file moniker to maintain the
filename. One item moniker can then identify the section, while another can identify the page. This would
be described with a notation like C:\My Documents\VCMC.doc!Section 1!Page 43, where the !
character is the delimiter between the file moniker, the first item moniker and the second item moniker.
You can create item monikers with the CreateItemMoniker() function.

The next moniker is called a composite moniker. Its purpose is to provide the glue between a file

moniker and one or more item monikers. Getting back to the example of a group of cells within a
spreadsheet file, the composite moniker can be made up of an item moniker to represent the group of
cells, a sheet moniker representing the sheet containing the group of cells and a file moniker to represent
the spreadsheet file containing the sheet. The result would look like C:\My Documents\My Money.xls!
Bank Sheet!A1:Z15. You can create composites with the CreateGenericComposite().

The composite moniker's role is to tell the contained monikers to load themselves. This occurs when a
container tells the composite to bind. In turn, it binds the contained monikers. This process starts with the
right-most moniker, but since it cannot successfully bind if the monikers to its left haven't bound, each
moniker gets the one to its left to bind first. The objects to the left of the right-most item may already
exist so, in this way, only the objects that need to be created in order to get to the right-most item are
bound. The monikers look in the Running Object Table (sometimes referred to as the ROT) to determine
whether an object is already running.

The ROT is a system-wide table that allows us to make an entry which contains a moniker and an
associated object (identified by its IUnknown pointer). You're free to place any object in the table,
as long as it supports IUnknown. This means that you can even place a C++ object there if the
vtable starts with the three functions of IUnknown. There are functions and an interface for dealing
with the ROT. The interface is called IRunningObjectTable and it can be obtained via the
GetRunningObjectTable() function (for more information concerning the ROT, see the OLE
reference manual).

But how does Microsoft know that I will want to pull out sheet and cell data from the objects? What if my
example involved a word-processing application with a file, pages, and text paragraphs? Or something
else entirely?

The answer lies in the IOleItemContainer interface. You see, the same COM object that returns the
IPersistFile interface from the server must also implement the IOleItemContainer interface. This
interface will be passed up to the sheet item moniker. When the sheet item moniker calls
IOleItemContainer::GetObject(), it will pass its persistent data ("Bank Sheet"). This
IOleItemContainer will see this name and return an IOleItemContainer for the sheet, suitable for
binding the cell information if necessary. The sheet moniker will then return this IOleItemContainer to
the cell moniker. The cell moniker will then call IOleItemContainer::GetObject() passing its own
persistent data ("A1:Z15"). This IOleItemContainer will be asked to return the interface requested by
the container application, which it will happily do so, as long as it supports the interface.

The IOleItemContainer interfaces that we have mentioned live in the server application, and since it
was the server who created the moniker returned to the container application, the server shouldn't have
any problems dissecting the persistent data held by the monikers.

The fourth type of moniker is called an anti moniker. This breed is used to negate the last part of a
composite moniker causing the last item moniker in the composite to be removed. These monikers are
mostly used internally by OLE and I've yet to find a use for them myself. You can create them with a call
to the CreateAntiMoniker() function.

The last type is called a pointer moniker. These are used to wrap up monikers in order to pass an
IMoniker pointer to a function wishing to receive a moniker. This is the only way to pass a moniker
around, since the interface is not marshaled. This is the only way that you can use pointer monikers and
they can't be persistently saved. You can create them with the CreatePointerMoniker() function.

Although you can use any of these types of moniker in your applications, you're not restricted to them.

You can provide custom monikers which can be used to locate and load link sources from anywhere,
including another machine or a back-end database. In the course of this section, we'll implement a custom
moniker which allows the linked object to find its link source, no matter where you place the link source's
file. But first, we need to introduce a couple more concepts.

There's an object called a bind context that provides storage for information needed to bind the moniker
objects. This structure is passed around to all the monikers and is used by the them to pass more
information to other monikers. You can think of the bind context as a channel for all of the monikers to
tune into and find out what has already happened. The bind context is implemented by an interface (you
knew I was going to say that, didn't you?) called IBindCtx and is returned when you call the
CreateBindCtx() function. Most of the functions that you will call to either bind or find out information
from a moniker will involve a bind context. Even a container will need to create a bind context before it
calls IMoniker::BindToObject().

The purpose of the bind context is to achieve better performance by placing the object needed to allow the
monikers to bind in the bind context, using parameters. These objects will then continue to exist as long
as the bind context is kept alive. Also, if a container application has simply caused an action that hasn't
completely activated an object, but has instead loaded the bind context, the binding will occur
immediately, since all of the objects needed might already exist in the bind context.

For example, let's say that the container has called IMoniker::GetDisplayName() from a composite
moniker and it, in turn, has caused some of the monikers internally to bind in order to find out the
information to return to the container. These objects might already exist next time the container calls
IMoniker::BindToObject(), causing the function to make a speedy return.

A Custom Moniker
When we actually implement our custom moniker, we need to provide an implementation for the
IMoniker interface. The most important function is Reduce(). Our function's implementation will create
a standard file moniker and will return it for further use by whoever called the Reduce() function. The
purpose of Reduce()is to cause a moniker to return another moniker that has been reduced to its bare
minimum. For example, if we have a file moniker that contains the value of "C:\Windows\..\My
Documents\This File.doc", reducing it would cause it to return a moniker with the value of "C:\My
Documents\This File.doc".

I took severe advantage of the fact that this function is usually the main work horse for the other functions
and placed my searching code here. If the moniker cannot locate the file that it thinks it should be able to
locate, I go searching away through the hard drive and find the file. Then I create a moniker with the
correct location of the file and return it from Reduce(). I also call the Reduce() function from the
BindToObject() function.

It's the linked object (identified by IOleLink)stored in the container that will eventually need to tell the
moniker object to link itself to its data source. The container must provide the object with the moniker by
calling the object's IOleLink::SetSourceMoniker(). Later, it will call the object's
IOleLink::BindToSource() to launch the data source's server with its data source loaded for editing.

Implementing a Custom Moniker
Custom monikers can be implemented for use in situations where the standard monikers' inner workings

aren't enough. As I've pointed out already, although the standard monikers are fine for some situations,
they do have their drawbacks. For example, if you want the source of data to be a back-end database, or a
source other than a file on your hard-drive, you'll need to implement a custom moniker.

There are several pieces of functionality that we must implement into our custom monikers. First of all,
since the moniker is, after all, a COM object, we must implement a class factory for it. This is easy, since
we can use the MFC macros DECLARE_OLECREATE() and IMPLEMENT_OLECREATE() which supply a class
factory object (COleObjectFactory) for the COM class.

Since I'm providing the code in an in-process server, we need to expose a few functions, such as
DllGetClassObject() and DllCanUnloadNow(). We've seen code for these functions before in some of
the other sample applications that I've provided. We'll also have to provide a function similar to the
CreatexxxMoniker() functions that Microsoft provides. We'll call our function
CreateSearchableMoniker(). This will exist in the same in-process server and a container or object can
call it to create a searchable object. This object can find its data source, no matter where it is, as long as
the data source is on the same drive as the container's compound file that contains the moniker object.

I wrapped up the functionality of the custom moniker in a class called CSearchableMoniker, which is
derived from CCmdTarget and implements the interfaces we need. The class needs to implement
IMoniker, IPersistStream (since IMoniker is derived from IPersistStream), IPersist (since
IPersistStream is derived from IPersist), and IUnknown (which is implemented by CCmdTarget for
us). The CreateSearchableMoniker() function will create an instance of this class and return a pointer
to its IMoniker interface.

The bottom line is that the moniker needs to maintain a file name and find it if it's not in the location
specified originally. Since the custom moniker can find a file name by searching through the user's
directory structure, it's not necessary to provide the full path name of a file. However, having the full path
makes finding the file a lot faster, because the moniker doesn't have to look for it (unless it has been
moved).

Once the file has been located, the Reduce() function delegates to a standard file moniker and returns it.
At this point, the custom moniker has done its work, so we can call upon the service of the standard
monikers to complete the task.

Using the Searchable Moniker
Now it's up to the container to make use of this exciting new moniker. The appropriate time to use it is
when a linked object is passed to the container or when the user chooses to link to a file using the Insert
Object dialog.

When your container application is trying to make use of the searchable moniker, it will need to create
one and pass it to the function which will create the link object:

hr = CreateSearchableMoniker(T2COLE(strPathName.GetBuffer(0)),
 &lpMoniker);
hr = OleCreateLink(lpMoniker, IID_IOleObject, render, NULL,
 lpClientSite, lpStg, (LPVOID FAR *)&lpOleObject);

When the container application is later reloaded with the link object and calls the moniker's
BindToObject() or BindToStorage() function, the object locates the source and places the server in the

running state. The object can then be activated for editing. MFC handles most of these details for you,
since the work is generic enough that it can decide what to do without any assistance from you.

The moniker's IPersistStream functions will be called for saving or loading the filename and path
name. This is the extent of the functions. Therefore, the real work of finding the source is the
responsibility of the IMoniker functions. When the Reduce() function is called, it uses the services of a
global helper function I created, called FindFile(). This function searches recursively for a match until
all directories have been searched, or the subdirectories have been exhausted.

You can find complete code for the searchable moniker in the SrchMonk directory on the CD.

IChapter->Release()
It's been a long ride in this chapter, but hopefully, you've seen some sights that have opened your eyes to
new possibilities and tasks to which you can apply OLE. My goal was to provide you with some real-
world examples of using compound documents and servers. Along the way, we just had to make a couple
of pit stops and learn about several technologies to help us with the big picture.

In the next couple of chapters, I'll show you some ways that you can use OLE Automation, OLE Controls
and ODBC to provide for a more open, component-based environment.

OLE Automation and Controls
In the last couple of chapters, we've discussed several OLE technologies and discovered some new uses
for them. Continuing with the theme of OLE, this chapter examines a few more technologies and some
handy ways of using them in different situations.

In this chapter, we'll discuss OLE Automation and OLE controls (or OCXs). These technologies, coupled
with the techniques we've learned in previous chapters will play a major role in the next chapter, where
we'll use them to implement metaclasses and business objects for a client-server environment.

While we're on the subject of OLE controls, you may have heard about ActiveX controls, and wondered
how they fit into the picture. These are the next generation of OLE controls, designed to be smaller and
faster, so that they can be used in the Internet environment (as well as anywhere else controls may be
used). With the new specification, Microsoft have radically reduced the number of OLE interfaces that a
control is required to implement, making it a vastly slimmed-down version of its former self. This means
that all OLE controls are ActiveX controls, but not vice versa, since ActiveX controls are not required to
support all the interfaces currently required by OCXs.

In this chapter, we'll also get a chance to play with multithreading and thread synchronization, and we'll
have the opportunity to discuss ways of sharing global data between applications.

You'll find that this chapter is divided up into four main sections. The first is a high-level introduction to
the how and why of OLE Automation. This is followed by sections on programming automation, firstly at
the COM level, then with the help of MFC. The last section concentrates on OLE controls.

OLE Automation
Let's take a brief look at some of the concepts and terminology that are important to automation.

A good many programs over the years have been designed to be extensible and customizable, often
through the use of macro languages. Microsoft Word has WordBasic, most of the other Office applications
use VBA, and most editors have little languages so that users can write their own functions to extend and
enhance the operation of the package.

Programs let users drive them automatically by writing macro functions, but how about having programs
cooperate between themselves, without human intervention? For example, this would let a scientific data-
gathering package send commands to a spreadsheet so that it could use the spreadsheet's graphing
capability to display its data, instead of having to provide the functionality itself.

The problem is that every package has tended to implement its own macro language, or other means of
being externally driven, so it was hard to produce any sort of generic functionality.

What was needed was some sort of standard mechanism through which programs could communicate,
which all could implement and use. This was provided in earlier releases of Windows by the DDE
(Dynamic Data Exchange) mechanism.

Using DDE, a server and client participate in a DDE 'conversation' by means of Windows messages,
which allow them to exchange data and cause each other to execute command strings. DDE is very
simple in concept, being composed simply of a number of Windows messages, plus a protocol for using

them. In general, this protocol involves 'call and response' sequences, with one side of the conversation
sending a message (such as the client sending WM_DDE_REQUEST to request some data from the server, or
WM_DDE_EXECUTE to send a command string) and the other replying with a response.

Many DDE-enabled applications have been written and DDE is quick because it operates at the level of
Windows messages, but it's limited in what it can do and is also quite hard to program. This is because the
onus for coding the protocol at the client end, setting up the right sequences of messages and providing
code for error handling and recovery, is placed firmly on the shoulders of the programmer.

The successor to DDE is OLE Automation, which is a great improvement, especially when you're using
MFC, because the communication mechanism is handled for you by OLE and COM.

First, a Recap...
Let's start off with a very brief recap of what we know about COM interfaces, just to put what we're going
to discuss into perspective.

COM objects use interfaces to expose functionality to the outside world; nothing can be known about a
COM object except what it makes known through its interfaces. An interface comprises a number of
related functions, grouped together and given a name, and is analogous to a C++ class. In fact, the
mapping of interfaces to C++ classes is very close and makes C++ a natural language in which to write
COM code. All interfaces are uniquely identified by an interface identifier (IID) which is stored in the
registry.

The most fundamental COM interface is IUnknown, which exposes three functions: AddRef(), Release()
and QueryInterface(). The first two are used to implement a reference counting scheme which controls
the life of the COM object; the third is fundamental to the operation of COM. Given an IID,
QueryInterface() will return a pointer to an interface of the given type, if it supports it (and if it wants
to give it to you!).

All COM interfaces have to provide the three IUnknown methods in addition to any others that they may
implement. This means that if you know one interface on an object, you can use its QueryInterface() to
get a pointer to any other interface that the object supports. It also means that, in a sense, all interfaces
'inherit' from IUnknown, since they all contain IUnknown's methods.

OLE uses a whole bunch of predefined COM interfaces to implement its services, but we can also create
our own custom interfaces, if we need to. This would allow us to provide programmability for any
application we choose to write.

Problems with Custom Interfaces
However, although it would be perfectly possible to provide automation using ordinary COM interfaces,
providing a custom interface for each group of methods we wanted to expose leads to a couple of
problems.

Firstly, languages that don't support pointers, such as Visual Basic, have trouble using interfaces in the
normal C++ way. Making these languages use raw interfaces isn't going to persuade people to adopt
automation!

Another obvious problem is the proliferation of custom interfaces which would result, and the necessity
for a client to know which interfaces to call on the servers it wished to use. If everyone handled
automation through their own custom interfaces, there would be little opportunity for applications to work
together in the way we'd like.

Invoke() to the Rescue!
What we need is some sort of standard interface for handling automation which all clients can use in the
same way and which supports the ability for a client to find out at run time whether a server supports a
particular automation method or property, and issue a dynamic call.

This interface is called IDispatch, and dynamic invocation of automation methods is done using the
IDispatch::Invoke() method, which we'll meet in much greater detail as we progress through this
chapter.

The IDispatch interface allows an object to communicate with others using methods, properties and
events. Methods are akin to functions, in that they are requests to an object to do something; properties
are akin to variables, holding values which describe the state of the object; events are things of which the
object can notify a client. It's worth noting here that although properties look like variables, they're
implemented using functions, because COM interfaces only expose functions.

Handling automation through one interface allows the implementers of languages like Visual Basic to
hide the code for using this interface and provide a simple method in the host language for accessing it.

Automation capability has been added to many languages and development tools, such as Visual Basic,
PowerBuilder and Delphi, but we're finding that the trend is leaning heavily towards Visual Basic as the
language of choice for controlling and extending other applications that expose automation classes. This
means that we, as C++ programmers, will write automation-enabled objects and that many users will want
to drive them from Visual Basic, or one of its derivatives, such as VBA (Visual Basic for Applications) or
VBScript. This is even more likely now that Microsoft are encouraging developers to provide scripting
support for the VBScript DLL, so that developers can add Visual Basic as the macro language for their
applications, and use that to perform automation.

A Simple Example
For example, let's say I have an application which contains functionality for establishing database
connections, creating result sets based on queries to tables in a database and displaying data from result
sets to a window. In the same way that I would divide this functionality into classes in C++, I could also
provide automation objects which group the functions into logical categories.

Using Visual Basic, you could, for example, use these automation classes by creating a database object, a
result set object and a display object. You could then establish a connection with a database using the
database object and associate the database object with the result set object via one of the result set object's
methods (such as SetDatabase() or something similar). Next, you could tell the result set object to look
in a particular table and return some records that meet a specified criteria. Finally, you could associate the
result set object with the display object by calling one of the display object's methods (such as
SetResultSet()), causing the display object to display the data in the result set. Here's some Visual
Basic code to simulate the situation:

 Dim dbObj As Object
 Dim rsObj As Object
 Dim dpObj As Object
 dbObj = CreateObject("BOM.Database.1")
 rsObj = CreateObject("BOM.Recordset.1")
 dpObj = CreateObject("BOM.Display.1")
 dbObj.Connect("Orders")
 rsObj.SetDatabase(dbObj.Connection)
 rsObj.Query("Orders WHERE ID > 999")
 dpObj.SetResultSet(rsObj.Data)
 dpObj.Display

The code declares a few variables as being of type Object. It goes on to create and attach the variables to
real automation objects. Visual Basic finds the program ID in the registry, converts the program ID to a
CLSID and finds the associated server. It then goes on to load the server and create an object based on the
CLSID. Finally, it retrieves the object's IDispatch pointer and attaches it to the Visual Basic variables.

When you call one of the methods or properties of the objects, Visual Basic calls the objects'
IDispatch::Invoke() function, although this is invisible to the Visual Basic programmer.

The VARIANT Data Type
We've seen how Invoke() provides a way to make automation work, but we have a problem. Invoke()
can be used to execute indirectly any function supported by the automation server, and these functions
need to be able to take a wide range of number and types of arguments. How will we be able to use a
single function call, Invoke(), to pass variable numbers and types of argument in a simple, portable and
system- and language-independent way?

The answer is by using VARIANTs. A VARIANT is a structure which is able to store different types of data,
using a type flag and a union. The flag denotes what sort of data is being stored, and the actual data is
stored in the union as the appropriate type. The union in the VARIANT structure has entries to allow the
storage of most of the data types you'll need, and we'll examine them more closely a little later in the
chapter.

Invoke() uses VARIANTs for passing arguments and getting a return value. Arguments are passed to
automation methods using an array of VARIANTs which is, in turn, packed into a DISPPARAMS structure.
We'll see a little more of this structure later on. Likewise, the return value from the method is passed back
as a VARIANT FAR*.

If you program automation at the COM level, you're responsible for converting data to and from
VARIANTs, but if you use the MFC with its higher-level support, the conversion is automatic, and you'll
seldom need to see a raw VARIANT structure.

Type Libraries
How can a controller find out what automation methods a server exposes? By using type information,
usually stored in a type library. A type library is a repository of information that describes an object's
methods, properties and events. Type libraries are indispensable to the operation of automation. Servers
use the type library to obtain the interface descriptions they supply to clients, and tools can use type
information to help in the automatic construction of automation client code.

Type library information may be held in a separate file (usually with a .tlb extension), or as a resource in
a server's .exe or .dll or .ocx. You can browse through type information using the OLE object browser,
called Ole2vw32.exe, which Microsoft provide in the \Msdev\Bin directory. You can start this application
by choosing OLE Object View from Developer Studio's Tools menu. This program looks at the registry and
lists all of the objects that have anything to do with OLE (including type libraries).

The browser shows different icons next to the entries to signify what type they are. The most interesting
from our point of view are:

 which denotes an OLE control
 which shows a type library

When you double-click on the line containing a type library, you'll see a dialog box showing the methods
and properties described in the library.

How do we create type library information? The hard way is to do it yourself using the CreateTypeLib()
API call and the ICreateTypeLib and ICreateTypeInfo interfaces. The easier way is to write an ODL
file, then compile it using the Mktyplib program. (The easiest way of all is to create your server as a
Visual C++ project, where all this is done for you!)

ODL (Object Description Language) is an ASCII scripting language, similar in concept to the resource
definition language used in .rc files, which is used to write descriptions of all the type information for an
object. Here's a sample, showing part of an ODL file from a Visual C++ project:

// autoEx.odl : type library source for autoEx.exe

// This file will be processed by the Make Type Library (mktyplib) tool to
// produce the type library (autoEx.tlb).

[uuid(D4911E21-8656-11CF-95F3-D169224F4B53), version(1.0)]
library AutoEx
{
 importlib("stdole32.tlb");

 // Primary dispatch interface for CAutoExDoc

 [uuid(D4911E22-8656-11CF-95F3-D169224F4B53)]
 dispinterface IAutoEx
 {
 properties:
 // NOTE - ClassWizard will maintain property information here.
 // Use extreme caution when editing this section.
 //{{AFX_ODL_PROP(CAutoExDoc)
 [id(1)] long val1;
 [id(2)] long val2;
 [id(3)] short operation;
 [id(4)] long result;
 //}}AFX_ODL_PROP

 methods:
 // NOTE - ClassWizard will maintain method information here.
 // Use extreme caution when editing this section.
 //{{AFX_ODL_METHOD(CAutoExDoc)
 [id(5)] void Calculate();
 //}}AFX_ODL_METHOD

 };

 // Class information for CAutoExDoc

 [uuid(D4911E20-8656-11CF-95F3-D169224F4B53)]
 coclass CAutoExDoc
 {
 [default] dispinterface IAutoEx;
 };

 //{{AFX_APPEND_ODL}}
};

The dispatch interface, IAutoEx, exposes four properties, val1, val2, operation and result, with
dispatch IDs 1 to 4, and a single method, Calculate(), with the dispatch ID of 5.

You can write ODL files yourself, but if you use Visual C++, an ODL file will automatically be created
and maintained for the interfaces in your project and compiled into a type library when you build the
project.

We can use Visual C++ to read the type library for a server and create a class based on what it finds. This
allows us to create an object which represents our connection to the server, with the member functions of
the object corresponding to the methods and functions exposed by the server. This process of fixing the
calls to the server methods at compile time is called early binding.

The opposite occurs when we use the IDispatch interface methods (such as GetIDsOfNames() and
Invoke()) to find out what methods are supported at run time. Leaving the nature of the call to be

decided at run time is called late binding and gives you more flexibility than early binding, although it
may be considerably less efficient.

Dual Interfaces
A dual interface is an extension to IDispatch, the standard interface for OLE Automation, and it lets an
automation controller bind to a vtable instead of having to use IDispatch::Invoke().

The difference is mainly in speed. Using Invoke() requires the controller to package each argument as an
element in the VARIANTARG array, while with a dual interface, the controller can call the method directly.
One of the main disadvantages from our point of view is that, with version 4.1 at least, there is no direct
support for creating dual interfaces with MFC. However, VC++ 4.1 does come with a sample project,
called ACDUAL, that demonstrates the changes that you need to make to an existing OLE Automation
server to convert it to use dual interfaces.

If we create a server with a dual interface, details of the interface will be entered into the server's type
library, so we can use Visual C++ to read the type library and create a class to represent the dual interface,
just as we would with any other interface.

You create an interface class which is derived from IDispatch, so that it has the same methods as
IDispatch, together with one or more custom methods which are compatible with OLE Automation. A
compatible method is one whose argument types will fit into a VARIANT. This restriction on the argument
types is the main disadvantage of using a dual interface.

As its name implies, a dual interface serves a dual purpose. It can be used as an ordinary dispatch
interface by controllers which need to use this access method, while more sophisticated controllers can
call the vtable directly. C++ and Visual Basic 4.0 are smart enough to use the dual interface if one is
present, so implementing automation via dual interfaces can give considerably better performance in
these cases.

The dual interface handles the marshaling of vtable methods automatically, so you don't have to write
custom marshaling code.

Implementing Automation
We're now going to take a look at how you can implement automation, but before getting to grips with
MFC, we'll first look at automation at the bottom-most level: COM and the basic OLE services.

When you work with COM, you usually implement an interface by deriving a class from an existing one
(which as we have already seen, is nothing more than an abstract class with all of its functions defined as
pure virtual). Once we've declared our class, we're required to implement each and every function in
the interface (or get MFC to do it for us).

When an application wishes to communicate with our object via its interfaces' implementation, the
application must provide a pointer (at compile time) and must define the type of that pointer. The
compiler will examine the pointer and take the opportunity to set up the virtual function table (vtable)
used by the pointer. The interface, which is included in both applications (client and server) tells the
whole story of what the vtable should look like. Examine the following code:

#include <ole2.h>

...
LPUNKNOWN lpUnknown;
CoCreateInstance(..., (LPVOID*)&lpUnknown);
lpUnknown->QueryInterface(...);
lpUnknown->Release();

Notice that the pointer in the sample code is of type LPUNKNOWN, which basically means that it's a pointer
to an IUnknown interface (IUnknown*). When the compiler sees this, it knows that it must use the vtable
created for the IUnknown interface, and will use this to find the actual addresses of the functions to be
executed, in much the same way as a polymorphic pointer in C++ is used to index into a virtual function
table.

Since both the client and server use the same interface definition when they compile and link, they are
guaranteed to be able to communicate at run time via the vtable.

Some languages (such as Visual Basic) don't have the ability to deal with vtables and pointers, so
something had to be done to let these languages communicate using COM.

Automation provides the solution to the problem because, using the IDispatch interface, an application
can specify at run time which functions it wishes to invoke, using a single function. Granted, languages
like Visual Basic must still internally support some type of early binding using a vtable, but it's only one
interface to deal with, and the interface will never change. This fact allows the compilers to provide a
simple way of dealing with the IDispatch automation interface.

Your application choosing to either invoke a method or get or set a property in an automation object is
called late binding. Because the functions were not called at compile time, (in other words the compiler
never saw the function being called), the compiler had no way of binding it then. All that the compiler
saw was your application making a call to IDispatch::Invoke(). That's the only time the compiler gets
involved. It's then up to the server application to break down and dissect the parameters passed to the
Invoke() function, which include the identifier of the actual function and any parameters that should be
passed to the function in the server.

Let me give you an example. If a client application wants to call a method exposed by an automation
object, it will pass an identifier that represents the function to the object's IDispatch::Invoke() function
(this is known as a dispatch identifier or a DISPID). The server will then receive the
IDispatch::Invoke() call and execute the function identified by the ID passed to the Invoke()
function.

The IDispatch interface has four functions: GetTypeInfoCount(), GetTypeInfo(), GetIDsOfNames(),
and Invoke(). Of these, the two most important are GetIDsOfNames() and Invoke().

Invoking Automation Methods and Properties
The Invoke() function has the following prototype:

HRESULT IDispatch::Invoke(DISPID dispID,
 REFIID riid,
 LCID lcid,
 WORD wFlags,
 DISPPARAMS* pDispParams,
 VARIANT* pVarResult,
 EXCEPINFO* pExcepInfo,
 UINT* puArgErr);

The DISPID identifies the function or property you wish to invoke. This value is determined by the server.
A client receives this identifier when it calls GetIDsOfNames() (more on this function later). When a
client wishes to invoke a method or property, all that the client usually knows is the name of the method
(or property). It next calls GetIDsOfNames(), passing it the name of the method to invoke, and gets the
identifier of the method. It can then finally call Invoke() with the appropriate identifier for the method
that it wishes to invoke.

Since this can be a time-consuming process, clients should gather the identifiers early in the life of the
application and cache the identifiers away for later use, or use the type library (if one is available) to get
this information at compile time.

The second parameter, riid, is a reference to an interface. Presently, this parameter is not used and
should be set to IID_NULL. The third parameter, lcid, is the locale identifier and is used in Win32
National Language Support. Applications that don't need to make use of anything that may depend on the
locale can simply ignore the lcid parameter.

Since IDispatch::Invoke() can be used to invoke methods as well as set and/or get properties, the
fourth parameter, wFlags, is a flag that is used by the server to determine the task that the client wants the
server to perform. This parameter can be set to one of four values: DISPATCH_METHOD which means that
the client wants to call a function; DISPATCH_PROPERTYGET or DISPATCH_PROPERTYPUT determines that
the client wants to retrieve or set the value of a property respectively; DISPATCH_PROPERTYPUTREF
determines that the property is being changed by a reference assignment, rather than a value assignment.

The next parameter, pDispParams, is a pointer to a structure of type DISPPARAMS:

struct DISPPARAMS
{
 VARIANTARG* rgvarg;
 DISPID* rgdispidNamedArgs;
 UINT cArgs;
 UINT cNamedArgs;
};

The first member holds the actual parameters that are to be passed to the automation method. You need to
create an array of VARIANTs (one element per parameter) and assign the number of parameters to the
cArgs member. You would create the array of variants as follows:

VARIANT vars[3];
DISPPARAMS dp; // parameter array
dp.rgvarg = vars;
dp.cArgs = 3;

What's this VARIANT data type that we're using here? Since Invoke() has no way of determining what
kind of parameters you'll be sending to the automation methods, or what kind of properties you'll be
getting or setting, it needs to pass data around in a generic manner. It does this with the assistance of a
structure called a VARIANT, a structure into which many different types of data can be packed, and which
allows OLE to pass around values without worrying about their type. Each parameter sent to the
Invoke() function is sent as a VARIANT, but before I give you an example of how it can be done, let's first
take a look at the VARIANT struct:

struct tagVARIANT{
 VARTYPE vt;
 WORD wReserved1;
 WORD wReserved2;

 WORD wReserved3;
 union
 {
 long lVal; /* VT_I4 */
 unsigned char bVal; /* VT_UI1 */
 short iVal; /* VT_I2 */
 float fltVal; /* VT_R4 */
 double dblVal; /* VT_R8 */
 VARIANT_BOOL bool; /* VT_BOOL */
 SCODE scode; /* VT_ERROR */
 CY cyVal; /* VT_CY */
 DATE date; /* VT_DATE */
 BSTR bstrVal; /* VT_BSTR */
 IUnknown* punkVal; /* VT_UNKNOWN */
 IDispatch* pdispVal; /* VT_DISPATCH */
 SAFEARRAY* parray; /* VT_ARRAY|* */
 unsigned char* pbVal; /* VT_BYREF|VT_UI1 */
 short* piVal; /* VT_BYREF|VT_I2 */
 long* plVal; /* VT_BYREF|VT_I4 */
 float* pfltVal; /* VT_BYREF|VT_R4 */
 double* pdblVal; /* VT_BYREF|VT_R8 */
 VARIANT_BOOL* pbool; /* VT_BYREF|VT_BOOL */
 SCODE* pscode; /* VT_BYREF|VT_ERROR */
 CY* pcyVal; /* VT_BYREF|VT_CY */
 DATE* pdate; /* VT_BYREF|VT_DATE */
 BSTR* pbstrVal; /* VT_BYREF|VT_BSTR */
 IUnknown** ppunkVal; /* VT_BYREF|VT_UNKNOWN */
 IDispatch** ppdispVal; /* VT_BYREF|VT_DISPATCH */
 SAFEARRAY** pparray; /* VT_BYREF|VT_ARRAY|* */
 VARIANT* pvarVal; /* VT_BYREF|VT_VARIANT */
 void* byref; /* Generic ByRef */
 };
};

The vt member determines the type of data being sent to the Invoke() function. The comment next to
each element in the union indicates what the value of vt should be when you use that element. For
example, if the data type is a Boolean value, the vt member should contain VT_BOOL.

As you can see, there's a type in the union for just about any kind of value you would want to send to an
automation method. Packing data in this way means that the server must unpack the data before calling
the automation functions, which expect to see the data in their natural form.

When the automation function returns, it needs to return its value as a VARIANT to the client side. You'll
notice that this is done via one of Invoke()'s arguments, rather than using the function return value itself.
This is because the function return is used to determine whether the call to Invoke() worked, rather than
the result of the automation function.

The result returned by the automation function is passed back in the sixth parameter of the Invoke()
function, the pVarResult field. The client can then check the vt field of the VARIANT and pull out the
appropriate value from one of the union members.

The last two parameters of Invoke()are used to handle errors and exceptions that can occur in the server
object.

The most important thing to remember when writing your server, is that you must devise a way to map
incoming identifiers to properties or methods. You must use the wFlag parameter to determine whether
the call is being made for invoking a method or requesting to set or get a property.

When the server application receives parameters, it must convert the VARIANTs to the native data type
before passing the value to the actual automation method being called. It can do this using one of the

macros supplied by Microsoft. For example, if I want to extract an integer from a VARIANT, I could code it
like this:

int nFirstParam = V_I4(var);

If I want to return a value back to the caller, I could set the pVarResult parameter as follows:

V_VT(pVarResult) = VT_I4;
V_I4(pVarResult) = nSomeValue;

These macros are just shorthand, used to access the fields of the VARIANT, so I could have written:

pVarResult.vt = VT_I4;
pVarResult.lVal = nSomeValue;

There are a number of functions to deal with VARIANTs, including VariantInit(), VariantClear()and
VariantChangeType(). VariantInit() initializes a VARIANT structure. VariantClear() empties a
VARIANT variable. You should always empty out a VARIANT before destroying it, since the VARIANT might
be carrying a string or a safe array, in which case the data might need to be deallocated by the system.
VariantChangeType() is used to change one type to another; for example, an integer to a floating point
value.

Note that there is also an MFC class that wraps a VARIANT, called COleVariant, which provides
numerous constructors, as well as overloaded comparison and assignment operators.

To send the parameters to the actual automation method, you'll have to traverse through the parameters in
the DISPPARAMS array. This can easily be performed by calling the DispGetParam() API function:

DispGetParam(DISPPARAMS FAR* pdispparams,
 UINT position,
 VARTYPE vtTarg,
 VARIANT FAR* pvarResult,
 UINT FAR* puArgErr);

This function requires that you pass it the DISPPARAMS array along with the index of the element you wish
to retrieve. The function returns the value at the location in a VARIANT that you provide.

One final word: in order to implement the IDispatch::GetIDsOfNames() function, you simply examine
the list of dispatch methods and/or property names requested and fill the provided array with the DISPIDs
of the methods and properties.

Since this is an MFC book, I won't give you any sample code for doing this kind of stuff by hand.
Furthermore, I see no point in reinventing the wheel when MFC already does such a great job of
implementing OLE Automation. In the next section, we'll find out exactly how MFC does this and how
we can make use of it. All of this explanation will help us to understand the big picture later in this
chapter, as well as in the next chapter, where we'll actually make use of OLE Automation to create a
business object model with metadata and dynamic data object creation from information stored in a
database.

OLE Automation Using MFC
In the last section, I explained the internals of OLE Automation and discussed the steps you need to
follow to implement OLE Automation in your server application. Basically, the server needs to expose
objects that support IUnknown and IDispatch. The IDispatch interface will be called to invoke
automation methods and properties exposed by the automation object. We also learned that a single server
can expose several objects, each containing their own methods and properties.

Believe it or not, the steps necessary to implement automation using COM-level techniques are just too
hard! MFC provides a better solution with the help of ClassWizard and a new kind of map, called a
dispatch map. The COM support is built into the CCmdTarget class and, therefore, allows any class that
is derived from CCmdTarget to act as an OLE Automation class.

Implementing a Server
In earlier chapters, we learned that the CCmdTarget supports IUnknown. CCmdTarget also contains support
for IDispatch. If you remember from our earlier chapters, we used several MFC macros to provide
nested classes within our CCmdTarget derived classes. We simply derived a class from CCmdTarget and
used the BEGIN_INTERFACE_PART() and END_INTERFACE_PART() macros to define our interface.
Therefore, I'd expect to look in MFC's header files for the CCmdTarget class and see a
BEGIN_INTERFACE_PART() and END_INTERFACE_PART() for IDispatch. Surprisingly enough, there's no
mention of these macros in the class. What gives?

The answer is hidden in a class called COleDispatchImpl. This class implements the IUnknown members
as well as the IDispatch members, but MFC must still provide some glue between CCmdTarget and
COleDispatchImpl, right? How does it do that? With a CCmdTarget function, named
EnableAutomation().

MFC's Automation Code
To provide automation for a server's automation class, you'll need to call EnableAutomation()from the
class' constructor. Here's is what the EnableAutomation() function looks like:

void CCmdTarget::EnableAutomation()
{
 // construct an COleDispatchImpl instance just to
 // get to the vtable
 COleDispatchImpl dispatch;
 // copy the vtable (and other data) to make sure it
 // is initialized
 m_xDispatch.m_vtbl = *(DWORD*)&dispatch;
 (COleDispatchImpl)&m_xDispatch = dispatch;
}

You can find this in \Msdev\Mfc\Src\Oledisp1.cpp.

Pretty weird, wouldn't you say? Why would they declare a variable on the stack, grab its address, cast the
address to a DWORD pointer and then dereference it as a DWORD? Maybe they want to get at
COleDispatchImp's virtual function table. The m_xDispatch member is of type XDispatch, which is a
nested class within CCmdTarget. The structure looks like this:

struct XDispatch
{
 DWORD m_vtbl;
 size_t m_nOffset;
} m_xDispatch;

Initially, CCmdTarget's constructor sets m_xDispatch.m_vtbl equal to zero. Therefore, by default, there's
no automation support because CCmdTarget doesn't have an IDispatch to return from
IUnknown::QueryInterface(). As soon as you call EnableAutomation(), CCmdTarget gains access to
an IDispatch vtable and can, therefore, return a pointer to its implementation.

How is automation handled inside CCmdTarget? If you look inside Cmdtarg.cpp, you'll find the following
code:

const AFX_INTERFACEMAP_ENTRY CCmdTarget::_interfaceEntries[] =
{
 INTERFACE_PART(CCmdTarget, _afx_IID_IDispatch, Dispatch)
 { NULL, (size_t)-1 } // end of entries
};

What does all this mean? A class contains an _interfaceEntries array which defines the COM
interfaces supported by the class in the form of an AFX_INTERFACEMAP_ENTRY structure. This is a structure
which holds a pointer to an interface ID and its offset from the IUnknown entry; in the case of
CCmdTarget, it consists of one entry for IDispatch. The INTERFACE_PART() macro will convert the word
Dispatch to the class name m_xDispatch, which will either be NULL or contain a pointer to the vtable of
the COleDispatchImpl class, depending on whether or not the class supports automation.

In addition to EnableAutomation(), CCmdTarget has a few other useful functions.
GetIDispatch()allows you to retrieve the IDispatch pointer from a CCmdTarget (or a derived class)
object. FromIDispatch() goes the other way around. Given an IDispatch, FromIDispatch() can return
the associated CCmdTarget object, or NULL if the IDispatch isn't associated with a CCmdTarget object.

Maps, Maps, and More Maps
If you don't know anything about the MFC team, you should learn this: they love creating maps from
macros. There are more macros in MFC than in any class library I've ever seen, but at least the team has
been consistent. They use maps for messages to determine which functions should be called and to
perform interface lookups. If they use maps in MFC for just about everything, why should automation be
any different? As a matter of fact, it's not.

MFC uses dispatch maps to perform the lookup for IDispatch::GetIDsOfNames() and
IDispatch::Invoke(). Just like message maps, dispatch maps are implemented in the form of a table
with rows and columns. Each row represents a method or property of the automation class, and each
column contains information concerning the method or property. For example, if a client calls
GetIDsOfNames(), MFC can simply look up the name in the table and return the associated identifier. If a
client calls Invoke(), MFC can look up the identifier in the table and call the associated method or
property.

When you create a message map in your application, you usually have to use DECLARE_MESSAGE_MAP in
the header file and the associated macros, BEGIN_MESSAGE_MAP and END_MESSAGE_MAP, in the
implementation file, respectively. Dispatch maps are no different. You use DECLARE_DISPATCH_MAP in the
header file and BEGIN_DISPATCH_MAP and END_DISPATCH_MAP in the implementation file.

Just as you fill in the message map with macros to bind the messages to functions, you must do something
similar to bind the methods and properties to DISPIDs. The macros for automation are shown in the
following table:

Macro Name Description
DISP_DEFVALUE Makes a property the default for the class.
DISP_FUNCTION Defines an automation function.
DISP_PROPERTY Defines an automation property using a member variable.
DISP_PROPERTY_EX Defines a property, plus the Get/Set functions used to access it.
DISP_PROPERTY_NOTIFY Defines a property, plus a notification function which gets called

when it's changed.
DISP_PROPERTY_PARAM Defines a property, using Get/Set functions and an index

parameter.

Let's examine each of these in turn:

DISP_DEFVALUE
This macro makes one property the 'default property' for the class, the one which is retrieved or set when
a reference to an object doesn't specify a method or property. The macro looks like this:

DISP_DEFVALUE(theClass, szPropName)

DISP_FUNCTION
You use DISP_FUNCTION to add an automation method to the appropriate automation class. The macro
prototype looks like this:

DISP_FUNCTION(theClass, szExternalName, pfnMember, vtRetVal, vtsParam)

The macro takes several parameters. First is the name of the CCmdTarget-derived class that represents the
automation class. The second parameter is the external name of the method as seen by automation
controllers (such as Visual Basic). The third parameter is the name of the C++ member function which
represents the automation method (this is the function that is actually called when a controller calls the
IDispatch::Invoke() function). The fourth parameter determines what type of value is returned from
the C++ member function; it's a variant tag, of type VARTYPE, so it can take values such as VT_I2 (a
short), VT_I4 (a long) and VT_VARIANT (a VARIANT).

The last parameter to the DISP_FUNCTION macro is a list of one or more variant tag strings to represent the
types of the parameters passed to the actual automation method. The reason they are strings and not
integers (like the variant tags used for the return type) is because there's no way for MFC to know how
many parameters a given function will have. A macro can only be defined with a fixed number of
parameters, so to allow for any number of function parameters, the last macro parameter is a string that
MFC splits apart to get at each of the function's parameter types.

It's easy to specify the parameter list because adjacent string literals are concatenated if nothing appears
between them. Thus, a list of string literals separated by nothing more than white space is, in fact,

equivalent to a single string. This is ANSI standard behavior, although it's not used very often. For
example, this line of code results in strMyString having a value of "Johnny & Matt & Jerry":

CString strMyString = "Johnny &" "Matt &" "Jerry";

In passing the strings to the last parameter of the DISP_FUNCTION, you accomplish the same thing, except
you use the string constants defined by MFC. You can find a list of these string constants (which all begin
with VTS_) in the online documentation provided with VC++. For example, if I want to pass three
parameters to my automation method, a Boolean, a string and an integer, I'd write the entry like this:

DISP_FUNCTION(CMyClass, "aFunc", Func, VT_I2, VTS_BOOL VTS_BSTR VTS_I4)

This creates a string that looks like "\x0B\x0E\x03", since VTS_BOOL represents "\x0B", VTS_BSTR
represents "\x0E" and VTS_I4 represents "\x03". MFC can later parse this string and determine whether
the parameter values passed to the IDispatch::Invoke() function are correct.

DISP_PROPERTY
The next macro, DISP_PROPERTY, is used to expose a property of an automation class. This is the macro
definition:

DISP_PROPERTY(theClass, szExternalName, memberName, vtPropType)

The first parameter is the name of the CCmdTarget-derived class (which represents the automation class).
The second parameter is the name that the automation controllers will use to identify this property. The
third parameter is the name of the data member in the automation class that is set or retrieved when
IDispatch::Invoke() is called. The last parameter is the type of the property. You must pass it one of
the variant tags that we saw earlier.

So, as an example, we might specify,

DISP_PROPERTY(CMyClass, "result", m_Result, VT_I2)

which will provide CMyClass with a property called result, bound to a two-byte integer data member
called m_Result.

DISP_PROPERTY_EX
The DISP_PROPERTY_EX macro is also similar to the DISP_PROPERTY macro. The difference is that this
macro allows you to specify a function that is called to set the value of the property and another function
to return its value. How these are actually implemented is entirely up to you. The property doesn't even
have to be represented by a data member in the automation class; it could be in a database field across the
LAN, for example.

The purpose of this macro is to give you more control over the property. That way, a controller never has
direct control of the internal data representing the property, because it's always your function that is called
to set or return the value. This, of course, is useful for data validation, as well as allowing you to use a
different internal representation of the data than the one you hand out to automation controllers.

The prototype of the DISPLAY_PROPERTY_EX macro is:

DISP_PROPERTY_EX(theClass, szExternalName, pfnGet, pfnSet,
 vtPropType)

So we might use it like this:

DISP_PROPERTY_EX(CMyClass, "value", GetValue, SetValue,
 VT_I2)

DISP_PROPERTY_NOTIFY
DISP_PROPERTY_NOTIFY is very similar to DISP_PROPERTY, except that it allows you to pass it the name of
a function which will be called when the property is changed by the automation controller. This function
should take no parameters and return no value, and will be called immediately after the controller alters
the value of the property, thus allowing the server to be notified automatically of changes.

The prototype of the macro is:

DISP_PROPERTY_NOTIFY(theClass, szExternalName, memberName, pfnAfterSet,
 vtPropType)

So we could use it like this:

DISP_PROPERTY_NOTIFY(CMyClass, "aProperty", m_Prop, PropNotify, VT_I2)

The function void CMyClass::PropNotify() will be called whenever a controller modifies aProperty.

DISP_PROPERTY_PARAM
The last of the entry macros is the DISP_PROPERTY_PARAM macro. Again, this macro is very similar to the
DISP_PROPERTY_EX macro, but it allows you to specify parameters that should be passed to the Get() and
Set() functions. This is the prototype for this macro:

DISP_PROPERTY_PARAM(theClass, szExternalName, pfnGet, pfnSet, vtPropType,
 vtsParams)

If we used the macro like this,

DISP_PROPERTY_PARAM(CMyClass, "aVal", GetVal, SetVal, VT_DISPATCH, VTS_I2
 VTS_I2)

we'd be defining a property aVal, which is of type VT_DISPATCH, and which is accessed by Get/Set
functions, each of which take two parameters of type VT_I2. This would correspond to the function
prototypes:

LPDISPATCH CMyClass::GetVal(short m, short n);
void CMyClass::SetItem(short m, short n, LPDISPATCH newVal);

Now, the bad news is that you must use these macros when you're adding methods and properties to your
dispatch maps. The good news is that if you use ClassWizard, you can get it to do all of the work for you.
It adds the entries to your dispatch maps, creates the function declarations in the header files, adds the
function bodies to your implementation files and keeps the .odl file up to date.

DISPID Assignment
If you've been following along, you should have noticed that these macros don't allow you to specify the
DISPID for the methods or properties. Why is that? It turns out that MFC assigns the DISPIDs
automatically for you, when the IDispatch::GetIDsOfNames() function is called.

When you use any of the above mentioned macros, MFC stores the information as an entry in the dispatch
map. Part of this information includes the DISPID, but MFC sets this member to DISPID_UNKNOWN, which
is -1. Bear in mind that dispatch maps are just like message maps in the sense that, if a method or
property is not found in the most derived class, its parent classes are searched until the hierarchy has been
exhausted, or the method or property is found.

To optimize the performance of IDispatch::Invoke(), MFC uses a pretty slick searching scheme. The
DISPID for each method or property is divided into two words. The upper word determines the dispatch
map that contains the method (the most derived class being zero, and each parent class incremented by
one), and the lower word contains the index in the map of the method or property.

When IDispatch::GetIDsOfNames() is called, MFC returns a DISPID which contains both the index of
the appropriate dispatch map and the index within the dispatch map containing the method or property.
Since each method or property is identified only by its name, GetIDsOfNames() must resolve the name
into its DISPID by performing a search through the dispatch maps. This function might take a few
seconds if the class hierarchy is large and if there are many methods and properties to check. However, by
the time that Invoke() is called, the controller should already have the appropriate DISPID, so the
execution of the method or property will be speedy.

Invoking Automation Methods and Properties Using MFC
When IDispatch::Invoke() is called, MFC's COleDispatchImpl::Invoke() handles the call. The
function uses the high word to go directly to the correct dispatch map. It then uses the low word to jump
directly to the appropriate method or property within the dispatch map. If the entry is a method or a
property with Get() and Set() functions, the functions are executed. If the entry is a plain property (with
no functions for setting or getting it), Invoke() uses another information field (stored in the entry) to
determine the offset from the beginning of the class to set or get the property. This offset field is
initialized when the entry is created using the DISP_PROPERTY macro.

As for the other IDispatch members, Visual C++ 4.x now implements both GetTypeInfo() and
GetTypeInfoCount(). These functions return information based on the type libraries cached or registered
with the server.

The Automation Server
In my own work, I had a situation where I needed to create a server that could maintain information and
share it with several clients at a time. I also wanted to maintain the information within an array inside the
server. The data maintained by the server is never accessed directly by the clients, only by the server, but
the data still needs to be maintained correctly so that all clients can display the data by calling a method in
the server.

I knew that the server wouldn't need to contain a user interface (windows, controls, and so on), so I
thought that putting the code in an in-process server would make the most sense. The problem is that,
since an in-process server is run within the process space of its client, I wouldn't be able to share the data.

If only I could find a way to share the strings with the other clients... then I remembered reading
somewhere that I could share data using memory-mapped files, so I set out immediately to create my in-
process server. You can find the completed server on the CD as TestServ.

Inside InitInstance(), I created and initialized the memory map object using the following code:

BOOL CTestservApp::InitInstance()
{
 AfxMessageBox(_T("InitInstance was just called."));
 // Register all OLE server (factories) as running. This enables the
 // OLE libraries to create objects from other applications.
 COleObjectFactory::RegisterAll();
 m_hFileMap = OpenFileMapping(FILE_MAP_ALL_ACCESS, TRUE, strFileMap);
 if (m_hFileMap == NULL)
 {
 m_hFileMap = CreateFileMapping((HANDLE)0xFFFFFFFF, NULL,
 PAGE_READWRITE, 0, MAP_SIZE, strFileMap);

 if (m_hFileMap == NULL)
 {
 AfxMessageBox(_T("Can't create file mapping object."));
 return FALSE;
 }
 BYTE* lpView = (BYTE*)MapViewOfFile(m_hFileMap,
 FILE_MAP_READ | FILE_MAP_WRITE, 0, 0, 0);
 ((UINT)lpView) = 0;
 UnmapViewOfFile((LPVOID)lpView);
 }
 return TRUE;
}

If the file mapping can't be opened, it must be because it hasn't already been created, so the code here will
make sure that the mapping is both created and opened. Notice that I set the first UINT of data to zero.
This UINT will be used to determine the number of strings within the memory mapped file. Then I simply
close the handle inside of ExitInstance(). Since InitInstance() and ExitInstance()will always be
called for each process that creates an automation object from this server, the server will always be able to
get at the m_hFileMap member and know that it holds the correct value.

AddText() checks the memory-mapped file for the given key. If it finds it, it simply replaces the string
value with the passed in string value. If it doesn't find it, the function adds a new string to the end of the
memory mapped file. This is the code listing for the function:

void CMyObj::AddText(LPCTSTR strKey, LPCTSTR strValue)
{
 CMutex MapMutex(FALSE, strTextMutex);
 MapMutex.Lock();
 CTestservApp* pApp = (CTestservApp*)AfxGetApp();
 BYTE* lpView = (BYTE*)MapViewOfFile(pApp->m_hFileMap,
 FILE_MAP_READ | FILE_MAP_WRITE, 0, 0, 0);
 BYTE* lpTemp = lpView;
 UINT nCount = *((UINT*)lpView);
 // Skip over the count.
 lpView += sizeof(UINT);

 if (lpView != NULL)
 {
 // Search for the string first.
 int nIndex = 0;
 int nBytes = 0;
 BOOL bFound = FALSE;
 while (nBytes < MAP_SIZE && nIndex < nCount)
 {
 if (strcmp((LPTSTR)lpView, strKey) == 0)
 {
 bFound = TRUE;
 // Skip over the key and point right to the value.
 nBytes += strlen((LPTSTR)lpView) + 1;
 lpView += nBytes * sizeof(TCHAR);
 break;
 }
 // Skip this key.
 nBytes += strlen((LPTSTR)lpView) + 1;
 lpView += nBytes * sizeof(TCHAR);
 // Skip this value.
 nBytes += strlen((LPTSTR)lpView) + 1;
 lpView += nBytes * sizeof(TCHAR);
 nIndex++;

 }
 // if we found it,
 if (bFound)
 {
 if (MAP_SIZE <= nBytes + strlen(strValue) + 1 /* for the NULL */)
 strcpy((LPTSTR)lpView, strValue);
 }
 // else add it to the end.
 else
 {
 // Since we didn't find it, we should be pointing right to the
 // next empty spot.
 if (MAP_SIZE >= nBytes + strlen(strKey) + strlen(strValue)
 + 2 /* for the NULLs */)
 {
 strcpy((LPTSTR)lpView, strKey);
 nBytes += strlen((LPTSTR)lpView) + 1;
 lpView += nBytes * sizeof(TCHAR);
 strcpy((LPTSTR)lpView, strValue);
 nCount++;
 ((UINT)lpTemp) = nCount;
 }
 }
 }
 else
 AfxMessageBox(_T("Could not map to view"));
 UnmapViewOfFile((LPVOID)lpView);
 MapMutex.Unlock();
}

This technique works well with values of a fixed size, rather than variable length items like strings. Since
we're dealing with strings, the possibility of data corruption definitely exists, but since the whole purpose
of this exercise is to introduce a few concepts and introduce the techniques, I'll let the potential bugs slip
by for now.

The DisplayText() function opens a view to the memory-mapped file, looks for the given key and
displays the associated value using a message box. Here's the code:

void CMyObj::DisplayText(LPCTSTR strKey)
{
 CMutex MapMutex(FALSE, strTextMutex);
 MapMutex.Lock();

 CTestservApp* pApp = (CTestservApp*)AfxGetApp();
 BYTE* lpView = (BYTE*)MapViewOfFile(pApp->m_hFileMap,
 FILE_MAP_READ | FILE_MAP_WRITE, 0, 0, 0);
 UINT nCount = *((UINT*)lpView);
 // Skip over the count.
 lpView += sizeof(UINT);
 if (lpView != NULL)
 {
 // Search for the string first.
 int nIndex = 0;
 int nBytes = 0;
 BOOL bFound = FALSE;
 while (nBytes < MAP_SIZE && nIndex < nCount)
 {
 if (strcmp((LPTSTR)lpView, strKey) == 0)
 {
 bFound = TRUE;
 // Skip over the key and point right to the value.
 nBytes += strlen((LPTSTR)lpView) + 1;
 lpView += nBytes * sizeof(TCHAR);

 break;
 }
 // Skip this key.
 nBytes += strlen((LPTSTR)lpView) + 1;
 lpView += nBytes * sizeof(TCHAR);
 // Skip this value.
 nBytes += strlen((LPTSTR)lpView) + 1;
 lpView += nBytes * sizeof(TCHAR);
 nIndex++;
 }
 CString str;
 // if we found it,
 if (bFound)
 str = (LPTSTR)lpView;
 else
 str = _T("Key was not found!");
 AfxMessageBox(str);
 }
 else
 AfxMessageBox(_T("Could not map to view"));
 UnmapViewOfFile((LPVOID)lpView);
 MapMutex.Unlock();
}

The in-process server is called Testserv.dll and is registered as TestServ.MyObj, so the client
application (which we'll meet in the next section) can create a server object as follows:

m_Obj.CreateDispatch(_T("TestServ.MyObj"));

The techniques introduced in this section will become very useful in the next chapter, where we'll actually
use automation and in-process servers to implement a complete business object model with metadata and
data objects.

Implementing a Controller
The key to writing a successful automation controller is to know as much as possible about the server
automation classes and their methods and properties. Remember that a single server can expose several
automation classes. These classes are sometimes documented by placing information about them in the
type library files we looked at earlier in the chapter.

Once you determine the automation classes and the methods and properties you want to use, it's time to
write some code. The easiest way involves reading the type library using ClassWizard. ClassWizard will
then generate a class derived from an MFC class named COleDispatchDriver.

This class encapsulates the IDispatch pointer needed to communicate with an automation object. It also
has several functions for locating and creating the object, calling methods of the object and setting or
retrieving properties of the object. These functions include CreateDispatch(), AttachDispatch(),
DetachDispatch(), ReleaseDispatch(), InvokeHelper(), GetProperty() and SetProperty(). We'll
now look briefly at each of these.

There are two versions of CreateDispatch(). One takes a CLSID and (optionally) a pointer to a
COleException object and the second uses the ProgID instead of the CLSID.

BOOL CreateDispatch(REFCLSID clsid, COleException* pError = NULL);
BOOL CreateDispatch(LPCTSTR lpszProgID, COleException* pError = NULL);

The version of CreateDispatch() that receives the ProgID instead of the CLSID simply searches
through the registry for the corresponding CLSID, then calls the other version of the function with that
value. The first version of the function then goes on to call CoCreateInstance() with the CLSID,
retrieving the IDispatch interface from the object and attaching it to the COleDispatchDriver object,
ready to call any methods or properties.

The next function, AttachDispatch(), allows you to attach a COleDispatchDriver (or
COleDispatchDriver-derived) object to an IDispatch obtained from some other source (such as from
another object). The DetachDispatch() function has the opposite effect. Once the interface has been
detached, the connection between the COleDispatchDriver object and the dispatch interface is broken,
so deleting the C++ object will have no effect on the interface or its associated object, for example.

ReleaseDispatch() directs the COleDispatchDriver class to call Release() on the IDispatch
interface attached to the object and stop storing the pointer to IDispatch. (Note the difference between
ReleaseDispatch() and DetachDispatch(). The latter doesn't call Release() on the pointer before
setting it to NULL.) The C++ class is still available and you can call CreateDispatch() or
AttachDispatch() again. Note that ReleaseDispatch() is also called from the object's destructor.

The last three functions are used to invoke functions and properties on the interface pointer attached to the
C++ object. It manages the values passed in and generates VARIANT objects for use by the
IDispatch::Invoke() function in the automation server.
When you use ClassWizard to generate a class based on COleDispatchDriver, you select the Add Class...
From an OLE TypeLib option.

ClassWizard will then allow you to browse for the type library of your choice. Once you select the
appropriate type library, ClassWizard will read through it and display a list of the classes it finds. It then
gives you the option of selecting the ones for which you want to create C++ wrapper classes. These
classes will be generated and derived from COleDispatchDriver and they will also have the appropriate
member functions for calling methods and properties of the automation object. You can then make calls to
the methods and properties of this class, as if you're calling the methods in the automation object directly.
Of course, you'll need to instantiate one with the COleDispatchDriver::CreateDispatch() function
first.

The member functions for each method or property you can call that ClassWizard generates in your class
call COleDispatchDriver::InvokeHelper(), COleDispatchDriver::GetProperty(), or
COleDispatchDriver::SetProperty() with the appropriate parameters. Eventually,
COleDispatchDriver calls IDispatch::Invoke(). Here you can see the type of function that
ClassWizard can generate:

void CMyObj::AddText(LPCTSTR strKey, LPCTSTR strValue)
{
 static BYTE parms[] = VTS_BSTR VTS_BSTR;
 InvokeHelper(0x1, DISPATCH_METHOD, VT_EMPTY, NULL, parms, strKey,
 strValue);
}

This function was generated for the MyObj automation class of the Testserv.dll server. Note that the
function call already has the appropriate parameters and DISPID, and it knows whether it's calling a
method or setting or retrieving a property. The function prototype also has the appropriate parameter
names and types for receiving the values which will eventually get passed on to the automation method.
The values are received in a C++ fashion.

Of course, anything ClassWizard can do, you can do too. You could create a class derived from
COleDispatchDriver yourself and implement the functions for calling the methods and properties inside
them. Maybe you could even call IDispatch::GetIDsOfNames() from within the constructor of the
COleDispatchDriver derived class. You'll have to pick this method of creating your controller if you
don't have a type library to work with. If this is the case, the manufacturer has to at least provide you with
some written documentation for the server. The information should contain the names of the classes
exposed by the server, along with their methods, properties, parameter types, and so on.

The Automation Client

Now that we have enough information about automation controllers, we can concentrate on the client side
of the example that I started in the server section. You can find the completed project on the CD as
TestClnt.

I started out by letting ClassWizard do its thing with the server's type library to generate a class derived
from COleDispatchDriver with the appropriate member functions to represent the methods and
properties of the automation class.

I then instantiated an object, m_Obj, of the derived class in my view class (where I'll be making heavy use
of it):

class CTestClntView : public CFormView
{
protected: // create from serialization only
 CTestClntView();
 DECLARE_DYNCREATE(CTestClntView)
// Attributes
public:
 CTestClntDoc* GetDocument();
 CMyObj m_Obj;
// Implementation
public:
 virtual ~CTestClntView();
 DECLARE_MESSAGE_MAP()
};

I call the CreateDispatch() function from the view's constructor like this:

CTestClntView::CTestClntView()
 : CFormView(CTestClntView::IDD)
{
 ...

 m_Obj.CreateDispatch(_T("TestServ.MyObj"));
}

My view class is derived from CFormView and I used some controls to enter the key and its value, and to
add the text to the server and display the text. If I run several instances of my client, you'll notice that I
can add text values from one client and display the values from another.

The instance on the top added the key and value for "Ken", and the one below was used to enter the key
and value for "Sam", yet they could display the values created by the other as if they had entered it
themselves.

When it's time to invoke methods on the server, I simply call the member functions that ClassWizard
generated for me. Since the object is a member of my view class, when my view is destroyed, the
COleDispatchDriver's destructor is called and the IDispatch interface pointer is released.

OLE Controls
If automation doesn't provide you with enough features for writing software components, you'll have to
move up to the next level: OLE controls (or OCXs, as they have been called for the longest time).

OLE controls are a much more powerful replacement for Windows custom controls and Visual Basic
extensions. This new generation of control is built on top of several OLE interfaces to provide solutions in
very small and fast packages. Each control is usually packaged as a DLL but with an OCX extension. The
control is capable of exposing class factories, its type information, methods, properties, and events it can
fire.

The controls can live with or without a user interface, allowing you to provide a solution, for example, to
read data from an I/O port and generate an event whenever data arrives. You could then drop this control
onto any window, giving the window the ability to read from the particular I/O port. This is just one
example of the power that OLE controls can provide.

Generating one is pretty simple too. You just create a new project using the OLE Control Wizard, select
the appropriate choices and bang, you're done. Then you use ClassWizard to add properties, methods and
events. Add some drawing code and functionality, and you have your control. You can even add property
pages, to be displayed by a client window when the user adding the control to their application wants to
change its properties.

There are now a large number of applications on the market that can host OLE controls. This includes
everything from Access to Visual Basic, and Visual C++ even comes with a test container that allows you
to test your control in the development stage. This can be accessed from the OLE Control Test Container in
Developer Studio's Tools menu.

With Visual C++ 4.x, you can also add OLE controls to your applications, and you get support from MFC
(along with AppWizard and ClassWizard) to provide the necessary code to contain the control within a
CWnd-derived class. Before Visual C++ 4.x, you could have written your own container support, but it
wasn't easy. Now MFC and its related tools make the whole process easy. You just use the Component
Gallery to add a control to your application. Once that's done, you'll even have access to the control from
Developer Studio's control palette, ready to include it in any dialog box. Adding the control to the project
also causes ClassWizard to display the control's receivable events in the message map tab.

Microsoft provides an easy way of adding OLE controls to dialog boxes, but gives very minimal support
for adding them to any other type of window. We'll discuss how we can add this support ourselves. Along
the way, we'll create an OLE timer control and pick up a few more techniques.

OLE Controls and Events
To understand events, let's consider for a second what happens with regular controls. When you have a
control, such as a button, sitting on your window, you usually want to be informed when something you're
interested in happens. For example, if the user clicks the button, you want to be notified so that you can
perform a specific task.

As soon as the user clicks the button, Windows generates a message called WM_COMMAND (this is usually
the message sent whenever a control needs to notify its parent of an event). Window messages usually
carry two pieces of information: a WPARAM and an LPARAM. In the case of the button being clicked, the high

word of the WPARAM contains BN_CLICKED, which identifies what's happened. The low word of the WPARAM
contains the identifier of the button, and the LPARAM contains the window handle of the button.

In your application, you would catch this event by adding an event handler for the Windows message.
Now, when we have an OLE control, we still want to receive events, but since the control and its
container communicate using OLE, window messages don't apply. Somehow, we have to make the OLE
events appear as if they are window messages.

Underneath the covers, the container has to provide an automation object and pass its IDispatch interface
pointer to the OLE control. The automation object's methods should fit the control's requirements (we'll
see how this is achieved a little later). When the control is ready to send an event, it will call the
appropriate method within the container's automation object.

This all starts when you create your control. You use ClassWizard to create the events that the control will
fire. ClassWizard then adds an identifier for the event (similar to the window message ID), and generates
a member function that the control can call whenever it's ready to fire the event.

Once you add an event to the OLE control, ClassWizard generates a function for you. You have the option
of having parameters passed with the event and the event can return a value. Keep in mind that when you
fire an event, you're really calling an automation method in the container application. This function can
receive parameters and return a value, just like any other function.

About the Example Code
The example I chose to demonstrate OLE controls and their containers implements a timer. In my
example, I only wanted one timer resource created, regardless of how many instances of the control were
created. At first, I tried to create an invisible child window of the control's window and receive the timer
messages in the child window, as shown below:

I also created a Win32 event object to signal to other instances of the control when the timer messages
were received. I had the idea that I could initialize a single child window and timer for the first instance of
the control, and every subsequent instance after the first would be signaled via a Win32 event object
whenever the child window received a message.

This worked fine until the container application of the first instance went down. Since the message loop
was owned by the primary thread of the first application to create an instance of the control, when that
application closed down, it took its thread, message pump and timer messages with it.

My next thought was to have a separate 'hidden' application to control the timer messages from its main
window, and pulse an event object whenever the timer messages were received. Then, the first instance of
the control could load the hidden application (which I call the Time-Keeper), and the other instances
would automatically sync themselves to the event. The last instance of the control to be closed would
have to close down the Time-Keeper, so I'd have to keep track of the number of instances with a global
variable within the OLE control. This variable would also need to be synchronized for completeness,

since several threads could potentially access this variable at the same time. The figure below shows the
new layout:

If you look closely at the diagram, you'll notice that I also used multithreading to accomplish the task. I
always say that you should never use multithreading in your application unless it's absolutely necessary.
This is a perfect situation where it is necessary, since the thread must go to sleep and be woken up only
when the event has been signaled. I definitely couldn't put my primary thread to sleep, since I needed that
one for the user interface. So, if anyone was going to sleep, it had to be the secondary thread. (This
reminds me of the problems I sometimes have getting my kids to sleep; I know they wish that they could
get the primary thread, me, to sleep first!)

Don't confuse the event object, which is a Win32 Kernel object, with the events that are fired from a
control to its container, which we'll discuss shortly. The name is the same, but the concepts involved are
slightly different.

The OLE Control
Let's look at some of the issues involved in implementing an OLE control. You can find the code for this
example in \Timer\Timer.mdp on the CD. You'll also find the code for the Time-Keeper in the \Timer\
TimeKeeper subdirectory and a test application that uses the timer control in \Timer\TestBed.

Sending an Event to the Container
I added an event for firing a timer event to the control's container using ClassWizard, without specifying
any parameters or return value. This is the function that ClassWizard generated for me:

 void FireTimer()
 {FireEvent(eventidTimer,EVENT_PARAM(VTS_NONE));}

The function calls COleControl::FireEvent() to fire the actual event. FireEvent() receives the
DISPID of the event to be fired. It then uses this DISPID to determine the actual method that should be
invoked in the container's automation object.

In my example code, I generate the event upon receiving a call from the secondary thread. When I
originally spawn the thread in CTimerCtrl::OnCreate(), I pass it the this pointer of the control's
COleControl class, which the secondary thread later uses to call the class's OnTimer() message. Here's
the code for my secondary thread function:

UINT TimerThread(LPVOID lpTimerCtrl)
{
 CTimerCtrl* pCtrl = (CTimerCtrl*)lpTimerCtrl;
 pCtrl->m_ShutDownEvent.ResetEvent();
 while (TRUE)
 {
 pCtrl->m_TimerEvent.Lock();
 pCtrl->OnTimer(ID_TIMER);
 if (pCtrl->m_bShutDown)
 {
 pCtrl->m_ShutDownEvent.SetEvent();
 break;
 }
 }
 return 0;
}

When the control is shut down, it needs to alert the secondary thread so that the thread shuts down too. I
do this by setting a flag (represented by the m_bShutDown member) which the thread is constantly
checking. Once the primary thread alerts the secondary thread, it goes to sleep until the secondary thread
has received the notification and signals the m_ShutDownEvent object. The primary thread then awakens
and continues with its shutdown process.

I gave the individual controls the power of setting their own intervals. As soon as they receive notice of
the timer event, they check their internal interval value. If this has been reached, an event is fired to the
container. Take a look at the following code:

void CTimerCtrl::OnTimer(UINT nIDEvent)
{
 DWORD dwNew = GetTickCount();
 if ((dwNew - m_dwOld) >= (DWORD)m_nInterval)
 {
 FireTimer();

 m_dwOld = dwNew;
 InvalidateControl();
 }
 COleControl::OnTimer(nIDEvent);
}

m_nInterval is a property of the control, which can be set via the control's exposed properties, either
through code or via the control's property sheet.

There's still a piece to this puzzle that is missing. How does the container know what methods it should
implement, and how does it know the number of parameters and their types? To answer this question, we
need to look at IConnectionPoint interface and its sidekick, the IConnectionPointContainer interface.
We won't be looking at it in very great detail, because, luckily, a lot of the work is done for us.

The Connection Point Interfaces
When OLE was first created, an interface called an advise sink was put together. This interface allowed
an object to notify its client of any changes to its data. The problem with the advise sink technology is
that it's not flexible, since interfaces usually are static by nature (meaning that their methods never
change). To extend the advise sink interface, you'd have to derive a class from the advise sink interface
(IAdviseSink) and implement any new functions.

Imagine if every control that wanted to send events or notifications to the containers required the
container to derive from the advise sink interface for each and every control. We'd have to implement
thousands of advise sink derived interfaces within our containers (it would be havoc).

Its successor, the connection point, is much more flexible, since it just defines what possible events the
container is interested in receiving. This is done using automation in reverse, with the container
implementing methods and properties which are called by the control. So, if the container is interested in
receiving events or notifications, it needs to implement some or all of the automation methods, implement
an IDispatch to call the appropriate function when its IDispatch::Invoke() function is called and
basically provide the glue between the automation interface and functions.

The control is said to be the source of the connection point since it originates the outgoing interface call
to the container's automation method. The container is said to be the sink, since it creates the automation
object containing the IDispatch interface. Each set of functions are said to be one connection point. You
can have as many connection points as you wish. Incidentally, connection points are a general extension
to COM, so you're not restricted to using them just in OLE controls.

In MFC, all controls implement two connection points. One is used for the events that the control can fire,
and the other is used for notifications that can be sent to a container when a property of the control has
changed.

Connection points are implemented by two interfaces: IConnectionPoint and
IConnectionPointContainer. The connection point container interface manages a list of points to which
the container would like certain interfaces to connect (pass it an IID of an interface) and the
IConnectionPointContainer will pass back the address of a connection point object that wants to talk to
that particular interface. The container also implements a method to allow callers to enumerate all the
connection points it supports.

The connection point interface defines several methods, the most important of which are Advise() and
Unadvise(). Advise() is called by the interface implementor (the sink) to connect the interface
implementation to the connection point, and returns a handle which identifies the connection (because
there might be more than one active at a time). If the Advise() fails, the handle is returned as zero.
Unadvise() is used to break the connection.

The Container
Just as the control needs to support several interfaces, the container has a few interfaces of its own that
must be supported to make the marriage work. In MFC, these interfaces are handled by the
COleControlSite class which implements the following interfaces:

IOleClientSite
IOleInPlaceSite
IOleControlSite
IDispatch (for events)
IDispatch (for properties)
IPropertyNotifySink

Generally speaking, this class is hidden from you, as MFC wants to make OLE controls as simple to use
as possible, so ClassWizard will provide you with classes and functions to use which hide the complexity.
If you look under the surface, though, you'll find that COleControlSite is the interface through which a
container communicates with an OLE control.

The container's dispatch interface for receiving events is implemented within COleControlSite as a
nested class with a class name of XEventSink and represented by a member called m_xEventSink. This is
the member that will eventually be passed to the control so that the control can call the container when an
event occurs.

This event sink is nothing more than an IDispatch implementation and, as we've already seen,
IDispatch interfaces are handled by dispatch maps in MFC. In fact, events are handled by a variation on
this theme called, you guessed it, an event map (yes, another map and more macros, which we'll meet
shortly). Event maps are built into CCmdTarget, so that any class derived from CCmdTarget can act as an
event sink, and you'll find that when a control issues an event, the event ends up being processed in
CCmdTarget::OnEvent().

This function performs a lookup in the event map and executes the appropriate method if an entry exists
for it. Just as you don't have to respond to every possible Windows message, you don't have to respond to
every event either. When the lookup is performed, if there are no entries for the event identifier,

OnEvent() simply returns.

Using an OLE Control
Adding an OLE control to a dialog box or a form view is a piece of cake, but if you try adding one to any
other type of window, you'll have to implement a lot of code yourself, since ClassWizard won't give you
much help.

First of all, you'll need to make sure that your control is registered in the system's registry. This will help
the Component Gallery identify any OLE controls. Then you can use Component Gallery to insert a
control into your project. ClassWizard will prompt you for the classes it wants to add to your project (this
is very similar to adding wrapper classes for automation classes). The control's main class will be derived
from CWnd, since this class now has support for implementing OLE controls in your projects.

With this done, it's simple to add the control to a dialog by drawing it on to the dialog with Developer
Studio's dialog editor. Since I derived my view's class from CFormView, I found it easy to add the proper
support for the OLE control. All I did was bring up the associated dialog for the form view and add the
control to the screen.

Once I'd added the control to the dialog box, I used ClassWizard to add any needed variables and view the
events for the control. Here you can see what ClassWizard showed me when I selected the control's
identifier in the Message Maps tab:

I can then select and add member functions to support any of the events in the selected class. ClassWizard
takes care of providing the map entry in the event map, and so on. This is too easy. But what if I want to
place my control in a window that isn't based on a dialog template?

Using an OLE Control in Other Types of Window
Once you've gone through the steps of creating the necessary classes using Component Gallery, you can
add an instance of the control to your windows by creating an instance of the control's main class (in my
case, CTimer). If I wanted to do this, I would have a data member in my CWnd-derived class like this:

CTimer m_ctlTimer;

As with all CWnd-derived classes, creating a window (which is what the control is), requires that you
create the C++ object and then the Windows object. You do this by calling the CWnd::Create() function
like this:

m_ctlTimer.Create(NULL, WS_VISIBLE, CRect(10, 10, 100, 100), this,
 IDC_TIMER);

The first parameter is a title for the control (if any), the second is the window styles, the third is the
position and size of the control, the fourth is the parent window of the control, and the last (as with any
control) is the identifier.

This creates and displays the control, but there's still something that we must do: respond to events. How
do we do that if we can't use ClassWizard? The answer is that we must do it by hand, or create a fake

dialog box to include the control and then copy and paste the entries from the dialog's class to the real
window's class.

If you choose to roll it by hand, you'll have to add an event sink to the class and the member functions
that will respond to the events. Adding the event sink map is really not that difficult. You simply add the
DECLARE_EVENTSINK_MAP macro to the class' header file and use the BEGIN_EVENTSINK_MAP and
END_EVENTSINK_MAP macros in the implementation file. In between, you fill in the event sink entries.

You perform this last step with the ON_EVENT macro:

ON_EVENT(theClass, id, dispid, pfnHandler, vtsParams)

The macro takes the following as parameters:

The class that contains the event sink
The control's identifier
The dispatch identifier of the event
The member function that should be called when the event occurs
The signature of the event handler specified using variant tag strings (as in the automation section)

Here's an example of how the macro is used:

ON_EVENT(CMyWnd, IDC_MYOLECONTROL, 1, OnMyEvent, VTS_BOOL);

As with automation, the best place to look for the information you need is in the associated type libraries,
which should be supplied with the control. Again, you can use Ole2vw32.exe to locate and display the
type information for the control, only this time, you'll only be searching for the objects with the OLE
control icon next to the
items.

Summary
In this chapter, we've seen OLE Automation and OLE controls in action and seen how these technologies
provide an alternative to the proliferation of custom interfaces. Hopefully, you've been convinced of the
importance and versatility of OLE by now, but just in case you haven't, we'll drive the point home in the
next chapter when we examine how OLE Automation can be coupled with ODBC to provide a powerful
data warehouse.

OLE and ODBC
In this chapter we're going to examine how we can improve on MFC's ODBC classes to provide dynamic
querying, as well as how we can use them to create a data warehouse. We'll be covering some pretty
advanced topics, such as building component objects at run time, object-oriented architectures and
metaclasses, so you'll need a thorough understanding of SQL, the ODBC classes and OLE Automation in
order to get the most from this chapter.

If you need a bit of revision in the database area, you should be able to find enough basic information in
the documentation supplied with Visual C++ to get you by, or you might like to refer to Beginning Visual
C++ 4 or The Revolutionary Guide to MFC 4 Programming with Visual C++ (both from Wrox Press) for
information on using MFC's database classes. For a complete run-through of SQL, check out Instant SQL
Programming (also from Wrox Press). You can find information about COM and OLE in previous
chapters of this book.

Dynamic Recordsets
Although MFC database classes have a lot of functionality, there are one or two areas that could use some
improvement. My biggest quarrel has been CRecordset's lack of dynamic information. What do I mean
by dynamic information? Well, as you probably know, when you create a CRecordset-derived class using
ClassWizard, you need to select the data source on which it will act. This adds member variables to the
class that represent fields (or columns) in the database and sets up the record field exchange (RFX)
macros for these members.

This is fine for a data source with a well-defined and unchanging structure, but let's say I have a database
table that frequently has its schema changed, or I want to create an application that can browse any data
source. Using the standard CRecordset-derived class, I'd have to provide static information about the
table and its fields, along with variables to hold the data as I move from field to field. I'd even have to
provide the name of the table. This just wouldn't be possible for an arbitrary or changing data source.

So, how do we make old, static MFC perform some new tricks for us? The answer is to extend the
CRecordset class. Fortunately, since MFC exposes the ODBC handles and provides a number of virtual
functions, we can make use of these to extend the class to do whatever bidding we see fit.

With a little work and the help of our newly extended recordset class, we could set up an application that
allows the user to select both a data source and a SQL statement to execute against it at run time. We
could then display the information requested by the user in the SQL statement, as well as asking the
recordset how many columns came back and the name and type of each column. For example, our
application's users could simply type:

SELECT * FROM Customers

They would get back information about all the rows and all the columns in the Customers table.

Providing a Dynamic Recordset
As it turns out, we had a strong need for such a dynamic recordset class in my office. One of my
colleagues (thank you, Philip Jacobs) needed to call various stored procedures from his front-end
Windows application. The stored procedures resided in a LAN-based Sybase SQL Server and returned

various pieces of information. Although the CRecordset class can be told to fire off stored procedures and
return the procedures' results, the code for the stored procedures could change. In my office, this meant
that the fields returned by the stored procedures did, in fact, change frequently. Using only the standard
CRecordset would have meant that my colleague would often have to change his code to support the
presence of new columns (or the removal of old ones) in the results of the stored procedures.

Clearly, we needed a new class, so mapping the requirements was pretty easy; we needed to build a class
that is derived from CRecordset and that provides storage for cursors in the usual way (as CRecordset
already does). In addition, the recordset should not have to be told what fields will be coming back. It
should react dynamically and provide storage for the data, regardless of the number of columns and rows
returned from the query. Furthermore, the query should be able to handle direct SQL statements, as well
as calling stored procedures.

Keep in mind that MFC has strict syntax requirements for stored procedures. The SQL statement must be
enclosed in curly braces and the call keyword must be used. For example:

"{call MyStoredProc 1010, '3/25/95', '3/25/96'}"

Implementation
My colleague has allowed me to reuse the C++ class he developed to fulfill these requirements in this
chapter to show you exactly how to extend the ODBC classes. I'll explain what it took to build a class,
called CVarRecordset, which is derived from CRecordset.

There are basically three functions that you would normally override for any MFC CRecordset-derived
class: GetDefaultConnect(), GetDefaultSQL() and DoFieldExchange().

virtual CString GetDefaultConnect();
virtual CString GetDefaultSQL();
virtual void DoFieldExchange(CFieldExchange* pFX);

The framework calls the GetDefaultConnect() function to get the default connect string for the data
source on which the recordset is based. GetDefaultSQL() is called to get the default SQL statement on
which the recordset is based. This might be a table name or a SQL SELECT statement.

DoFieldExchange() is called by the framework to automatically exchange data between the field data
members of your Recordset Object and the corresponding columns of the current record on the data
source. It also binds your parameter data members (if there are any), to parameter placeholders in the
SQL statement string for the recordset's selection. The exchange of field data, called record field
exchange (RFX), works in both directions; from the Recordset Object's field data members to the fields
of the record on the data source, and from the record on the data source to the Recordset Object.

The only action you must normally take to implement DoFieldExchange() for your derived recordset
class is to create the class with ClassWizard and specify the names and data types of the field data
members. When you declare your derived recordset class with ClassWizard, the wizard writes an override
of DoFieldExchange() for you, which resembles the following:

void CCustomerSet::DoFieldExchange(CFieldExchange* pFX)
{
 //{{AFX_FIELD_MAP(CCustomerSet)
 pFX->SetFieldType(CFieldExchange::outputColumn);
 RFX_Text(pFX, "Name", m_strName);
 RFX_Int(pFX, "Zipcode", m_nZipcode);

 //}}AFX_FIELD_MAP
}

DoFieldExchange() is very similar to DoDataExchange() for dialogs. So similar, in fact, that it also has a
set of exchange functions to deal with moving data from the cursor to data members within the recordset
class. However, the recordset class will normally only hold one record at a time. This means that you
must call one of the movement functions to interact with data of other records.

Whenever any of the movement functions are called, they usually result in a call to a virtual function
named Move().

virtual void Move(long lRows);

The lRows parameter is used internally by the function to determine how many records to move forward
or backward. A negative number tells the function to move backward. When you call MoveNext()for
example, it, in turn, calls Move(), passing it 1 for the lRows parameter. As you'll see, we'll also need to
override this function to provide the features that we need.

The CVarRecordset class is implemented so that you can either derive your own classes from it (for
example, if you want to bind parameters) or create CVarRecordset objects directly (without having to
derive a class) from it.

Since CVarRecordset is going to need to store and supply all the necessary information about the
recordset, it features a number of data members and access functions. The data members are shown
below, along with a description (each has a corresponding access function that we won't show here). Note
the use of the array classes. These are particularly useful as they're easily resizable, which is an important
feature, since we don't know in advance how much data they'll need to hold.

private:
 SWORD m_nCols; // Number of columns in the result set
 CWordArray m_wTypeArray; // Type of each column
 CWordArray m_wScaleArray; // Scale of each column
 CWordArray m_wNullableArray; // Nullable flag of each column
 CDWordArray m_dwPrecArray; // Precision of each column
 CStringArray m_strColNameArray; // Name of each column
 CStringArray m_strTypeNameArray; // Type name of each column
 CStringArray m_strResultArray; // Current row's results

The class automatically determines the number of result columns and their attributes (names, types, and
so on) in an override of another virtual function, called PreBindFields() (this one has no
implementation in the CRecordset class).

PreBindFields() is called only once when you invoke your SQL command. If you derive your own class
from CVarRecordset and you need to override PreBindFields(), you must call the base class function
(CVarRecordSet::PreBindFields()) from within your override to retain CVarRecordset's functionality.

To make this all work, you must tell MFC that you'll only move in one direction as you traverse through
the records. You do this by calling the CVarRecordset::Open() function with the first parameter
(nOpenType) equal to CRecordset::forwardOnly.

CVarRecordset supports all the SQL statements that the CRecordset class does, except for table names.
For example, if you had a CRecordset with a SQL statement of TableName you would need to change it
to SELECT * FROM TableName to use a CVarRecordset. This is because the MFC code requires that at
least one result field be bound if plain table names are used. Table names are normally returned from the

CRecordset::GetDefaultSQL() function. MFC will attempt to call DoFieldExchange() and expect to
find some fields that it can bind to the SQL statement, which is not what you want for a dynamic
recordset.

A Close Look at the Code
Let's start by examining the code for the three functions GetDefaultConnect(), GetDefaultSQL() and
DoFieldExchange():

CString CVarRecordset::GetDefaultConnect()
{
 return "";
}
CString CVarRecordset::GetDefaultSQL()
{
 return "";
}
void CVarRecordset::DoFieldExchange(CFieldExchange* pFX)
{
 //{{AFX_FIELD_MAP(CVarRecordset)
 //}}AFX_FIELD_MAP
 pFX->m_bFieldFound = TRUE; // kludge
}

Quite simple, isn't it? The code didn't have to be very extravagant for these three functions. It just had to
make MFC think that everything is as usual. That is the reason why we set the m_bFieldFound member of
the CFieldExchange() class to TRUE. It makes MFC think that all of the fields have been bound as usual,
when in reality there are no bound fields.

The next function we'll examine is CVarRecordset::PreBindFields():

void CVarRecordset::PreBindFields()
{
 RETCODE nRetCode; // SQL function return code
 SWORD i; // loop counter
 char szColName[MAX_COLNAME+1]; // col name
 char szTypeName[MAX_COLNAME+1]; // col type name
 SWORD cbColName; // num of bytes in szColName
 SWORD fSQLType; // SQL data type
 UDWORD cbPrec; // column precision
 SWORD cbTypeName; // num of bytes in szTypeName
 SWORD cbScale; // column scale
 SWORD fNullable; // column nullable flag
 // Determine the number of columns
 AFX_SQL_ASYNC(this, ::SQLNumResultCols(m_hstmt, &m_nCols));
 if (!Check(nRetCode))
 ThrowDBException(nRetCode);
 // Size the column descriptor arrays
 m_wTypeArray.SetSize(m_nCols);
 m_wScaleArray.SetSize(m_nCols);
 m_wNullableArray.SetSize(m_nCols);
 m_dwPrecArray.SetSize(m_nCols);
 m_strColNameArray.SetSize(m_nCols);
 m_strTypeNameArray.SetSize(m_nCols);
 m_strResultArray.SetSize(m_nCols);
 // Get the column descriptor information for each column.
 // Note that in CVarRecordset references to columns are
 // zero-based; however, in ODBC they are one-based (column
 // zero has a special meaning in ODBC).

 for (i = 0; i < m_nCols; i++)
 {
 AFX_SQL_ASYNC(this, ::SQLDescribeCol(m_hstmt, i+1,
 (UCHAR far *)szColName, MAX_COLNAME, &cbColName, &fSQLType,
 &cbPrec, &cbScale, &fNullable));
 if (!Check(nRetCode))
 ThrowDBException(nRetCode);
 AFX_SQL_ASYNC(this, ::SQLColAttributes(m_hstmt, i+1,
 SQL_COLUMN_TYPE_NAME, (UCHAR far *)szTypeName,
 sizeof(szTypeName), &cbTypeName, 0));
 if (!Check(nRetCode))
 ThrowDBException(nRetCode);
 m_wTypeArray[i] = fSQLType;
 m_wScaleArray[i] = cbScale;
 m_wNullableArray[i] = fNullable;
 m_dwPrecArray[i] = cbPrec;
 m_strColNameArray[i] = szColName;
 m_strTypeNameArray[i] = szTypeName;
 }
}

This function is called by MFC's implementation of the CRecordset::Open() function immediately after
executing the query, but before fetching the data. This makes it the perfect place to determine the number
of result columns and their attributes.

The code here is very simple. The function starts by calling SQLNumResultCols() to determine the
number of columns returned. Next, it initializes the arrays which will hold the information returned from
the query.

Once the initialization has been performed, we're ready to begin reading in the data returned from the
query. The first thing we must do is to find out more about the columns returned. We want to know the
name of the column, the precision and scale of the column, and whether or not the column is nullable (as
used by databases, not C++). This information is easy to get at with the SQLDescribeCol() function,
which returns the information just described.

The SQLColAttributes() function allows us to ask the column for its type so that we know how to treat
the data if we need to do anything with it. The value will come back as one of several possible ODBC
data type values. All of this information is then simply stored away for later use.

Notice that I used the AFX_SQL_ASYNC macro which makes sure that no more than one call goes out at a
time to the ODBC API. In other words, since ODBC can work asynchronously, you could potentially
make a call to ODBC which will return immediately before the requested data has come back from the
server. If the application made another asynchronous call while still waiting for the data, this could lead to
problems. The AFX_SQL_ASYNC macro determines whether another call is still out there, and if there is,
throws an appropriate exception.

You can find more information on the AFX_SQL_ASYNC macro and the SQLxxx() functions in the
documentation supplied with VC++.

The last function we need to look at is the implementation of the Move() function. As I said before, this
function is called either directly or via one of the other movement functions (such as MoveNext() or
MovePrev()) to fetch the data for a different record and place it in the member variables provided by the
recordset. However, since we don't know ahead of time what type of data or the number of columns we're
getting, we need to provide our own implementation for the Move() function. Here is the code
implemented for the CVarRecordset::Move() function:

void CVarRecordset::Move(long lRows)
{
 RETCODE nRetCode; // SQL function return code
 SWORD i, j; // loop counters
 char szData[MAX_COLNAME+1]; // Data buffer
 SDWORD cbData; // Num of bytes returned in data buffer
 // Row positioning.
 // Only call the CRecordset::Move function if result
 // columns are defined. Will GPF if m_nCols == 0.
 if (m_nCols > 0)
 CRecordset::Move(lRows);
 else // clean up - code is from MFC (DBCORE.CPP)
 {
 ReleaseCopyBuffer();
 m_bEOFSeen = m_bBOF = m_bEOF = TRUE;
 m_bDeleted = FALSE;
 }

 // Get the ASCII result value for each column.
 for (i = 0; i < m_nCols && !IsEOF(); i++)
 {
 AFX_SQL_ASYNC(this, ::SQLGetData(m_hstmt, i+1, SQL_C_CHAR,
 (UCHAR far *)szData, MAX_COLNAME, &cbData));
 if (!Check(nRetCode))
 ThrowDBException(nRetCode);

 // remove trailing blanks
 for(j = lstrlen(szData) - 1; j >= 0 && szData[j] == ' '; j--);
 szData[j+1] = '\0';

 m_strResultArray[i] = szData;
 }
}

The important call we're making here is the call to SQLGetData(), which is where the data for the row
comes from. We call this function once for each column so that we can fetch an entire row of data. Again,
since we use the MFC macro AFX_SQL_ASYNC, it's possible that an exception will be thrown if this
function is called at an inappropriate time (like when another asynchronous SQLxxx() function is in
progress).

Using the Dynamic Recordset Class
To try this stuff out,I wrote an MFC-based application which you can find on the CD as Dynrcset (for
dynamic recordset application). I used MFC AppWizard (exe) to generate an SDI application with the only
database option being Header files only. I also told AppWizard to derive the view class from CScrollView .

To keep things as simple as possible, I kept all of the code changes I needed to make in the view class. I
normally wouldn't code like this, but I'll allow it for the sake of simplicity (if it means that you'll walk
away from this chapter with some new found knowledge).

You use the application by first entering the name of the data source you want to connect with.

Once you've entered a valid data source name, the application calls the CDatabase::Open() function on
the m_Database data member defined in the view class. If the connection is successful, you can enter a
SQL command by selecting the Edit/Enter SQL Command... menu option or the corresponding toolbar
button. This option displays the dialog box shown:

Once you've entered a new SQL command, you click the OK button and off it goes. The associated
recordset is opened with the SQL command as its parameter, and the result set is queried dynamically, as
shown in the code below:

void CDynRecordsetView::OnEditEnterSQLCommand()
{
 CSqlCmdDlg dlg;
 dlg.m_strSqlCmd = GetDocument()->GetTitle();
 if (dlg.DoModal() == IDOK)
 {
 CVarRecordset rs(&m_Database);
 rs.Open(rs.forwardOnly, dlg.m_strSqlCmd, rs.readOnly);
 int nCols = rs.GetNumCols();
 m_Lines.RemoveAll();
 CString strLine;

 // Fetch the column information.
 for (int i = 0; i < nCols; i++)
 {
 strLine.Format(_T("Col Name: %s"), rs.GetColName(i));
 m_Lines.Add(strLine);
 strLine.Format(_T("Col Type: %d"), rs.GetColType(i));
 m_Lines.Add(strLine);
 strLine.Format(_T("Col Type Name: %s"), rs.GetColTypeName(i));
 m_Lines.Add(strLine);
 strLine.Format(_T("Col Prec: %d"), rs.GetColScale(i));
 m_Lines.Add(strLine);
 strLine.Format(_T("Is Col Nullable: %s"),

 rs.IsColNullable(i) ? _T("TRUE") : _T("FALSE"));
 m_Lines.Add(strLine);
 m_Lines.Add(_T(""));
 }
 // Fetch the result set information.
 for (; !rs.IsEOF(); rs.MoveNext())
 {
 strLine = _T("");
 for (i = 0; i < nCols; i++)
 {
 strLine += rs.GetColResult(i);
 strLine += _T("\t");
 }
 m_Lines.Add(strLine);
 }
 rs.Close();
 GetDocument()->SetTitle(dlg.m_strSqlCmd);
 GetDocument()->UpdateAllViews(NULL);
 }
}

As you can see, this function prepares an array of strings based on the information that is returned from
the result set. The views are then invalidated and the strings are painted in the client area via the
OnDraw() function:

void CDynRecordsetView::OnDraw(CDC* pDC)
{
 CDynRecordsetDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 int nTab = 125;
 int nCount = m_Lines.GetSize();
 int nHeight = 15;
 for (int i = 0; i < nCount; i++)
 {
 pDC->TabbedTextOut(5, nHeight * i, m_Lines.GetAt(i), 1, &nTab, 0);
 }
}

You can see the result below. The text on the screen contains descriptions of the columns returned,
followed by the actual data for all of the rows.

That's basically all there is to it; nothing more and nothing less. Just a couple of lines of code and you can
dynamically fetch data using the MFC ODBC classes. Pretty cool! However, you might feel that this just
isn't enough power for you. If that's the case then maybe the next section will please you, because you're
going to meet my all time favorite code for creating a totally awesome data warehouse.

A Data Warehouse
I'm sure you appreciate how much of an improvement ODBC is over the previous situation when each
database vendor offered their own API and dialect of SQL. As a standard supported by most vendors,
ODBC succeeded in reducing the training and support costs associated with database application
development. Any problems associated with using the C-based ODBC API have been largely overcome
by MFC's classes, which offer an object-oriented view of ODBC that is much easier to use than raw
functions and handles.

However, as I mentioned earlier in this chapter, these classes still have several limitations. They don't
allow dynamic information to be returned easily, SQL joins are not updatable, and there's no way of
binding fields from the recordsets to controls on your application's screens (without using an intermediary
class, such as CRecordView, and even this is limited to the types of control it can exchange data with).

The section on dynamic recordsets solves the first of these problems, but it doesn't solve any of the others.
If your intention is to simply read dynamic information from a database as read-only data and provide
your users with a generic solution for viewing the data then dynamic recordsets are the way to go.
However, if you want a much more powerful database engine that can provide an object-oriented database
layer above any database that supports ODBC and can adapt itself (without any further coding from you)
to reflect new database structural changes, read on.

The Problem of Loose Change
For years, developers have had to struggle with the fact that whenever a database changes on the back-
end, they have to change the front-end application. Let me explain this with an example. Let's say that
you've been hired to create an application for the Acme Home Shopping Network. Your manager says that
the company wants to move into the 90s, so they want to track their customers, the orders they place and
the inventory, using a client-server architecture.

The architecture should be based on a back-end database sitting on a LAN-based server with a Win32
front-end application providing the user interface, which the Customer Service and Inventory departments
will use to enter orders and ship products. While you're performing your design and analysis, you decide
that you'll need a database with several tables. The first table will be a Customer table which will contain
information about the customer, such as their home address, their shipping address, phone number, credit
card information and several other pieces of data.

You also realize that you'll need to keep track of one very important field: the customer ID. This field can
then be used to look up other pieces of data in other tables.

Once you've studied the situation further, you come to the conclusion that the database will need
somewhere to place the orders, so you create an Orders table, which will be joined to the Customer table
in order to list the orders for a particular customer. You could place all of the details of the Orders in this
table, but it would probably make more sense to provide an additional table to hold the details of the
orders. That way, you avoid having to repeat some of the general order information. This Details table can
then be joined to the Orders table based on an OrderID field.

The final table that you'll need is one that contains the inventory data. This table will be updated as new
inventory arrives or as orders are logged. The Details table will contain an ItemID field that is also
present in the Inventory table. The figure shows how everything fits together:

Now that you have the structure of the database created, you need to start writing the front-end
application. The application needs to provide the Customer Service department with a way of creating
new customer records and entering orders for the customers. It should also provide a few screens for the
Inventory department to enter new inventory when it arrives.

Once the application has been developed and tested, you hand it over to the users. Time goes on and the
users start requesting other features or changes. In the meantime, you become a slave to this one
application because as more features or changes are made to the back-end database, you reflect those
changes in your front-end application with code hard-wired to the database.

You soon realize that you're working doubly hard to provide fixes or changes to the application and the
back-end. Then you start to wonder if there's a better solution. Currently, the application has all the code
for requesting or updating data to the database tables explicitly bound to the back-end. Furthermore, the
recordsets created by your code that span across tables with SQL joins are overly complicated. Given that
it's not easy to deal with these concepts from any type of application, it's pretty obvious that you're

stepping in to a potential maintenance nightmare.

Furthermore, let's say that some of the fields need to be calculated based on the values entered in other
fields. For example, you might want to calculate an order's total amount based on the state tax and the
subtotal of the order. This means that you would have to wait until the state is entered into the State field
of the Customer record. You need to keep track of the details of the order and each time a new detail is
added, you simply update the total. This logic is normally built into the front-end application, but if
someone decides that other calculations must be added or changed, you have to update the application,
compile and test the code and, finally, deploy the application once again.

My First Attempt
I've been placed in this very situation time after time, until one day I got smart and decided to create a
generic solution, one that could virtually maintain itself without much intervention from me. That way,
things could continue to run smoothly and I could go off and teach seminars, courses, or write books.

In my first attempt to provide a solution to the maintenance problem, I created a custom resource in my
application's resource file, using the RCDATA resource type. RCDATA allows you to create any structure
imaginable and read the data contained in the RCDATA section however you choose to from your
application. The data can be delimited by commas. My RCDATA type contained a header section and a
fields section. The structure looked something like this:

CUSTOMER DATADEF
BEGIN
4, "Customer\0", "CustomerID = ?\0",
 "LastName DESC\0"
"Customer ID\0", "\0", "\0", 0, 0, 0, "CustomerID\0",
 SQL_INTEGER, DDF_PRIKEY
"Last Name\0", "\0", "\0", 0, 0, 0, "LastName\0",
 SQL_CHAR, DDF_DEFAULT
"First Name\0", "\0", "\0", 0, 0, 0, "FirstName\0",
 SQL_CHAR, DDF_DEFAULT
"Ending Bal\0", "0.00\0", "10000.00\0", 2, 1, 1,
 "EndingBal\0", SQL_FLOAT, DDF_DEFAULT
END

The first line CUSTOMER DATADEF identifies the structure. CUSTOMER is the name of the resource and
DATADEF is the resource type. I called it DATADEF because I was trying to create a data definition object
that could be used to identify the location of data coming from the data source.

I used the FindResource() Win32 API to locate and return a handle to the specified resource. The first
parameter to this function is the instance handle of the application. The second identifies the resource, in
this case, "Customer". The last parameter identifies the type of resource. Normally, this value is set to one
of the predefined constants, such as RT_BITMAP, or RT_ICON, but you're allowed to create your own types
and simply pass the string as this identifier, in my case, "DATADEF". Once the resource has been located, I
then call LoadResource(), passing it the handle returned from FindResource().

HRSRC hrsrc = ::FindResource(hInst, _T("Customer"), _T("DATADEF"));
HGLOBAL hRes = ::LoadResource(hInst, hrsrc);
if (hRes != NULL)
 UINT FAR* lpnRes = (UINT FAR*)::LockResource(hRes);

Next, I begin to traverse the lines between the BEGIN and END block. The first line is always the header,
which contains the following items in this order:

FIELD COUNT, TABLE NAME, FILTER STRING, SORT STRING

The field count determines how many field detail lines will follow the header. The table name is the
actual name of the table that the fields will come from. The filter string contains the value that will be
used in the WHERE clause of the final SELECT SQL statement. In reality, I used this string in the MFC's
CRecordset::m_strFilter string when constructing the query and I used the sort string to fill the value
of CRecordset::m_strSort. I read in this information using a function that implemented code much like
the following:

 m_nNumOfCols = *lpnRes++;
 ExtractString(lpnRes, m_strTblName);
 ExtractString(lpnRes, m_strFilter);
 ExtractString(lpnRes, m_strSort);

The ExtractString() function simply traverses through the characters that follow, until it finds a null
terminator:

void ExtractString(UINT FAR*& lpnRes, CString& strText)
{
 char szBuffer[1000];
 char* pszBuffer = szBuffer;
 // Retrieve the string.
 while(*((char*&)lpnRes) != NULL)
 {
 *pszBuffer = *((char*&)lpnRes)++;
 pszBuffer++;
 }
 *pszBuffer = *((char*&)lpnRes)++;
 strText = szBuffer;
}

The detail lines include information about the actual columns that I want to retrieve from the specified
table, as well as user interface details needed for displaying the data:

UI-TEXT, MIN VALUE, MAX VALUE, DECIMAL PLACES, COMMAS, DOLLAR SIGN,
 ODBC-TYPE, KEY FLAG

The user interface text is used to describe the data on the screen. For example, if the column that came
back from the data source contains a value such as "RAMIREZ", the user interface text might contain a
value like "LAST NAME:", which can be used on a dialog box or window. The window might contain a
static control for the user interface text and an edit control to hold the value.

The minimum and maximum values are used when numeric data is being returned from the database. The
dialog box or window code will most likely need to know how to limit and validate the user's input. These
values determine what range the user can enter for the value that pertains to the current field.

The decimal places, commas and dollar sign values are used by the user interface to determine how to
format the actual value. For example, the value might need to be displayed as $6628.161 or 6628.2. The
ODBC type is used to identify the type of the data coming from the database. The possible values are
constants from the Sql.h file (shipped with Visual C++) and include SQL_CHAR, SQL_FLOAT, and
SQL_INTEGER (among several others).

The last value in the detail line is the key flag. This is used to optimize database updates by marking the
field with one of a set of values that provide information about whether the filed is used as a key:

#define DDF_DEFAULT 0x0000
#define DDF_PRIKEY 0x0001

#define DDF_SECKEY 0x0002

DDF_PRIKEY is used for the primary key in the table and DDF_SECKEY is used for any secondary keys. You
should always include all types of key field in the data definition because an UPDATE statement won't be
able to update the correct row in the database without them. DDF_DEFAULT is used for any fields that aren't
used as keys.

Once all of the information has been read from the resource, I use it to construct an MFC recordset. The
recordset class uses the information contained in the resource to populate itself with the correct data. The
constructor simply fills the m_nFields, m_nParams, m_strFilter, and the m_strSort data members
based on the information from the header line. The GetDefaultSQL() function normally returns the name
of the table from which the data should be extracted and this can also be constructed from the header line.
The DoFieldExchange() function calls the appropriate record exchange function (one of the RFX_xxx()
functions) with the appropriate information, which it can gather from the detail lines.

As you can see, this solution offers a very flexible system, since the data definition objects drive the
application. All that the application has to do is construct a data definition object from the appropriate
resource object stored in the resource file and have it load its data using the generated recordset.

However, there are still a few disadvantages with this method. The major one is that you still have to
recompile and link the resource to the executable and, finally, redeploy the application each time a change
is made to the resource file. This quickly became an ongoing headache for me.

It would be great if I could find a way to remove the data definition from the application completely.
Since the data definition is going to be closely tied to the actual data, why not take the definitions and add
them to the database? That way, each time that an object's definition changed, I wouldn't have to change
the application at all. I could simply change the definition information on the back-end database and the
application would automatically pick up the new definition the next time it created an object of the
changed type. This became the essence of my Data Warehousing Model.

The Component Layer
After going back to the drawing board, I came up with a new design which I originally referred to as a
business object model. As the term Data Warehousing became more popular and more widely understood,
it became obvious that my design was based on the same theories, so I now call my code a data
warehouse.

The code for the warehouse is split into two layers that I call the component layer and the transient
layer. Each layer is represented by an OLE in-process server. The transient layer consists of objects that
offer methods for accessing and manipulating data in a database and the component layer provides a
higher level model that insulates applications from changes made to the database. In this section, we'll
examine some of the theory behind the component layer.

Data Objects
With this model, I was trying to achieve an object-oriented layer on top of a relational database, giving
me the ability to create persistent objects that know how to load and save themselves from a data source.
This supports the object-oriented notion of encapsulation of data. Since these objects would represent
data, I called them Data Objects.

Class Objects
I also wanted to encapsulate the definition of these objects, as well as their data. Where C++ uses classes
to represent the definition of an object, I defined a Class Object to achieve the same thing. The Class
Object's values (which represent the definition of a set of Data Objects) are stored in the back-end
database (just like the data definition values in the previous example were stored in the resource file).

The Class Objects contain all the information needed to create a Data Object, including how the Data
Object's data can be extracted from the database and any information that applications may need to
display that data correctly. An application will never tell the Data Object where to get its data from, since
this information is retrieved at run time and encapsulated by the Class Object. This removes the
dependency that an application has on the location of data in the database.

Many applications will want to be able to get the appropriate Class Object from a Data Object, so I
provided a function in the Data Object to make this possible.

Inheritance
To expand on these object-oriented concepts and to parallel C++ more closely, I wanted to implement
something similar to class inheritance. The idea of defining a class with fields and then deriving a class
from the first class, having it inherit all of the fields from that class, really intrigued me.

Basically, all that has to happen is that a class must first determine whether it is inherited from some other
class and, if it is, it needs to load the fields of that class as well. If the parent class also has a parent, those
fields should also be loaded. I didn't care about supporting multiple inheritance, since I never use the
feature in C++ anyway, but you could add this feature yourself if you wish.

Container Objects
I introduced a new sort of object into my model, called a Container Object, to be responsible for creating
Data Objects and Class Objects, maintaining lists of the active objects and providing an easy way of
destroying all the active objects at once. This makes a client application much simpler, since it doesn't
have to concern itself too much with the details of object creation and destruction.

A warehouse client application will use a Container Object to create a Data Object just like an OLE client
uses a class factory to create an instance of an OLE object. Both the Container Object and the class
factory offer a function that accepts a class identifier and returns the type of object requested by the client.
Internally, the Container Object will create an appropriate Class Object (if one doesn't already exist) and
use this to create a Data Object to return to the client. The client can then use either of these objects as
required.

To ensure that the Container Object can return an existing object if the client application decides to create
the same Data Object from two different parts of an application, I also require the client to pass the
Container Object a key when it creates one. This key is combined with the class identifier to uniquely
identify a Data Object. If a client tries to create a Data Object with both the class and the key the same as
an existing object, the container will return that object, otherwise it will create a new one.

This concept can be further expanded to go across process boundaries and provide objects that can be
shared by different applications, but it requires a bit of magic because of the limitations on sharing data
between processes in Win32.

The Transient Layer
Now that we've met the component layer and we understand its concepts, there's only one thing missing.
How do we actually retrieve the values of the Class Object and the data of the Data Object from the data
source?

In my design, I wanted to abstract the method of accessing the data source and the medium being used as
much as possible. I didn't want the Container, Class or Data Objects to know whether they were using a
database, a memory mapped file or even a disk file, so I needed a lower-level layer that would deal with
the implementation of the data source directly. This layer would be the only one to know how to
communicate with the underlying data source. The component layer relies on the transient layer to
provide the data (regardless of where it resides). As long as the interface of the transient layer remains
constant, its implementation can change without affecting the component layer or any client code.

I reused the concept of a Database and Recordset Object for my transient layer to provide an abstraction
of the data source. The Database Object is responsible for opening a connection to the data source. This
could mean connecting to a database, opening a handle to a file, or allocating memory using pointers. It's
also responsible for closing the connection. The Database Object can create Recordset Objects on demand
and return them to any callers. Although the Database and Recordset Objects don't have to use databases
in theory, my implementation does, so the rest of this chapter will assume that.

The Recordset Object's responsibilities include loading data from the associated database, updating
changes back to the database, deleting records from the database and adding new records to the database.

Before the Recordset Object can perform a simple task, such as loading data from a table, it needs to be
told where to go (the table and column that contain the data of interest). Therefore, the Recordset Object
needs to be a dynamic object that can be changed on demand. It should have the ability to be told what
columns from what tables to go after, and it should return the data based on parameters we specify. We
should also have the ability to specify the sort order and any joins to other tables if necessary. The
recordset has to internally generate any SQL it might need to complete its job.

Here you can see the different layers of the data warehouse:

Note that applications can communicate with the transient layer directly, so we could build a complete
application which simply uses the Database Object and a bunch of Recordset Objects to retrieve and save
data as necessary. But doing this places the responsibility of gathering data, knowing where the data lives
and dealing directly with that data, in the application's hands. The data warehousing scheme provides a
much richer and complete solution for developing client-server applications that take advantage of a three
tier strategy and provides a much more flexible system. Besides, who wants to continuously be a slave to
the front-end application, anyway? Not me, that's for sure.

Implementation
In the sections to follow, we'll examine how I implemented the objects that I've just described. We'll start
by looking at the design of the back-end database, then we'll move up to the transient layer, the
component layer and, finally, a client application that makes use of the lower layers to provide the user
with an interface to the data. Once you have an implementation, you have more than just a model. You
have working code that forces you to say, "It's Alive!".

The Back-end Tables
As you've seen, we introduced Class Objects into the component layer to provide the means of
instantiating Data Objects. The Class Objects know everything about how and where to go for a Data
Object's data, they know what their user interface attributes should be, and they know how to save their
data. The Data Objects rely on the Class Objects to provide them with the necessary information about
their own data, but where does the Class Object get its information from?

The answer is that the knowledge of where to find the information is hard coded into the Class Object
itself. We've already seen one example of the way we could do this when we looked at using custom
resources, but we've also seen some of the limitations of that solution. In order to avoid these problems, I
decided to store the description of the Class Objects in the database. This means that I had to provide a
few tables in the database to hold the information for the Class Objects.

Here's the schema I came up with:

You can see that this is quite similar to the information we stored in the custom resource example earlier
in the chapter. The data stored here covers all the information needed to construct a Data Object and
display it to the user.

Before I begin explaining how to use these tables, I first want to point out that each Class Object is
identified by an integer which you choose when you define your classes. This will appear in the ClassID
field of the tables shown. For example, if you have a Customer class, an Orders class, and a Details class,
you might set aside the value 1000 to identify the Customer class, the value 1001 to identify the Orders
class, and 1002 to identify the Details class.

I could have used strings such as "Customer Class", "Orders Class", and "Details Class"
to identify the classes, but that would have taken up more space in the database, so I went with
integers. If you're organization is large and there's a possibility of conflicting class identifiers, you
should probably change the ClassID field so that it can accept GUIDs and use the Guidgen.exe
application to generate new identifiers.

Of course, you'd probably distribute a header file with constants defined for each of the class IDs that can
be used in client applications:

#define CUSTOMER_CLASS 1000
#define ORDERS_CLASS 1001
#define DETAILS_CLASS 1002

Now we'll look at each of the tables in the database as they're used to construct a Class Object.

ClassInheritance
The first stop is the ClassInheritance table, which is used to provide inheritance for the Class Objects.
To elaborate on this, let's revisit the Acme Home Shopping Network.

AHSN sells many types of item, including several makes of car. Sports cars are a particular favorite with
Acme's viewers, so we need to define a sports car class which inherits from the car and item classes as
shown:

In this example, the Class Object for the sports car will be given the ID of 5002 when we create it. It will
need to load all of the fields for its own class, plus all of the fields of its parents' classes so it begins by
searching in the ClassInheritance table for all rows with a class ID of 5002, returning back the parent
IDs (if any records are returned). The SQL would look something like this:

SELECT ParentClassID FROM ClassInheritance
WHERE ClassID = 5002

This query will return one row (in our example). That row will contain a ParentClassID with the value
of 5001. The Class Object will need to hold on to its identifier as well as any parent identifiers. This can
easily be done with an array of some sort. So, currently we have two values in this array:

INHERITANCE ARRAY
Element 1 = 5002
Element 2 = 5001

Next, the Class Object needs to query the table once again for any parent class of the class identified by
5001. This can again be expressed using SQL as follows:

SELECT ParentClassID FROM ClassInheritance
WHERE ClassID = 5001

This time, the query comes back with a ParentClassID containing the value of 5000. Again, this value is
added to the array. The inheritance array now looks like this:

INHERITANCE ARRAY
Element 1 = 5002
Element 2 = 5001
Element 3 = 5000

The Class Object must continue to query the table until no rows are returned. So, once again, the SQL
statement is executed:

SELECT ParentClassID FROM ClassInheritance
WHERE ClassID = 5000

This time, no rows are returned. We now know that we've reached the end. I'll show you the actual code I
wrote to handle this situation when we cover the implementation of the component layer.

ClassField
With the inheritance array in hand, we can now proceed to load the fields of the class. Our next stop on
the field loading highway is the ClassFields table. When I first designed this table, all it had was a
mapping from the ClassID column to the FieldID column. In other words, the only purpose it served was
for a SQL statement like this:

SELECT FieldID FROM ClassFields
WHERE ClassID = ?

The symbol ? would, of course, be replaced with the appropriate value, such as 5000, 5001 or 5002. This
SQL code would return all of the necessary field IDs needed to query some of the other tables for the
attributes of the fields. Then after thinking about it some more, I realized that I wanted more flexibility so

that the classes could share the fields.

Some of the fields' attributes would depend on which class they are being used with. For example, we
might have a field which needs to be sorted in descending order for one class, but in ascending order for
another. Some field attributes (such as the table and column name) shouldn't change at all (regardless of
the class that they are being used from). For example, if the field needs to go to the Customer table in
order to pull out the LastName, that won't ever depend on the class that's doing it.

The attributes that depend on the class are stored in the ClassFields table, which uses both the ClassID
and the FieldID, whereas those that don't depend on the class are stored in the tables with only a FieldID
field (PersistencyProps and UserInterfaceProps).

In the example above (involving the sports car class), the ClassFields table will be queried three times
(once each for the ClassIDs of 5000, 5001, and 5002). In each case, we'll get back a series of fields that
make up the class.

Along with the field identifiers, we'll also retrieve the JoinFieldID, OperatorType, PersistentIOFlag,
SortOrder, and the SortType. The JoinFieldID identifies any other fields that we want to perform a
SQL join against. When the Data Object actually goes to retrieve its data, any identified join fields must
be included in the query. The join field IDs are later used to query the PersistencyProps table for their
table and column names.

The next column, OperatorType is used when the field will be involved in the WHERE clause of the SQL
statement. It determines whether the field should be specified as having an operator type of <, >, =, IN, or
BETWEEN. For example, you might want your SQL statement to look like this:

SELECT LastName, FirstName FROM Customer
WHERE CustomerID > 1000

In this case, OperatorType has been set to ">". You can also get more complicated, by using the IN or
BETWEEN syntax, as follows:

SELECT LastName, FirstName FROM Customers
WHERE CustomerID BETWEEN 1002 AND 3892

The PersistentIOFlag is used in a similar way to how we used the key flag value in the RCDATA
structure described earlier. The column determines how the field should be used in any SQL statements.
Basically, this will determine if the field is a column that should come back from the SELECT statement, if
it should only be used in the WHERE clause, or both. The value contained in this column can be any of the
following values OR-ed together:

enum PersistentIOFlags{
 piofColumn = 1,
 piofParam = 2,
 piofJoin = 4,
 piofPrimary = 8};

The last two columns determine the sort order of the retrieved data when the Data Object loads its data
from the actual tables and columns specified. SortOrder determines the order of the fields as they appear
in the ORDER BY clause and the SortType determines whether they're sorted in ascending or descending
order.

As you can see, these values are things that might change from class to class, which is why I placed them

in this table. The next two tables, PersistencyProps and UserInterfaceProps will depend only on the
field, not the class. Both tables are searched using the field IDs gathered from the ClassFields table.
We'll look at the persistency properties first.

PersistencyProps
The PersistencyProps table contains the FieldID, TableName, ColumnName and ODBCDataType fields.
The field ID is used in the search for the rest of the attributes. For example, getting the persistency
properties might be done using SQL as follows:

SELECT TableName, ColumnName, ODBCDataType
FROM PersistencyProps
WHERE FieldID = ?

The statement will be executed once for each field ID. The table name and column name returned will
later be used by the Data Object when it needs to go after its data. The Data Object will eventually need to
create a Recordset Object containing the specified columns and parameters when it's time to load its data.

The ODBC data type can be one of several constants, as follows:

ODBC Data Type Constant Corresponding C++ Data Type
SQL_INTEGER long
SQL_DOUBLE double
SQL_REAL float
SQL_DECIMAL, SQL_CHAR CString
SQL_TIMESTAMP,SQL_DATE, SQL_TIME CTime
SQL_SMALLINT int
SQL_TINYINT BYTE
SQL_BIT BOOL

UserInterfaceProps
The last table, UserInterfaceProps, contains the values used by the user interface layer (the front-end
application and any objects it provides). The columns of this table are UIDescription, UIHasCommas,
UIHasDollarSign, UIIsHidden, UIIsReadOnly, UIName and UIPrecision.

The UIName is designed for use in static controls that might appear to the left of the actual value from the
Data Object in the user interface. Since the name might be so short that it might not be clear what the
value is, the UIDescription field contains a more lengthy string. The description can be used in tooltip
controls when the mouse flies over the value. UIHasCommas, UIHasDollarSign, and UIPrecision are
used to provide formatting attributes to the value displayed. UIIsReadOnly determines whether the value
should be displayed at all, and UIIsReadOnly determines whether the user can change the value in the
Data Object.

Automate It

When I started to consider how I would write the code, many things crossed my mind, but one thing was
obvious: I needed to incorporate OLE in this picture. Why? Well, because it's the wave of the future.
Judging from the amount of OLE built into Windows 95, there's no doubt that Microsoft will soon make
everything in the operating system a COM object, exposing interfaces that we can call to perform
different tasks. For example, in the future we might see an interface named IWindow. We should then be
able to call the members of IWindow, such as IWindow::Show() or IWindow::Update().

In the meantime, I could start to prepare for the future now by incorporating pieces of OLE into my
implementation. I wanted to be able to use my implementation, not only from Visual C++ applications,
but also from Visual Basic, or any other development environment that supports OLE. Since most
development platforms have support for OLE Automation, I thought that it would be ideal to provide my
implementation as a series of OLE automation classes.

I used Visual C++ and MFC, along with ClassWizard's support for OLE Automation to provide just want
I needed. The end result was placed in two in-process servers: one for the transient layer and one for the
component layer. The next few sections describe the code bed in more detail. As you read through the
code samples, keep in mind that some of the error handling has been removed from what you see in these
pages. The accompanying CD contains the complete code.

The Transient Layer
The first automation object that a front-end application will ever need to create is a Database Object. As I
mentioned before, this object, along with the Recordset Object, can be used without any of the objects
from the component layer to create complete applications, but it's best to use them in conjunction with the
objects in the component layer to provide a more flexible and richer system.

You'll find the code described in the next few sections in an in-process server, called
TransientLayer.dll.

The Database Object
Let's take a look at the class definition of the Database automation class:

class CWhDatabase : public CCmdTarget
{
 DECLARE_DYNCREATE(CWhDatabase)
 CWhDatabase();
// Attributes
public:
 CDatabase* GetDatabase()
 { return &(m_Database); }
protected:
 CDatabase m_Database;
 CString m_strDSN;
 // Array of Recordset objects
 CObArray m_RsArray;
// Operations
public:
 void OnRecordsetDestroyed(CObject* pObj);
 void SendConnectionDestroyed();
 void SendConnectionChanged();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CWhDatabase)
 public:
 virtual void OnFinalRelease();
 //}}AFX_VIRTUAL
// Implementation
protected:
 virtual ~CWhDatabase();
 DECLARE_OLECREATE(CWhDatabase)
 // Generated OLE dispatch map functions
 //{{AFX_DISPATCH(CWhDatabase)
 afx_msg BOOL Connect(LPCTSTR lpszDSN);
 afx_msg void Disconnect();
 afx_msg LPDISPATCH CreateRecordset(LPCTSTR lpszTableName);
 //}}AFX_DISPATCH
 DECLARE_DISPATCH_MAP()
};

Let's start with the data members of the class. The m_Database member is of type CDatabase, because
our automation class uses an MFC CDatabase object to perform its communication with the database (as
we'll see shortly in the member functions). Why didn't I simply derive a class from the CDatabase class
directly? Well, to expose a class as an Automation server using MFC, the class must be derived from
CCmdTarget and the constructor must call CCmdTarget::EnableAutomation(). Since CDatabase is not
derived from CCmdTarget, I had to provide my own class and simply create an object of type Cdatabase,
which I then use from my implementation.

The m_strDSN member is set by the client application when it calls the automation class' Connect()
method (one of the three methods exposed by this automation class). This member provides the Data
Source Name that should be used for opening a connection to a database using ODBC. Eventually, this
value will be passed to the CDatabase::Open() function.

If the application is using the Database Object to create Recordset Objects itself, it will eventually call the
CreateRecordset() method (which we investigate below). Each Recordset Object is added to a
CObArray named m_RsArray. This is done so that if the creator of the Database Object later decides to
switch to a different data source by recalling the Connect() method again, it can alert the Recordset
Objects it holds in its array. Also, if the creator of the Database Object destroys it, without destroying the
Recordset Objects, the Database Object can destroy them automatically.

Now, let's investigate the member functions of this class, starting with the exposed automation methods.
The first one is the Connect() method. This method first closes any opened connection, calls the
CDatabase::Open() function, and alerts the recordsets (if any have been created) of a possible data
source change. Here's the code for the function:

BOOL CWhDatabase::Connect(LPCTSTR lpszDSN)
{
 BOOL bResult = TRUE;
 // Disconnect before opening another connection.
 Disconnect();
 // Attempt to open new connection.
 m_strDSN = lpszDSN;
 m_Database.Open(lpszDSN);
 // Change all CWhRecordsets' m_pDatabase.
 SendConnectionChanged();

 return bResult;
}

The next method is Disconnect(). This method closes any opened connection and alerts the recordsets
that the connection has been closed:

void CWhDatabase::Disconnect()
{
 if (m_Database.IsOpen())
 m_Database.Close();

 // NULL out all CWhRecordsets' m_pDatabase.
 SendConnectionDestroyed();
}

And last but not least is the CreateRecordset() method. This method takes a single parameter: a table
name to be used by the Recordset when it builds the FROM clause for the SQL statement. The individual
fields can, of course, override this behavior by providing a table name for each field. In other words, each
column or parameter in the recordset can be assigned a different table name to be used exclusively for the
fields. The end result would generate SQL code that looks like this:

SELECT Customer.LastName, Customer.FirstName, Orders.TotalAmountDue
FROM Customer, Orders
WHERE Customer.CustomerID = ?
AND Customer.CustomerID = Orders.CustomerID

As you can see, a recordset can span across several tables at the same time, bringing back fields from the
different tables. The CreateRecordset() function is implemented as follows:

LPDISPATCH CWhDatabase::CreateRecordset(LPCTSTR lpszTableName)
{
 // .
 // . Code to search for existence of recordset
 // .
 if (fFound)
 return pTestObj->GetIDispatch(TRUE);
 // Create a new CWhRecordset (default to lpszTableName) and return
 // the IDispatch of the object to the caller with one reference
 // count on it.
 CWhRecordset* pRS = new CWhRecordset(this, lpszTableName);
 m_RsArray.Add(pRS);
 if (pRS)
 return pRS->GetIDispatch(FALSE);
 return NULL;
}

The function begins by looking in the object array for the existence of the recordset. If it's found, the
reference count of the object it incremented (since it's a COM object), and its IDispatch interface pointer
is returned. Otherwise, a new Recordset Object is created, with one reference count on it, and its
IDispatch interface pointer is returned.

The other members of the CWhDatabase class are OnRecordsetDestroyed(),
SendConnectionDestroyed() and SendConnectionChanged(). These are helper functions used either by
the Database Object or by the Recordset Objects. When a Recordset Object is destroyed directly by the
front-end application (or the component layer), it needs to alert the Database Object so that it can remove
the Recordset from its array. The Recordsets do this by calling the OnRecordsetDestroyed() function.

You may have noticed that the CreateRecordset() method sends the Database Object's this pointer to
the Recordset Object when it is first created. The Recordset Object will hold on to this pointer so that it
can call the OnRecordsetDestroyed() function through it.

The SendConnectionDestroyed() function sends notifications to the Recordset Objects held in the array
when the Disconnect() function is called. The SendConnectionChanged() function sends notifications
to the Recordsets when the Connect() function is called. These two functions allow the Recordset
Objects to change any necessary state information.

The Recordset Object
Next in line is the Recordset Object. This automation object is implemented by the CWhRecordset class.
Again, I needed to create a class derived from CCmdTarget, since I wanted to expose the functionality as
an automation class exposing an IDispatch interface. My implementation, of course, takes advantage of
another class, named CGenericRecordset, which is directly derived from MFC's CRecordset class.

The real work is done in the CGenericRecordset class, but since I couldn't expose its functionality as an
OLE Automation class (because it's not derived from CCmdTarget), I needed a wrapper class which
exposed the automation methods. When the automation methods are called, they in turn call the member
functions of the CGenericRecordset class. Before we see the actual functionality of the
CGenericRecordset class, let's meet the automation class, CWhRecordset.

There are three reasons why the CWhRecordset class exists. One is to expose the Recordset Object's
functionality as an automation class, the second is to hold on to the Database Object's this pointer that
created the Recordset Object, and the third is to maintain and call the functionality of a
CGenericRecordset object as appropriate. When the automation methods of the CWhRecordset class are
called, they call the appropriate member functions of the CGenericRecordset, as you can see from
CWhRecordset::AddCol(), for example:

BOOL CWhRecordset::AddCol(long lODBCType, LPCTSTR lpszName)
{
 return m_Recordset.AddCol(lODBCType, lpszName);
}

It really does nothing more than simply provide a wrapper for the same function in the
CGenericRecordset class.

Since the CWhRecordset class is actually what gets exposed as an automation class, it might at one point
or another be released with a call to its IDispatch::Release() function inherited from the CCmdTarget
class. When this occurs, the Recordset Object will delete itself, causing its destructor to be called which in
turn calls a function in the Database Object that created the Recordset Object so that it can be aware that
this Recordset Object no longer exists:

CWhRecordset::~CWhRecordset()
{
 // Advise the parent CWhDatabase of our destruction.
 m_pDbObj->OnRecordsetDestroyed(this);
}

Since the CWhRecordset class is nothing more than a wrapper providing OLE Automation support, the
class that we really need to investigate is the CRecordset-derived class. This provides a very generic
implementation for the DoFieldExchange(), GetDefaultConnect(), and GetDefaultSQL() functions,

which is exactly why I decided to call this class CGenericRecordset. Whereas you normally need to
provide static information for these functions, with my class, you don't do this until runtime. The idea is
that you create a generic recordset, then tell it the columns, parameters and any other pieces of
information that it will need to return or update data from a database.

When it comes down to it, a recordset is only as intelligent as you make it. You have to teach it what to go
after in a database, and it will attempt to do as it's told, returning data from a query simply to please you.
But how do you teach it what it needs to know? Well, you start off by telling it what database table it
should perform its queries on. Next, you tell it what columns it should return and, finally, you might want
to tell it what criteria it should base its query on.

These steps are normally performed very easily with a SQL SELECT statement, as shown:

In the figure above, there are three column fields: a table name, one parameter field and a value to
compare with the parameter field. Together, parameter fields and their values determine the criteria used
on the given table. As I said before, in order to make a recordset intelligent, we must provide this
information to it. Shortly, we'll meet the methods that help us to do this, but first let's meet the internal C+
+ structures that the recordset will need to maintain in order to provide this information later, when it
performs the SELECT statement.

The FIELD Structure
The first structure is called FIELD. An instance of this structure is created each time that a column field or
a parameter field is added to the recordset.

typedef struct tagFIELD
{
 long lODBCType;
 CString strTableName;
 CString strName;
 void* pValue;
 CString strOperator;
 BOOL bSortAsc;
 JOINFIELD* pJoinField;
} FIELD, *FAR LPFIELD;

The first member of this structure, lODBCType, determines the type of column or parameter (I will refer to
both as simply field). When a field is added to the recordset, I use the value in this member to determine
how much space to allocate or deallocate for the field. For example, if the lODBCType is SQL_CHAR, I
know that I need to allocate enough space for a CString and treat it appropriately through the rest of the
code. For a list of possible values, refer back to the table showing the ODBC data type constants and the
corresponding C++ data types shown earlier in the chapter.

The next member, strTableName, contains the table within which the field is located. Does this mean that
a recordset can contain fields that are retrieved from different tables? Absolutely. This is what makes the
Recordset Object so powerful.

The strName member is used to hold the name of the field. The pValue member contains the allocated
memory. I created this member as a void*, since I have no way of predetermining what type of value the
field will hold. If the field is a column, pValue will be used to hold the data of the rows returned from a
query. If the field is a parameter, pValue will be used to hold the value to compare with the field.

The strOperator determines which operator should be used against the associated parameter field (this
value is normally only used for parameter fields since that is where it makes the most sense). Possible
values include "=", "<", ">", "LIKE", "IN", and "BETWEEN".

The next field, bSortAsc, determines whether the field should be sorted in ascending or descending order.
This field is used when the ORDER BY clause is built for the SQL SELECT statement.

The last field points to a structure of type JOINFIELD, which is used to hold the table name and column
name of a column used as an r-value to perform a join. The field is first tested for NULL. If it's not NULL
and the current field happens to be a parameter, the values contained in the JOINFIELD are assigned to the
r-value of the join. For example, "WHERE param = strTableName.strName". The JOINFIELD structure is
organized as follows:

typedef struct tagJOINFIELD
{
 CString strTableName;
 CString strName;
} JOINFIELD, *FAR LPJOINFIELD;

m_ColFields, m_ParamFields and m_SortFields
Now for the data members of the CGenericRecordset class. Since we can create fields, we need
somewhere to place them. This is managed with two arrays which hold pointers to column and parameter
FIELD structures, m_ColFields and m_ParamFields, respectively.

I mentioned sorting before, but we never did see a Boolean in the FIELD structure to determine whether a

column should be included in the ORDER BY clause. So how do I determine that? I used another array,
named m_SortFields, which simply references existing fields that are already in the m_ColFields. In
other words, I don't use up any extra memory with a silly Boolean and I don't create another FIELD
structure. Instead, I simply reference a FIELD structure that must already exist. I later traverse through the
m_SortFields array, adding each field's name to the ORDER BY clause.

Since it's possible that all the columns, as well as the parameters, might belong to the same database, I
give the caller the opportunity of setting a default table name, which is then used each time that a field is
created. The default table name is stored into the FIELD structure's strTableName member. This value is
filled in the constructor of the CGenericRecordset class, which is originally called from the
CWhRecordset class. Of course, the caller has the opportunity to change this by calling a method on the
recordset. In fact, the caller can change the table name of each and every field (parameter or column).

m_strDefaultSQL
As you'll soon see, the code is smart enough to create and execute several SQL statements of the same
type if necessary. This is especially important for updates to the database, since only one table can be
updated at a time. The Recordset has to be smart enough to create one SQL UPDATE statement for each
table referenced in the fields.

Since a SELECT statement created by the generic recordset can span across several tables, the FROM clause
of the SQL statement should reflect this. MFC will call the GetDefaultSQL() function whenever it's
building the FROM clause of the SQL statement. I take the time at that point to traverse the fields and create
a string that contains all of the names of the tables involved in the SQL statement. This string is then
returned from the GetDefaultSQL() function when it is called. I stored this string into a data member
named m_strDefaultSQL.

m_nNumOfCols
Since the generic recordset is dynamic by nature, the caller can add more columns after a query has
returned, so how do we know how many columns were involved in the last query? I keep this in a data
member, named m_nNumOfCols. Let's say that the calling application adds five columns to the recordset,
then tells the recordset to fetch the data. Next, it adds five more columns, but before fetching more data, it
decides to read the data from the first fetch. Since the last five columns don't contain data as of yet, only
the first five columns should be read.

One of the things that I wanted for my Recordset Object is the ability to close down the MFC recordset
when an operation has completed. Why? Well, it seems that, in my experience, MFC recordsets (using the
underlying ODBC API) are messy creatures. They open several connections (for each recordset) on LAN
based databases and these connections remain open until the recordset is closed. Now I really couldn't put
my figure on who the culprit was. Is it the driver, or MFC, or the underlying ODBC API? Every time I
asked questions, I always got the run around and was told that it was the other guy's fault.

I decided that I would once and for all fix the problem myself. The solution was to open a recordset
(using MFC), which causes the SELECT statement to be executed, read in all of the data into a tabular
volatile data storage area and close the MFC recordset. You're probably wondering what happens when
you update the data. Don't you need the recordset to remain opened for updates, additions, or deletions?.
The answer is no. I can build the UPDATE statement (or any other SQL statement) myself and execute it
using the CDatabase::ExecuteSQL() function.

m_Data and m_iRow
I don't know whether you noticed or not, but the FIELD structure only holds one value, which means that
the column fields can only ever hold one row of data. This is why I created the m_Data member. This
member is a pointer array, and each element holds an array of VARIANTs.

The recordset contains functions which allow the caller to traverse this array. When these functions are
called, they move a row of data from the m_Data array into the column fields' pValue member. For
example, if the column fields currently contain the values from the first row in the m_Data array and the
application tells the recordset to move to the next row, the recordset goes to the m_Data array and copies
the values of the next row into the columns' pValue member. Next, the caller accesses the data directly
from the columns' pValue member via another member function.

I used VARIANTs because it's impossible to tell what type of data will be returned to the application from
each column at compile time, I need to make the recordset as generic as possible and VARIANTs are
perfect for this type of situation.

To keep track of which row of data we're looking at, I created a data member, called m_iRow, which
simply keeps the row number of the m_Data array which was last copied to the column fields.

m_bEOF and m_bBOF
Since recordsets allow callers to move up and down the rows of data, there must be a way that the caller
can detect when it has reached the end or the beginning. The following pseudo code describes what an
application might do:

move to the first recordset
begin loop
 if we've reached the end of the recordset
 end the loop
 else
 access data from the current row
 move to the next row
go to "begin loop"

This loop can also take place in the opposite direction. To keep track of when the recordset has gone past
the end of the rows of data, or past the beginning of the recordset, I use the members, m_bEOF and m_bBOF,
respectively.

m_nOperation
When they're updating or adding new rows, users of MFC's recordset class use a protocol that goes
something like this:

For updates:
Call CRecordset::Edit(), which makes a copy of the current row for later optimization of the
update. This allows MFC to determine which columns have actually changed and only include those
fields in the update.
Change the necessary columns.
Call CRecordset::Update() to complete the update and commit the changes to the database.

For additions:
Call CRecordset::AddNew(), which creates a new row in memory and initializes the columns.
Store the appropriate values into the columns.
Call CRecordset::Update() to complete the addition and commit the changes to the database.

If, at any point, the caller wants to cancel the edits or the addition, it should call CRecordset::Cancel().
This protocol works as long as the recordset remains opened and connected to the database.

I wanted to mimic this protocol in my generic recordset and since I actually close the recordset (as I
explained above), I needed to do all of the work myself. I first created a data member, named
m_nOperation, which would hold one of several values from an enumeration:

enum OPERATIONS {opNone, opUpdate, opInsert};

If the application calls Edit(), I set m_nOperation to opUpdate. If the application calls AddNew(), I set
m_nOperation to opInsert. When the Update() function or the Cancel() functions are called I reset the
m_nOperation member to opNone (its default value).

m_UpdateCmds
The last data member, m_UpdateCmds, is related to updates and inserts. Remember that I mentioned that
my recordsets are smart enough to create separate SQL statements if they need to. This needs to be done
if the columns being updated or inserted contain different table names. For example, there might be two
columns from TableA, and three columns from TableB. The UPDATE statement needs to know what table
to write the changes to, but there can only be one table specified in the statement. The statement for
TableA looks something like this:

UPDATE TableA SET Col1 = Value1, Col2 = Value2

Another statement would need to be created for TableB. I use m_UpdateCmds to contain all the generated
statements before they are executed, then I simply traverse through this array of commands, executing
each one as I move from row to row.

CGenericRecordset Member Functions
So far, we've discussed the data members of the CGenericRecordset class, but we haven't seen any of the
member functions yet. There are only really a handful of functions that actually perform a lot of work.
The rest are trivial and can be explained with a sentence or two.

Let's first look at the member functions as they are exposed by the CWhRecordset class. In other words,
these are the member functions of CGenericRecordset which are exposed as automation methods:

Query Automation Methods Description
BOOL AddCol(long lODBCType, LPCTSTR
lpszName) Adds a column for data input from the data

source.
BOOL AddParam(long lODBCType, LPCTSTR
lpszName) Adds a parameter for data querying from

the data source. This eventually becomes
the WHERE clause for the SELECT statement.

BOOL SetColValue(LPCTSTR lpszName, const
VARIANT FAR& Value) Sets the column value for writing to the

data source.
BOOL SetParamValue(LPCTSTR lpszName, const
VARIANT FAR& Value) Sets the parameter value for the SQL query

to the data source.
BOOL SetParamOperator(LPCTSTR lpszName,
LPCTSTR lpszOperator) Changes the operator used by the parameter

from the default = operator to something
else for querying. e.g.: >=, <=, IN, BETWEEN,
LIKE, etc.

BOOL SortCol(LPCTSTR lpszName, BOOL
bAscending) Creates the list of columns to be sorted by

calling this function. For each, also specify
the direction. This will eventually become
the ORDER BY clause of the SELECT
statement.

BOOL AddJoinToParam(LPCTSTR lpszName,
LPCTSTR lpszJoinTableName, LPCTSTR
lpszJoinName)

Specifies a Table.ColName to be added as a
join to a parameter. Note that only one join
can be added to each parameter field. e.g.:

TableX.FieldX =
JoinTableName.JoinFieldName

BOOL SetColTableName(LPCTSTR lpszName,
LPCTSTR lpszTableName) Looks up the column name and changes its

table name to something other than the
default.

BOOL SetParamTableName(LPCTSTR lpszName,
LPCTSTR lpszTableName) Looks up the parameter name and changes

its table name to something other than the
default

.

Navigation Automation Methods Description
BOOL MoveTo(short iRow) Allows you to move to a particular row in the result set.

In reality, it moves the given row from the m_Data array
to the columns' pValue member.

void MoveFirst() Moves the data from the first row into the fetchable area.
void MoveNext() Moves the data from the next row (if any) into the

fetchable area.
void MovePrev() Moves the data from the previous row (if any) into the

fetchable area.
void MoveLast() Moves the data from the last row into the fetchable area.
BOOL IsBOF() Returns TRUE if we moved backwards past the first row.
BOOL IsEOF() Returns TRUE if we moved forwards past the last row in

ascending direction.

Data Retrieval Automation
Methods

Description

BOOL Fetch() Executes the composed SQL statement on the data source.
VARIANT GetColValue(LPCTSTR
lpszName) Fetches a value from the given column and returns the value

at that column from the current row.

Edit State Automation Methods Description
BOOL AddNew() Directs the recordset to add a new row to the data source. The

new row is not actually added to the database until Update()
is called. Once AddNew() has been called, the caller cannot
call Edit(). The caller should call Update() or Cancel(), to
change the state.

BOOL Edit() Directs the recordset to prepare for changes to the fields. The
new changes are not performed on the data source until
Update is called. Once Edit() has been called, the caller
cannot call AddNew(). The caller should call Update() or
Cancel(), to change the state.

BOOL Update() Commits any new records (created with AddNew()) or

changes (created with Edit()) to the data source and returns
the state of the recordset to normal.

void Cancel() Cancels any new records or changes to the data source and
returns the state of the recordset to normal.

In order to implement some of these functions, I created several helper functions. For example, when the
application calls the AddCol() or AddParam() methods, these functions both call a helper function, named
CreateField(), to return a newly created and initialized FIELD structure. Once the AddCol() or
AddParam() functions receive back the FIELD structure, they add the object to the appropriate field array
(m_ColFields or m_ParamFields, as explained above). Here you can see the CreateField() function:

LPFIELD CGenericRecordset::CreateField(long lODBCType, LPCTSTR lpszName)
{
 // Create a new FIELD object and initialize it.
 FIELD* pField = new FIELD;
 pField->lODBCType = lODBCType;
 pField->strTableName = m_strTableName;
 pField->strName = lpszName;
 pField->strOperator = _T("=");
 pField->bSortAsc = TRUE;
 pField->pValue = NULL;
 pField->pJoinField = NULL;
 // Create place to store data coming from data server in case this
 // field is being created for a col. Parameters' pValues are reset
 // when value is assigned each time. The reason that we don't use
 // VARIANT type instead, is because the TransferData() function needs
 // to work with the native data type transfering data values from
 // ODBC into our Recordset.
 switch(pField->lODBCType)
 {
 case SQL_INTEGER:
 pField->pValue = new long;
 break;

 case SQL_DOUBLE:
 pField->pValue = new double;
 break;

 .
 . Cases for other types
 .

 default: // No supported type found.
 delete pField;
 return NULL;
 }
 return pField;
}

The AddField() function first creates a FIELD object, then initializes it with default values and, finally, it
allocates memory for the appropriate type of value that will be stored later when data is returned from a
query, or when the application stores values to be used as the parameter's criteria.

When a value is stored into one of these fields, another generic function performs the work. This function
is the SetFieldValue() function and it looks like this:

BOOL CGenericRecordset::SetFieldValue(FIELD* pField, const COleVariant&
 Value)

{
 COleVariant va = Value;

 DeleteField(pField, FALSE);
 // Must be string if operator is "IN" or "BETWEEN".
 if (pField->strOperator.CompareNoCase(_T("IN")) == 0 ||
 pField->strOperator.CompareNoCase(_T("BETWEEN")) == 0)
 {
 if (va.vt != VT_BSTR)
 return FALSE;

 pField->pValue = new CString;
 pField->lODBCType = SQL_CHAR;
 ((CString)pField->pValue) = va.bstrVal;
 return TRUE;
 }

 switch(pField->lODBCType)
 {
 case SQL_INTEGER:
 // Convert numeric types to a known type.
 VariantChangeType(&va, &va, 0, VT_I4);
 pField->pValue = new long;
 ((long)pField->pValue) = va.lVal;
 break;

 case SQL_DOUBLE:
 // Convert numeric types to a known type.
 VariantChangeType(&va, &va, 0, VT_R8);
 pField->pValue = new double;
 ((double)pField->pValue) = va.dblVal;
 break;
 .
 . Cases for other types
 .
 default:
 return FALSE;
 }

 return TRUE;
}

This function begins by deallocating any memory that the pValue member might have, in case the
operator has been changed to an "IN" or "BETWEEN", which always require the value to be a string. That
is, the application will need to pass the value for an "IN" or a "BETWEEN" as a string because that's the
way I've designed it. Next, the function tests for this situation and acts appropriately. Finally, if the
operator has not been changed, it recreates the pValue field and stores the given value into it. This
function could probably be optimized, but it works for now.

The CGenericRecordset::GetFieldValue() is called from the GetColValue() function. I didn't
implement a GetParamValue() function because I didn't see any reason for one, but you can feel free to
add one if you see the need for it. The GetFieldValue() function performs a similar switch statement on
the field passed to it and returns the value as a VARIANT. Before an application calls GetColValue(), the
data must be moved from the m_Data array to the columns' pValue member. Let see an example of this:

BOOL CGenericRecordset::MoveTo(short iRow)
{
 // Get the number of rows in the tabular data.
 int nSize = m_Data.GetSize();
 if (iRow >= 0 && nSize > iRow) // Is it a legal row?
 {
 m_bBOF = FALSE;
 m_bEOF = FALSE;
 m_iRow = iRow;

 // Retrieve the given row in the tabular data
 // and copy it to the obtainable area.
 COleVariant* pva = (COleVariant*)m_Data[m_iRow];
 FIELD* pField;
 for(int i = 0; i < m_nNumOfCols; i++)
 {
 pField = (FIELD*)m_ColFields.GetAt(i);
 SetFieldValue(pField, pva[i]);
 }
 return TRUE;
 }
 // Reset to indicate there are no rows.
 m_iRow = -1;
 m_bBOF = TRUE;
 m_bEOF = TRUE;
 return TRUE;
}

The other functions that move data from the m_Data array into the columns behave in a similar manner.

Once the recordset has been told to execute its SELECT statement (by calling the Fetch() function), the
recordset traverses through all of the data in the MFC recordset and stores it into the m_Data array. Let's
examine this a bit closer with some code:

while (CRecordset::IsEOF() != TRUE)
{
 pva = new COleVariant[m_nNumOfCols];
 for (int i = 0; i < m_nNumOfCols; i++)
 pva[i] = GetFieldValue((FIELD*)m_ColFields.GetAt(i));
 m_Data.Add(pva);
 CRecordset::MoveNext();
}

GetFieldValue() will end up picking up whatever is placed into the columns' pValue member by
TransferData() which is called from my override of CRecordset::DoFieldExchange(), which is called
by the framework each time I call CRecordset::MoveNext(). Let's look at these two functions next to get
a clearer picture. First, the DoFieldExchange() function:

void CGenericRecordset::DoFieldExchange(CFieldExchange* pFX)
{
 // The columns coming back in the recordset.
 if (m_ColFields.GetSize() > 0)
 {
 pFX->SetFieldType(CFieldExchange::outputColumn);
 TransferData(m_ColFields, pFX);
 }

 // The values used to build the query statement.
 if (m_ParamFields.GetSize() > 0)
 {
 pFX->SetFieldType(CFieldExchange::param);
 TransferData(m_ParamFields, pFX);
 }
}

This isn't what you're used to seeing in a DoFieldExchange() function, is it? That's because I made it as
generic as possible. The real work is performed in the TransferData() function:

BOOL CGenericRecordset::TransferData(CPtrArray &array,
 CFieldExchange* pFX)

{
 int nSize = array.GetSize();
 for(int i = 0; i < nSize; i++)
 {
 FIELD* pField = (FIELD*)array[i];

 // Check for operator = 'IN' or 'BETWEEN'
 if (pField->strOperator.CompareNoCase(_T("IN")) == 0 ||
 pField->strOperator.CompareNoCase(_T("BETWEEN")) == 0)
 continue; // This one is handled in
 // the Fetch() function

 // Handle all other transfers.
 switch (pField->lODBCType)
 {
 case SQL_INTEGER:
 RFX_Long(pFX, pField->strName, *((long*&)pField->pValue));
 break;

 case SQL_DOUBLE:
 RFX_Double(pFX, pField->strName, *((double*&)pField->pValue));
 break;
 .
 . Other cases handled here
 .
 default:
 return FALSE;
 }

 }

 return TRUE;
}

As you can see from the code, the abilities of the class are pretty extensive. The ability to build the
column information and parameter information at run time for the DoFieldExchange() is what makes
this whole thing work.

So, now you've seen how the data gets into the FIELD structures, moves into the m_Data array and back
into the FIELD structures when needed for returning values to the application via the GetColValue()
function. The other function implementations are fairly trivial, so you should be able to understand their
implementation from walking through the rest of the code.

The Component Layer
This layer is where the data warehousing really begins. The transient layer is just a stepping stone for the
data to get from the storage medium to the component layer. Whereas the transient layer provides the pipe
for the data to move from one place to another, the component layer provides a home full of intelligence
about the data. Think of the component layer as data that has gone to college.

The code you are about to see was implemented in an in-process automation server named
ComponentLayer.dll.

The Container Object
Container Objects exist to produce components for applications. Container Objects are intelligent enough
to create and maintain Data Objects and Class Objects (we'll meet the implementation of these objects
soon enough). An application only needs to create a single Container Object, unless it wants to create a
different Container Object for each database connection it has established. The implementation for my
Container Object is in the form of a class named CWhClassContainer. This class is derived from MFC's
CCmdTarget and exposes several methods via OLE Automation: Initialize(), CreateComponent(),
and DestroyAll().

A Container Object can't do anything until it's told where it should look for its information. In other
words, it can't build components until it knows where to point the components for their information. This
is done by passing the Container Object a Database Object that has already been connected to a data
source. The connection object will hold onto this Database Object in a data member named m_Database.
The Database Object is passed from the application to the Container Object as a parameter to the
Initialize() function:

void CWhClassContainer::Initialize(LPDISPATCH pDbObj)
{
 pDbObj->AddRef();

 // Convert to wrapper class and store it.
 m_Database.AttachDispatch(pDbObj);
}

Since this server needs to use the Database and Recordset Objects introduced in the transient layer, I got
ClassWizard to read the type library of that server and generate the appropriate wrapper classes for me.
Here you can see that I attach the dispatch pointer passed in to the function to an object of the Database
wrapper class.

The next thing that an application will want to do with a Container Object is to have it create components
and return them for use by the application. An application can accomplish this by calling the
CreateComponent() method of the Container Object. This is what the code looks like:

LPDISPATCH CWhClassContainer::CreateComponent(long lClassID, long lKey)
{
 CWhDataObject* pDataObj = NULL;
 // Lets go after the Data-Object.
 WH_KEY_PROLOGUE(lClassID, lKey) // Make strDataObjKey

 // If we do not find it then we create it.
 if (!m_WhDataObjMap.Lookup(strDataObjKey, (CObject*&)pDataObj))
 {
 CWhClassObject* pClassObj = NULL;

 // If not found Class object, create it.
 if (!m_WhClassObjMap.Lookup(lClassID, (CObject*&)pClassObj))
 {
 pClassObj = new CWhClassObject(this, lClassID));
 // Store it in the map.
 m_WhClassObjMap.SetAt(lClassID, (CObject*&)pClassObj);
 }
 else
 pClassObj->ExternalAddRef();

 // Create the Data-Object next.
 pDataObj = new CWhDataObject(this, pClassObj, lKey));
 // Store it in the map.
 m_WhDataObjMap.SetAt(strDataObjKey, (CObject*&)pDataObj);
 }
 else // If found, add a reference and return it.
 pDataObj->ExternalAddRef();

 return pDataObj->GetIDispatch(FALSE);
}

Let's start at the top of this function. If you remember from our discussion of the component identifier
key, we learned that an application must provide something to uniquely identify a component. The
component will need to know what class information it should use, and whether or not to return a Data
Object if it has the data that the application is interested in. Let me clarify this some more with an
example. Say that an application wishes to create a customer component for the customer whose customer
ID is 1000. It might, for example, call CreateComponent(), passing it CUSTOMER_CLASS (an ID that
represents the class) and 1000 for the lKey value.

The CreateComponent() function creates a hashed value out of the class ID-key combination, which
uniquely identifies the Data Object. If, at a later time, the application calls CreateComponent() again,
asking for the same component (which is specified by the same class ID/key combination), the
application would get back exactly the same Data Object.

The hashed value is created with a call to WH_KEY_PROLOGUE, which looks like the following:

#define WH_KEY_PROLOGUE(lClassID, lKey) \
 CString strDataObjKey; \
 strDataObjKey.Format(_T("%ld-%ld"), lClassID, lKey);

This macro should only be called once from a function, since it creates an automatic variable inside the
macro.

The CreateComponent() function next looks in an MFC map, m_WhDataObjMap, for the existence of a
Data Object with a matching hashed value. If it doesn't find one, it looks for the requested Class Object in
another MFC map, m_WhClassObjMap. If it doesn't find that either, it creates the Class Object, then the
Data Object. Both objects are then added to the appropriate maps for further searches. However, if the
objects are located, their reference counts are increased and the objects are returned. In fact, only the Data
Object's IDispatch is returned; the Class Object is simply passed to the Data Object when the Data
Object is created.

The last function, DestroyAll(), simply goes through the maps and destroys the Class Objects and the
Data Objects.

The Class Object
Now we'll meet the Class Object in much more detail. The Class Object is implemented by a

CCmdTarget-derived class named CWhClassObject. If you look at the CreateComponent() code, you'll
notice that the Container Object passes its this pointer to the Class Object's constructor. This is done so
that the Class Object can access the Database Object from the container when it needs to load its fields
and attributes. The following code shows the constructor for the CWhClassObject:

CWhClassObject::CWhClassObject(CWhClassContainer* pClassContainerObj,
 long lClassID)
{
 EnableAutomation();
 // Initialize
 m_lClassID = lClassID;
 m_pClassContainerObj = pClassContainerObj;
 m_posEnumField = NULL;
 CWhDatabase* pDbObj = m_pClassContainerObj->GetDatabase();

 // 1. Build a CompType Inheritance List by traversing
 // the Parent-IDs.
 LoadInheritanceMap(pDbObj);
 // 2. Load all the Field-IDs. Overload fields if
 // necessary.
 LoadFields(pDbObj);
}

Again, let's take it from the top. The Class Object holds onto its class ID for later use if necessary (it will
use it when loading its fields and finding the classes that it inherits from if there are any). Next, it holds
on to the Container Object in case it needs to access a different Database Object later on.

m_posEnumField needs some explaining. The m_posEnumField data member is a POSITION object used in
conjunction with a map that contains Field Objects of type CWhClassField (We'll come back to this class
shortly. We haven't mentioned it before because it's an implementation detail of the component layer.)
Since the Class Object is a collection of fields, these fields might need to be enumerated by the
application or the Data Object (when loading its data). This is easily performed by the functions
EnumFirstFieldID() and EnumNextFieldID(). When you first call EnumFirstFieldID(), the function
returns the ID of the first field and initializes the m_posEnumField to the position of the first Field Object.

Once you've called EnumFirstFieldID(), you don't call it again unless you wish to access the ID of the
first field again, causing the m_posEnumField member to be reset. The other function,
EnumNextFieldID(), is called repeatedly to traverse through the rest of the field IDs. Each time you call
it, it updates the m_posEnumField so that it points to the position of the next field until, of course, you
reach the end (in which case m_posEnumField is set to NULL).

The next thing to happen in the constructor is to access the Database Object from the Container Object
and pass it to the LoadInheritanceMap() and LoadFields() functions.

We've discussed how inheritance works with the Class Objects, but we haven't seen it actually
implemented. If you remember from our discussion, we need to go out to the ClassInheritance table
and find all of the parent classes from which the current class should inherit fields. Here's how I do it:

BOOL CWhClassObject::LoadInheritanceMap(CWhDatabase* pDbObj)
{
 // This class' ID will definitely be needed, so let's add it now.
 m_InheritArray.Add(m_lClassID);
 CWhRecordset ClassInheritRS;
 VARIANT varg;

 VariantInit(&varg);
 varg.vt = VT_I4;
 varg.lVal = m_lClassID;
 // Create the "ClassInheritance" recordset.
 ClassInheritRS.AttachDispatch(pDbObj->CreateRecordset(
 _T("ClassInheritance")));
 ClassInheritRS.AddCol(SQL_INTEGER, _T("ParentClassID"));
 ClassInheritRS.AddParam(SQL_INTEGER, _T("ClassID"));

 // Keep going until we traverse to the top of the hierarchy.
 while (TRUE)
 {
 // Set the class ID to the last class ID read.
 ClassInheritRS.SetParamValue(_T("ClassID"), varg);
 // Read the next one up in the hierarchy.
 ClassInheritRS.Fetch();
 // If nothing was returned, we're finished.
 if (ClassInheritRS.IsEOF())
 break;
 // Fetch the one and only value returned.
 varg = ClassInheritRS.GetColValue(_T("ParentClassID"));
 m_InheritArray.Add(varg.lVal);
 }
 return TRUE;
}

Note how this function uses our OLE Automation Recordset Object to access the data. I make use of the
automation wrapper class created by ClassWizard for the Recordset Object and attach the IDispatch
returned from CreateObject() to an instance of this class. I then continue as normal, calling the
automation methods of the Recordset Object.

There's one other thing that I want to point out about this function: it makes use of a data member named
m_InheritArray. This array member will hold the IDs of the classes involved in the class hierarchy when
the function has completed. That way, the next function, LoadFields(), can search this array and load all
the fields for each class ID, causing the current Class Object to inherit all of the fields necessary. At the
very least, this array will contain the class ID of the current Class Object that we're trying to load. This ID
is assigned to the array at the very top of the LoadInheritanceMap() function.

Once m_InheritArray has been filled, the LoadFields() function is called. This function begins by
creating a Recordset to communicate with the ClassFields table in the given database. It will use this
table to access all of the fields. As I explained earlier in the chapter, this table also contains the properties
that are dependent on the Class Object. The function next loads the fields for each class ID in the
m_InheritArray and loads the fields and the properties from the database using the Recordset Object. A
CWhClassField object is created for each field. This class maintains data members for all of the
properties. The Field Objects are created like this:

pField = new CWhClassField(pDbObj, varg.lVal);

When the Field Object has been created, the properties accessed from the recordset are assigned to the
field and, finally, the Field Object is put in the m_FieldMap:

pField->m_lOperatorType = vtConvertToLong(
 ClassFieldRS->GetColValue(_T("OperatorType")));
pField->m_lSortOrder = vtConvertToLong(
 ClassFieldRS->GetColValue(_T("SortOrder")));
pField->m_bSortType = vtConvertToBool(

 ClassFieldRS->GetColValue(_T("SortType")));
pField->m_lIOFlag = vtConvertToLong(
 ClassFieldRS->GetColValue(_T("PersistentIOFlag")));
pField->m_lJoinFieldID = vtConvertToLong(
 ClassFieldRS->GetColValue(_T("JoinFieldID")));
m_FieldMap[varg.lVal] = pField;

These Field Objects are only used internally within this layer; they are never exposed to the outside
world. Any interested parties will see the values held by the Field Objects via the Class Objects. This is
possible because the Class Objects expose several methods that allow access to the properties held by the
Field Objects. In reality, the methods exposed by the Class Objects do nothing more than to look up the
appropriate Field Object and access the requested property.

The following is a list of the automation methods exposed by the Class Object. Most of these methods
simply return the value for the properties accessed from the database tables. You should now be familiar
with these properties, since I mentioned each one when I described the database tables above. The only
functions here that don't return a property gathered from the database are GetClassID() (which returns
the class ID of the Class Object, which it is holding on to) and EnumFirstFieldID(), and
EnumNextFieldID() (which I have already explained).

long CWhClassObject::GetClassID()
BSTR CWhClassObject::GetName(long lFieldID)
BSTR CWhClassObject::GetDescription(long lFieldID)
long CWhClassObject::GetPrecision(long lFieldID)
BOOL CWhClassObject::IsHidden(long lFieldID)
BOOL CWhClassObject::HasDollarSign(long lFieldID)
BOOL CWhClassObject::HasCommas(long lFieldID)
BOOL CWhClassObject::IsReadOnly(long lFieldID)
BSTR CWhClassObject::GetTableName(long lFieldID)
BSTR CWhClassObject::GetColumnName(long lFieldID)
long CWhClassObject::GetDataType(long lFieldID)
long CWhClassObject::GetIOFlag(long lFieldID)
long CWhClassObject::GetJoinFieldID(long lFieldID)
long CWhClassObject::EnumFirstFieldID()
long CWhClassObject::EnumNextFieldID()
BOOL CWhClassObject::GetSortType(long lFieldID)
long CWhClassObject::GetOperatorType(long lFieldID)
BSTR CWhClassObject::GetOperator(long lFieldID)
long CWhClassObject::GetSortOrder(long lFieldID)

Now let's take a close look at the CWhClassField class used by the Class Object. When its constructor is
called, it calls two other member functions: one to load the persistent properties and the other to load the
user interface properties from the tables mentioned above. This is what the constructor looks like:

CWhClassField::CWhClassField(CWhDatabase* pDbObj, long lFieldID)
{
 // Initialize this object.
 m_lFieldID = lFieldID;
 // Load its common characteristics.
 LoadUIProperties(pDbObj);
 LoadPersistentProperties(pDbObj);
}

By now it should be pretty obvious what the LoadUIProperties() and the
LoadPersistentProperties() functions will do. They simply create Recordset Objects that point to the
appropriate tables, then load the properties for the given field ID. Since the Field Object holds onto its
field ID, the process of loading the properties becomes trivial. (I love it when that happens. Goes to show
what a good object-oriented design can do for you!)

The Data Object
The last object (but definitely not the least) we need to discuss is the Data Object. The code I
implemented for the Data Object can be found in the form of a class, named CWhDataObject.

We already understand the role that the Data Object plays in the data warehouse, but how is it
implemented? Before we answer this question, let's step back a second and study the Data Object in a
brighter light.

We've learned that it's the Class Object that contains the fields of a class definition. But it's the Data
Object that maintains the data returned from the data source. This data is gathered based on information
stored in the associated Class Object. If the Class Object says that the first field contains a column name
of FirstName and the table name is the Customer table, it's the responsibility of the Data Object to create
an appropriate recordset to access the specified column within the specified table.

Class objects are not only responsible for determining the columns that should be used in a SELECT
clause, they also contain the columns to be used as parameters in the WHERE clause. As a Data Object loads
it data (pertaining to the columns specified by the Class Object), it needs to know what parameters should
be set up before it loads the data. That way, the application will have a Data Object that contains exactly
the information that it's interested in.

For example, let's say that the application makes a request for an Order object to be created. The
application calls the Container Object's CreateComponent() function and specifies 1000 for the class ID
(if this is the class ID of the Order class in the database) and 1234 for the unique identification key for the
Data Object. A Class Object is created and initialized.

In its initialization process, it loads its fields from the ClassFields table and ends up with three fields.
The first two, OrderID and OrderDate, are columns, but the third, CustomerID, is a parameter. All the
fields are taken from the same table: Orders. After building a SELECT statement from the information, the
statement might look something like the following:

SELECT OrderID, OrderData
FROM Orders
WHERE CustomerID = ?

This object is most likely used to create a Data Object containing all of the orders for a given customer.
But how does the Data Object know which customer we want the information returned for? The answer is
that the application must pass it to us, which means that applications must have some knowledge of the
objects that they are trying to create, so that they can be intelligent enough to specify appropriate values
for the Data Object's parameter fields.

This means that before an application can tell a Data Object to load its data, it must first tell it how to do
it. I actually allocate room for the values that will be used in assigning values to parameter fields once the
recordsets have been created. I do this in the constructor of the Data Object's C++ class, like this:

CWhDataObject::CWhDataObject(CWhClassContainer* pClassContainerObj,
 CWhClassObject* pClassObj, long lKey)
{
 EnableAutomation();

 m_bLoaded = FALSE;
 m_lKey = lKey;

 m_pClassContainerObj = pClassContainerObj;

 m_pClassObj = pClassObj;

 // Setup the param map for RS-Params future use.
 // Define variables for fields.
 long lFieldID = m_pClassObj->EnumFirstFieldID();
 long lIOFlag;
 VARIANT* pva;
 ASSERT(lFieldID != -1);
 while (lFieldID != -1)
 {
 // Fetch the persistent IO flag.
 lIOFlag = m_pClassObj->GetIOFlag(lFieldID);
 // Check for Param field.
 if (lIOFlag & piofParam)
 {
 // Create a variant to hold the param's data value.
 pva = new VARIANT;
 VariantInit(pva);
 m_ParamMap[lFieldID] = pva; // Place the variant in the map.
 }
 // Fetch the next field ID.
 lFieldID = m_pClassObj->EnumNextFieldID();
 }
}

To begin with, I enter a while loop, traversing through all of the fields of the associated Class Object.
Next I check their IO flag for the existence of piofParam. If this bit is present in the flag, I allocate a
VARIANT to hold the value. This value will later be initialized with a call to the Data Object's
SetParamValue() function. This function receives two parameters: the field ID and the parameter's value
as a VARIANT. The Data Object can now assign these values to the parameter fields of the Recordset it
builds to load its data:

RecordsetObj.SetParamValue(OLE2T(bstrColumnName), *pvarg);

While we're on the subject of the recordsets needed to load the data for a Data Object, let me remind you
that a single Class Object might contain fields from different tables. To make matters even more
complicated, the fields might just return one row or several rows of data. This means that a single Data
Object should be prepared to maintain data for different fields from different tables, with different row
counts (repeat this sentence three times really fast. I bet you can't!). It took me a while to figure out a
clean solution for this one.

The first thing I needed was to separate the fields into tables. In other words, I needed some way of
creating a Recordset for each table name. If I could accomplish this, I could then keep all of the fields that
belong to one table in a single recordset. I created a map collection to map table names to a new structure,
called RECORDSETINFO, which looks like this:

typedef struct tagRECORDSETINFO
{
 CWhRecordset RecordsetObj; // Constructed Recordset.
 CLongList ColumnList; // Chain of fields in recordset.
} RECORDSETINFO;

The map is named m_RSMap, simply because it maintains a map of Recordsets. This structure contains the
Recordset for the table, as well as pointers to the fields maintained by the Recordset (in ColumnList).
Once I create my map and my Recordset structure, I only need to traverse through the Class Object's
fields, determine what table they belong in and add them to the appropriate recordset. Here's the code
from CWhDataObject::CreateRecordsets() that achieves this:

while (lFieldID != -1)
{
 .
 . Fetch all the necessary field properties.
 .
 // Retrieve or create the necessary table.
 if (lIOFlag & piofColumn || lIOFlag & piofParam)
 {
 if (m_RSMap.Lookup(OLE2T(bstrTableName), pRS) == FALSE)
 {
 pRS = new RECORDSETINFO;
 .
 . Create new recordset, assign it to RecordsetObj
 .
 // Add the new RECORDSETINFO to the map
 // using the table name as the key.
 m_RSMap[OLE2T(bstrTableName)] = pRS;
 }
 }
 // Add Columns to the recordset.
 if (lIOFlag & piofColumn)
 {
 pRS->ColumnList.AddTail(lFieldID);
 pRS->pRecordsetObj->AddCol(lODBCDataType, OLE2T(bstrColumnName));
 .
 . Assign other properties such as table and
 . sort column.
 .
 // Add Params to the recordset.
 if (lIOFlag & piofParam)
 {
 pRS->pRecordsetObj->AddParam(lODBCDataType, OLE2T(bstrColumnName));
 .
 . Assign other properties such as table name,
 . operator type, parameter value, join fields.
 }
}

When you're adding the fields to the Recordset, you must determine whether the field is a column field or
a parameter field, because you'll need to call different functions on the Recordset Object, depending on
the type of field. Note that the RECORDSETINFO structure is only created once per table. The structure is
then added to the map, using the table name as the key. When the Data Object actually loads its data, it
will need to tell each Recordset to fetch its data. This is done with the following code from the exposed
Data Object's automation method, named Load():

BOOL CWhDataObject::Load(LPDISPATCH pDbObj)
{
 if (m_bLoaded)
 return FALSE;

 pDbObj->AddRef();
 m_DbObj.AttachDispatch(pDbObj);

 VERIFY(CreateRecordsets());

 // Load the data.
 POSITION pos;
 RECORDSETINFO* pRS;
 CString strKey;

 for (pos = m_RSMap.GetStartPosition(); pos != NULL; /* NO LOOP-EXPR */)
 {
 m_RSMap.GetNextAssoc(pos, strKey, pRS);
 VERIFY(pRS->RecordsetObj.Fetch());
 }

 VERIFY(LoadData());

 return m_bLoaded = TRUE;
}

Load() iterates through the Recordsets, calling each one's Fetch() method. Once the data has been
loaded into the Recordsets, the Data Object copies the values held by the Recordsets into memory
allocated by the Data Object. That way, it can destroy the Recordsets without destroying the data returned
by them. The copying of the data is performed by the CWhDataObject::LoadData() function like this:

BOOL CWhDataObject::LoadData()
{
 USES_CONVERSION;
 // Define variables for fields.
 Long lFieldID = m_pClassObj->EnumFirstFieldID();
 BSTR bstrTableName;
 BSTR bstrColumnName;
 long lIOFlag;
 RECORDSETINFO* pRS;
 CDataArray* pArray;
 DATAVALUE* pDataValue;
 while(lFieldID != -1)
 {
 // Fetch all the necessary field properties.
 lIOFlag = m_pClassObj->GetIOFlag(lFieldID);
 // Retrieve the necessary table.
 if (lIOFlag & piofColumn)
 {
 bstrTableName = m_pClassObj->GetTableName(lFieldID);
 bstrColumnName = m_pClassObj->GetColumnName(lFieldID);
 m_RSMap.Lookup(OLE2T(bstrTableName), pRS);
 // Add an array of data values if necessary.
 if (m_DataMap.Lookup(lFieldID, pArray) == FALSE)
 {
 m_DataMap[lFieldID] = new CDataArray;
 }
 // Loop through recordset and load data.
 for(pRS->RecordsetObj.MoveFirst();
 pRS->RecordsetObj.IsEOF() != TRUE;
 pRS->RecordsetObj.MoveNext())
 {
 // Create new DataValue item for adding to array.
 pDataValue = new DATAVALUE;
 pDataValue->lModType = dmfUnchanged;
 pDataValue->varValue = pRS->RecordsetObj.GetColValue(
 OLE2T(bstrColumnName));
 // Store the data in the map.
 m_DataMap[lFieldID]->Add(pDataValue);
 }
 }
 // Release the system strings.
 SysFreeString(bstrTableName);
 SysFreeString(bstrColumnName);
 // Get the next field.
 lFieldID = m_pClassObj->EnumNextFieldID();
 }
 return TRUE;
}

This function begins by iterating through the fields. As it reaches a new field, it checks the field's IO flag
to determine whether or not the field is a column field. If it's a column field, the field's table name is used
to locate the RECORDSETINFO structure in the map m_RSMap. Once the appropriate Recordset has been
located, another map, m_DataMap (a collection that maps field IDs to CDataArray objects), is searched.
The reason I needed an array for the field is because, as I mentioned before, a field (or column) can
contain one, or several rows, so it's safer to go with an array for the field's values.

Finally, I traverse through the Recordset, pulling out all of the rows' values for the current field. The value
is then stored in a structure, named DATAVALUE, and the structure is stored in the CDataArray. From top to
bottom, each field ID maps to a CDataArray, which maintains all of the values (row by row) for a single
field. In case you're confused, let me try to clear things up with a diagram:

The lModType member of the DATAVALUE structure determines whether the value has been modified by the
application. This is later used to determine which fields need to be updated to the database. This is
normally done with a call to the Data Object's Save() function, which the application needs to call when
it wants to update the database with any changes that might have been made to a Data Object.

I'll spare you the code for the Save() function, since it simply pulls out the values, looks up the

appropriate Recordsets, calls each Recordset Object's Edit() function or AddNew(), sets the new values
for the columns and calls the Update() function of the Recordset Objects to complete the updates.

In case you were wondering how the application can determine how many rows of data a particular field
was loaded with, it can call the Data Object's GetRowCount() function.

The Final Verdict
So there you have it folks. I've explained both concepts and code, so now it's up to you to absorb the
information and come up with some applications to use the warehouse. I'm sure you'll waste no time in
turning your database applications into applications that can practically maintain themselves.

Although I've tried to provide as much detail about the principles and the implementation as possible, I
just don't have space to answer all of the questions you might have about how I implemented every
feature. To get the most from the data warehouse, I recommend that you spend some time investigating
the code (which has been conveniently provided on the accompanying CD-ROM). But just so that I don't
leave you out in the cold without showing you some sort of client for the warehouse, I've also provided a
small sample application, which I'll describe in the next section.

A Sample to Break in the House
You can find the client application on the CD in the Warehouse\Testbed directory. It uses the
Warehouse.mdb database which must be registered with a data source name of 'Warehouse'.

In this dialog-based application, I made use of the type libraries provided by the transient and component
layer servers to create OLE Automation wrapper classes using ClassWizard. I provided member variables
instantiated from these classes in my client application's main window class as follows:

class CTestBedDlg : public CDialog
{
// Construction
public:
 CTestBedDlg(CWnd* pParent = NULL); // standard constructor

// Attributes
 CWhDatabase m_DbObject;
 CWhClassContainer m_ClassContainer;
 CWhDataObject m_DataObject;
 CWhClassObject m_ClassObject;
.
. more code
.
}

The client application that we'll meet in this section has a main screen that looks like this:

The fields that you see on the screen, CustomerID, FirstName, and LastName, and the values associated

with them, were generated on the fly, based on the information that came back for the Class Object and
the Data Object. We'll shortly see how I picked the information from the objects.

The application also gives us the ability to display information about the fields if we know the field
identifier. For example, if the CustomerID field has an identifier of 1000, we could display the field's user
interface properties by selecting the UI Props... button and entering the value 1000.

All of this information is gathered at run time. When you look at the code, you'll find that there's no
mention of CustomerID or any other field.

Creating a Database Object
Before you can use a Container Object, your application should first create a Database Object. I do this in
CTestBedDlg::OnInitDialog():

// Create and initialize the Database Object.
m_DbObject.CreateDispatch("Warehouse.Database");
m_DbObject.Connect("Warehouse");

The first line calls the COleDispatchDriver::CreateDispatch() function to load the automation server
into memory and create an instance of the automation class associated with the program identifier of
"Warehouse.Database". Once the object has been created successfully, MFC returns and attaches the
IDispatch returned from OLE to the m_DbObject.

The next function, IWhDatabase::Connect(), calls the Connect() method of the Database class in the
automation server. The function requires that you pass it a valid ODBC data source name. It will attempt
to open the data source and connect to it, getting back an ODBC connection handle. The handle is stored
in the automation server for safe keeping.

Creating a Container Object
Once a Database Object has been created and successfully connected to a data source, you should
construct your Container Object. You'll need this object in order to request Data Objects or Class Objects
from the data warehouse.

I created my Container Object using the following code:

// Create and initialize the Container Object.
m_ClassContainer.CreateDispatch("Warehouse.ClassContainer");
m_ClassContainer.Initialize(m_DbObject.m_lpDispatch);

Again, the first line calls the COleDispatchDriver::CreateDispatch() function to create an instance of
the automation class associated with the program identifier of "Warehouse.ClassContainer". Once the
object has been created successfully, MFC returns and attaches the IDispatch returned from OLE to the
m_ClassContainer data member.

The second line initializes the Class Container Object by passing the dispatch interface of the Database
Object to the Class Container Object. The Class Container Object holds on to the Database Object's
IDispatch pointer so that it can also create Recordset Objects or load data from the data source as it
needs.

Creating a Data Object
When an application wishes to create a Data Object, it must call
m_ClassContainer.CreateComponent(). The Container Object is passed the class ID of the Data Object
to create. This creates several objects such as the Class Object and the Data Object itself, then attaches
them to each other. Several Recordset Objects are created for loading the appropriate fields, events and
methods for the Class Object.

In the client code, I do this in the OnInitDialog() function of the main window:

 // Create the Data Object.
 m_DataObject.AttachDispatch(m_ClassContainer.CreateComponent(100, 1));

Notice that I passed the value returned from the Container Object to the
COleDispatchDriver::AttachDispatch() function. Since Data Objects are not registered in the
registry, the only way to create them is via the Container Object.

There are two parameters that are passed to the CreateComponent() method. The first is the identifier for
the type of object you wish to create. As I said before, whoever creates an object in your database must
document the object's identifier and the fields' identifier and must publish them to the rest of your team.

The second parameter passed to CreateDataObject() is a unique identifier which will be used to identify
the component that you're creating. Internally, the automation server combines the Class Object's
identifier with the Data Object's identifier (the key you pass) and creates a hashed value. Here's the code
used by the server to create this key once again:

// Build DataObject key using ClassID + DataObject's Key Value.
#define WH_KEY_PROLOGUE(lClassID, lKey) \
 CString strDataObjKey; \
 strDataObjKey.Format(_T("%ld-%ld"), lClassID, lKey);

If the server needs to access or return this key for any reason, it simply needs to call this macro and pass it
the Class Object's identifier and the Data Object's identifier. As a matter of fact, when you call the Data
Object class's GetKey() function, the key is first constructed using this technique and then the composed
key is returned.

Once you have created both the Class Object and the Data Object, it's time to load the data into the Data
Object. We do this by simply calling the Load() method of the Data Object class. Here you can see an
extract from the client application that demonstrates the use of Load():

m_DataObject.Load(m_DbObject.m_lpDispatch);

Depending on how the object's class information was set up in the database, you might need to set some
parameters in order to load the object. You'll know if you need to do this based on the object's
documentation. For example, let's say that the object was created so that you must supply a CustomerID
before it's loaded. Furthermore, let's say that the field identifier for the CustomerID field is 1000. You
would need to call the SetParamValue() of the Data Object before calling the Load() method. Here's
some code to perform this:

COleVariant va(1);
m_DataObject.SetParamValue(1000, va);

This code would result in a SQL statement similar to the following:

SELECT * FROM Customers WHERE CustomerID = 1

If the Load() function is successful, you can begin to retrieve values from the Data Object. Again, you
would need to know the identifiers of the fields to pull out the data. The exception to this rule is if you
simply enumerate through the fields by using the Class Object's EnumFirstFieldID() and
EnumNextFieldID() functions. Next, you would need to pass the identifier to the GetData() function, as
specified by the following code:

m_strValue1 = vtConvertVariantToString(m_DataObject.GetData(nFieldID, 0));

In the above code, I tell the Data Object that I want to retrieve the value stored at nFieldID, row 0 (in
case there are several rows of data). Since the values come as a VARIANT, I created a function to convert it
from a VARIANT to a CString, so that I could store it directly into a string variable.

Summary
So there you have it folks. Again, you won't get the whole picture until you study the code. Unfortunately,
since the warehouse is a major piece of code, I couldn't print it all here, but I would suggest that you take
a look at the source code and study it, using this chapter as a reference.

With every solution I have ever seen (no matter how good), there is always room for improvement, so if
you do come up with some good ideas, send me an e-mail. I'd love to hear about them.

Enhancing Windows UI
Components

Overview
Windows has always provided the programmer with a good variety of controls and dialogs, and with
Windows 95 this choice has broadened considerably (probably putting several small custom control
manufacturing companies out of business in the process!).

Along with the traditional buttons, edit controls and list boxes, we now have image lists, masked edit
controls, property sheets, tree lists and a host of other, sometimes weird and wonderful, controls and
dialogs. It's always the case, though, that you can find something you need to do which is outside the
scope of the controls you've got, which means that you need to go hacking. When this happens, there are
two things you can do: either write yourself a new control from scratch, or modify the behavior of an
existing control.

Obviously, if the control you need is completely unlike anything currently available under Windows, such
as, say, a stop/go signal or a graphing control, you'll need to write it yourself. Actually writing such a
control using MFC and implementing it as an OCX isn't that hard, but it is outside the scope of this
chapter.

But what if an existing control nearly fits what you need? Say, an edit control which only accepts
numbers, or a status bar with a bitmap in one of its panes? In these, and similar cases, you can hack into
the existing controls, modifying their behavior and making them do what you want them to do. It's
exciting stuff, and will certainly teach you a lot more about how Windows (and MFC) works, as well as
giving you some neat user-interface widgets.

This chapter shows how to go about modifying and extending the controls and dialogs provided with
Windows 95 (and NT 3.51) through a series of case studies, rather than pure theory or abstract ideas. I've
done this in the hope that you may find something that's actually of use to you in your own applications,
and to give you some ideas which you can extend and modify in your own time.

If you do invent (or come across) some great ideas for modifying the standard controls or dialogs, let me
know!

Getting Started
Before we start on the coding, let's get some of the more theoretical stuff over and done with.

Although in some cases we're going to be altering the appearance and function of a control or dialog,
most of the work in this chapter is accomplished by subclassing.

What is subclassing? Let's begin by considering it in the context of a traditional SDK-style Windows
program. (Before anyone complains, I'm well aware that there may be some people who have never seen
an old-style Windows program, but don't worry, we aren't going too far back in time…)

In a Windows program, every window has a function associated with it, called the window procedure,

which processes the messages for all windows of that type. This means that for, say, edit controls, there's
a function down in the bowels of Windows whose job it is to process all the messages passed to edit
controls. Every window 'object' has stored within it a pointer to this function, which is how Windows
knows where to route messages.

We can't get at this window procedure, because Microsoft doesn't hand out the source code, but we do
have a pointer to it inside our edit control. This means that we can replace that pointer with one to a new
custom window procedure, which does what we want. In other words, we hook into the control's message
processing.

Our new procedure may do one of four things with each message it receives. It may:

Do nothing at all.
Pass it to the original procedure.
Do something without passing it on.
Do something and then pass it on.

Most messages will get passed on unmodified, like they always do. Some, we may wish to block, as when
we examine WM_CHAR messages to stop an edit control accepting digits. In other cases, we might want to
take some action before passing the message on; when the user resizes our application's main window, we
might want to move or resize a control within the window before passing the message on so that
Windows can resize the frame.

Before we go on to see how this is done using MFC, I'll just mention that there's also a technique, called
superclassing, which is similar to subclassing, only different (if you see what I mean). Both involve
altering the window procedure of a control, but whereas subclassing involves changing the procedure in a
single instance of a control, superclassing involves creating a new procedure which affects an entire class
of controls, such as all the edit controls.

How to Subclass a Control Using MFC
As you might expect, subclassing using MFC bears little outward resemblance to the procedure I've just
described, because all the low-level Windows work is done for you by MFC itself.

The idea is simple. MFC provides classes to wrap all the control types provided by Windows, from
CButton to CStatusBar and beyond, and the member functions of each of these classes together make up
the 'window procedure' which processes the messages for the control. We subclass controls by deriving
new classes from those in MFC and overriding member functions in order to customize their
functionality. As in the example above, we are at liberty not to override certain functions, so that the
message gets processed by the base class, or we can provide our own functions and either process
messages ourselves, or partially process them and pass them on.

Supposing that I do subclass a control, say a CButton, by providing my own class CMyButton. How do I
use this in my MFC program?

There are basically two ways. The first is to use ClassWizard, and the second is to use the CWnd function,
SubclassDlgItem().

When you place a control in a dialog or a CFormView, ClassWizard allows you to associate a variable with
it, using the Member Variables tab in the ClassWizard dialog. This may be a simple variable, such as an

integer or CString, but it can also be a 'control', in which case you specify a control class to be associated
with the actual control on the screen.

ClassWizard then creates an instance of your control class and associates it with the control, so that all
messages for the control will get routed to your control object, rather than the original. We'll see how this
works in practice later in the chapter, when we subclass an edit control.

The second way is to add a handler to your dialog to process the WM_INITDIALOG message and in that
handler, add calls to SubclassDlgItem() in order to associate control IDs with control classes. It has the
same effect as using ClassWizard, but is more, how shall I put it… manual.

Playing with Menus
We'll start by looking at a couple of ways in which we can modify menus.

How to Create a Right-button Pop-up
Many applications are now making use of the right mouse button pop-up menu; it can be used in most
places in Developer Studio to give shortcut access to commonly used commands, which are relevant to
the part of the screen on which you click.

If you're using Visual C++ 4.0 or above, you can add this support directly from the Component Gallery. If
you're interested in understanding how it works, read on.

To provide a right mouse menu for a window, you could install a handler for the WM_RBUTTONDOWN or
WM_RBUTTONUP messages, but for Windows 95 and NT 3.51, it's better to use the new WM_CONTEXTMENU
message. This has been specially provided for right mouse button menus, and will work in situations
where the WM_RBUTTONDOWN and WM_RBUTTONUP messages aren't generated, such as clicking over controls
in a dialog.

Start by defining a menu resource using the menu editor in Developer Studio and give it a suitable ID,
such as IDR_RT_POPUP. The item at the top of the pop-up can be anything; it only serves as a place marker
and you'll never actually see it. Here's a pop-up menu with three items:

Now code up the context menu handler. We need to load the pop-up menu from the app's resources and
get a pointer to its first submenu. To avoid loading the menu from the resource each time the user presses
the right mouse button, we can load it once when the application starts and save it in one of our
application's classes. It doesn't really matter which one, but I've chosen to add a CMenu data member to the
application class, and load it with the menu resource in InitInstance().

class CRtMenuApp : public CWinApp

{
public:
 CRtMenuApp();

// ...
public:
 CMenu m_Popup;
};

BOOL CRtMenuApp::InitInstance()
{
 // ... All the other initialization

 m_Popup.LoadMenu(IDR_RT_POPUP);
}

In the handler, we get the submenu associated with the pop-up as a pointer to a CMenu. Instead of finding
it each time, why not store this directly in the application class? The answer is that CMenu operations, like
GetSubMenu(), return pointers which are not designed to be stored, and should be regenerated each time
they are to be used.

void CRtMenuView::OnContextMenu(CWnd* pWnd, CPoint point)
{
 CRtMenuApp* pApp = (CRtMenuApp*)AfxGetApp();
 CMenu* pSubMenu;
 pSubMenu = pApp->m_Popup.GetSubMenu(0);
 pSubMenu->TrackPopupMenu(TPM_LEFTALIGN | TPM_RIGHTBUTTON,
 point.x, point.y, AfxGetMainWnd(), NULL);
}

Now that we've got the submenu, we use its TrackPopupMenu() member function to display the pop-up
and handle its messages, and we can add handlers for these menu items just as you would for any other.

Using Dialogs
Using WM_CONTEXTMENU rather than the right button messages really comes into its own in forms and
dialogs. In this situation, the parent won't get a button message when the user right-clicks over a control,
but it will get a WM_CONTEXTMENU. The message handler gets passed a pointer to the window where the
event occurred, and you can use this to find out what the user clicked on:

void CTestDlg::OnContextMenu(CWnd* pWnd, CPoint point)
{
 if (this == (CTestDlg*)pWnd)
 AfxMessageBox("Clicked on dialog");
 else if (pWnd == GetDlgItem(IDCANCEL))
 AfxMessageBox("Clicked on cancel button");
}

One final point—you'll notice that you get a standard menu when you right-click over a standard edit
control. If you want to override this to provide your own menu, you can subclass the CEdit class and
provide a handler for the WM_CONTEXTMENU message. The section later in this chapter on how to write a
masked edit control shows you how to subclass CEdit.

Modifying the System Menu
Let's turn our attention now to modifying the system menu. Why would you want to do this? One

particular use is in applications which run in a minimized state, where the only access to any menu items
is their system menu; in these cases, you may well want to add commands to this menu.

It's not at all difficult to modify the system menu. The CWnd class has a member function
GetSystemMenu(), which returns you the system menu in the form of a pointer to a CMenu object.

Once you've got that, you can use the standard CMenu member functions to modify the menu. In the
following code fragment, we've added About... to the bottom of the system menu and given it the same ID
as the About... item on the standard menu:

BOOL CMyApp::InitInstance()
{
 // Stuff omitted
 // Get handle to the system menu of the app's main window
 CMenu* pSysMenu;
 pSysMenu = m_pMainWnd->GetSystemMenu(FALSE);
 // Add a separator and an 'About' item
 pSysMenu->AppendMenu(MF_SEPARATOR);
 pSysMenu->AppendMenu(MF_STRING, ID_APP_ABOUT, "About...");
}

We still need to handle the selection of the menu, though. When the system menu is selected, Windows
generates a WM_SYSCOMMAND message, but ClassWizard won't add a handler; you have to code one
yourself. The best place to put this is in the CMainFrame. The class definition needs a member prototype:

class CMainFrame : public CFrameWnd
{
...
// Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnSysCommand(UINT nID, LPARAM lParam);
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

The message map needs a new entry:

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code !
 ON_WM_CREATE()
 ON_WM_SYSCOMMAND()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

And finally, the handler itself:

void CMainFrame::OnSysCommand(UINT nID, LPARAM lParam)
{
 if ((nID & 0xFFF0) == ID_APP_ABOUT)
 {
 ((CMyApp*)AfxGetApp())->OnAppAbout();
 }
 else
 CWnd::OnSysCommand(nID, lParam);
}

The nID argument contains the ID of the menu option selected, along with other information in the lowest
four bits, hence the need to AND it with 0xFFF0. You must remember to call the base class
implementation of OnSysCommand(), otherwise your application will stop working properly (just try it if
you don't believe me!).

If you need to modify the system menu from elsewhere in the program, you can use AfxGetApp()-
>m_pMainWnd or AfxGetMainWnd() to get to the app's main window.

Notice the FALSE parameter to GetSystemMenu(). If called with FALSE, the function returns you a pointer
to the menu so that you can modify it. If called with TRUE, on the other hand, it returns the system menu
to its default state.

Looking at Toolbars
In the next two sections, we're going to look at how to modify two of the most popular of the new
Windows 95 common controls: toolbars and status bars.

What are Toolbars?
A toolbar is basically a window which contains an array of buttons that are mostly used as shortcuts for
common menu items. The standard toolbars can either be free-floating or 'docked' to the edge of the
window.

Prior to the release of the common controls, anyone wanting to use toolbars or status bars had to either
roll their own, or buy a third-party control. Neither of these options is particularly good from the point of
view of portability and maintainability, so it's good to have 'standard' versions at last.

Two for the Price of One
MFC provides two classes that work with toolbars: CToolBar and CToolBarCtrl. Why two separate
classes? This is because versions of MFC prior to the release of the common controls provided a toolbar
class called CToolBar. With Visual C++ 4.x, MFC provides a new class, CToolBarCtrl, that provides a
thin wrapper over the Windows common control and CToolBar has had its implementation changed so
that it too uses the new common control.

CToolBarCtrl, directly descended from CWnd, provides almost direct access to all the functions of the
common control, whereas CToolBar, which inherits from CControlBar, is more fully integrated with the
rest of MFC.

We'll be concentrating mainly on using CToolBar in the context of MFC, but if you need to talk directly
to the underlying common control, you can call the CToolBar::GetToolBarCtrl() member function to
get a reference to the actual control.

Control Bars
Status bars and toolbars are specialized types of control bar, represented in MFC by the CControlBar
class. Control bars are windows that may contain either standard, HWND-derived controls or non-HWND

items. They are usually owned by the frame window in which they appear.

The CControlBar class contains functionality for aligning the bar to the top, bottom or side of the frame,
for allocating arrays of control items, and for helping you to derive new classes.

Adding a Combo Box to a Toolbar
A toolbar basically consists of buttons and separators, but you can add other sorts of objects. Let's look at
how to add a combo box to the beginning of the standard MFC toolbar, the one which AppWizard adds to
the skeleton project.

Create a Project
Create a new project using AppWizard; either an MDI or SDI example will do. Make sure you select the
Docking toolbar option in Step 4.

Modifying the Toolbar Creation Code
In the frame window class' source code, in Mainfrm.cpp, separate out the code which creates the toolbar
from OnCreate(), and put it into its own function, CreateToolBar().We aren't going to be calling it from
anywhere else, so make it private to the CMainFrame class.

BOOL CMainFrame::CreateToolBar()
{
 if (!m_wndToolBar.Create(this) ||
 !m_wndToolBar.LoadToolBar(IDR_MAINFRAME))
 {
 TRACE0("Failed to create toolbar\n");
 return FALSE; // fail to create
 }
 return TRUE;
}

You can then call this function from OnCreate(), to create the toolbar:

 if (!CreateToolBar())
 return -1;

Formatting the Toolbar
We need a placeholder for the drop-down list at the start of the toolbar, and a separator between the list
and the next group of buttons, but the toolbar editor doesn't allow you to put spaces in at the start of the
toolbar. We could construct our own array of button IDs, putting two ID_SEPARATOR IDs (one for the
combo and one for the space after it) at the start, and call SetButtons(), but that gives maintenance
problems. Pity the poor programmer who adds a new button using Developer Studio and then can't find
out why it doesn't work because they've overridden the IDs in the code. A neater solution would be to use
the toolbar IDs provided and dynamically add the two separators.

How would we go about this? There doesn't seem to be any method in CToolBar to add just one button.
Well, the CToolBar class is a wrapper for the system supplied toolbars, implemented in CToolBarCtrl.

You can get a pointer to this class using CToolBar::GetToolBarCtrl(), and CToolBarCtrl has a method
called InsertButton(), which will do what we want.

Once the toolbar has been created, we call InsertButton() twice to add the separators. First, we have to
set up a structure for defining the button:

BOOL CMainFrame::CreateToolBar()
{
 if (!m_wndToolBar.Create(this) ||
 !m_wndToolBar.LoadToolBar(IDR_MAINFRAME))
 {
 TRACE0("Failed to create toolbar\n");
 return FALSE; // fail to create
 }

 TBBUTTON button; // prepare to call InsertButton

 button.iBitmap = NULL; // set up the structure
 button.idCommand = 0;
 button.fsState = 0;
 button.fsStyle = TBSTYLE_SEP; // a separator
 button.dwData = 0;
 button.iString = NULL;
 m_wndToolBar.GetToolBarCtrl().InsertButton(0, &button);
 m_wndToolBar.GetToolBarCtrl().InsertButton(0, &button);

 return TRUE;
}

Test the Program
If you build and run the program at this point, you'll see that the toolbar has a blank space at the start.
We'll now go on to fill it with a combo box.

Creating the Combo Box
We need to provide an ID by which we can refer to the combo box. Creating a string resource will enable
us to both label the combo box and provide a status bar prompt and tool tip. I called it IDS_COMBO, and
gave it a value of "Combo box\nCombo".

The toolbar's SetButtonInfo() member function is used to set various items of data associated with
buttons on the toolbar. Note that, although the function is associated with buttons, it also works with
separators; maybe SetItemInfo() would have been a better name!

In this case, we're interested in two properties in particular: the command ID associated with the button
and the width of the button.

Button 0 represents the separator where we're going to display the combo box, so we set it to have the ID
of our combo string resource and a width of 100 pixels. Button 1 stays as a separator, with a width of 12:

BOOL CMainFrame::CreateToolBar()
{
 ...
 m_wndToolBar.SetButtonInfo(0, IDS_COMBO, TBBS_SEPARATOR, 100);
 return TRUE;
}

Note that we leave the style as TBBS_SEPARATOR for both items, because, as far as the toolbar itself is
concerned, they are both areas which the toolbar doesn't have to draw.

Now that we've got enough room on the toolbar, we actually need to create the combo box and display it.
We need an MFC combo box object to do this, so add a combo box member to the frame window class:

 CComboBox m_toolBarCombo;

To draw the box, we find the size of the space in the toolbar and extend it downwards to allow for the
drop of the combo box, say, 100 pixels:

BOOL CMainFrame::CreateToolBar()
{
 ...

 CRect rect;
 m_wndToolBar.GetItemRect(0, &rect);
 rect.top = 3;
 rect.bottom = rect.top + 100;

Once we've got the dimensions, we can create the combo box as a child of the toolbar:

 if (!m_toolBarCombo.Create(CBS_DROPDOWNLIST | WS_VISIBLE |
 WS_TABSTOP, rect, &m_wndToolBar, IDS_COMBO))
 {
 TRACE0("Failed to create combo-box\n");
 return FALSE;
 }

After that, it's simple to fill the combo box with strings:

 m_toolBarCombo.AddString("One");
 m_toolBarCombo.AddString("Two");
 m_toolBarCombo.AddString("Three");
 m_toolBarCombo.AddString("Four");
 return TRUE;
}

Testing the Program
When you build and test the program, you should find a working combo box on your toolbar, like this:

Handling Notifications
Now that we've got the combo box there, how do we use it? The easiest thing to do is to add a suitable
message handler.

Say we want to intercept each time the user changes the combo selection. We can do this by adding a
handler for the combo's CBN_SELCHANGE notification message. Because we've added the combo box
manually, we'll also add the message map entries manually.

First, add a suitable function to the frame class declaration:

 //{{AFX_MSG(CMainFrame)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG

 // Handler for combo box messages
 afx_msg void OnComboChange();
 DECLARE_MESSAGE_MAP()

Then add the entry to the message map in the frame class' source file:

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code!
 ON_WM_CREATE()
 //}}AFX_MSG_MAP

 ON_CBN_SELCHANGE(IDS_COMBO, OnComboChange)
END_MESSAGE_MAP()

Once again, don't put it in ClassWizard's section. The handler for the CBN_SELCHANGE message is,
unsurprisingly, ON_CBN_SELCHANGE; MFC defines a host of handlers for all manner of control notification
messages. See the online help for a full list.

The last thing is to implement the handler itself, which isn't too hard, as the routine takes no arguments.
So you can see how to do it, here's some simple code which gets the selection and uses the TRACE macros
to output to the debugger window:

void CMainFrame::OnComboChange()
{
 int nSel = m_toolBarCombo.GetCurSel();
 if (nSel == CB_ERR)
 TRACE0("Combo: no selection\n");
 else
 {
 CString cs;
 m_toolBarCombo.GetLBText(nSel, cs);
 TRACE1("Combo: selection is now '%s'\n", (LPCTSTR)cs);
 }
}

Run the program under the debugger, and you'll see a message being printed each time the selection
changes.

You can use this method to insert any control you wish into the toolbar (including OCX's if you turn
on OCX containership in AppWizard), although you do have to be careful about the height of the
control!

A Word about Status Bars
A status bar is a horizontal window that is usually displayed at the bottom of a parent window and is
used by the application to display status information.

Status bars may contain a number of separate display areas, called panes or indicators. Panes pack to the
right of the window, so the first one, pane 0, expands to take up all the space on the left of the window
which is unused by the other panes.

Pane 0 is usually used for displaying text messages, such as menu item prompts, while the other panes are
used for status information, such as key states (CapsLock, NumLock and so on).

Version 2 Status Bars
This book is about programming using Visual C++ version 4.x, but it's worth noticing that there are
differences between the way status bars are handled in 4.x and version 2.x.

The reason for this is that, in version 2.x, status bars were an MFC invention, whereas in version 4.x,
designed as it is to run under Windows 95 and NT, the status bar classes use the built-in status bar
common control. This means that we have the same situation as with toolbars, with two classes for status
bars: CStatusBar and CStatusBarCtrl.

What this means in practice is that some of the techniques that could be used to customize status bars
under 2.x no longer work under 4.x. If you really do want to emulate a 2.x status bar, there is some
sample code included with the Visual C++ distribution, which you'll find in \Msdev\Samples\Mfc\
Advanced\Oldbars.

Putting a Bitmap in a Status Bar Pane
Often, it would be neat to be able to put a bitmap in one of the panes in the status bar, such as a logo, or
maybe a stop/go light. The problem is that while it's quite easy to modify the text in a status bar pane

(using SetWindowText() to update the text in pane 0, and SetPaneText() for any other pane), no
functions are provided for adding or manipulating graphics. However, you're now given the option of
making panes owner-draw, so it becomes fairly easy to draw a bitmap yourself in a pane.

Create a Project
The first thing to do is to create a project. For the purposes of this exercise, you can use an SDI or MDI
project, but just make sure you tell AppWizard to add a status bar!

Add a New Pane to the Status Bar
We'll add a new pane to the status bar to hold the bitmap. The number and size of the panes is determined
by the framework when it creates the status bar, and MFC uses the information it finds in the static array
indicators[] in the Mainfrm.cpp file, which you'll find just below the message map:

static UINT indicators[] =
{
 ID_SEPARATOR, // status line indicator
 ID_INDICATOR_CAPS,
 ID_INDICATOR_NUM,
 ID_INDICATOR_SCRL,
};

The number of items determines the number of panes. Each item is the ID of a string resource, with the
length of the associated string determining the size of the pane. Panes are numbered from the left, starting
from zero, and the left-most pane is 'elastic', so that it will take up all the space not allocated to the other
panes.

As well as the default pane 0, the default status bar added to your project by AppWizard has three panes,
which are used to show the state of the CapsLock, NumLock and ScrollLock keys respectively.

By adding another item to this array, and to the string table in the program's resources, we can put another
pane into the status bar at the position we choose.

Adding the New Pane to the Code
Use the string table editor to create a new string, ID_INDICATOR_BMP, in the same segment of the string
table as the other indicator IDs.

I mentioned above that the length of the string will determine the size of the pane when the status bar is
created, so it's important to give the string a value which will result in a pane large enough to hold your
bitmap. In this example, a value such as MMM will be sufficient. It doesn't actually matter what the string
is. It's just a dummy, which the status bar creation routine uses to calculate a size for the pane.

Now add the ID to the indicators[] array in Mainfrm.cpp, putting it wherever you want the new pane
to appear. I've put it as the first one after the separator, so that it'll appear before the key-state panes:

static UINT indicators[] =
{
 ID_SEPARATOR, // status line indicator
 ID_INDICATOR_BMP,
 ID_INDICATOR_CAPS,
 ID_INDICATOR_NUM,

 ID_INDICATOR_SCRL,
};

Adding a Bitmap
Now that we've added the pane, we need a way to draw the bitmap into it. The way to do this is to
override the CStatusBar's DrawItem() function; this will get called whenever an owner-draw pane needs
to be updated.

If you look at the messages which a CStatusBar can handle, you'll find one called WM_DRAWITEM, and you
might wonder why this isn't used. The answer is that WM_DRAWITEM is the message sent to an owner-draw
control to tell it to draw itself, and in this case, you're not drawing the complete control, but using a
special mechanism to override the drawing of one pane.

To do this, we can create a class (using ClassWizard), which inherits from CStatusBarCtrl, so that we
can override DrawItem(). We don't actually want to have our class based on the control, so we need to
change the references to CStatusBarCtrl to CStatusBar (there are two: one in the class declaration, the
other in the message map). We can now override the DrawItem() member, as well as adding another
member to hold the bitmap resource ID.

class CBitmapBar : public CStatusBar
{
...
 public:
 virtual void DrawItem(LPDRAWITEMSTRUCT lp);
 UINT m_BitmapID;
};

We add a line to the constructor to initialize the m_BitmapID member, otherwise we would be asking for
trouble when we use it later:

CBitmapBar::CBitmapBar()
{
 m_BitmapID = IDB_GREEN;
}

When you use AppWizard to create an application that has a status bar, a data member is added to the
application's frame window class. In the case of an SDI application, a data member, called
m_wndStatusBar, is added to the CMainFrame class. We can replace it with one of our derived objects by
changing the class declaration in Mainfrm.h, and including Bitmapbar.h in Mainfrm.cpp

#include "bitmapbar.h"
class CMainFrame : public CFrameWnd
{
protected: // create from serialization only
 CMainFrame();
 DECLARE_DYNCREATE(CMainFrame)

...

protected: // control bar embedded members
 CBitmapBar m_wndStatusBar;
 CToolBar m_wndToolBar;

// Generated message map functions
protected:

 //{{AFX_MSG(CMainFrame)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnActionsRedraw();
 afx_msg void OnUpdateBmpPane(CCmdUI *pCmdUI);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

Create the Bitmaps
Before going any further, we need to create something to display in the pane. The length of string we've
given in the table means that we need a bitmap about 11 pixels high and 22 wide. We'll create one with
two 'lights', representing a stop/go signal. Use the resource editor to create two bitmaps—one with red
and gray lights, and the other with gray and green—to represent the stop and go states. Call them IDB_RED
and IDB_GREEN, using the Edit/Properties... option to change the ID.

Draw the Bitmap
There are two stages to drawing the bitmaps. First, we have to tell the status bar that the pane is owner-
draw, and then we need to provide the drawing code.

The status bar is set up in CMainFrame::OnCreate(). We can add a call to
CStatusBar::SetPaneStyle(),to set our bitmap pane to be owner-draw:

 m_wndToolBar.SetBarStyle(m_wndToolBar.GetBarStyle() |
 CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC);

 m_wndStatusBar.SetPaneStyle(1, SBT_OWNERDRAW);

Now, whenever the status bar needs to refresh pane 1, it will call DrawItem(), which our class needs to
override. If you look in the MFC source, in Barstat.cpp, you'll see why:

// Derived class is responsible for implementing all of these
// handlers for owner/self draw controls.
void CStatusBar::DrawItem(LPDRAWITEMSTRUCT)
{
 ASSERT(FALSE);
}

Overriding DrawItem()
Here's our implementation of DrawItem():

void CBitmapBar::DrawItem(LPDRAWITEMSTRUCT lp)
{
 CRect r(lp->rcItem);
 CBitmap bmp;
 // Blit the bitmap into the pane
 CDC bmpDC, paneDC;
 // Attach the paneDC object to the DC passed in
 paneDC.Attach(lp->hDC);
 // create a memory DC in which to prepare the bitmap

 bmpDC.CreateCompatibleDC(NULL);

 // load a bitmap into the DC
 bmp.LoadBitmap(m_BitmapID);
 CBitmap* pOldBmp = bmpDC.SelectObject(&bmp);
 // stretch the bitmap into the pane
 paneDC.StretchBlt(r.left, r.top,
 r.Width(), r.Height(),
 &bmpDC, 0, 0, 22, 11, SRCCOPY);
 bmpDC.SelectObject(pOldBmp);
}

The first thing to look at is the data item passed in, which is a pointer to a Windows data structure, called
a DRAWITEMSTRUCT. This is used for all of the owner-draw controls, and looks like this:

typedef struct tagDRAWITEMSTRUCT {
 UINT CtlType;
 UINT CtlID;
 UINT itemID;
 UINT itemAction;
 UINT itemState;
 HWND hwndItem;
 HDC hDC;
 RECT rcItem;
 DWORD itemData;
} DRAWITEMSTRUCT;

Many of the fields don't concern us for now; those which do in this example are hDC, which is the device
context into which we can draw, and rcItem, which is the rectangle occupied by the control. In other
words, the DRAWITEMSTRUCT contains all the information we need to be able to decide how to draw the
control and then to draw it.

We first create two MFC CDC objects—the first to hold the bitmap and the second to represent the pane—
so we attach it to the DC passed in as part of the DRAWITEMSTRUCT. Next, the bitmap resource is loaded
and placed into the first CDC.

We've now got two CDC objects, and we can use the CDC::StretchBlt() function to copy the contents of
the bitmap DC into the pane DC.

When you code all this up and build the program, you'll get the result shown below.

Changing the Bitmap
Depending on what your application is doing, you may well want to change the bitmap at some point,;
examples might include indicating the status of a connection to a server application, or the status of a
print job.

We'll simulate this by allowing you to switch between the red and green bitmaps using a menu item,
although you'd use exactly the same method if you did it completely under program control. First, add a
suitable menu item, give it an ID and install a handler for the menu item. I put the handler in the
mainframe class, because that's the class that owns the status bar, so it makes the coding easy for the
purposes of this example. You may find that some other class makes a better owner for the handler.

The handler simply calls a routine, telling the status bar to switch the bitmaps:

void CMainFrame::OnActionsSwitchbitmaps()
{
 // Tell the status bar to switch the bitmaps
 m_wndStatusBar.SwapBmp();
}

The status bar does the switch and then causes a redraw:

void CBitmapBar::SwapBmp()
{
 m_BitmapID = m_BitmapID == IDB_GREEN ? IDB_RED : IDB_GREEN;
 InvalidateRect(NULL);
}

When you've implemented this, selecting the menu item will switch the bitmaps. You can see it more
easily if you set up a toolbar button to trigger the same action.

Another neat trick is to allow the user to change the status of the application through the bitmap (Word 95

does something similar with its status bar; for example double-clicking on the MRK pane brings up the
Revisions dialog), and doing this in our application is quite easy. All we need is to add a handler for the
WM_LBUTTONDBLCLK message:

void CBitmapBar::OnLButtonDblClk(UINT nFlags, CPoint point)
{
 // TODO: Add your message handler code here and/or call default
 CRect rectBmpPane;
 GetItemRect(CommandToIndex(ID_INDICATOR_BMP), &rectBmpPane);
 if (rectBmpPane.PtInRect(point))
 SwapBmp();

 CStatusBar::OnLButtonDblClk(nFlags, point);
}

As you can see, we get the rectangle of the pane containing the rectangle, then make sure that the user
actually clicked in that pane. We then call the SwapBmp() function that we set up in the class to swap the
bitmaps.

Making a Masked Edit Control
One of the most frequently requested modifications of a standard control is to be able to apply some sort
of masking to an edit control, so that it only (for instance) accepts numeric or alphabetic characters. It just
so happens that Visual C++ 4.x includes an OLE control in the Component Gallery which does just this,
but it's possible that the formats supported by this control may not do quite what you want (or even that
you're using a version of Visual C++ that doesn't have the Component Gallery), so it's is still useful to see
how to do it yourself.

In this section, we'll see how to develop an edit control into which you can plug any type of input filter
you wish.

Subclassing CEdit
To filter out input characters that we don't want, we need to intercept them before they get displayed in
the edit control.

Each time a character is entered into the control, it results in a WM_CHAR message being sent to the edit
box. If we derive our own class from the MFC edit control class, CEdit, and provide a handler for
WM_CHAR, we can check the character against a mask and only pass on to the edit control those which are
acceptable. Doing it this way does have one disadvantage, which is that we have to derive a new CEdit
class for each type of input we wish to filter.

To get around this, and to make the class more flexible, we won't do the checking directly in the WM_CHAR
handler, but will push the checking out to another mask class, which does the checking for us. The edit
class will contain a pointer to a mask object, and we can then write as many different mask classes as we
want, and attach them to the edit control at run time. Working this way means that we only have to
provide a simple, plug-in mask class for each type of input we wish to process, and we can even change
them at run time should we ever wish to.

Our first step is to derive a new edit control class, so use ClassWizard to add a new class, inheriting from
CEdit, and call it, say, CExtEdit.

The first modifications to make to this class are to add a handler for the WM_CHAR message, a data member
which points to a masking object (which we'll discuss in a minute or two), and a means of setting it:

#include "MaskBase.h"
//
// CExtEdit window

class CExtEdit : public CEdit
{
 // pointer to mask for this edit control
 CMaskBase* m_pMask;
// Construction
public:
 CExtEdit();

// Operations
public:
 void SetMask(CMaskBase* pM);
// Overrides

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CExtEdit)
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CExtEdit();

 // Generated message map functions
protected:
 //{{AFX_MSG(CExtEdit)
 afx_msg void OnChar(UINT nChar, UINT nRepCnt, UINT nFlags);
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
};

At this stage, we just need to arrange for the initialization and destruction of the data member:

CExtEdit::CExtEdit()
{
 m_pMask = NULL;
}

CExtEdit::~CExtEdit()
{
 // We're responsible for getting rid of any mask
 if (m_pMask)
 delete m_pMask;
}

Providing Masks
The input masking is going to be provided by a series of classes, all of which will derive from a vanilla
base class, CMaskBase. Here's its definition:

class CMaskBase
{
public:
 virtual BOOL AddChar(UINT nChar) = 0;
};

The single member function, AddChar(), is called to process each character entered into the edit control,
and returns TRUE or FALSE, depending on whether a character should be accepted or not. This function
needs to be overridden by derived classes in order to provide their custom behavior, so it's made a pure
virtual function.

How will we set and use the mask in the edit control? CExtEdit::SetMask() stores the pointer away for
future use, but, first, it checks that the pointer passed in was valid, and then it deletes any existing mask
object. It has to do this because we've decided that it's our edit class that is responsible for the ownership
of the mask objects:

void CExtEdit::SetMask(CMaskBase* pM)
{
 ASSERT(pM);
 // If there is already a mask, zap it
 if (m_pMask)
 delete m_pMask;
 m_pMask = pM;
}

Deleting the old mask lets us change masks in mid-program, should we ever wish to. I can't really think of
a time when I'd actually want to do this, but it's always a good idea to plan ahead and make features
available, even if you can't see a good use for them right now. Note the use of an assert to check the
pointer argument; this is fine during development, but, for production code, you might want to replace it
with a better run-time check, such as throwing an exception, or passing back a return value showing that
the function failed.

The mask is used in the WM_CHAR handler:

void CExtEdit::OnChar(UINT nChar, UINT nRepCnt, UINT nFlags)
{
 // Check if we have a handler set up
 if (m_pMask == NULL)
 throw "No handler defined!";
 // Pass the character onto the mask object to see whether
 // it is acceptable
 if (m_pMask->AddChar(nChar))
 CEdit::OnChar(nChar, nRepCnt, nFlags);
 else
 MessageBeep(0);
}

The first thing is to check that a mask has been set. Here, we choose to throw an exception if it hasn't.
This is the sort of place that you'd want to use exceptions; where a fatal error has been encountered in a
low-level routine and you want to give the application code a chance to handle it. Incidentally, remember
to remove the default call to CEdit::OnChar(), or your handler won't work as expected.

If the mask is in place, we pass it the character and see whether we get TRUE or FALSE returned. If TRUE,
we pass the character on to CEdit::OnChar(), which results in it getting displayed; if FALSE, we beep to
alert the user.

Mask Classes
Before we can use masked editing, we need to define some actual masks. The first one is a numeric edit
control for simple integer values:

#include "MaskBase.h"
class CMaskNum : public CMaskBase
{
 int nCharPos;
public:
 CMaskNum() : nCharPos(0) {}
 // Override pure virtual base class function
 virtual BOOL AddChar(UINT nChar);
};

Most mask classes will have to save some notion of state, to know where they've got to in the input so
that they can decide whether a given character is valid. As an example, in our numeric mask, it's valid to
have a + or a - character entered, but only as the first one, so we need to save the number of characters
entered.

We can see how this state is used in the implementation of CheckChar():

#include "stdafx.h"
#include "masknum.h"
#define BKSPACE 8

BOOL CMaskNum::AddChar(UINT nChar)
{
 // Valid character set is '+' and '-' (as first character
 // only), '0'-'9' and backspace.
 BOOL bOK;
 switch(nChar)
 {
 case '+':
 case '-':
 // Only valid as the first character
 if (nCharPos == 0)
 {
 nCharPos++;
 bOK = TRUE;
 }
 else
 bOK = FALSE;
 break;
 case '0': case '1':
 case '2': case '3':
 case '4': case '5':
 case '6': case '7':
 case '8': case '9':
 nCharPos++;
 bOK = TRUE;
 break;
 case BKSPACE:
 // Handle backspace, adjusting character count (but don't
 // go back past zero!)
 nCharPos = (nCharPos > 0) ? nCharPos-- : 0;
 bOK = TRUE;
 break;
 default:
 bOK = FALSE;
 }
 return bOK;
}

Valid characters are digits, + and -, and backspace (ASCII character 8). When a backspace is entered, we
need to take care to adjust the character count correctly.

This mask is one of the simplest, and most others require considerably more work. For instance, a general
floating-point number mask may have to be able to process input like the following:

1.33
-2.06
+.311E2
-1.245e-7

Many such parsing problems are well handled by state machines, so if you find yourself having to provide
complex filters, I suggest that you read up on this approach.

Using Masked Edit Controls

Finally, we get to use the mask in a program. Create a dialog containing one or more edit controls and use
ClassWizard to attach a CEdit control object to one of them. Then manually edit the code that
ClassWizard inserts into the dialog's class definition, changing the CEdit to a CExtEdit.

#include "ExtEdit.h"
///
// TestDlg dialog

class TestDlg : public CDialog
{
// Construction
public:
 TestDlg(CWnd* pParent = NULL); // standard constructor

// Dialog Data
 //{{AFX_DATA(TestDlg)
 enum { IDD = IDD_TESTDLG };
 CExtEdit m_NumEdit;
 //}}AFX_DATA

 // (Rest of class definition is unchanged...)
};

This change will result in the CExtEdit class getting all the messages for the edit control. Now all you
have to do is to set the edit control's mask in the dialog initialization code.

BOOL TestDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Create a new numeric mask, and attach it to the edit
 // control
 m_NumEdit.SetMask(new CMaskNum);
 return TRUE;
}

Remember that we've made the edit control responsible for the mask object, so we don't have to delete it
externally.

Extending the ExtEdit Class
There are quite a few ways to extend the edit class. Say you've implemented a date mask and the users of
your program may live in any of several countries, then you could attach a right mouse button menu to
the edit control by providing a handler for WM_CONTEXTMENU, as shown elsewhere in this chapter, and use
it to allow the user to select their choice of date formats at run time.

A more ambitious extension is to use the mask class to control the appearance of the text in the edit
control, so that it comes out properly formatted. To do this, you need to provide a handler for the
EN_UPDATE notification message, which is sent just before an edit control is about to display altered text.
This is usually sent to the parent of the control, but using message reflection (as discussed a couple of
topics further on), you can arrange for the edit control to handle the message itself.

Making an Owner-draw Button
Some Windows controls can be made either wholly or partially owner-draw, meaning that the owner of

the control takes over responsibility for rendering it, rather than letting Windows draw it in its normal
style. We've already seen an example of this when we drew a bitmap in one of the panes of a status bar, by
making that pane an owner-draw pane.

As we mentioned when we were discussing that example, MFC control classes which support owner-
draw implement a virtual function called DrawItem(). If you want to take over drawing, you need to
derive a new class from the MFC control class, then override the DrawItem() function. This is enforced
by the fact that the base class version of this function does nothing except generate an assertion error.

If you've declared your control to be owner-draw, each time Windows needs to redraw the control it will
call your DrawItem() function, passing it information about the state of the control and the device context
in which to draw.

Note that by making a control owner-draw, you're taking on all responsibility for drawing it yourself. For
a button, you need to handle the selected, deselected and disabled states, with and without focus, drawing
all the shading and highlights. It can be a lot of work.

Let's look at how you might go about taking over drawing a button, by drawing one which is subtly
different from the usual sort, with button text which 'floats' over the surface of the button. The result is
similar to some custom buttons which Borland used to use.

Creating the Basic Class
First, create a testbed project with a simple dialog. Put a button somewhere in the dialog, and check the
Owner draw style in the dialog editor.

The next task is to use ClassWizard to create a new class which inherits from CButton, calling it
CSpecialBtn, and override the DrawItem() function. Next, attach a CSpecialBtn control variable to the
button in your dialog, then exit from ClassWizard. This will ensure that all the messages for that button
will be sent to our CSpecialBtn class.

If you build and run the project at this stage, with a blank DrawItem() function, you'll see a dialog with
nothing where the button should be. Windows is handing over all responsibility for drawing the button to
our class. Since it isn't doing anything, nothing appears on the screen.

Let's go through the code to draw a rectangular button which looks (and behaves) pretty much like a
normal Windows button.

Drawing the Button
The first thing to do is to fill in the background color of the button and to draw its outline. We have two
cases to consider for the outline: when the button has the focus, in which case it has a thick border, and
when it doesn't, in which case the border is thin:

void CSpecialBtn::DrawItem(LPDRAWITEMSTRUCT lpDS)
{
 CDC dc;
 dc.Attach(lpDS->hDC);
 // Fill the button with current button face colour
 CBrush btnBrush(::GetSysColor(COLOR_BTNFACE));
 CRect rct(&(lpDS->rcItem));

 dc.FillRect(rct, &btnBrush);
 // Draw the outside frame
 CBrush blkBrush(RGB(0,0,0));
 dc.FrameRect(rct, &blkBrush);
 rct.InflateRect(-1,-1);
 // Draw a thick border if we've got the focus
 if (lpDS->itemState & ODS_FOCUS)
 {
 dc.FrameRect(rct, &blkBrush);
 rct.InflateRect(-1,-1);
 }
}

As this is a routine which draws a control, we are passed a pointer to a DRAWITEMSTRUCT, which we
looked at earlier in the status bar example. Here, we're concerned with three fields: hDC, which is the
device context into which we can draw, rcItem, which is the rectangle occupied by the control, and
itemState, which tells us what state the control is in, selected, has focus or whatever.

The device context passed into DrawItem() as part of the argument structure is a bare Windows HDC, and
it will be easier to work with if we turn it into an MFC CDC object, which we do by creating a CDC and
then using CDC::Attach().

The next thing to do is to fill the button with the right background color, which we get from the system
constant COLOR_BTNFACE. Using this rather than an actual color value will enable the button to respond to
changes the user might make to their desktop color scheme.

We can provide the outline of the control by drawing a rectangle just inside the boundary of the button,
and then shrinking the bounding rectangle slightly so that future drawing operations won't draw over what
we've done. The simple way to do this, which we'll implement, is to use FrameRect() to draw round the
boundary. However, if you look closely at ordinary buttons, you'll notice that the lines forming their
boundaries don't join at the corners, so if you want to mimic Windows buttons exactly, you'll need to draw
discontinuous lines.

If the control has the focus, we then provide the thicker border by drawing another rectangle immediately
inside the first, and then shrinking the bounding rectangle yet again.

If you build and run the project now, you'll see the outline of the button. It will respond to gaining and
losing the focus, but what it hasn't got yet is any sort of 3D look, which means that it won't show when
the user clicks on it.

Adding a 3D Effect to the Button
The button's outer frame is static, so it looks the same, regardless of whether the button is pressed or not.
We now need to add the drawing code to change the appearance of the button when it's selected.

Here's the code we use:

void CSpecialBtn::DrawItem(LPDRAWITEMSTRUCT lpDS)
{
 ...
 CPen shPen(PS_SOLID, 1, ::GetSysColor(COLOR_BTNSHADOW));
 CPen *pOldPen = dc.SelectObject(&shPen);
 if (lpDS->itemState & ODS_SELECTED)

 {
 dc.MoveTo(rct.left, rct.bottom-1);
 dc.LineTo(rct.left, rct.top);
 dc.LineTo(rct.right, rct.top);
 }
 else
 {
 // draw highlight
 CPen hiPen(PS_SOLID, 1, ::GetSysColor(COLOR_BTNHILIGHT));
 dc.SelectObject(&hiPen);
 dc.MoveTo(rct.left, rct.bottom-1);
 dc.LineTo(rct.left, rct.top);
 dc.LineTo(rct.right, rct.top);
 // draw shadow
 dc.SelectObject(&shPen);
 dc.MoveTo(rct.left, rct.bottom-1);
 dc.LineTo(rct.right-1, rct.bottom-1);
 dc.LineTo(rct.right-1, rct.top-1);
 dc.MoveTo(rct.left+1, rct.bottom-2);
 dc.LineTo(rct.right-2, rct.bottom-2);
 dc.LineTo(rct.right-2, rct.top);
 }
 ...

We use another system constant to determine the current color of the shadowing used on buttons. If you
look at a button, you'll see that the shadow is drawn along the bottom and right edges when it's up, and
(slightly thinner) along the top and left edges when it is selected. Accordingly, we test for selection and
draw either a pair of single lines if the button is selected, or a pair of double lines if not.

All we're lacking now is the text on the button. We need to calculate the size and position of the bounding
rectangle for the string, so that it will be drawn in the correct place, and to make allowances for the offset
introduced when the button is selected:

...
 // Draw the text - first get the size of the text
 CString btnText;
 GetWindowText(btnText);
 CSize textSize = dc.GetOutputTextExtent(btnText);
 // Calculate the centered rect the text needs to be drawn in, and make
 // allowances for it being selected
 CRect textRect = rct;
 int xSize = (rct.Width() - textSize.cx)/2;
 int ySize = (rct.Height() - textSize.cy)/2;
 textRect.InflateRect(-xSize, -ySize);
 dc.SetBkMode(TRANSPARENT);
 // If the button is selected (i.e. pressed), write the
 // shadow of the text in gray, offset by two pixels.
 if (lpDS->itemState & ODS_SELECTED)
 {
 textRect.OffsetRect(2,2);
 dc.SetTextColor(::GetSysColor(COLOR_GRAYTEXT));
 dc.DrawText(btnText, textRect, DT_SINGLELINE | DT_CENTER);
 textRect.OffsetRect(-2,-2);
 }
 // Draw the actual text in red, to make it stand out
 dc.SetTextColor(RGB(255,0,0));
 dc.DrawText(btnText, textRect, DT_SINGLELINE | DT_CENTER);
 ...

On normal buttons, the text moves when the button is pressed. Here, the text stays where it is, and a

'shadow' of the letters is displayed, offset by two pixels. This gives the effect of the text floating above the
surface of the button.

The final touch is to add the focus rectangle —the small dotted rectangle which surrounds the text on a
button when it has the focus. The CDC class provides a function to draw a focus rectangle, and we have
something suitable already available, so by inflating the text rectangle slightly, we'll fit a focus rectangle
neatly around the text.

 ...
 // Draw the focus rectangle if we need to
 if (lpDS->itemState & ODS_FOCUS)
 {
 textRect.InflateRect(1,1);
 dc.DrawFocusRect(textRect);
 }
 dc.SelectObject(pOldPen);
}

And here's the result...

Using Message Reflection
Message reflection, as its name implies, involves sending a message back for processing to where it came
from.

When is this useful? A lot of controls send notification messages to their parent window when something
happens to them. For instance, when you click on a button, it sends a BN_CLICKED notification message to
its parent, which is usually the window in which it is embedded. In Windows programs, it has
traditionally been this parent window which has intercepted the message and performed the action.

There are many cases, however, where we might wish the control itself to handle the event. In an object-
oriented world, it makes sense for the control object itself to handle messages, especially when forcing
the parent to do so would result in code being duplicated in a number of other classes. There's also an
added advantage that we can write self-contained control classes which can be reused much more easily
than ones in which the parent window has to process messages.

This technique of getting a control to handle its own messages is called message reflection, and support
for it was added to Visual C++ 4.0.

To show how it works, we'll develop a self-contained Help button which handles its own BN_CLICKED

message, and uses it to display a screen from a help file.

Create the Project
Create yourself a project as a test bed for this control; any type of project will do (SDI or MDI), but
remember to turn on context-sensitive help!

Create a Custom Button Class
To create a button which can handle its own messages, we need to subclass MFC's CButton class in order
to override its default behavior again.

The easiest way to do this is to use ClassWizard to add a class, called (say) CSpecialBtn, giving CButton
as its parent. Once you've done this, you can use ClassWizard to provide message handlers for the
reflected messages.

In ClassWizard's Message Maps tab, reflected messages are marked with a leading =…

If you examine the messages listed for the button class, you'll find that there are four reflected messages:
BN_CLICKED, BN_DOUBLECLICKED, WM_CTLCOLOR and WM_PARENTNOTIFY.

In our case, we want to handle a single click on the button, so add a handler for the =BN_CLICKED
message, as shown above.

Displaying Help
When you generate a project with AppWizard, you can ask for context-sensitive help to be included in the
skeleton application.

As well as adding a Help menu to your app's menu bar, it also generates the .rtf source for a skeleton
Windows help file, with entries for all the standard menu items, which you can then tailor to your
particular requirements. You can use the Makehelp.bat file to compile the .rtf file into a .hlp file, or
use the Help Workshop provided with Visual C++.

You can display help screens from this help file using the CWinApp::WinHelp() function, passing it the
appropriate context ID. You don't have to supply a help file name, as the app knows which one it should
be using.

So, for our button to display help, it only needs to be passed the context ID of a help page; it can get a
pointer to the CWinApp-derived application object by calling AfxGetApp().

Add to your button class a member function called SetContextID(), which will be used to set the ID
used in help calls:

void CSpecialBtn::SetContextID(unsigned long lID)
{
 m_ContextID = lID;
 m_bGotContextID = TRUE;
}

Here, m_ContextID is an unsigned long which stores the ID, while m_bGotContextID is a Boolean flag
which shows whether the ID has been set. I use a flag rather than set some default value for the ID,
because you can't be sure that whatever value you choose won't be used sometime as a valid context ID.
Remember to set its initial value to FALSE in the constructor!

Now we have a way to get the context ID into the object, we need to display the help page. The code is
pretty simple:

void CSpecialBtn::OnClicked()
{
 // When the user clicks on the button, the notification will
 // come here, rather than to the parent window
 // For displaying help, make sure that the context ID
 // is set first.
 if (!m_bGotContextID)
 MessageBox("Help context ID not set!", "Error",
 MB_ICONHAND | MB_OK);
 else
 AfxGetApp()->WinHelp(m_ContextID);
}

Modify the About Dialog
Let's test it by adding a help button to the About dialog. Bring up the dialog in the dialog editor and add a
button with the ID IDC_HELP_BTN.

Then bring up ClassWizard and add a control member variable to the Help button, of type CSpecialBtn.
Remember to include the header for CSpecialBtn into Helpbtn.cpp.

The only other thing we need to do is to ensure that the button is passed the correct context ID when the
dialog is created, which we can easily do in the dialog's constructor:

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
 //{{AFX_DATA_INIT(CAboutDlg)
 //}}AFX_DATA_INIT
 m_HelpBtn.SetContextID(0x20064);
}

You can find the correct context ID in the .hm file, in the Hlp subdirectory. This file, generated by the
Makehelp.bat file which runs the help compiler, lists the context IDs which were generated for the
dialogs, menu items and other resources in your program.

Build and Test the Program
Once you've coded up the button class and the changes to the About dialog, you can build the program and
test out the button.

The important thing to realize about this example is that, in handling reflected messages, our button
provides a self-contained solution, which you can easily include in other dialogs in the program. In fact,
by adding the button class to the Component Gallery when you create it, you can use it in other projects—
one more step along the way to reusable software components!

Modifying the Common Dialogs
The common dialogs are an incredibly useful resource, providing access to several frequently used
operations.

Sometimes, though, we may wish to modify these dialogs. It may be a very simple change, such as
changing the text of a label or button, or more major surgery, such as adding extra controls or changing
the layout of the dialog.

In the next couple of sections, we'll look at how to modify the File Open/Save dialog, as this is one of the
most popular dialogs for modification. You can, however, apply this technique equally well to any of the
other common dialogs.

Modifying the Text in a CFileDialog
Let's first look at customizing the text. You can change the text associated with any of the controls in the
common dialogs. For instance, in the next chapter, Ken Ramirez modifies the File Open dialog to use it for
creating shortcuts, so that the OK button reads Create, and the Read Only check box label reads Save to
desktop. This is fine, because the Read Only check box simply sets a flag, which you can interpret as you
wish.

There are two steps to customizing the text in a common dialog. First, we need to find the IDs of the
controls that we're going to change, and then subclass the dialog class so that we have somewhere to do
the changing. (You knew it was going to involve subclassing somewhere, didn't you?)

Common Dialog Resource Files
The key to finding the control IDs lies in two files—Dlgs.h and Fileopen.dlg —which live in the main
include directory (i.e. \Msdev\Include).

Fileopen.dlg holds the templates of the File Open common dialogs, while Dlgs.h gives the ID of each
control, including static strings.

If you open and browse through Fileopen.dlg, you'll find two dialog templates. We're interested in
FILEOPENORD, the standard file selection dialog. If you examine the template, you'll see that each control
(even static text items) has an ID, and it's these that we can use to customize the text.

Creating a Modified Dialog
Once you've used ClassWizard to create a new project, create a new class which inherits from
CFileDialog. Call it CExtFileDlg.

We want to alter the controls after the Windows dialog has been created, but before it's displayed, so the
place to do this is in the dialog's initialization code.

Use ClassWizard to provide a handler for WM_INITDIALOG, which will get called just before the dialog is
displayed. Leave the call to the base class OnInitDialog() routine as the first thing in the handler,
because we want to override what the CFileDialog base class sets up.

It's now a matter of using SetWindowText() for any control you want to modify; you'll need to add
#include <dlgs.h> in your dialog class source file in order to be able to use the symbolic names for the
control IDs.

Unfortunately, setting the text of the controls is complicated by the differences between old style
(Windows NT 3.51) and new style (Windows 95) dialogs. If you're using old style dialogs, the controls
with the text we want to change are part of the dialog we're overriding. However, if you use the new
Explorer-style dialogs, these controls actually belong to the parent of our dialog. That makes the code a
little more complicated:

BOOL CExtFileDialog::OnInitDialog()
{
 CFileDialog::OnInitDialog();

 CWnd* pParent = GetParent();

 // The items we are looking for may be in this dialog or its
 // parent, depending on whether we're using new (Win95) or old style
 // dialogs.
 CWnd* pOK = pParent->GetDlgItem(IDOK); // Win95-style
 if (!pOK)
 pOK = GetDlgItem(IDOK); // Old style
 if (pOK)
 pOK->SetWindowText("Create");
 // If we're using new style dialogs, we have more room for
 // our text string
 CWnd* pChk1 = pParent->GetDlgItem(chx1);
 if (pChk1)
 pChk1->SetWindowText("Add to &Desktop");
 else
 {
 pChk1 = GetDlgItem(chx1);
 if (pChk1)
 pChk1->SetWindowText("&Desktop?");
 }

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

In this example, we'll change the text on the OK button (whose ID is IDOK) and on the Read-only check box
(ID chx1). Note how we use GetDlgItem() to get a pointer to the CWnd-derived object behind the control
and set its text.

You can easily test this by adding a menu item that brings up a CExtFileDlg.

Note that the dialog and its controls will still appear at the same size, so you have to be careful not to
make your text strings longer than the originals, else they'll get clipped.

More Major Surgery to CFileDialog
We can get around this by modifying the dialog template itself. As with all dialogs, as long as we leave
the controls with the right IDs and properties, we're free to change their position and size.

We need to do a little bit of coding, because we now need to tell the base common dialog code to use our
new, modified dialog template.

What we'll do is to create a version of the File Open dialog which adds information about the file currently
selected in the list box at the bottom of the dialog. The information presented will consist of the filename,
its size, the last modification date, and file attributes, like this,

MainFrm.h, 1763 bytes, 07/03/96 (a)

where the (a) shows that the archive bit is set.

Create the Project
Once again, create yourself a project as a test bed for this control; any type of project will do (SDI or
MDI). Then add a menu handler for File/Open..., which will be used to display the modified common
dialog.

Add the Dialog Resources to the Project
So that we can edit the layout of the dialog with the tools in the Visual C++ IDE, we need to add the File
Open dialog resources to our project resources. This happens in three steps:

1 Select the View/Resource Includes... menu item.

2 Add #include <dlgs.h> and #include <fileopen.dlg> to the Read-only symbol
directives list box.
3 Save the project away and reopen it.

You will now have the two File Open dialogs as editable resources in your project.

Now go back into the View/Resource Includes... dialog and remove the #include <fileopen.dlg> line.
You need to do this because the dialogs were added to the project when we first reopened it, but the
#includes will also be parsed each time we compile, so if you don't take the reference out, you'll get the
linker complaining about multiple inclusions.

Subclassing the File Dialog
Add a new class, CNewFileOpen, inheriting from CFileDialog as before. To be able to use our new dialog
template, we need to give it a dialog ID , but ClassWizard won't give us one (the Dialog ID combo box is
disabled) because it doesn't reckon we need one. So, hack into Resource.h and add,

 #define IDD_NEWFILEOPEN 103

(or some other suitable ID).

We can now add the dialog ID to the source for CNewFileOpen, in the public section of the class
definition:

 enum { IDD = IDD_NEWFILEOPEN};

We need to rename the File Open dialog to give our modified template a unique name, so rename it
IDD_NEWFILEOPEN. The fact that the ID is the same as that of the dialog ID will enable the system to load
the correct template at run time.

We need to tell this new class to use our dialog template rather than the default one, so add
OFN_ENABLETEMPLATE to the default flags in the constructor:

class CNewFileOpen : public CFileDialog
{
 DECLARE_DYNAMIC(CNewFileOpen)

public:
 CNewFileOpen(BOOL bOpenFileDialog,
 LPCTSTR lpszDefExt = NULL,
 LPCTSTR lpszFileName = NULL,
 DWORD dwFlags = OFN_OVERWRITEPROMPT | OFN_ENABLETEMPLATE,
 LPCTSTR lpszFilter = NULL,
 CWnd* pParentWnd = NULL);

 enum { IDD = IDD_NEWFILEOPEN };

protected:
 //{{AFX_MSG(CNewFileOpen)
 // NOTE …
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

Now fill in the hInstance and lpTemplateName fields of the OPENFILENAME structure, so that the
common dialog knows where to find the new template, and OR the OFN_ENABLETEMPLATE flag with the

flags passed to the base class constructor, to ensure that it gets through. That will ensure that our modified
dialog template will get called.

CNewFileOpen::CNewFileOpen(BOOL bOpenFileDialog, LPCTSTR lpszDefExt, LPCTSTR lpszFileName,
 DWORD dwFlags, LPCTSTR lpszFilter, CWnd* pParentWnd) :
 CFileDialog(bOpenFileDialog, lpszDefExt, lpszFileName,
 // Ensure flag is passed to base class
 dwFlags |= OFN_ENABLETEMPLATE,
 lpszFilter, pParentWnd)
{
 // Set template information
 m_ofn.hInstance = AfxGetResourceHandle();
 m_ofn.lpTemplateName = MAKEINTRESOURCE(CNewFileOpen::IDD);

 m_ofn.Flags &= ~OFN_EXPLORER;
}

Note that we remove the OFN_EXPLORER bit from the Flags member of the OPENFILENAME structure so that
Windows knows we're using the old style interface.

Now let's modify the template and add the code to use our modifications.

Modifying the Template
Next, you need to open the dialog in the editor and add a static text control to the bottom of the window.
It'll be the full width of the dialog, and because we're going to update it, it will need an ID, say,
IDC_FILE_INFO. If you want to make it stand out, you can place a group box around the text.

Handling List Box Notifications
The CFileDialog class has a function, OnLBSelChangedNotify(), which gets called when the selection
in any of the dialog's list boxes or combo boxes changes.

We can override this and add the code which will update the file information in the static text control.

Add an override to your dialog class, either by right-clicking on the class in the ClassView pane, or
manually:

class CNewFileOpen : public CFileDialog
{
 DECLARE_DYNAMIC(CNewFileOpen)

public:
 virtual void OnLBSelChangedNotify(UINT nIDBox, UINT iCurSel,
 UINT nCode);
 CNewFileOpen(BOOL bOpenFileDialog,
 LPCTSTR lpszDefExt = NULL,
 LPCTSTR lpszFileName = NULL,
 DWORD dwFlags = OFN_OVERWRITEPROMPT | OFN_ENABLETEMPLATE,
 LPCTSTR lpszFilter = NULL,
 CWnd* pParentWnd = NULL);

 enum { IDD = IDD_NEWFILEOPEN };

protected:
 //{{AFX_MSG(CNewFileOpen)
 // ...
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

We only want to update the text when the user is changing files, so we need to check the control ID that is
passed to the function. The file selection list box has the ID lst1, while that of the directory selection box
is lst2. The code below shows the bare bones of what we want to do. This function is called when
various events happen in the list boxes, so we need to filter the arguments for both the list box and the
correct event.

void CNewFileOpen::OnLBSelChangedNotify(UINT nIDBox,
 UINT iCurSel, UINT nCode)
{
 // Get a pointer to the static text control
 CWnd* pText = GetDlgItem(IDC_FILE_INFO);
 ASSERT_VALID(pText);
 // If we're changing selection in the file list box,
 // change the text, otherwise blank it out.
 if (nIDBox == lst1 && nCode == CD_LBSELCHANGE)
 pText->SetWindowText("File:");
 else
 pText->SetWindowText(NULL);
}

Getting File Information
There are a number of ways to get information for a file. We're going to use the Win32 API call,
FindFirstFile(). Just pass this function a string containing a filename and a pointer to a
WIN32_FIND_DATA structure and the function will fill the structure with all the information our users might
need to know about a file. Once the data's in the structure, it's a relatively simple task to extract it and
present it to the user of our dialog.

Here's the code for the complete function:

void CNewFileOpen::OnLBSelChangedNotify(UINT nIDBox, UINT iCurSel,
 UINT nCode)
{
 // Get a pointer to the static text control
 CWnd* pText = GetDlgItem(IDC_FILE_INFO);
 ASSERT_VALID(pText);

 // Ditto for the file list box
 CListBox* pList = (CListBox*)GetDlgItem(lst1);
 ASSERT_VALID(pList);
 // If we're changing selection in the file list box,
 // change the text, otherwise blank it out.
 if (nIDBox == lst1 && nCode == CD_LBSELCHANGE)
 {
 // Get the full file path
 int nSel = pList->GetCurSel();
 if (nSel != LB_ERR)
 {
 // Get the status info
 CString sFile;
 pList->GetText(nSel, sFile);
 WIN32_FIND_DATA fd;
 HANDLE hRet = FindFirstFile((LPCTSTR)sFile, &fd);
 if (hRet == INVALID_HANDLE_VALUE)
 AfxMessageBox("Error getting file status info");
 else
 {

 CString sMsg;
 CString sDate;
 if (fd.ftLastAccessTime.dwLowDateTime == 0 &&
 fd.ftLastAccessTime.dwHighDateTime == 0)
 sDate = "<unknown>";
 else
 {
 COleDateTime tModDate(fd.ftLastAccessTime);
 sDate = tModDate.Format();
 }
 CString sAtt('(');
 if (fd.dwFileAttributes & FILE_ATTRIBUTE_READONLY)
 sAtt += 'r';
 if (fd.dwFileAttributes & FILE_ATTRIBUTE_ARCHIVE)
 sAtt += 'a';
 if (fd.dwFileAttributes & FILE_ATTRIBUTE_HIDDEN)
 sAtt += 'h';
 sAtt += ')';
 sMsg.Format("%s, %ld bytes, %s %s", (LPCTSTR)sFile,
 fd.nFileSizeLow, (LPCTSTR)sDate,
 (sAtt != "()") ? (LPCTSTR)sAtt : "");
 // Update the text
 pText->SetWindowText(sMsg);
 }
 }
 }
 else
 pText->SetWindowText(NULL);
}

The first task is to get the name of the file from the list box, so that we can find its attributes. We do this
by getting a pointer to the list box object in the dialog, then using CListBox::GetCurSel() and
CListBox::GetText() to get the name of the file.

The next step is to use FindFirstFile() to get the file information. We pass it a path, and it fills in a
structure with information. You may wonder how we can pass it an unqualified filename, rather than the
full path; this works because the File Open dialog resets the current directory when you change from one
directory to another, so that we should always be in the right directory to use a filename without path
information.

Displaying the File Information
The final stage is to format up the information and display it. This is easily done using the
CString::Format() function to lay out a formatted string, but note how the date is handled.

MFC includes a date/time class, CTime, but this is rather limited in what it can do. This example uses the
more versatile COleDateTime class, introduced in MFC 4.0, which is preferable for two reasons: first, it
has a finer granularity and covers a wider range of dates than CTime, ranging from 1st January 100 to 31st
December 9999, and secondly, it can automatically format the date and time based on the local language
settings. To use COleDateTime, you need to #include <afxdisp.h> in your source file.

The Result
When you build and run the example, you should see a dialog looking like this:

What Can't You Do?
People often ask for things that turn out to be difficult to manage. Here, I'll point out a couple of common
ones of which I'm aware.

It may seem rather strange to have such a negative section in the chapter, but who knows, at some point in
the future, having these details to hand might save you some head scratching and wasted hours!

The first request is to put a common dialog on a property page. Imagine that you have a tabbed dialog
which handles all the setup details for your word-processor application; one of the tabs is used to select
fonts and another to select colors. Wouldn't it be neat if you could use the font and color picking common
dialogs on the property sheet?

You can't! Many people have asked, and the answer is 'No'. The simple answer is that individual pages of
a tabbed dialog need to be modeless dialogs, but the common dialogs are modal, so they won't work.

The second one also involves property sheets. We all know that they display with the tabs along the top,
but is there a way to get the tabs in some other place, such as down the side (like a filofax), or along the
bottom, like the Output window at the bottom of Developer Studio, or the equivalent in Excel?

It appears not. The word is that property sheets were designed to have the tabs along the top, and that no
thought was given to them being customized. The tabbed windows in Developer Studio and Excel are
apparently Microsoft's own custom controls.

Summary
So there you are, a few examples of how you can interact with the stock Windows controls and dialogs. In
this chapter, we've covered:

Menus
Toolbars

Status bars
Subclassing
Common dialogs

Of course, this list hasn't exhausted the potential of MFC by any means, but I hope it's given you some
ideas.

Windows 95 Shell Programming
I hope that you're someone who can accept and adapt to change and move on, because, in this industry,
things change often and in great leaps. The Windows interface is a case in point. No doubt as a computer
user, you'll have been pleased, or even excited, to use the new features of the Windows 95 shell. Long file
names, shortcuts, file viewers and many of the other characteristic elements of the new shell are a huge
improvement over the previous Windows interface. As my parents once said, "You kids have it easy
today".

However, it's as developers that you'll be reading this book, so in this chapter, you'll see how your
applications can exploit the huge variety of new features that have arrived with the next generation of
operating systems (Windows 95 and Windows NT 4.0).

Since Windows NT 4.0 is still in beta at the time of writing, it makes sense to refer to the new
interface as the Windows 95 shell, although all the techniques described here should be applicable
to Windows NT 4.0 when it's released.

Most of the features covered in this chapter rely on a knowledge of COM and OLE, which you should
have built up through the previous chapters. Throughout the rest of the chapter we'll focus in turn on the
following features:

The taskbar notification area (system tray)
Access bars (appbars)
File viewers
The shell namespace
Shortcuts (shell links)
Shell extensions

The Notification Area
Windows 95 includes an area on the taskbar that allows an application to display an icon to show a task
the application is performing. Windows 95 itself uses this area to inform the user of printing or battery
status, for example, as well as displaying the time. This area is called the taskbar notification area (or
system tray) and lies at the right end of the taskbar (if the taskbar is aligned horizontally) or at the bottom
(if it's aligned vertically).

The icons in this area can have a tooltip which is displayed when the user moves the cursor over them.
For example, when I move the cursor over my printer icon, I get a message indicating whether the printer
is idle or printing. An application provides the icon, as well as the string used for the tooltip. In return for
providing an icon, an application can receive notification messages when the mouse moves or clicks over
the notification area.

To perform the notification magic, the application calls a special function, called Shell_NotifyIcon().
(You'll need #include <shlobj.h> to use this.) The function accepts two parameters. The first is a
message that indicates what the application wants to do to the notification area. You can indicate whether
you want to add, modify, or delete an icon by specifying either NIM_ADD, NIM_MODIFY or NIM_DELETE.

The second parameter is a pointer to a structure, called NOTIFYICONDATA, that the application must fill
before passing it to the function. The NOTIFIYICONDATA structure contains the following fields:

Data Member Description

 cbSize This should be set to sizeof(NOTIFYICONDATA) by the caller.
hWnd Set this to be the handle of the window that you want to receive

notification messages associated with the icon.
uID Set this to associate the icon with an application-defined identifier

which may be passed back as the wParam parameter of the
notification message.

uFlags Flags that indicate which of the other structure members contain
valid data. Can be a combination of NIF_ICON, NIF_MESSAGE,
NIF_TIP.

uCallbackMessage Application-defined message identifier. The operating system
sends this identifier as the message parameter to the window
procedure associated with the hWnd every time a notification is
sent.

hIcon The handle of the icon to add, modify or delete.
szTip The tooltip text to display for the icon.

The window procedure is called when a mouse event occurs. The system sends the message to the
window procedure identified by the hWnd. The message parameter will contain the uCallbackMessage
identifier and wParam will contain the uID identifier. The lParam will contain the message identifier such
as WM_MOUSEMOVE.

Creating a Taskbar Notification Icon
On the CD with this book, you'll find an example application, called IconNotify, which illustrates the
steps necessary to show a notification icon on the taskbar. My dialog-based application allows you to
enter a text string to be used as the tooltip for the notification icon and provides a check box to allow you
to turn the tooltip support on and off. It also lets you select how the icon is displayed on the taskbar with a
set of radio buttons. Here you can see the application's main window:

The CIconNotifyDlg class's constructor loads several icons that will be used for the notification icon.

When you select the Active radio button, it creates a timer that fires off about once a second and cycles
through five different icons:

When the Inactive radio button is selected, the inactive icon is displayed:

Since the application is dialog-based, I initialize and display the notification icon in the OnInitDialog()
function by calling a function, named NotifyIcon(), that I added to my dialog class:

BOOL CIconNotifyDlg::OnInitDialog()
{
 // other code...
 NotifyIcon(NIM_ADD, m_hInactiveIcon);
 // other code...
}

The NotifyIcon() function receives the message that will be sent to the Shell_NotifyIcon() function
as well as the icon that should be displayed in the notification area. I first begin by declaring a
NOTIFYICONDATA object, initializing it with the message sent to the NotifyIcon() function. Next, I call
the Shell_NotifyIcon() function, sending both the message and the NOTIFYICONDATA object:

void CIconNotifyDlg::NotifyIcon(UINT uMessage, HICON hIcon)
{
 NOTIFYICONDATA nid;
 switch (uMessage)
 {
 case NIM_ADD:
 nid.uFlags = NIF_ICON | NIF_MESSAGE;
 break;
 case NIM_MODIFY:
 nid.uFlags = NIF_ICON;
 break;
 case NIM_DELETE:
 nid.uFlags = 0;
 break;
 }
 nid.cbSize = sizeof(NOTIFYICONDATA);
 nid.uID = ID_ICONNOTIFY; // app-specific, defined in IconNotifyDlg.h
 nid.hWnd = m_hWnd;
 nid.uCallbackMessage = WM_ICONNOTIFY; // defined in IconNotifyDlg.h
 nid.hIcon = hIcon;
 Shell_NotifyIcon(uMessage, &nid);
}

The next important function is OnIncToolTip(), which is called when the user clicks the Include Tooltip
check box. We start out by retrieving the state of the check box (whether it's checked or not), which will
determine whether or not we should display the tooltip. Next, we initialize a NOTIFYICONDATA object,
stuffed with the appropriate string for the tooltip, and finally call the Shell_NotifyIcon() function.

void CIconNotifyDlg::OnIncToolTip()
{

 BOOL bIncToolTip =
 (BOOL)((CButton*)GetDlgItem(IDC_INCTOOLTIP))->GetCheck();
 NOTIFYICONDATA nid;
 nid.cbSize = sizeof(NOTIFYICONDATA);
 nid.uID = ID_ICONNOTIFY;
 nid.uFlags = NIF_TIP;
 nid.hWnd = m_hWnd;
 if (bIncToolTip)
 {
 CString strText;
 GetDlgItem(IDC_TOOLTIP)->GetWindowText(strText);
 lstrcpyn(nid.szTip, strText, sizeof(nid.szTip));
 }
 else
 {
 strcpy(nid.szTip, _T(""));
 }
 Shell_NotifyIcon(NIM_MODIFY, &nid);
}

The last thing I want to discuss is the call-back function that is called when a mouse operation occurs on
the notification icon. If you look at the NotifyIcon() function, when the message is NIM_ADD, it sets the
flag to NIF_ICON and NIF_MESSAGE. The NIF_MESSAGE tells it that we are supplying an identifier,
WM_ICONNOTIFY in the example, which will be sent as the message identifier to the hWnd we specify. The
message is handled in an ON_MESSAGE handler and is sent to the OnIconNotify() function. We first check
to make sure that the message is a right mouse button click and that the message is intended for our
notification icon. If it is, I create a pop-up menu on the fly and append some dummy menu items to the
menu. I then call TrackPopupMenu() to retrieve the menu choice from the user. The following code
illustrates this:

LRESULT CIconNotifyDlg::OnIconNotify(WPARAM wParam, LPARAM lParam)
{
 if (lParam == WM_RBUTTONDOWN && wParam == ID_ICONNOTIFY)
 {
 CMenu popup;
 CPoint point;
 GetCursorPos(&point);
 popup.CreatePopupMenu();
 popup.AppendMenu(MF_STRING, ID_OPTION1, _T("Choice #1..."));
 popup.AppendMenu(MF_STRING, ID_OPTION2, _T("Choice #2..."));
 popup.AppendMenu(MF_STRING, ID_OPTION3, _T("Choice #3..."));
 SetForegroundWindow();
 popup.TrackPopupMenu(TPM_RIGHTALIGN | TPM_LEFTBUTTON,
 point.x, point.y, this, NULL);
 PostMessage(WM_USER, 0, 0);
 }
 return Default();
}

Notification icons are a great tool to use for notifying users of the status of your application, but they can
also be abused if used improperly or inappropriately. Justify the use of these icons before you implement
them, as nobody wants to end up with their notification area full of our icons; after all, where would they
place the icons for the tasks that are currently running, which also need to share the taskbar with
notification icons?

Note the strange looking SetForegroundWindow() and PostMessage() calls surrounding the
call to TrackPopupMenu(). These are necessary to ensure the correct behavior of the context menu
for notification icons. The call to SetForegroundWindow() is required to ensure that the menu

disappears when the user clicks anywhere beside the menu. This is caused by the behavior of Windows.
The call to PostMessage(), on the other hand, is required by TrackPopupMenu(), which needs a
task switch to the application that called the function shortly after it's called.

Access Bars
I remember being impressed when I first looked at the Microsoft Office desktop toolbar, which allowed
easy access to the Microsoft Office applications as well as any other application you chose to add to the
toolbar. Windows 95 now includes the ability to create this type of toolbar for any application you write.
These are known as desktop toolbars, access bars or appbars. They behave similarly to the taskbar and
can be docked to any side of the desktop window (or next to another access bar if one is already docked).
They can even support auto-hiding and 'always on top' behavior, just like the taskbar. A desktop toolbar
can also be undocked and displayed as a palette window.

Although access bars can be put to any use and are ideal for anything that requires a permanent presence
on the screen, the main reason access bars exist today is to execute applications, especially when they are
part of a suite of applications from one vendor. Showing an icon for each application and allowing your
users to execute applications from your access bars is a great convenience for them.

Just as you do with notification icons, you should review the situation thoroughly before implementing an
access bar. Remember that they take up screen real estate, and if everyone implemented an access bar,
there would be no screen real estate left for our applications to run in. However, if you do decide to
implement one anyway, always give the user the ability to close it down directly from the access bar
itself. You should also consider providing choices for resizing and moving the access bar.

Enough of the theory. Lets find out how to implement an access bar with some source code.

Creating an Access Bar
On the CD that comes with the book, you'll see that I've provided a sample application to demonstrate
how to create an access bar (imaginatively titled AccessBar). The most important function we need to use
is the shell function, called SHAppBarMessage(). The SHAppBarMessage() function receives two
parameters.

The first is a message that allows the application to register an appbar with the shell, to set an appbar's
size, position and state, to retrieve information about the Windows taskbar, and so on. The message that
you pass will depend on what you wish to do. The following table contains a list of the messages, with a
short description of each:

Messages Description
ABM_ACTIVE Notifies the shell of an access bar's activation. The

access bar should send this message when ever it

receives the WM_ACTIVATE message.
ABM_GETAUTOHIDEBAR Retrieves the handle of the autohide access bar

associated with a given edge of the screen.
ABM_GETSTATE Retrieves the autohide and always-on-top states of the

shell's taskbar.
ABM_GETTASKBARPOS Retrieves the bounding rectangle of the shell's taskbar.
ABM_NEW Registers a new access bar and specifies the message

identifier that the shell will use when it needs to send
notifications to the access bar.

ABM_QUERYPOS Retrieves the size and position for a given access bar.
ABM_REMOVE Unregisters an access bar (which removes the bar from

the shell's list of access bars).
ABM_SETAUTOHIDEBAR Registers the access bar with the shell as an autohide bar

for which the application provides the edge of the screen
to be used. You don't need to send ABM_NEW if you use
this message.

ABM_SETPOS Specifies the size and position in screen coordinates for
a given access bar.

ABM_WINDOWPOSCHANGED Allows the application to notify the shell of any
positional changes for the access bar. Your access bar
should send this message whenever it receives
WM_WINDOWPOSCHANGED.

The second parameter to SHAppBarMessage() is a pointer to an APPBARDATA structure which contains
information the shell uses to manipulate the access bar.

The APPBARDATA structure is made up of several members:

struct APPBARDATA
{
 DWORD cbSize; // sizeof(APPBARDATA)
 HWND hWnd; // handle of appbar
 UINT uCallbackMessage; // message sent to appbar
 UINT uEdge; // docking edge
 RECT rc; // bounding rectangle of appbar
 LPARAM lParam; // used for autohide
};

The first member, cbSize, is the size of the structure and is used for version checking the structure. The
second member is an hWnd which identifies the access bar window that will receive all the notification
messages for the access bar.

The next member is named uCallbackMessage and is an application-defined message which will later be
used by the shell to send notifications to the access bar application. The application will receive one of
several possible values as the wParam of this message to let the access bar know why it received the
message. We'll see the actual values in a minute.

The uEdge member is used to determine which side of the screen to dock the access bar against. Possible
values include ABE_BOTTOM, ABE_LEFT, ABE_RIGHT, and ABE_TOP. This member is used when you send the
ABE_GETAUTOHIDEBAR, ABM_SETAUTOHIDEBAR, ABM_QUERYPOS, or ABM_SETPOS messages.

The next member is a RECT structure, named rc, that is used to contain the bounding rectangle of the
access bar in screen coordinates. This member is used when the message is ABM_GETTASKBARPOS,
ABM_QUERYPOS and ABM_SETPOS.

The last member is an LPARAM, named lParam. This member is used with the ABM_SETAUTOHIDEBAR
message. If the value of LPARAM is TRUE, the access bar is registered as an AUTOHIDE, and FALSE specifies
that it should be unregistered.

Appbar Notifications
Notifications are received via the uCallbackMessage that you provide when you first create and register
an access bar. In other words, the window will receive the uCallbackMessage message that you specify
in your application. The wParam will contain one of several values (described in the table below),
depending on the reason for the notification. The lParam will sometimes contain additional information
(depending on the notification received).

Notifications Description
ABN_FULLSCREENAPP This notifies the access bar that a full screen application is

opening or closing. The access bar needs to manage its Z
order at this point. The lParam contains TRUE if an application
is opening or FALSE otherwise.

ABN_POSCHANGED This is sent when the shell taskbar's position or size has
changed. The access bar should recalculate its position and/or
size.

ABN_STATECHANGE This is sent when the state of 'always on top' or 'auto-hide' has
changed for the shell's taskbar.

ABN_WINDOWARRANGE This is received when the shell is about to cascade or tile the
current application windows. It's received twice for each
window rearrangement: once before the windows are
arranged (lParam equals TRUE) and again once they've been
arranged (lParam equals FALSE).

The access bar that I created was generated with VC++ as an MFC application. I ripped out the
document/view architecture because this is one of those situations where it just doesn't make sense to use
it.

Since I took out the document/view architecture (including the document template), I needed to create the
main window (which is also the access bar window) myself. I did this work in the application's
InitInstance(), as follows:

BOOL CAccessBarApp::InitInstance()
{
 CMainFrame* pMainWnd = new CMainFrame();
 if (pMainWnd == NULL)

 return FALSE;
 m_pMainWnd = pMainWnd;
 if (!pMainWnd->Create(NULL, _T(""), WS_POPUP | WS_DLGFRAME |
 WS_CLIPCHILDREN, CFrameWnd::rectDefault, NULL, NULL,
 WS_EX_TOOLWINDOW))
 return FALSE;
 pMainWnd->ShowWindow(SW_SHOW);
 return TRUE;
}

First, I create the main window based on the CMainFrame class that AppWizard generated for me. Next, I
perform the second step of the two step process (necessary for MFC windows) which is to call the
Create() function. Notice that I use the extended style WS_EX_TOOLWINDOW. This style keeps my access
bar from showing up in the task list. Finally, I show the window.

Now let's look at the CMainFrame window, which is where most of the work takes place. I needed to
specify a handler for the WM_CREATE message so that the CMainFrame object could register itself as an
access bar with the shell. I also took advantage of this opportunity to create several buttons on the access
bar. Here's the code:

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;
 // Add ourselves as an access bar.
 APPBARDATA abd;
 abd.cbSize = sizeof(APPBARDATA);
 abd.hWnd = GetSafeHwnd();
 abd.uCallbackMessage = WM_ACCESSBAR;
 if (!SHAppBarMessage(ABM_NEW, &abd))
 return -1;
 // Add five buttons to our access bar.
 m_button1.Create("&Right", BS_PUSHBUTTON | BS_CENTER | WS_VISIBLE |
 WS_CHILD, CRect(0,0,0,0), this, IDC_RIGHT);
 m_button2.Create("&Left", BS_PUSHBUTTON | BS_CENTER | WS_VISIBLE |
 WS_CHILD, CRect(0,0,0,0), this, IDC_LEFT);
 m_button3.Create("&Top", BS_PUSHBUTTON | BS_CENTER | WS_VISIBLE |
 WS_CHILD, CRect(0,0,0,0), this, IDC_TOP);
 m_button4.Create("&Bottom", BS_PUSHBUTTON | BS_CENTER | WS_VISIBLE |
 WS_CHILD, CRect(0,0,0,0), this, IDC_BOTTOM);
 m_button5.Create("&Close", BS_PUSHBUTTON | BS_CENTER | WS_VISIBLE |
 WS_CHILD, CRect(0,0,0,0), this, IDC_CLOSE);
 // Set initial position to the top.
 CalcPosition(m_uEdge = ABE_TOP);
 return 0;
}

I use the ABM_NEW message to register the access bar with the shell. Once I've created the button, I call a
function, CalcPosition(), which calculates and sets the position and size of the access bar and its
buttons. I use a member, called m_uEdge, to retain the edge of the screen that the access bar is docked
against. Several functions need access to this piece of information, so I decided to store it in a data
member. CalcPosition() is also called from several places, for example, whenever I receive a
ABN_POSCHANGED message, I call CalcPosition() to reset the position and/or size of the access bar. The
source code for CalcPosition() is quite simple:

void CMainFrame::CalcPosition(UINT uEdge)
{
 APPBARDATA abd;
 abd.cbSize = sizeof(APPBARDATA);
 abd.hWnd = GetSafeHwnd();
 abd.uEdge = uEdge;
 // Default to the whole screen size.
 CRect rc(0, 0, GetSystemMetrics(SM_CXSCREEN),
 GetSystemMetrics(SM_CYSCREEN));
 abd.rc = rc;
 // Call ABM_QUERYPOS to alter the position if
 // necessary.
 SHAppBarMessage(ABM_QUERYPOS, &abd);
 // Set the size.
 switch (uEdge)
 {
 case ABE_TOP:
 abd.rc.bottom = abd.rc.top + DEF_BAR_HEIGHT;
 break;
 case ABE_BOTTOM:
 abd.rc.top = abd.rc.bottom - DEF_BAR_HEIGHT;
 break;
 case ABE_LEFT:
 abd.rc.right = abd.rc.left + DEF_BAR_WIDTH;
 break;
 case ABE_RIGHT:
 abd.rc.left = abd.rc.right - DEF_BAR_WIDTH;
 break;
 }
 SHAppBarMessage(ABM_SETPOS, &abd);
 // Reposition the access bar with the newly calculated coordinates.
 // The system will not do this for you.
 MoveWindow(&abd.rc);
 // Recalc the child buttons.
 CalcChildren(uEdge);
}

When we're calculating the position and size of an access bar, it gets a little hairy, because there may be
other access bars already docked to the edges of the desktop. However, I can use the APPBARDATA
structure to tell the shell which side I'd like my access bar to be docked and pass a default rect into
which to fit the access bar.

If I send the shell the ABM_QUERYPOS message, the shell will adjust the position of the rectangle in the
APPBARDATA structure, but I need to refine the size of the access bar, depending on the edge that it's being
docked to. If the access bar is being docked to the top, I need to determine the bottom edge. If it's being
docked to the bottom, I need to determine top edge, and so on. Once I've calculated the final position and
size for the access bar, I send the ABM_SETPOS message and move the window myself with a call to
MoveWindow(). (When the ABM_SETPOS message that my application sends has completed, my access bar
will receive a ABN_POSCHANGED message.)

Finally, I call CalcChildren(), which simply recalculates the positions and sizes for the buttons on the
access bar.

void CMainFrame::CalcChildren(UINT uEdge)
{

 CRect rc;
 if (uEdge == ABE_TOP || uEdge == ABE_BOTTOM)
 {
 rc = CRect(10, 0, BUTTON_WIDTH, BUTTON_HEIGHT);
 m_button1.MoveWindow(rc);
 rc.OffsetRect(BUTTON_WIDTH * 2, 0); m_button2.MoveWindow(rc);
 rc.OffsetRect(BUTTON_WIDTH * 2, 0); m_button3.MoveWindow(rc);
 rc.OffsetRect(BUTTON_WIDTH * 2, 0); m_button4.MoveWindow(rc);
 rc.OffsetRect(BUTTON_WIDTH * 2, 0); m_button5.MoveWindow(rc);
 }
 else
 {
 rc = CRect(0, 10, BUTTON_WIDTH, BUTTON_HEIGHT + 10);
 m_button1.MoveWindow(rc);
 rc.OffsetRect(0, BUTTON_HEIGHT * 2); m_button2.MoveWindow(rc);
 rc.OffsetRect(0, BUTTON_HEIGHT * 2); m_button3.MoveWindow(rc);
 rc.OffsetRect(0, BUTTON_HEIGHT * 2); m_button4.MoveWindow(rc);
 rc.OffsetRect(0, BUTTON_HEIGHT * 2); m_button5.MoveWindow(rc);
 }
}

Notifications from the access bar arrive as a message. The message ID is the one that I provided when I
registered the access bar. Using MFC, I defined a message map entry with the ON_MESSAGE() handler. I
then coded a function, called OnAccessBar(), which receives the WPARAM and the LPARAM for the message:

LRESULT CMainFrame::OnAccessBar(WPARAM wParam, LPARAM lParam)
{
 UINT uState;
 APPBARDATA abd;
 abd.cbSize = sizeof(APPBARDATA);
 abd.hWnd = GetSafeHwnd();
 switch (wParam)
 {
 case ABN_STATECHANGE:
 uState = SHAppBarMessage(ABM_GETSTATE, &abd);
 SetWindowPos((ABS_ALWAYSONTOP & uState) ? &wndTopMost :
 &wndBottom, 0, 0, 0, 0, SWP_NOMOVE | SWP_NOSIZE |
 SWP_NOACTIVATE);
 break;
 case ABN_FULLSCREENAPP:
 uState = SHAppBarMessage(ABM_GETSTATE, &abd);
 if (lParam) // Is it opening a Full-Screen App?
 {
 SetWindowPos((ABS_ALWAYSONTOP & uState) ? &wndTopMost :
 &wndBottom, 0, 0, 0, 0, SWP_NOMOVE | SWP_NOSIZE |
 SWP_NOACTIVATE);
 }
 else
 {
 // Retain old position.
 if (uState & ABS_ALWAYSONTOP)
 SetWindowPos(&wndTopMost, 0, 0, 0, 0, SWP_NOMOVE |
 SWP_NOSIZE | SWP_NOACTIVATE);
 }
 case ABN_POSCHANGED: // Pass through from above.
 CalcPosition(m_uEdge);
 break;
 }
 return 0;
}

This code actually doesn't perform any magic. I simply respond to the notifications by performing the
necessary code, as I specified above in my explanations of the notifications.

The buttons on the access bar control the edge that the access bar is docked against. I wrote MFC
message map handlers for each button and simply reset the m_uEdge data member and call
CalcPosition() to reposition the access bar.

That's the complete implementation of my access bar. You'll note that I didn't include code for the
autohide feature, because this will vary between implementations. It's relatively simple to implement, but
the shell doesn't manage this state for you; you must do it in your own code. The shell will send you a
notification to alert you that the access bar's state has changed, but it's up to you to perform the actual
showing or hiding of the bar. That's all there is to it. Nothing more, nothing less. With a few lines of code
and one or two hours, you too can have an access bar up and running.

File Viewers
With Windows 95, Microsoft introduced a feature to allow you to quickly view files of any type. From the
shell, you can right-click on a file to bring up a context menu on which you'll usually find an item, labeled
Quick View. Selecting this item causes the shell to load a file viewer that is appropriate for the file and
allows the viewer to display the file in its document window.

The greatest benefit that a file viewer offers is that the user doesn't have to load a fully-fledged
application in order to see what a file contains. As a programmer, you can simply offer the drawing
portion of the code in a file viewer and the users can take advantage of the reduced load times when they
only need to view your files without editing them.

Keep in mind that the shell must know something about the file before it can find an appropriate viewer.
This information is kept in the registry (we'll cover the necessary entries later in this section) and can
either be based on a class ID (a way of identifying OLE objects) or a file extension. Later in the chapter,
I'll demonstrate how to build a file viewer and associate it with a file extension.

OLE and File Viewers
OLE plays a major role when you're using file viewers, since file viewers are actually OLE component
objects which expose several interfaces (as you can see from the diagram):

Since an in-process server is nothing more than an OLE-aware DLL, it needs an application with its own
process space to host it. That's where the Quikview.exe application located in the \System\Viewers
subdirectory of your Windows directory comes in. The shell actually loads this application and passes it
several options, including the full path of the file the user selects for quick viewing (we'll discuss the
Quick View application in more depth later in the chapter).

A file viewer must begin by exposing and registering the class factory object with OLE as soon as it's
loaded. The class factory object will be told, via the IClassFactory interface, to create file viewer
objects when they're needed .

The file viewer object exposes two interfaces, the first of which is used for passing the name of the
document file and is called IPersistFile. The second interface is used for displaying the file in its
document window and is called IFileViewer. We'll discuss both of these further in the next section.

You might be asking yourself, " Why did Microsoft implement this file viewer stuff as OLE objects?"
One of the main reasons is extensibility. For example, if Microsoft wanted to provide new functionality in
file viewer objects, all they'd have to do is provide a new common interface. You could implement and
expose this interface and your file viewer would be in business with some new functionality. However, to
support older file viewers, the system can use QueryInterface() to determine whether a file viewer
supports the new interface. If it doesn't, it can simply use the old interfaces. That's the beauty of OLE; the
power of extension at run time.

One more thing. Remember I mentioned that a file viewer can be associated with a class ID or a file
extension? The shell actually first checks to see whether the document file is an OLE compound file. If it

is, it attempts to read the statistical information from the file (which is stored using the OLE compound
file functions from the application that originally created the file; for more information on these functions,
see the OLE reference or your online help) and uses the class ID stored with the statistical information to
find and load the file viewer. If the file is not a compound file, it looks at the file's extension and attempts
to find a file viewer associated with that extension. All of this information is kept in the registry. Later,
we'll discuss the exact entries that you must provide to make all this file viewer stuff work.

IPersistFile
As you probably know, the IPersistFile interface usually provides an object with the ability for it to
load and save itself to a disk file in any manner that the object chooses. IPersistFile has five methods
(besides the usual IUnknown members, for which we'll get MFC to do most of the work for us), but a file
viewer is actually only required to implement three of these. The other member functions can return
E_NOTIMPL (which tells any callers that the function was not implemented). The three member functions
that we must provide are Load(), GetCurFile(), and GetClassID().

The Load() member function will be called and passed a path to the document file that the file viewer
will need to display.

The GetCurFile() function is required to allocate space and return a copy of the file name in the
allocated space.

The GetClassID() function must return the class ID of the file viewer. This is the same class ID that is
associated with the class factory registered with OLE.

IFileViewer
The Quick View application calls the members of the IFileViewer interface to tell the File Viewer object
when to display its user interface, display the file, or print the file. Besides the usual IUnknown members,
IFileViewer contains three other functions: ShowInitialize(), Show()and PrintTo().

The ShowInitialize() function is the first IFileViewer function to be called. The file viewer object
should perform any creations, allocations, or loading (that includes loading the file to be viewed) . Don't
be misled by the name. If you thought that the IPersistFile::Load() function is called when the
document file needs to be loaded, you'd be wrong. The IPersistFile::Load() function should only
store the file name; it shouldn't load the file. That's the responsibility of ShowInitialize().

Don't place any initialization code that is likely to generate errors (for example, memory allocations) in
the IPersistFile::Load() function. Rather, you should place it in the ShowInitialize() function. This
function can return several predefined error values, all starting with FV_E_. Here you can see the full list:

File Viewer Errors
FV_E_BADFILE
FV_E_EMPTYFILE
FV_E_FILEOPENFAILED
FV_E_INVALIDID
FV_E_MISSINGFILES
FV_E_NOFILTER

FV_E_NONSUPPORTEDTYPE
FV_E_NOVIEWER
FV_E_OUTOFMEMORY
FV_E_PROTECTEDFILE
FV_E_UNEXPECTED

The Show() member function is called to initially display the main window and the content of the
document file. This function receives a flag, indicating how the window should be displayed. The flag can
be one of the standard ShowWindow() flags. (For a list of these flags, see the reference for the
ShowWindow() API function.) The Show() function shouldn't return until the user has closed the main
window. In other words, the function should enter a message loop and continue processing user input until
it receives a WM_QUIT message. As you'll see a little later, handling the message loop in an MFC
application requires a bit of thought, but there are no insurmountable problems.

PrintTo() is similar to Show() in that it mustn't return until printing has finished. The function receives a
flag to determine whether or not the user interface of the file viewer should be displayed. This function
will most likely get called instead of Show(), since Show() is used to display the file and PrintTo() is
used to print the file.

In the example, I also implemented this interface inside my document class. Again, the source code and a
detailed description follow later in this chapter.

Telling the System about a File Viewer
When you install your file viewer, there are several entries that must exist in the registry in order for the
shell to locate it. You can enter these from your setup application, or you can provide a registration file for
your user to merge with the existing registry. I chose to provide a registration file with my sample
application.

First of all, the entries need to be in the HKEY_CLASSES_ROOT key of the system registry. You'll need to
operate on two subkeys of the main HKEY_CLASSES_ROOT key. The first subkey is \QuickView and the
other is \CLSID. This is the structure that you must implement:

HKEY_CLASSES_ROOT
 \QuickView
 \<extension> = <human-readable document type>
 \{<CLSID>} = <human-readable viewer name>
 \{<CLSID>} = <human-readable viewer name>
 \{<CLSID>} = <human-readable viewer name>

HKEY_CLASSES_ROOT
 \CLSID
 \{<CLSID>} = <human-readable viewer name>
 \InprocServer32 = <full path to file viewer DLL>
 = ThreadingModel = "Apartment"

Entry Description
HKEY_CLASSES_ROOT One of several permanently open root keys in the

system registry.
QuickView The subkey where file extensions are related to their

associated file viewers' CLSIDs.
CLSID The subkey that contains all of the registered OLE

component object class identifiers. These values are
128-bit values surrounded by curly braces. The
associated file viewer's path is stored under these
keys.

<CLSID> The CLSIDs represent the viewer in-process server.
<Human-readable document type> The text used for displaying a description of the

CLSID or file extension to the user .
<Human-readable viewer name> The text used for displaying to the user a description

of the file viewer.
<extension> The file extension prefixed with a period.

Note that the system allows for several file viewers for a particular extension.

I used a registration file to register my file viewer with the system. With a registration file, you either
double-click on the file from Explorer or you run the Regedit.exe application and load the registration
file into RegEdit. Here's the text that I included in my registration file:

REGEDIT4
[HKEY_CLASSES_ROOT\CLSID\{1F420CA7-3C7B-11CF-97E6-444553540000}]
@="Wrox File Viewer"
[HKEY_CLASSES_ROOT\CLSID\{1F420CA7-3C7B-11CF-97E6-444553540000}\InprocServer32]
@="c:\\msdev\\projects\\wroxfileviewer\\debug\\wroxfileviewer.dll"
"ThreadingModel" = "Apartment"
[HKEY_CLASSES_ROOT\QuickView\.wrx]
@="wrxfile"
[HKEY_CLASSES_ROOT\QuickView\.wrx\{1F420CA7-3C7B-11CF-97E6-444553540000}]
@="Wrox File Viewer"
[HKEY_CLASSES_ROOT\wrxfile\CLSID]
@="{1F420CA7-3C7B-11CF-97E6-444553540000}"

Let's start at the top. The REGEDIT4 command tells the RegEdit application what version of commands to
expect in this file. REGEDIT4 is the latest set of registration file commands available. The text enclosed in
brackets ([]) describes keys in the registry, while the strings beneath the keys describe values that appear
under those keys in the registry. The name of the value is separated from its data by an equals sign. The at
symbol (@) means that the data following the equals sign belongs to the default value of that key.

In the example, we've basically defined a file viewer for text files, but we've used the file extension .wrx
to be associated with our viewer so that testing this example will have minimal effect on your system. If
you want to test the example, you can simply merge the supplied .reg file with your registry, create a
new text file and change its extension to .wrx, then select Quick View from the file's context menu. The
viewer's path is part of the .reg file ,so you may need to change that to reflect the location of the file
viewer on your own system.

The InprocServer32 entry means that the module is a 32-bit server and the ThreadingModel key
specifies which OLE threading model is used. An apartment model-aware application must have thread-
safe entry points such as DllGetClassObject() or DllCanUnloadNow() (which we'll learn more of later
on). The apartment model means that OLE blocking is made at the class factory level. Each object created

by a class factory falls within the same apartment. If two clients make calls to objects in the same
apartment, one of the clients is blocked until the other client receives its return value.

In Windows 95 and NT 3.51, the threading model was basically always the apartment model, but later
versions of Windows (NT 4.0 and later) will allow for different models, such as free threading, which
will allow more flexible management of OLE objects. However, this is getting off the track a bit. The
bottom line is that MFC handles this for us, so we really have nothing to worry about. Let's move on to
writing code to interact with the Quick View application.

The Quick View Application
When the user selects a file to view, the system spawns an application called Quick View (\Windows\
System\Viewers\Quikview.exe. Note that there's no c in the file name). The system passes the full path
of the file to the Quick View application, along with some options to enable the application to determine
whether it's performing a print operation or just viewing the file. The Quick View application simply acts
as a stub for the in-process servers and has no message loop or interface of its own. If the Quick View
application can't find an appropriate file viewer for the selected file, it will ask whether or not the user
wants to load the file into the default file viewer, which treats the file as a hex dump (it looks fine if the
file is made of plain ASCII text).

Since the Quick View application has no message loop of its own, it relies on the file viewer in-process
servers to provide the message loop and the user interface.

The Quick View application takes the following steps in loading and interacting with the associated File
Viewer:

It finds the file viewer entries in the registry.
After gathering the CLSID for the file viewer, it attempts to create a file viewer object, using that
CLSID by calling CoCreateInstance() (probably asking for IUnknown).
It retrieves pointers to the IPersistFile interface and the IFileViewer interface.
It calls the IPersistFile::Load() function.
It calls the IFileViewer::ShowInitialize() function.
It calls the IFileViewer::Show() or IFileViewer::PrintTo() function to display or print the
file.
It waits until either IFileViewer::Show() or IFileViewer::PrintTo() return.
When the Quick View application regains control, it releases two of the three interfaces immediately.
A short time later it releases the final interface on the file viewer object.

The last interface is not released until a few minutes later for performance reasons. Think about it for a
minute; if you load a file to perform a quick view on it, chances are that you're looking for a specific file.
If the first file you load is not the one you want, you'll try to view another file, and so on down the line
until you've exhausted all of the files or you find the one that you are looking for. In any event, it would
be very expensive (performance-wise) to load and unload a module in memory each time you want to
view a different file of the same type. This is why the same file viewer object is held on to for a few
minutes.

When the user has stopped selecting files to view and a few minutes have gone by without any
interaction, the Quick View application releases the file viewer object (letting go of the final interface).
This causes the in-process server to decrement its object count to zero. When its DllCanUnloadNow()
function is called, it returns TRUE, which causes the in-process server to be unloaded from memory.

You can find the sample application on our CD as WroxFileViewer. To run the sample you'll need to
edit the WroxFileViewer.reg file so that the path to the viewer is the same as on your system. Then
merge the file with your registry as we discussed earlier.

Creating a File Viewer
Before I set out to write my file viewer, I knew that I wanted to use MFC because it always offers me a
fast path to having my application up and running, but I wanted to avoid the document/view architecture,
since I also knew that performance was an issue.

When you write your own file viewers, keep in mind that the user wants to load and view the document as
quickly as possible, so you shouldn't spend too much time in your load and initialization code. For this
reason, things like writing several document viewers into a single server is a bad idea, since the server
will take that much longer to load.

Generating the Skeleton Code
I started out by generating an OLE in-process MFC server (using MFC AppWizard (dll) with OLE Automation
support selected). This provides all the necessary entry points and startup code. The automation support
ensures that the correct header files are included and my module is initialized correctly for OLE.

Next, I added a CMainFrame class with toolbar and status bar and added some code to it to create an edit
control to hold the text to display. Since a file viewer provides the user interface for the Quick View
application, it's a good idea to follow the standards set by the other file viewers on your system. The
standards for the interface are fully described in the documentation supplied with Visual C++.

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 // Create the edit control.
 CRect rc;
 GetClientRect(rc);
 if (!m_wndEditCtrl.Create(WS_HSCROLL | WS_VSCROLL |
 ES_AUTOHSCROLL | ES_AUTOVSCROLL |
 ES_MULTILINE | ES_NOHIDESEL, rc, this, ID_EDITCTRL))
 {
 TRACE0("Failed to create edit control\n");
 return -1; // fail to create
 }
 m_wndEditCtrl.ShowWindow(SW_NORMAL);
// ... Create toolbar and status bar here

 // Allow drag and drop from Explorer
 DragAcceptFiles();
 return 0;
}

I also added a class derived from CCmdTarget called CFileViewer. This will provide the implementation
of the IFileViewer and IPersistFile interfaces.

Providing OLE's Entry Code
An in-process server must export two global functions: DllGetClassObject() and DllCanUnloadNow().
DllGetClassObject() is called sometime after the in-process server is loaded. Its job is to return a class
factory object (actually the requested interface on a class factory object; most likely IClassFactory).
Once the Quick View application grabs hold of the class factory, it can tell it to create a file viewer object
for loading and displaying the document file.

Since our application is an MFC application, we can rely on MFC to do most of the work for us. My
implementation of the DllGetClassObject() function is exactly the one provided by MFC AppWizard (dll):

STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 return AfxDllGetClassObject(rclsid, riid, ppv);
}

The other exported function is called whenever CoFreeUnusedLibraries() is called. This function calls
the DllCanUnloadNow() function of all in-process servers in memory, and if they return TRUE, the server
is unloaded from memory. DllCanUnloadNow() returns TRUE when it's no longer servicing any objects in
memory, or if it's not locked in memory (via the class factory object). Again, I simply use the MFC
implementation, which already handles the class factory, object counts and locking support. The function
looks like this:

STDAPI DllCanUnloadNow(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 return AfxDllCanUnloadNow();
}

Why We Need to Override CWinApp::Run()
You normally never have any need to override the CWinApp::Run() function, but I'm not a normal person
(or so I've been told), so here's a situation where I had to override the function. Remember I mentioned
that the Show() or PrintTo() functions had to provide a message loop and they shouldn't return until the
user has chosen to close the application? How do we provide that functionality?

I knew that MFC implements the message loop in a function, called CWinApp::Run(), which is called
after all the MFC window classes have been registered and the instance has been initialized (with a call to
CWinApp::InitInstance()). To make sure that the message loop isn't executed before I want it to be (i.e.
before IFileViewer::Show() has been called), I added some code to stop it from executing prematurely.
This is purely defensive coding.

I did this by placing a static data member, m_bShowCalled, in the COM object class, CFileViewer, that
I could use to determine whether IFileViewer::Show() has been called yet. When the framework calls
the application's Run() function, it will be handled by my CWroxFileViewerApp::Run() function, which
overrides CWinApp::Run(). I then check to see whether the IFileViewer::Show() function has been
called yet. If it hasn't, I simply return from the function. Later, when IFileViewer::Show() is called, it
will set m_bShowCalled to TRUE and will call CWinApp::Run() once again. At that point, I'll delegate to
the CWinApp::Run() function, which begins the message loop.

int CWroxFileViewerApp::Run()
{
 // Don't do anything in here until the main window

 // and document have been created. IFileViewer::Show()
 // will call this function.
 if (CFileViewer::m_bShowCalled)
 return CWinApp::Run();

 return 0;
}

Implementing IPersistFile
Implementing the IPersistFile member functions was a cinch. I needed to provide the declarations in
the header file (using the MFC macros as discussed in Tech Note 38 that can be found in the Visual C++
Books Online), delegate the IUnknown members to MFC and implement functionality for the
GetCurFile(), Load() and GetClassID() members.

First thing's first. The declaration, which sits inside the declaration for my file viewer class, looks like
this:

//IPersistFile interface
 BEGIN_INTERFACE_PART(PersistFile, IPersistFile)
 //IPersistFile methods
 STDMETHODIMP IsDirty();
 STDMETHODIMP Load(LPCOLESTR pszFileName,DWORD dwMode);
 STDMETHODIMP Save(LPCOLESTR pszFileName,BOOL fRemember);
 STDMETHODIMP SaveCompleted(LPCOLESTR pszFileName);
 STDMETHODIMP GetCurFile(LPOLESTR __RPC_FAR *ppszFileName);
 STDMETHODIMP GetClassID(LPCLSID pClsID);
 END_INTERFACE_PART(PersistFile)

Delegating to the MFC version of IUnknown is easy. I simply use the METHOD_PROLOGUE macro to get the
pointer to the document object as pThis, then use it to call its IUnknown members:

STDMETHODIMP CFileViewer::XPersistFile::QueryInterface(REFIID riid,
 void** ppv)
{
 METHOD_PROLOGUE(CFileViewer, PersistFile);
 return pThis->ExternalQueryInterface(&riid, ppv);
}

I do the same thing for AddRef() and Release(). Next I provided the code for GetCurFile(), Load()
and GetClassID():

STDMETHODIMP CFileViewer::XPersistFile::GetCurFile(LPOLESTR __RPC_FAR
 *ppszFileName)
{
 USES_CONVERSION;
 ULONG cb;
 METHOD_PROLOGUE(CFileViewer, PersistFile);
 if (!pThis->m_bLoadCalled)
 return E_UNEXPECTED;
 if (ppszFileName == NULL)
 return E_INVALIDARG;
 // Allocate the memory for the string.
 cb = (pThis->m_strFilePath.GetLength() + 1) * sizeof(OLECHAR);
 *ppszFileName = (LPOLESTR)CoTaskMemAlloc(cb);
 if (*ppszFileName == NULL)
 return E_OUTOFMEMORY;

 memcpy(*ppszFileName, T2OLE(pThis->m_strFilePath), cb);
 return NOERROR;
}
STDMETHODIMP CFileViewer::XPersistFile::GetClassID(LPCLSID pClsID)
{
 METHOD_PROLOGUE(CFileViewer, PersistFile);
 *pClsID = clsid;
 return NOERROR;
}
STDMETHODIMP CFileViewer::XPersistFile::Load(LPCOLESTR pszFileName,
 DWORD dwMode)
{
 USES_CONVERSION;
 METHOD_PROLOGUE(CFileViewer, PersistFile);
 if (pszFileName == NULL)
 return E_INVALIDARG;
 pThis->m_strFilePath = OLE2T(pszFileName);
 // Remember that this function has been called.
 pThis->m_bLoadCalled = TRUE;
 return NOERROR;
}

These are relatively simple functions. As for the other members, I return E_NOTIMPL, which means that I
didn't provide any implementation for the function. It's always a good idea to at least return this value,
since someone might call the function and blow up if you don't provide it.

Implementing IFileViewer
The IUnknown members for IFileViewer delegate to the document's IUnknown functions like those in the
IPersistFile interface, so the only members I needed to implement with some real working code were
ShowInitialize(), Show() and PrintTo(). I simply return E_NOTIMPL from PrintTo(), so that brings
us down to the two most important member functions of all.

Let's begin with ShowInitialize(). The function's one and only parameter is a pointer to an
IFileViewerSite interface which the Quick View application sends it. I hold on to it and increment its
reference count. Next, I create the frame window and load the file into my edit control by calling the
Serialize() function in the file viewer class. This just delegates the call to CMainFrame::Serialize()
which does the hard work of loading the file into the edit control.

STDMETHODIMP CFileViewer::XFileViewer::ShowInitialize(LPFILEVIEWERSITE
 lpfvs)
{
 TRACE0("Entered ShowInitialize()\n");
 METHOD_PROLOGUE(CFileViewer, FileViewer);
 HRESULT hr;
 // Be sure that you have the file viewer.
 if (pThis->m_lpfvs != lpfvs)
 {
 pThis->m_lpfvs = lpfvs;
 pThis->m_lpfvs->AddRef();
 }

 // Default error code
 hr = E_OUTOFMEMORY;
 // Load a file.
 if (pThis->m_strFilePath.IsEmpty())
 return E_UNEXPECTED;
 // Create the window.
 pThis->CreateFrameWindow();

 CFile file(pThis->m_strFilePath, CFile::modeRead);
 CArchive ar(&file, CArchive::load);
 pThis->Serialize(ar);
 //Tell IFileViewer::Show it's OK to call it.
 pThis->m_bShowInitCalled = TRUE;
 return NOERROR;
}

The IFileViewerSite interface offers two functions that can be called by our application:
GetPinnedWindow() and SetPinnedWindow(). These are used to get and set the handle of the pinned
window. Users can set a pinned window so that when they quick view a new file, the existing pinned
window is 'reused' rather than a new window opening up.

In fact, the window isn't really reused; the new window simply uses GetPinnedWindow() to determine
whether it needs to position itself in the same area as an existing pinned window. Once it's done this, the
original window closes. Information about the position of any existing pinned window is passed to the file
viewer by Quick View in the parameter to the IFileViewer::Show() function.

IFileViewer::Show() needs to show the user interface and begin the message loop. It receives a pointer
to a FVSHOWINFO structure provided by the Quick View application which I hold onto until I'm done with
it. This structure contains a lot of important information, such as the size that the main window should be,
as well as its initial show state.

STDMETHODIMP CFileViewer::XFileViewer::Show(LPFVSHOWINFO pvsi)
{
 TRACE0("Entered Show()\n");
 METHOD_PROLOGUE(CFileViewer, FileViewer);
 if (!pThis->m_bShowInitCalled)
 return E_UNEXPECTED;
 pThis->m_pvsi = pvsi;
 CWnd* pWnd = pThis->GetFrameWindow();
 if ((pThis->m_pvsi->dwFlags & FVSIF_NEWFAILED) == 0)
 {
 if (pThis->m_pvsi->dwFlags & FVSIF_RECT)
 pWnd->MoveWindow(&pThis->m_pvsi->rect);
 pWnd->ShowWindow(pThis->m_pvsi->iShow);
 pWnd->SetWindowText(pThis->m_strFilePath);
 if (pThis->m_pvsi->iShow != SW_HIDE)
 {
 pWnd->SetForegroundWindow();
 pWnd->UpdateWindow();
 }
 // If an old window exists, destroy it now.
 if (pThis->m_pvsi->dwFlags & FVSIF_PINNED)
 {
 pThis->m_lpfvs->SetPinnedWindow(NULL);
 pThis->m_lpfvs->SetPinnedWindow(pWnd->GetSafeHwnd());
 ((CMainFrame*)pWnd)->m_bReplace = TRUE;

 }
 if (pThis->m_pvsi->punkRel != NULL)
 {
 pThis->m_pvsi->punkRel->Release();
 pThis->m_pvsi->punkRel = NULL;
 }
 }
 m_bShowCalled = TRUE;
 // Start the message loop
 AfxGetApp()->Run();
 return NOERROR;
}

Pinned Windows
The tricky bit with pinned windows is what happens when a new file is quick viewed when a pinned
window is set. When this happens, Quick View sends a WM_DROPFILES message to the pinned window
with the file name of the new file to be viewed. The existing viewer should check the file to see whether it
can view it itself. If it can, it should replace the existing file with the new one. If it can't, it needs to fill in
the FVSHOWINFO structure that it got a pointer to in the IFileViewer::Show() function to inform Quick
View of the current situation. Then it needs to shut itself down. Here's the code that I provided to handle
this situation:

void CMainFrame::OnDropFiles(HDROP hDropInfo)
{
 TRACE0("Entered OnDropFiles()\n");
 USES_CONVERSION;
 SetActiveWindow(); // activate us first !
 ::DragQueryFile(hDropInfo, (UINT)-1, NULL, 0);
 TCHAR szFileName[_MAX_PATH];
 ::DragQueryFile(hDropInfo, 0, szFileName, _MAX_PATH);
 if (strstr(_strupr(szFileName), _T(".WRX")))
 {
 // Delegate to default file handling.
 CFile file(szFileName, CFile::modeRead);
 CArchive ar(&file, CArchive::load);
 Serialize(ar);
 SetWindowText(szFileName);
 SetForegroundWindow();
 }
 else
 {
 HWND hWnd;
 m_pComObj->m_lpfvs->GetPinnedWindow(&hWnd);
 if (hWnd == GetSafeHwnd())
 m_pComObj->m_pvsi->dwFlags |= FVSIF_PINNED;
 m_pComObj->m_pvsi->dwFlags |= FVSIF_NEWFAILED;
 m_pComObj->m_pvsi->dwFlags |= FVSIF_NEWFILE;
 m_pComObj->m_pvsi->dwFlags |= FVSIF_RECT;
 GetWindowRect(&m_pComObj->m_pvsi->rect);
 wcscpy(m_pComObj->m_pvsi->strNewFile, T2OLE(szFileName));
 DestroyWindow();
 PostQuitMessage(0);
 }
 ::DragFinish(hDropInfo);
}

Since our window can also be pinned when it's closed down by the user, we need some code to keep
Quick View updated when that happens. Here you can see that we just set the pinned window handle to
NULL if the window that's closing was pinned:

void CMainFrame::OnClose()
{
 TRACE0("Entered OnClose()\n");
 HWND hWnd;
 if (m_pComObj->m_lpfvs)
 {
 m_pComObj->m_lpfvs->GetPinnedWindow(&hWnd);
 if (hWnd == GetSafeHwnd())
 m_pComObj->m_lpfvs->SetPinnedWindow(NULL);
 m_bReplace = FALSE;
 }
 CFrameWnd::OnClose();
}

And that's how to create a file viewer. I recommend that you look at the code on the CD to get the full
picture. You should find it quite easy to adapt it to create file viewers for your own file types. The most
important thing to remember about file viewers is that they should be fast.

Windows File Systems
Saving files under a system that only allows eight characters for the name and three characters for the
extension has always been a problem for me. Furthermore, I have never quite understood why this
limitation has hammered us for so long. However, I can now see the light at the end of the tunnel, thanks
to the introduction and widespread use of Windows 95 and Windows NT, which both allow long file
names.

Although the file system actually sits under the Windows shell that we'll be examining in the major part
of this chapter, a quick look at the way Windows handles long file names is certainly in order, since it's
only fairly recently that long file names have become a mainstream feature of Windows.

Depending on the configuration of a user's machine, your application may have to deal with any one of
the following file systems:

File Allocation Table file system (FAT)
Protected-Mode FAT file system (virtual FAT)
New Technology file system (NTFS)
High-Performance file system (HPFS)

We'll look at the various features of the different file systems further in the following sections.

Over 500 Pounds - the FAT File System
For years, users have had to live with a file system that is limited to short file names. This file system uses
what's called a file allocation table, which contains entries for each file on the storage media. It also
keeps what's called a hierarchy directory structure, which determines how the user will view the files.
The user can then create directories within directories and build a logical hierarchy using the file system.

This file system has support for hard drives as well as floppies. It's main advantage is that it's supported
by various operating systems (DOS, Windows, OS/2).

The FAT file system doesn't distinguish between uppercase and lowercase letters. A directory or file name
consists of any combination of up to eight letters, digits, or the following special characters:

$ % ' - _ @ { } ~ ` ! # ()

Of all the limitations of the FAT file system, the biggest one is that file names can only be up to eight
characters long with an optional three character extension. This extension has been used to associate files
with applications for many years under Windows.

When is a FAT not really a FAT? When it's a VFAT
When you install NT or Windows 95, the FAT file system is set up to support long file names. The new
file system is called protected-mode file allocation table file system or virtual FAT (VFAT). The VFAT
file system is very much like the FAT file system that we've just looked at in that it supports names with
eight characters and three character extensions, but in addition, it also supports file names of up to 255
characters (including extensions). So, a string will need to be 260 characters to hold a fully qualified file
name. This is enough room to fit your drive letter, colon, backslash, the directory path to the file, the file
name and, of course, a terminating null. VFAT also supports a few characters not supported by FAT.

When you support long file names in your application, the API that creates the file name entry for you
gives the entry two names. The first is the long file name and the other is an 8.3 format file name that can
be viewed from applications that don't support long file names. You don't have to do anything special; the
operating system will do it all for you. The file can be accessed from either name. If you know one of
these names, you can ask the system for the other by using the GetShortPathName() or
GetFullPathName() API functions. Keep in mind that the short file name might change, even if the long
file name stays the same. This could happen if you copy the file from one directory to another, for
example.

The algorithm used to determine the short file name is as follows:

First it checks if the file name is already in standard 8.3 format. If it is, it uses that. If not, it proceeds
to Step 2.
It extracts all space characters from the file name and removes all except the final period.
It then retrieves the leading six characters and appends a tilde, plus a number.
Next it takes the first three characters following the period to use as the extension.
It then converts the 8.3 file name to capital letters.
If there are any characters that are illegal in the underlying file system, it replaces them with an
underscore (_).
Finally, it checks for the existence of a file with the same created name. If it finds one, it increments
the number following the tilde until there's no longer a collision.

Note that when you search through names in a directory that match the criteria using the Win32 API file
functions, the match might occur with the long or the short file name. In other words, the operating
system will look at both names for a match. You should interrogate the cFileName and the
cAlternateFileName members of the WIN32_FIND_DATA structure to determine which one caused the
match.

New Technology File System (NTFS)
The New Technology File System (NTFS) is supported by NT only (when I last checked). NTFS
maintains files on a hard drive, but has no support for floppies. The file system creates an object-oriented
view on the files by treating the files as objects with user- and system-defined attributes. NTFS provides
all the capabilities of the FAT file system, but without its many limitations.

One of the strongest features of this file system is its performance over a FAT file system. It accesses files
much faster is much more robust. The structure of the system is supposed to restore itself consistently to a
disk after a CPU failure, system crash, or I/O error and without you having to use disk-checking utilities.
However, NTFS provides these utilities in case recovery fails or corruption occurs outside the control of
the file system. However, chances are, you'll never have to use chkdsk again.

The characteristics of NTFS file names are pretty much the same as in VFAT. They can be any practical
length (up to 255 characters). NTFS also creates 8.3 format file names for every file just like VFAT.
Unlike VFAT, the file names are Unicode-encoded to allow different character sets across the world. This
feature is implemented internally by Windows NT.

High Performance File System

The High Performance File System (HPFS) only manages files on hard drives (there is no support for
floppies). HPFS is a file system that supports extended attributes and long, mixed-case file names. It also
improves operating system performance by implementing several levels of caching.

NT support for HPFS is only there for backward compatibility (for example, in cases of dual boots).
Windows 95 can recognize HPFS formatted disks as drives, but, unlike NT, can't access the files. When
you move or copy a file from NTFS to HPFS, be aware that the characters are converted to OEM and the
name becomes case-insensitive. Also, all permissions are lost. HPFS is, however, fully supported by
OS/2. If you're still using OS/2 for LAN server support, you might have to interact with an HPFS file
system.

Long File Name Functions
All new Win32-based applications should use only the Win32 API file name functions for the best
possible performance and usage. Most Windows 3.x functions that received a file name (such as
_lopen() or _lcreate()) have been updated to support long file names. The OpenFile() function has
not been updated and Microsoft warn that you should stay away from using this function. Instead, you
should use the new CreateFile() API function. OpenFile() is still around, but it's only there for
backward compatibility with older applications.

One thing to consider is that a single user might be using several file systems. For example, they might
have FAT and NTFS on separate partitions on their local machine, or they could be talking to a machine
across the LAN, which uses a totally different file system. There will probably come a time when you
want to know which file system you are utilizing in order to maximize functionality specific to that file
system. A Win32 API function, called GetVolumeInformation(), exists for just this purpose. You pass it
several pointers to some variables you allocate and it fills those places with information.

Most developers allocate a static place in memory where they store their file names (usually they use
MAX_PATH to determine the size of the file name). You can avoid wasted memory by calling
GetVolumeInformation() and then using the lpMaximumComponentLength field to allocate the space
dynamically before filling the variable with the file name. I won't go into all of the details on the
GetVolumeInformation() function, since you can simply look up the function online and view its
parameters.

Long File Name Gotchas
The following items are things that you should look out for when you write your applications. These are
things that I have come across, but they're certainly things that you should also adhere to:

An installation program that needs to enter information into configuration files, such as
Config.sys, should make sure it uses paths that only consist of 8.3 file name components. This is
because the long file names won't be visible at boot up time when startup files, such as Config.sys
and Autoexec.bat, are processed.
Try to use the long file name inside your application, because using the short file name can get you
into trouble. Sometimes, certain operations change the short file name to something else. If your
application is not prepared for this, it can blow up. If for some reason you need to determine whether
a file name entered by the user is the same as a file that you currently have opened, you can check
the nFileIndexHigh and nFileIndexLow members of the BY_HANDLE_FILE_INFORMATION
structure, which is returned by the GetFileInformationByHandle() Win32 function.
Beware when you temporarily rename a file, copy it and then rename it back to the original file
name. The short file name might change to something different. Essentially, you shouldn't use the

short file name unless you're forced to by circumstances beyond your control. Windows treats the
short file name as secondary to the long file name, and so should you.
Never assume that the extension contains only three characters. (This one has caught me a few
times.) Also, keep in mind that the user might save the file with a different extension from the default
one that your application provides.
Never allocate memory for a file name until you have gathered the maximum length of the file name
from the GetFileInformation() function. This one will save you plenty of years in the loony
bin. (I know that I get a little crazy whenever I can't find where I am overwriting memory.)
Keep in mind that users can type as many periods and spaces as their little hearts desire into a long
file name.

Designing the UI to Support Long File Names
An application should support long file names and display them correctly. You can use the
SHGetFileInfo() function in your application to retrieve the long file name for a file, as well as the file's
icon, type name, attributes, and so on. If you include the File Open and Save As common dialog boxes in
your application, you can use the OFN_LONGNAMES value to direct the dialog boxes to display and return
long file names.

If you have used Explorer, you have already noticed that it doesn't display the extension of a file if it
knows the type of that file. For example, instead of displaying My Letter To The IRS.doc, it would instead
display My Letter to the IRS. Explorer will also display information about the type of document, for
example Microsoft Word Document. If you want to eliminate the extension in your own applications and
instead simply display type information for the file names, you can do this easily with the
SHGetFileInfo() function.

Applications that must display a file name in the caption should display the long file name first, and if
they display the name of the application, that should follow the file name separated by a dash character
(-).

You should also support Universal Naming Convention (UNC) path names for files in your application.
Using UNC names enables users to browse documents on the network directly and to open an
application's files on remote machines without having to make an explicit network connection. Also, keep
in mind that if your application usually parses through a file name to detect errors in the file name, as
soon as you see \\ in the beginning of the name, you should treat this name as a UNC name and parse it
appropriately. An example of a UNC name is something like: \\Myserver\Mypath\Myfile.ext.

Finally, unless there is some special reason why you need to query the user with your own dialog boxes
for file names, I suggest you use the common dialogs, because they already support all of the rules for file
names (Unicode, UNC, etc.). When you use VC++ and MFC's classes for dialog boxes the work becomes
even easier, since you don't have to set up those long structures (such as OPENFILENAME) for passing to the
common dialog functions.

If you do have to write your own dialog boxes for querying the user for file names, make certain that the
edit controls and list boxes can handle long file names. For list boxes, you must add the ability to scroll
horizontally yourself.

Also, keep in mind that some of the things the user might want to traverse through are not necessarily file
items from the system. They might be items from the shell, such as printers or other objects. Make sure
you support these issues as well. For example, take a look at the common dialog box. Notice that it
supports the concept of a My Computer object which leads to other objects (including files). The My

Computer object is a shell namespace item. We'll discuss the shell namespace next.

The Shell Namespace
Windows 95 organizes information concerning the entire system in a logical hierarchy. At the top of this
hierarchy is the desktop, which acts as the root (or parent) to all of the other items. Below the desktop are
items such as drives, directories, files, and so on. There are also non-file system objects such as printers,
control panel applications and program groups. All of this information is collectively known as the shell's
namespace.

Remember, the shell's namespace is more than just the file system. It's a hierarchical collection of
logical entities.

The objects that make up the namespace can be divided into two groups: file objects and folder objects.
File objects are at the end of the namespace hierarchy, since they don't contain other objects in the
namespace, for example, files and printers. Folder objects, on the other hand, can be anywhere within the
namespace hierarchy, since they can contain file or folder objects that are also part of the namespace.

In this section, we'll examine what it takes to build an application that utilizes the shell's namespace. I'll
provide a pure MFC application that looks and acts very much like a junior version of Explorer. You can
use the code as the foundation for your next Explorer-like killer application. My code takes total
advantage of the MFC-provided classes for the framework, tree view, list view, and so on. I always try to
use as few direct API calls as possible; instead I enjoy letting the MFC classes do much of the work for
me so that I can spend more time playing video games and the like.

The application, which you can find on the CD, is called ShellView, and the main window is shown
below. It acts very much like Explorer. If you click on the plus sign (+) on one of the folders in the tree
list control, the child folders are displayed, and when one of the folders in the tree list control is selected,
you immediately see the file objects that belong to the item in the list view control.

Keep in mind that when we say file objects, we don't necessarily mean an object in the file system. We're
talking about the namespace. It can be a printer, a network connection, or any one of several other objects.

Every object in the shell namespace is assigned an item identifier that uniquely identifies the object
within its parent's folder. This means that the parent of the object also has an item identifier that identifies
the folder within its parent's folder. This continues until you reach the top object (which is the desktop
object). To uniquely identify an object anywhere in the namespace, you would need to keep a list of the
item identifiers for the object and all its ancestors. This list is known as an item identifier list or a PIDL
(after Pointer to an item IDentifier List, which is how most shell functions accept or return an item
identifier list; pronounced 'piddle').

There's a structure to help manipulate item identifier lists, called ITEMIDLIST. Its one and only member,
mkid, is itself a structure, called SHITEMID. The first two bytes of the SHITEMID structure define the size of
the rest of the structure which is undefined and contains a variable length array of bytes. An item
identifier list (which consist of multiple item identifiers) consists of one or more ITEMIDLIST objects
packed together followed by a 16-bit zero value to determine the end of the item identifier list. Here you
can see how this looks in memory:

Users never see a PIDL. They usually see descriptive text that represents the PIDL (we'll see how we
retrieve this text in a bit).

The most important thing to remember is that each folder object is, in fact, an OLE object which
implements an interface, called IShellFolder (as well as IUnknown of course). When an application gets
a pointer to an IShellFolder interface, it's called binding to the object. As a matter of fact, once you
have a pointer to a folder's IShellFolder, you can retrieve a pointer to a child's IShellFolder by calling
a member function, named BindToObject(), on the parent's IShellFolder interface, passing it the child
folder's PIDL and you get back the child's IShellFolder interface.

In order to establish and display a hierarchy of objects (such as the one that Explorer and ShellView
display) you'll need to start by getting a pointer to the topmost object's IShellFolder, which is the
desktop. You do this by calling a function named SHGetDesktopFolder(). Every folder object must allow
the caller to enumerate through all of its child objects. This is done with a call to
IShellFolder::EnumObjects(). This function returns a pointer to an interface ,called IEnumIDList,
which you can then call Next() on the interface (which returns a PIDL) to traverse through all of the
folder's objects.

When the shell returns a PIDL to the calling application, it allocates them using OLE's task allocator
(which your application can access by calling SHGetMalloc()). Also, if you need to create a PIDL and
send it to the shell, make sure you get access to the task allocator and allocate the memory with the
allocator. The task allocator implements an interface, called IMalloc. OLE applications that need to share
data with each other must do so using the task memory allocator. Just remember to free any data that the
shell sends you with the IMalloc interface, which you should also use to allocate and send to the shell
any memory you need to.

I mentioned that there are some folders which keep objects that are not necessarily file system objects,
such as the desktop folder or the network neighborhood folder. Program groups and the objects displayed
on the desktop are kept in special directories on the file system and the location of these directories are
kept in a registry key under:

HKEY_CURRENT_USER/Software/Microsoft/Windows/CurrentVersion/Explorer/Shell Folders

Other special folders which have no association to the file system at all, such as the control panel
applications or the printers folder, are called virtual folders. The location of special folders can be
retrieved with the SHGetSpecialFolderLocation() API function, which would retrieve a PIDL to the
calling application. The function takes three parameters. The first is the handle of the owner window that
should be used if the function needs to display a dialog box or an error message. The next is a value that
indicates the folder who's location you want to retrieve. This parameter can be one of several flags that
begin with the CSIDL_ prefix, such as CSIDL_BITBUCKET or CSIDL_CONTROLS (for a description of all the

flags, look up SHGetSpecialFolderLocation() in your Win32 Programmer's Reference manual). The
last parameter to the function is a LPITEMIDLIST, which is a PIDL specifying the folder's location relative
to the root of the name space (the desktop).

Always free any PIDLs that the shell returns to you by calling IMalloc::Free() and any pointer to
IShellFolder, IEnumIDList, or IMalloc by calling Release() on that interface.

The Functions and Interfaces
As we mentioned before, users don't see PIDLs and other types of identifier. Instead, they should see a
friendly name that is more meaningful. The IShellFolder interface has several functions that you can
use to query information about the folder or object.

For example, to ask for the friendly name, you would call IShellFolder::GetDisplayNameOf(). There
are also a number of functions that take a PIDL as a parameter and return information. For example,
SHGetFileInfo()returns information on the display icon of the object. Objects also have attributes
associated with them. Things such as whether the object can be copied, the object has folder objects
within itself, or the object is a drop target are just a few of the attributes that an object can support. These
attributes can be queried by calling the IShellFolder::GetAttributesOf() member function of any
IShellFolder object.

Using the Shell Namespace
Now let's start to examine some source code to see how we can build an application that lets us browse
through the shell's namespace.

The code that I provided for this section (which you'll find on the CD in the ShellView directory) is a
complete MFC application. If you look over the code, I hope you'll get a feel for what it takes to build an
application like this with simplicity and efficiency, and most of all, using the MFC classes. You can build
on this sample and extend it to do other things, such as provide drag-and-drop and activation of objects,
just as Explorer does.

First of all, I generated the application using AppWizard as an MFC SDI application with no toolbar or
status bar support. I also chose to have a splitter window (which is now a choice under the Advanced...
section in AppWizard). My first view (which AppWizard allows you to create) was derived from
CTreeView (a new class in MFC; a view window with a tree view control inside) and the other view is
derived from CListView (a view window with a list view control inside). The splitter window is set up to
create two static panes (1 row by 2 columns). I did all the work in the CMainFrame::OnCreateClient()
member function:

BOOL CMainFrame::OnCreateClient(LPCREATESTRUCT /*lpcs*/,
 CCreateContext* pContext)
{
 BOOL bRet = m_wndSplitter.CreateStatic(this, 1, 2);
 if (bRet == FALSE)
 return FALSE;
 CRect rc;
 GetClientRect(rc);
 bRet = m_wndSplitter.CreateView(0, 0,
 RUNTIME_CLASS(CShellViewTreeList), CSize(rc.right / 4, 0),
 pContext);

 if (bRet == FALSE)
 return FALSE;
 return m_wndSplitter.CreateView(0, 1,
 RUNTIME_CLASS(CShellViewListView), CSize(0, 0), pContext);
}

To make things more logical, I created a class derived from CObject to handle the PIDLs. I called this
class CPidl and it contains member functions to create PIDLs, copy them, concatenate them, and so on. If
you walk through the code, you'll notice that I bombed it with comments all over the place to make it easy
to understand. The most important thing to remember about this class is that most members use the task
allocator to manage memory for the PIDLs. It stores two PIDLs within the class: one is the identifier that
uniquely identifies the object within its parent folder and the other is the identifier list which leads you
from the root object to the object a few levels down (in the hierarchy).

I should mention that a C++ object instantiated from this class can be sent to a shell function that requires
a PIDL. This is done with a conversion operator which I created inside the CPidl class:

 operator LPITEMIDLIST() const
 {
 return m_pidl;
 }

When the tree view is first initialized (inside of OnInitialUpdate()), I call a function, named
PopulateTreeNode(), which accepts a pointer to an IShellFolder interface, a pointer to an ID list
(PIDL) and the node of the tree control to add the object. The IShellFolder pointer that is passed to the
PopulateTreeNode() function is retrieved with a call to SHGetDesktopFolder(), which returns the
desktop's folder.

After I create a few local variables in the PopulateTreeNode() function, I proceed to EnumObjects() on
the passed in folder. This returns a pointer to the IEnumIDList associated with the folder. Once I've got
the enumerator, I then start to traverse through each object within the folder and I create CPidl objects for
each one.

The first folder is the desktop folder and as the user expands the plus (+) sign on the left of the folders in
the tree control, I start to receive the different folders and fill their information. In other words, I call
PopulateTreeNode() from OnItemexpanding(). I never fill anything until the user wants to see the
underlying information. This means that the user must explicitly choose to expand a tree before I gather
the items that belong to the particular folder. I use the lParam of the tree item to maintain the CPidl
object for the item. The following is a code listing of PopulateTreeNode():

void CShellViewTreeList::PopulateTreeNode(LPSHELLFOLDER pFolder,
 LPITEMIDLIST pidlQ, HTREEITEM hParent)
{
 HTREEITEM hPrev = NULL;
 HRESULT hr;
 LPENUMIDLIST pEnumIDList;
 LPITEMIDLIST pidlNew;
 ULONG ulFetched;
 LPMALLOC pMalloc;
 // Parameters needed for InsertItem function.
 UINT nMask;
 CString strItem;
 CPidl* pidlObj;
 // Enumerate through the shell objects for the given folder.
 hr = pFolder->EnumObjects(GetSafeHwnd(), SHCONTF_FOLDERS |
 SHCONTF_NONFOLDERS, &pEnumIDList);
 if (FAILED(hr))

 return; // Might have clicked on network stuff
 // where there is none.
 // Get the OLE task memory allocator object.
 hr = SHGetMalloc(&pMalloc);
 ASSERT(SUCCEEDED(hr));
 while (pEnumIDList->Next(1, &pidlNew, &ulFetched) == S_OK)
 {
 // What type of object do we have?
 ULONG ulAttrs = SFGAO_HASSUBFOLDER | SFGAO_FOLDER;
 pFolder->GetAttributesOf(1,(const ITEMIDLIST**)&pidlNew, &ulAttrs);
 // Is it a folder or does it have folders?
 if (ulAttrs & (SFGAO_HASSUBFOLDER | SFGAO_FOLDER))
 {
 // We don't want to add any non-folder objects
 // to the tree.
 if (ulAttrs & SFGAO_FOLDER)
 {
 // Create a C++ CPidl object.
 pidlObj = new CPidl(pidlNew, pFolder);
 if (pidlQ != NULL)
 pidlObj->SetQualifiedPidl(pidlQ);
 // Setup the style of the node.
 nMask = TVIF_TEXT | TVIF_IMAGE | TVIF_SELECTEDIMAGE |
 TVIF_PARAM;
 if (ulAttrs & SFGAO_HASSUBFOLDER)
 nMask |= TVIF_CHILDREN;
 // Get display name of object for showing
 // in the tree ctrl.
 pidlObj->GetDisplayName(strItem, SHGDN_NORMAL);
 // Add the item to the tree ctrl.
 hPrev = GetTreeCtrl().InsertItem(nMask, strItem,
 pidlObj->GetNormalIcon(), pidlObj->GetSelectedIcon(),
 0, 0, (LPARAM)pidlObj, hParent, hPrev);
 }
 }
 pMalloc->Free(pidlNew);
 }
 pEnumIDList->Release();
 pMalloc->Release();
}

When the user selects to expand a folder, the OnItemexpanding() function is called, which then recalls
PopulateTreeNode() on with the folder object:

 LPSHELLFOLDER pFolder;
 HRESULT hr = pidlObj->GetFolder()->BindToObject(*pidlObj, 0,
 IID_IShellFolder, (LPVOID *)&pFolder);
 if (SUCCEEDED(hr))
 {
 PopulateTreeNode(pFolder, pidlObj->GetQualifiedPidl(),
 pNMTreeView->itemNew.hItem);
 pFolder->Release();
 }

As I mentioned before, it's very important to call BindToObject() in order to receive a PIDL for a
selected folder object. This PIDL is then concatenated with its parent's PIDL to form its item identifier list
(done inside PopulateTreeNode() with a call to CPidl::SetQualifiedPidl()).

The last question on your mind should be, "How does the list view get its information for the icons it

needs to display?" When a folder is selected in the tree view, the framework calls OnSelchanged(), which
then sends a notification to the document class via UpdateAllViews() and passes it the folder that should
be interrogated for its child objects:

 LPSHELLFOLDER pFolder;
 HRESULT hr = pidlObj->GetFolder()->BindToObject(*pidlObj, 0,
 IID_IShellFolder, (LPVOID *)&pFolder);
 if (SUCCEEDED(hr))
 {
 GetDocument()->UpdateAllViews(this, (LPARAM)pFolder, NULL);
 pFolder->Release();
 }

When the list view's OnUpdate() member function is called, it begins by traversing through the objects
and adding an item to the list view for each object in the passed in folder:

void CShellViewListView::OnUpdate(CView* pSender, LPARAM lHint,
 CObject* pHint)
{
 int nItem = 0;
 HRESULT hr;
 LPENUMIDLIST pEnumIDList;
 LPITEMIDLIST pidlNew;
 ULONG ulFetched;
 LPSHELLFOLDER pFolder = (LPSHELLFOLDER)lHint;
 LPMALLOC pMalloc;
 if (pFolder == NULL) // Which it is, the first time.
 return;
 GetListCtrl().DeleteAllItems();
 // Get the OLE task memory allocator object.
 hr = SHGetMalloc(&pMalloc);
 ASSERT(SUCCEEDED(hr));
 // Parameters needed for InsertItem() function.
 CString strItem;
 // Enumerate through the shell objects for the given folder.
 hr = pFolder->EnumObjects(GetSafeHwnd(), SHCONTF_FOLDERS |
 SHCONTF_NONFOLDERS, &pEnumIDList);
 if (FAILED(hr))
 return; // Might have clicked on network stuff
 // where there is none.
 while(pEnumIDList->Next(1, &pidlNew, &ulFetched) == S_OK)
 {
 CPidl pidlObj(pidlNew, pFolder);
 // Get display name of object for showing in the
 // tree ctrl.
 pidlObj.GetDisplayName(strItem, SHGDN_NORMAL);
 // Add the item to the tree ctrl.
 GetListCtrl().InsertItem(nItem++, strItem, pidlObj.GetNormalIcon());
 pMalloc->Free(pidlNew);
 }
 pEnumIDList->Release();
 pMalloc->Release();
}

Shortcuts and the Shell
I remember when I had to create a separate item for Program Manager in Windows 3.x in order to have an
easy way of accessing my documents for further modifications. The path I entered was something like
this:

C:\WINWORD\WINWORD.EXE C:\DOCS\BOOK1.DOC

This would load MS-Word and my document into it. I'd have to create one for each document. This wasn't
too bad, but the worst had to be when I created a separate program group, called My Desktop, and placed
my most commonly used applications into it. Then it was necessary to bring up Program Manager, look
for the My Desktop program group, and find the application before I could even get to the point of
execution (by that point I wanted to execute myself).

Windows 95 has made this horror story completely go away with something they call shortcuts (a.k.a.
shell links). The user has the ability to create links to documents, folders, applications, printers and other
jewels stored in the shell's namespace. These links can be placed in any folder and appear in the form of
an icon with an arrow by its side. (This arrow is actually known as the system-defined link overlay icon.
That's quite a name! No one said that the Microsoft guys couldn't be verbose.) Here you can see the
shortcut I have pointing to my Developer Studio.

The best part about shortcuts is that users don't have to remember where the path to the actual file or
folder (or whatever it points to) is. And if the location of the object moves, the system tries to
automatically update the shortcut next time the shortcut is activated.

Creating the shortcut is as simple as choosing Create Shortcut from an object's context menu or from
Explorer's file menu. If you create a shortcut to another shortcut, the system copies the original shortcut
without creating another shortcut. When you delete a shortcut item, the associated object is not affected.
Activating the shortcut is just as easy; you simply double-click on it. Activating the shortcut doesn't
necessarily mean opening up a document in an application. If the shortcut happens to point to a .wav file,
double-clicking the shortcut might just play the sound file. You're executing the default behavior (or verb)
of the object pointed to by the shortcut.

By now, you might be asking yourself, "That's great from a user's standpoint, but what does that have to
do with me programming my applications?". Well, in the next section, we're going to look at creating
shortcuts programmatically (this might be handy for placing certain files right on the desktop for easy
access to the user) and resolving shortcuts in our own applications.

An application creates a shell link by using the IShellLink interface to create a shell link object and uses
the IPersistFile or IPersistStream interface to store the object in a file or stream. The next section
will use a sample application to demonstrate and explain how to call the different interfaces.

Link File Structure
The information for the link file is stored in a binary file with a .lnk extension. The following is a list of
the items stored in that file:

The location (path) of the object referenced by the shortcut.
The working directory of the object.
The list of arguments that the system passes to the object when the
IContextMenu::InvokeCommand() member function is activated for the shortcut (see the context
menu handlers section for more information).
The show (SW_) command used to set the initial show state of the corresponding object.
The location (path and index) of the shortcut's icon.
The shortcut's description string which is displayed for it. For example, Shortcut to my document.
The hot key for the shortcut.

The working directory is the directory that the object (application or whatever it is) will use to load
working files from. For example, if a shortcut points to Developer Studio, you can tell it where the project
file and source code files to use are located. Then, when you save new files, they will be saved to this
same directory.

The command line arguments are the arguments that you want passed to the object when it's activated.
Some applications take special symbols to achieve a specific goal.

Once the user has activated the object, it will be launched using the specified show-flag. The valid flags
are the same as those used for the ShowWindow() API function. For a complete list, see the description of
this function in the Win32 reference.

By default, shortcuts use the icon of the application they point to if the object is an application. If the
object is a document, the shortcut uses the icon of the application registered in the registry for the
document. It finds the application by looking at the extension of the document. When no registry entry
has been made or the document has no extension, a default icon is assigned to the shortcut. The user is
then asked to resolve the application that should be run, when the user attempts to activate the shortcut.
You can change the icon of a shortcut programmatically if you wish.

Resolution
When a shortcut is loaded and the object it points to is loaded, this is called resolution. The system
handles resolving the object in most cases (with the exception of shell links stored in a stream). The
system proceeds with the following steps in order to resolve the object:

The system searches the path associated with the link.
If it doesn't find the object, it looks in the same directory for a file with the same creation date and
attributes. This is done to resolve a link to a file whose name has been changed.
Next it traverses recursively through any subdirectories of the current directory in the hopes of
finding a file with the same name and/or time-stamp.
If it doesn't find a match, it finally displays a dialog box with a message to the user, alerting them
that the object was not found. You can have your application suppress this dialog box by specifying
the SLR_NO_UI flag when you resolve the object programmatically.

Creating Shell Links

I created a sample application to illustrate creating and using shortcut files, which you'll find on the CD as
ShellLinks. I used MFC AppWizard (exe) to create the initial code for me with OLE Automation support. All
other options were left with their default settings. Once the code was generated, I ripped out the
document/view, since this application is one of those cases that doesn't need a document or a separate
view. As a matter of fact, I didn't even need to write anything to the client area, since I handled everything
via dialog boxes.

As ever, the initialization is handled in the InitInstance() function. This function calls AfxOleInit(),
which must be called to initialize the OLE DLLs for further use. Later, we'll call other OLE functions, so
we must make sure that the initialization is completed.

The application has two major choices on the File menu. One allows you to select a file to link to, and the
other allows you to select a link file for viewing its information. Let's begin by creating the shell-link file
(or shortcut).

Whenever I'm faced with a situation where I have to choose between doing some work or using code that
does the work for me, I always choose to let the code do the work for me, which is exactly what I did to
allow the user to choose a file. I knew that the Open common dialog already has support for traversing
directories and displaying file names, but I needed to modify it a bit. That's where the OPENFILENAME
structure and dialog hooks come in. You can see the final dialog box here:

Notice that my title reads Create Shell Link. The Open button has been changed to say Create and the Read
Only check box now reads Add To Desktop. I made the change to the check box to allow me to determine
whether the user wants to add the shortcut to the desktop or if the user wants to place the file in the
current directory. All this work is done when the dialog box returns (if the user chose the Create button):

// If the user chose the "Create" button, continue.
if (dlg.DoModal() == IDOK)
{
 // Get the complete path + filename.
 CString strShortcut = dlg.GetPathName();
 CString strLink;
 // Did they select "Add To Desktop".

 if (dlg.GetReadOnlyPref() == TRUE)
 {
 // Synthesize the desktop path.
 TCHAR szPath[MAX_PATH];
 GetWindowsDirectory(szPath, MAX_PATH);
 strLink = szPath + CString("\\DESKTOP\\");
 strLink += dlg.GetFileName();
 }
 else // Else store it in the current directory
 {
 // look for the extension (if any).
 TCHAR* pch = strchr(strShortcut, '.');
 if (pch != NULL)
 strLink = strShortcut.Left((int)(pch - strShortcut));
 else
 strLink = strShortcut;
 }
 strLink += ".LNK";
 CString strDesc = "Shortcut to " + strShortcut;
 if (!CreateNewLink(strShortcut, strLink, strDesc))
 AfxMessageBox("A problem occurred while trying to create the"
 " shell link.");
}

Note that I make an assumption about the location of the desktop folder. In your own applications,
you'll want to retrieve this information from the system. You could, for example, call
SHGetDesktopFolder() and SHGetPathFromPidl() to retrieve the path.

The real meat of the work is done in a function called CreateNewLink(). We begin by telling OLE and
the shell server to create and return a shell link object that we can communicate with:

hResult = CoCreateInstance(CLSID_ShellLink, NULL, CLSCTX_INPROC_SERVER,
 IID_IShellLink, (LPVOID*)&psl);

This object will also support an IPersistFile interface, which we'll use to tell the link file to save itself
or load itself for us. The rest of the function retrieves the IPersistFile interface, sets the path and
description of the object and then finally releases the object. Here's what the whole function looks like
(I've removed some error checking here to save space and make it less confusing; the source code on the
companion CD contains all of the error checking code):

BOOL CShellLinksApp::CreateNewLink(CString strShortcut, CString strLink,
 CString strDesc)
{
 IShellLink* psl;
 LPPERSISTFILE ppf;
 BOOL bRet = TRUE;
 OLECHAR wsz[MAX_PATH]; // buffer for Unicode string
 // Create the Shell-Link OLE object.
 CoCreateInstance(CLSID_ShellLink, NULL, CLSCTX_INPROC_SERVER,
 IID_IShellLink, (LPVOID*)&psl);
 // Get an interface pointer to the IPersistFile interface.
 psl->QueryInterface(IID_IPersistFile, (LPVOID*)&ppf);
 // Set the location for the object.
 psl->SetPath(strShortcut);
 // Set a description for the shortcut.
 psl->SetDescription(strDesc);
 // Create the link file.

 MultiByteToWideChar(CP_ACP, 0, strLink, -1, wsz, MAX_PATH);
 ppf->Save(wsz, TRUE);
 // Release both interfaces in order to free the object.
 ppf->Release();
 psl->Release();
 return bRet;
}

Displaying a Shortcut's Information
Selecting the Resolve Link menu item from the file menu brings up the dialog box shown:

Once the user has chosen a link file (and I do make sure that it's a link file within the code), I display the
path information and description as shown:

Although I check the extension of the file involved to make sure that it's a link file, this isn't really
necessary as you can assume that if the information is not appropriately returned when you try to resolve
the link, something is wrong (the file is most likely not a shell link file).

Just like when we created a shell link file, we need to create an OLE shell link object, but this time we
call the Load() member function of the IPersistFile interface to load the data instead of saving it.
Before we call any other functions, we need to resolve the object, which means the object that the link file
points to must be in the expected location or the path might need to be updated. The following source
code illustrates displaying a link file's information. Again, I have removed the error handling to make
everything clearer, but the full code is on the CD:

BOOL CShellLinksApp::ResolveLink(CString strLink)
{
 IShellLink* psl;
 LPPERSISTFILE ppf;
 BOOL bRet = TRUE;
 OLECHAR wsz[MAX_PATH]; // buffer for Unicode string
 // Create the OLE shell-link object.
 CoCreateInstance(CLSID_ShellLink, NULL, CLSCTX_INPROC_SERVER,
 IID_IShellLink, (LPVOID*)&psl);

 psl->QueryInterface(IID_IPersistFile, (LPVOID*)&ppf);
 // Load the link information.
 MultiByteToWideChar(CP_ACP, 0, strLink, -1, wsz, MAX_PATH);
 ppf->Load(wsz, STGM_READ);
 // Resolve the object.
 CResolveLinkDlg dlg;
 psl->Resolve(m_pMainWnd->m_hWnd, SLR_ANY_MATCH);\
 // Next, get the information we're looking for.
 TCHAR szPath[MAX_PATH];
 TCHAR szDesc[MAX_PATH];
 WIN32_FIND_DATA wfd;
 strcpy(szPath, strLink);
 psl->GetPath(szPath, MAX_PATH, (WIN32_FIND_DATA*)&wfd, SLGP_SHORTPATH);
 dlg.m_strPath = szPath;
 psl->GetDescription(szDesc, MAX_PATH);
 dlg.m_strDesc = szDesc;
 // Display the information.
 dlg.DoModal();
 // Release the OLE object.
 ppf->Release();
 psl->Release();
 return bRet;
}

When the Resolve() function is called, several parameters are passed. The first is the handle of the
window to be used as the parent for display dialog boxes. The second is a combination of different values:
SLR_ANY_MATCH, SLR_NO_UI, and SLR_UPDATE. We can combine these values to determine the action that
should be taken by the system. SLR_ANY_MATCH resolves the link. If the user needs more information, they
are prompted with a dialog box. However, if SLR_NO_UI is specified, which stops the system from
displaying dialog boxes to the user, the system looks at the high-order word to determine the number of
milliseconds to wait until it times out (the default is 3000). The last flag tells the system to update the path
to the link and the list of identifiers if the link object has been changed.

Shortcuts to Non-file objects
We've seen how to create shortcuts to files programmatically, but we can also create links to other items
within the shell name space. However, items such as printers don't rely on a file name to identify them
within the namespace, so how can we create shortcuts to them? The answer, of course, is to use an
identification list.

As we showed earlier, all items in the namespace (including files and directories) contain an identifier
(ID) which uniquely identifies that item among all items contained within the same parent folder. Each
parent folder also has its own ID. This being the case, each item can be identified by a list of identifiers,
called an ID list. Remember that each item ID in an ID list is unique and meaningful only within the
context of the parent folder that owns it. To create a shortcut to a non-file object, you would use the
identifier list of the object and pass it to the IShellLink::SetIDList() member function.

IShellLink Functions

Once you get a pointer to an IShellLink interface, you can begin calling the functions of the interface
(which include AddRef(), Release(), and QueryInterface()). The IShellLink::GetArguments()
function is used to retrieve the command-line arguments associated with a shell link object.
IShellLink::GetDescription() retrieves the description string for the associated shell link object.
IShellLink::GetHotKey() returns the hot key associated with a shell link object.

The IShellLink::GetIconLocation function retrieves the location of the icon for a shell link object.
IShellLink::GetIDList retrieves the list of item identifiers for the object. The IShellLink::GetPath
retrieves the path and file name. The IShellLink::GetShowCmd function is called when you wish to
display the shell link object and wish to know how to display it. The function returns the SW_ flag
associated with this entry. The IShellLink::GetWorkingDirectory returns the name of the working
directory entry associated with the object.

Of course, you've already seen one of the most important functions, IShellLink::Resolve, which
resolves the shell link and optionally searches for the object and updates the link's path and its list of
identifiers. The other functions in the interface perform the opposite of the Getxxx() functions, allowing
you to set the information for the link. These functions include SetArguments(), SetDescription(),
SetHotKey(), and so on.

Shell Extensions
Have you ever wished that you could add menu options to a file's context menu, or assign a different icon
to a file based on the content of the file instead of the same icon for all files of that type? If your answer
to this question is yes, stand by because you're about to learn exactly how to do this, and more.

Windows 95 allows you to extend what they call the shell in many ways by providing shell extensions.
Shell extensions allow you to provide a means for manipulating any type of shell object. Keep in mind
that shell objects are not always files; they can be folders, drives, or even printer objects, as you saw
when we considered the shell namespace. There are various actions for which you can supply handlers
that will be called upon when that action takes place, such as when a file is being copied, when it's being
dragged and dropped, or even when an object is dropped onto a particular file type. The following table
lists all of the types of handlers that you can provide programmatically:

Handler Type Description

Context menu handlers Adds items to context menus for file objects.
Icon handlers Provides an icon for instance-specific or class-specific file objects.
Data handlers Provides additional formats for data being dragged or copied to the

clipboard from the shell.
Drop handlers Allows a file type to become a drop target for other objects.
Property sheet handlers Adds pages to a property sheet for file objects.
Copy hook handlers Determines whether a file object can be copied, moved, deleted, or

renamed.
Drag-and-drop handlers Provides a context menu when the user drags and drops an object to

a new location.

In the next couple of paragraphs, we'll be discussing handlers, which brings in a few terms that you

should be aware of. First of all, a shell object is any object within the shell namespace. The term file
object refers to any object within the shell namespace that doesn't contain any other namespace objects.
File class (or type) refers to the set of files which are of the same type. Files are associated with a class or
type, such as Word document types, or text file types. A handler is the extension code that you (or
someone else) provides to work with a file class or object.

Just like file viewers and shell links, handlers also need to implement COM interfaces and depend heavily
on the system registry to provide information to the shell about which handlers to load and when they
need to be loaded.

I know you don't want me to simply go on writing without giving you a sample application to learn from,
so I wrote one up to integrate most of the extensions into one in-process server. I created a server, called
ShellExts.dll, that provides functionality for context menu, drag-and-drop, icon and property sheet
handlers. The other types of handler are pretty easy and you'll be able to code them on your own once
you've studied the code for the first couple of handlers. So let's get started with the nitty-gritty.

The Registry Entries
Before the shell can find any of your handlers, you need to provide some information in the system
registry. I used a .reg file for my information, which you'll have to merge with the system registry before
you try any of the handlers that I wrote. Also, keep in mind that if you place my handlers into different
directories than the ones that I used, you'll have to modify the .reg file to provide the new location.

We'll take a look at the entries you'll need to provide for your handlers by examining the .reg file I
provided with my example, ShellExts.reg. The first set of entries is the location of the handlers. These
entries belong in the HKEY_CLASSES_ROOT\CLSID key. You'll need to provide the InprocServer32 and the
class ID entries. The InprocServer32 should also contain the ThreadingModel entry. Since I used the
same in-process server for all of my handlers, I got away with just one set of entries for the handlers. I
chose to implement my handlers around the same Wrox (.wrx) file type as I used for my file viewer. Here
you can see the CLSID entries:

[HKEY_CLASSES_ROOT\CLSID\{CC8DB1E8-4124-11CF-97E6-444553540000}]
@="Wrox File Extensions"
[HKEY_CLASSES_ROOT\CLSID\{CC8DB1E8-4124-11CF-97E6-444553540000}\InprocServer32]
@="c:\\msdev\\projects\\ShellExts\\debug\\ShellExts.DLL"
"ThreadingModel" = "Apartment"

In addition to the above, Windows NT requires that the handler's CLSID must be listed under a registry
key that contains a list of approved handlers. By default, this key is protected from modification except by
Administrators, so only they will be able to install shell extensions on NT. The key, shown below, has no
effect on Windows 95:

[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Shell Extensions\
Approved]
"{CC8DB1E8-4124-11CF-97E6-444553540000}" = "Wrox File Extensions"

The next set of entries are the file associate key and the application identifier key:

[HKEY_CLASSES_ROOT\.WRX]
@="wrxfile"
[HKEY_CLASSES_ROOT\wrxfile]
@="A Wrox File"

Once you've gone through the first steps, you're ready to start making entries for the different shell
extensions. Keep in mind that just because I implemented my handlers all into the same server doesn't
mean that I don't have to register each type of handler in the registry. To register the context menu handler
for my server to be called each time a user right clicks on a Wrox file (.wrx), I used the following entries:

[HKEY_CLASSES_ROOT\wrxfile\shellex\ContextMenuHandlers]
@="WRXCM"
[HKEY_CLASSES_ROOT\wrxfile\shellex\ContextMenuHandlers\WRXCM]
@="{CC8DB1E8-4124-11CF-97E6-444553540000}"

I could provide more context menu servers to act on the same file class, but it just so happens that I only
provided one in this case.

The next entry I provided in my .reg file is the icon handler. There can only be one icon handler, which is
why I didn't provide an alias. I registered my icon handler with the following entries:

[HKEY_CLASSES_ROOT\wrxfile\shellex\IconHandler]
@="{CC8DB1E8-4124-11CF-97E6-444553540000}"

Drag-and-drop handlers are registered under the folder keys, such as the Directory key. This is a bit
weird, but if you think about it for a second, you'll realize that it makes sense. What you're basically
telling the system is that when you drag-and-drop any kind of object on this folder, it should use this
handler. You can pretty much call your handler type anything you want, since the shell simply enumerates
through all of the drag-and-drop handlers for that folder type and displays their menu items in the same
context menu as all of the other handlers. In the example below, we're saying, when I drag-and-drop any
object on any Directory folders, use the specified handler as well as the other handlers already registered
for this folder:

[HKEY_CLASSES_ROOT\Directory\shellex\DragDropHandlers\wrxfile]
@="{CC8DB1E8-4124-11CF-97E6-444553540000}"

Remember that you could call wrxfile anything you want and it won't matter. The basic idea is to let
anyone (including yourself) peeking around your system's registry know that this handler belongs to your
set of applications. In my case, my wrxfile handler might have shipped with my Wrox application. If you
only want to display the handler for a particular type of file, you'll have to perform this check from within
your handler.

The following entries are for the property sheet handlers:

[HKEY_CLASSES_ROOT\wrxfile\shellex\PropertySheetHandlers]
@="WRXPP"
[HKEY_CLASSES_ROOT\wrxfile\shellex\PropertySheetHandlers\WRXPP]
@="{CC8DB1E8-4124-11CF-97E6-444553540000}"

You can also register a handler for all the file classes by using an asterisk (*) in the place of the
application identifier, such as:

[HKEY_CLASSES_ROOT*\shellex\ContextMenuHandlers\WinZip]
@="{e0d79300-84be-11ce-9641-444553540000}"

This entry says "Run the specified handler whenever a context menu is displayed regardless of the type of
object selected."

Extensions without Code
On a different note, there are several registry keys that allow you to set a default icon for a file class or
add commands to the File or New menus in Windows 95's Explorer without any programming at all. For
example, you can set all files of the same type to have the same icon with an entry called DefaultIcon in
the file association key for the file class. The entry should include the module and index of the icon. For
example:

[HKEY_CLASSES_ROOT\.DOC\DefaultIcon]
@ = "C:\MSWORD\WINWORD.EXE, 0"

You can also add entries to the registry for context menus. The following is the type of entry in RegEdit
4 format:

[HKEY_CLASSES_ROOT\<applicationID>\shell\<verb>]
@ = <menu text>
[HKEY_CLASSES_ROOT\<applicationID>\shell\<verb>\command]
@ = <command line>

An example would be something like this:

[HKEY_CLASSES_ROOT\wrxfile\shell\open]
@ = "Open an existing document"
[HKEY_CLASSES_ROOT\wrxfile\shell\open\command]
@ = "C:\MyProgs\MyEditor %1"

Although you or any user can do this, it's best to provide the information via shell extensions. The system
then becomes cleaner and much more effective.

Creating Shell Extensions
When the shell needs to communicate with your shell extension handlers, it will first initialize the server
via one of two interfaces. The first interface is IShellExtInit, which it will call when it needs to
initialize an instance of a context menu, drag-and-drop, or property sheet handlers. You're already familiar
with the other interface: IPersistFile. The shell will call this interface's Load() function for icon, data,
copy hook, or drop handlers.

I used AppWizard (MFC AppWizard (dll)) to generate my sample application, ShellExts, with automation
support (so that it would generate the appropriate OLE functionality for me). Later, I added a class called
CShellExt derived from CCmdTarget which implements the interfaces for the shell extension handlers. I
created the class with the Creatable by type ID option that appears in the New Class dialog box so that I
wouldn't have to create a separate class factory for the objects. AppWizard adds the macros to do this
automatically for me:

// Placed in the class declaration in the header file.
 DECLARE_OLECREATE(CShellExt)

// Placed in the implementation file.
IMPLEMENT_OLECREATE(CShellExt, "SHELLEXTS.SHELLEXT", 0xcc8db1e8, 0x4124, 0x11cf, 0x97,
0xe6, 0x44, 0x45, 0x53, 0x54, 0x0, 0x0)

Inside my CWinApp::InitInstance(), AppWizard adds a call to COleObjectFactory::RegisterAll()
which is a static member function that registers all of the application's class factories with OLE.

Next, I added the IShellExtInit interface to my class in standard fashion (as described earlier in this
book and in Technical Note 38 in the Visual C++ documentation). The interface declaration is placed
inside my CShellExt class and it looks like this:

// Used in Menu, D&D, and Property sheet handlers.
BEGIN_INTERFACE_PART(ShellExtInit, IShellExtInit)
// IShellExtInit methods
STDMETHOD(Initialize) (LPCITEMIDLIST pidlFolder,
 IDataObject* pdobj, HKEY hkeyProgID);
END_INTERFACE_PART(ShellExtInit)

There's only one member function (besides IUnknown's members) for which I have to provide
functionality: Initialize().The shell will call this every time a handler needs to be initialized and it will
receive all the information relevant to the handler.

The LPCITEMIDLIST parameter contains the folder that the user-selected object belongs to. The
IDataObject pointer was the only member I needed to use. It contains the file names selected, and to
retrieve them I must call the GetData() member function of the IDataObject interface to request data in
the CF_HDROP format. This format is the same one used by the DragQueryFile() API function, so I can
use that function to parse the file name(s). This is what my version of Initialize() looks like:

STDMETHODIMP CShellExt::XShellExtInit::Initialize(LPCITEMIDLIST
 pidlFolder, IDataObject* pdobj, HKEY hkeyProgID)
{
 METHOD_PROLOGUE(CShellExt, ShellExtInit);
 HRESULT hr = E_FAIL;
 FORMATETC fe =
 {
 CF_HDROP, // CF_HDROP format.
 NULL, // No specific device to render for.

 DVASPECT_CONTENT, // Complete content.
 -1, // Must be -1 cause Microsoft says so.
 TYMED_HGLOBAL // Expect it back as HGLOBAL memory.
 };
 STGMEDIUM med;
 // Check for object existance.
 if (pdobj == NULL)
 {
 TRACE("CShellExt::XShellExtInit::Initialize received invalid"
 " IDataObject.\n");
 return E_FAIL;
 }
 // Let's get the selected file name(s).
 // We provide the fe and it sends us back the HGLOBAL inside of med.
 hr = pdobj->GetData(&fe, &med);
 if (FAILED(hr))
 {
 TRACE("CShellExt::XShellExtInit::Initialize failed in call to"
 " GetData.\n");
 return E_FAIL;
 }
 LPTSTR lpStart = (LPTSTR)GlobalLock(med.hGlobal);
 pThis->m_strFileName = lpStart;
 GlobalUnlock(med.hGlobal);
 // We can use the Drag file functions with the HGLOBAL since the names
 // will be in the expected format.
 if (DragQueryFile((HDROP)med.hGlobal, (UINT)-1, NULL, 0)== 1)
 {
 LPTSTR lptstr = pThis->m_strFileName.GetBuffer(MAX_PATH);
 DragQueryFile((HDROP)med.hGlobal, 0, lptstr, MAX_PATH);
 pThis->m_strFileName.ReleaseBuffer();
 hr = S_OK;
 }
 else
 hr = E_FAIL;
 // Release the storage medium.
 ReleaseStgMedium(&med);
 return hr;
}

You'll remember that the shell extension also needs to implement IPersistFile::Load(). For this
member function, you can look back at my example of the same function for the file viewer code. You
don't have to provide the other members for IPersistFile. Simply return E_NOTIMPL. However, you
have to provide the IUnknown members as I did (again, refer back to the previous sections for examples of
implementing the IUnknown members).

Context Menu Handlers
To create a context menu handler you have to implement two interfaces in the shell extension object that
will be exposed through the class factory. The two interfaces are IShellExtInit and IContextMenu.
Besides the usual IUnknown members, IContextMenu contains three extra members:
QueryContextMenu(), InvokeCommand(), and GetCommandString().

QueryContextMenu() is called when an object's context menu is about to be displayed. It gives your
handler a chance to include more menu items on the context menu. The function receives five parameters,
hMenu, indexMenu, idCmdFirst, idCmdLast, and uFlags. You must call InsertMenu() to add your menu

choices using the provided menu handle. The indexMenu parameter specifies the position of your first
menu option and you would need to increment it for any other options you add. The ID that you should
use is specified by idCmdFirst and you would need to add one to all the other menu items you provide.
When you add your menu choices, make sure that you specify the flags MF_STRING and MF_BYPOSITION
to the InsertMenu() function. This is my implementation of the function

STDMETHODIMP CShellExt::XContextMenu::QueryContextMenu(HMENU hmenu,
 UINT indexMenu, UINT idCmdFirst, UINT idCmdLast,UINT uFlags)
{
 ::InsertMenu(hmenu, indexMenu++, MF_STRING | MF_BYPOSITION,
 idCmdFirst + ID_WHATSNEW, _T("&What's New?..."));
 return MAKE_SCODE(SEVERITY_SUCCESS, FACILITY_NULL, (USHORT)2);
}

There are several flags that the function can receive within the uFlags parameter (these flags might be
passed in, combined). The first of the flags is the CMF_DEFAULTONLY, which tells any handler that responds
to it that the user has double-clicked on the object and initiated the default action. CMF_EXPLORER is sent
when the user right-clicks on an object in the left-most pane (the tree view) of Explorer. The next flag
CMF_NORMAL is the one that you will normally respond to. The last one, CMF_VERBSONLY is sent to your
handler when the object is a short cut item, but your handler will usually ignore it.

The InvokeCommand() function is called when the user selects a menu option from the context menu. You
need to provide any code for the menu choices that you added. The one and only parameter to this
function is a pointer to a CMINVOKECOMMANDINFO structure, which contains a member called lpVerb. This
member provides the ID of the menu choice that the user selected in its low word. Keep in mind that the
ID is the menu ID that you provided minus the idCmdFirst value:

STDMETHODIMP CShellExt::XContextMenu::InvokeCommand(LPCMINVOKECOMMANDINFO
 lpici)
{
 METHOD_PROLOGUE(CShellExt, ContextMenu);
 HRESULT hr = E_INVALIDARG;
 UINT idCmd;
 if (!HIWORD(lpici->lpVerb))
 idCmd = LOWORD(lpici->lpVerb);
 else
 {
 TRACE("CShellExt::XContextMenu::InvokeCommand contained invalid"
 " lpVerb.\n");
 return hr;
 }
 if (idCmd == ID_WHATSNEW)
 {
 CString str;
 wsprintf(str.GetBuffer(300), _T("There is nothing new today for"
 " file: %s"), pThis->m_strFileName);
 str.ReleaseBuffer();
 AfxMessageBox(str);
 }
 return NOERROR;
}

The last function is GetCommandString(), which is called to provide help text for the context menu
choice that it provides you with. You simply check the ID and copy the help text into the pszName
parameter that is passed to the function. The last parameter into the function, cchMax, determines the

maximum length of lpszName. Don't overwrite the string (or you know what happens after that). Once
again, here's the code:

STDMETHODIMP CShellExt::XContextMenu::GetCommandString(UINT idCmd,
 UINT uType, UINT* pwReserved, LPSTR lpszName, UINT cchMax)
{
 if (idCmd > ID_WHATSNEW)
 return ResultFromScode(E_INVALIDARG);
 if (idCmd == ID_WHATSNEW)
 lstrcpy(lpszName, _T("Provide New Information"));
 return NOERROR;
}

That's all there is to context menu handlers. Don't forget to register the handler with the registry or you
won't see anything happen when you right-click on the file objects for which you provided the menu
handler.

Drag-and-drop Handlers
Once you understand how to implement code for a context menu handler, providing code for a drag-and-
drop handler is the same thing. You use the same exact interfaces, except you use a different registry
entry. That's it. Can't be much easier than that.

The drag-and-drop handler is activated when you drag and release a shell object from one place to another
with the right mouse button. For information concerning the appropriate key to register in the system
registry, see the relevant section in this chapter a few pages back.

Icon Handlers
Windows 95 allows you to control the icon displayed for a file or class of files by providing a shell
extension called an icon handler. If the shell finds a registry entry for the class, it loads the server, creates
an instance of the COM object and calls IPersistFile::Load() to pass the file name and initialize the
COM object.

To retrieve the icon information from the handler, the shell communicates with an interface that must
exist in the handler, called IExtractIcon. There are two member functions: GetIconLocation() and
Extract(). GetIconLocation() is called first to determine the impact of the icon (whether it should span
across the entire file class or just one file instance) and the location (filename plus index) of the icon.

In my example, I set the flag to GIL_PERINSTANCE, which acts on each file instance at a time, instead of
the entire file class (it's better to use the procedure outlined in the registry section concerning the
DefaultIcon entry if you want to set the icon for an entire file class) and I return the location and index
of the icon I wish to use. You can retrieve this location from anywhere you'd like (the registry, .ini files,
and so on.

A great use for icon handlers is when you want to display a different icon depending on the status of the
file. In other words, if you read something from the file that tells you that the file is now in some different
state, you might want to the display the icon for the file differently. The following is my version of the
GetIconLocation() function:

STDMETHODIMP CShellExt::XExtractIcon::GetIconLocation(UINT uFlags,

 LPSTR lpszIconFile, UINT cchMax, int* piIndex, UINT* pwFlags)
{
 METHOD_PROLOGUE(CShellExt, ContextMenu);
 // ICON_LOCATION defined at top of file
 lstrcpyn(lpszIconFile, ICON_LOCATION, cchMax);
 *piIndex = 0;
 *pwFlags |= GIL_PERINSTANCE;
 return S_OK; // Return S_FALSE to use default icon.
}

There are two values that may appear in the uFlags parameter sent to the GetIconLocation() function.
The first is GIL_FORSHELL and it's passed when a shell folder object is being worked on. The second,
GIL_OPENICON, is used to determine whether the icon is being requested on behalf of an opened folder
object.

The shell calls the Extract() function if the file returned by GetIconLocation() is not an .exe or .dll
file, or if you specified GIL_NOTFILENAME. The handler must then return a handle to an icon. Note that
you can't even return a .ico file. In my example, the file happens to be a dynamic-link library (.dll), so I
just simply return S_FALSE from Extract() (the Extract() function won't be called anyway, since I
return the file name from GetIconLocation()):

STDMETHODIMP CShellExt::XExtractIcon::Extract(LPCSTR lpszFile,
 UINT uIconIndex, HICON* phiconLarge, HICON* phiconSmall, UINT uIconSize)
{
 return S_FALSE;
}

Here you can see what the icon for a Wrox file (.wrx) looks like in Explorer, after my handler has been
registered:

Property Sheet Handlers
When a user bring up the context menu (by right clicking) on a file object in Explorer and selects
Properties or selects Properties from the File menu, the user is presented with a property sheet like that
shown:

You can write a shell extension handler to add extra property pages for any particular type by registering
your property sheet handler in the registry and providing the necessary COM interfaces.

The shell will initialize the handler by calling the IShellExtInit::Initialize() function first,
followed by a call to a new interface, called IShellPropSheetExt. This interface contains two members:
AddPages() and ReplacePages().

AddPages() is called so that a handler can add its pages to the property sheet dialog box. I used MFC to
create the property page, since I always take the short route and never reinvent the wheel. This allowed
me to use ClassWizard to add message handlers for any incoming messages to the property page. The
AddPages() function is passed a pointer to a function that should be called to add the page to the dialog
box once the page has been created. The function also receives an lParam to be passed to the function
when the function pointer is executed.

I used the dialog editor to create my property page with the style set to Child, the border set to Thin and the
Disabled flag turned on. The easiest way to create a property page with these styles is to use one of the
predefined dialog resource templates provided with Visual C++. These are called IDD_PROPPAGE_LARGE,

IDD_PROPPAGE_MEDIUM and IDD_PROPPAGE_SMALL. They have the added benefit of being a standard size. I
used IDD_PROPPAGE_MEDIUM as the basis for my property page.

I then created a class for the property page, called CExtProps, which is derived from the MFC
CPropertyPage class. When it's run, the property page displays my name in the author box and the in-
process server's name in the module box, as shown:

When you're using property pages, there are couple of very important things to consider. The most
important of these is reference counting. To begin with I had the hardest time getting all this to work
using MFC. The handler blew up on me several times, but it was consistent and always on the same line
of code.

It turns out that the shell was creating a handler object, which would then create a property page as
expected. The property page itself was handled by a CPropertyPage object that I created in my
application. This, of course, contains an MFC dialog procedure which then calls any of the message
handlers I added to my property page class. Unfortunately, once the handler had finished its work, the
shell would release it, causing the server to be freed from memory, even though I still needed the server in
memory for the CPropertyPage object.

I needed some way of letting the server know that it should stay in memory as long as the property page
that the server created is being used. Luckily enough, the PROPSHEETPAGE structure that needs to be
passed to the CreatePropertySheetPage() API function has a member for just such a situation,
pcRefParent. (The dwFlags member of the same structure must contain PSP_USEREFPARENT for
Windows to pay any attention to the value of pcRefParent.)

I set the pcRefParent member to the address of the m_nObjectCount member of the AFX_MODULE_STATE
structure, of which one is created for every MFC application or DLL. This member is used by MFC to
maintain its own reference count, so it should come as no surprise when I tell you that m_nObjectCount is
the member that gets incremented when you call AfxOleLockApp() and decremented when you call
AfxOleUnlockApp(). This member is also checked from MFC's default handling of DllCanUnloadNow(),
which returns TRUE (which causes the DLL to be thrown out of memory) if the object count is less than
one, or FALSE (which keeps the DLL in memory) if the object count is greater than zero. By sending the
shell the address of m_nObjectCount, our handler will remain in memory until it's no longer needed, since
the m_nObjectCount will be incremented and later released the correct number of times. I wish I could
tell you more about these hidden gems inside MFC, but there's just not enough room in this book.

This is the code that I placed in the application's InitInstance() to handle this case:

 AFX_MODULE_STATE* pState = AfxGetModuleState();
 m_ppg = new CExtProps;
 m_ppg->m_psp.dwFlags |= PSP_USEREFPARENT;
 m_ppg->m_psp.pcRefParent = (UINT *)&pState->m_nObjectCount;

Notice that I made the property page a member of the application object. I did this for two reasons. The
first is that the page object is created and initialized only once (as long as the DLL remains in memory).
The second is that, if the extension object is released, the property page continues to live on (sort of like
rock & roll). The code for my AddPages() function follows:

STDMETHODIMP CShellExt::XShellPropSheetExt::AddPages(LPFNADDPROPSHEETPAGE
 lpfnAddPage, LPARAM lParam)
{
 METHOD_PROLOGUE(CShellExt, ShellPropSheetExt);
 CShellExtsApp* app = (CShellExtsApp*)AfxGetApp();
 HPROPSHEETPAGE hPSP = CreatePropertySheetPage(&app->m_ppg->m_psp);
 if (hPSP == NULL)
 return E_OUTOFMEMORY;
 if (!lpfnAddPage(hPSP, lParam))
 {

 DestroyPropertySheetPage(hPSP);
 }
 return NOERROR;
}

The other problem I ran into was that I needed to link my DLL with the static version of MFC, instead of
the DLL version. The reason for this has to do with resource sharing. It couldn't find my resources
because the code for the page's dialog procedure was in the MFC DLL, so it had no way of knowing my
DLL's resources. To make a long story short, just link up to the static version of MFC and everything
should work just fine.

The ReplacePage() function is called for Control Panel applications, when you provide a property sheet
extension handler for any of those applications. To replace a page, a property sheet handler fills a
PROPSHEETPAGE structure, calls CreatePropertySheetPage() and then calls the function pointed to by
lpfnReplacePage. The function is allowed to replace any of the existing property pages with a new one.
As for property sheets for non Control Panel applets, you can simply return E_NOTIMPL from this function.

Copy Hook Handlers
The system allows extensions called copy hook handlers which are called when a drive, folder or a printer
object (which I will simply refer to as folder objects) is about to be copied, moved, deleted, or renamed.
The purpose of the handler is to approve or disapprove of the operation by returning IDYES (to continue
with the operation), IDNO (to prevent the operation on this folder, but allow others in a batch operation to
continue) or IDCANCEL (to prevent all operations in the batch). The system calls all of the handlers
registered for the appropriate folder type until all the handlers have been called or one of them returns
IDCANCEL.

The copy hook handler is not initialized through IShellExtInit or IPersistFile. Instead, it's both
initialized and activated with an interface called ICopyHook. The interface contains a single function,
named CopyCallback(), which is called right before the operation is carried out. If the function returns
IDNO, the operation is not carried out. If the function returns IDYES, the system proceeds with the
operation (other handlers permitting).

The function receives a parameter, called wFunc, which contains a value indicating what is about to
happen to the folder object. The values are: FO_COPY, FO_MOVE, FO_RENAME and FO_DELETE. It should be
pretty obvious what these values mean. (There are also values relating to printers, but we won't go into
those.)

Many times when we install our application, we assume that the user won't move the application's
directory path to a new location (bad assumption). If the user does move the folder to a different place,
wouldn't it be nice to know about it when it happens? If we register a copy hook handler for the directory
which contains the application, we'll immediately know to update our information about the application's
location. Of course, to make this happen, we need to work a little magic because copy hook handlers
aren't alerted when the copy operation has completed. They are only used to allow or deny an operation
from happening, so you would have to implement some other means of checking.

Drop Target Handlers
Drop target handlers exist so that files can become drop targets for other objects. For a handler to support
this feature, it must implement two interfaces: the now famous IPersistFile and the IDropTarget

interface (see the OLE reference for a description of the IDropTarget interface and its members).

A drop target handler is activated when a user drags an object over one of the files that has a drop target
handler registered for that file class. The IDropTarget interface is given a chance to respond when the
object is dragged into the area of another object. Once the object is in the area of the drop target, the drop
target can give visual feedback as the dragged object is moved over it, or when the object is moved away
from the target. Finally, the handler can do its thing when the object is dropped on to the target object.

Keep in mind that this handler is only registered as one per type, meaning that each object type can only
have one drop target handler registered for it.

The registry key used for registering a drop target handler is as follows:

[HKEY_CLASSES_ROOT\<file type>\shellex\DropHandler]
@ = <CLSID value>

Data Object Handlers
When the user drags a file from the shell to a new location or copies it to the clipboard, the system creates
a COM object containing the IDataObject interface, which allows the file object to provide the data in
several formats. You can register a data object handler for any file class, and it's called to provide
additional data formats for the default IDataObject provided by the shell. In reality, what happens is that
the default object delegates calls to the object provided by you. Unlike most handlers (but like the drop
target handler), there can only be one data object handler per file type.

The shell calls the IPersistFile interface on your handler to initialize the extension handler and then
calls the members of IDataObject for the rest of the work.

This is the registry key used for registering a data object handler:

[HKEY_CLASSES_ROOT\<file type>\shellex\DataHandler]
@ = <CLSID value>

Debugging Shell Extensions
Since the shell extensions are in-process servers (or DLLs), they need to debugged within the context of
an application. In the case of shell extensions, that application has to be the Explorer.exe application
located in the Windows directory. To run this application for debugging the shell extensions, you need to
tell Developer Studio that it should be run when ever you run the DLL. You do this by selecting the
Settings... option from the Build menu. Once you see the Project Settings dialog, select the Debug tab and
enter C:\Windows\Explorer.exe (or whatever the path is to your Windows directory) into the edit control for
Executable for debug session.

However, you can't run the application as long as the shell is already up and running (which it is when
you first load up Windows 95), so, before you run your application, you'll have to shut down the shell
without shutting down Windows 95. You do this by selecting to shut down (which causes the Shut Down
Windows dialog box to be displayed), then you hold the Shift+Ctrl+Alt buttons and click on the No button.
This causes the shell (which is controlled by Explorer.exe) to be thrown out of memory.

You'll see a blank screen (such as the one you're used to seeing in Windows 3.x), but don't panic. You can
still traverse through the applications, using the Alt+Tab combination, and you can double-click a blank
area of your screen to bring up the task manager (which allows you to select currently running
applications or fire off new applications).

Once you've gone through all of this, you can place break points on any line of your extension handlers
and they'll be called when the shell calls down to your handler.

If you run into trouble, simply select Stop debugging from the Debug menu which will cause Explorer.exe
to be thrown out of memory again and shut down your handler.

Summary
So now you've seen just some of the ways in which you can enhance and extend the Windows 95 shell.
We've covered everything from access bars to shell extensions, so I hope there was something there that
fired your imagination. Now it's up to you to get out there into the real world and start using this
information to create something useful!

Advanced Dialogs and Property
Sheets

In this chapter, we'll look in some depth at two related aspects of the Windows user interface—dialogs
and property sheets—and at ways in which they can be customized and used together.

First, Dave Gillett will take a look at how dialogs and property sheets and pages work, and how they are
used in Windows 95. This is followed by Saud Alshibani's practical tutorial on using, modifying and
extending the MFC dialog and property sheet classes. As well as offering practical tips on using the stock
controls, such as how to use bitmaps on the tabs of a tab control and how to embed property sheets in
various types of window, we'll build a dynamic property sheet class which enables sheets to create the
dialogs for their property pages from dialog templates at run time.

Here's just a sample of what the techniques and reusable classes presented in this chapter will allow you
to do. The following figure shows a window which contains, among other things:

A property sheet class with its associated property pages (which look, deliberately, like features in
Developer Studio).
A tab control (CTabCtrl) that encapsulates subdialogs that are created at run time.
Additional subdialogs that are created at run time.
A property sheet that has been resized at run time using the routines provided in the reusable base
class CPropSheetExtended.
Bitmap images on the tabs.
A property sheet inside a CFormView.

Child Dialogs and Property Pages
Before we get into the nitty-gritty of coding, let's start the ball rolling with some thoughts on dialogs and
property pages. Most Windows programmers are quite familiar the notion of dialogs, whether modal or
modeless, as pop-up windows. A resource editor, such as the one included with Visual C++, is used to lay
out a dialog resource, specifying various special kinds of windows as its children. At run time, the
resource is loaded and the children created.

A dialog resource is a dual-purpose object. On the one hand, it defines a rectangular surface and the
layout of various components upon it. On the other, it also specifies the style, caption, and so on, for a
window to encapsulate that surface. The window normally has the WS_POPUP style and is usually owned
by, but not clipped to, the application main window. It may be modal (the behavior of the application or
even the entire system may be constrained while the window is visible), or it may be modeless, simply
coexisting with the other windows on the screen.

Child Dialogs as 'Control Surfaces'
Pop-up windows are not the only possibility for dialogs, however. Application top-level windows are
typically created with the WS_OVERLAPPED style, and one might create a dialog this way if it was to serve
as an application main window. (This is not, however, how MFC's CFormView class works. It actually
uses a borderless modeless dialog as the client of a frame window.)

The other alternative is the WS_CHILD style, which opens up some interesting possibilities. We know that a
dialog contains child controls, but what if it also contained WS_CHILD dialogs? Nesting dialogs in the same
way that you nest directories or folders, storages, or structures is a potent concept. There's a subtle but
powerful distinction between the simple view of a dialog as a container for controls, and the notion of
'control surfaces' as a hierarchical way to compose user interface elements.

Of course, anyone who has tried to use a modeless dialog as a child of another dialog has discovered that
this is difficult at best.

The Layout Problem
The first problem is layout. The Visual C++ dialog editor only allows you to edit a single dialog resource
at a time, so somehow the child dialog, and the parent space which it's supposed to fit into, must be edited
separately and aligned at run time.

There are basically three ways to do this. Perhaps the simplest method is to declare, early in the design,
what the size and position of the child's client area will be. The chief drawbacks of this method are that it
ignores visual editing tools like those in Visual C++, and casts precise details in concrete far too early in
the development cycle.

A better approach is to have the child dialog size and position itself at run time to fit a space dictated by
the parent. One simple method is for the parent dialog to include a static frame control, without the
WS_VISIBLE flag, which gives a resizable frame on the parent at design time, and an invisible rectangle at
run time for the child to position and scale itself to fit.

Perhaps the best approach, generally, is for the parent to scale itself to encompass its children. We can see
how this works with existing MFC classes. The CPropertySheet dialog, for instance, sizes itself to
encompass the largest CPropertyPage object that has been added to it, and the number of rows of tabs
required. We could extend this idea in our own classes. For example, we could create a modal dialog
whose constructor works out how many of each of three different sorts of child dialog will be needed, and
as it calculates their tiled positions, it also calculates the overall size of the frame needed to hold them.

The Message Problem
A second problem is that a modeless dialog gets its messages dispatched from somebody else's message
loop. It doesn't handle accelerators or participate in the tab order unless one of its children has the focus.
In the attempt to fix this, Windows 95 has introduced two new window-style flags.

The first flag, WS_EX_CONTROLPARENT, tells Windows to include children of this window in the tab order.
When Windows is scanning a group of sibling windows, looking for the next or previous window with the
WS_TABSTOP style, it will scan 'down a level' and include children of any windows with this style.
Unfortunately, this is an extended style (WS_EX_*), so storing it in the template resource requires a
resource of type DIALOGEX, rather than DIALOG.

The resource editor will create a DIALOGEX template resource under three circumstances:
If there are any extended styles on the dialog.
If you've specified weight, italic, or charset attributes on the dialog's font.
If any control in the dialog template has a DWORD control ID, a help ID, or any extended style.
(Although this last item is not documented by Microsoft at the time of writing.)

Unfortunately, the new common control classes, including the property page and property sheet controls,
don't know how to handle DIALOGEX templates. If you try to create a CPropertySheet containing a
CPropertyPage with this style set, you'll get an assertion failure from Dlgcore.cpp. (If you ignore the
assertion failure, you'll find that the property page doesn't look right. The code that sizes the sheet to fit
the largest page and the code that extracts the page caption to use as a tab label, can only work with
DIALOG resources.)

Luckily, we have an alternative. A new dialog style, DS_CONTROL, duplicates the functionality of
WS_EX_CONTROLPARENT for child dialogs and has an equivalent effect on the system code for dialogs,
which translates accelerator keystrokes.

In addition to the special association of the Enter and Escape keys with the default (IDOK) and cancel
(IDCANCEL) buttons, the system recognizes control captions containing the ampersand (&) character and
implements accelerator keystrokes for the appropriate controls. Accelerators are not handled by MFC's
PreTranslateMessage() method for modeless dialogs, but this style allows a modal parent to handle
them. You should always enable this style for templates for property pages.

Additional Features of Property Pages
There's a bit more to a property page than just a dialog template with the WS_CHILD and DS_CONTROL
styles set.

The usual way to set the text for the page's tab is to specify the WS_CAPTION style, so that the property
sheet control interprets the caption strings of property pages as label text for the tabs it displays. To set
WS_CAPTION and enter the label text, you must set the border of the dialog template to something other
than None.

The Microsoft documentation specifies that the border should be Thin, but since the border won't actually
be displayed in the property sheet, any setting but None will do, and this works fine if every page has its
own template. A little later in this chapter, we'll show you another way to set the tab text, which allows
multiple pages to share a template but have distinct tabs.

Unlike 'vanilla' modeless dialogs, property pages are not constructed by the CreateDialog(),
CreateDialogParam(), CreateDialogIndirect() or CreateDialogIndirectParam() API calls.
Instead, they use a new CreatePropSheetPage() API call, implemented in Comctl32.dll. This function
expects a pointer to a PROPSHEETPAGE structure, so it's not surprising to find that MFC's CPropertyPage
class has a public member, m_psp, which is an instance of just such a structure.

In theory, you could modify some aspects of how your property page behaves by manipulating this
structure. In practice, if you're using MFC and dialog templates, MFC will initialize this structure
appropriately, so there's very little reason to do this.

Here we find one of the areas where the implementation of a new control in Comctl32.dll differs from
its implementation in an earlier version of MFC. The PROPSHEETPAGE structure contains a dwFlags
member. One of the possible flag bits is PSP_HASHELP, used to tell the containing property sheet to enable
its Help button when this page is displayed, and to send it a PSN_HELP notification message when that
button is clicked (we'll discuss notification messages more thoroughly a bit later on). This lets a page
provide its own help, which is necessary when the page is being inserted as an extension into a sheet
provided by some other module.

MFC, however, intercepts any PSN_HELP notification sent to a CPropertyPage object and redirects it as a
WM_COMMAND|ID_HELP message to the page window instead, and through the framework's command
routing until a handler for it is found, in the usual way. You can provide page-specific help by handling
this message at the page level.

BEGIN_MESSAGE_MAP(CMyPage, CPropertyPage)
 //{{AFX_MSG_MAP(CMyPage)
 //}}AFX_MSG_MAP
 ON_COMMAND(ID_HELP, OnHelp) // Add this
END_MESSAGE_MAP()

You might expect then, that MFC would automatically show the Help button on the property page, and
enable or disable it via the usual ON_UPDATE_COMMAND_UI() mechanism. It doesn't. You'll still need to set
the dwFlags member of the PROPSHEETPAGE structure appropriately. The button is shown only if some
page has its PSP_HASHELP flag set (or if the property sheet has the PSH_HASHELP flag set in the dwFlags
element of its m_psh member). It's enabled or disabled on a page-by-page basis, according to the flag for
the active page.

MyPropPage.m_psp.dwFlags = MyPropPage.m_psp.dwFlags | PSP_HASHELP;

Two other interesting flags used with the PROPSHEETPAGE structure relate to the tab for the property sheet.
If the PSP_USETITLE flag is set, the text for the tab is taken from the pszTitle member of the structure.
This is useful if you want to have several pages in the same sheet which use the same dialog template, but
obviously should have distinct tab labels. If you set this flag and member, your dialog template doesn't
need a caption (although it can be handy as a default), and therefore may not need a border.

Another member of the structure holds a handle or resource ID to an icon to be used on the tab; it's a
union, and there are flags to tell which type of value it is. The icon will be displayed at 16x16 pixel size,
so it's a good idea to create it at this size. If you use the default 32x32 pixel size, you're unlikely to be
pleased with what actually appears on the screen.

CPropertyPage Functions
When you create a CPropertyPage-derived class, you inherit ten overridable methods for interacting with
a containing property sheet. These are handlers for the various PSN_* notification messages which can be
sent to a page. This doesn't include PSN_HELP which, as we mentioned earlier, is handled separately.

Two more functions, CancelToClose() and SetModified(), are simple wrappers that send PSM_*
messages to the page's parent window, presuming it to be a property sheet. Some other messages you
might wish to send to the parent sheet are wrapped as methods of the CPropertySheet class, so if you
want to use the framework, rather than the raw SendMessage() API for these, you'll need to obtain a
CPropertySheet* pointer to the parent.

It would be nice if CPropertySheet::AddPage() stored such a pointer in a CPropertyPage data member,
but it doesn't. You could save it there when you call AddPage(), but you'll have to add the member to your
derived page class by hand. If you know that your page is only ever used as a child of a property sheet,
you can use GetParent() to get a CWnd* and cast it to a CPropertySheet*.

The lucky thirteenth inherited method has the useful-looking name QuerySiblings(), but the
documentation for this function is terse beyond the point of usability. It turns out that this is a method
whereby a page can pass a query to its sibling pages and get notified of the result. It's another

SendMessage() wrapper, this time sending PSM_QUERYSIBLINGS to the parent sheet. What happens there
is rather unusual.

When a property sheet receives a PSM_QUERYSIBLINGS message, it starts sending it to its child pages, until
one of them returns non-zero, or it runs out of pages. The non-zero result, if there is one, is returned to the
caller. There's no indication of the order in which the children receive the message (although the page
order is an obvious choice), and since there's no obvious way for the sheet to know who sent the message,
it's prudent to assume that the page that sent the query message originally may also receive it.

For this reason, it makes sense for the page to pass its own window handle in wParam, and check for that
in its message handler. That leaves lParam in which to pass whatever information a 'query' requires. This
is big enough to hold a pointer to an instance of some arbitrary class, so a query structure may be as
complex as necessary.

Note that although CPropertyPage provides the QuerySiblings() function to send this message, it
doesn't provide a message handler for PSM_QUERYSIBLINGS. Since ClassWizard offers no help, you'll need
to insert the ON_MESSAGE() macro by hand if you wish to handle this message.

Property Sheets
We've looked at property pages, so now let's turn our attention to property sheets. A property sheet is a
special kind of dialog provided by Comctl32.dll, which can show any one of a number of subdialogs.
Each subdialog, called a property page, is selected by the user clicking on one of the tabs on the sheet.

The size of the sheet doesn't come from a template, but is calculated based on the size of the first property
page that it contains, the number of pages it contains (which determines how many tabs there will be),
and the options selected. The MFC CPropertyPage class adds two useful properties to the basic control:
it determines the size of the largest page contained in the sheet, and it doesn't actually create the dialog for
any page until that page is displayed.

Property Sheets as Pop-up Dialogs
The most typical use of a property sheet is as a modal pop-up dialog. Create an instance of MFC's
CPropertySheet class, use its AddPage() method to add some objects of classes you have derived from
CPropertyPage, then call DoModal().

If you want the property sheet to be modeless, the process is similar. You should create a CPropertySheet
object dynamically with new, make it visible by calling Create() and destroy it with delete when it's no
longer needed. One problem you'll encounter is that a modeless property sheet doesn't provide OK and
Cancel buttons, so you need to provide some other way to determine when the property sheet should be
destroyed. (In fact, you can cheat MFC into displaying these buttons even for modeless sheets, as you'll
see later in the chapter.)

It's also important that the page objects which the sheet contains must continue to exist for the life of the
sheet. This is a good reason to derive a class from CPropertySheet for any modeless property sheet in
your application, and instantiate its page objects as members of that derived class, so that they get
automatically constructed and destructed for you.

The Visual C++ Component Gallery includes a wizard to add a property sheet derivative and its pages to

your project. Its main advantage is that it can optionally generate code for a property sheet class which
includes a preview window, to the right of the property pages, accessible as a member of the
CPropertySheet-derived class. The intention is that you may override the preview window's
OnEraseBkgnd() and OnPaint() methods to reflect the settings of controls on the property pages —the
code to actually do this is left as an exercise! The generated code simply creates the window and resizes
the sheet to include it in the visible area.

The page classes created by the wizard share a single header and a single source file, and by default are
assigned to names and resource IDs in simple numerical order. You may find that this fits well with your
approach to project design, but it requires that you already know how many pages you'll want and what
they will be called. Personally, I find that I prefer to design my page template, use ClassWizard to create
the page class, then construct the sheet object by adding pages at run time.

Property Sheet Notifications to Pages
Most of the code associated with a property page is there to handle notification messages. Some of these
come from the controls on the page, but there are a number of them that come from the property sheet to
its pages, most often, specifically to the page currently visible. These notifications arrive as WM_NOTIFY
messages whose lParam value is a pointer to an NMHDR structure whose code member identifies the actual
notification. Your code will not generally need to deal with the NMHDR structure directly, because the MFC
framework dispatches notifications to handler functions which you can override.

It has been common for programmers to return message results from their dialog procedures by simply
returning them as the function result, when in fact they should be stored in the dialog's extra bytes using
the SetWindowLong() API call. 16-bit Windows included code to compensate invisibly for this, so most
programmers had no idea that they were doing anything wrong.

The Win32 WM_NOTIFY message cannot be handled this way; the value to be returned to whoever called
SendMessage() to issue the notification must be stored properly, and the function return from the dialog
procedure is treated completely separately. Several recent books and magazine articles have labored this
point, but this shouldn't worry MFC programmers; we return a function result from the handler, often the
result of invoking the base class handler in addition to our own code, and MFC takes care of storing it
correctly and returning a suitable dialog procedure result.

Activation and Deactivation Messages
When a page is about to be displayed, it will receive the PSN_SETACTIVE notification, which is handled by
the OnSetActive() method. Note that while the page will only receive a single WM_INITDIALOG message
when it is created, it can receive the PSN_SETACTIVE notification many times as the user navigates
between the pages of a property sheet. Since the page's child dialog is just being hidden and shown, you
shouldn't normally need to take any action on this notification, but it may be appropriate to set the focus
to a particular control (if you don't want it to go to the first control), and there may be other states which
you always want to reset on entry to the page.

Correspondingly, the page will receive the PSN_KILLACTIVE notification, handled by the OnKillActive()
method, when the user has chosen to navigate away from the page. It's probably appropriate to call
UpdateData(TRUE) here, to capture the state of the page's controls in member variables, and this is also a
good point to validate the control contents. You can reject the request and retain the active page if some
control is not currently valid by returning a result of 0.

The Apply Notification
If the user clicks on the Apply button of the property sheet, the PSN_APPLY notification will be sent to
every page that has been created, where it will be handled by the OnApply() method. Unless it's actually
possible to undo the changes made by OnApply(), a page which actually changes anything is apparently
expected to call CancelToClose() to disable the Cancel button and change the text on the OK button to
Close.

This doesn't seem to work as expected, and stepping through code with the debugger, shows that the
buttons change as they're supposed to, and then promptly change back to their default settings. It doesn't
only seem to happen to user-written code either. Even system property pages are afflicted with this
problem!

In practice, it appears that this particular wrinkle in the new Windows user interface hasn't been
thoroughly thought out. It's true that once a user has clicked on the Apply button, it's unlikely that clicking
on the Cancel button will undo those changes, and it would be a nice gesture to somehow provide
feedback to that effect. But what if the user makes some changes, clicks on Apply, and then makes some
more changes? Should Cancel undo everything, or just what has been changed since the last Apply?

This suggests that a properly designed property sheet dialog needs four buttons, not three. Just as the
action of the OK button is like the Apply button, but dismisses the dialog, the action of the Cancel button
should add dismissing the dialog to the action of an Undo button, which would roll back all changes since
the previous Apply action. Just as the Apply button is only enabled when a change has been made since the
last Apply action, the Undo button would be enabled only when a change has been made, or at least one
reversible Apply action has been performed.

Anyway, when the user clicks on the sheet's OK button, the current page receives the PSN_KILLACTIVE
notification, and can suppress the rest of the OK action by returning 0. If it returns a non-zero result, the
PSN_APPLY notification will be sent to every page that has been created, just as if the user had pressed the
Apply button. Since the base class implementation of the OnApply() handler invokes OnOK(), that method
will also be called, but it would be called if the Apply button were clicked. The MFC documentation seems
to suggest that OnOK() can be invoked by actions which do not invoke OnApply(), and while this may
have been true of some previous implementation, it isn't currently correct. Using the Common Controls,
both cases arrive as PSN_APPLY notifications and are dispatched through OnApply() calling OnOK().

The only distinction is that OnApply() may, like OnKillActive(), return FALSE to prevent the sheet from
being dismissed. Control validation really should have been done in OnKillActive(), so the only time
that a page should need to do this is if some setting on the page has been rendered inappropriate by a
selection subsequently made on some other page. Since the page encountering this situation is not the
current page, it should call GetParent()->SetActivePage(this) to activate itself so the user can correct
the problem. (This could be a problem if multiple pages find themselves in this state, but it's very likely
that the property sheet will stop sending PSN_APPLY notifications when one page indicates that it cannot
comply.)

Similarly, when the user clicks on the Cancel button, each page is sent a PSN_QUERYCANCEL notification,
handled by OnQueryCancel(). If no page returns FALSE, every page is sent a PSN_RESET notification.
Again, the base class implementation of OnReset() calls OnCancel(), so both methods will be called and
cleanup processing may be done in either place.

There are also some additional notifications that are specific to wizards, which we'll discuss later in this
chapter.

Property Sheet Methods and Messages
We've already mentioned the DoModal(), Create() and AddPage() methods provided by
CPropertySheet and these are sufficient for most purposes. AddPage(), though, is only one of a dozen or
so wrapper functions provided by MFC, whose main functions are to send a message to the property page
control implemented in Comctl32.dll.

SetTitle()
The PSM_SETTITLE message is sent to the sheet by CPropertySheet::SetTitle(). You should specify a
title when you construct the CPropertySheet, but this message allows the title to be changed at any time.

CancelToClose()
The PSM_CANCELTOCLOSE message is sent to the sheet by CPropertyPage::CancelToClose(). As
discussed in the previous section, the implementation of this message within Comctl32.dll appears to
fall short of its documented purpose.

SetModified()
The PSM_CHANGED or PSM_UNCHANGED messages are sent to the sheet by
CPropertyPage::SetModified(). As long as some page has sent PSM_CHANGED and has not rescinded it
with PSM_UNCHANGED, the Apply button (if there is one) will be enabled. All created pages will receive the
PSN_APPLY notification when the Apply button is pressed, even if they haven't sent this message.

GetTabControl()
The PSM_GETTABCONTROL message is sent by CPropertySheet::GetTabControl(), and returns a
CTabCtrl* pointer to the tab control used internally by the property sheet. You could use this to add
bitmaps or tooltips to the tabs. Cluttering your application's user interface is rarely a good idea, but if you
decide you need to, you can. We'll discuss tab controls in more detail later in this chapter. Note that you
don't create this tab control, so you can't replace it with your own class derived from CTabCtrl. If you
need to customize it, you can't use a property sheet and must instead create your own dialog to contain
your custom tab control and pages.

PressButton()
The PSM_PRESSBUTTON message is sent by CPropertySheet::PressButton() and can simulate a click on
any of the property sheet buttons. It's probably not a good idea to try to simulate a click on a button that
the current sheet does not have, but this may work as a way to invoke the functionality of the various
buttons on a modeless property sheet. A related message, PSM_APPLY, is not wrapped by MFC but can be
sent using SendMessage(). The separate message can occasionally be useful, because it returns a Boolean
value indicating whether all of the pages in the sheet successfully applied their changes.

RemovePage()
There is a PSM_REMOVEPAGE message, wrapped by CPropertySheet::RemovePage(). While changing the
number of pages in the sheet while it's visible is likely to confuse the user, there may be cases where it
makes sense to add and remove pages rather than destroy and recreate entire sheets.

SetActivePage()
The PSM_SETCURSEL and PSM_SETCURSELID messages allow arbitrary navigation between pages in the
sheet. Their message parameters are poorly documented, so use their wrapper method,
CPropertySheet::SetActivePage(), which comes in two flavors; you can refer to the page you want
either by index (zero-based) within the sheet, or by a pointer to a CPropertyPage.

PSM_RESTARTWINDOWS and PSM_REBOOTSYSTEM
Property pages are heavily used throughout Windows 95 to provide access to system settings, and a
couple of special messages have been implemented in the property sheet to make this easier. If any page
sends the PSM_RESTARTWINDOWS message to the sheet, the result returned by DoModal() will be
ID_PSRESTARTWINDOWS instead of IDOK. Typically, a page might send this message when processing a
PSN_APPLY notification.

If any page sends the PSM_REBOOTSYSTEM message to the sheet, it will return ID_PSREBOOTSYSTEM instead.
In either case, it's up to the application which invoked the property sheet to recognize these special results
and take some appropriate action. The usual approach has been to offer the user a message box, informing
them that some of the changes just selected cannot take effect until Windows is restarted or the system is
rebooted. The message box offers the user the opportunity to restart or reboot right now, or to continue to
work without all of their selected changes in place.

Customizing Property Sheets
Just as CPropertyPage objects contain a PROPSHEETPAGE structure, CPropertySheet objects contain a
PROPSHEETHEADER structure member, m_psh, and the behavior and appearance of the property sheet can be
modified by manipulating the elements of this structure.

We said above that the SetTitle() method sent a PSM_SETTITLE message to the sheet. That's not quite
the whole story, as it also sets the pszCaption member of the PROPSHEETHEADER structure. The
PSM_SETTITLE message is only sent if the property sheet has been created and it has a valid window
handle.

MFC appears to do a lot of work to preserve the interface exposed by previous implementations of
CPropertySheet, while using the implementation provided by Comctl32.dll. The result is that directly
modifying the flags in the PROPSHEETHEADER rarely works very well. In the most useful cases, the
framework provides its own method which may include setting those flags, but updates other MFC
structures as well.

For instance, there's a flag to control whether the sheet should show multiple rows of tabs, if there are too
many pages for a single row, or whether a single row of tabs should be allowed to scroll left and right.
Setting this flag directly doesn't work. CPropertySheet shadows this flag with a protected data member,

m_bStacked, and you can change its state from the default (TRUE) by calling
EnableStackedTabs(FALSE).

As an aside, from a user interface design point of view, neither option is particularly desirable, because
both of these behaviors break the visual metaphor of the tabs in some way. If at all possible, try to limit
your tabs on any single property sheet to what will fit on a single row.

One flag which does work as expected is PSH_NOAPPLYNOW. If you set this flag, the property sheet will be
displayed without an Apply button. You must decide whether this is suitable for your application.

The PSH_PROPTITLE flag is documented as providing the text Properties for in front of the supplied caption,
but in fact it appends the word Properties to the end of the supplied caption. This feature can also be
enabled if the flag value is supplied as a second argument to SetTitle().

The PSH_HASHELP flag determines whether a Help button is visible on the property sheet; the PSP_HASHELP
flags of the pages determine whether it's enabled or disabled. MFC will enable this flag if any page has its
PSP_HASHELP flag set, so you should never need to set this flag directly unless you want a disabled help
button at all times or if you plan to add sheets with PSP_HASHELP set at a later time.

MFC will set the PSH_MODELESS flag appropriately, depending on whether you call Create() or
DoModal(). This, in turn, modifies the call to the underlying PropertySheet() API provided by
Comctl32.dll.

Wizards
One of the flags in the PROPSHEETHEADER structure changes the behavior of the sheet radically, enabling
several new messages and notifications. The PSH_WIZARD flag is set by the SetWizardMode() method of
the sheet.

You've all seen wizards in action. A wizard guides the user through a series of modal steps in some
process. Whereas the tabs of a normal property sheet allow the user to select pages at random, the wizard
imposes a linear order, so that from any page, the user can only move forward to the next or back to the
previous page.

To the programmer, the order of the pages is not quite so cast in stone. When the user clicks on the Back
or Next button, the current page receives a notification: PSN_WIZBACK or PSN_WIZNEXT. MFC dispatches
these notifications to the page's OnWizardBack() or OnWizardNext() method, and if this method returns
0, the page will then receive a PSN_KILLACTIVE notification as the sheet navigates to the next page. The

page can return -1 to either of these notifications to prevent the default page navigation.

Programmers frequently ask how they can override the default navigation, to select the next page to be
shown based upon choices that the user has already made. The Microsoft documentation suggests that
instead of 0 or -1, a page can return the 'identifier' (by which they mean the template resource ID) of
some other page which is to be shown next. If the page returns anything but -1, and MFC cannot map the
result to a known page template, the sheet navigates to the next or previous page, depending on which
button was clicked.

Another approach, however, is to call CPropertySheet::SetActivePage() to tell the sheet to display the
next page that you want the user to see, and then return -1 to suppress the default navigation.
SetActivePage() takes the ordinal number of a page within the sheet (starting from 0), which may be
more convenient than using the template resource ID, especially as you may have several pages
constructed from the same template. In either case, validation should be done in response to the wizard
notification, before you attempt to navigate to the next page.

If you change the order of navigation dynamically like this, it's up to you to keep track of the path, so that
the user's steps are properly retraced when they click the Back button. It's also up to you to ensure that the
path doesn't loop back on itself, creating a bubble from which the Cancel button is the only escape.

When the last page in a wizard is shown, the Next button should be replaced by a Finish button, and
because you can override the default page navigation, MFC doesn't do this for you automatically.
CPropertySheet::SetWizardButtons() lets you hide or show the Back button and show either a Next
button, a Finish button, or a disabled Finish button. Note that if you replace the Next button with a Finish
button, but the user clicks on the Back button, the Finish button doesn't automatically revert to Next.

You might want to micro-manage the button state of the wizard, but a simpler approach is to conclude
your wizard with a final page that offers no input controls. In this page's handler for PSN_SETACTIVE, call
CPropertySheet::SetFinishText() to replace the Next button with an enabled Finish button, and then
disable or hide the Back button. At this point, the user can no longer go back and change their mind; they
can only click either on Cancel or Finish.

One expects the current page to receive a PSN_KILLACTIVE notification message when the user clicks on
the Finish button, but it has been reported that this notification is not sent when using Win32s, which
means that, by default, DDV/DDX processing of the page's controls won't be done. Again, you can code
around this, or you can simply finesse the issue by supplying a final page with no input controls.

When the user clicks the Finish button, the current page receives a PSN_WIZFINISH notification and the
framework calls the page's OnWizardFinish() method. This should always return TRUE, because the
framework will take care of destroying the sheet and returning ID_WIZFINISH to the application. Of
course, the PSM_RESTARTWINDOWS and PSM_REBOOTSYSTEM messages may be sent to wizards just as to
ordinary property sheets, and will override this return value as appropriate. This is typically done by
wizards that guide the user through system configuration or driver installation.

Tab Controls
A standard property sheet uses another of the new common controls— the tab control— to manage
display of the tabs and navigation between the pages. You can build a similar effect on any dialog,
including a CFormView, which, you'll recall, is a borderless modeless dialog that fills the client area of a
frame window.

Standard Tab Control
The tab control provides a static rectangular frame with rows of tabs or buttons across the top. Each
button is associated with an 'item' structure, which may contain label text, an index into an image list and
a 32-bit data value which may be an arbitrary pointer. The tab control knows nothing about objects to
which these item structures refer. It sends event notifications and owner-draw requests to its parent, which
will normally be some class that you have derived from CDialog, and the parent is responsible for
handling the notification itself or reflecting it to some child object.

In a property sheet, the sheet itself is the parent dialog and the pages are its children. Some of the
notifications which the sheet sends to its pages reflect user interaction with the tab control, and others
originate from additional buttons on the sheet.

The property page makes a good model class for child objects managed by a tab control. When the user
clicks on a tab, the tab control sends its parent two notifications. The TCN_SELCHANGING notification
identifies the current tab being switched away from, and corresponds to the OnKillActive() handler
provided by CPropertyPage objects. Similarly, the TCN_SELCHANGED notification identifies the tab which
is becoming active, and corresponds to the OnSetActive() handler.

You shouldn't be surprised to learn that the result returned to the TCN_SELCHANGING notification can
suppress the change if some field fails validation. The return result, however, has the opposite sense of
that specified for the result of OnKillActive(). In other words, OnKillActive() uses a return value of 0
(or FALSE) to prevent the active page from changing, whereas the return value for a TCN_SELCHANGING
handler should use TRUE to prevent the selection from changing.

Using a tab control is a little more work than using CPropertySheet. MFC manages the creation of pages
in a property sheet as they become necessary, and sizes the sheet to hold the largest page. The property
page control extracts captions from dialog resources and constructs the tab control's image list to contain
any icons specified in the PROPSHEETPAGE structures.

The child objects managed by the tab control certainly don't have to be property pages; they don't even
need to be dialogs. It's normally convenient to use property pages, though, so that they are derived from a
class which provides virtual OnSetActive() and OnKillActive() methods. It would be a bit more
convenient if their base class exposed a virtual Create() method that accepted a pointer to the parent (the
tab control) and supplied the template ID already defined in the class by ClassWizard.

This isn't too hard to add ourselves. We just need to create a class derived from CPropertyPage which
adds the needed method. We can let ClassWizard generate our page classes as if they were derived
directly from CPropertyPage, and then edit the source files to insert our new class into the inheritance
hierarchy.

Property Sheets as Child Dialogs
A much easier way to get a tabbed subdialog effect managing a group of CPropertyPage objects is to use
an embedded child CPropertySheet. We could use ClassWizard to derive a CPropertySheetControl
class from CPropertySheet, then override the constructor (since this property sheet will not have a
caption) and OnInitDialog().

By default, ClassWizard will provide two constructors for this class: one which takes its caption in the
form of an LPCTSTR, and one that takes the UINT identifier of a string resource. Since our derived class
won't need a caption, you can remove the first of these completely and remove the first argument from the
second constructor. Since the other two arguments are optional, you can use this as a default constructor
for the class.

// PropertySheetControl.h : header file
//
// CChildPropertySheet
class CPropertySheetControl : public CPropertySheet
{
 DECLARE_DYNAMIC(CPropertySheetControl)
// Construction
public:
 CPropertySheetControl(UINT iSelectPage = 0);
// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CPropertySheetControl)
 public:
 virtual BOOL OnInitDialog();
 virtual int DoModal();
 //}}AFX_VIRTUAL
 virtual BOOL Create(CWnd* pParentWnd = NULL, DWORD dwStyle = (DWORD)-1,
 DWORD dwExStyle = 0);
// Implementation
public:
 virtual ~CPropertySheetControl();
 // Generated message map functions
protected:
 //{{AFX_MSG(CPropertySheetControl)
 // NOTE - the ClassWizard will add and remove member functions here.
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

In fact, you could remove the second argument as well. These child dialogs will always be invoked using
the Create() method, and the parent window will be specified as a parameter at that point, so you can
just pass the default values, an empty string for the caption and NULL for the parent window pointer, to the
base class constructor. In the implementation we have provided, we have overloaded both the DoModal()
and Create() methods, to ensure that they're not invoked inappropriately.

Note that the Create() overload provided by ClassWizard is an overload for CWnd::Create(), and not
for CPropertySheet::Create(), which takes a different set of parameters and invokes a different base-
class function. If you use ClassWizard to create the override function, and then edit the parameters and
the code, remember to move the declaration outside of the AFX_VIRTUAL brackets so that ClassWizard will
leave your changes alone.

int CPropertySheetControl::DoModal()
{
 ExceptXX(TRUE, "This class should not be invoked modally");
 return IDCANCEL;
}
BOOL CPropertySheetControl::Create(CWnd* pParentWnd, DWORD dwStyle,
 DWORD dwExStyle)
{
 AssertXX(pParentWnd, "Parent window must be specified");
 AssertXX(dwStyle & WS_CHILD, "Control should have WS_CHILD style");

 if (!(pParentWnd && (dwStyle & WS_CHILD)))
 return FALSE;
 return CPropertySheet::Create(pParentWnd, dwStyle, dwExStyle);
}

Now that the sheet control class has a default constructor, instances of this class may be added to other
dialog classes as data members. Typically, the individual pages derived from CPropertyPage will also be
created as dialog class data members, and AddPage() will be used to add them to the sheet control. As
data members, these will all get cleaned up when the dialog object is destroyed. The remaining step is to
create and show the sheet control when the dialog is displayed.

The dialog editor doesn't know anything about the CPropertySheetControl class, so it has no way to let
you create an instance of the class on a dialog template. What you can do, though, is create a rectangular
control as a placeholder and use it to lay out the position which the sheet control will occupy at run time;
a group box works well for this. Just pass in this control as the parent when you create the property sheet
control.

However, don't make this proxy control visible, unless you want to use it to put an edge around the
outside of the whole control. (Since the pages and tabs will be outlined by default, this is unlikely to look
very professional in a release build, but it may come in handy during development, as you try to fine-tune
the alignment of the sheet.)

You have two options when you're aligning the sheet control with the proxy control. The top left corner of
the sheet should definitely be mapped to the top left corner of the proxy, but there is the question of
whether the sheet should be clipped to the size of the proxy, or whether the sheet should remain unclipped
and the size of the parent dialog be adjusted to accommodate it. In the example (PSControl), the sheet
has been clipped to the proxy, but this complicates the problem of ensuring that the pages, and thus the
sheet itself, will be properly visible.

In the overloaded sheet control class, the OnInitDialog() method has three basic responsibilities. It must
call the base class OnInitDialog() method, of course. It must reparent the sheet dialog window created
as a child of the invisible proxy to be a visible child of the dialog itself in the same position as the proxy,
and it must fix up the sheet dialog's styles so that controls on its pages may participate in the dialog's tab
order. .

You'll recall that the last of these depends on the DS_CONTROL and WS_EX_CONTROLPARENT styles. You
might think that it would make sense to specify these styles in the call to Create(), but this doesn't work.
The property sheet creation code gets caught in a loop, sending an infinite stream of WM_GETDLGCODE
messages. This is probably a side effect of the fact that the parent and position of the sheet window have
not yet been set correctly, so this work needs to be done in OnInitDialog().

The tab control embedded within the property sheet is normally created, at least in a modeless sheet, with
the WS_TABSTOP style, which allows the user to use the keyboard to navigate amongst the tabs. This is a
useful feature. In the example, we have explicitly turned off this style, to demonstrate how you might
customize its behavior.

BOOL CPropertySheetControl::OnInitDialog()
{
 CPropertySheet::OnInitDialog();
 CRect rr;
 CWnd* pOldParent = GetParent();
 CWnd* pNewParent = pOldParent->GetParent();
 pOldParent->GetWindowRect(&rr);

 pNewParent->ScreenToClient(&rr);
 SetParent(pNewParent);
 SetWindowPos(pNewParent,
 rr.left, rr.top, rr.Width(), rr.Height(),
 SWP_NOZORDER | SWP_SHOWWINDOW /* | SWP_NOSIZE */);
 ModifyStyle(0, DS_CONTROL, 0);
 ModifyStyleEx(0, WS_EX_CONTROLPARENT, 0);
 GetTabControl()->ModifyStyle(WS_TABSTOP, 0, 0);
 return TRUE;
}

When Should You Use a Tab Control?
Given that a child property sheet control is a relatively simple thing, and so much easier to use than a raw
tab control, when is it better to use a tab control? In fact, it turns out that there are several styles supported
by the tab control which are not supported and exposed by the CPropertySheet class.

The TCS_BUTTONS style draws the tabs as complete rectangular buttons, rather than as folder tabs. A slight
change to the drawing code produces a significantly different effect, but whether this effect is desirable or
useful is debatable. (If the currently selected button stays depressed, the effect is reminiscent of the
system taskbar.)

The TCS_OWNERDRAWFIXED style is a bit more promising. When this style is selected, the parent dialog will
receive an initial WM_MEASUREITEM message to set the size of the tabs in this control, and thereafter will
receive a WM_DRAWITEM message whenever a tab is being painted. Unfortunately, the WM_DRAWITEM
message refers only to the tab 'face' and not to its outline, so this isn't sufficient to draw tabs along the
side or bottom of the page window.

The TCS_TOOLTIPS style tells Windows that there is tooltip text associated with each control tab. The tips
are actually stored in a tooltip control, associated with the tab control by sending it a TCM_SETTOOLTIPS
message. This is particularly useful for providing a text label with tabs that would otherwise show only an
icon or an owner-draw graphic.

Creating a Generic Dynamic Dialog Class
In this section we'll introduce a generic dynamic dialog class that will enable you to create, display and
hide controls inside a window at run time.

You may have seen dynamic dialogs in action and wondered how it's done. An example of a dynamic
dialog is Developer Studio's Project Settings dialog. When you select an item from the Category: combo
box on the C/C++ page, a new set of controls appears on the screen and the old ones disappear. In this
section, we'll show you how to do this through the use of general purpose classes using MFC, which will
enable you to create controls anywhere, anytime at run time.

This section presents an MFC-based dynamic dialog class, CDynamicDialog, along with a test application
which demonstrates the use of these classes.

Most of the techniques you see here have been covered by several authors in one way or another, but most
tend to use a hard-coded approach, where you end up using that most beloved technique of
programmers: copy and paste. What is presented here is a set of generic classes that you can use many
times.

There are several ways to create controls at run time. One approach would be to do the following:

CMyDialog::OnInitDialog()
{
 m_ctlEdit.Create(WS_VISIBLE|WS_CHILD|WS_TABSTOP|WS_BORDER,
 cltRect, this, IDC_EDITCTL);
 m_ctlStatic.Create("Name:", WS_VISIBLE|WS_CHILD|SS_LEFT,
 ctlStaticRec, this, -1);
}

The problem here is that if you need to recreate the above controls in another dialog, you have to copy
and paste. A more general approach would be to define a structure that defines the characteristics of the
controls and use it in more than one place to create them. The problem with either approach is that you
have to manually type in the coordinates of the controls, and if you add or remove one control, you have
to recalculate the coordinates for each control.

It would be much more useful if we could use the dialog editor to define these controls and then display
them at run time, so that's exactly what we'll do.

Most Windows developers use a resource editor to create a dialog that is automatically saved in the
project's .rc file. Afterwards, a class derived from CDialog (for example CMyDialog), is created and the
developer displays it as a modal dialog using the following statements:

CMyDialog dlg(this);
dlg.DoModal();

You usually don't care how the dialog is saved in the .exe file, but later on you'll see that knowing how
the dialog is actually saved in the file and its data format will enable you to retrieve the characteristics of
the controls, and create them dynamically.

Dynamic dialogs are nothing more than a collection of window controls whose characteristics are
retrieved at run time, created dynamically and displayed in a predefined dialog.

Resource Storage
Dialogs are usually defined using a resource editor and saved in a resource file which includes other
definitions (such as menus). Win32 binary resources are stored in Unicode form, so to manipulate string
data you would usually use the WCHAR data type. Every dialog box in a resource file is of variable size,
with a header, followed by one or more control data structures.

The dialog resource header has the following format:

Data Type Name Description
DWORD dwStyle Specifies the dialog window styles.
DWORD dwExtendedStyle Specifies the extended dialog window styles (used with

CreateWindowEx() function).
WORD NumberOfItems Specifies the total number of controls in the dialog.
WORD x Specifies the position of the left side of the dialog

window.
WORD y Specifies the position of the top of the dialog window.
WORD cx Specifies the width of the dialog box.
WORD cy Specifies the height of the dialog box.
Name or
Ordinal

MenuName Specifies the ordinal ID or menu name.

Name or
Ordinal

ClassName Specifies the class ID or name.

WCHAR szCaption[] Specifies the dialog caption.
WORD wPointSize Specifies the dialog's font point size (this is present only if

the FONT statement was specified in the dialog definition).
WORD szFontName Specifies the dialog's font name (this is present only if the

FONT statement was specified in the dialog definition).

The Win32 SDK defines a structure, called DLGTEMPLATE, which includes the first seven fields in the
above table. In other words, DLGTEMPLATE is defined as follows:

typedef struct {
 DWORD style;
 DWORD dwExtendedStyle;
 WORD cdit;
 short x;
 short y;
 short cx;
 short cy;
} DLGTEMPLATE;

We'll be using this in our CDynamicClass.

The data for each window control starts after the header. Please note that data for each control starts on a
DWORD boundary which must be considered when moving from one control to the next. The control data
format is very similar to that for the dialog header:

Data Type Name Description
DWORD dwStyle Specifies the control window styles.
DWORD dwExtendedStyle Specifies the extended control window styles (used

with CreateWindowEx()).
WORD x Specifies the position of the left side of the control.
WORD y Specifies the position of the top of the control.
WORD cx Specifies the width of the control window.
WORD cy Specifies the height of the control window.
WORD wId Specifies the control window ID.
Name or
Ordinal

ClassId Specifies the ordinal ID or class name.

Name or
Ordinal

Text Specifies the string ID or text.

WORD nExtraStuff Extra padding.

There's also a structure call DLGITEMTEMPLATE, which contains the first eight fields in the control data
block. In other words, DLGITEMTEMPLATE is defined as follows:

typedef struct {
 DWORD style;
 DWORD dwExtendedStyle;
 short x;
 short y;
 short cx;
 short cy;
 WORD id;
} DLGITEMTEMPLATE;

We're going to use this structure to retrieve the control window data and create it at run time using
CDynamicDialog::CreateControl().

CDynamicDialog
CDynamicDialog allows you to create a subdialog, and add it to an existing dialog at run time (i.e.
dynamically). You can use this generic class with any class derived from the MFC CWnd class, such as
CFormView and CPropertyPage.

Here's what the class definition looks like; we'll go on to look at some of the more important functions in
detail in subsequent sections.

class CDynamicDialog : public CObject
{
 DECLARE_DYNCREATE(CDynamicDialog)
public:
 virtual ~CDynamicDialog();
 CDynamicDialog();
 CDynamicDialog(CWnd* pWndParent, UINT uResourceID,
 UINT uPlacementWndID,
 LPCCLISTCTLTEXT arListCtlText = NULL);
 CDynamicDialog(CWnd* pWndParent, UINT uResourceID,
 int nXOffset = 0, int nYOffset = 0,

 LPCCLISTCTLTEXT arListCtlText = NULL);
 CDynamicDialog(const CDynamicDialog& a);
 CDynamicDialog& operator=(CDynamicDialog& b);
// Attributes
public:
 void Initialize(CWnd* pWndParent, UINT uResourceID,
 UINT uPlacementWndID = 0, int nXOffset = 0, int nYOffset = 0,
 LPCCLISTCTLTEXT arListCtlText = NULL);
 void SkipOrdinalOrTextField(LPBYTE* pplDlgResource);
 BOOL CreateControl(LPBYTE* ppDlgRes);
 BOOL CreateDynamicDialog();
 void DestroyDialog();
 BOOL ShowDialog(BOOL bShowControls);
 void ShowControls(BOOL bShowControls);
 void GetXYOffset(int& xOffset, int& yOffset);
 void AddStringList(LPCCTLINFO pCtlInfo) ;
 void MapDialogRectEx(CRect& rectWndCtl);
 BOOL IsDialogVisible();
// Implementation
protected:
 CWnd* m_pWndParent; // Ptr to the parent dialog window
 UINT m_uResourceID; // Dialog resource ID
 UINT m_uNumOfCtls; // Total num of controls in the dialog
 UINT m_uPlacementWndID; // Controls starting location
 CPtrList m_ctlPtrList; // List of controls information
 BOOL m_bCreated; // Created flag
 LPCCLISTCTLTEXT m_arListCtlText;
 int m_nXOffset; // X offset
 int m_nYOffset; // Y offset
 BOOL m_bShowState; // Has the dialog already been shown?
};

Construction and Initialization
There's nothing very special about the construction of this class, except that all the action taken during
construction is handled by an initialization routine, which saves code being duplicated.

CDynamicDialog::CDynamicDialog(CWnd* pWndParent, UINT uResourceID,
 UINT uPlacementWndID, LPCCLISTCTLTEXT arListCtlText)
{
 Initialize(pWndParent, uResourceID, uPlacementWndID,
 0, 0, arListCtlText);
}

The initialization routine, in turn, just fills in the data members of the object from the arguments supplied
to the constructor.

void CDynamicDialog::Initialize(CWnd* pWndParent, UINT uResourceID,
 UINT uPlacementWndID, int nXOffset, int nYOffset,
 LPCCLISTCTLTEXT arListCtlText)
{
 m_pWndParent = pWndParent;
 m_uResourceID = uResourceID;
 m_uPlacementWndID = uPlacementWndID;
 m_bCreated = FALSE;
 m_arListCtlText = arListCtlText;
 m_nXOffset = nXOffset;
 m_nYOffset = nYOffset;
 m_uNumOfCtls = 0;
 m_bShowState = FALSE;

 // Retrieve the X & Y offsets.
 GetXYOffset(m_nXOffset, m_nYOffset);
}
void CDynamicDialog::GetXYOffset(int& xOffset, int& yOffset)
{
 // See if a placement window ID has been specified
 if (m_uPlacementWndID)
 {
 CWnd* pWnd = m_pWndParent->GetDlgItem(m_uPlacementWndID);
 CRect rectWnd;
 pWnd->GetWindowRect(rectWnd);
 m_pWndParent->ScreenToClient(rectWnd);
 xOffset = rectWnd.left;
 yOffset = rectWnd.top;
 }
}

There are two parameters which deserve some explanation: uPlacementWndID (the 'placement window')
and arListCtlText (the 'text list').

If a window ID is given as the 'placement window' parameter, the origin of this window will be used to
set the position of the dialog. GetXYOffset() retrieves the coordinates of the top left of the placement
window.

The dialog editor can be used to create the controls which populate the dialog, and can provide initial
state information for some, but not all of them. For instance, you can specify the position and size of a list
box in the dialog editor, but you can't specify its default contents. This is where the text list comes in; it
provides a means of specifying a list of string resources for a given control.

typedef class CListCtlText
{
public:
 CListCtlText(UINT uCtlID = 0, UINT* arResStringIDs = (UINT*)NULL)
 : m_uCtlID(uCtlID), m_arResStringIDs(arResStringIDs)
 {
 // Blank
 }
 UINT m_uCtlID;
 UINT* m_arResStringIDs;
} CLISTCTLTEXT, FAR* LPCCLISTCTLTEXT;

Each CListCtlText object contains a control ID and pointer to a list of string resource IDs. When the
dialog is created, the list of CListCtlTexts provided to the constructor is used to initialize the controls in
the dialog.

ShowDialog()
You'll have noticed that the construction process does nothing to actually create or display the dialog. In
common with many other MFC classes which wrap Windows objects, creating the MFC object doesn't
automatically create and display the Windows object; in this class, that function is performed by
ShowDialog(). As shown in the code below, ShowDialog() creates the dialog if it hasn't previously been
created, and then shows the controls.

BOOL CDynamicDialog::ShowDialog(BOOL bShowControls)
{
// Create the controls, if they have not been created.
 if (!m_bCreated)
 {
 if (!CreateDynamicDialog())

 {
 TRACE(_T("Unable to create the dialog..."));
 return FALSE;
 }
 m_bCreated = TRUE;
 }
 ShowControls(bShowControls);
 return TRUE;
}

CreateDynamicDialog()
CreateDynamicDialog() is the routine where it all happens, and it's also where we use our knowledge of
how dialog resources are stored in the program's .rc file.

To explain exactly what's going on, we'll look at CreateDynamicDialog() in sections. Our first action is
to use the resource ID to find the dialog resource in the program's resources:

BOOL CDynamicDialog::CreateDynamicDialog()
{
 // 1 - Get a handle to the "m_uResourceID" dialog box
 HRSRC hResource; // Handle to the resource
 hResource = ::FindResource(AfxGetResourceHandle(),
 MAKEINTRESOURCE(m_uResourceID),
 RT_DIALOG);

Once we have that, we can load the resource and get a pointer to the first byte of the resource data:

 // 2 - Load the "IDD_IDENTIFICATION" resource
 HGLOBAL hData; // Data handle
 hData = ::LoadResource(AfxGetResourceHandle(), hResource);
 // 3 - Get a pointer to the first byte of the resource;
 LPBYTE pDlgRes;
 LPBYTE pDlgResFirstByte;
 pDlgRes = pDlgResFirstByte = (LPBYTE)::LockResource(hData);

We're pointing at raw, binary data, so, to make sense of it, we copy it into one of the DLGTEMPLATE
structures that we discussed earlier. Once we've done that, we can use the fields in the structure to access
the dialog data:

 // Copy the data into the dialog template
 DLGTEMPLATE DlgTemplate;
 memcpy(&DlgTemplate, pDlgRes, sizeof(DLGTEMPLATE));
 // Set the number of controls in this dialog
 m_uNumOfCtls = DlgTemplate.cdit;

Once we've copied the standard information into the DLGTEMPLATE structure, we can look through the rest
of the data in the resource to extract the other information that we're interested in. However, there are
some things in this data which we aren't interested in, so we use SkipOrdinalOrTextField() to step past
them to get to the data we need.

 // Move past the "DLGTEMPLATE" structure to lookup the following:
 // 1 - char szMenuName[]
 // 2 - char szClassName[]
 // 3 - char szCaption[]
 // 4 - WORD wPointSize; ONLY if "DS_SETFONT"
 // 5 - char szFaceName[] ONLY if "DS_SETFONT"

 pDlgRes += sizeof(DLGTEMPLATE);
 // 1 - Check for MENU and move past it
 SkipOrdinalOrTextField(&pDlgRes);
 // 2 - Check for CLASS NAME and move past it
 SkipOrdinalOrTextField(&pDlgRes);
 // 3 - Check for the CAPTION and move past it
 SkipOrdinalOrTextField(&pDlgRes);

Since ordinals start with 0xFFFF, SkipOrdinalOrTextField() can check for this value to determine what
method it needs to use to skip the field. If the field's an ordinal, it advances the pointer by sizeof(WORD)
and if it's text, it uses a loop to advance the pointer by sizeof(WCHAR) until it passes a null.

Once the MENU, CLASS NAME and CAPTION fields have been skipped, there may be a point size and FACE
NAME field to skip. These will only be present if the DS_SETFONT style has been set in the dialog template,
so we check for this before skipping the fields.

 // The following will be present ONLY if "DS_SETFONT" style has been
 // specified for the dialog box.
 // 4 - Check if a unique font is specified for this dialog.
 // 5 - Check if a FACE NAME is specified.
 if (DS_SETFONT & DlgTemplate.style)
 {
 pDlgRes += sizeof(WORD); // Move past the point size field
 // "szFontName" contains "DOUBLE-NULL" terminated string. Se we
 // need to advance the pointer TWO UNICODE characters. Since
 // "SkipOrdinalOrText()" only advances past ONE null char, then
 // we need to advance it past the second NULL char ourselves.
 SkipOrdinalOrTextField(&pDlgRes);
 pDlgRes += sizeof(WCHAR); // Move past the NULL char
 }

Once we've skipped past all that lot, we're into the control information, so we can loop through, creating
each one in turn and adding any strings that we may have set up:

 // Now create the window controls one at a time
 for (UINT i = 0; i < m_uNumOfCtls; i++)
 {
 CreateControl(&pDlgRes);
 AddStringList((LPCCTLINFO)m_ctlPtrList.GetTail());
 }
 return TRUE;
}

CreateControl()
CreateControl() is where the control is created from the information in the dialog template. It is quite
long and complex, so, once again, we'll look at it in sections.

This routine works in a way similar to CreateDialog(), in that the first thing it does is to copy the
information from the dialog template data into a structure, in this case a DLGITEMTEMPLATE. Once it has
copied the data, it moves the pointer so that it points to the next control in the dialog:

BOOL CDynamicDialog::CreateControl(LPBYTE* ppDlgRes)
{
 DLGITEMTEMPLATE DlgItemTemplate;
 DLGITEMTEMPLATE* pDlgItemTemplate = &DlgItemTemplate;
 memcpy(pDlgItemTemplate, *ppDlgRes, sizeof(DLGITEMTEMPLATE));
 *ppDlgRes += sizeof(DLGITEMTEMPLATE);
 if (0xFFFF == *(WORD*)*ppDlgRes)
 {
 *ppDlgRes += sizeof(WORD);
 }

The adjustment is needed because the controls are aligned on DWORD boundaries, and we need to make
sure that we're in the right position for the next control to be read.

Once we've done that, we can look to see what sort of control we're dealing with, and save the class name
away ready for when we create the control:

 BYTE byClassType;
 CString strClassName;
 switch(byClassType = (BYTE)**ppDlgRes)
 {
 case CTLTYPE_LISTVIEW : strClassName = _T("SysListView32") ; break;
 case CTLTYPE_BUTTON : strClassName = _T("button") ; break;
 case CTLTYPE_EDIT : strClassName = _T("edit") ; break;
 case CTLTYPE_STATIC : strClassName = _T("static") ; break;
 case CTLTYPE_LISTBOX : strClassName = _T("listbox") ; break;
 case CTLTYPE_SCROLLBAR: strClassName = _T("scrollbar"); break;
 case CTLTYPE_COMBOBOX : strClassName = _T("combobox") ; break;
 default : strClassName = (WCHAR*)*ppDlgRes;
 TRACE("[Line - %d] - [default: ==>strClassname = [%s],
 Class Type = [%x].....\n", __LINE__,
 (LPCSTR)strClassName, byClassType);
 byClassType = 0;
 ASSERT(FALSE);
 }

If we have a control that hasn't been accounted for, we'll hit the default statement, which will output
some error information and ASSERT in debug builds.

We skip past the class ID and look for the window text, saving it away if we find it:

 *ppDlgRes += sizeof(WORD); // Move past the class ID
 // Check if the next byte is an ordinal number. If it's not,
 // then it's the control window text. Get it!
 CString szCtlText;
 if (0xFFFF != **ppDlgRes)
 {
 szCtlText = (WCHAR*)*ppDlgRes;
 }
 // Move past the control window text or ordinal number
 SkipOrdinalOrTextField(ppDlgRes);
 // Move past the extra byte
 *ppDlgRes += sizeof(WORD);

Once again, we align the pointer correctly before using the dimension data to set the position and size of
the control. We also add on any offset which was given when the dialog object was originally created:

 // Move the dialog resource data pointer to the
 // DWORD alignment.

 WORD nExtraOffsetBytes;
 nExtraOffsetBytes = (WORD)(4 - (((WORD)(DWORD)*ppDlgRes) & 3)) % 4;
 *ppDlgRes += nExtraOffsetBytes;
 // Set the dimensions of the control window. Since the control
 // windows units are DLUs, we need to convert them to screen
 // pixels using CDialog::MapDialogRectEx().
 CRect rectWndCtl(pDlgItemTemplate->x, pDlgItemTemplate->y,
 pDlgItemTemplate->x+pDlgItemTemplate->cx,
 pDlgItemTemplate->y+pDlgItemTemplate->cy);
 MapDialogRectEx(rectWndCtl);
 // Now add the offset pixels to control window dimensions before
 // creating it. Remember that m_nXOffset and m_nYOffset were set in
 // Initialize()
 rectWndCtl.OffsetRect(m_nXOffset, m_nYOffset);

When we're using 3D dialogs, we need to set a special flag, WS_EX_CLIENTEDGE, in the extended style for
edit controls and list boxes if they are to display properly:

 // Note that to be able to display the "edit" and "listbox" in
 // 3D you must add WS_EX_CLIENTEDGE to extended window style of
 // the control
 DWORD dwExtendedStyle = pDlgItemTemplate->dwExtendedStyle;
 if (strClassName == "edit" || strClassName == "listbox")
 dwExtendedStyle |= WS_EX_CLIENTEDGE;

Now we get to the important part—actually creating the control. We use the CreateWindowEx() API and
pass in as parameters all the information that we have gathered from the resource data:

 // Create the control that is to be displayed as part of the dialog
 HWND hWndCtl = ::CreateWindowEx(dwExtendedStyle,
 (LPCTSTR)strClassName,
 szCtlText, pDlgItemTemplate->style,
 rectWndCtl.left, rectWndCtl.top,
 rectWndCtl.Width(),
 rectWndCtl.Height(),
 m_pWndParent->m_hWnd,
 (HMENU)pDlgItemTemplate->id,
 AfxGetResourceHandle(), NULL);
 ASSERT(hWndCtl);
 m_ctlPtrList.AddTail((void*) new CCtlInfo(hWndCtl,
 byClassType, szCtlText));

The final task is to set the control's font to the same as that used in the dialog:

 // Retrieve the dialog's font and use it to set the control's font
 CFont* pDlgFont = (CFont*)m_pWndParent->GetFont();
 CWnd* pWnd = (CWnd*)CWnd::FromHandle(hWndCtl);
 pWnd->SetFont(pDlgFont);
 return TRUE;
}

How to Use Dynamic Dialogs
Now that we've covered the structure and operation of the class (and before getting on to the more
complex example in the next section), let's give a simple example of how one of these dialogs might be
used.

Follow these steps to create the framework of the sample application:
Use AppWizard to create an SDI program, with all the default options.
Create a dialog, using the resource editor, which has no controls other than the default buttons, and
give it the ID IDD_TESTDLG.
Use ClassWizard to add a class for the dialog called CTestDlg.
Add a menu item to display the dialog. You can add the handler to any class in your application you
like.

If you compile and run the application at this stage, you'll get a blank dialog, like this:

We'll now use the dynamic dialog class to 'paste' some controls into this dialog at runtime. The first step is
to use the resource editor to create the controls that we're going to include. Don't worry about the dialog
caption or properties, because we aren't going to use them, but do remember to delete the OK and Cancel
buttons, because we don't want them included twice. Give the dialog a suitable ID, such as IDD_DYN1. You
can see from the picture below that the dialog contains two controls: a static text control and an edit
control.

Now modify the CTestDlg class, adding a pointer to a CDynamicDlg and a destructor (which we'll use to
delete the dynamic dialog object when we've finished):

class CTestDlg : public CDialog
{
// Construction
public:

 CTestDlg(CWnd* pParent = NULL); // standard constructor
 ~CTestDlg();
// Dialog Data
 //{{AFX_DATA(CTestDlg)
 enum { IDD = IDD_TESTDLG };
 // NOTE: the ClassWizard will add data members here
 //}}AFX_DATA

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CTestDlg)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 //}}AFX_VIRTUAL

// Implementation
protected:
 CDynamicDialog *pCD;
 // Generated message map functions
 //{{AFX_MSG(CTestDlg)
 virtual BOOL OnInitDialog();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

We need to initialize pCD in the constructor and arrange for its deletion in the destructor:

CTestDlg::CTestDlg(CWnd* pParent /*=NULL*/)
 : CDialog(CTestDlg::IDD, pParent),
 pCD(NULL)
{
 //{{AFX_DATA_INIT(CTestDlg)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT
}

CTestDlg::~CTestDlg()
{
 delete pCD;
 pCD = NULL;
}

We want to place the controls into the dialog when it's created, so use ClassWizard to add a handler for
WM_INITDIALOG to CTestDlg, and use this to create and show the dynamic dialog object, giving it the
appropriate resource ID:

BOOL CTestDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Add controls to the dialog
 pCD = new CDynamicDialog(this, IDD_DYN1);
 pCD->ShowDialog(TRUE);
 return TRUE;
}

That's it! When you build and run the program, you should see a composite dialog, built from
IDD_TESTDLG and the controls in IDD_DYN1:

You can find the complete code on the CD in the Dyn1 directory.

Constructing a Property Sheet from Scratch
Now let's turn our attention back to property sheets, to look at how they work in a different way. Instead
of trying to disassemble the parts of a property sheet for you, we'll take a different approach, and show
you how to assemble your own. This will give you a deeper insight into the workings of Microsoft's
property sheets, and at the same time you'll see how the CDynamicDialog class can be used in a more
substantial project.

In general, a property sheet (such as the one shown above) is a window that contains child control
windows, such as tab and edit controls. To construct a property sheet from scratch, you need to perform
the following steps:

Derive a class from CDialog, which will be the main window.
Create a new class derived from CTabCtrl and create an object of this class as a child of the main
window.
Create one or more dialogs that will be displayed as the pages of the property sheet. The process is
similar to creating dialogs for property pages, but in this instance we're going to display them
dynamically at run time, with the help of the generic reusable class CDynamicDialog.

The rest of this section is going to show how to build a property sheet in this way, starting with creating
the basic resource components.

Creating the Property Sheet Dialog and Subdialogs
The first task is to use the resource editor to create the two dialogs that will be displayed on the pages of
the property sheet. Give them the IDs IDD_PAGE_GENERAL and IDD_PAGE_DEBUG. Note that these dialogs
don't contain OK or Cancel buttons, as shown in the figure below:

Next, create the dialog box which will hold the property sheet and give it the ID IDD_PROPFROMSCRATCH.
Add a button control to the property sheet dialog, with Apply as its caption, and an ID of
IDC_PROPFROMSCRATCH_APPLY. Finally, add a tab control with an ID of IDC_PROPFROMSCRATCH_TABCTRL.
You should end up with a dialog that looks like this. Note that the tab control has been made large enough
to contain the dialogs which will be displayed on it at run time.

Creating the Property Sheet Class
Using ClassWizard, create a class called CPropFromScratch to represent the dialog, making sure that it's
derived from CDialog. Provide a WM_INITDIALOG message handler for the class,
CPropFromScratch::OnInitDialog() and add a protected member variable CTabCtrlExtended
m_TabCtrl to represent the child tab control. We're going to use control subclassing and our own
customized tab control class to handle the messages for the tab control.

class CPropFromScratch : public CDialog
{
// Construction
public:
 CPropFromScratch(CWnd* pParent = NULL); // standard constructor

// Dialog Data
 //{{AFX_DATA(CPropFromScratch)
 enum { IDD = IDD_PROPFROMSCRATCH };
 //}}AFX_DATA

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CPropFromScratch)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 //}}AFX_VIRTUAL

// Attributes
public:
 void InitChildTabControl();

// Implementation
protected:
 CTabCtrlExtended m_TabCtrl;
 // Generated message map functions
 //{{AFX_MSG(CPropFromScratch)
 virtual BOOL OnInitDialog();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

We now need to modify OnInitDialog() and add InitChildTabControl(), to set up the tab control
correctly.

BOOL CPropFromScratch::OnInitDialog()
{
 CDialog::OnInitDialog();
 // Use "SubclassDlgItem()" to subclass the tab control
 VERIFY(m_TabCtrl.SubclassDlgItem(IDC_PROPFROMSCRATCH_TABCTRL, this));
 // Initialize the tab control
 InitChildTabControl();
 // Add the sub-dialogs
 m_TabCtrl.AddDialog(0, IDD_PAGE_GENERAL);
 m_TabCtrl.AddDialog(1, IDD_PAGE_DEBUG);
 m_TabCtrl.ShowNewDialog(0);
 return TRUE;
}
void CPropFromScratch::InitChildTabControl()
{
 // Set the child tab control font. Note that you should
 // not call 'GetFont()' in the 'OnCreate()' routine.
 m_TabCtrl.SetFont(GetFont());
 // Now, set the tabs labels
 TC_ITEM tcItem;
 tcItem.mask = TCIF_TEXT;
 tcItem.pszText = _T("General");
 m_TabCtrl.InsertItem(0, &tcItem);
 tcItem.pszText = _T("Style");
 m_TabCtrl.InsertItem(1, &tcItem);
 m_TabCtrl.SetCurSel(0);
}

Deriving a Class from CTabCtrl
The next stage involves deriving a class from CTabCtrl, which will handle the dynamic display of dialogs
on the property sheet pages.

First, using ClassWizard, derive a class from CTabCtrl and call it CTabCtrlExtended.
This class is going to be responsible for dynamically loading the dialogs when the user clicks on a tab, so
it has to receive the notification message which would normally be sent to the parent window. This is
done using a technique called message reflection; in ClassWizard, messages which can be reflected back
to the control are marked with an equals sign (=). In this case, the message we want to reflect is
TCN_SELCHANGE, so use ClassWizard to set up a handler for =TCN_SELCHANGE, and call it
OnSelchange().

The dynamic subdialogs will need to be stored in memory, so add two new protected member variables
to the class, one to hold the list of dialog pointers and another to hold a pointer to the currently displayed
dynamic dialog:

CMapWordToOb m_DlgsPtrList;
CDynamicDialog* m_pCurDynamicDialog;

Of course, these members will need to be initialized in the constructor and cleaned up in the destructor as
shown:

CTabCtrlExtended::CTabCtrlExtended()
{
 m_pCurDynamicDialog = NULL;
}

CTabCtrlExtended::~CTabCtrlExtended()
{
 // Clean up dynamic dialog memory
 WORD wKey;
 CDynamicDialog* pDynamicDialog;
 POSITION pos = m_DlgsPtrList.GetStartPosition();
 while (pos)
 {
 m_DlgsPtrList.GetNextAssoc(pos, wKey, (CObject*&)pDynamicDialog);
 delete pDynamicDialog;
 }
 m_DlgsPtrList.RemoveAll();
}

The class also needs three helper functions, which will be used to manage the dynamic dialogs
AddDialog(),
ShowNewDialog()
ShowDialog()

AddDialog() adds a subdialog to the list of dialogs. This routine allocates memory for the new
CDynamicDialog object and inserts it into the map table. ShowNewDialog() replaces the currently
displayed dialog with a new dialog. ShowDialog() displays a dialog in the window. This function doesn't
replace a subdialog that is currently displayed on the screen.

Here's what the header file should look like after it has been modified:

class CTabCtrlExtended : public CTabCtrl
{
// Construction
public:
 CTabCtrlExtended();

// Attributes
public:

// Operations
public:
 virtual void AddDialog(WORD wKey, UINT uDlgResourceID,
 UINT uPlacementWnd, LPCCLISTCTLTEXT arListCtlText = NULL);
 virtual void AddDialog(WORD wKey, UINT uDlgResourceID,
 LPCCLISTCTLTEXT arListCtlText = NULL);
 virtual void ShowNewDialog(WORD wKey);
 virtual void ShowDialog(WORD wKey, BOOL bShowDialog = TRUE);
// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CTabCtrlExtended)

 public:
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CTabCtrlExtended();
 CFont m_Font;

protected:
 CMapWordToOb m_DlgsPtrList;
 CDynamicDialog* m_pCurDynamicDialog;
 // Generated message map functions
protected:
 //{{AFX_MSG(CTabCtrlExtended)
 afx_msg void OnSelchange(NMHDR* pNMHDR, LRESULT* pResult);
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
};

Let's look at the most important member functions in more detail.

OnSelchange()
When the user clicks on one of the tabs of the tab control, it results in the tab selection being changed, in
the same way that the selection in a list box changes. As we noted above, this results in a TCN_SELCHANGE
message which will be reflected to our handler, OnSelchange():

void CTabCtrlExtended::OnSelchange(NMHDR* pNMHDR, LRESULT* pResult)
{
 // Make sure that the user has added dynamic dialogs
 if (!m_DlgsPtrList.IsEmpty())
 {
 int nCurSel = GetCurSel();
 if (nCurSel < m_DlgsPtrList.GetCount())
 ShowNewDialog(nCurSel);
 }
 // No result code to return
 *pResult = 0;
}

The function checks whether the tab control has any dynamic dialogs defined, and if so, it calls
ShowNewDialog() to display the one corresponding to the selected tab.

AddDialog()
AddDialog() is used to add a dynamic dialog object to the list maintained by the CTabCtrlExtended
object. The tab class uses an MFC map to store its dynamic dialog objects, the key of the map entry
corresponding to the index of the tab to which the dialog applies.

There are two slightly different flavors of the routine. One sizes the dialog to fit within the parent
window, whereas the other takes a placement window which defines the dialog's position:

void CTabCtrlExtended::AddDialog(WORD wKey, UINT uDlgResourceID,
 UINT uPlacementWnd, LPCCLISTCTLTEXT arListCtlText)
{
 CDynamicDialog* pDynamicDialog = new CDynamicDialog(
 this,uDlgResourceID,
 uPlacementWnd, arListCtlText);

 m_DlgsPtrList.SetAt(wKey, pDynamicDialog);
}

void CTabCtrlExtended::AddDialog(WORD wKey, UINT uDlgResourceID,
 LPCCLISTCTLTEXT arListCtlText)
{
 CRect rectTabCtrl;
 GetWindowRect(rectTabCtrl);
 ScreenToClient(rectTabCtrl);
 CDynamicDialog* pDynamicDialog = new CDynamicDialog(
 this, uDlgResourceID, rectTabCtrl.left + 7,
 rectTabCtrl.top + 23, arListCtlText);
 m_DlgsPtrList.SetAt(wKey, pDynamicDialog);
}

ShowNewDialog()
This function displays a dynamic dialog on the screen, but only if it isn't already being displayed.

void CTabCtrlExtended::ShowNewDialog(WORD wKey)
{
 CDynamicDialog* pDynamicDialog = NULL;
 m_DlgsPtrList.Lookup(wKey, (CObject*&)pDynamicDialog);
 // Show the dialog only if it is different to the currently
 // displayed dialog...
 if (m_pCurDynamicDialog != pDynamicDialog)
 {
 // Remove the old dialog from the screen
 if (m_pCurDynamicDialog)
 {
 m_pCurDynamicDialog->ShowDialog(FALSE);
 InvalidateRect(NULL, TRUE);
 UpdateWindow();
 }
 pDynamicDialog->ShowDialog(TRUE);
 m_pCurDynamicDialog = pDynamicDialog;
 }
}

The function looks up the dialog in the map and checks it against the current one. If they are different, the
old dialog is hidden and the new one displayed in its place.

ShowDialog()
ShowDialog is similar to ShowNewDialog(), but in this case the dialog being displayed doesn't replace the
one on the screen, but adds to it. This gives the possibility of displaying more than one dialog at a time.

void CTabCtrlExtended::ShowDialog(WORD wKey, BOOL bShowDialog /*=TRUE*/)
{
 CDynamicDialog* pDynamicDialog = (CDynamicDialog*)NULL;
 m_DlgsPtrList.Lookup(wKey, (CObject*&)pDynamicDialog);
 // Make sure that it's not already displayed on the screen
 if (pDynamicDialog->IsDialogVisible() && bShowDialog)
 return;
 pDynamicDialog->ShowDialog(bShowDialog);
}

Making it Work

Now we've got all the routines in place, it is quite simple to set up the tab control to use the dynamic
dialog. In fact, we've already seen the code in CPropFromScratch::OnInitDialog():

 // Add the subdialogs
 m_TabCtrl.AddDialog(0, IDD_PAGE_GENERAL);
 m_TabCtrl.AddDialog(1, IDD_PAGE_DEBUG);
 m_TabCtrl.ShowNewDialog(0);

When the property sheet dialog is being set up, we add two dialogs, giving them the keys 0 and 1, which
correspond to tabs 0 and 1 on the tab control, and set the tab control to show dialog 0 initially. After this,
all user interaction with the tabs will be handled by the reflected notification message. The only thing left
is to declare an object of the new class and call its DoModal() function to display it. You can find the
completed project on the CD in the FromScratch directory. It's all pretty simple really!

Advanced Property Sheets
This section will introduce a reusable property sheet base class, called CPropSheetExtended, derived
from CPropertySheet, that will allow you to (amongst other things) do the following:

Resize the property sheet and pages.
Resize the tab control
Move the tab control.
Move the property pages
Move the property sheet's standard buttons (OK, Cancel, and Apply).
Hide the property sheet's standard buttons
Display the standard buttons in a modeless property sheet
Specify the default button.
Change the caption of the tab control.
Change the font of the tab control.
Add images to the tab control
Use accelerator keys to navigate between property pages.

We'll describe how these capabilities can be implemented in the following sections.

Resizing the Property Sheet
You can resize the property sheet at any time, using CPropSheetExtended::InflateSize() and
CPropSheetExtended::DeflateSize(). These are pretty simple functions that make use of
CWnd::MoveWindow(). It's as simple as this:

void CPropSheetExtended::InflateSize(int x, int y, const long lMoveFlag /*=MOVEXY_NONE*/)
{
 CRect rectProp;
 GetWindowRect(rectProp);
 ScreenToClient(rectProp);
 rectProp.InflateRect(x,y);
 MoveWindow(rectProp);
}

The InflateSize() function retrieves the current dimensions of the property sheet, uses
CRect::InflateRect() to change the width and height of the rect, then CWnd::MoveWindow() to resize
the property sheet.

Please note that if you use the above routine in CPropertySheetExtended::OnInitDialog(), you should
only use it after the base class OnInitDialog(). Using MoveWindow() or SetWindowPos() before the
base class's OnInitDialog() will not work, because CWnd::GetWindowRect() and
CWnd::GetClientRect() don't return the correct dimensions until the base class OnInitDialog() is
called.

Resizing the Tab Control
We saw in the previous section that the property sheet is actually a window which houses the tab control.
So, to resize the tab control, all you need to do is retrieve a pointer to it and change its size, just as we did
for the property sheet window itself. It's easy to get a pointer to the tab control using
CPropertySheet::GetTabControl().

void CPropSheetExtended::InflateTabControl(int x, int y)

{
 // Resize the Tab control
 CRect rectTabCtrl;
 CTabCtrl* pTabCtrl = GetTabControl();
 pTabCtrl->GetWindowRect(rectTabCtrl);
 ScreenToClient(rectTabCtrl);
 rectTabCtrl.InflateRect(x,y);
 pTabCtrl->MoveWindow(rectTabCtrl);
}

Note that the above code only changes the width and height of the tab control; it doesn't alter the
coordinates of the top-left of the control. If you want to move the tab control, you'll need to use the
technique presented in the next section.

Moving the Tab Control
Once we've gained a pointer to the control, moving the tab control to a new location inside the property
sheet is simple:

void CPropSheetExtended::OffsetTabControl(int x, int y)
{
 // Move the Tab control
 CRect rectTabCtrl;
 CTabCtrl* pTabCtrl = GetTabControl();
 pTabCtrl->GetWindowRect(rectTabCtrl);
 ScreenToClient(rectTabCtrl);
 rectTabCtrl.OffsetRect(x,y);
 pTabCtrl->MoveWindow(rectTabCtrl);
}

Note that the last two techniques affect only the tab control. They don't affect the property pages, the
buttons or the property sheet window itself. You'll see how you can affect each of those elements in the
next few sections.

Moving and Resizing the Property Pages
Moving the property pages is not just a matter of using the CWnd::MoveWindow() routine, because the
CPropertySheet class always saves the coordinates of the encapsulated property pages when they are
first created. Since moving or resizing the property pages yourself will not update the coordinates stored
in CPropertySheet, you'll need to resize the pages every time CPropertySheet tries to resize them using
its internal coordinates. There are two occasions that this happens: when a new tab is selected and when
the user presses the Apply button.

To get around this, store the new size of the property pages in a CRect data member and use this
information to reposition the pages when necessary. You should intercept the TCN_SELCHANGE notification
and the ID_APPLYNOW command and call a function in your class to resize the property pages. You need to
do this after the base class implementation has been called, so, in our implementation, we post a user-
defined message to ourselves whenever the pages need to be resized. This is handled by a function called
OnResizePropPage().

Here you can see the necessary code:

BEGIN_MESSAGE_MAP(CPropSheetExtended, CPropertySheet)
 //{{AFX_MSG_MAP(CPropSheetExtended)
 ON_WM_CREATE()
 ON_BN_CLICKED(IDOK, OnOK)

 ON_BN_CLICKED(IDCANCEL, OnCancel)
 //}}AFX_MSG_MAP

 ON_COMMAND(ID_APPLY_NOW, OnApplyNow)
 ON_MESSAGE(WM_USER_RESIZEPAGE, OnResizePropPage)
END_MESSAGE_MAP()

// You need to override this virtual function to intercept the
// TCN_SELCHANGE.
BOOL CPropSheetExtended::OnNotify(WPARAM wParam, LPARAM lParam, LRESULT* pResult)
{
 NMHDR* pNMHDR = (NMHDR*) lParam;
 if (TCN_SELCHANGE == pNMHDR->code)
 {
 PostMessage(WM_USER_RESIZEPAGE);
 }
 return CPropertySheet::OnNotify(wParam, lParam, pResult);
}
// ID_APPLY_NOW message handler
void CPropSheetExtended::OnApplyNow()
{
 PostMessage(WM_USER_RESIZEPAGE);
}
LONG CPropSheetExtended::OnResizePropPage(WPARAM, LPARAM)
{
 // Now, resize the property pages
 CPropertyPage* pPage = GetActivePage();
 ASSERT(pPage);
 pPage->MoveWindow(m_rectPage);
 return 0L;
}
void CPropSheetExtended::OffsetPropPage(int x, int y)
{
 // Now, offset the property pages
 CPropertyPage* pPage = GetActivePage();
 pPage->GetWindowRect(m_rectPage);
 ScreenToClient(m_rectPage);
 m_rectPage.OffsetRect(x,y);
 pPage->MoveWindow(m_rectPage);
}

Moving the Standard Buttons
Moving a window requires a pointer to the window to be moved, and the new coordinates to be used in
CWnd::SetWindowPos() or CWnd::MoveWindow(), so all we need to do to move the standard buttons is to
retrieve the window pointers to them and apply the move functions. The following code shows how to do
it:

void CPropSheetExtended::MoveChildWindow(UINT nWndID, int x, int y)
{
 // Retrieve the window pointer and move it
 CRect rectBtn;
 CWnd* pWnd = GetDlgItem(nWndID);
 pWnd->GetWindowRect(rectBtn);
 ScreenToClient(rectBtn);
 rectBtn.OffsetRect(x,y);
 pWnd->MoveWindow(rectBtn);
 pWnd->Invalidate();
}
void CPropSheetExtended::OffsetStandardButtons(int x, int y)
{
 // Now Move the OK, CANCEL, and APPLY buttons
 MoveChildWindow(IDOK, x, y);

 MoveChildWindow(IDCANCEL, x, y);
 MoveChildWindow(ID_APPLY_NOW, x, y);
}

Hiding the Standard Buttons
There are two techniques used to hide the standard buttons. One involves retrieving pointers to the button
windows and using CWnd::ShowWindow(). The other is specific to the Apply button (whose ID is
ID_APPLY_NOW).

Method 1
void CPropSheetExtended::ShowCancel(BOOL bShow /*=TRUE*/)
{
 CWnd* pWnd = GetDlgItem(IDCANCEL);
 pWnd->ShowWindow(bShow);
 pWnd->EnableWindow(bShow);
}
void CPropSheetExtended::ShowApply(BOOL bShow /*=TRUE*/)
{
 CWnd* pWnd = GetDlgItem(ID_APPLY_NOW);
 pWnd->ShowWindow(bShow);
 pWnd->EnableWindow(bShow);
}
void CPropSheetExtended::ShowOk(BOOL bShow /*=TRUE*/)
{
 CWnd* pWnd = GetDlgItem(IDOK);
 pWnd->ShowWindow(bShow);
 pWnd->EnableWindow(bShow);
}

Method 2: Applies to ID_APPLY_NOW Button
Starting with Visual C++ 4.0, CPropertySheet now includes a PROPSHEETHEADER data member called
m_psh which allows you to specify numerous things about the way a property sheet should be created.
The PROPSHEETHEADER structure has a dwFlags member which can take a range of flags, including
PSH_NOAPPLYNOW, which specifies that the property sheet should be created without an Apply button. So,
you can specify this flag before displaying the property sheet on the screen like this:

CPropertySheetDerived MyPropSheet(_T("Property Sheet"));
MyPropSheet.m_psh.dwFlags |= PSH_NOAPPLYNOW;
MyPropSheet.DoModal();

Displaying the Standard Buttons Inside a Modeless
Property Sheet
To display the standard buttons inside a modeless property sheet, you need to understand something of the
property sheet source code, because MFC, by default, displays the standard buttons only when it displays
a modal property sheet.

Don't worry, though, because we've already explored the source code for you! What you need to do is to
fool MFC when it creates a modeless property sheet so it thinks it's creating a modal sheet. You do this at
a specific location in the code, before the base class OnInitDialog() is called. In the following code, the
CPropertySheet data member m_bModeless is set to FALSE before the base class OnInitDialog() is

called, and reset to its original state afterwards. This sleight of hand doesn't produce any other side
effects.

BOOL CPropSheetExtended::OnInitDialog()
{
 // Save the object state
 BOOL bModeless = m_bModeless;
 // We want to fool MFC if the sheet is modeless and we want to
 // display the standard buttons. OnCreate() will display the
 // standard buttons if the dialog is MODAL. So let him do it.
 if (bModeless && m_bDisplayStandardButtons)
 {
 m_bModeless = FALSE;
 }
 // Call the base class routine
 BOOL bRtnValue = CPropertySheet::OnInitDialog();
 // Restore the flag to its original state
 m_bModeless = bModeless;

 // WARNING - The following two statements MUST follow the call to
 // the base class 'CPropertySheet::OnInitDialog()'
 //
 // Initialize the 'm_rectPage' member variable. This will make sure
 // that 'OnNotify()' TC_SELCHANGE behaves properly when the user
 // selects a tab from property sheet before making any modifications
 // to it.
 GetActivePage()->GetWindowRect(m_rectPage);
 ScreenToClient(m_rectPage);
 return bRtnValue;
}

Specifying the Property Sheet Default Button
The default push button that is enabled when property sheet is displayed is the OK button. To change this
default setting, you would need to use the following member function that is provided by
CPropSheetExtended:

void CPropSheetExtended::SetDefaultButton(UINT nID)
{
 SendMessage(DM_SETDEFID, nID);
}

For example, to make the Apply button the default push button, you would include a statement similar to
that below after the base class CPropertySheet::OnInitDialog() has been executed:

m_pMyPropSheetExtened->SetDefaultButton(ID_APPLY_NOW);

Changing the Tab Control Caption
To change the tab control caption text, you would do the following:

void CPropSheetExtended::SetTabCaption(CString stCaption,
 int nTabIndex /*=0*/)

{
 // Retrive a pointer to the tab control
 CTabCtrl* pTabCtrl = GetTabControl();
 // Now set the specified tab text
 TC_ITEM tcItem;
 tcItem.mask = TCIF_TEXT;
 tcItem.pszText = stCaption.GetBuffer(stCaption.GetLength());
 stCaption.ReleaseBuffer();
 pTabCtrl->SetItem(nTabIndex, &tcItem);
}

Changing the Tab Control Font
Changing the tab control font requires you to retrieve the pointer to the child tab control, change its font
and resize it.

void CPropSheetExtended::ChangeTabControlFont(CFont* pFont)
{
 CRect rectTabCtrl;
 CTabCtrl* pTabCtrl = GetTabControl();
 // 1 - Get a pointer to the tab control device context
 // 2 - Save the old font already existing in the DC
 // 3 - Get the text metrics for the old font
 // 4 - Select the new font into the device context
 // 5 - Get the text metrics for the new font
 // 6 - restore the DC to its original context
 // 7 - Calculate the multiplication ratio
 // 8 - Adjust the size of the tab
 // 9 - Resize the tab
 // 1 - Get a pointer to the tab control device context
 CDC* pDC = pTabCtrl->GetDC();
 // 2 - Save the old font already existing in the DC
 CFont* pOldFont = pDC->SelectObject(pTabCtrl->GetFont());
 // 3 - Get the text metrics for the old font
 TEXTMETRIC tmOldFont;
 pDC->GetTextMetrics(&tmOldFont);
 // 4 - Select the new font into the device context
 TEXTMETRIC tmNewFont;
 pDC->SelectObject(pFont);
 // 5 - Get the text metrics for the new font
 pDC->GetTextMetrics(&tmNewFont);
 // 6 - restore the DC to its original context
 pDC->SelectObject(pOldFont);
 pTabCtrl->SetFont(pFont);
 // Get the rect of the tab control
 pTabCtrl->GetWindowRect(rectTabCtrl);
 ScreenToClient(rectTabCtrl);
 // 7 - Calculate the multiplication ratio
 long lOldHeight = tmOldFont.tmHeight + tmOldFont.tmExternalLeading;
 long lNewHeight = tmNewFont.tmHeight + tmNewFont.tmExternalLeading;
 // 8 - Adjust the size of the rect
 rectTabCtrl.left = rectTabCtrl.left *
 tmNewFont.tmAveCharWidth / tmOldFont.tmAveCharWidth;

 rectTabCtrl.top = rectTabCtrl.top * lNewHeight / lOldHeight;
 rectTabCtrl.right = rectTabCtrl.right *
 tmNewFont.tmAveCharWidth / tmOldFont.tmAveCharWidth;
 rectTabCtrl.bottom = rectTabCtrl.bottom * lNewHeight / lOldHeight;
 // 9 - Resize the tab
 pTabCtrl->MoveWindow(rectTabCtrl);
}

The following code shows how it can be used:

void CPropSheetView::OnPSTCChangeFont()
{
 // Create a new font
 CFont font;
 font.CreateFont(-11,0,0,0,400,FALSE,FALSE,0, ANSI_CHARSET,
 OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_SWISS, "Arial");
 // Change the tab control's font
 m_pPSExample2->ChangeTabControlFont(&font);
 // Change the position and button positions on the page
 m_pPSExample2->OffsetPropPage(2,7);
 m_pPSExample2->OffsetStandardButtons(0, 25);
}

Adding Images to the Tab Control
Adding bitmap images to the tab buttons is a straightforward process:

Create a new class derived from CImageList.
Retrieve the property sheet's tab control and set its image list.
Declare a TC_ITEM object on the stack and set the mask data member equal to TCIF_IMAGE.
Iterate through the property sheet pages specifying the index of the bitmap for each tab.

This is the code that will perform these actions:

void CPropSheetExtended::SetImageList(UINT nBitmapID, int cx,
 int nGrow, COLORREF crMask)
{
 // Make sure that there are property pages defined
 m_pImageList = new CImageList();
 // Create a blank image list (note that you can adjust the size of the
 // bitmap to whatever you want (e.g. 32*32, 16*16, etc...)
 m_pImageList->Create(nBitmapID, cx, nGrow, crMask);
 // Retrieve a pointer to the tab control
 CTabCtrl* pTabCtrl = GetTabControl();
 pTabCtrl->SetImageList(m_pImageList);
 // Now set the image list for each tab in the property sheet
 TC_ITEM tcItem;
 tcItem.mask = TCIF_IMAGE;
 for (int i = 0; i < GetPageCount(); i++)
 {
 tcItem.iImage = i;
 pTabCtrl->SetItem(i, &tcItem);
 }
}

Using Accelerator Keys for Property Pages
The process is really quite simple under Visual C++ 4.0, and we'll look at two methods: firstly, using a
hard coded technique to intercept certain characters and activate the corresponding page, and secondly,
using a better generic approach that is used inside the CPropSheetExtended class.

Method 1
All you need to do is override the property sheet's PreTranslateMessage() function. This function is a
member of CWnd, which allows access to messages before they are fed into MFC's messaging system; this
is the place we need to tap into if we are to intercept the accelerator keystrokes in the raw message data.

Inside the function, you need to check if the message generated is WM_SYSKEYDOWN (assuming that the user
will be using Alt+<key>). The reason for using WM_SYSKEYDOWN is that Alt (and F10) are considered
system keys by Windows, and to receive messages generated by pressing and releasing these keys, you
need to process WM_SYSKEYDOWN and WM_SYSKEYUP, rather than the more normal WM_KEYDOWN and
WM_KEYUP. Of course, Alt acts as a modifier for other keys, so the wParam will contain the code for the
modified key.

The following example assumes that you have a property sheet with three property pages with the
captions General, Debug, and C/C++, respectively, so that they can be selected using the accelerator keys
Alt-G, Alt-D and Alt-C:

BOOL CPropSheetGeneral::PreTranslateMessage(MSG* pMsg)
{
 if (WM_SYSKEYDOWN == pMsg->message)
 {
 switch(pMsg->wParam)
 {
 case 'G':
 SetActivePage(0);
 break;
 case 'D':
 SetActivePage(1);
 break;
 case 'C':
 SetActivePage(2);
 break;
 default:
 return CPropertySheet::PreTranslateMessage(pMsg);
 }
 }
 return TRUE;
}

Note that the above techniques won't work with Visual C++ versions prior to 4.0, because previous
versions of MFC didn't use the Windows 95 tab controls. Instead, the tab control in previous versions
of property sheets used a different technique, which involved drawing the tab controls manually. Since
they used the TextOut() API call to display the tab text, accelerator keys were not supported.

Method 2
This method, which uses an accelerator table, is rather more useful than the previous one. The following

steps show how it can be done:
1 Define a new accelerator table using the resource editor.
2 Derive a class from CPropertySheet, for example CPropSheetExtended, and add a data member:

HACCEL m_hAccel;

3 Add a new member function to the class which loads the accelerator table.

void CPropSheetExtended::LoadAcceleratorTable(UINT nAccelTableID /*=0*/)
{
 if (nAccelTableID)
 {
 m_hAccel = ::LoadAccelerators(AfxGetInstanceHandle(),
 MAKEINTRESOURCE(nAccelTableID));
 }
}

4.Override CPropertySheet::PreTranslateMessage() and modify it as follows:

BOOL CPropSheetExtended::PreTranslateMessage(MSG* pMsg)
{
 // Check to see if the property sheet has an accelerator table
 // attached to it. If there is one, call it. Return TRUE if it has
 // been processed. Otherwise, pass it to the base class function.
 if (m_hAccel && ::TranslateAccelerator(m_hWnd, m_hAccel, pMsg))
 return TRUE;
 return CPropertySheet::PreTranslateMessage(pMsg);
}

Embedding Property Sheets
Now that we've seen how to extend the standard property sheet class, let's turn our attention to embedding
the property sheet in various types of window. In the next few sections, you'll see how to embed a
property sheet in the following windows:

CViews
CMiniFrameWnds
Dialogs
Splitter windows

Embedding a Property Sheet in a CFormView
Window
Displaying a property sheet inside a class that is derived from CView is no different from displaying a
button. You override the OnCreate() function to create the property sheet, adjust the view's dimensions
accordingly, then override OnInitialUpdate() to resize the main frame to fit the property sheet. Here's
how it can be done:

int CPropSheetView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFormView::OnCreate(lpCreateStruct) == -1)
 return -1;
 // Create the modeless property sheet. You should add the
 // property pages before creating the property sheet
 m_pPSExample1View->AddPage(&m_ViewGeneralPage);
 m_pPSExample1View->AddPage(&m_ViewDebugPage);
 m_pPSExample1View->AddPage(&m_ViewCplusPage);
 if (!m_pPSExample1View->Create(this, WS_CHILD | WS_VISIBLE, 0))
 return -1;
 m_pPSExample1View->SetImageList(IDB_TVBMPIMG, 16, 1, RGB(255,0,0));
 CRect rectSheet, rectWindow;
 m_pPSExample1View->GetWindowRect(rectSheet);
 rectWindow = rectSheet;
 CalcWindowRect(rectWindow);
 // Adjust the positions of the frame and property sheet
 SetWindowPos(NULL, rectWindow.left,rectWindow.top,
 rectWindow.Width() + 10, rectWindow.Height(),
 SWP_NOZORDER | SWP_NOACTIVATE);
 m_pPSExample1View->SetWindowPos(NULL, 0, 0 ,rectSheet.Width(),
 rectSheet.Height(), SWP_NOZORDER | SWP_NOACTIVATE);
 return 0;
}
void CPropSheetView::OnInitialUpdate()
{
 CFormView::OnInitialUpdate();
 GetParentFrame()->RecalcLayout();
 ResizeParentToFit(FALSE);
 ResizeParentToFit(TRUE);
}

Note that you may add more than one property sheet to the view. All you then need to do is to create it

in the same way as the first one, and adjust the coordinates of the window accordingly.

Embedding a Property Sheet Inside a
CMiniFrameWnd
This section will show you how to embed a property sheet inside a CMiniFrameWnd. In case you aren't
familiar with this class, these are the half-height frame windows seen around floating toolbars. They
behave just like normal frame windows, except that they don't have maximize and minimize buttons, and
can be dismissed by a single click on the system menu.

The procedure consists of deriving a class, CPSMiniFrameWnd, from CMiniFrameWnd and creating the
property sheet as a child window of the derived class. Does this sound familiar?

Creating the CPSMiniFrameWnd Class
Here's how to create the CPSMiniFrameWnd class. First, using ClassWizard, derive a class from
CMiniFrameWnd; for example CPSMiniFrameWnd.

Then provide message handlers for WM_ACTIVATE, WM_CREATE, and WM_SETFOCUS. Windows sends
WM_ACTIVATE to both the window that is being deactivated (first) and then to the window that is being
activated. This message is sent only to top-level windows. WM_CREATE is sent to the window after it has
already been created and before it has been made visible. You should limit your OnCreate() functionality
to initialization issues (e.g., changing the size). Don't send messages from this function. WM_SETFOCUS is
sent to the window after is has been activated (i.e. when it gains the keyboard and mouse focus).

You can override the base class OnCreate() function to create the property sheet as a child of the mini-
frame window and add the member function SetPropSheet(). Also, add the member pointer object
m_pEmbeddedPropSheet to the class declaration.

If you want to hide the standard buttons call the CPropSheetExtended::SetDisplayStdButtons()
function, otherwise, they will be displayed automatically.

Here you can see the code for the PSMiniFrameWnd.h header file:

class CPSMiniFrameWnd : public CMiniFrameWnd
{

 DECLARE_DYNCREATE(CPSMiniFrameWnd)
public:
 // protected constructor used by dynamic creation
 CPSMiniFrameWnd(CPSMiniFrameWnd** ppSelf = NULL) ;

// Attributes
public:

// Operations
public:
 void SetPropSheet(CPropSheetExtended* pPropSheet) ;
// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CPSMiniFrameWnd)
 public:
 virtual BOOL Create(LPCTSTR lpszWindowName, CWnd* pParentWnd = NULL);
 //}}AFX_VIRTUAL

// Implementation
protected:
 CPropSheetExtended* m_pEmbeddedPropSheet;
 CPSMiniFrameWnd** m_ppSelf;

public:
 virtual ~CPSMiniFrameWnd();

 // Generated message map functions
 //{{AFX_MSG(CPSMiniFrameWnd)
 afx_msg void OnActivate(UINT nState, CWnd* pWndOther, BOOL bMinimized);
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnSetFocus(CWnd* pOldWnd);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};
//

Let's look at some of the most important functions in this class (the entire code can be found on the CD).
The order in which we consider them reflects the order in which they'll typically get used.

The construction code doesn't do much, except to initialize the pointer to the embedded property sheet to
NULL.

SetPropSheet()
SetPropSheet() saves a pointer to the property sheet object which will be used with this window:

void CPSMiniFrameWnd::SetPropSheet(CPropSheetExtended* pPropSheet)
{
 m_pEmbeddedPropSheet = pPropSheet;
}

Create()
As with many MFC classes, instantiating the MFC object doesn't create and display the underlying
Windows objects. That is done by another function; in this case, Create(). This function creates and
shows the window, provided that the user has attached a property sheet to the object.

BOOL CPSMiniFrameWnd::Create(LPCTSTR lpszWindowName,
 CWnd* pParentWnd /*=NULL*/)

{
 // Make the sure the user has assigned the pointer to the child
 // dialog.
 CRect rectMiniFrame(0,0,0,0);
 BOOL bRtnValue = CMiniFrameWnd::Create(NULL,lpszWindowName,
 WS_POPUP | WS_CAPTION | WS_SYSMENU,
 rectMiniFrame, pParentWnd);
 if (bRtnValue)
 {
 CenterWindow();
 ShowWindow(SW_SHOW);
 }
 return bRtnValue;
}

OnCreate()
The ON_WM_CREATE message is sent to the window after Create() has been called, but before the window
is made visible. This routine creates the property sheet, and then resizes the frame window so that it fits
around the property sheet, and finally puts them both into the correct positions:

int CPSMiniFrameWnd::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CMiniFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;
 // Create the modeless property sheet
 if (!m_pEmbeddedPropSheet->Create(this, WS_SYSMENU |
 WS_CHILD | WS_VISIBLE, 0))
 return -1;
 // Now we want to resize the miniframe window to fit the property
 // sheet inside it. In the following CMiniFrameWnd::CalcWindowRect()
 // adjusts the size of the mini frame window to encompass the property
 // sheet.
 CRect rectSheet, rectMiniFrame;
 m_pEmbeddedPropSheet->GetWindowRect(rectSheet);
 rectMiniFrame = rectSheet;
 CalcWindowRect(rectMiniFrame);
 // Adjust the positions of the miniframe and property sheet
 SetWindowPos(NULL, rectMiniFrame.left, rectMiniFrame.top,
 rectMiniFrame.Width(), rectMiniFrame.Height(),
 SWP_NOZORDER | SWP_NOACTIVATE);
 m_pEmbeddedPropSheet->SetWindowPos(NULL, 0, 0 ,rectSheet.Width(),
 rectSheet.Height(), SWP_NOZORDER | SWP_NOACTIVATE);
 return 0;
}

OnActivate()
The WM_ACTIVATE message, handled by the OnActivate() handler function, is sent when a window is
being either activated or deactivated. In our example here, the mini-frame window sends the message on
to the embedded property sheet, so that it can take any necessary action:

void CPSMiniFrameWnd::OnActivate(UINT nState, CWnd* pWndOther,
 BOOL bMinimized)
{
 CMiniFrameWnd::OnActivate(nState, pWndOther, bMinimized);
 // Get a pointer to the current message

 const MSG* pMsg = GetCurrentMessage();
 // Send the message to the child property Sheet
 m_pEmbeddedPropSheet->SendMessage(pMsg->message, pMsg->wParam,
 pMsg->lParam);
}

An Example
The following is an example of how it can be used:

void CPropSheetView::OnPSMiniFrame()
{
 m_pPSMiniFrameWnd = new CPSMiniFrameWnd(&m_pPSMiniFrameWnd);
 m_pEmbeddedPropSheet = new CPSExample2(AFX_IDS_APP_TITLE,
 this, 0, &m_pEmbeddedPropSheet);
 m_pEmbeddedPropSheet->AddPage(&m_MiniFramePageGeneral);
 m_pEmbeddedPropSheet->AddPage(&m_MiniFramePageStyle);
 m_pEmbeddedPropSheet->SetDisplayStdButtons();
 m_pPSMiniFrameWnd->SetPropSheet(m_pEmbeddedPropSheet);
 if (!m_pPSMiniFrameWnd->Create(_T("Dialog Properties"), this))
 {
 delete m_pEmbeddedPropSheet;
 delete m_pPSMiniFrameWnd;
 ASSERT(FALSE);
 }
}

Note that the above code uses m_pEmbeddedPropSheet->SetDisplayStdButtons() to instruct
the property sheet not to display the standard buttons which would otherwise have been displayed.

Embedding a Property Sheet Inside a Dialog
Embedding a property sheet inside a dialog is the same as embedding it inside a CView-derived class, with
one important addition, which we'll cover shortly.

The PropSheet example program shows how to construct a dialog with an embedded property sheet and a
tree list, just like the Project Settings dialog from Developer Studio. We're only going to discuss how the
property sheet is implemented.

The Dialog Object
The dialog object is a CDialogSheet; this class is derived from CDialogExtension, which adds various
capabilities to the basic CDialog class, including the ability to handle accelerator keys.

When the dialog is created, we need to create the tree list and the property sheet:

BOOL CDialogSheet::OnInitDialog()
{
 CDialogExtension::OnInitDialog();
 InitTreeCtrl();
 OnDialogsheetDisplayprop();
 return TRUE;
}

The property sheet is set up as before, and three pages are added to it. The next step is to position it
correctly in the dialog relative to the tree list:

void CDialogSheet::OnDialogsheetDisplayprop()
{
 // Create the modeless property sheet
 m_pPropSheetTest = new CPSExample3(_T("Property Sheet"), this,
 0, &m_pPropSheetTest);
 m_pPropSheetTest->SetDisplayStdButtons();
 m_pPropSheetTest->AddPage(&m_GeneralPage);
 m_pPropSheetTest->AddPage(&m_DebugPage);
 m_pPropSheetTest->AddPage(&m_CplusPage);
 // Retrieve a ptr to the list ctrl window

 CWnd* pWnd = GetDlgItem(IDC_DIALOGSHEET_TREE);
 // Retrieve the location of the window
 CRect rectListWnd;
 pWnd->GetWindowRect(rectListWnd);
 ScreenToClient(rectListWnd);
 if (!m_pPropSheetTest->Create(this,
 WS_SYSMENU | WS_CHILD | WS_CLIPSIBLINGS | WS_VISIBLE, 0))
 {
 // Issue error message and return…
 return;
 }
 m_pPropSheetTest->SetWindowPos(NULL, rectListWnd.right+7,
 rectListWnd.top - 5,0, 0, SWP_NOSIZE | SWP_NOZORDER | SWP_NOACTIVATE);
}

The Property Sheet Class
Before using property sheets inside a dialog, you need to make one important addition to the property
sheet class. Make sure that you set the WS_EX_CONTROLPARENT style for the sheet in its OnInitDialog()
method, like this:

BOOL CPSExample3::OnInitDialog()
{
 ModifyStyleEx(0, WS_EX_CONTROLPARENT);
 return CPropSheetGeneral::OnInitDialog();
}

If you don't do this, your application will end up in an endless loop!

Embedding a Property Sheet Inside a Splitter
Window
Using a property sheet inside a splitter window isn't hard either, because each of the panes in a splitter
window is a view, so we can use the same techniques that we have used up to now to embed a property
sheet in whichever pane we choose.

The sample program on the CD, called Splitter, was created as an SDI application using AppWizard,
and choosing splitter window support from the Advanced... options. This sets up your application with the
basic mechanics for using a splitter window, but you still have to add your application-specific code.

Creating the Property Sheet View Class
In our case, we need to create a new view class which will display the property sheet, and which will be
displayed in the right-hand pane of the splitter window. As in previous examples, this class is derived
from CFormView and contains data members representing the property sheet and the dynamic dialogs for
the tabs.

class CFormViewDialog : public CFormView
{
protected:
 CFormViewDialog(); // protected constructor used by dynamic creation
 DECLARE_DYNCREATE(CFormViewDialog)

// Form Data
public:

 //{{AFX_DATA(CFormViewDialog)
 enum { IDD = IDD_FORMVIEW_DIALOG };
 // NOTE: the ClassWizard will add data members here
 //}}AFX_DATA

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CFormViewDialog)
 public:
 virtual void OnInitialUpdate();
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 //}}AFX_VIRTUAL

// Implementation
protected:
 virtual ~CFormViewDialog();

 // Property sheet member objects
 CPSExample1* m_pPSView;
 CDebugPage m_ViewDebugPage;
 CCplusPage m_ViewCplusPage;
 CGeneralPage m_ViewGeneralPage;

#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

 // Generated message map functions
 //{{AFX_MSG(CFormViewDialog)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

Setting up the Splitter Window
CMainFrame::OnCreateClient() is the place where the splitter window is set up. We use CreateView()
to attach a default view to the left-hand pane, and one of our new views to the right-hand one.

BOOL CMainFrame::OnCreateClient(LPCREATESTRUCT /*lpcs*/,
 CCreateContext* pContext)
{
 m_wndSplitter.CreateStatic(this, 1, 2);
 m_wndSplitter.CreateView(0,0, RUNTIME_CLASS(CSplitterView),
 CSize(100,100), pContext);
 m_wndSplitter.CreateView(0,1, RUNTIME_CLASS(CFormViewDialog),
 CSize(100,100), pContext);
 return TRUE;
}

Building the Property Sheet
The process of building the property sheet is quite straightforward. When the view is created, we set up a
new property sheet object (a CPSExample1 in this case), and add the pages to it, after which we resize the
window to fit the property sheet:

int CFormViewDialog::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFormView::OnCreate(lpCreateStruct) == -1)
 return -1;

 // Allocate memory for the property sheet and make sure
 // that the standard buttons don't show up.
 m_pPSView = new CPSExample1(_T(""), this, 0, &m_pPSView);
 m_pPSView->SetDisplayStdButtons();
 m_pPSView->AddPage(&m_ViewGeneralPage);
 m_pPSView->AddPage(&m_ViewDebugPage);
 m_pPSView->AddPage(&m_ViewCplusPage);
 if (!m_pPSView->Create(this, WS_SYSMENU | WS_CHILD | WS_VISIBLE, 0))
 return -1;
 // Now we want to resize the window to fit the property sheet inside
 // it. CalcWindowRect() adjusts the size of the window to encompass the
 // property sheet.
 CRect rectSheet, rectWindow;
 m_pPSView->GetWindowRect(rectSheet);
 rectWindow = rectSheet;
 CalcWindowRect(rectWindow);
 // Adjust the positions of the window and property sheet
 SetWindowPos(NULL, rectWindow.left,rectWindow.top,
 rectWindow.Width() + 5,
 rectWindow.Height(), SWP_NOZORDER | SWP_NOACTIVATE);
 m_pPSView->SetWindowPos(NULL, 0, 0 ,rectSheet.Width(),
 rectSheet.Height(), SWP_NOZORDER | SWP_NOACTIVATE);
 return 0;
}

And here you can see what you should end up with:

Summary
And there we have it. You can find all of the code we've discussed throughout the chapter, put to use in
various projects on the CD. You'll also find some extra code and classes not discussed in this chapter, so
it's definitely worth taking a look. Dialogs and property sheets are valuable members of the arsenal of
controls that you have available to help you write Windows programs, and after reading this chapter, we
hope that you'll be better equipped to use them effectively.

Windows Multimedia Services
In this chapter, we'll look at the basic multimedia services that are now standard features of the Win32
API. The core multimedia functions offered by the Windows environment are found in the Windows
Multimedia System (Winmm.lib) library, which ships with Visual C++ 4.1.

The Windows Multimedia System first appeared as an add-on to Windows 3.0, probably as a response to
the rise of the Apple Macintosh as the widely-recognized leader in multimedia. The add-on was shipped
as a dynamic-link library called Mmsystem.dll, and the name MMSYSTEM is frequently applied to the
features it contains. MMSYSTEM became a standard part of Windows with version 3.1 and is now called
WINMM in the Win32 environments. MMSYSTEM provides a very versatile set of APIs for controlling
audio and video devices, including CD-audio, AVI, MIDI and external devices like video-disc players.
MMSYSTEM finally made Windows a serious contender in the multimedia market.

Overview
Let's take a high-level look at what's included in the Windows Multimedia System:

MCI
The Media Control Interface (MCI) provides a high-level, device-independent way to get basic
multimedia services into your apps. If you just need playback or simple recording capabilities, MCI is the
quickest path for you. However, if you need to do anything fancier with your media (like signal-
processing or graphing an audio wave, for instance), MCI may not be able to handle it.

Low-level API
The Multimedia System includes low-level APIs for everything it does, so you can do just about anything
you want. Unlike MCI, however, the low-level APIs require much more of a grasp of the underlying
devices and media. The low-level APIs give you finer control over your apps' interaction with media
devices.

Multimedia File (RIFF) I/O Services
When you're using the low-level APIs, for some special applications (like media editors), you'll need to
crack open a Resource Interchange File Format (RIFF) media file and inspect or alter its contents. This
isn't for the faint of heart, but the Multimedia System does provide RIFF file I/O services. A wave (.wav)
file is an example of a RIFF file.

The Media Control Interface
The Media Control Interface (MCI) provides a very high-level, device-independent way to control media
devices from Windows programs. MCI capitalizes on the fact that most media devices are similar in the
interface they present to the user. CD players, video-tape and disc players, and MIDI sequencers all share
some common media transport controls. (For instance, they all have some form of Play, Stop, Pause,
and Rewind controls.) Following this model, MCI defines a set of transport commands that MCI devices
can implement. An MCI device can be queried to determine which commands it supports (for instance,
not all MCI devices support recording). Then, application programs can simply instruct an MCI device to
play (or stop, etc.) without needing to know any of the operating details of the device or the media it
supports. This approach makes MCI exceptionally easy to use and highly device-independent.

How MCI Works
To be accessible to MCI, a device needs to have an MCI device driver installed. The MCI driver provides
the high-level interfaces to control the device. MCI device drivers can be controlled by two different
methods; they can be sent commands in the form of text strings, or they can be sent command messages
through theWINMM API.

The MCI Command-string Interface
The command-string interface is designed to facilitate device control by high-level, interpreted
programming environments like Visual Basic. The programmer constructs device control commands as
English-like strings ("play fanfare.wav") and sends them to the device.

The MCI Command Message Interface
The command-message interface provides a more efficient means of controlling MCI devices for C
programmers. Instead of constructing strings for commands, the commands are sent directly through API
calls, like:

mciSendCommand(mci_device, MCI_PLAY, 0,(DWORD)(LPVOID)&play_struct);

To use the command-message interface, you must open the appropriate MCI device, construct and send
the appropriate command messages, and close the device.

The MCIWnd Window Class
Perhaps the easiest way to incorporate MCI media playback into your Visual C++ app is to use the
MCIWnd control from the Video for Windows library, which ships as a standard feature of Visual C++
4.1. You can create one of these handy control windows in your app, and it will handle all of the MCI
device communication for you, and manage the display and/or audio playback of the device's output.

Creating an MCIWnd
MCIWnd is a registered window class, like any of the standard control window classes. You can create an
MCIWnd either as an independent window or as a child control on one of your app's windows.

MCIWndCreate()
You create an MCIWnd by calling the function MCIWndCreate(), which is defined as follows:

HWND MCIWndCreate(
 HWND hwndParent, // HWND of parent (can be NULL)
 HINSTANCE hInstance, // Instance handle of app
 DWORD dwStyle, // Window style flags
 LPCSTR szFile // File name of media file to load
);

If hwndParent is NULL and dwStyle is 0, the MCIWnd style defaults to WS_VISIBLE|
WS_OVERLAPPEDWINDOW. If a parent HWND is given and dwStyle is 0, the style defaults to WS_VISIBLE|
WS_CHILD|WS_BORDER.

MCIWnd Styles
Aside from the regular window styles, MCIWnd also supports some special styles of its own that control
its behavior and appearance. Here are some of them:

MCIWnd Style Meaning
MCIWNDF_NOAUTOSIZEWINDOW Don't resize the window to fit the movie.
MCIWNDF_NOPLAYBAR Hide the transport controls.
MCIWNDF_NOAUTOSIZEMOVIE Don't resize the movie to fit the window.
MCIWNDF_NOMENU Don't post the menu when the right button is clicked on

MCIWnd.
MCIWNDF_SHOWNAME Show the file name in caption.
MCIWNDF_SHOWPOS Show the position in caption.
MCIWNDF_SHOWMODE Show the mode in caption.
MCIWNDF_SHOWALL Show everything in caption (MCIWNDF_SHOWNAME|

MCIWNDF_SHOWPOS| MCIWNDF_SHOWMODE).
MCIWNDF_RECORD Allow recording and include a Record button on the playbar.
MCIWNDF_NOOPEN Don't allow the user to open files from the MCIWnd menus.

Let's look at an example that you might put in the code for a view class in your own code:

HWND hwndMCI = MCIWndCreate(NULL, AfxGetInstanceHandle(),
 WS_VISIBLE|WS_OVERLAPPED|MCIWNDF_SHOWALL|MCIWNDF_NOOPEN,
 "intro.avi");

This code creates a free-floating MCIWnd showing the movie file Intro.avi with the media file name,
play mode and playback position in the caption, and prevents users from opening other media files from
the MCIWnd's menus.

Controlling an MCIWnd: MCIWnd Macros
Once you've created an MCIWnd, you can send it instructions through a set of macros defined in the
Video for Windows header (Vfw.h). These macros send messages to the MCIWnd to tell it what to do,
and there are quite a few of them, so here are some of the most commonly-used ones:

Macro What It Does
BOOL MCIWndCanPlay(HWND mciwnd) Returns TRUE if the device is capable of

playback.
BOOL MCIWndCanRecord(HWND mciwnd) Returns TRUE if the device is capable of

recording.
BOOL MCIWndCanEject(HWND mciwnd) Returns TRUE if the device is capable of

ejecting media from device.
BOOL MCIWndCanSave(HWND mciwnd) Returns TRUE if the device is capable of

saving media data to a file.
MCIWndPlay(HWND mciwnd) Starts media playback.
MCIWndStop(HWND mciwnd) Stops media playback.
MCIWndPause(HWND mciwnd) Pauses media playback.
MCIWndResume(HWND mciwnd) Resumes playback after a Pause.
MCIWndHome(HWND mciwnd) Rewinds the media to the beginning.

MCIWndEnd(HWND mciwnd) Advances the media transport to the end of
the media.

MCIWndSeek(HWND mciwnd, LONG lPos) Advances the media transport to the given
position.

MCIWndEject(HWND mciwnd) Ejects the media from the device.
MCIWndRecord(HWND mciwnd) Starts the media recording.
MCIWndSave(HWND mciwnd, LPCSTR szFile) Saves the media to a file.
MCIWndDestroy(HWND mciwnd) Shuts down the MCIWnd.

Now let's see how to use MCI, through the MCIWnd, in an actual C++ app.

Project MCIPlayer - A Simple Media Player Using
MCIWnd
The purpose of this project is to illustrate the use of the MCIWnd object provided in the Video for
Windows library. You can use the techniques covered in this project to easily add basic multimedia
playback capabilities to your own apps.

The MCIPlayer app is a very simple program. It allows the user to open multimedia files as documents
and play them. Each open file gets its own MDI view, containing only an MCIWnd control for playing the
file.

Step 1
Use AppWizard to create a new project entitled MCIPlayer. Create the project using the following
AppWizard options:

AppWizard Step 1: use the default setting (multiple documents).
AppWizard Step 2: use the default setting (no database support).
AppWizard Step 3: use the default settings (no OLE support).
AppWizard Step 4: use the default settings, except turn off printing and print preview support (we
won't be using it).
AppWizard Step 5: use the default settings.
AppWizard Step 6: use the default settings.

If everything worked all right, you should wind up with a New Project Information dialog that looks like
this:

Step 2
We need to add a member variable to the CMCIPlayerView class to hold the window handle of the
MCIWnd control that we're going to create later. Go to the class definition for CMCIPlayerView and add:

private:
 HWND m_hwndMCI;

Step 3
We'll actually create the MCIWnd control in the OnInitialUpdate() function for CMCIPlayerView. Use
ClassWizard to add an OnInitialUpdate() function override to CMCIPlayerView, and put the following
code in it:

void CMCIPlayerView::OnInitialUpdate()
{
 CView::OnInitialUpdate();

 // Get the filename of the opened MCI file from the document
 CString avifile = GetDocument()->GetPathName();

 // Create the MCI window as a child of the view
 m_hwndMCI = MCIWndCreate(this->GetSafeHwnd(), AfxGetInstanceHandle(),
 WS_CHILD|WS_VISIBLE|MCIWNDF_NOOPEN, avifile);
}

We're doing two things here. First, we're retrieving the name of the file for which this view was opened.

Then we're creating an MCIWnd control as a child of the view, telling it the file name of the media file
for the document. We're going to use the MCIWNDF_NOOPEN style so that users must go through the app's
file open mechanism to open new media files.

While we're in this module, we need to include the header for the Video for Windows library, since we're
creating an MCIWnd here. Go to the top of this file and add,

#include <vfw.h>

after the other #includes you find up there. Also, we'll need to link with the Video for Windows library.
Under the Developer Studio Build menu, choose Settings.... Go to the Link tab and add Vfw32.lib under the
Object/library modules: heading:

Step 4
We need to block the creation of a new, blank document at start up in this app, since it's really just a file
viewer. Go to the InitInstance()function in CMCIPlayerApp and add the following to the command-line
processing code:

 // Parse command line for standard shell commands, DDE, file open
 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

 // Dispatch commands specified on the command line
 if (cmdInfo.m_nShellCommand != CCommandLineInfo::FileNew)
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;

At this point, you can build and run the app so far. You should be able to open any .wav, .mid, or .avi
file and use the MCIWnd control to play it.

Step 5
Let's enhance the app (and explore MCIWnd further) by adding some media transport controls. We'll add
Play, Stop and Rewind functions to the app. First, add a new menu to the document menu bar
(IDR_MCIPLATYPE). Delete the Edit menu from this menu bar and insert the new menu in its place. Call the
new menu MCI. Add three items to this menu: Play, Stop, and Rewind. Using ClassWizard, add command
handlers for each of these items to CMCIPlayerView.

Invoke the appropriate MCIWnd control macro in each handler:

void CMCIPlayerView::OnMciPlay()
{
 MCIWndPlay(m_hwndMCI);
}

void CMCIPlayerView::OnMciRewind()
{
 MCIWndHome(m_hwndMCI);
}

void CMCIPlayerView::OnMciStop()
{
 MCIWndStop(m_hwndMCI);
}

Step 6
Finally, let's fix up the toolbar. Edit the app's tool bar resource and remove the File New, File Save, and
Print buttons. Also remove the Cut, Copy and Paste buttons. In their place, add buttons for Play, Stop, and
Rewind.

That's it! Here's what the finished app looks like:

The Low-level APIs
As we've just seen, MCI certainly is handy for getting simple multimedia services into your app quickly,
but what if you need to do more with your multimedia data than MCI allows? What if you want to read
and write .wav data? What if you want to interpret or generate individual MIDI events? What if you want
to be able to inspect raw audio wave data so you can draw it, edit it, or synthesize it? The low-level
Multimedia System APIs let you do all of these things and more. For our purposes here, we're calling
everything in the Windows Multimedia System that's not part of MCI the low-level APIs.

The Organization of the Low-level APIs
Let's start off with a quick survey of what's available in the low-level APIs:

Feature Area Function Names Start With

Various wave audio functions wave
Low-level MIDI midi
Multimedia file I/O mmio
Joystick input functions joy
High-resolution timers time

To give you a feel for programming with the low-level Multimedia System APIs, we're going to devote
the rest of this chapter to an in-depth look at one of the most popular uses of the Multimedia System:
working with wave audio. In so doing, we'll hit just about every major concept in the low-level APIs.

Working with PCM Wave Audio
For the purposes of our discussion of wave audio, we'll focus on the basic PCM (Pulse-Code Modulated)
wave audio format used by the Sound Recorder applet and all of the .wav files thatship with Windows 95
and the Plus! Pack. All popular .wav file editors also support this format. First, we'll look briefly at the
PlaySound() function, then we'll look at the basics of wave audio devices and wave data structures. To
get a real idea of what it's like to program with the low-level API, we're going build a class called
CPCMWave that encapsulates PCM wave audio to simplify its use in a program. Finally, we'll build a Visual
C++ project, WaveScope, using CPCMWave.

The PlaySound() Function
Before we delve into the more sophisticated mechanisms in the low-level wave audio API, it's worth
taking a quick look at the PlaySound() function. Though it's technically a part of the low-level API, using
PlaySound() is perhaps the easiest way (even easier than using MCI), to trigger wave audio playback in a
C++ application.

PlaySound() is defined as follows:

BOOL PlaySound(LPCSTR pszSound, HMODULE hmod, DWORD fdwSound);

Parameter Meaning

pszSound The name of the sound to play. The meaning of this name varies with the
setting of fdwSound. If NULL, any wave currently playing is stopped.

hmod Only valid when fdwSound is set to SND_RESOURCE. Identifies the file handle
of an executable file from which to load the sound resource named by
pszSound.

fdwSound Playback flags. Some combination of the flags in the following table.

The possible flags are:

Flag Meaning
SND_APPLICATION Use app-specific association.
SND_ALIAS pszSound specifies a system sound from the registry.

Mutually-exclusive with SND_FILENAME and SND_RESOURCE
SND_ALIAS_ID pszSound contains a predefined sound ID.
SND_ASYNC Play the wave asynchronously (don't wait for it to finish

before returning).
SND_FILENAME pszSound contains a .wav file name.
SND_LOOP Used with SND_ASYNC to play a sound over and over again,

until PlaySound() is called with pszSound = NULL.
SND_MEMORY pszSound is a pointer to a memory image of a wave file.
SND_NODEFAULT Fail if sound not found. Don't try to default.
SND_NOSTOP Don't attempt to stop a sound that is already playing on the

device.
SND_NOWAIT Fail immediately if the driver is busy.
SND_PURGE Abort all sounds playing for the calling task.
SND_RESOURCE pszSound is the ID of a resource in the module hmod.
SND_SYNC Play the wave synchronously (wait for it to finish before

returning).

For example, to use PlaySound() to play the wave file Tada.wav asynchronously, we could put the
following in our code:

PlaySound("tada.wav", 0, SND_FILENAME|SND_ASYNC);

Low-level Wave Audio Devices and WAVE_MAPPER
Before we jump into the details of wave audio data, let's look at the devices that will handle it. A
Windows system has zero or more wave audio devices installed. Most new systems now come with a
sound card, so usually there's at least one wave audio device available to Windows. Sometimes, however,
there are multiple devices installed (or multiple drivers, like a manufacturer-supplied driver and a
Microsoft Windows Sound System driver for the same board). Because not all devices support playback
and recording, wave input and output functions are considered as separate 'devices', even if they reside on
the same physical board.
When we're calling into the low-level wave audio API, we'll need to identify the wave audio input or

output device that we want to use. Audio devices are referenced by a device ID number, ranging from 0 to
one less than the number of devices installed. So, if you have two wave output devices installed, they'll be
numbered 0 and 1. The following snippet of code will tell you how many wave audio input and output
devices you have:

#include <mmsystem.h> // And link with winmm.lib
UINT nInDevs = waveInGetNumDevs();
UINT nOutDevs = waveOutGetNumDevs();

Next, you might want to know what capabilities your wave audio devices have. The following code
fetches the device capabilities for wave in device 0 and wave out device 0:

WAVEINCAPS wic;
WAVEOUTCAPS woc;
waveInGetDevCaps(0 /* device 0 */, &wic, sizeof(WAVEINCAPS));
waveOutGetDevCaps(0 /* device 0 */, &woc, sizeof(WAVEOUTCAPS));

WAVEINCAPS and WAVEOUTCAPS are structs that are defined as follows:

typedef struct {
 WORD wMid;
 WORD wPid;
 MMVERSION vDriverVersion;
 CHAR szPname[MAXPNAMELEN];
 DWORD dwFormats;
 WORD wChannels;
 WORD wReserved1; // padding
} WAVEINCAPS;

typedef struct {
 WORD wMid;
 WORD wPid;
 MMVERSION vDriverVersion;
 CHAR szPname[MAXPNAMELEN];
 DWORD dwFormats;
 WORD wChannels;
 WORD wReserved1; // padding
 DWORD dwSupport;
} WAVEOUTCAPS;

They are the same, except for the dwSupport member in WAVEOUTCAPS. Here's a table showing what the
members mean:

Member Meaning
wMid The manufacturer ID number.
wPid The product ID number.
vDriverVersion The 16-bit version ID: high byte is major version number,

low byte is minor version number.
szPname A string containing the driver name.
dwFormats A bit field containing flags for the standard formats supported

by the driver. See the table below.
wChannels The number of simultaneous channels the device supports

(usually 1 (mono) or 2 (stereo)).
wReserved1 Not used.

dwSupport (WAVEOUTCAPS only) A bit field containing flags for optional playback features
supported by the driver. See the second table below.

The format flags are:

Flag Meaning
WAVE_FORMAT_1M08 11.025 kHz, mono, 8-bit
WAVE_FORMAT_1M16 11.025 kHz, mono, 16-bit
WAVE_FORMAT_1S08 11.025 kHz, stereo, 8-bit
WAVE_FORMAT_1S16 11.025 kHz, stereo, 16-bit
WAVE_FORMAT_2M08 22.05 kHz, mono, 8-bit
WAVE_FORMAT_2M16 22.05 kHz, mono, 16-bit
WAVE_FORMAT_2S08 22.05 kHz, stereo, 8-bit
WAVE_FORMAT_2S16 22.05 kHz, stereo, 16-bit
WAVE_FORMAT_4M08 44.1 kHz, mono, 8-bit
WAVE_FORMAT_4M16 44.1 kHz, mono, 16-bit
WAVE_FORMAT_4S08 44.1 kHz, stereo, 8-bit
WAVE_FORMAT_4S16 44.1 kHz, stereo, 16-bit

The supported features flags are:

Flag Meaning
WAVECAPS_LRVOLUME The left and right volumes can be set separately.
WAVECAPS_PITCH Allows playback pitch control.
WAVECAPS_PLAYBACKRATE Allows playback rate control.
WAVECAPS_SYNC Playback is synchronous only.
WAVECAPS_VOLUME Allows playback volume control.
WAVECAPS_SAMPLEACCURATE Playback position queries will be sample-accurate.

It's great to be able to get all of this information about the wave devices, and to be able to enumerate
them, but it seems awfully cumbersome to have to do this every time you want to identify and use the
main audio devices on a Windows system. To simplify things a bit, Microsoft provides a special device
ID, WAVE_MAPPER, that you can use to grab the default or best-fit device for your purposes. You simply use
the WAVE_MAPPER constant in the wave audio function calls that take a device ID, and you'll automatically
get the right device.

The Structure of PCM Wave Data
To send wave audio data to a wave device, we have to make sure that it's in the right format. We'll use a
WAVEFORMATEX structure to describe the data format of a wave. When we're attempting to open a wave
device to use our wave data, we'll use the WAVEFORMATEX struct to tell the driver what it needs to be able
to support to handle the data. The driver can then decide whether the wave data format will work and
report back to us. The WAVEFORMATEX struct looks like this:

typedef struct {
 WORD wFormatTag;
 WORD nChannels;
 DWORD nSamplesPerSec;
 DWORD nAvgBytesPerSec;
 WORD nBlockAlign;
 WORD wBitsPerSample;
 WORD cbSize;
} WAVEFORMATEX;

Member Meaning
wFormatTag The wave data format type (PCM, ADPCM, etc.). The Mmreg.h header file

defines the latest wave formats registered with Microsoft. The most
common one is WAVE_FORMAT_PCM, which we'll use in this chapter.

nChannels The number of channels of sample data (usually 1 or 2).
nSamplesPerSec The sample rate, in Hertz.
nAvgBytesPerSec The average number of bytes to read per second of playback. Varies with

the data format. For WAVE_FORMAT_PCM, it's just nSamplesPerSec x
nBlockAlign.

nBlockAlign The total bytes required to be read per sample period. For
WAVE_FORMAT_PCM, it's (nChannels x wBitsPerSample)/8.

wBitsPerSample The bitwidth of the sample data. For WAVE_FORMAT_PCM, this must be 8 or
16.

cbSize The size of additional data after the end of this struct (not used by
WAVE_FORMAT_PCM, but used by every compression format).

To set up for the playback of a 16-bit stereo 22.05kHz PCM wave, you would fill out a WAVEFORMATEX
like this:

WAVEFORMATEX wfmt;
wfmt.wFormatTag = WAVE_FORMAT_PCM; // Vanilla PCM
wfmt.nChannels = 2; // Stereo
wfmt.nSamplesPerSec = 22050; // 22.05kHz sample rate
wfmt.wBitsPerSample = 16; // Bitwidth = 16 bits
wfmt.nBlockAlign = 4; // (nChannels * wBitsPerSample) / 8
wfmt.nAvgBytesPerSec = 88200; // nSamplesPerSec * nBlockAlign
wfmt.cbSize = 0; // No extra data for vanilla PCM

You send a block of wave data to a wave device (or receive it from one), via a header struct, called
WAVEHDR. A WAVEHDR points to the block of raw sample data and gives a few extra flags to describe what's
going on with the data. Before you use the WAVEHDR, you must be 'prepare' it by calling either
waveInPrepareHeader() or waveOutPrepareHeader(), depending on whether you're going to use it for
input or output (more on that later). The WAVEHDR struct looks like this:

typedef struct {
 LPSTR lpData;
 DWORD dwBufferLength;
 DWORD dwBytesRecorded;
 DWORD dwUser;
 DWORD dwFlags;
 DWORD dwLoops;
 struct wavehdr_tag far * lpNext;
 DWORD reserved;

} WAVEHDR;

Member Meaning
lpData The address of wave data buffer.
dwBufferLength The buffer size, in bytes.
dwBytesRecorded The number of bytes recorded (input only).
dwUser The 32-bit value for your use.
dwFlags The flags to indicate what to do with data or current status. This can be any

combination of the flags in the following table.
dwLoops The number of times to loop (output only).
lpNext Reserved. Must be 0.
reserved Reserved. Must be 0.

The flags can be:

Flag Meaning
WHDR_BEGINLOOP Start looping at this block (output only).
WHDR_DONE The wave device is done playing this block (output only).
WHDR_ENDLOOP Stop looping at this block (output only).
WHDR_INQUEUE The buffer is currently queued for playback (output only).
WHDR_PREPARED The header has been prepared by waveInPrepareHeader() or

waveOutPrepareHeader().

The actual sample data is stored in a big block of memory on its own, as a string of bytes whose meaning
depends on the audio format being used. For WAVE_FORMAT_PCM, there are four possible arrangements of
the raw sample data. In each case, the data is made up of blocks of one or more bytes, with each block
representing the data for all channels for a given sample period:

PCM Format Data Block Layout in Memory

8-bit mono 1 byte per block; each byte is a separate sample.
8-bit stereo 2 bytes per block; byte 1 is left channel sample, byte 2 is right channel sample.
16-bit mono 2 bytes per block; byte 1 is low-order byte of sample, byte 2 is high-order byte of

sample.
16-bit stereo 4 bytes per block; byte 1 is low-order byte of left channel sample, byte 2 is high-

order byte of left channel sample, byte 3 is low-order byte of right channel
sample, byte 4 is high-order byte of right channel sample.

Before you can do anything with the raw data once you've got access to it, you need to know what it
actually means. Basically, the individual channel wave samples represent the relative linear amplitude
(height) of the audio wave at the instant in time when the sample was recorded. If you were to plot the
sample values on a graph and connect them together, you'd get back the shape of the original waveform.
The problem is that waves are usually bipolar. In other words, they flip-flop between positive-going and
negative-going values, centered on zero. 8-bit data ranges from 0-255 (no negative numbers) and 16-bit
data ranges from 0-65535. To overcome this, 16-bit wave data is represented in memory as a C++ signed
short int. For 8-bit data, it's a little different. Instead of using 2's complement signed binary arithmetic,
the values simply range from 0-255, with 128 representing zero. The graph below should help make this
clearer:

An important note about memory allocation for WAVEHDRs and raw sample data is that both of these need
to be allocated using GlobalAlloc() with the GMEM_MOVEABLE and GMEM_SHARE (yes, still under Win32!)
flags, since they will actually be handed off to the wave device to manage during playback or recording.

OK, now you know a few things about PCM wave audio. You use a WAVEFORMATEX struct to describe the
format and general playback requirements of a wave. You use a WAVEHDR to actually pass the wave data to
a wave audio device. You place the wave data in a big block of bytes, following the block format and
amplitude value guidelines we've just laid out. Now let's look at how to actually play it back on a wave
output device.

Using a Wave Device for Playback
There are basically seven steps to using the low-level audio API to play a sound:

1 Set up a WAVEFORMATEX.

2 Open the wave output device.

3 Prepare a WAVEHDR.

4 Write the sample data and WAVEHDR to the device.

5 Wait until device completes playback (either synchronously, or via MM_WOM_DONE

window message or via function callback).

6 Unprepare the WAVEHDR.

7 Close the wave output device.

The following code snippet shows how all of this goes together:

 // Our block of raw wave data lives in here:
 HPSTR hpRawDataBuffer;
 long bufferLength; // number of bytes in buffer
 // (Some code to fill the buffer with wave samples, or block could have
 // been read from file earlier)

 // 1. set up a WAVEFORMATEX
 WAVEFORMATEX wfmt;
 wfmt.wFormatTag = WAVE_FORMAT_PCM; // Vanilla PCM
 wfmt.nChannels = 2; // Stereo
 wfmt.nSamplesPerSec = 22050; // 22.05kHz sample rate
 wfmt.wBitsPerSample = 16; // Bitwidth = 16 bits
 wfmt.nBlockAlign = 4; // (nChannels * wBitsPerSample) / 8
 wfmt.nAvgBytesPerSec = 88200; // nSamplesPerSec * nBlockAlign
 wfmt.cbSize = 0; // No extra data for vanilla PCM
 // 2. open the wave output device and tell it the format we want
 HWAVEOUT hWaveOut; // Handle to receive the wave device handle
 waveOutOpen(&hWaveOut, // Device handle to fill
 WAVE_MAPPER, // ID of device to open
 &pcmWF, // WAVEFORMATEX describing wave
 0, // Callback target - not used here
 0, // Callback user data - not used here
 0); // Open flags - 0 means no callback
 // 3. prepare a WAVEHDR
 // 3a. Globally-allocate the wave header
 HANDLE hWaveHdr = GlobalAlloc(GMEM_MOVEABLE|GMEM_SHARE,
 (DWORD)sizeof(WAVEHDR));
 // 3b. Lock it down
 LPWAVEHDR lpWaveHdr = (LPWAVEHDR) GlobalLock(hWaveHdr);
 // 3c. Set the required fields for playback
 lpWaveHdr->lpData = hpRawDataBuffer;
 lpWaveHdr->dwBufferLength = bufferLength;
 lpWaveHdr->dwFlags = 0;
 // 3d. Prepare the header
 waveOutPrepareHeader(hWaveOut, lpWaveHdr, sizeof(WAVEHDR));
 // 4. write the sample data and WAVEHDR to the device
 waveOutWrite(hWaveOut, lpWaveHdr, sizeof(WAVEHDR));
 // 5. wait until device completes playback
 // This is a simple way to approximate synchronous playback - usually,
 // you would specify a callback function or window when opening the
 // device and handle the rest of this when it receives "done" notification
 // from the device.
 while (!(lpWaveHdr & WHDR_DONE));
 // 6. unprepare the WAVEHDR
 waveOutUnPrepareHeader(hWaveOut, lpWaveHdt, sizeof(WAVEHDR));
 // 7. close the wave output device
 waveOutClose(hWaveOut);
 // Clean up header

 GlobalUnlock(hWaveHdr);
 GlobalFree(hWaveHdr);

Note that this code assumes the raw sample data is already present. You could fill it out yourself (through
synthesis, etc.), or you could have previously read it from a file (more on that in the next section). Note
also that we've skipped error-handling to keep the code readable. The CPCMWave class, which we'll see
soon, will show the correct error-handling.

RIFF Files
Usually, when you're writing apps with the low-level APIs, you'll want to work with multimedia data
stored in standard-format files that can be read and written by other multimedia apps. Some of the
common media files that you see all the time, like .wav and .avi files, are written in a standard format
called Resource Interchange File Format (RIFF).

RIFF files are organized into data blocks, called chunks. Chunks are identified by four-character tags,
called FOURCCs. The FOURCC identifies the type of data stored in the chunk. The low-level
Multimedia System API provides functions (whose names start with mmio) for reading and writing RIFF
chunks.

The .wav File Format
A .wav file is a RIFF file used to store wave audio data. It consists of one big chunk, whose type is RIFF,
that contains at minimum two subchunks: fmt, which specifies the wave's format, and data, which holds
the raw sample data for the wave. There are other chunks that can show up in a .wav file (like the fact
subchunk, which is required for all new wave file formats), but they are not required for our purposes
here. One of the nice features of the mmio functions is that they automatically locate requested chunks
and gracefully ignore any others, so we needn't worry about chunks we're not using. The following
diagram shows the basic chunk structure of a basic PCM .wav file:

Reading and Writing .wav Files
To work with a PCM wave in memory, we'll need to read its format into a WAVEFORMATEX struct and its
sample data into a big buffer of bytes. That means we need to open the main RIFF chunk and read those
two subchunks. Likewise, to save a wave out to a .wav file, we'll need to first write a main RIFF chunk,
then write the format to a fmt subchunk and the sample data to a data subchunk. Here are the steps to
read a PCM wave out of a .wav file:

1 Open the .wav file with mmioOpen().

2 'Descend' into the main RIFF chunk with mmioDescend().

3 'Descend' into the fmt subchunk with mmioDescend().

4 Read the format data into a WAVEFORMATEX (or PCMWAVEFORMAT) struct.

5 'Ascend' out of the fmt subchunk with mmioAscend().

6 'Descend' into the data subchunk with mmioDescend().

7 Read the raw sample data into your sample buffer.

8 Close the .wav file with mmioClose().

Writing a .wav works similarly, except mmioCreateChunk() is called instead of mmioDescend(). Also,
when you're writing, to ensure that the created chucks are updated correctly, you must ascend from them
all before you close the file.

The mmio functions use a struct, called MMCKINFO, to describe chunks:

typedef struct {
 FOURCC ckid;
 DWORD cksize;
 FOURCC fccType;
 DWORD dwDataOffset;
 DWORD dwFlags;
} MMCKINFO;

Member Meaning
ckid The chunk tag.
cksize The size of the remainder of the chunk (after cksize).
fccType The form type for the RIFF chunk (not used for subchunks).
dwDataOffset The file offset, relative to beginning of file, to chunk's data.
dwFlags Either zero or MMIO_DIRTY, which indicates that the chunk's data has

been changed.

Here's a snippet of code that reads wave data from a .wav file called Tada.wav:

 HMMIO hFile; // Multimedia file handle
 MMCKINFO riffChunk;
 MMCKINFO subChunk;
 // 1. open the .WAV file with mmioOpen()
 hFile = mmioOpen("tada.wav", // file name
 NULL, // pointer to MMIOINFO struct, not used here
 MMIO_READ|MMIO_ALLOCBUF); // Open for reading, use a buffer
 // 2. "descend" into the main "RIFF" chunk with mmioDescend()
 // 2a. set the form type of the chunk to find to "WAVE"
 riffChunk.fccType = mmioFOURCC('W','A','V','E');
 // mmioFOURCC() is a helper function that builds FOURCCs for you
 // 2b. descend into the RIFF chunk
 mmioDescend(hFile, // file handle
 &riffChunk, // Info about chunk to find
 NULL, // Parent chunk info - not used here
 MMIO_FINDRIFF); // Find the "RIFF" chunk
 // 3. "descend" into the "fmt " sub-chunk with mmioDescend()
 // 3a. Set up the subChunk struct to look for a "fmt " chunk
 subChunk.ckid = mmioFOURCC('f','m','t',' ');
 // 3b. descend into the sub-chunk
 mmioDescend(hFile, // file handle
 &subChunk, // Info about chunk to find
 &riffChunk, // Parent chunk info
 MMIO_FINDCHUNK); // Find the sub-chunk

 // 4. read the format data into a WAVEFORMATEX (or PCMWAVEFORMAT) struct
 // 4a. Make a buffer to hold the format data
 unsigned long fSize = subChunk.cksize;
 LPWAVEFORMATEX lpFmt = (LPWAVEFORMATEX) new char[fSize];
 // 4b. Read the data into the buffer
 mmioRead(hFile, (HPSTR)lpFmt, fSize);

 // 5. "ascend" out of the "fmt " sub-chunk with mmioDescend()
 mmioAscend(hFile, &subChunk, 0); // Last param is always 0
 // 6. "descend" into the "data" sub-chunk with mmioDescend()
 // 6a. Set up the subChunk struct to look for a "data" chunk
 subChunk.ckid = mmioFOURCC('d','a','t','a');
 // 6b. descend into the sub-chunk
 mmioDescend(hFile, // file handle
 &subChunk, // Info about chunk to find
 &riffChunk, // Parent chunk info
 MMIO_FINDCHUNK); // Find the sub-chunk
 // 7. read the raw sample data into your sample buffer
 // We'll assume lpData was already GlobalAlloc'ed and that
 // data_size contains its size in bytes
 mmioRead(hFile, (HPSTR)lpData, data_size);
 // 8. close the .WAV file with mmioClose()
 mmioClose(hFile,0);

We've left out error-handling for readability. In the CPCMWave class, which we'll create next, we'll do it
right.

CPCMWave: A Class for Handling Simple PCM Wave
Audio
Later in this chapter, we're going to build a project demonstrating low-level manipulation of PCM wave
audio. To help tie together the concepts we've seen so far, and to make it easier to use PCM wave audio in
our program (and in your own projects), it would be nice to have a C++ class that encapsulates PCM
wave audio data and the things one typically does with it. Imagine a PCM wave object that wraps around
a block of PCM sample data, and has methods for playing, reading from and writing to .wav files and
retrieving some basic information about the wave. The object should also allow direct manipulation of the
raw PCM sample data so we can edit it, graph it, synthesize it, or do anything else we please with it.

At the heart of CPCMWave will be the three major data elements required in order to manage PCM wave
audio data: a wave header (WAVEHDR), a wave format struct (WAVEFORMATEX) and a block of raw sample
data. So, we'll start off by defining members in CPCMWave for these elements:

//
// CPCMWave.h - Header for class CPCMWave
//
// Include Microsoft's header for the Windows Multimedia System
// NOTE: You must also link with winmm.lib
#include <mmsystem.h>
class CPCMWave:public CObject
{
protected:
 // Number of *samples*, not bytes, allocated in sample buffer
 unsigned long m_ulDataSize;
 // Wave buffer
 HANDLE m_hData;
 LPSTR m_lpData;
 // Wave header
 HANDLE m_hWaveHdr;
 LPWAVEHDR m_lpWaveHdr;
 // Wave format
 WAVEFORMATEX m_pcmWF;
...

Notice that we've included handles and pointers each for the header and raw sample buffer, because we'll
be GlobalAlloc'ing them. The WAVEFORMATEX can just be a member. We've also stuck in an unsigned
long to keep track of the length of the sample data in the buffer.

Now let's give some thought to how we're going to use a CPCMWave object so we can lay out some
member functions. We'll want to check the wave's format with the playback device, play the wave
asynchronously, get its playback position during playback, load it from and save it to RIFF .wav files,
access and alter its raw sample data, erase it and set its basic format information. We'll also need a
constructor and destructor. Here are some member declarations to handle those functions:

...
 public:
 //
 // Construction / Destruction:
 //

 CPCMWave();
 virtual ~CPCMWave();
 //
 // Wave Attribute Settings:
 //
 // Size of sample buffer - not settable, must pass size into
 // CreateSampleBuffer()
 // For our purposes, a "sample" is a block of bytes representing all data
 // for all channels for one sample period. GetSampleSize() returns the size,
 // in bytes, of one such block. GetSampleSize() is computed from
 // GetNumChannels() and GetBitsPerSample().
 unsigned long GetNumSamples();
 int GetSampleSize();
 // Playback rate
 LONG GetSampleRate();
 void SetSampleRate(LONG new_rate);
 // 1=mono, 2=stereo
 int GetNumChannels();
 void SetNumChannels(int chans);
 // PCM supports 8 and 16
 WORD GetBitsPerSample();
 void SetBitsPerSample(WORD bps);
 //
 // Wave Buffer and Header Access:
 //
 // Provides access to the vector of raw bytes comprising the wave sample data.
 LPSTR GetBuffer();
 // Provides access to the wave header
 LPWAVEHDR GetHeader();
 // Creates a new sample buffer, discarding any old data first
 LPSTR CreateSampleBuffer(LONG num_samples);
 // Disposes of (erases) the current sample buffer
 void FreeSampleBuffer();
 // Indicates whether or not buffer is initialized
 BOOL IsBufferReady();

 //
 // Wave Async Playback Control:
 //
 // Returns TRUE if current wave data is playable on the WAVE_MAPPER device
 BOOL IsPlayable();
 // Starts async playback on the WAVE_MAPPER device
 UINT Play(CWnd* pAppWnd = NULL);
 // Finishes async playback (called from callback function or window message on
 // MM_WOM_DONE)
 void StopPlaying();
 // Returns TRUE if wave is currently playing
 BOOL IsPlaying();
 // Returns the position of the current playback point (meant for use only
 // during playback, ie from a timer callback, etc.)
 unsigned long GetPlayPosition(UINT units = TIME_SAMPLES);
 //
 // Wave RIFF File I/O:

 //
 BOOL SaveWAV(const CString& fname);
 BOOL LoadWAV(const CString& fname);
...

We'll need to add a wave output device handle data member so that we can keep track of the playback
device during asynchronous playback:

...
 // Wave playback device - only used during playback
 HWAVEOUT m_hWaveOut;
...

And a flag to let us know quickly whether or not the wave is currently playing:

...
 // Flag to indicate whether wave is currently playing or not
 BOOL m_bPlaying;
};

That's it for the interface to CPCMWave. Before we leave the header, though, let's do a few things. First, let's
add some struct definitions to help decode the stereo PCM data formats in the sample buffer, so we
won't have to remember the byte ordering:

// Typedefs to make it easier to interpret sample buffer.
// NOTE: Intel only! PCM data is little-endian. Other platforms may need
// to convert.
// Also:
// 8-bit mono is just 1 BYTE per sample
// 16-bit mono is just 1 short per sample (see Intel note above!)
// 8-bit values: Min = 0 Max = 255 Zero = 128
// 16-bit values: Min = -32768 Max = 32767 Zero = 0
typedef struct {
 BYTE left;
 BYTE right;
} PCMSample_8bitStereo;

typedef struct {
 short left;
 short right;
} PCMSample_16bitStereo;

Second, some of the member functions are so simple that we can just add them to the header as inlines
after the class definition:

//
// Inline Member Functions:
//
inline CPCMWave::~CPCMWave()
{
 FreeSampleBuffer();
}
inline unsigned long CPCMWave::GetNumSamples()
{
 return m_ulDataSize;
}
inline int CPCMWave::GetSampleSize()
{

 return m_pcmWF.nBlockAlign;
}
inline LONG CPCMWave::GetSampleRate()
{
 return m_pcmWF.nSamplesPerSec;
}
inline void CPCMWave::SetSampleRate(LONG new_rate)
{
 m_pcmWF.nSamplesPerSec = new_rate;
 // Take care of nAvgBytesPerSec so we don't have to worry about it
 m_pcmWF.nAvgBytesPerSec = new_rate * m_pcmWF.nBlockAlign;
}
inline int CPCMWave::GetNumChannels()
{
 return m_pcmWF.nChannels;
}
inline void CPCMWave::SetNumChannels(int chans)
{
 m_pcmWF.nChannels = chans;
 // Take care of nBlockAlign so we don't have to worry about it
 m_pcmWF.nBlockAlign = (chans * m_pcmWF.wBitsPerSample)/8;
 // ...and fix up nAvgBytesPerSec...
 m_pcmWF.nAvgBytesPerSec = m_pcmWF.nSamplesPerSec*m_pcmWF.nBlockAlign;
}
inline WORD CPCMWave::GetBitsPerSample()
{
 return m_pcmWF.wBitsPerSample;
}
inline void CPCMWave::SetBitsPerSample(WORD bps)
{
 m_pcmWF.wBitsPerSample = bps;
 // Take care of nBlockAlign so we don't have to worry about it
 m_pcmWF.nBlockAlign = (m_pcmWF.nChannels * bps)/8;
 // ...and fix up nAvgBytesPerSec...
 m_pcmWF.nAvgBytesPerSec = m_pcmWF.nSamplesPerSec*m_pcmWF.nBlockAlign;
}
inline HPSTR CPCMWave::GetBuffer()
{
 return m_lpData;
}
inline LPWAVEHDR CPCMWave::GetHeader()
{
 return m_lpWaveHdr;
}

inline BOOL CPCMWave::IsPlaying()
{
 return m_bPlaying;
}

inline BOOL CPCMWave::IsBufferReady()
{
 // If any of these are NULL, buffer is NOT ready
 return (m_hData && m_lpData && m_hWaveHdr && m_lpWaveHdr);
}

Now let's move on to the real implementation of the CPCMWave class. To start, let's get the constructor out
of the way:

CPCMWave::CPCMWave()
{
 m_bPlaying = FALSE;
 m_hData = NULL;
 m_lpData = NULL;
 m_hWaveHdr = NULL;
 m_lpWaveHdr = NULL;

 // 1 sec at 11,025 samps/sec
 m_ulDataSize = 11025L;
 //
 // Set up wave format structure
 //
 // Default: 8-bit mono
 //
 m_pcmWF.wFormatTag = WAVE_FORMAT_PCM;
 m_pcmWF.nChannels = 1;
 m_pcmWF.nSamplesPerSec = 11025L;
 m_pcmWF.nAvgBytesPerSec = 11025L;
 m_pcmWF.nBlockAlign = 1;
 m_pcmWF.wBitsPerSample = 8;
 m_pcmWF.cbSize = 0;
}

We're just initializing things here, and setting up the wave format to an arbitrary (but functional) default.

Next, let's get CreateSampleBuffer() and FreeSampleBuffer() in there:

LPSTR CPCMWave :: CreateSampleBuffer(long num_samples)
{
 m_ulDataSize = num_samples;
 //
 // Allocate sample buffer of user-supplied length
 //
 m_hData = GlobalAlloc(GMEM_MOVEABLE|GMEM_SHARE,
 m_ulDataSize * m_pcmWF.nBlockAlign);
 if (!m_hData) // If we didn't get the memory
 return NULL; // exit
 m_lpData = (LPSTR)GlobalLock(m_hData);
 if (!m_lpData) // If we didn't get the lock
 {
 GlobalFree(m_hData); // free the memory
 m_hData = NULL; // reset the handle
 return NULL; // and exit
 }
 // Allocate Wave header
 m_hWaveHdr = GlobalAlloc(GMEM_MOVEABLE|GMEM_SHARE, (DWORD)sizeof(WAVEHDR));
 if (!m_hWaveHdr) // If we didn't get the memory
 {
 GlobalUnlock(m_hData); // Unlock the sample buffer
 GlobalFree(m_hData); // free the memory
 m_lpData = NULL;
 m_hData = NULL;
 return NULL; // and exit
 }
 m_lpWaveHdr = (LPWAVEHDR)GlobalLock(m_hWaveHdr);
 if (!m_lpWaveHdr) // If we didn't get the lock
 { // Undo everything
 GlobalFree(m_hWaveHdr);

 GlobalUnlock(m_hData);
 GlobalFree(m_hData);
 m_hWaveHdr = NULL;
 m_lpData = NULL;
 m_hData = NULL;
 return NULL; // and exit
 }
 // Set up the wave header data
 m_lpWaveHdr->lpData = m_lpData;
 m_lpWaveHdr->dwBufferLength = m_ulDataSize*m_pcmWF.nBlockAlign;
 m_lpWaveHdr->dwFlags = 0L;
 return m_lpData;
 }

void CPCMWave :: FreeSampleBuffer()
{
 // Ensure handles are valid
 ASSERT(m_hData);
 ASSERT(m_hWaveHdr);
 //De-allocate memory
 GlobalUnlock(m_hData);
 GlobalFree(m_hData);
 GlobalUnlock(m_hWaveHdr);
 GlobalFree(m_hWaveHdr);
 // Reset handles and pointers
 m_hData = NULL;
 m_lpData = NULL;
 m_hWaveHdr = NULL;
 m_lpWaveHdr = NULL;
 m_ulDataSize = 0;
}

That takes care of buffer and header memory management. Now let's apply what we learned earlier about
.wav file RIFF I/O and write the SaveWAV() and LoadWAV() functions:

BOOL CPCMWave::SaveWAV(const CString& fname)
{
 //===
 //
 // RIFF File I/O:
 HMMIO hmmio; // Multimedia System file handle
 MMCKINFO mmckinfo; // Chunk info structure
 MMCKINFO mmckinfoSubChunk; // Chunk info structure
 //
 // Open the .WAV file for writing
 //
 if (!(hmmio = mmioOpen((LPSTR)(const char*)fname, NULL,
 MMIO_WRITE | MMIO_CREATE | MMIO_ALLOCBUF)))
 return FALSE;
 //
 // Create a RIFF chunk whose form type is 'WAVE'
 //
 mmckinfo.fccType = mmioFOURCC('W','A','V','E');
 if (mmioCreateChunk(hmmio, &mmckinfo, MMIO_CREATERIFF) != 0)
 {
 mmioClose(hmmio,0);
 return FALSE;
 }

 //
 // Create a subchunk whose ID is 'fmt '
 //
 mmckinfoSubChunk.ckid = mmioFOURCC('f','m','t',' ');
 if (mmioCreateChunk(hmmio, &mmckinfoSubChunk, 0) != 0)
 {
 mmioClose(hmmio,0);
 return FALSE;
 }
 //
 // Write out format info
 //
 if (mmioWrite(hmmio,(HPSTR)&m_pcmWF, sizeof(PCMWAVEFORMAT)) == -1)
 {
 mmioClose(hmmio,0);
 return FALSE;
 }
 //
 // Ascend from subchunk
 //
 if (mmioAscend(hmmio,&mmckinfoSubChunk,0) != 0)
 {
 mmioClose(hmmio,0);
 return FALSE;
 }
 //
 // Create a subchunk whose ID is 'data'
 //
 mmckinfoSubChunk.ckid = mmioFOURCC('d','a','t','a');
 if (mmioCreateChunk(hmmio, &mmckinfoSubChunk, 0) != 0)
 {
 mmioClose(hmmio,0);
 return FALSE;
 }
 //
 // Write out wave data
 //
 if (mmioWrite(hmmio,(HPSTR)m_lpData,m_ulDataSize*m_pcmWF.nBlockAlign)==-1)
 {
 mmioClose(hmmio,0);
 return FALSE;
 }
 //
 // Ascend from subchunk
 //
 if (mmioAscend(hmmio,&mmckinfoSubChunk,0) != 0)
 {
 mmioClose(hmmio,0);
 return FALSE;
 }
 //
 // Ascend from RIFF chunk
 //
 if (mmioAscend(hmmio,&mmckinfo,0) != 0)
 {
 mmioClose(hmmio,0);
 return FALSE;
 }

 //
 // Close file
 //
 mmioClose(hmmio,0);
 // End RIFF File I/O
 //===
 return TRUE;}

BOOL CPCMWave :: LoadWAV(const CString& fname)
{
 // Ensure there is no old data
 ASSERT(!IsBufferReady());
 //===
 //
 // RIFF File I/O:
 HMMIO hmmio; // Multimedia System file handle
 MMCKINFO mmckinfo; // Chunk info structure
 MMCKINFO mmckinfoSubChunk; // Chunk info structure
 //
 // Open the .WAV file for reading
 //
 if (!(hmmio = mmioOpen((LPSTR)(const char*)fname, NULL,
 MMIO_READ | MMIO_ALLOCBUF)))
 return FALSE;
 //
 // Find a RIFF chunk whose form type is 'WAVE'
 //
 mmckinfo.fccType = mmioFOURCC('W','A','V','E');
 if (mmioDescend(hmmio, &mmckinfo, NULL, MMIO_FINDRIFF))
 {
 mmioClose(hmmio,0);
 return FALSE;
 }
 //
 // Find a subchunk whose ID is 'fmt '
 //
 mmckinfoSubChunk.ckid = mmioFOURCC('f','m','t',' ');
 if (mmioDescend(hmmio, &mmckinfoSubChunk, &mmckinfo, MMIO_FINDCHUNK))
 {
 mmioClose(hmmio,0);
 return FALSE;
 }
 long wFSize = mmckinfoSubChunk.cksize;
 WAVEFORMATEX *pWaveFormat = (WAVEFORMATEX*) new char[wFSize];
 if (!pWaveFormat)
 {
 mmioClose(hmmio,0);
 return FALSE;
 }
 //
 // Read format info
 //

 if (mmioRead(hmmio,(HPSTR)pWaveFormat, wFSize) != wFSize)
 {
 delete pWaveFormat;
 mmioClose(hmmio,0);
 return FALSE;
 }
 // Make sure this is a plain vanilla PCM wave
 if (pWaveFormat->wFormatTag != WAVE_FORMAT_PCM)
 {
 delete pWaveFormat;
 mmioClose(hmmio,0);
 return FALSE;
 }
 SetSampleRate(pWaveFormat->nSamplesPerSec);
 SetNumChannels(pWaveFormat->nChannels);
 SetBitsPerSample(pWaveFormat->wBitsPerSample);
 //
 // Ascend from subchunk
 //
 if (mmioAscend(hmmio,&mmckinfoSubChunk,0) != 0)
 {
 delete pWaveFormat;
 mmioClose(hmmio,0);
 return FALSE;
 }
 //
 // Find a subchunk whose ID is 'data'
 //
 mmckinfoSubChunk.ckid = mmioFOURCC('d','a','t','a');
 if (mmioDescend(hmmio, &mmckinfoSubChunk, &mmckinfo, MMIO_FINDCHUNK))
 {
 delete pWaveFormat;
 mmioClose(hmmio,0);
 return FALSE;
 }
 //
 // Read in wave data
 //
 // Actual number of raw bytes in wave data
 long dSize = mmckinfoSubChunk.cksize;
 if (!CreateSampleBuffer(dSize/pWaveFormat->nBlockAlign))
 {
 delete pWaveFormat;
 mmioClose(hmmio,0);
 return FALSE;
 }
 if (mmioRead(hmmio,(LPSTR)m_lpData,dSize) != dSize)
 {
 delete pWaveFormat;
 FreeSampleBuffer();
 mmioClose(hmmio,0);
 return FALSE;
 }
 //
 // Close file
 //
 mmioClose(hmmio,0);
 delete pWaveFormat;
 // End RIFF File I/O

 //===
 return TRUE;
}

Next, we'll take advantage of a feature of the waveOutOpen() function to create the IsPlayable()
member function:

// The Play feature in CPCMWave uses the MCI WAVE_MAPPER device. This function
// determines if the WAVE_MAPPER device is available and if it supports the
// format of the current wave.
BOOL CPCMWave::IsPlayable()
{
 UINT retval;
 //
 // Get wave output device caps
 //
 retval = IsFormatSupported(&m_pcmWF,WAVE_MAPPER);
 switch (retval)
 {
 case 0:
 // Supports wave format
 break;
 case WAVERR_BADFORMAT:
 // Format not supported by your MCI wave-audio playback device
 return FALSE;
 default:
 // MCI PCM wave-audio playback device unavailable
 return FALSE;
 }
 return TRUE;
}

This little helper function is useful by itself, so it's broken out:

// Asks the given wave device if it supports the format of the current wave
UINT IsFormatSupported(LPWAVEFORMATEX lpPCMWF, UINT DevID)
{
 return (waveOutOpen(NULL, DevID, lpPCMWF, NULL, NULL, WAVE_FORMAT_QUERY));
}

Now let's make the wave play. Unlike in our earlier example code snippet, we'll make the wave play
asynchronously if possible, which means that other things can happen in the program while the wave
plays in the background. To accomplish this, we need to pass either a window or a function into the
waveOutOpen() call and tell it to notify the window or function when playback is complete so we can
clean up. We'll make the Play() function take an optional parameter, a CWnd pointer, for a callback
window. If the pointer is left NULL, we'll use a callback function to handle the cleanup automatically.
Here's the callback function, which we'll put at the top of our module:

// Callback function used to accomplish async playback
void CALLBACK myWaveOutProc(HWAVEOUT hwo, UINT uMsg, DWORD dwInstance,
 DWORD dwParam1, DWORD dwParam2)
{
 if (uMsg == WOM_DONE)
 {
 // Get the PCMWave object out of the instance param
 PCMWave* wave = (PCMWave*)dwInstance;
 // Tell it that playing is done

 wave->StopPlaying();
 }
}

To have a CWnd in your app catch the callback, you need to add a WindowProc() override to it and check
for the message MM_WOM_DONE, since ClassWizard doesn't seem to let you catch it. For example, you might
add something like this:

LRESULT CWaveView::WindowProc(UINT message, WPARAM wParam, LPARAM lParam)
{
 // Clean up wave playback
 if (message == MM_WOM_DONE)
 the_wave.StopPlaying();

 return CScrollView::WindowProc(message, wParam, lParam);
}

With that said, here's the Play() function:

UINT CPCMWave :: Play(CWnd* pAppWnd)
{
 // Can't play if no sample buffer has yet been created
 if (!IsBufferReady())
 return PCMWAVE_ERR_NO_WAVE_BUFFER;
 // Open wave-audio device for playback
 // If window is given, send MM_WOM_DONE to it, else use our callback
 // function to terminate playback
 if (pAppWnd)
 {
 // Use window callback (sends MM_WOM_DONE to window when wave stops
 // playing - donePlaying() must be called then)
 if (waveOutOpen(&m_hWaveOut,WAVE_MAPPER,&m_pcmWF,
 (DWORD)pAppWnd->GetSafeHwnd(), 0L,CALLBACK_WINDOW))
 return PCMWAVE_ERR_OPEN_DEV; // Error opening wave-audio device
 }
 else
 {
 // Use callback function
 if (waveOutOpen(&m_hWaveOut,WAVE_MAPPER,&m_pcmWF,
 (DWORD)myWaveOutProc,(DWORD)this,CALLBACK_FUNCTION))
 return PCMWAVE_ERR_OPEN_DEV;
 }
 waveOutPrepareHeader(m_hWaveOut,m_lpWaveHdr,sizeof(WAVEHDR));
 //
 // Send wave to wave device for playback
 //
 m_bPlaying = TRUE;
 if (waveOutWrite(m_hWaveOut,m_lpWaveHdr,sizeof(WAVEHDR)))
 {
 // Output error
 waveOutUnprepareHeader(m_hWaveOut, m_lpWaveHdr,sizeof(WAVEHDR));
 waveOutClose(m_hWaveOut);
 m_bPlaying = FALSE;
 // Unable to send wave data to MCI wave-audio playback device
 return PCMWAVE_ERR_WRITE_DATA;
 }
 return 0;
}

We've been slinging around some result codes that need to get into PCMWave.h:

// Error results
#define PCMWAVE_ERR_OPEN_DEV 1
#define PCMWAVE_ERR_WRITE_DATA 2
#define PCMWAVE_ERR_NO_WAVE_BUFFER 3

Finally, let's define the PlayPosition() function, which can tell us where we are in a wave during
playback:

unsigned long CPCMWave::PlayPosition(UINT units)
{
 MMTIME mmt;
 mmt.wType = units;
 if (waveOutGetPosition(m_hWaveOut, &mmt, sizeof(MMTIME))!=MMSYSERR_NOERROR)
 return 0; // Failed to get position
 switch (units)
 {
 // return position in bytes
 case TIME_BYTES:
 return mmt.u.cb;
 break;
 // return position in samples
 case TIME_SAMPLES:
 return mmt.u.sample;
 break;
 // return position in milliseconds
 case TIME_MS:
 return mmt.u.ms;
 break;
 default:
 break;
 }
 // PCMWave only supports the above units
 ASSERT(FALSE);
 return 0;
}

Project: WaveScope
Now that we have an easy-to-use class for PCM wave audio, let's take it out for spin. In this project, we'll
build an MDI app that opens and graphically displays .wav files. It will also play the waves, and report
some basic statistics on them (like sample rate, number of channels, bitwidth, etc.). Most of the hard stuff
is already done by CPCMWave, so this will be a surprisingly easy program to build.

Step 1
Use AppWizard to create a new project entitled WaveScope. Create the project using the following
AppWizard options:

AppWizard Step 1: use the default setting (multiple documents).
AppWizard Step 2: use the default setting (no database support).
AppWizard Step 3: use the default settings (no OLE support).
AppWizard Step 4: use the default settings, except turn off printing and print preview support (we
won't be using it).
AppWizard Step 5: use the default settings.
AppWizard Step 6: use the default settings, except make CWaveScopeView descend from
CScrollView.

If everything worked all right, you should wind up with a New Project Information dialog that looks like
this:

Step 2
Add the CPCMWave source files that we created earlier (PCMWave.h, PCMWave.cpp) to the project. Include
PCMWave.h at the top of WaveScopeDoc.h:

// WaveScopeDoc.h : interface of the CWaveScopeDoc class
//
///

#include "PCMWave.h"
class CWaveScopeDoc : public CDocument

Add a CPCMWave member to CWaveScopeDoc:

// Attributes
public:

 CPCMWave the_wave;

Step 3
Next, we need to get the CPCMWave loaded out of a .wav file. In CWaveScopeDoc, add an
OnOpenDocument() handler and edit it to look like this:

BOOL CWaveScopeDoc::OnOpenDocument(LPCTSTR lpszPathName)
{

 // Attempt to open the given file path as a .WAV
 if ((!CDocument::OnOpenDocument(lpszPathName))||
 (!m_The_Wave.loadWAV(lpszPathName))
 {
 AfxMessageBox(Error: Unable to open the specified file.");
 return FALSE;
 }

 // Set modified flag to force app through our SaveModified() handler when
 // trying to close document
 SetModifiedFlag(TRUE);
 return TRUE;
}

The first part hands the file path to the wave object to open as a .wav file. The second part sets the
modified flag, which is a trick to force the app through a SaveModified() handler we'll write later when
trying close the document. We'll need to do that because we don't want the document to close on us while
an asynchronous wave playback is occurring.

We also want to make sure that a new document isn't automatically created on startup, so go into
CWaveScopeApp::InitInstance(), find the command line processing code (near the end), and make the
following changes:

 // Parse command line for standard shell commands, DDE, file open
 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

 // Dispatch commands specified on the command line
 if (cmdInfo.m_nShellCommand != CCommandLineInfo::FileNew)
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;

Step 4
We're going to draw the actual waveform of the CPCMWave's data on the view. To keep things simple, we'll
squeeze every wave to fit in the same space, say: 4096 x 256. So, we need to set up the scrolling extents
to handle this. Go to CWaveScopeView::OnInitialUpdate() and add make it look like this:

void CWaveScopeView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 CSize sizeTotal;

 sizeTotal.cx = 4096;
 sizeTotal.cy = 256;
 SetScrollSizes(MM_TEXT, sizeTotal);
}

Step 5
OK, this next bit is a little involved. Now we're going to paint the waveform on the view. We'll be
stepping through the raw wave data and plotting the values. Remember that there are four kinds of waves
we might have to handle: 8-bit mono, 8-bit stereo, 16-bit mono and 16-bit stereo. We'll draw mono waves
in black, and we'll draw stereo waves in two colors: red for the right channel, blue for the left. Also, we'll
have to rescale 16-bit data to fit our 256-unit-high view. To start off, we can code the OnDraw() member
of CWaveScopeView as follows:

void CWaveScopeView::OnDraw(CDC* pDC)
{
 CWaveScopeDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 // Don't do anything if sample buffer not initialized
 if (!pDoc->m_TheWave.IsBufferReady())
 return;
 // Calculate an increment value for stepping through buffer that will
 // "shorten" wave to fit in 4096 pixels, if necessary
 unsigned long SampleCount = pDoc->m_TheWave.GetNumSamples();
 int inc = SampleCount / 4096;
 if (inc == 0)
 inc = 1;
 switch (pDoc->m_TheWave.GetNumChannels())
 {
 case 1: // Mono
 switch (pDoc->m_TheWave.GetBitsPerSample())
 {
 case 8: // 8 bit
 {
 // Draw 8-bit mono wave
 BYTE* sample = (BYTE*)pDoc->m_TheWave.GetBuffer(); // Get the sample
 Draw8BitMono(sample, SampleCount, inc, pDC); // and draw it
 }
 break;
 case 16: // 16 bit
 {
 // Draw 16-bit mono wave
 short* sample = (short*)pDoc->m_TheWave.GetBuffer(); // Get sample
 Draw16BitMono(sample, SampleCount, inc, pDC); // and draw it
 }
 break;
 default:
 // Must be 8 or 16 bits!
 ASSERT(FALSE);

 break;
 };
 break;
 case 2: // Stereo
 switch (pDoc->m_TheWave.GetBitsPerSample())
 {
 case 8: // 8 bit
 {
 // Draw 8-bit stereo wave
 PCMSample_8bitStereo* sample =
 (PCMSample_8bitStereo*)pDoc->m_TheWave.GetBuffer(); // Get sample
 Draw8BitStereo(sample, SampleCount, inc, pDC); // and draw it

 }
 break;
 case 16: // 16 bit
 {
 // Draw 16-bit stereo wave
 PCMSample_16bitStereo* sample =
 (PCMSample_16bitStereo*)pDoc->m_TheWave.GetBuffer(); // Get sample
 Draw16BitStereo(sample, SampleCount, inc, pDC); // and draw it
 }
 break;
 default:
 // Must be 8 or 16 bits!
 ASSERT(FALSE);
 break;
 };
 break;
 default:
 // Must be mono or stereo!
 ASSERT(FALSE);
 break;
 };
}

The outer switch statement determines whether we're dealing with a mono or stereo data, and in each case
a further switch statement determines whether we have 8 bit or 16 bit samples. We call one of four
functions to plot the wave data. Each function has four parameters: an array of samples for the wave, the
count of the number of samples, the increment through the samples to fit the plot into the width of the
window, and the pointer to the DC. The type of the first parameter is different in each case to
accommodate the applicable sample data. The code for the function to draw the 8-bit mono wave is:

void CWaveScopeView::Draw8BitMono(const BYTE* sample,
 const unsigned long& count, const int& inc, CDC* pDC)
{
 // Draw 8-bit mono wave
 pDC->MoveTo(0,sample[0]); // Move to the first sample point
 unsigned long i = 1;
 while (i < count)
 {
 pDC->LineTo(i/inc,sample[i]); // Draw a line to the next sample point
 i += inc;
 }
}

Next, the code for the 16-bit mono function. This will be similar to the previous code, except that we'll be
scaling the data to fit in the 256-unit-high view:

void CWaveScopeView::Draw16BitMono(const short* sample,

 const unsigned long& count, const int& inc, CDC* pDC)
{
 // Draw 16 bit mono wave
 unsigned int val = (sample[0] + 32768)/256;
 pDC->MoveTo(0,val); // Move to the first sample point
 unsigned long i = 1;
 while (i < count)
 {
 // Convert sample value to 128-offset 8-bit for plotting
 val = (sample[i] + 32768)/256;
 pDC->LineTo(i/inc,val); // Draw a line to the next sample point
 i += inc;
 }
}

The stereo versions are also very similar, except that we'll plot twice: once in blue for the left channel,
then again in red for the right. Notice the use of the convenience structs provided in PCMWave.h to aid in
the interpretation of the stereo sample data. Here's the 8-bit stereo code:

void CWaveScopeView::Draw8BitStereo(const PCMSample_8bitStereo* sample,
 const unsigned long& count, const int& inc, CDC* pDC)
{
 // Draw 8 bit stereo wave
 CPen leftPen (PS_SOLID, 1, RGB(0,0,255)); // Create blue pen
 CPen rightPen (PS_SOLID, 1, RGB(255,0,0)); // Create red pen
 CPen* oldPen;
 // Draw the left channel
 oldPen = pDC->SelectObject(&leftPen); // Select the left pen
 pDC->MoveTo(0,sample[0].left); // Move to first sample point
 unsigned long i = 1;
 while (i < count)
 {
 pDC->LineTo(i/inc,sample[i].left); // Draw line to next sample point
 i += inc;
 }
 // Draw the right channel
 pDC->SelectObject(&rightPen);
 pDC->MoveTo(0,sample[0].right); // Move to first sample point
 i = 1;
 while (i < count)
 {
 pDC->LineTo(i/inc,sample[i].right); // Draw line to next sample point
 i += inc;
 }
 pDC->SelectObject(oldPen); // Restore the old pen
}

In the 16-bit stereo function, we just need to add the scaling of the sample amplitudes:

void CWaveScopeView::Draw16BitStereo(const PCMSample_16bitStereo* sample,
 const unsigned long& count, const int& inc, CDC* pDC)
{
 // Draw 16 bit stereo wave
 CPen leftPen (PS_SOLID, 1, RGB(0,0,255)); // Create blue pen
 CPen rightPen (PS_SOLID, 1, RGB(255,0,0)); // Create red pen
 CPen* oldPen;
 // Draw the left channel
 oldPen = pDC->SelectObject(&leftPen); // Select the left pen
 // Convert sample value to 128-offset 8-bit for plotting

 unsigned int val = (sample[0].left + 32768)/256;
 pDC->MoveTo(0,val); // Move to first sample point
 unsigned long i = 1;
 while (i < count)
 {
 // Convert sample value to 128-offset 8-bit for plotting
 val = (sample[i].left + 32768)/256;
 pDC->LineTo(i/inc,val); // Draw line to next sample point
 i += inc;
 }
 // Draw the right channel
 pDC->SelectObject(&rightPen); // Select the right pen
 // Convert sample value to 128-offset 8-bit for plotting
 val = (sample[0].right + 32768)/256;
 pDC->MoveTo(0,val); // Move to first sample point
 i = 1;
 while (i < count)
 {
 // Convert sample value to 128-offset 8-bit for plotting
 val = (sample[i].right + 32768)/256;
 pDC->LineTo(i/inc, val); // Draw line to next sample poin
 i += inc;
 }
 pDC->SelectObject(oldPen); // Restore the old pen
}

Now you should be able to build the application and run it. You'll be able to open .wav files and see their
waveforms.

Step 6
Edit the menu IDR_WAVESCTYPE and delete the Edit menu. Remove the New, Save and Save As... items from
the File menu. Insert a new menu, called Wave, after the File menu. Put two items in it: Info… and Play.
Also, open the menu IDR_MAINFRAME and delete the New item from the File menu. Open the toolbar
IDR_MAINFRAME and remove everything except the File Open and Help tools, and add tools for Wave Play
and Wave Info.

Add handlers to CWaveScopeView for ID_WAVE_PLAY COMMAND and COMMANDUI, and put the following code
there:

void CWaveScopeView::OnWavePlay()
{
 GetDocument()->m_TheWave.Play();
}

void CWaveScopeView::OnUpdateWavePlay(CCmdUI* pCmdUI)
{
 // Disable Play button when a wave is playing
 pCmdUI->Enable(!GetDocument()->m_TheWave.IsPlaying());
}

We have to make sure that the document can't be closed during playback, so add a SaveModified()
handler to CWaveScopeDoc and put this code in it:

BOOL CWaveScopeDoc::SaveModified()
{
 // Can't close if a wave is currently playing
 return !m_TheWave.IsPlaying();
}

Now you should be able to build the app and play waves.

Step 7
The last feature we're going to add to WaveScope is a simple dialog that reports some statistics on a wave.
Create a new dialog box. Set its caption to Wave Info and delete the Cancel button (we won't need one). Put
an edit control on it and make it fill most of the dialog. Set the edit control's Multi-line, Vertical Scroll and
Read-only styles. It should wind up looking about like this:

Add a member variable for the value of the edit control. Call it m_info:

Now, in CWaveScopeView, add a handler for ID_WAVE_INFO COMMAND, and put the following code in it:

void CWaveScopeView::OnWaveInfo()
{
 WaveInfoDlg dlg;
 char buf[30];
 dlg.m_info = "Wave sample rate = ";
 dlg.m_info += itoa(GetDocument()->m_TheWave.GetSampleRate(),buf,10);
 dlg.m_info += " Hz\r\n";
 dlg.m_info += "Wave bitwidth = ";
 dlg.m_info += itoa(GetDocument()->m_TheWave.GetBitsPerSample(),buf,10);
 dlg.m_info += " bits\r\n";
 dlg.m_info += "Wave channels = ";
 dlg.m_info += itoa(GetDocument()->m_TheWave.GetNumChannels(),buf,10);
 dlg.m_info += "\r\n";
 dlg.m_info += "No. of Samples (per channel) = ";
 dlg.m_info += itoa(GetDocument()->m_TheWave.GetNumSamples(),buf,10);
 dlg.m_info += "\r\n";
 dlg.DoModal();
}

That's it! Build the app and run it, open some wave files, and the finished product should look something
like this:

By the way, under Windows 95, there are usually a few .wav files of various formats lying around in your
Windows\Media directory.

Summary
In this chapter, we covered the basic, built-in multimedia system in Windows. We explored the WINMM
MCI and low-level device control APIs.

In the next chapter, we'll look at how we can use device-independent bitmaps in our MFC programs.

Working with Device-independent
Bitmaps (DIBs)

In this chapter, we're going to demystify the device-independent bitmap (DIB). DIBs are widely used by
the various APIs, such as, DirectX, WinG, WinToon, and OpenGL, so getting a handle on how to use
them effectively is very important if you're planning on doing any multimedia development.

Many developers, especially those who have some 16-bit Windows SDK development experience, cringe
at the thought of having to work with DIBs. As we'll see in this chapter, new APIs in Win32 make DIBs
much easier to handle.

In the first part of this chapter, we'll review the basic concepts of working with DIBs. Since it's impossible
to discuss DIBs without doing so, we'll also get into the basics of palette management. Next we'll build a
simple wrapper class to hide the mechanics of DIB management, and then we'll build a simple app that
loads and displays DIBs. Finally, we'll talk about how to do double-buffered animation in a CView with an
off-screen DIB buffer.

The DIB FAQ
Since so many developers seem to have trouble grasping the basics of DIBs, I thought I'd format the first
part of this chapter like an Internet frequently-asked questions (FAQ) list. If you're new to working with
DIBs, these are some of the things that could be giving you some trouble.

What does DIB stand for?
Device-independent bitmap.

What makes it device-independent? Why does
device independence matter?
A bitmap image is just a block of data that represents what the pixels should look like when the bitmap is
rendered to the screen. Originally, bitmaps in Windows were all device-dependent. In other words, they
were managed by the device drivers that would be used to display them. You didn't actually have direct
access to the bitmap's pixel data; you had to call GetBitmapBits() to get a copy of the bitmap's pixel
data from the driver, and SetBitmapBits() to put it back. The reason for this indirection was to allow the
device driver to store the actual bitmap in the format most convenient for displaying the bitmap on the
device hardware. Back then, bitmaps generally came in two color formats: monochrome (1 bit per pixel)
and VGA (4 bits per pixel). The color information was absolute and mapped into a fixed table of the VGA
colors.

With the advent of OS/2, Microsoft and IBM decided that they needed to develop a more robust means of
handling bitmaps. Displays were getting more sophisticated and were supporting 256 colors or more, and
the hardware was increasingly supporting palettes. To meet these needs, Microsoft and IBM created the
device-independent bitmap (DIB) file format.

DIB pixels don't store raw color data. Instead, they store indices into a color table that is stored along with
the bit data in the DIB file. This color table can then be read back out of the DIB file with the bitmap data,
and can be turned into a logical palette to be used when the bitmap is displayed. Once it has been loaded
into memory, before it can be displayed, the DIB must be turned back into a device-dependent bitmap by
the display driver (except when you're using WinG or the new Win32 DIB section (see later)
functionality, which can handle raw DIB bits). Also, its palette must be realized in the display DC to
ensure that it displays with the correct colors.

Why are many DIBs stored 'upside-down' (the top-
most drawn scan line is at the end of the file)?
When Microsoft and IBM set out to lay down a standard DIB format, they were collaborating on OS/2. At
that time, the thought was that GDI should start using an origin in the lower-left corner of the screen, like
a normal Cartesian coordinate system. OS/2 adopted this, but it never got picked up by the Windows
camp. Since the current DIB format stems from those early days of OS/2, many DIBs are in the 'upside-

down' format. In Win32, however, it's acceptable to store DIB scan lines top-first, so from now on we'll
see more Windows-like DIBs.

What is a palette?    How is it related to the DIB's
color table?
A palette is a table of color values. Palettes allow color information to be removed from the raw image
data. Instead of storing an RGB value for each pixel, the bitmap consists of palette indices. This makes
the bitmap work something like a 'paint-by-numbers' picture. If the color value in a palette entry is
changed, the pixels in the bitmap that reference that entry will then display the new color, without actually
having to go through the bitmap and change the pixel values.

Although they both use the same mechanism, a palette is not the same as a DIB color table. The DIB
color table maps color values into the DIB, while a palette maps color values into the system palette. We'll
come back to the system palette a little later. You use a DIB's color table to construct a logical palette to

use when you're displaying the DIB. When it's loaded from a file, the DIB's color table normally holds the
RGB color values to use for displaying the DIB. When a DIB is created in memory and is based on a
particular DC, it's better to have the color table contain palette entries from the DC's palette rather than
hard color values. This prevents GDI from constantly having to translate the color values into palette
entries. Because the relationship between the DC and the DIB is presumably going to be pretty close (the
DIB is going to be drawn in this DC a lot) it makes sense to do this palette-color table translation only
once, when you create the DIB section. Since the actual palette entries are given, GDI will just use them.
You'll notice that CreateDIBSection() has an option for doing this, and we'll use it when we get into
double-buffered animation later in the chapter.

Why do I see 256-color DIBs so often?
256 colors (8 bits per pixel) is generally enough to achieve serviceable image color quality. Also, the
Windows Palette Manager was designed at a time when 256-color display hardware was the wave of the
future, so the Palette Manager is oriented around 256-color palettes. It still makes sense to try to hold to
256-color palettes for most purposes, even when a display is available that supports greater color depth.
That way, if several 256-color images are displayed at once, the Palette Manager can see to it that their
logical palettes appropriately share the system palette. One important point to note is that on a 256-color
display, a DIB whose color table contains all 256 entries doesn't actually have access to the full 256-color
system palette. 20 colors in the system palette (the first 10 and the last 10) are reserved by Windows.
These are reserved to ensure that they are available for painting system-owned items. The colors in these
entries are the 16 standard VGA colors, plus 4 more mandated by Microsoft.

There are all these different kinds of palettes:
'logical', 'foreground', 'background' and 'system'
palettes.    Sort this mess out for me.
The system palette is the structure Windows uses to represent the actual palette hardware in the display
adapter. The system palette contains all of the colors that are actually being displayed on the entire screen.

A logical palette is just a set of colors that a particular application wishes to use to display something (a
bitmap, etc.). It has no effect on the actual display until it is realized.
Any apps that want to display color data will try to realize logical palettes to get them into the system
palette. However, the active or foreground app should get priority over the others if it wishes to assert a
logical palette. The foreground app's palette is the one-and-only foreground palette, and the palettes
asserted by any other app are all background palettes. Actually, any app in the z-order can try to realize
a logical palette as the foreground palette, but it's considered improper to do so unless the app is truly in
the foreground.

Just in case you haven't met it before, the z-order is the sequence in which all the currently
overlapping windows are displayed. There's an imaginary axis (the z-axis), that sticks out at right
angles to the surface of your display screen, along which all the currently displayed windows lie.
The relative positions of all the current windows is called the z-order. The window at the bottom of
the z-order is overlapped by all the other windows, whereas the one at the top will be displayed
over all of the others.

All of the realized palettes, foreground and background, 'vote' on what colors should wind up in the
system palette, but the foreground palette's votes always override the others.

What is an identity palette?

An identity palette is a logical palette that contains the 20 reserved system colors (in the 10 first and 10
last entries), along with the colors needed by your app. This means that, on a 256-color video display, you
don't actually get to use all 256 colors; the 20 system colors are reserved. You can free them up with the
SetSystemPaletteUse() function, but that's generally frowned-upon because it can monkey with the
appearance of system elements and other running apps as they are for system-wide use and generally
assumed to be fixed.

On a display that supports more than 256 colors, you're likely to get all 256 colors in your palette mapped
when in the foreground. On a 256-color display, the first 236 will map, then the rest will be
unceremoniously truncated. So, you really only get 236 colors to play with. Also, if you make your
logical palette structurally match the system palette, you'll get added speed because the system can use
your palette as-is; it won't have to remap it when realized. Some paint programs that you can use to edit or
create DIB files offer an option to include the system colors in the palette. You should generally select this
option because it will prevent you from having to deal with remapping your palette to an identity palette
when the image is loaded from the DIB file. The big exception to this rule is DirectDraw. In DirectDraw,
you are bypassing the Palette Manager, so you have full access to the whole palette. DIB palettes used
with DirectDraw need only include the system colors if they are actually being used by the image.

What does it mean to 'realize' a palette, and why
do I have to do it?
Realizing a palette simply causes the system palette and your logical palette to reconcile. You aren't
actually using your logical palette until it has been realized (selecting it into the DC is not enough).
Realizing the logical palette causes it to map its values into the system palette, adding values as needed.
The values are mapped to the system palette in the order in which they appear in the logical palette, so if
you care, you should place more important colors near the beginning (in the lower indices) of the palette.

Realizing a palette can involve up to three steps. In the first step, the system palette is scanned to find an
exact match for each of the colors in your logical palette. For each exact match, the color in the logical
palette is mapped to the system palette entry. In the second step, if there are unmapped colors in your
logical palette, the system palette is scanned for unused entries in which remaining logical palette colors
can be inserted. If there are still unmapped colors in your logical palette, the entries in the system palette
are scanned for a third time for each of the remaining logical palette colors, to determine the 'nearest'
entry in the system palette. The nearest is determined by treating the RGB components of the colors as
coordinates of notional 3D points and computing the distance between them using the usual geometric
method. The degree to which realizing a palette will actually alter the system palette is, of course, partly
determined by whether the palette is realized in the foreground or background. The foreground palette
takes precedence, and only those system palette entries that have not been taken up by the foreground
palette can be used for background palette colors.

Aren't there all kinds of crazy window messages I
have to handle to make palettes work correctly in
my app?
It's really not too complicated. Here are the messages you need to handle, and what you need to do to
handle them:

Message What's Needed
WM_PALETTECHANGED The system palette has been altered. You will want to re-realize

and possibly repaint in response to this message. You should
check first to see whether your app was the trigger for this
message, and do nothing if it was. When you're overriding the
CWnd::OnPaletteChanged(CWnd* pFocusWnd) member function,
just check that pFocusWnd is not your window before you do
anything.

WM_QUERYNEWPALETTE Your app is being given foreground palette status. You will want
to re-realize your palette so it can assert its priority.

Essentially, when either of these messages comes through, you basically want to re-realize your palette
and repaint your app's client area if the realization changed:

int CMyViewClass :: OnPaletteMessage()
{
 CDC* pDC = GetDC();
 CPalette* pOld= pDC->SelectPalette(m_pPal, FALSE);
 int result = pDC->RealizePalette();
 // bForceBackground is TRUE because palette should already
 // be mapped
 pDC->SelectPalette(pOld, TRUE);
 pDC->RealizePalette();
 ReleaseDC(pDC);
 // If realization changed, force repaint
 if (result)
 Invalidate();
 return result;
}

How do I read in the palette from the DIB file?
You don't actually read palettes from DIB files. Rather, you read in the DIB's header information, which
includes its color table, and create a logical palette based on that. The following code will read the
bitmap's color table from the file and make a palette from it (adapted from the CDIB constructor code that
appears later in the chapter):

 // Calculate the size needed to hold the BITMAPINFO
 m_infosize = sizeof(BITMAPINFO) + sizeof(RGBQUAD)*num_entries;
 // Allocate a BITMAPINFO
 m_hInfo = GlobalAlloc(GHND, m_infosize);
 m_lpInfo = (LPBITMAPINFO)GlobalLock(m_hInfo);

 // Read BITMAPINFO from the file represented by hfile
 _lread(hfile, m_lpInfo, m_infosize);

 // Allocate and configure the LOGPALETTE
 hlogpal = GlobalAlloc(GHND, sizeof(LOGPALETTE) +
 sizeof(PALETTEENTRY)*num_entries);
 lplogpal = (LPLOGPALETTE) GlobalLock(hlogpal);
 lplogpal->palVersion = 0x300;
 lplogpal->palNumEntries = num_entries;

 // Copy entries into LOGPALETTE

 for (int i=0; i<num_entries; i++)
 {
 // Entries are stored in BGR, not RGB, order
 lplogpal->palPalEntry[i].peRed = entries[i].peBlue;
 lplogpal->palPalEntry[i].peGreen = entries[i].peGreen;
 lplogpal->palPalEntry[i].peBlue = entries[i].peRed;
 lplogpal->palPalEntry[i].peFlags = 0;
 }

 // Create the palette
 m_palette = new CPalette;
 m_palette->CreatePalette(lplogpal);
 // Clean up
 GlobalUnlock(hlogpal);
 GlobalFree(hlogpal);
 GlobalUnlock(m_hInfo);
 GlobalFree(m_hInfo);

What is a DIB section?
The conventional way to make a DIB available for drawing by GDI is to shuttle it into a device-
dependent bitmap through the driver, so there are two copies of the bitmap bits: one on the application
side for you to work with, and one on the driver side for display. Any time you wish to alter the bits, you
must shuttle them back through the driver to make them available again for display. DIB sections, new to
Windows NT and 95, eliminate this. A DIB section is a common block of memory that is accessible both
to your application and to the display driver. This block holds the one and only copy of the DIB bits. GDI
can access it through an HBITMAP and your app can directly modify it. Because there is no extra copying
of bits going on, working with DIB sections is both extremely fast (suitable for animation, etc.) and very
simple, since the DIB section can be manipulated like a conventional device dependent bitmap(DDB)
HBITMAP.

A side note: the term section here refers to one mode of the DIB section in which it can be created based
on a memory-mapped file section object. This is not the usual way to work with them, but even so, the
name has stuck.

That sounds sort of like WinG to me.    What exactly
is WinG, and how does it relate to DIB sections?
Prior to the introduction of DIB sections, the WinG API was released to provide an equivalent interim
solution. WinG is just a DIB section implementation for Windows 3.1 and Win32s. The
CreateDIBSection() API completely supersedes WinG for Windows NT and Windows 95. A WinG API
is provided for NT and 95 for backward compatibility, but it simply calls CreateDIBSection().

How do I create a DIB section?
You call CreateDIBSection(), of course!

HBITMAP CreateDIBSection(HDC hdc, CONST BITMAPINFO *pbmi, UINT iUsage,
 VOID **ppvBits, HANDLE hSection, DWORD dwOffset)

Parameter Meaning
hdc The device context handle to use when initializing the DIB's colors when

iUsage is set to DIB_PAL_COLORS.
pbmi The pointer to a BITMAPINFO struct describing the DIB.

iUsage Can be one of the following values:
DIB_PAL_COLORS - uses the DC identified by hdc to initialize the DIB's
colors.
DIB_RGB_COLORS - uses the RGB values in the color table in the
BITMAPINFO pointed to by pbmi.

ppvBits The pointer to a pointer to receive the address of the DIB section buffer.
hSection The optional file-mapping object to use to create the DIB section.
dwOffset The offset within the file mapping of the bitmap's bits.

How do I read a DIB in from a file?
It's now quite simple in the new Windows 95 API to read a DIB file. In fact, you can read in a DIB and
create a DIB section for it in one function call: LoadImage().

HANDLE LoadImage(HINSTANCE hinst, LPCTSTR lpszName, UINT uType,
 int cxDesired, int cyDesired, UINT fuLoad);

Parameter Meaning
hinst The handle of the module instance to read from when reading an

image stored as a resource (NULL when reading from file).
lpszName The name of resource, or path to file.
uType The type of image to read: IMAGE_BITMAP, IMAGE_CURSOR, or

IMAGE_ICON.
cxDesired The desired width of icon or cursor. A value of 0 selects the

SM_CXICON or SM_CXCURSOR system metric value. We won't use this
parameter in the example. It's set to 0.

cyDesired The desired height of icon or cursor. A value of 0 selects the
SM_CYICON or SM_CYCURSOR system metric value. We won't use this
parameter in the example. It's set to 0.

fuLoad The flags controlling the image load (listed in the table below). The
only two we're interested in are LR_CREATEDIBSECTION and
LR_LOADFROMFILE.

The following table lists the possible values for fuLoad. Only the first two (LR_CREATEDIBSECTION and
LR_LOADFROMFILE) are generic; the other flags all Windows 95 only.

fuLoad Value Meaning
LR_CREATEDIBSECTION The new image will have been created via CreateDIBSection().
LR_LOADFROMFILE Read image from a file rather than a resource.
LR_DEFAULTCOLOR Specifies to load image as a color image and is the default value

of fuLoad.
LR_DEFAULTSIZE Use the width or height specified by the system metric values for

cursors and icons when the cxDesired or cyDesired values are
set to zero.

LR_LOADMAP3DCOLORS Search the color table for the image and replace Dk Gray,
RGB(128,128,128), Gray, RGB(192,192,192), and Lt Gray,
RGB(223,223,223) with the corresponding 3D colors,
COLOR_3DSHADOW, COLOR_3DFACE, and COLOR_3DLIGHT

LR_LOADTRANSPARENT Replace the entry in the color table corresponding to the color
value of the first pixel in the image with the default window color.
LR_LOADTRANSPARENT takes precedence over
LR_LOADMAP3DCOLORS if you specify both.

LR_MONOCHROME Load the image in black and white.
LR_SHARED Share the image handle if the image is loaded more than once.

A typical call to this function to load a DIB from a file might look like this:

HBITMAP hbmNew;
hbmNew = (HBITMAP)LoadImage(NULL, "FOO.BMP", IMAGE_BITMAP, 0, 0,
 LR_CREATEDIBSECTION|LR_LOADFROMFILE);

How do I draw a DIB section onto a DC?    I recall all
kinds of complicated calls from Windows 3.1, like
StretchDIBits().
Unless you really want to stretch a bitmap, forget about StretchDIBits().DIB sections are designed to
work like the old DDBs from GDI's perspective. All you have to do is call good old BitBlt():

 // destDC is the DC we want to draw on
 // m_bitmap is the DIB section HBITMAP
 // m_palette is the palette to use with this bitmap
 CDC dcMem;
 // Select the palette into the screen DC and realize it
 CPalette* pold = destDC->SelectPalette(m_palette, FALSE);
 destDC->RealizePalette();

 // Create a memory DC compatible with the screen DC
 dcMem.CreateCompatibleDC(destDC);
 // Put the bitmap bits into the memory DC
 CBitmap* pbmOld = dcMem.SelectObject(&m_bitmap);
 // Copy the bitmap bits to the screen DC
 destDC->BitBlt(dx, dy, sw, sh, &dcMem, sx, sy, SRCCOPY);
 // Put the original bitmap back
 dcMem.SelectObject(pbmOld);
 // Put the original palette back
 destDC->SelectPalette(pold, FALSE);

If DIB sections really work similarly to old DDB
HBITMAPs, can I wrap a CBitmap around one, and
let it manage it for me?
Yes and no. The CBitmap class is not going to be able to help you create the DIB section, but once you've

got an HBITMAP for the DIB section, you can use Attach() to hand it off to the CBitmap object. This
makes it easier to use MFC GDI wrappers with the bitmap. We'll do this in our CDIB class later in the
chapter.

What do I do if I want to use a DIB with more than
256 colors?
Go right ahead and use them. The Windows DIB format supports 16, 24 and 32 bit-per-pixel DIBs. Be
aware, however, that not all hardware is going to be able to handle all of these formats, and some nasty
driver translation might happen to your DIB before it gets displayed. No matter what, though, you're
supposed to get something displayable, regardless of what the hardware actually supports. Also be aware
that you're leaving the realm of palettes when you use these higher-color formats; the pixel values are raw
color values.

CDIB: A Simple DIB Wrapper Class
It would make sense to embody the concepts covered above in a C++ class for handling DIBs. This class
could act as a wrapper around a DIB and its color table, providing methods for loading DIBs from .bmp
files or resources and for drawing the DIB onto a DC. Note that, since we're going to use the
LR_CREATEDIBSECTION functionality of LoadImage() in this class, it will only work correctly under
Windows 95 (until Microsoft fixes the Windows NT version of LoadImage() to work correctly with DIB
sections).

Let's start by laying out a header for the class. We'll need member variables to hold an HBITMAP and a
pointer for the two principal means of accessing the DIB section in memory. We'll also need some
members to hold the bitmap's header information, and we'll need one for the logical palette.

In the way of member functions, we'll need accessors for the various member variables we've defined.
We'll also need two constructors: one to load in the DIB from a .bmp file or from resources, and another
to make an empty DIB using CreateDIBSection() based on a DC (this constructor will be used to make
DIB section back buffers for off-screen drawing of animation frames). We'll need a destructor to do some
clean-up. Finally, we'll want a function for drawing the DIB onto a DC. We'll inline the drawing
function for maximum speed.

// CDIB.H - Class header for DIB object

#ifndef _CDIB_DEFINED_
#define _CDIB_DEFINED_
class CDIB
{
protected:
 // The bitmap's pixel data
 CBitmap m_bitmap; // HBITMAP version
 LPVOID m_lpBits; // Buffer version
 // Bitmap's header info
 HANDLE m_hInfo;
 LPBITMAPINFO m_lpInfo;
 LONG m_infosize;
 // The bitmap's palette
 CPalette* m_palette;
 // Error flag
 BOOL m_pal_loaded;
 // Bitmap's width and height, in pixels
 LONG m_width, m_height;
public:
 // ctor to load a DIB from either a file or the app's resource data
 CDIB (const char* name);
 CDIB (UINT nResID);
 // Ctor for making a DIB back-buffer based on a sprite or
 // background DIB
 CDIB (const CDC* pDC, CDIB* based_on);

 // Accessors
 CBitmap& GetBits() {return m_bitmap;}
 LPVOID GetRawbits() {return m_lpBits;}

 LONG GetWidth() {return m_width;}
 LONG GetHeight() {return m_height;}
 LPBITMAPINFO GetInfo() {return m_lpInfo;}
 long GetInfoSize() {return m_infosize;}
 CPalette* GetPalette() {return m_palette;}
 BOOL IsPaletteLoaded() {return m_pal_loaded;}
 // Draw function
 void Draw(CDC* destDC, int dx, int dy,
 int sx, int sy, int sw, int sh);
 // Dtor
 ~CDIB()
 {
 delete m_palette;
 if (m_hInfo)
 {
 GlobalUnlock(m_hInfo);
 GlobalFree(m_hInfo);
 }
 }
};
inline void CDIB :: Draw(CDC* destDC, int dx, int dy,
 int sx, int sy, int sw, int sh)
{
 CDC dcMem;
 CPalette* pOld;
 // Select the palette into the screen DC and realize it
 // Force background, because palette should already be realized in
 // foreground if necessary
 pOld = destDC->SelectPalette(m_palette, TRUE);
 destDC->RealizePalette();

 // Create a memory DC compatible with the screen DC
 dcMem.CreateCompatibleDC(destDC);
 // Put the bitmap bits into the memory DC
 CBitmap* pbmOld = dcMem.SelectObject(&m_bitmap);
 // Copy the bitmap bits to the screen DC
 destDC->BitBlt(dx, dy, sw, sh, &dcMem, sx, sy, SRCCOPY);
 // Put the original bitmap back
 dcMem.SelectObject(pbmOld);
 // Put the original palette back
 destDC->SelectPalette(pOld, TRUE);
 destDC->RealizePalette();
}
#endif

Next, over in the implementation file, we'll build the constructor that reads in a DIB from a file or from
resource data. This function first calls the new Windows 95 function, LoadImage(), to create the DIB
section and initialize its data from the file or resource, and then it read in the palette information using the
technique described above.

The constructor is overloaded. The first takes a file name:

#include "stdafx.h"
#include "cdib.h"
#include <io.h>
CDIB :: CDIB(const char* name)
{

 HBITMAP the_bits;
 // 1. Read bits from file
 the_bits = (HBITMAP)LoadImage(NULL, name, IMAGE_BITMAP, 0, 0,
 LR_LOADFROMFILE|LR_CREATEDIBSECTION);
 m_bitmap.Attach(the_bits);

 // 2. Get palette from file or resource
 m_pal_loaded = FALSE;
 m_palette = 0;
 int hfile;
 // Open the file
 hfile = _lopen(name, OF_READ);

 // Only proceed if file could be opened
 if (hfile != -1)
 {
 BITMAPINFOHEADER bminfo;
 BITMAPFILEHEADER bmfile;
 PALETTEENTRY entries[256];
 int num_entries;
 HANDLE hlogpal;
 LPLOGPALETTE lplogpal;

 // Read headers and palette entries out of file
 _lread(hfile, &bmfile, sizeof(bmfile));
 _lread(hfile, &bminfo, sizeof(bminfo));
 _lread(hfile, &entries, sizeof(entries));

 if ((bminfo.biSize != sizeof(BITMAPINFOHEADER)) ||
 (bminfo.biBitCount > 8))
 {
 _lclose(hfile);
 return;
 // Bad header or more than 256 colors - can't go on
 }

 // if biClrUsed is 0, palette is using max number of
 // entries for its bitwidth. Otherwise, biClrUsed
 // specifies the actual number of palette entries in use.
 if (bminfo.biClrUsed == 0)
 num_entries = 1 << bminfo.biBitCount;
 else
 num_entries = bminfo.biClrUsed;

 // Remember the bitmap's width and height
 m_width = bminfo.biWidth;
 m_height = bminfo.biHeight;

 m_infosize = sizeof(BITMAPINFO) + sizeof(RGBQUAD)*num_entries;
 m_hInfo = GlobalAlloc(GHND, m_infosize);
 if (!m_hInfo)
 {
 _lclose(hfile);
 return;
 }
 m_lpInfo = (LPBITMAPINFO)GlobalLock(m_hInfo);

 if (!m_lpInfo)
 {
 _lclose(hfile);
 return;
 }
 // Rewind file and read whole BITMAPINFO for later use
 _lseek(hfile, 0, SEEK_SET);
 _lread(hfile, m_lpInfo, m_infosize);
 _lclose(hfile);
 // Allocate storage for the LOGPALETTE
 hlogpal = GlobalAlloc(GHND, sizeof(LOGPALETTE) +
 sizeof(PALETTEENTRY)*num_entries);
 if (hlogpal)
 {
 lplogpal = (LPLOGPALETTE)GlobalLock(hlogpal);

 lplogpal->palVersion = 0x300;
 lplogpal->palNumEntries = num_entries;

 // Copy entries into LOGPALETTE
 for (int i=0; i<num_entries; i++)
 {
 lplogpal->palPalEntry[i].peRed = entries[i].peBlue;
 lplogpal->palPalEntry[i].peGreen = entries[i].peGreen;
 lplogpal->palPalEntry[i].peBlue = entries[i].peRed;
 lplogpal->palPalEntry[i].peFlags = 0;
 }

 // Create the palette
 m_palette = new CPalette;
 m_palette->CreatePalette(lplogpal);
 // Clean up
 GlobalUnlock(hlogpal);
 GlobalFree(hlogpal);
 m_pal_loaded = TRUE;
 }
 }
}

The second takes a resource ID for a bitmap:

CDIB :: CDIB(UINT nResID)
{
 HBITMAP the_bits;
 // 1. Read bits from resource
 the_bits = (HBITMAP)LoadImage(GetModuleHandle(NULL),
 MAKEINTRESOURCE(nResID),
 IMAGE_BITMAP, 0, 0, LR_CREATEDIBSECTION);
 m_bitmap.Attach(the_bits);

 // 2. Get palette from file or resource
 m_pal_loaded = FALSE;
 m_palette = 0;
 // Load palette from resource
 HRSRC hbmres = FindResource(NULL, MAKEINTRESOURCE(nResID), RT_BITMAP);
 if (hbmres)

 {
 LPBITMAPINFOHEADER lpbminfo = (LPBITMAPINFOHEADER)LockResource(
 LoadResource(NULL,hbmres));
 int num_entries;
 HANDLE hlogpal;
 LPLOGPALETTE lplogpal;

 if (lpbminfo && (lpbminfo->biSize >= sizeof(BITMAPINFOHEADER)) &&
 (lpbminfo->biBitCount <= 8))
 {
 RGBQUAD* entries = (RGBQUAD*)((BYTE*)lpbminfo +
 lpbminfo->biSize);
 // if biClrUsed is 0, palette is using max number of
 // entries for its bitwidth. Otherwise, biClrUsed
 // specifies the actual number of palette entries
 // in use.
 if (lpbminfo->biClrUsed == 0)
 num_entries = 1 << lpbminfo->biBitCount;
 else
 num_entries = lpbminfo->biClrUsed;

 // Remember the bitmap's width and height
 m_width = lpbminfo->biWidth;
 m_height = lpbminfo->biHeight;
 m_infosize = sizeof(BITMAPINFO) + sizeof(RGBQUAD)*num_entries;
 m_hInfo = GlobalAlloc(GHND, m_infosize);
 if (!m_hInfo)
 return;
 m_lpInfo = (LPBITMAPINFO)GlobalLock(m_hInfo);
 if (!m_lpInfo)
 return;
 // Copy BITMAPINFO
 memcpy(m_lpInfo, lpbminfo, m_infosize);

 // Allocate storage for the LOGPALETTE
 hlogpal = GlobalAlloc(GHND, sizeof(LOGPALETTE) +
 sizeof(PALETTEENTRY)*num_entries);
 if (hlogpal)
 {
 lplogpal = (LPLOGPALETTE)GlobalLock(hlogpal);
 lplogpal->palVersion = 0x300;
 lplogpal->palNumEntries = num_entries;

 // Copy entries into LOGPALETTE
 for (int i=0; i<num_entries; i++)
 {
 lplogpal->palPalEntry[i].peBlue = entries[i].rgbBlue;
 lplogpal->palPalEntry[i].peGreen = entries[i].rgbGreen;
 lplogpal->palPalEntry[i].peRed = entries[i].rgbRed;
 lplogpal->palPalEntry[i].peFlags = 0;
 }
 // Create the palette
 m_palette = new CPalette;
 m_palette->CreatePalette(lplogpal);
 // Clean up

 GlobalUnlock(hlogpal);
 GlobalFree(hlogpal);
 m_pal_loaded = TRUE;
 }
 }
 }
}

Whew! There's a lot there, but it's pretty easy to understand. It's actually the same thing twice; once for
files and once for resources, with slight variations.

The last piece of code is the constructor for creating an empty DIB with CreateDIBSection(). Since this
DIB will usually be used as an offscreen buffer for double-buffered animation, it will have its palette
initialized from a DC passed into the constructor, and its palette will be taken from another DIB, usually
the background DIB for the animation, or alternatively, a DIB containing sprite graphics. Here's the code:

CDIB :: CDIB(const CDC* pDC, CDIB* based_on)
{
 HBITMAP hbmNew;
 WORD* pEntry;
 int i;
 HANDLE hLogPal;
 m_width = based_on->width();
 m_height = based_on->height();
 // Allocate a BITMAPINFO struct with space for 256 colors
 m_infosize = sizeof(BITMAPINFOHEADER) + (sizeof(WORD) * 256);
 m_hInfo = GlobalAlloc(GHND, m_infosize);
 if (!m_hInfo)
 return;
 m_lpInfo = (LPBITMAPINFO)GlobalLock(m_hInfo);
 if (!m_lpInfo)
 return;

 // Copy the header info from the based-on DIB
 memcpy(m_lpInfo, based_on->info(), sizeof(BITMAPINFOHEADER));

 // Build a color table for the new DIB that maps 1-1
 // with the base DC's palette

 m_lpInfo->bmiHeader.biClrUsed= 0;
 pEntry = (WORD*)((BYTE*)m_lpInfo + sizeof(BITMAPINFOHEADER));
 for (i=0; i<256; i++)
 *pEntry++ = (WORD)i;

 // Construct a logical palette for the DIB
 hLogPal = GlobalAlloc(GHND, sizeof(LOGPALETTE) +
 sizeof(PALETTEENTRY)*256);
 if (hLogPal)
 {
 // Grab a copy of the DC's current palette for later reference
 CPalette* temp_pal = pDC->GetCurrentPalette();
 BYTE* lpLogPal = (BYTE*)GlobalLock(hLogPal);

 ((LPLOGPALETTE)lpLogPal)->palVersion = 0x300;
 ((LPLOGPALETTE)lpLogPal)->palNumEntries = 256;
 // Copy the palette entries from the DC's palette
 temp_pal->GetPaletteEntries(0,256,
 (PALETTEENTRY*)(lpLogPal + 2 * sizeof(WORD)));
 // Create the palette
 m_palette = new CPalette;
 m_palette->CreatePalette((LPLOGPALETTE)lpLogPal);
 // Clean up
 GlobalUnlock(hLogPal);
 GlobalFree(hLogPal);
 m_pal_loaded = TRUE;
 }

 // Create and attach the DIB section
 hbmNew = CreateDIBSection(pDC->GetSafeHdc(), m_lpInfo, DIB_PAL_COLORS,
 &m_lpBits, NULL, 0);
 m_bitmap.Attach(hbmNew);
}

That's it. Now, let's put the CDIB class to work in some sample applications.

Project DIBTest: A Simple MDI DIB Viewer
The purpose of this project is to demonstrate the CDIB class in action. In this project, we'll load and draw
DIBs, and we'll employ the basic palette-management techniques for an app that displays DIBs, including
some additional steps necessary for managing multiple document views with different palettes.

This application allows the user to open .bmp files, which it then displays in MDI views. The app
properly handles the palette, so that when the individual views are activated, the correct palette is
employed to display the foreground view's image. This is also true if the entire app is activated and
deactivated. To test this out for yourself, set your video driver to a 256-color mode and load a few other
graphics-intensive apps when you're running DIBTest.

Step 1
Use AppWizard to create a new project called DIBTest. Create the project using the following AppWizard
options:

AppWizard Step 1: use the default setting (multiple documents).
AppWizard Step 2: use the default setting (no database support).
AppWizard Step 3: use the default settings (no OLE support).
AppWizard Step 4: use the default settings, except turn off printing and print preview support (we
won't be using it).
AppWizard Step 5: use the default settings.
AppWizard Step 6: use the default settings, except make CDIBTestView descend from
CScrollView.

If everything worked all right, you should wind up with a New Project Information dialog that looks like
this:

Step 2
We also want to make sure that a new document is not automatically created on startup, so go into
CDIBTestApp::InitInstance(), find the command line processing code (near the end), and make the
following changes:

 // Parse command line for standard shell commands, DDE, file open
 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

 // Dispatch commands specified on the command line
 if (cmdInfo.m_nShellCommand != CCommandLineInfo::FileNew)
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;

Step 3
The document class in this app will hold the DIB for us, so we need to add a member variable to it for the
DIB. Go to the CDIBTestDoc declaration and add:

// Attributes
public:
 CDIB* m_DIB;

We'll need to properly initialize this pointer in the constructor and delete it in the destructor:

///
// CDIBTestDoc construction/destruction

CDIBTestDoc::CDIBTestDoc()
{
 m_DIB = 0;
}

CDIBTestDoc::~CDIBTestDoc()
{
 delete m_DIB;
}

When a new document is file is opened, we'll have to load the DIB. Use ClassWizard to add an
OnOpenDocument() handler:

BOOL CDIBTestDoc::OnOpenDocument(LPCTSTR lpszPathName)
{
 if (!CDocument::OnOpenDocument(lpszPathName))
 return FALSE;

 the_dib = new CDIB(lpszPathName);

 if (!m_DIB->IsPaletteLoaded() || ! m_DIB->GetRawbits() ||
 ! m_DIB->GetInfo())
 {
 AfxMessageBox("Unable to read DIB file.");
 return FALSE;
 }

 return TRUE;
}

Step 4
Now on to the CDIBTestView class. This is a CScrollView descendant, so we'll have to set the scrolling
ranges in the OnInitialUpdate() handler:

void CDIBTestView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 CSize sizeTotal;
 sizeTotal.cx = GetDocument()->m_DIB->GetWidth();
 sizeTotal.cy = GetDocument()->m_DIB->GetHeight();
 SetScrollSizes(MM_TEXT, sizeTotal);
}

Of course, we'll need to draw the DIB in the view's OnDraw() handler:

void CDIBTestView::OnDraw(CDC* pDC)
{
 CDIBTestDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDoc-> m_DIB->Draw(pDC, 0, 0, 0, 0, pDoc-> m_DIB->GetWidth(),
 pDoc-> m_DIB->GetHeight());
}

This is an MDI app, and each view will have its own document containing the DIB, each with its own
palette. Whenever the view is activated, it must assert its palette, so we'll make a function that asserts the
view's palette, and we'll call it within an OnActivateView() handler:

void CDIBTestView::OnActivateView(BOOL bActivate, CView* pActivateView,
 CView* pDeactiveView)
{
 // Realize this view's palette in the foreground if activating,
 // or in the background if deactivating
 realizePalette(!bActivate);
 CScrollView::OnActivateView(bActivate, pActivateView, pDeactiveView);
}

int CDIBTestView::realizePalette(BOOL bForceBackground)
{
 // Locate the active view's document
 CDIBTestDoc* pDoc = GetDocument();

 // Get the palette from the active doc's dib
 CPalette* pPal = (CPalette*)pDoc-> m_DIB->GetPalette();

 // Realize the palette
 CDC* pDC = GetDC();
 CPalette* pOld= pDC->SelectPalette(pPal, bForceBackground);
 int result = pDC->RealizePalette();
 // bForceBackground is TRUE because palette should already
 // be mapped
 pDC->SelectPalette(pOld, TRUE);
 pDC->RealizePalette();
 ReleaseDC(pDC);
 // If realization changed, force repaint
 if (result)
 Invalidate();
 return result;
}

Step 5
While we're on the subject of palettes, the app needs to handle system palette messages and respond using
the palette from the active view. To do this, we'll add a function to CMainFrame that tells the active view
to realize its own palette, and we'll call it from OnPaletteChanged() and OnQueryNewPalette()
handlers for the WM_PALETTECHANGED and WM_QUERYNEWPALETTE messages respectively:

int CMainFrame::realizeActivePalette(CWnd* pFocusWnd)
{
 // Get the active view
 CDIBTestView* pView = (CDIBTestView*)GetActiveView();
 // Quit if this is the focuswnd or if there is no active view
 if ((!pView)||(pView == pFocusWnd))
 return 0;

 // Realize the view's palette in the foreground
 return pView->realizePalette(FALSE);

}

void CMainFrame::OnPaletteChanged(CWnd* pFocusWnd)
{
 CMDIFrameWnd::OnPaletteChanged(pFocusWnd);

 if (pFocusWnd != this)
 realizeActivePalette(pFocusWnd);
}

BOOL CMainFrame::OnQueryNewPalette()
{
 realizeActivePalette(this);
 return CMDIFrameWnd::OnQueryNewPalette();
}

Step 6
Use App Studio to remove any menus and toolbar items that we're not using.

That's it! The finished app should look something like this:

DIBs and Animation
We started off this chapter with a general discussion of DIBs. In the course of that discussion, the subject
of bitmap drawing speed came up a few times. WinG, for instance, was developed as an interim solution
to speeding up bitmap drawing, while CreateDIBSection() brought the WinG techniques into the
mainstream API. So far, we've only shown how to draw DIBs in a very static fashion; speed has not been
an issue. One of the most powerful uses of DIB section bitmaps is to perform smooth, flicker-free
animation. To understand why, let's first look at the problems facing a developer of a multimedia
application that needs to do high-quality animation.

The Need for Double-buffered Drawing
Animation is the process of making graphic elements move around on the screen in a realistic way. Those
graphic elements are controlled by program logic that determines their positions and appearance
throughout the animation sequence. When the program wishes to update the display, the real problems
begin. As the graphic elements are moved, they need to be removed from their former positions and
redrawn at their new locations. A primitive animation program might erase the area of the screen at an
element's old position, replacing any background graphics 'underneath' the element, and then redraw the
element in the new place. This results in the element briefly disappearing from the screen between the
time it's erased and redrawn, which makes the animation flicker. One possible solution to this is to
carefully keep track of the 'dirty' regions represented by the old and new positions and to draw the new
position before erasing the old one. This could stop the flickering, but there's still another problem. You
can't actually draw every element onto the scene simultaneously; each element is drawn one at a time.
With fast graphics and a few elements, you can generate the illusion of simultaneity, but as the number of
elements increases, this illusion begins to fall apart. The lag between the drawing of the first and last
elements becomes perceivable.

Basically, any way you look at it, trying to perform animation by drawing directly to the screen is the
wrong approach. There's is another way—one that game developers have been using for years—that gets
around all of these problems. It's called double-buffering, and basically consists of assembling the entire
scene in a bitmap in memory rather than on the screen (called a back buffer or offscreen bitmap) and
then blitting the entire, finished scene frame to the screen DC all at once. That way, all of the dirty work
of the scene's animation is entirely hidden from the viewer, so you get no flickering, no lag between
drawing of elements, etc.

Double-buffering and CView
Windows provides no direct or inherent support for double-buffering (excluding the new DirectDraw API,
which we cover in detail later in the book), and until the advent of CreateDIBSection() (or immediately
before that, WinG) the complexity and speed problems involved discouraged many Windows developers
from trying it. Now, however, it's actually quite easy to do. In fact, we've already added a constructor to
our CDIB class just for this purpose. We want to be able to create a back buffer for a plain vanilla MFC
CView descendant class, and use DIBs for the various graphic elements to be animated. Basically, all we
have to do to make a back buffer for the CView is to grab the CView's DC and construct a CDIB from it.
We'll also use one of the scene element DIBs so that we can make sure the palette entries in the CView and
the back buffer are in agreement with the scene DIBs' palette.

We want to make drawing with a back buffer as easy as drawing to the view's DC, so we'll create a DIB
section based on the screen DC and put it into an off-screen DC for drawing. Then we can just draw to the
offscreen DC rather than the screen DC, and assemble the scene however we like. When it's time to
update the screen, we'll blit the whole thing to the screen. The easiest way to see how this works is just to

do it, so let's build a simple example program to try it out.

Project AnimTest: Double-buffered Animation
with a CView
This project demonstrates the basic principles of double-buffered animation with DIBs and a CView
descendant. We'll use the CDIB class in two modes: to hold the graphic elements used to assemble the
scene, and also to act as the off-screen buffer in which the scene will be assembled before being blitted
onto the screen.

This very simple application reads in a background image DIB and a DIB containing ten frames of sprite
animation. It sets a timer to go off every 0.1 second and, on each timer message, it generates a fresh
animation frame in the off-screen buffer and blits the assembled buffer to the screen. The result is smooth,
flicker-free animation.

This is a very simple example. It covers in the most uncluttered, direct manner the basic concepts you
need to get double-buffered animation going in an MFC-based app. Some improvements left to the reader
for 'extra credit' might be using different ROPs with BitBlt() to achieve odd-shaped or transparent
sprites, and optimized invalidation by tracking the dirty areas more carefully for improved speed so we're
not re-blitting areas of the back buffer that didn't change.

Step 1
Use AppWizard to create a new project called AnimTest. Create the project using the following AppWizard
options:

AppWizard Step 1: make this a single-document interface app.
AppWizard Step 2: use the default setting (no database support).
AppWizard Step 3: use the default settings (no OLE support).
AppWizard Step 4: turn off printing and print preview support (we won't be using it), and set the File
Menu MRU count to 0.
AppWizard Step 5: use the default settings.
AppWizard Step 6: use the default settings, except make CAnimTestView descend from
CScrollView.

If everything worked all right, you should wind up with a New Project Information dialog that looks like
this:

Step 2
The bulk of the work in this app is done in the CAnimTestView class and we first need to add the
following member variables to the class definition:

// Attributes
public:

 CDIB* m_poffscr; // A DIB for the back-buffer
 CDIB* m_psprite; // A DIB for the sprite
 CDIB* m_pbkgnd; // A DIB for the background bitmap
 // Animation members
 int m_frame; // Current frame number for sprites
 int m_xpos; // X position offset register
 int m_xvel; // X velocity register

We'll also add some inline helper functions to the class deal with the animation timer:

 void setTimer() {SetTimer(DELAY_TIMER, DELAY_TIME, NULL);}
 void killTimer() {KillTimer(DELAY_TIMER);}

And definitions for the constants used by these helpers, at the top of the header:

#define DELAY_TIMER 1000
#define DELAY_TIME 100 // 0.1 sec delay time (10 frames/sec)

We can initialize the pointers to the DIBs in the constructor:

CAnimTestView::CAnimTestView()
{
 // Initialize the DIB pointers
 m_poffscr = 0;
 m_psprite = 0;
 m_pbkgnd = 0;
}

The destructor also needs to clean up the DIBs at shutdown:

CAnimtestView::~CAnimtestView()
{
 delete m_poffscr;
 delete m_psprite;
 delete m_pbkgnd;
}

The OnInitialUpdate handler has to do several things. First, it will load in the animation graphics into
CDIBs—a backdrop bitmap and a bitmap containing ten images to use as sprite animation frames. Then it
needs to set the scrolling to match the size of the backdrop bitmap. Next, it must grab the view's DC and
construct the back buffer DIB. Then it initializes the variables used to keep track of the current state of the
animation and it starts the animation timer. Finally, it renders the initial scene to the back buffer.

void CAnimTestView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 CSize sizeTotal;

 // WROX 1: Load sprite and background bitmaps from resources
 m_psprite = new CDIB(IDB_SPRITE);
 m_pbkgnd = new CDIB(IDB_BACKGROUND);
 // Set the scrolling to match the size of the background DIB
 sizeTotal.cx = m_pbkgnd->GetWidth();
 sizeTotal.cy = m_pbkgnd->GetHeight();
 SetScrollSizes(MM_TEXT, sizeTotal);

 // WROX 2: Prepare the back buffer DIB
 // Get the view's DC
 CDC* pDC = GetDC();
 CPalette *pOld = pDC->SelectPalette(m_pbkgnd->GetPalette(), TRUE);
 pDC->RealizePalette();
 // Create the back-buffer bitmap based on the view's DC and the
 // background DIB
 m_poffscr = new CDIB(pDC,m_pbkgnd);

 pDC->SelectPalette(pOld,TRUE);
 pDC->RealizePalette();
 ReleaseDC(pDC);
 // Start the sprite animation timer
 setTimer();

 m_frame = 0;
 m_xpos = 0;
 m_xvel = 2;
 RenderScene();
}

In the first part of the code, denoted by WROX 1 in the comment, we create CDIB objects for the sprite
bitmap and the background using the first CDIB constructor we saw earlier. The CDIB constructor
automatically retrieves the data for the bitmap from the resource identified by the first argument in each
case, since the second argument is FALSE. In the second part of the code indicated by WROX 2 in the
comment, we create another CDIB object using the second CDIB constructor. This creates the bitmap using
the pointer to the DC passed as the first argument, and the background CDIB object accessed through the
pointer passed as the second argument. Finally, after starting the timer, the initial values for the current
sprite frame number, the initial position offset, and the velocity of the sprite.

Step 3
There are three functions involved in actually drawing the scene. RenderScene() assembles the scene in
the back buffer, the OnDraw() handler blits the back buffer to the screen DC, and the OnTimer() handler
triggers re-rendering of the scene every time the timer goes off.

void CAnimTestView::RenderScene()
{
 CDC dcOSB;
 // Grab the view's DC
 CDC* pDC = GetDC();
 // Create memory DCs compatible with the screen DC
 dcOSB.CreateCompatibleDC(pDC);
 // Put the offscreen bitmap bits into a memory DC
 CBitmap* pbmOld2 = dcOSB.SelectObject(&(m_poffscr->GetBits()));

 // Calculate the x offset to the current sprite frame
 int frame_offset = m_frame*64;
 // Blit the background DIB onto the offscreen buffer
 m_pbkgnd->Draw(&dcOSB, 0,0, 0,0, m_pbkgnd->GetWidth(),
 m_pbkgnd->GetHeight());
 // Top row of blocks
 m_psprite->Draw(&dcOSB, 28+m_xpos, 30, frame_offset,0, 64, 62);
 m_psprite->Draw(&dcOSB, 188+m_xpos, 30, frame_offset,0, 64, 62);
 m_psprite->Draw(&dcOSB, 348+m_xpos, 30, frame_offset,0, 64, 62);
 // Bottom row of blocks
 m_psprite->Draw(&dcOSB, 28+m_xpos, 120, frame_offset,0, 64, 62);
 m_psprite->Draw(&dcOSB, 188+m_xpos, 120, frame_offset,0, 64, 62);
 m_psprite->Draw(&dcOSB, 348+m_xpos, 120, frame_offset,0, 64, 62);
 // Clean up
 dcOSB.SelectObject(pbmOld2);
 ReleaseDC(pDC);
 // Move the blocks over one tick
 m_xpos += m_xvel;
 if ((m_xpos > 200) || (m_xpos < 1))
 m_xvel = -m_xvel;
 // Advance the sprite frame, wrapping if necessary
 m_frame++;
 if (m_frame > 9)

 m_frame = 0;
}

void CAnimTestView::OnDraw(CDC* pDC)
{
 // Draw the back buffer to the screen
 m_poffscr->Draw(pDC, 0,0, 0,0, m_poffscr->GetWidth(),
 m_poffscr->GetHeight());
}

void CAnimTestView::OnTimer(UINT nIDEvent)
{
 // Render the next frame
 RenderScene();
 // Invalidate, but don't erase background
 Invalidate(FALSE);

 CScrollView::OnTimer(nIDEvent);
}

Step 4
The app needs to handle system palette messages and respond using the palette from the active view. To
do this, we'll add a function to CMainFrame that tells the active view to realize its own palette, and we'll
call it from OnPaletteChanged() and OnQueryNewPalette() handlers:

int CMainFrame::realizeActivePalette(CWnd* pFocusWnd)
{
 // Get the active view
 CAnimTestView* pView = (CAnimTestView*)GetActiveView();
 // Quit if this is the focuswnd or if there is no active view
 if ((!pView)||(pView == pFocusWnd))
 return 0;

 // Realize the view's palette in the foreground
 return pView->realizePalette(FALSE);
}

void CMainFrame::OnPaletteChanged(CWnd* pFocusWnd)
{
 CFrameWnd::OnPaletteChanged(pFocusWnd);

 if (pFocusWnd != this)
 realizeActivePalette(pFocusWnd);
}

BOOL CMainFrame::OnQueryNewPalette()
{
 realizeActivePalette(this);
 return CFrameWnd::OnQueryNewPalette();
}

To make this work, we'll also have to implement the realizePalette() function for the view class:

int CAnimtestView::realizePalette(BOOL bForceBackground)
{
 // Get the palette from the offscreen dib
 CPalette* pPal = m_poffscr->GetPalette();
 // Realize the palette

 CDC* pDC = GetDC();
 CPalette* pOld= pDC->SelectPalette(pPal, bForceBackground);
 int result = pDC->RealizePalette();
 // bForceBackground is TRUE because palette should already
 // be mapped
 pDC->SelectPalette(pOld, TRUE);
 pDC->RealizePalette();
 ReleaseDC(pDC);
 // If realization changed, force repaint
 if (result)
 Invalidate();
 return result;
}

Step 5
Finally, we need to include the bitmaps for the animation graphics in the application's resources. We're
going to use graphics borrowed from the DirectX examples later in the book.

Add two bitmaps to the resources, naming them IDB_SPRITE and IDB_BACKGROUND and set the Colors:
general property to 256. Next, open Sprite.bmp in any paint package (Paint is fine), select the whole
image, copy it to the clipboard and paste it into the IDB_SPRITE resource, resizing the resource when you
do. Repeat this for Bkgnd.bmp, pasting it into IDB_BACKGOUND.

That's it. The finished app should look like this:

Summary
In this chapter, we've demystified two of the key elements of Windows multimedia programming: the
device-independent bitmap, and the techniques for palette management. We've built a class to encapsulate
what we learned, and built a simple DIB viewer with the new class. We also used the CDIB class to
investigate double-buffered animation techniques.

The Windows 95 Game SDK
(DirectX)

Virtually since its inception in 1981, MS-DOS has been the Intel world's platform of choice for game development.
This isn't due to convenient game-programmer friendly features in MS-DOS, but rather to the fact that MS-DOS can
be easily side-stepped or dumped altogether by a game program that wants to get at the raw hardware. Because it's
hard to shove out of the way, Windows has long been shunned by the high-performance arcade game development
community.

When Microsoft set out to change the operating system landscape with Windows 95, it had a challenge ahead of it.
Since game developers were entrenched in the MS-DOS (or more precisely, non-Windows) world, and Microsoft
wanted to de-emphasize MS-DOS in favor of Windows 95, it had to do something to entice those developers into
Windows for the first time.

Enter the Windows 95 Game SDK, which provides access to a new kind of Microsoft API, DirectX. DirectX
provides a sophisticated, high-performance mechanism for accessing display, audio, input and communications
devices for use in real-time games written as native Windows apps. Yes, real, live and fairly conventional Windows
apps! Sounds improbable? Read on.

The Design of a Simple Arcade Game:
WROXBlox!
Over the course of this chapter, we're going to develop a DirectX game. To get an idea of the kinds of problems that
game developers face, let's first talk a bit about the design of a simple game, in this case, the game we'll build, called
WROXBlox! To understand the way the DirectX APIs are constructed, we need to see how they'll be used. When
we've got the anatomy of the game laid out, we'll look at what kinds of system services we need in order to make it
work.

The WROXBlox! Game Concept
The game we'll build will be a break-out style arcade game, in which the player controls a paddle (at the bottom of
the screen) to direct a ball toward a bunch of blocks. The object is to knock out all of the objects with the ball
without letting the ball fall down past the paddle. Clearing out the blocks ends a level, and game play restarts on a
new level with a slightly faster ball. The player will get a certain number of balls, say three, and when they're all
gone, the game is over. Pretty simple, right?

The Game Storyboard
.Actually, there's a bit more to this than meets the eye. Think about the arcade games that you've played in the past, I
mean the big, stand-up games in a real arcade. When you play a simple game like the one we've just described, play
usually progresses through a number of phases, or states:

Splash Screen—the stuff on the screen when you first walk up to it.
Level Start—when a level begins, you need a second or two to get oriented.
Play—the game action, when you're blasting aliens, or, in our case, knocking blocks
Pause—what happens when you pause the game (not an arcade feature, but a common one on PC
games).
Drain—what happens when you lose a life/ship/ball/whatever.
Finish Level—the reward when you successfully clear out a level.
Game Over—what happens when you lose your last life/ship/ball/whatever.

Just about every shoot-em-up arcade game goes through these states, and sometimes a few more (like the cartoons in

Pac-Man). These states fit together in a typical flow, which can easily be expressed as a simple finite-state machine:

Now let's take a look at these states in the context of WROXBlox! and what we want to do in each one.

The Splash Screen State
The splash screen is to a video game what the cover is to a book; it usually shows the game's logo, copyright
information, creators and maybe a few characters or scenes from the game itself. The splash screen is the initial state
for the game. When the game first starts, it goes into this state, and it returns here whenever a game session ends.

When we're in the Splash Screen state in WROXBlox!, we'll want to do the following things:
Paint the Splash Screen bitmap onto the display.
Wait for the player to press any key, which takes us to the Level Start state.

The Level Start State
It would be a bit disconcerting to our players if we dropped them right into the game action without warning after

they have pressed a key to exit the Splash Screen state. We need to give them a second or two to reach for the
controls and steel their nerves. To give them a hint of what's in store, we'll draw the game backdrop and anything
else we deem appropriate, plus a warning to get ready.

Here's what we'll do in the WroxBlox Level Start state:
Paint the game backdrop on the screen.
Paint a 'Get Ready!' message over it.
Set a timer for a second or so. When the timer expires, start the game action by going to the Play
state.

The Play State
While we're in the Play state, the player and the game are battling it out. There's an important concept to grasp here,
pertaining to the timing of what happens in the Play state. While the game is in play, a single sequence of actions
will be repeated over and over, many times per second. We'll call one pass through this sequence of actions a game
slice. A game slice is like a round of turns in a board game, where every player gets a turn. During a game slice, the
following stuff has to happen:

Check for input from the user (via keyboard or joystick).
Move and animate all sprites as needed. (Sprites are all of the little moving objects in the game—the
blocks, the ball, the paddle.)
Check for collisions between sprites and act accordingly. For instance, if the ball strikes a block,
blow it up and score the hit.
Watch for ball drain. If the ball moves off the bottom of the screen, go to the Ball Drain state.
Watch for the Pause key. If the user presses it, go to the Pause state.
If all the blocks are cleared out, go to the Finish Level state.
Draw everything in its new state and place.

Repeating these steps over and over again gives us the game's action.

The Pause State
When the phone rings in the middle of your WROXBlox! game, you'll want to put the game on hold while you take
the call. We'll make the F3 key pause the action. Here's what happens when WROXBlox! is in the Pause state:

Draw everything in its current state, but don't move or animate anything.
Draw a 'Paused' message on top to indicate that the game is paused.
Wait for the player to press any key.

The Ball Drain State
The main object of WROXBlox! is to keep the ball in play. If, heaven forbid, the ball should slip past the player's
paddle, we have to acknowledge that fact. What we do is up to us (making a rude noise of some sort seems
appropriate). Also, we should delay the game for a second or two to let the loss sink in. So, here's the drill for the
Ball Drain state:

Make a rude noise.
Set a timer and keep the game animation going for a second or so with no ball, to taunt the player.
When the timer expires, subtract a ball, reset the ball position and go back to the Play state, or if all
balls are gone, go to the Game Over state.

The Finish Level State
If the player manages to clear out a whole level, they deserve a pat on the back and a quick breather. In the Finish
Level state, we will:

Paint the game backdrop.
Paint a 'Nice Work!' message over it.

Set a timer for a second or so, and when it expires, reset all sprites, up the difficulty slightly, and go
back to the Level Start state.

The Game Over State
No arcade game would be complete without the idiomatic 'Game Over' message that appears when the player makes
that final mistake. Our Game Over state will:

Paint the game backdrop.
Paint a 'Game Over' message over it.
Wait for the player to press any key, at which point we go back to the Splash Screen state.

Game Program Architecture
OK, the game concept is pretty well laid out. Now, how do we go about translating it into a program? Well, let's lay
out some pseudocode for the state machine we've just described and add some start-up and shutdown stuff to it:

Initialize any devices
Load and initialize the game's media resources - bitmaps/sprites, sounds, etc.

while (no request to quit)
{
 switch (game state)
 {
 case Splash Screen:
 // Paint the splash screen bitmap onto the display.
 // Wait for the player to press any key.
 // When a key is pressed go to the Level Start state.
 break;

 case Level Start:
 // Paint the game backdrop on the screen.
 // Paint a "Get Ready!" message over it.
 // Set a timer for a second or so.
 // When the timer expires, go to the Play state.
 break;

 case Play:
 // Game slice:
 // Check for input from the user (via keyboard or joystick).
 // Move and animate all sprites as needed.
 // Check for collisions between sprites and act accordingly.
 // Watch for ball drain -
 // if the ball drains, go to the Ball Drain state
 // Watch for the Pause key - if pressed, go to the Pause state
 // Watch for finished level -
 // if all the blocks are cleared, go to the Finish Level state
 // Draw everything in its new state and place.
 break;

 case Pause:
 // Draw everything, but don't move or animate anything.
 // Draw a "Paused" message on top.
 // Wait for the player to press any key.
 break;

 case Drain:
 // Make a rude noise.
 // Set a timer.
 // Draw and animate everything except ball.
 // When the timer expires:
 // subtract a ball
 // reset the ball position
 // go back to the Play state, or
 // if all balls are gone, go to the Game Over state.
 break;

 case Finish Level:

 // Paint the game backdrop.
 // Paint a "Nice Work!" message over it.
 // Set a timer for a second or so.
 // When timer expires:
 // reset all sprites
 // up the difficulty slightly
 // go back to the Level Start state
 break;

 case Game Over:
 // Paint the game backdrop.
 // Paint a "Game Over" message over it.
 // Wait for the player to press any key.
 // Go back to Splash Screen state.
 break;
 }
}

Deinitialize devices and clean up media resources

The DirectX API
We've now gone about as far as we can with WROXBlox! without getting into DirectX. So far, everything we've
said about our example program applies to game programming on just about any platform. Now we need to see how
to write WROXBlox! As a Windows app with DirectX. The DirectX API will provide the mechanisms we need to do
the things we've specified in our game.

DirectX is made up of several subordinate APIs, each for handling a different aspect of game device control:
DirectDraw provides APIs for directly controlling your video display hardware.
DirectSound provides APIs for directly controlling your audio hardware.
DirectInput provides APIs for querying joystick and other multi-axis game controllers.
DirectPlay provides APIs for easily communicating over networks and modems in a protocol-
independent fashion for multiplayer games.

A Note about DirectX and COM
The DirectDraw, DirectSound, and DirectPlay APIs are all built atop the Component Object Model (COM). Yes, this
is the same COM that forms the basis for OLE 2. Wait! Don't glaze over just yet. It's not nearly as bad as you think.
The philosophy behind choosing COM for DirectX was to provide operating-system-level object wrappers for the
raw hardware devices handled by these APIs. Rather than making it hard to use, this actually makes DirectX
elegantly simple. Note that COM isn't OLE. It's simply an interface specification model for object-oriented APIs. In
fact, all of the hard stuff about COM is hidden from you as a DirectX programmer. You make simple function calls
to create the COM objects that wrap the devices, and pointers to those objects are returned to you to use. You can
then treat them as if they were C++ objects with the appropriate DirectX API functions as members! That's all there
is to it, as we'll see.

When you use the DirectX API, you'll create one COM object to wrap around your video adapter (an IDirectDraw
object), another to wrap around your sound board (an IDirectSound object), and yet another to handle multiplayer
communications across an chosen medium for (an IDirectPlay object). Then you call member functions on those
objects to make things happen. Some of these objects need other, subordinate objects in order to do their stuff (for
instance, your IDirectDraw object will use palette objects and drawing surface objects). The master object also
provides everything necessary to create and work with the subordinate objects. Note that the one exception to this is
the DirectInput API; as yet, there isn't a COM interface for DirectInput. In fact, there's hardly a DirectInput API at
all. It's really just the joyGetPosEx() function from the MMSYSTEM API.

DirectDraw
Let's face it, for games, GDI just doesn't cut it. Microsoft's first answer to this problem was WinG, which was a nice
first step, but hardly a complete solution. What you really want as a game programmer is to have low-level access
directly to the video adapter on the target platform.

The DirectDraw API gives you an object-oriented way to access the features of your video adapter. DirectDraw
provides mechanisms for blitting directly into and out of the memory resident on the video board. It allows you to
allocate memory into blocks, called surfaces, onto which graphics can be rendered off-screen. Then, these surfaces
can be 'flipped' onto the display through another DirectDraw call. Surfaces can be set up to store pieces of graphic
material that will be used to assemble the game display image (sprites, backdrops, etc.), either in the video adapter
RAM (if there's room) or in system RAM. Also, you can easily swap or alter color palettes to get all kinds of
interesting effects.

Another thing to note is that, whenever possible, DirectDraw tries to use your video hardware to perform its
operations, but also provides emulation in software for features not supported by a particular board.

Basically, DirectDraw does just about everything you need to make game graphics hum, without making you learn
all that weird VGA register stuff. Pinch yourself; we're still talking about writing Windows apps in C++, not DOS
apps in assembler, and we're going to be able to do all this!

Off-screen Drawing and Surfaces
Good, smooth game animation works like film, in that complete images, or frames, are sequentially flashed on the
screen to make up the action. To accomplish this, you really need to be able to assemble an entire frame image in
memory, while the previous frame is being displayed, a technique called double-buffering. Without double-
buffering, the user gets to watch the assembly on-screen, which is considered unacceptable in commercial gaming
circles (the technical term is, I believe, lame). Any game API that is going to be taken seriously must support this
ability. Better yet, for added speed, it should allow the memory resident on board the video adapter to be used for
this purpose. DirectDraw does all of this and more.

In many ways, you can think of DirectDraw as a fancy object-oriented memory manager for the RAM on your video
board. DirectDraw allows you to allocate blocks of video board memory, called surfaces, for use by your program.
Surfaces are used for storing bitmap data. Storing bitmap data directly in the video adapter's RAM makes it
available to the video hardware for display and accelerated graphics operations like hardware blitting and page
flipping.

Typically, there are two kinds of surfaces that you might use in a DirectDraw app: the flipping surface (which
represents the actual display) and off-screen surfaces for storing and staging scene components. The flipping
surface is special because it's made up of two or more surfaces, rather than just one. These surfaces are the front
buffer and one or more back buffers. All of the surfaces in a flipping surface are created at the same time, with one
call, and are called implicit surfaces because of this. You assemble your scene on a back buffer, and when you're
ready to show it, you tell DirectDraw to 'flip' it to the front. This rotates the order of the implicit surfaces, making
the previous front buffer a back buffer and advancing the order of any other back buffers. Imagine a flip-book
animation mounted on a Rolodex and you'll get the idea.

DirectDraw usually just has to change a hardware register on the video board to point to the right block of surface
memory in order to do a flip, so this is a very fast operation. In WROXBlox!, we'll use just two implicit surfaces
(front, plus one back), which is a common configuration.

You'll create one flipping surface group in your app, and as many off-screen surfaces as you need (and video
memory will hold). In WROXBlox!, there will be two off-screen surfaces: one to hold all the game elements
(backdrop, sprite cels, etc.) and another to hold the splash panel graphic.

Palettes
DirectDraw is usually used in 8-bits-per-pixel mode, where the values in memory for each pixel represent not
absolute colors, but IDs of entries in a 256-color palette. The palette entry maps to the actual display color. Palettes
are loaded and handled independently of bitmaps, allowing all kinds of palette-manipulation tricks. If you've had
any exposure to the palette-management hassles normally facing Windows programs, you'll be relieved to discover
that DirectDraw apps generally have the display palette (and, in fact, the entire display adapter) to themselves.
Working with palettes in this kind of environment should be a welcome change, with no palette reconciliation woes.

For a more detailed explanation of palettes have a look at Chapter 12, Working with DIBs.

Setting up DirectDraw
Let's look at how to actually get DirectDraw up and ready for use. There are several basic steps here:

Create the main window for your app. You need to do this before you initialize DirectDraw, because
some of the DirectDraw operations will reference it.
Create the IDirectDraw object for the app.
Get exclusive access to the video hardware.
Select a video mode.
Create the front and back buffers.
Create any additional surfaces you want.
Set the palette for the front buffer.

Creating the DirectDraw Object
Since all other DirectDraw operations will be done through the one and only IDirectDraw object for our app, we'll
need to create it first. The function, DirectDrawCreate(),handles all of the messy details of this for us. We hand
it a pointer variable, and it fills it with a pointer to a new IDirectDraw. If there's a problem, it will be reported in
the return value. Here's the specification for the function:

HRESULT DirectDrawCreate(GUID FAR * lpGUID, LPDIRECTDRAW FAR *lplpDD,
 IUnknown FAR *pUnkOuter)

Parameter Meaning

lpGUID GUID of the driver to use; usually NULL, which tells DirectDraw to use the
active display driver.

LplpDD Points to the pointer variable to be filled with the pointer to the new DirectDraw
object.

PUnkOuter For future use. Must be NULL.

So, the creation of the DirectDraw object looks something like this:

LPDIRECTDRAW lpMyDDObject;
HRESULT dderr;
dderr = DirectDrawCreate(NULL, &lpMyDDObject, NULL);

There are several ways DirectDrawCreate() can fail:

Error Result Code Meaning

DDERR_INVALIDPARAMS A bad parameter was given to the function.
DDERR_INVALIDDIRECTDRAWGUID An invalid driver ID was specified.
DDERR_GENERIC Unspecified error. Call Bill Gates.
DDERR_OUTOFMEMORY Not enough system memory to complete the operation.
DDERR_NODIRECTDRAWHW The driver doesn't support the hardware operations required

by the DirectDraw object.
DDERR_DIRECTDRAWALREADYCREATED The app has already created a DirectDraw object for this

driver. You can only have one at a time.
DD_OK No error.

Basically, anything except DD_OK is fatal, and you can't continue with the app.

SetCooperativeLevel()
Once you've got a valid IDirectDraw object, you need to configure the display hardware to fit your needs for your
game. The first thing you'll want to do is to get its undivided attention, because you'll want to seize full control of
the display away from any other processes (including Windows) while your game is running. The
SetCooperativeLevel() member function on the IDirectDraw object accomplishes this:

HRESULT IDirectDraw :: SetCooperativeLevel(HWND hWnd, DWORD dwFlags)

hWnd is the HWND of your app's main window. The dwFlags parameter is used to indicate the degree of exclusivity
you wish to impose over the display hardware. The most common flags are:

Flag Meaning

DDSCL_EXCLUSIVE The app requests exclusive use of the display.
DDSCL_FULLSCREEN The app will be responsible for the entire primary display surface.
DDSCL_ALLOWREBOOT The app will allow a Ctrl-Alt-Delete operation to occur.
DDSCL_NOWINDOWCHANGES The app can't be minimized or switched away.
DDSCL_NORMAL Allows the app to function as a normal Windows app.

The operation might look like this:

HRESULT dderr;
dderr = lpMyDDObject->SetCooperativeLevel (hMainWnd,
 DDSCL_EXCLUSIVE | DDSCL_FULLSCREEN |
 DDSCL_ALLOWREBOOT | DDSCL_NOWINDOWCHANGES);

Once again, there are several ways that this could fail:

Error Result Code Meaning

DDERR_INVALIDOBJECT The DirectDraw object is invalid.
DDERR_INVALIDPARAMS A bad parameter was passed to the function.
DDERR_EXCLUSIVEMODEALREADYSET The app already has exclusive mode set.
DDERR_OUTOFMEMORY There isn't enough system memory to complete the operation.
DDERR_HWNDALREADYSET The HWND has already been set and can't be changed once surfaces

have been created.
DDERR_HWNDSUBCLASSED The HWND passed to SetCooperativeLevel() must not be

subclassed. Subclassing prevents DirectDraw from properly
restoring states.

DD_OK No error.

Once again, anything other than DD_OK is fatal.

Setting Video Modes
Now you've got the display all to yourself. The next thing you'll want to do is to force the resolution and color depth
of the display to fit your game's needs. The most common DirectX display resolution (probably because so many
adapters support it, and it's not too big to be slow) is 640x480x8-bits-per-pixel. This gives you a standard VGA
resolution playfield with a respectable 256-color palette to play with. The SetDisplayMode() member function
does the job:

HRESULT IDirectDraw :: SetDisplayMode(DWORD dwWidth, DWORD dwHeight,
 DWORD dwBpp)

Note that, prior to making this call, we must have called SetCooperativeLevel() with DDSCL_EXCLUSIVE, or
we'll get an error result (DDERR_NOEXCLUSIVEMODE).

dwWidth and dwHeight are the dimensions of the resolution you want (like 640 x 480) and dwBpp is the number of
bits-per-pixel (like 8). In practical use, it looks something like this:

HRESULT dderr;
dderr = lpMyDDObject->SetDisplayMode(640, 480, 8);

This call can return the following:

Error Result Code Meaning

DDERR_INVALIDOBJECT The DirectDraw object is invalid.
DDERR_INVALIDPARAMS A bad parameter was passed to the function.
DDERR_GENERIC Unspecified error. Call Bill Gates.
DDERR_UNSUPPORTED This action isn't supported.
DDERR_INVALIDMODE The requested resolution or mode isn't allowed.
DDERR_LOCKEDSURFACES Mode can't be changed when surfaces are locked.
DDERR_WASSTILLDRAWING You can't do this when a blit is still in progress.
DDERR_SURFACEBUSY Another process is using the surface.
DDERR_NOEXCLUSIVEMODE Cooperative level must be exclusive to perform this action.
DD_OK No error.

This call failing isn't necessarily fatal to the app, but anything other than DD_OK means that the mode change didn't
occur.

Creating Surfaces
Next, we need to set up a flipping surface, to give us something to draw on, and some off-screen surfaces to hold
any bitmap data for sprites or scenery that we need to assemble the game frames.

All the surfaces are created by calling the same IDirectDraw member function, CreateSurface(), which looks
like this:

HRESULT IDirectDraw::CreateSurface(LPDDSURFACEDESC lpDDSurfaceDesc,
 LPDIRECTDRAWSURFACE FAR *lplpDDSurface, IUnknown FAR *pUnkOuter)

Parameter Meaning

lpDDSurfaceDesc Points to a DDSURFACEDESC struct that describes the surface to be created.
lplpDDSurface Points to a pointer variable that will point to the new surface if all goes well.
pUnkOuter For future use. Must be NULL.

The function returns one of the following:

Error Result Code Meaning

DDERR_INVALIDOBJECT The DirectDraw object is invalid.
DDERR_INVALIDPARAMS A bad parameter was passed to the function.
DDERR_NOEXCLUSIVEMODE Cooperative level must be exclusive to perform this action.
DDERR_OUTOFVIDEOMEMORY There's not enough video memory to complete the operation.
DDERR_NODIRECTDRAWHW A hardware-only operation was attempted on an emulation-only

driver.
DDERR_NOCOOPERATIVELEVELSET SetCooperativeLevel() not called before this operation.
DDERR_INVALIDCAPS Incorrect device capabilities were specified.
DDERR_INVALIDPIXELFORMAT An invalid pixel format for the device was specified.
DDERR_NOALPHAHW An alpha-channel operation was requested, but no alpha-

acceleration hardware is installed.
DDERR_NOFLIPHW The device doesn't support surface flipping.
DDERR_NOZBUFFERHW The device doesn't support Z-buffer blitting.
DDERR_OUTOFMEMORY There's not enough system memory available to complete the

operation.
DDERR_PRIMARYSURFACEALREADYEXISTS A primary surface has already been created by this process.
DDERR_NOEMULATION There's no software emulation installed.
DDERR_INCOMPATIBLEPRIMARY The request to create primary surface doesn't match the existing

primary surface.
DD_OK No error.

There's all kinds of junk in the DDSURFACEDESC struct, but, for now, here's how we need to set it up to make a
flipping surface:

DDSURFACEDESC sdesc; // Surface description struct
LPDIRECTDRAWSURFACE lpDDSPrimary; // Pointer to the new front surface
//
// Create the front flipping surface with 1 back buffer
//
// dwSize field: always set to the size of the DDSURFACEDESC struct
sdesc.dwSize = sizeof(DDSURFACEDESC);
// dwFlags field: indicates which other fields hold valid info
sdesc.dwFlags = DDSD_DDSCAPS | DDSD_BACKBUFFERCOUNT;
// ddsCaps field: this is a struct with one field, dwCaps: holds flags
// describing the kind of surface to make
// In this case, we're making the front (primary) flipping surface,
// which is a complex surface (has implicit surfaces)
sdesc.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE | DDSCAPS_FLIP |
 DDSCAPS_COMPLEX;
// Flipping surface will have one back buffer
sdesc.dwBackBufferCount = 1;
// Make it
lpMyDDObject->CreateSurface(&sdesc, &lpDDSPrimary, NULL);

By the end of all this, we've got our flipping surface and back buffer. Now let's make a surface to hold off-screen
image data. This requires another call to CreateSurface(), but this time with the DDSCAPS_OFF-SCREENPLAIN

flag. Let's say we want a 100x200 off-screen surface:

DDSURFACEDESC sdesc; // Surface description struct
LPDIRECTDRAWSURFACE lpDDSOffscreen; // Pointer to the new offscreen
 // surface
// Size is always size of the DDSURFACEDESC struct
sdesc.dwSize = sizeof(DDSURFACEDESC);
// Caps, height, and width fields are valid
sdesc.dwFlags = DDSD_DDSCAPS | DDSD_HEIGHT |DDSD_WIDTH;
// This is going to be an offscreen surface
sdesc.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;
// Set the width and height
sdesc.dwWidth = 100;
sdesc.dwHeight = 200;
// Create it
lpMYDDObject->CreateSurface(&sdesc, &lpDDSOffscreen, NULL);

Usually, you'll use off-screen surfaces to hold bitmap data loaded from resources or files. Microsoft provides some
handy utility functions with the DirectX SDK to make it easier to work with bitmap resources in your game. These
functions live in the Ddutil.h and Ddutil.cpp files in the Samples\Misc directory of the SDK. One of these
functions, DDLoadBitmap(),reads in a bitmap from a file or from the application's resource data, creates an off-
screen surface big enough to hold it, copies the bitmap into the surface and returns a pointer to the new surface.
That's just what we need. Here's the spec for the DDLoadBitmap() function:

#include "ddutil.h"

LPDIRECTDRAWSURFACE DDLoadBitmap(IDirectDraw *pdd, LPCSTR szBitmap,
 int dx, int dy)

Parameter Meaning

pdd The pointer to the main DirectDraw object.
SzBitmap The name of the bitmap resource or file from which to load.
dx The width of the image to load; usually 0, which tells DDLoadBitmap() to get it from the file.
dy The height of the image to load; usually 0, which tells DDLoadBitmap() to get it from the file.

To actually draw things, however, we'll pretty much always be working with the back buffer, not the front buffer, to
which we now have a pointer. So, we need to get a hold of the back buffer, which is an implicit surface of the front
buffer. The GetAttachedSurface()member of IDirectDrawSurface will do the trick:

HRESULT IDirectDrawSurface::GetAttachedSurface(LPDDSCAPS lpDDSCaps,
 LPLPDIRECTDRAWSURFACE FAR *lplpDDAttachedSurface)

Parameter Meaning

lpDDSCaps Flags to indicate what to do.
lplpDDAttachedSurface Points to a pointer to be filled with the address of the attached surface.

The function returns one of the following:

Error Result Code Meaning

DDERR_INVALIDOBJECT The DirectDraw object is invalid.
DDERR_INVALIDPARAMS A bad parameter was passed to the function.

DDERR_SURFACELOST The surface memory has been released (probably by another process).
Restore() must be called to regain access to the surface.

DDERR_NOTFOUND No such item exists.
DD_OK No error.

And here's what we have to do:

DDSCAPS ddscaps; // Surface capabilities struct
LPDIRECTDRAWSURFACE lpDDSBack; // Pointer to the new back surface
// Get a pointer to the back buffer - this is the one we'll draw on
ddscaps.dwCaps = DDSCAPS_BACKBUFFER;
lpDDSPrimary->GetAttachedSurface(&ddscaps, &lpDDSBack);

That takes care of the flipping surface.

Palettes
You control the color in your game by setting the palette associated with the front flipping surface. Keep in mind
that any graphics used to assemble images on the back buffer will eventually wind up on the front buffer, so the
current palette also applies in a sense to those surfaces. When you start up your game, you'll need to set the initial
palette used by the front buffer, and you can change the palette at any time. In WROXBlox! we'll use a different
palette for the splash screen than for game play, so whenever we put up or take down the splash screen, we'll need to
change the palette.

To set the palette used by the front buffer, we call the IDirectDrawSurface:: SetPalette() function:

HRESULT IDirectDrawSurface::SetPalette (LPDIRECTDRAWPALETTE lpDDPalette)

lpDDPalette is a pointer to the IDirectDrawPalette to use. But how do you get one of those in the first place?
Typically, the palette you'll want to use is the palette from the bitmap that contains the artwork for your game.
Bitmap files (and resources) contain palette information, and you'll want to read that out and wrap an
IDirectDrawPalette around it. Once again, there's a convenient function for this in Ddutil.h:

LPDIRECTDRAWPALETTE DDLoadPalette (IDirectDraw *pdd, LPCSTR szBitmap)

Parameter Meaning

pdd A pointer to the main IDirectDraw object for the app.
szBitmap The name of the bitmap resource or file from which to load the palette.

In WROXBlox!, we'll load the artwork and splash screen palettes at startup and switch them using SetPalette()
as needed.

Drawing onto Surfaces
Now you have everything you need to draw on the back buffer.

Blt() and BltFast()
To achieve reasonably complex scenes at high speed, rather than taking time to render objects from scratch each
time, most games blit prerendered scene components onto each frame. DirectDraw is centered around this principle,
and provides two kinds of blitter support. The IDirectDrawSurface::Blt() function is a general-purpose blitter

with all kinds of options and effects, while IDirectDrawSurface::BltFast() is a no-nonsense, stripped-down
blitter, optimized for plain rectangular copy and transparent blits. BltFast() is only faster than Blt() when
software-emulation is in effect. The complexities of Blt() are beyond the scope of this chapter, and we'll only be
using BltFast() in WROXBlox!, so here's the scoop on it:

HRESULT IDirectDrawSurface:: BltFast(DWORD dwX, DWORD dwY,
 LPDIRECTDRAWSURFACE lpDDSrcSurface, LPRECT lpSrcRect,
 DWORD dwTrans)

Parameter Meaning

dwX The destination X coordinate.
dwY The destination Y coordinate.
lpDDSrcSurface The surface from which to copy bits.
lpSrcRect The rectangle on the source surface from which to copy bits.
dwTrans Flags. See below.

The flags can be one of the following values:

Flag Meaning

DDBLTFAST_SRCCOLORKEY Copy using source's color key.
DDBLTFAST_DESTCOLORKEY Copy using destination's color key.
DDBLTFAST_NOCOLORKEY Straight copy.
DDBLTFAST_WAIT If hardware is busy, wait until it's available, then blit.

The function returns one of the following:

Error Result Code Meaning

DDERR_INVALIDOBJECT The DirectDraw object is invalid.
DDERR_INVALIDPARAMS A bad parameter was passed to the function.
DDERR_GENERIC Unspecified error. Call Bill Gates.
DDERR_UNSUPPORTED This action isn't supported.
DDERR_WASSTILLDRAWING You can't do this when a blit is still in progress. In your code, you

should loop and retry this call until this condition clears (or
another error occurs).

DDERR_SURFACEBUSY Another process is using the surface.
DDERR_SURFACELOST The surface memory has been released (probably by another

process). You must call Restore()to regain access to the
surface.

DDERR_EXCEPTION The action tripped an exception.
DDERR_INVALIDRECT A rectangle was specified incorrectly.
DDERR_NOBLITHW No blitter hardware is installed.
DD_OK No error.

Let's say we want to copy a 20x40 piece of an off-screen surface to the 100,200 on the back buffer:

// Set up a RECT for the source area

RECT rSrc;
rSrc.top = 0;
rSrc.left = 0;
rSrc.bottom = 39;
rSrc.right = 19;
// Blit
lpDDSBack->BltFast(100, 200, lpDDSOffscreen, &rSrc,
 DDBLTFAST_SRCCOLORKEY | DDBLTFAST_WAIT);

Color Keys
What's all this about color keys and transparency? Here's the scoop. Basically, a key color is a transparent color. In
other words, during transparent, or keyed, blits, pixels with a key color are not copied. The bits from the other
surface 'show through' the key color after a transparent blit. Each surface can have color key values set for it that get
used when the surface is involved in a transparent blit. You can specify a range of palette colors (a color space) to
be a key, but Microsoft recommends that you use single key colors whenever possible.

There are two kinds of keys for each surface: source and destination. The source key specifies what pixels are
transparent when the surface is being copied from. The destination key specifies which pixels can get copied over
when the surface is being copied to.

By default, there are no keys and all pixels are fair game for copying and clobbering.
The IDirectDrawSurface::SetColorKey() function lets us specify a range of palette entries to key on:

HRESULT IDirectDrawSurface:: SetColorKey(DWORD dwFlags,
 LPDDCOLORKEY lpDDColorKey)

Parameter Meaning

dwFlags Flags to indicate the kind of key to set (see below).
lpDDColorKey Pointer to a DDCOLORKEY struct that specifies the range of palette entries

that make up the key

The dwFlags can be:

Flag Meaning

DDCKEY_DESTBLT The key specifies a destination key.
DDCKEY_SRCBLT The key specifies a source key.
DDCKEY_COLORSPACE The key is range of entries, not just one.

The return value is one of:

Error Result Code Meaning

DDERR_INVALIDOBJECT The DirectDraw object is invalid.
DDERR_INVALIDPARAMS A bad parameter was passed to the function.

DDERR_GENERIC Unspecified error. Call Bill Gates.
DDERR_UNSUPPORTED This action isn't supported.
DDERR_WASSTILLDRAWING You can't do this when a blit is still in progress. In your code, you should loop

and retry this call until this condition clears (or another error occurs).
DDERR_SURFACELOST The surface memory has been released (probably by another process). You

must call Restore()to regain access to the surface.
DD_OK No error.

The DDCOLORKEY struct just contains fields for the high and low end of the palette range to use as the key. If
you're using a single palette entry as a key, set both of these fields to the ID of that entry. Let's say we want palette
entry #255 to be the source color key for some off-screen surface:

DDCOLORKEY ddkey;
ddkey.dwColorSpaceLowValue = 255;
ddkey.dwColorSpaceHighValue = 255;
lpDDSOffscreen->SetColorKey(DDCKEY_SRCBLT, &ddkey);

From now on, the color in palette entry 255 won't be copied from this surface in transparent blits.

Sprites
In a game, there are typically lots of little objects moving around on the screen at once—player characters, bad guys,
bullets, rocks, shards of exploding things, etc. Managing all of these objects (animating them, moving them and
checking for collisions between them) is a big part of the logic of many games. Having a nice, encapsulated way to
deal with these objects would be great. In mythical terms, a sprite is a little magical being or spirit. In game
programming, a sprite is a wrapper around one of those pesky little objects we've just been discussing, and you can
use one to hide a lot of the tedium of handling these objects. Later on, we'll design and build a simple sprite around a
piece of surface memory to make it easier to manage.

A sprite needs to keep track of its current position, its velocity, what piece of which surface contains its image data,
how many animation cels it has, what cel it's currently displaying, and anything else we want to know about it. We
need to be able to blit a sprite onto a surface, move it, flip to its next animation cel, check for collisions with other
sprites, and hide it or show it.

DirectDraw comes into play with the sprite only when we go to draw it. We'll use BltFast() to copy the sprite's
current image to the back buffer. Generally, since sprites can have strange shapes, we'll use transparency when we're
blitting them.

If you've cheated and looked ahead in the DirectDraw documentation, you may have seen something in there called
an overlay. Overlays provide a better way to deal with sprites than just using BltFast() from one surface to
another. They use video hardware features to make special surfaces into hardware-controlled sprites that are
managed entirely in the video hardware. That sounds great! Why, then, aren't we going to use overlays for sprites
here? Because the current version of DirectDraw doesn't provide any HEL (hardware-emulation layer) support for
overlays, which means we'd have to develop two kinds of sprites and check hardware capabilities to see if the target
platform supports overlays. For our purposes, since BltFast() is plenty fast enough, that's more trouble than it's
worth. Hopefully, Microsoft will include overlay emulation in a future release of the DirectDraw (or everyone will
chuck their old video boards and upgrade to cards that support overlays).

We'll get into more details about sprites later in the chapter when we'll actually build a C++ sprite class.

Flipping the Primary Surface
Once your drawing on a back surface is complete, you'll want to flip it to the front for all the world to see
(otherwise, what was the point of all this?). To do this, you use the IDirectDrawSurface::Flip() function:

HRESULT IDirectDrawSurface::Flip (LPDIRECTDRAWSURFACE
 lpDDSurfaceTargetOverride, DWORD dwFlags)

Parameter Meaning

lpDDSurfaceTargetOverride The surface to which to flip. If there is only one back buffer, or if you
just want to flip to the next buffer in rotation, set this to NULL.

dwFlags There is only one flag option: DDFLIP_WAIT.

Setting dwFlags to DDFLIP_WAIT causes the function to wait if the hardware is busy, until it's capable of flipping.
If not set, Flip() fails and returns DDERR_WASSTILLDRAWING if the hardware was busy.

In practice, it looks like this:

// Tell the primary surface to flip
lpDDSPrimary->Flip(NULL, DDFLIP_WAIT);

Shutting Down DirectDraw
Eventually, all the valiant Earth forces will succumb to the menace of the galactic invaders, or all the balls will drain
away, or maybe the boss will insist that whoever's playing your game actually gets some real work done, and it will
be time to clean up and exit the app. Basically, all you need to do is call the Release() COM member function (no
parameters) on your primary flipping surface (but not its implicit surfaces), any auxiliary surfaces, and the main
IDirectDraw object, and you're done:

// Release the flipping surface
lpDDSPrimary->Release();
// Release the DirectDraw main object
lpMyDDObject->Release();

DirectSound
Macintosh users got a charge out of poking fun at PC gamers a few years back, before sounds boards were standard-
issue. A great new Mac game had just been released, called Dark Castle, which featured sampled-audio sounds (a
novelty back then). The joke going around was that Dark Castle had been ported to the PC, and you could hear the
bats go 'beep', crashing thunder go 'beep', rolling barrels and dropping rocks go 'beep', etc. Now the tables have
turned, and PCs frequently come equipped with sound boards that surpass the capabilities found in the Mac. When
you're writing games, you'll want to tap into that hardware and make it sing, which is where DirectSound comes in.
DirectSound lets you easily fire off PCM wave audio sounds from your game.
There are two kinds of COM objects to deal with in the DirectSound API: the main sound hardware wrapper,
IDirectSound, and the wave audio buffer, IDirectSoundBuffer. IDirectSoundBuffer is little messy, but
Microsoft have provided a serviceable wrapper around it, called HSNDOBJ (found in Samples\Misc\Dsutil.h
provided with the GDK), which we'll use here to simplify things a bit.

Setting up DirectSound
Let's look at what's involved in setting up DirectSound for use.

Creating the DirectSound Object
The first order of business is to create an IDirectSound object, which will act as our base of operations for
everything else we do with DirectSound:

HRESULT DirectSoundCreate(GUID FAR * lpGuid, LPDIRECTSOUND * ppDS,
 IUnknown FAR *pUnkOuter)

Parameter Meaning

lpGuid The GUID of the driver to use; usually NULL, which tells DirectSound to use the
active sound driver.

ppDS Points to the pointer which will receive the address of the new IDirectSound
object.

pUnkOuter For future use. Must be NULL.

Very simply, here's how it's typically called:

LPDIRECTSOUND lpMyDSObject;
DirectSoundCreate(NULL, &lpMyDSObject, NULL);

Note that you must call SetCooperativeLevel() before you actually try to play sounds, or your app will fail.

Playing Sounds
Now we need to get some sounds set up to play, and then play them.

Creating Sound Objects
The object that represents an individual PCM audio sound in DirectSound is an IDirectSoundBuffer. In the
interest of getting the quickest start possible with DirectSound, we're going to use helper functionality that Microsoft
provides in the samples that come with the DirectX SDK (remember Ddutil.h?). This helper stuff lives in
Dsutil.h and Dsutil.cpp in the Samples\Misc directory of the SDK. These files define a handy wrapper
around IDirectSoundBuffer, including functionality to load buffers from .wav audio resources, which is
something we'll need for the WROXBlox! app. This may seem like a cop-out, but, frankly, you can get quite far with
the Dsutil.h functionality and never plunge into the depths of IDirectSoundBuffer. When we talk about
panning, we'll have to briefly poke into IDirectSoundBuffer, though.

The Dsutil.h wrapper is based on a struct, called a SndObj. All the functions operate on this object instead of
directly on IDirectSoundBuffer.

To load in a sound for use, we call SndObjCreate():

#include "dsutil.h" // dsutil.cpp needs to be compiled into your project

HSNDOBJ SndObjCreate(LPDIRECTSOUND pDS, LPCSTR szName, int nConcurrent)

Parameter Meaning

pDS The pointer to the app's main IDirectSound object.
szName The name of the sound resource to load.
nConcurrent The number of concurrent instances of this sound you expect to be able to play.

Here's how you might call it:

#include "dsutil.h"
HSNDOBJ hSnd;
hSnd = SndObjCreate (lpMyDSObject, "gunshot", 10);

This creates a SndObj from a wave resource, called 'gunshot', that we expect might be playing up to ten times
simultaneously in the heat of game play.

Playing Sound Objects
One of the beauties of DirectSound is its ability to play sounds in the background asynchronously with no need for
intervention or management on your part. You just tell it what to play, and it goes. Using the SndObj wrapper, we
can play a sound with SndObjPlay():

BOOL SndObjPlay(SNDOBJ *pSO, DWORD dwPlayFlags)

Parameter Meaning

pSO The HSNDOBJ to play.
dwPlayFlags Flags that affect the playback. There is only one currently defined,

DSBPLAY_LOOPING, which repeats the wave over and over,

Here's a typical call:

// Play the sound once
SndObjPlay (hSnd, 0);

Looping
If the DSBPLAY_LOOPING flag is set, the sound will play over and over until we explicitly tell it to stop with the
SndObjStop() function:

BOOL SndObjStop(SNDOBJ *pSO)

pSO is the HSNDOBJ to squelch.

Panning

An advanced feature supported by IDirectSoundBuffer is panning, or setting the relative left-to-right location of
the sound in the stereo pattern. Obviously, this feature only makes a difference when stereo sound is available,
which is pretty typical these days.

Panning involves calling the IDirectSoundBuffer member function SetPan(). SetPan() takes one parameter,
which is an integer ranging from -10,000 to +10,000. 10,000 pans the sound to the extreme left, 0 pans it to center,
and +10,000 pans it to the extreme right. The value is in hundredths of a dB attenuation of the opposite channel. In
other words, +4,000 means that the right channel is all the way on, and the left channel is attenuated by 40 dB.

Panning sounds can really enhance the audio in your game, but it was sadly left out of the SndObj wrapper. Luckily,
it's pretty easy to get an actual IDirectSoundBuffer from a SndObj, using SndObjGetFreeBuffer(), and
work with it:

// Get an actual IDirectSoundBuffer to play with
IDirectSoundBuffer *pDSB = SndObjGetFreeBuffer(hMySnd);

// Set panning slightly left
pDSB->SetPan(-1000);
// Play
pDSB->Play(0, 0, 0);

Note that you can't use SndObjPlay(), as this plays havoc with the buffers.

Shutting Down DirectSound
When the game is shutting down, you'll need to clean up DirectSound by calling SndObjDestroy() on each of
your HSNDOBJs, and by calling Release() on the IDirectSound object itself:

// Destroy game sounds
SndObjDestroy(hExplosionSnd);
SndObjDestroy(hGunshotSnd);
SndObjDestroy(hPlayerDieSnd);
// Release the DirectSound object
lpMyDSObject->Release();

DirectInput
In the first release of the DirectX API, the DirectInput API is just a repackaging of the Windows Multimedia
System's joystick functions. There is currently no COM object interface for this API.

joyGetPosEx()
The main joystick function in DirectInput is joyGetPosEx(). This function has been greatly expanded over its
multimedia system predecessor, joyGetPos(), to include support for up to 32 controllers, each with 32 buttons and
6 axes of control. Clearly, Microsoft has virtual-reality controllers in mind here. The joystick support in Windows 95
is quite sophisticated; Windows 95 actually handles the extents and calibration for you from the control panel, so
your game rarely, if ever, will need to go through that hassle. The joyGetPosEx() function looks like this:

MMRESULT joyGetPosEx(UINT uJoyID, LPJOYINFOEX pji);

Parameter Meaning

uJoyID The ID of the joystick to query. JOYSTICKID1 and JOYSTICKID2 are
predefined constants to use here.

pji The pointer to a JOYINFOEX struct that passes flags into and results out
of the call.

The joyGetPosEx() call returns one of the following:

Result Meaning

JOYERR_UNPLUGGED The requested joystick isn't plugged in (or an acoustic joystick is being
used).

MMSYSERR_BADDEVICEID The joystick ID given is invalid.
MMSYSERR_INVALPARAM A bad parameter was passed to the call.
MMSYSERR_NODRIVER There is no joystick driver installed.
JOYERR_NOERROR Call succeeded.

The JOYINFOEX struct is where all the action takes place here. Let's look inside it:

struct JOYINFOEX {
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwXpos;
 DWORD dwYpos;
 DWORD dwZpos;
 DWORD dwRpos;
 DWORD dwUpos;
 DWORD dwVpos;
 DWORD dwButtons;
 DWORD dwButtonNumber;
 DWORD dwPOV;
 DWORD dwReserved1;
 DWORD dwReserved2;
};

Field Purpose

dwSize Always set to the size of the JOYINFOEX struct.
dwFlags Flags indicating information requested or valid information returned in the structure.
dwXpos The current X-axis (Axis 1) position.
dwYpos The current Y-axis (Axis 2) position.
dwZpos The current Z-axis (Axis 3) position.
dwRpos The current rudder control (Axis 4) position.
dwUpos The current Axis 5 position.
dwVpos the current Axis 6 position.
dwButtons The bitfield containing the states of the 32 possible buttons. A set of flag definitions,

JOY_BUTTON1 through JOY_BUTTON32, is provided to make reading these easier.
dwButtonNumber The current button number that is pressed.
dwPOV The position, in hundredths of a degree, of the point-of-view control (sometimes

called the hat).
dwReserved1 Unused.
dwReserved2 Unused.

The principal flags that can be passed into the dwFlags field are:

Flag Meaning

JOY_RETURNALL Returns everything (except raw data).
JOY_RETURNBUTTONS Returns the button state information.
JOY_RETURNCENTERED Centers the neutral joystick position on each axis.
JOY_RETURNPOV Returns the discrete position of the POV hat, as one of the following values:

JOY_POVBACKWARD
JOY_POVCENTERED
JOY_POVFORWARD
JOY_POVLEFT
JOY_POVRIGHT

JOY_RETURNPOVCTS Returns the position of the POV hat in hundredths of a degree.
JOY_RETURNR Returns the rudder (Axis 4) position.
JOY_RETURNRAWDATA Returns data in raw, uncalibrated form.
JOY_RETURNU Returns the Axis 5 position.
JOY_RETURNV Returns the Axis 6 position.
JOY_RETURNX Returns the X-axis (Axis 1) position.
JOY_RETURNY Returns the Y-axis (Axis 2) position.
JOY_RETURNZ Returns the Z-axis (Axis 3) position.
JOY_USEDEADZONE Makes the dead spot in the middle of each axis bigger. Returns the same value

for all points in the dead zone.

Getting values back from a joystick controller is easy; just call joyGetPosEx() and pass it a JOYINFOEX struct
with flags set that tell it what you want to know:

// Set up a JOYINFOEX, ask for X and Y position of joystick
JOYINFOEX joyinfo;
joyinfo.dwFlags = JOY_RETURNX|JOY_RETURNY;
// Query joystick #1
joyGetPosEx(JOYSTICKID1, &joyinfo);
// the JOYINFOEX comes back with the requested values filled in
nJoyXPos = joyinfo.dwXpos;
nJoyYPos = joyinfo.dwYpos;

Checking for Joystick Availability
Since not all systems will have joysticks attached, it's a good idea for your game to check whether there is one
before it drops the user into the game. The easy way to do this is to make a dummy call to joyGetPosEx() and
check the return value:

// See if Joystick #1 is available
JOYINFOEX joyinfo;
joyinfo.dwFlags = 0;

if (joyGetPosEx(JOYSTICKID1, &joyinfo) != JOYERR_NOERROR)
{
 // No joystick!
...
}

Querying Joystick Capabilities
If you want to know what features are supported by a joystick and what the ranges of the axes are, you can call the
joyGetDevCaps() function:

MMRESULT joyGetDevCaps(UINT uJoyID, LPJOYCAPS pjc, UINT cbjc)

Parameter Meaning

uJoyID The ID of the joystick to query.
pjc The pointer to a JOYCAPS struct to fill.
cbjc The size of the JOYCAPS struct.

The JOYCAPS struct looks like this:

struct JOYCAPS {
 WORD wMid;
 WORD wPid;
 CHAR szPname[MAXPNAMELEN];
 UINT wXmin;
 UINT wXmax;
 UINT wYmin;
 UINT wYmax;
 UINT wZmin;
 UINT wZmax;
 UINT wNumButtons;
 UINT wPeriodMin;
 UINT wPeriodMax;
 UINT wRmin;
 UINT wRmax;
 UINT wUmin;
 UINT wUmax;
 UINT wVmin;
 UINT wVmax;
 UINT wCaps;
 UINT wMaxAxes;
 UINT wNumAxes;
 UINT wMaxButtons;
 CHAR szRegKey[MAXPNAMELEN];
 CHAR szOEMVxD[MAXOEMVXD];
};

Wow, that's a lot of information. The stuff you really care about, though, is this:

Field Meaning

wXmin The minimum X value.
wXmax The maximum X value.
wYmin The minimum Y value.
wYmax The maximum Y value.
wNumButtons The number of buttons supported by the joystick.
wCaps The features implemented on the joystick:

JOYCAPS_HASZ —has a 3rd axis.
JOYCAPS_HASR —has a 4th axis.
JOYCAPS_HASU —has a 5th axis.
JOYCAPS_HASV — has a 6th axis.
JOYCAPS_HASPOV —has a POV hat.
JOYCAPS_POV4DIR —POV hat can return discrete position.
JOYCAPS_POVCTS —POV hat can return continuous position (100ths
of a degree).

Here's how you would use joyGetDevCaps() to get the X-axis extents of the joystick:

JOYCAPS joycaps;

// Query the joystick caps
joyGetDevCaps(JOYSTICKID1, &joycaps, sizeof(JOYCAPS));
// Get the min and max X values
nJoyLeft = joycaps.wXmin;
nJoyRight = joycaps.wXmax;

You can also use Windows messages to handle the joystick, but joyGetPosEx() fits better with the game slice
model and gives quicker and finer control.

A Note about Keyboard Control
Many great games (like Doom) still work quite well, or even best, when they are controlled from the keyboard, but
DirectInput doesn't provide any keyboard input support. The best thing to use for that is the good old Windows API
GetAsyncKeyState() function, which simply tells you whether the requested key is up or down:

int GetAsyncKeyState(int nKeyCode)

The nKeyCode parameter is the Windows virtual key code for the key to be tested. There is a virtual key code for
each key on the keyboard. (Check the online help in Visual C++ under SDKs, Win32 SDK, Win32 Programmer's
Reference, Appendices, Virtual-Key Codes for a full listing.) The main thing to remember about
GetAsyncKeyState() is that the return value's most significant bit (MSB) indicates the instantaneous state of the
requested key; 1 if it's currently down, 0 if it is up. So, the cheap trick for reading this state is to treat the MSB as a
sign bit and check for negativity:

// Is the left-arrow key down?
If (GetAsyncKeyState(VK_LEFT) < 0)
{
 // Move ship to the left one click, etc.
...
}

Why not use the Windows key messages, like WM_CHAR, WM_KEYDOWN and WM_KEYUP? Well, for one thing, it's
easier to integrate GetAsyncKeyState() processing into a game slice function, as we'll see later. If we use the
messages, we'll have to keep track of key states between messages ourselves. It's just much cleaner and more
straightforward to use GetAsyncKeyState(). In WROXBlox! we'll use both, but for different purposes. Game
play controls will all use GetAsyncKeyState(), but non-game-play keystrokes, like keys for pausing or toggling
options, will use Windows key messages. We'll also use the Windows messages when we're waiting for the user to
press any key to continue.

DirectPlay
Increasingly, computer games are allowing multiple players to play against each other in real-time. Sophisticated
games allow users to hook up their systems for multiplayer games over modems and over various network protocols,
like IPX, NETBEUI and TCP/IP. This makes for a more challenging and exciting game, but can also make it much
more complicated to program.

The DirectPlay API simplifies this by providing a uniform communication model that is independent of the
communication medium. We're going to breeze through this here, but we'll give a full code example at the end of the
chapter.

Determining the Available Service Providers
Each communication medium supported by DirectPlay is represented by a service provider. The first step in
establishing a DirectPlay session is to determine the service provider on which to create the session. We can use the
DirectPlayEnumerate() function to build a list of the available service providers on the target platform:

HRESULT DirectPlayEnumerate(LPDPENUMCALLBACK lpCallback,
 LPVOID lpContext)

Parameter Meaning

lpCallback The address of a callback function to call when each service provider is identified.
lpContext The user-defined data to pass into the callback function.

The function DP_OK if successful, or DPERR_GENERIC or DPERR_EXCEPTION if an error occurs.

This function uses a callback function, which must be written by you, to handle each service provider it identifies.
Your callback function could be used to add items to a list box or something similar. The callback function prototype
looks like this:

BOOL FAR PASCAL EnumCallback(LPGUID lpGUID,
 LPSTR lpDriverDescription,
 DWORD dwMajorVersion,
 DWORD dwMinorVersion,
 LPVOID lpContext)

Parameter Meaning

lpGUID The pointer to a GUID identifying the service provider driver.
lpDriverDescription The string containing the text name of the service provider.
dwMajorVersion The driver major revision number.
dwMinorVersion The driver minor revision number
lpContext The user-defined data passed into the DirectPlayEnumerate() function.

You should normally return TRUE from your callback function. If you return FALSE, enumeration will stop.

Constructing an IDirectPlay Object
Once you've selected a service provider to use for DirectPlay communication, you can build an IDirectPlay
object to manage the connection, using DirectPlayCreate():

HRESULT DirectPlayCreate(LPGUID lpGUID, LPDIRECTPLAY FAR *lplpDP,
 IUnknown FAR *pUnkOuter)

Parameter Meaning

lpGUID The pointer to the GUID of the service provider to use.
lplpDP The pointer to a pointer to fill with the address of the new IDirectPlay object.
pUnkOuter Not used. Must be NULL.

The function returns one of the following:

Error Result Code Meaning

DPERR_GENERIC Unspecified error. Call Bill Gates.
DPERR_EXCEPTION The action tripped an exception.
DPERR_UNAVAILABLE The service or session isn't available.
DP_OK No error.

Establishing a Session
The first player into the game needs to establish a session to which other players can then connect. We can do this
with the following function:

HRESULT IDirectPlay::Open(LPDPSESSIONDESC lpDesc)

Parameter Meaning

lpDesc The pointer to a DPSESSIONDESC struct describing the session to open.

The DPSESSIONDESC struct looks like this:

typedef struct {
 DWORD dwSize;
 GUID guidSession;
 DWORD dwSession;
 DWORD dwMaxPlayers;
 DWORD dwCurrentPlayers;
 DWORD dwFlags;
 char szSessionName[DPSESSIONNAMELEN];
 char szUserField[DPUSERRESERVED];
 DWORD dwReserved1;
 char szPassword[DPPASSWORDLEN];
 DWORD dwReserved2;
 DWORD dwUser1;
 DWORD dwUser2;
 DWORD dwUser3;
 DWORD dwUser4;
} DPSESSIONDESC;

Field Meaning

dwSize The size of the DPSESSIONDESC struct.
guidSession The game's GUID.
dwSession The session identifier.
dwMaxPlayers The maximum number of players allowed in the session.
dwCurrentPlayers The current player count in the session.
dwFlags DPOPEN_OPENSESSION—open an existing session.

DPOPEN_CREATESESSION—create a new session

szSessionName The text name of the session.
szUserField Optional user-defined data.
dwReserved1, dwReserved2 Reserved. Do not use.
szPassword Optional session password.
dwUser1-4 Optional user-defined data.

When you're creating a new session, set the dwFlags field to DPOPEN_CREATESESSION.

Opening an Existing Session
If a session is already started and you want to join in, you must first find the session to join using:

HRESULT IDirectPlay :: EnumSessions(LPDPSESSIONDESC lpSDesc,
 DWORD dwTimeout,
 LPDPENUMSESSIONSCALLBACK lpEnumCallback,
 LPVOID lpContext,
 DWORD dwFlags)

Parameter Meaning

lpSDesc The pointer to a DPSESSIONDESC struct containing the GUID of the game.
dwTimeout The maximum time to wait for the service provider to respond with session

information.
lpEnumCallback The address of the callback function to call when each session is found.
lpContext The pointer to user-defined data to pass into the callback.
dwFlags DPENUMSESSIONS_AVAILABLE - list sessions currently accepting players.

DPENUMSESSIONS_ALL - list all sessions for this game type

The function returns one of the following:

Error Result Code Meaning

DPERR_INVALIDOBJECT The DirectPlay object is invalid.
DPERR_INVALIDPARAMS A bad parameter was passed to the function.
DP_OK No error.

When the appropriate session to join has been selected, it is joined by calling IDirectPlay::Open() with the
DPOPEN_OPENSESSION flag.

Creating Players
Once you've created or joined the session, you'll want to establish a player identity in the game for each instance:

HRESULT IDirectPlay :: CreatePlayer(LPDPID lppidID,
 LPSTR lpPlayerFriendlyName, LPSTR lpPlayerFormalName,
 LPHANDLE lpEvent)

Parameter Meaning

lppidID Pointer to a variable to hold the unique identifier for the player in the
session

lpPlayerFriendlyName Nickname for the player
lpPlayerFormalName Player's full name

lpEvent Pointer to an event to trigger for messages addressed to this player -
can be NULL.

This returns one of the following:

Error Result Code Meaning

DPERR_INVALIDOBJECT The DirectPlay object is invalid.
DPERR_INVALIDPARAMS A bad parameter was passed to the function.
DPERR_GENERIC Unspecified error. Call Bill Gates.
DPERR_NOCONNECTION Unable to establish service communications.
DPERR_CANTCREATEPLAYER Couldn't create new player.
DPERR_CANTADDPLAYER Couldn't insert player into session.
DP_OK No error.

Receiving Messages
A DirectPlay message is a block of data that can contain anything you want it to. There are some system-defined
messages with predetermined content, but, aside from those, anything is fair game. There are two ways to receive
DirectPlay messages. One is to spawn an event thread and use WaitForSingleObject() to process incoming
messages. The other (simpler, but less efficient) way is to poll for waiting messages during the app's idle time. We'll
use that method in the example later on in the chapter.

To find out how many messages are waiting for a player, call:

HRESULT IDirectPlay :: GetMessageCount(DPID pidID, LPDWORD lpdwCount)

Parameter Meaning

pidID The ID of the player for whom to check messages.
lpdwCount The pointer to a variable to receive the message count.

This returns one of the following:

Error Result Code Meaning

DPERR_INVALIDOBJECT The DirectPlay object is invalid.
DPERR_INVALIDPARAMS A bad parameter was passed to the function.
DPERR_INVALIDPLAYER Player ID specified isn't valid.
DP_OK No error.

To receive message data, call:

HRESULT IDirectPlay :: Receive(LPDPID lppidFrom, LPDPID lppidTo,
 DWORD dwFlags, LPVOID lpvBuffer, LPDWORD lpdwSize)

Parameter Meaning

lppidFrom The pointer to variable to receive ID of player from whom message was sent.
lppidTo The pointer to variable to receive the ID of player who is intended recipient.

dwFlags DPRECEIVE_ALL gets the first message in the queue.
DPRECEIVE_TOPLAYER looks for messages to lppidTo
DPRECEIVE_FROMPLAYER looks for messages from lppidFrom
DPRECEIVE_PEEK gets the message (as constrained by other flags) but leaves
it on the queue

lpvBuffer The address of buffer where message is to be copied.
lpdwSize The size of message buffer.

Returns one of the following:

Error Result Code Meaning

DPERR_INVALIDOBJECT The DirectPlay object is invalid.
DPERR_INVALIDPARAMS A bad parameter was passed to the function.
DPERR_GENERIC Unspecified error. Call Bill Gates.
DPERR_NOMESSAGES There are messages available to be received.
DPERR_BUFFERTOOSMALL The buffer provided was too small to receive the message data.
DP_OK No error.

System Messages
Any messages received from the player whose PID is 0 are system messages. DirectPlay defines structs for these
messages, and the buffer pointer you receive can be cast to a DPMSG_GENERIC struct pointer to determine which
system message you've got. The dwType member of DPMSG_GENERIC might be one of the following:

dwType Meaning

DPSYS_ADDPLAYER A player has joined the game.
DPSYS_DELETEPLAYER A player has left the game.
DPSYS_SESSIONLOST The game session was lost.

Each of these types has an appropriate struct containing more information. We'll see this in the example later in
the chapter.

Player Messages
The format of the message data you send from player-to-player is totally up to you. You might only need one kind of
message, or you might want to set up a hierarchy of structs or even C++ objects to pass around.

Sending Messages
To send a message to another player, use the IDirectPlay::Send() function:

HRESULT Send(DPID pidFrom, DPID pidTo, DWORD dwFlags, LPVOID lpvBuffer,
 DWORD dwBuffSize)

Parameter Meaning

pidFrom The ID of the recipient player (0 to broadcast to all players in session).
pidTo The ID of sender player.

dwFlags DPSEND_GUARANTEE—use the most reliable means to send message.
DPSEND_HIGHPRIORITY—send with maximum priority.
DPSEND_TRYONCE—send like a datagram; one-shot, no error detection

lpvBuffer The pointer to the buffer containing data to send.
dwBuffSize The size of the message buffer

This returns one of the following:

Error Result Code Meaning

DPERR_INVALIDOBJECT The DirectPlay object is invalid.
DPERR_INVALIDPARAMS A bad parameter was passed to the function.
DPERR_INVALIDPLAYER The player ID specified isn't valid.
DPERR_BUSY The message queue is currently full.
DP_OK No error.

Shutting Down DirectPlay
To gracefully exit a session, destroy your player object:

HRESULT IDirectPlay::DestroyPlayer(DPID pidID)

pidID is the ID of the player to destroy.

This returns one of the following:

Error Result Code Meaning

DPERR_INVALIDOBJECT The DirectPlay object is invalid.
DPERR_INVALIDPLAYER The player ID specified isn't valid.
DP_OK No error.

To close down DirectPlay altogether, Release() the main IDirectPlay object.

A DirectPlay Example: DXChat
In this section, we'll build a simple chat program to demonstrate the basics of DirectPlay. One instance of this app
can initiate a chat session ('gather'), and other instances can connect to it. To chat, type text into the control next to
the Send button and press Send. The message will show up in the control below (the log window), along with any
responses from other chatters. The nickname of the sending chatter appears with each message.

Step 1: AppWizard
Use AppWizard to create a new app, called dxchat. Specify the following:

This will be an SDI app.
Turn off the printing / print preview support; we won't need it.
Set the Recent Files to 0.
Make the CDxchatView class descend from CFormView.

Step 2: The Document Class

Add members to the document class to keep track of the main IDirectPlay object and the ID of the local 'player',
and a member to keep track of the app's main view for later reference:

 LPDIRECTPLAY m_pTheDPObject;
 DPID m_localChatter;
 CDxchatView* m_pMainView;

Set all of these to NULL in the constructor. Add a function to shut down DirectPlay:

void CDxchatDoc :: stopSession ()
{
 if (m_pTheDPObject != NULL)
 {
 // Destroy local player
 if (m_localChatter != 0)
 m_pTheDPObject->DestroyPlayer(m_localChatter);
 // Shut down DirectPlay
 m_pTheDPObject->Release();
 m_pTheDPObject = NULL;
 theApp.m_pDoc = NULL;
 SetTitle("(Not connected)");
 }
}

Call this function from the destructor to make sure DirectPlay is cleaned up on exit.

Make the following modifications to the application menu bar:

Remove all items except Exit from the File menu.
Add Gather Session…, Join Session… and Send Message items to File menu.
Remove all items from the Edit menu, then add in a Clear Log Window item.

Make the following modifications to the application toolbar:

Remove all tool buttons except the Help button.
Add an eraser button, hooked up to the Edit/Clear Log Window command.

In the Project Settings dialog for the project, go to the Link tab and add dplay.lib.

Add command handlers to CDxchatDoc for the gather, join, send and clear menu items that you've just added:

void CDxchatDoc::OnGather()
{
 CSessionDlg dlg;
 // If there is an existing session, stop it
 stopSession ();

 // Post the Gather Session Dialog to get info about the new session
 if (dlg.DoModal() == IDOK)
 {
 // Create a DirectPlay object around the service provider
 if (DirectPlayCreate(dlg.m_lpguid, &m_pTheDPObject, NULL) == DP_OK)
 {
 // Create a session
 DPSESSIONDESC sdesc;
 memset(&sdesc, 0x00, sizeof(DPSESSIONDESC));

 sdesc.dwSize = sizeof(DPSESSIONDESC);
 sdesc.dwFlags = DPOPEN_CREATESESSION;
 sdesc.dwMaxPlayers = 10;
 sdesc.guidSession = CHAT_GUID;
 strcpy(sdesc.szSessionName,dlg.m_session);
 if (m_pTheDPObject->Open(&sdesc) == DP_OK)
 {
 // Allow joining
 m_pTheDPObject->EnableNewPlayers(TRUE);
 // Join the session locally
 if (m_pTheDPObject->CreatePlayer(&m_localChatter,
 (char*)(const char*)dlg.m_nickname,
 (char*)(const char*)dlg.m_realname, NULL) == DP_OK)
 {
 m_pMainView->MessageBox("Session started."
 " Other chatters may now connect.");
 theApp.m_pDoc = this;
 SetTitle(dlg.m_session);
 }
 else
 m_pMainView->MessageBox("Unable to create local player.");
 }
 else
 m_pMainView->MessageBox("Unable to create session.");
 }
 else
 m_pMainView->MessageBox("Unable to initialize DirectPlay.");
 }
}

void CDxchatDoc::OnJoin()
{
 CJoinDlg dlg;
 CJoin2Dlg dlg2(this);
 // If there is an existing session, stop it
 stopSession ();

 // Post the Join Session Dialog to get info about the new session
 if (dlg.DoModal() == IDOK)
 {
 // Create a DirectPlay object around the service provider
 if (DirectPlayCreate(dlg.m_lpguid, &m_pTheDPObject, NULL) == DP_OK)
 {
 // Get the session ID
 if (dlg2.DoModal() == IDOK)
 {
 // Open the session
 DPSESSIONDESC sdesc;
 memset(&sdesc, 0x00, sizeof(DPSESSIONDESC));
 sdesc.dwSize = sizeof(DPSESSIONDESC);
 sdesc.dwFlags = DPOPEN_OPENSESSION;
 sdesc.guidSession = CHAT_GUID;
 sdesc.dwSession = dlg2.m_sessionid;

 // Try to connect to session
 if (m_pTheDPObject->Open(&sdesc) == DP_OK)
 {
 // Allow joining
 m_pTheDPObject->EnableNewPlayers(TRUE);

 // Join the session locally
 if (m_pTheDPObject->CreatePlayer(&m_localChatter,
 (char*)(const char*)dlg.m_nickname,
 (char*)(const char*)dlg.m_realname, NULL) == DP_OK)
 {
 m_pMainView->MessageBox("Chat session joined.");
 SetTitle(dlg2.m_session);
 theApp.m_pDoc = this;
 }
 else
 m_pMainView->MessageBox(
 "Unable to create local player.");
 }
 else
 m_pMainView->MessageBox("Unable to connect to session.");
 }
 }
 else
 m_pMainView->MessageBox("Unable to initialize DirectPlay.");
 }
}
void CDxchatDoc::OnSend()
{
 // Send text in message edit to the current session
 CString sendtxt = m_pMainView->getSendText();
 CString localtxt = "<me>: ";
 const char* buf = sendtxt.GetBuffer(257);

 m_pTheDPObject->Send(m_localChatter, 0, DPSEND_GUARANTEE, (LPVOID)buf,
 sendtxt.GetLength() + 1);
 localtxt += sendtxt;
 m_pMainView->addText(localtxt);
 sendtxt.ReleaseBuffer();
}

void CDxchatDoc::OnEditClear()
{
 m_pMainView->clearText();
}

Add a function to handle the DirectPlay message traffic:

void CDxchatDoc::processDPMessages()
{
 DWORD num_msgs;
 long i;
 if (m_pTheDPObject->GetMessageCount(m_localChatter, &num_msgs)!= DP_OK)
 return;
 for (i=0;i<(long)num_msgs;i++)
 {
 DPID idFrom, idTo;
 char msg[256];
 DWORD msglen = 256;
 if (m_pTheDPObject->Receive(&idFrom, &idTo, DPRECEIVE_ALL, msg,
 &msglen) == DP_OK)
 {

 if (idFrom == 0)
 {
 DPMSG_GENERIC* pDPGen = (DPMSG_GENERIC*)msg;
 // Message from the name server
 switch (pDPGen->dwType)
 {
 case DPSYS_ADDPLAYER:
 {
 DPMSG_ADDPLAYER* pDPAddP = (DPMSG_ADDPLAYER*)msg;

 // No need to do this if it's us
 if (pDPAddP->dpId != m_localChatter)
 {
 CString msgstr = pDPAddP->szShortName;
 msgstr += " has joined in the chat.";

 m_pMainView->MessageBox(msgstr);
 }
 }
 break;
 case DPSYS_DELETEPLAYER:
 m_pMainView->MessageBox(
 "A chatter has left the session.");
 break;
 case DPSYS_CONNECT:
 m_pMainView->MessageBox("Connected to chat server.");
 break;
 case DPSYS_SESSIONLOST:
 {
 m_pMainView->MessageBox(
 "Connection to chat server was lost.");
 stopSession();
 }
 break;
 };
 }
 else if (idTo == m_localChatter)
 {
 CString txt;
 // A text message
 // Get the sender's nickname
 char* buf = txt.GetBuffer(256);
 DWORD nicklen = 255;
 m_pTheDPObject->GetPlayerName(idFrom, buf, &nicklen,
 NULL, NULL);
 txt.ReleaseBuffer();
 txt += ": ";
 txt += msg;
 // Show the text
 m_pMainView->addText(txt);
 }
 }
 }
}

Define the GUID for the game:

GUID CHAT_GUID = {
 0x01483ce0,
 0x6f72,
 0x11cf,
 { 0x81,0xf0,0x44,0x45,0x53,0x54,0x00,0x00 }

};

Add a member to CDxchatApp to keep track of the document and add an OnIdle() handler to deal with DirectPlay
message dispatching:

BOOL CDxchatApp::OnIdle(LONG lCount)
{
 // If the doc is up and running, call its DirectPlay message processor
 if (m_pDoc)
 m_pDoc->processDPMessages();
 return CWinApp::OnIdle(lCount);
}

Step 3: The Main View
Lay out the form to look like this:

Use ClassWizard to add member variables for the controls:

Add an OnInitialUpdate() function:

void CDxchatView::OnInitialUpdate()
{
 CFormView::OnInitialUpdate();

 GetDocument()->m_pMainView = this;
 GetDocument()->SetTitle("(Not connected)");
}

Add some helper functions to simplify working with the controls:

CString CDxchatView :: getSendText()
{
 UpdateData();
 return m_message;
}

void CDxchatView :: addText (const char* new_txt)
{
 UpdateData();
 m_sesslog += new_txt;
 m_sesslog += "\r\n";
 UpdateData(FALSE);
}

void CDxchatView :: clearText ()
{
 m_sesslog = "";

 UpdateData(FALSE);
}

Step 4: The Create Session Dialog
Add a dialog for collecting the information necessary to establish a new session. Make it look like this:

Use ClassWizard to make a class for it, and to add member variables for its controls:

Add an OnInitDialog() handler and, in it, enumerate the available DirectPlay service providers:

// Enum proc used to add available service providers to combo box
BOOL FAR PASCAL ServiceEnumProc (LPGUID lpGUID, LPSTR pszName,
 DWORD majver, DWORD minver, LPVOID lpData)
{
 ((CSessionDlg*)lpData)->addToList(pszName, (DWORD)lpGUID);
 return TRUE;
}

// Add one service provider to the combo box - used by enum function
void CSessionDlg :: addToList (const char* svcname, DWORD lpGUID)
{
 int idx = m_svccombo.AddString(svcname);
 m_svccombo.SetItemData(idx,lpGUID);
}

BOOL CSessionDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 if (DirectPlayEnumerate(ServiceEnumProc, this) == DP_OK)
 {
 m_svccombo.SetCurSel(0);
 }
 else
 {
 MessageBox (
 "DirectPlay Error: Unable to enumerate service providers.");
 EndDialog(FALSE);
 }

 return TRUE; // return TRUE unless you set the focus to a control
}

Add an OnOK() handler to get the GUID out of the combo box and store it in a member variable:

void CSessionDlg::OnOK()
{
 int idx = m_svccombo.GetCurSel();
 m_lpguid = (LPGUID)m_svccombo.GetItemData(idx);

 CDialog::OnOK();
}

Step 5: The Join Session 1 Dialog
Add a dialog to start the process of connecting to a session by getting the service provider and user identification
information. Make it look like this:

Use ClassWizard to make a class for it, and to add member variables for its controls:

Add an OnInitDialog() handle and, in it, enumerate the available DirectPlay service providers:

// Enum proc used to add available service providers to combo box
BOOL FAR PASCAL JoinServiceEnumProc (LPGUID lpGUID, LPSTR pszName, DWORD majver, DWORD
minver, LPVOID lpData)
{
 ((CJoinDlg*)lpData)->addToSvcList(pszName, (DWORD)lpGUID);
 return TRUE;
}

// Add one service provider to the combo box - used by enum function
void CJoinDlg :: addToSvcList (const char* svcname, DWORD lpGUID)
{
 int idx = m_svccombo.AddString(svcname);
 m_svccombo.SetItemData(idx,lpGUID);
}

BOOL CJoinDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 if (DirectPlayEnumerate(JoinServiceEnumProc, this) == DP_OK)
 {
 m_svccombo.SetCurSel(0);
 }
 else
 {
 MessageBox (
 "DirectPlay Error: Unable to enumerate service providers.");
 EndDialog(FALSE);
 }
 return TRUE; // return TRUE unless you set the focus to a control

}

Add an OnOK() handler to get the GUID out of the combo box and store it in a member variable:

void CJoinDlg::OnOK()
{
 int idx = m_svccombo.GetCurSel();
 m_lpguid = (LPGUID)m_svccombo.GetItemData(idx);
 CDialog::OnOK();
}

Step 6: The Join Session 2 Dialog
Add a dialog to finish the process of connecting to a session by enumerating the available sessions for the selected
service provider and allowing the user to choose one. Make the dialog look like this:

Use ClassWizard to make a class for it, and to add member variables for its controls:

Pass a pointer to the document into the constructor. We'll need access to the IDirectPlay object in this dialog.
Store it in a member in the dialog class.

Add an OnInitDialog() handler and, in it, enumerate the available sessions:

BOOL FAR PASCAL SessionEnumProc (LPDPSESSIONDESC lpDPDesc, LPVOID lpContext, LPDWORD
timeout, DWORD flags)
{
 ((CJoin2Dlg*)lpContext)->addToSessList(lpDPDesc->szSessionName,
 lpDPDesc->dwSession);
 return TRUE;
}

void CJoin2Dlg :: addToSessList (const char* sessname, DWORD sessid)
{
 int idx = m_sesscombo.AddString(sessname);
 m_sesscombo.SetItemData(idx,sessid);
}

BOOL CJoin2Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 DPSESSIONDESC sdesc;
 memset(&sdesc, 0x00, sizeof(DPSESSIONDESC));
 sdesc.dwSize = sizeof(DPSESSIONDESC);
 sdesc.guidSession = CHAT_GUID;
 BeginWaitCursor();

 if (m_pDoc->m_pTheDPObject->
 EnumSessions(&sdesc, 5000, SessionEnumProc, this, NULL) == DP_OK)
 {
 m_sesscombo.SetCurSel(0);
 EndWaitCursor();
 }
 else
 {
 MessageBox (
 "DirectPlay Error: Unable to enumerate available sessions.");
 EndWaitCursor();
 EndDialog(FALSE);
 }
 return TRUE; // return TRUE unless you set the focus to a control
}

Add an OnOK() handler to get the session ID out of the combo box and store it in a member variable:

void CJoin2Dlg::OnOK()
{
 int idx = m_sesscombo.GetCurSel();
 m_sessionid = m_sesscombo.GetItemData(idx);

 CDialog::OnOK();
}

That's it. The finished app looks like this:

Wrapping DirectX in C++
Clearly, from what we've just seen, DirectX can do everything we need to make WROXBlox! go, and a lot more. It's
going to be a bit cumbersome to use, though, so there's a lot for us to do. It sure would be nice to have this stuff
organized into objects, with much of the initialization and such hidden from us, wouldn't it? Well, since Microsoft
didn't do it for us, let's get moving and do it ourselves. We'll make a class to handle all of the top-level game stuff
(like the IDirectDraw and IDirectSound master objects), another class for sprites, and finally, one to handle
individual wave audio sounds.

First, Some C++ Performance Issues
Compared to raw C, C++ has a bad rap as a performance killer. If you take a few precautions, however, C++ code
can run pretty much as fast as C code. Here are a few pointers:

Inline everything possible.
Don't use exceptions.
Avoid function call indirections:
Don't use multiple inheritance.
Avoid using virtual functions. If you must use them, inline them if you can. The compiler can
sometimes make more efficient use of them.
Avoid referencing objects through pointers. Whenever possible, make the actual object visible if you
need to use it.

Of course, this is for speed. If speed isn't an issue, or more robust code is, design your classes more
in line with normal OOP practices.

You'll notice that we'll follow these rules in the definition of the classes to follow. One glaring violation we'll
perpetrate is to make the 'game slice' function in our app class a virtual function. When we get to it, we'll look at
some alternatives. Making it a virtual function for our purposes here makes the code more readable and
comprehensible, and it doesn't seem to greatly affect game performance for such a simple game.

CDirectXApp: A Game App Object
Let's get down to the business of building some C++ classes. We'll start with the top-level game object,
CDirectXApp. We want this class to encapsulate all the nitty-gritty details of bringing up and shutting down
DirectX, including creating the flipping surface and loading sprite bitmaps for use. It will hold all of our primary
DirectX objects, like the one-and-only IDirectDraw and IDirectSound objects for an app, an
IDirectDrawSurface for the primary flipping surface (with one back buffer), plus two off-screen
IDirectDrawSurfaces: one for sprite data and another for the splash screen bitmap. We'll also need
IDirectDrawPalettes corresponding to those surfaces. The CDirectXApp class should also hang onto pointers
to the front and back buffers of the primary flipping surface for easy access. Also, we'll have this object create and
hang onto the main application window. CDirectXApp should run the app's message loop and provide functionality
for rendering sprites to the back buffer and for flipping the primary surface. We'll make the game slice a pure virtual
function of this class. To use CDirectXApp, you'll create a descendant class that overrides the game slice function.

One sticky point here is that we'll need a window procedure for the main window, but we want to automate the
management of that window as much as possible. A quick solution to this is to use extern linkage. You must supply
the window proc function with the same name when you use CDirectXApp. There are other ways around this, but
this is pretty straightforward, and introduces no additional indirection overhead to the app. We'll prototype the extern
function like this:

extern long FAR PASCAL DXAppWndProc (HWND hWnd, UINT msg, WPARAM wParam,
 LPARAM lParam)

That's about all we'll need in CDirectXApp. While this object is rather rigid in its use of DirectX, it will nonetheless
serve as a quite adequate foundation for games as simple as WROXBlox!, which don't need multiple back buffers or

other fancy features like that. Here's the class declaration for CDirectXApp:

class CDirectXApp
{
protected:
 // DirectX COM Objects:
 LPDIRECTSOUND m_lpDSound; // The IDirectSound object
 LPDIRECTDRAW m_lpTheDDObject; // The IDirectDraw object
 LPDIRECTDRAWSURFACE m_lpDDSPrimary; // DirectDraw primary surface
 LPDIRECTDRAWSURFACE m_lpDDSBack; // DirectDraw back surface
 LPDIRECTDRAWPALETTE m_lpDDPal; // Main DirectDraw palette
 LPDIRECTDRAWPALETTE m_lpDDSplashPal; // Splash panel DirectDraw
 // palette
 LPDIRECTDRAWSURFACE m_lpDDSSprite; // Offscreen sprite surface
 LPDIRECTDRAWSURFACE m_lpDDSSplash; // Offscreen splash panel
 // surface
 BOOL m_bActive; // is application active?
 HWND m_hMainWnd; // The app's main window
 CDirectXSprite splash_sprite; // A sprite for the splash bitmap
 HRESULT m_hLastError; // Last DirectDraw error that occurred
public:
 // DirectX COM Object Accessors
 LPDIRECTSOUND theDSoundObj ()
 {return m_pDSound;}
 void setTheDSoundObj (LPDIRECTSOUND pNewDS)
 {m_pDSound = pNewDS;}
 LPDIRECTDRAW theDDrawObj ()
 {return m_lpTheDDObject;}
 void setTheDDrawObj (LPDIRECTDRAW pNewDD)
 {m_lpTheDDObject = pNewDD;}
 LPDIRECTDRAWSURFACE thePrimarySurf ()
 {return m_lpDDSPrimary;}
 void setThePrimarySurf (LPDIRECTDRAWSURFACE pNewSurf)
 {m_lpDDSPrimary = pNewSurf;}
 LPDIRECTDRAWSURFACE theBackSurf ()
 {return m_lpDDSBack;}
 void setTheBackSurf (LPDIRECTDRAWSURFACE pNewSurf)
 {m_lpDDSBack = pNewSurf;}
 LPDIRECTDRAWPALETTE theDDrawPal ()
 {return m_lpDDPal;}
 void setTheDDrawPal (LPDIRECTDRAWPALETTE pNewPal)
 {m_lpDDPal = pNewPal;}
 LPDIRECTDRAWSURFACE theSpriteSurf ()
 {return m_lpDDSSprite;}
 void setTheSpriteSurf (LPDIRECTDRAWSURFACE pNewSurf)
 {m_lpDDSSprite = pNewSurf;}

 HWND gameWnd () {return m_hMainWnd;}

 BOOL isActive () {return m_bActive;}
 void setActive (BOOL bAct = TRUE) {m_bActive = bAct;}

 // Start up and shut down the DirectDraw part of the app
 BOOL init (HINSTANCE hInstance, int nCmdShow);
 void shutdown();
 // Start up and shut down the DirectSound stuff
 BOOL initSound ();
 void shutdownSound ();
 // Functions to handle sprite and splash bitmaps
 BOOL loadSpritesFromBitmapRes ();
 BOOL loadSplashScreen ();
 void drawSplashScreen ();
 void selectSplashPalette ();
 void selectSpritePalette ();
 HRESULT restore ();
 // App message loop
 int go ();
 // Flip the primary surface
 void flip () {m_lpDDSPrimary->Flip(NULL, DDFLIP_WAIT);}
 // Draw a sprite on the back buffer
 void renderSprite (CDirectXSprite& sprite)
 { sprite.drawOn(m_lpDDSBack);}
 // Override in descendant class and put in game loop functionality
 virtual void gameSlice () = 0;

 CDirectXApp ();
 ~CDirectXApp ();

};

We've already covered what has to happen in the guts of most of these functions, so without further ado, here are the
CDirectXApp member functions:

// Includes all the necessary Windows and GDK headers
#include "dxappclass.h"
#include "ddutil.h"

// Window proc - must be defined in calling app
extern long FAR PASCAL DXAppWndProc (HWND hWnd, UINT msg, WPARAM wParam,
 LPARAM lParam);
// App must have a BMP resource with this name
#define SPRITE_RES "DXAPP_SPRITES"
// If app uses built-in splash panel functionality,
// it must have a BMP resource with this name
#define SPLASH_RES "DXAPP_SPLASH"
// App must have an icon with this ID
#define ICON_RES "DXAPP_ICON"

CDirectXApp :: CDirectXApp ()
{
 m_pDSound = NULL;
 m_hLastError = NULL;
}

BOOL CDirectXApp :: initSound ()
{
 if (DirectSoundCreate(NULL, &m_pDSound, NULL) == DS_OK)
 {
 if (m_pDSound->SetCooperativeLevel(m_hMainWnd, DSSCL_NORMAL)
 == DS_OK)
 return TRUE;
 else
 {
 m_pDSound->Release();
 m_pDSound = NULL;
 }
 }
 return FALSE;
}

void CDirectXApp :: shutdownSound ()
{
 if (m_pDSound)
 {
 m_pDSound->Release();
 m_pDSound = NULL;
 }
}

BOOL CDirectXApp :: init (HINSTANCE hInstance, int nCmdShow)
{
 WNDCLASS wc;
 char buf[256];
 DDSURFACEDESC ddsd;
 DDSCAPS ddscaps;
 HRESULT ddrval;
 // Register a window class for the game main window
 wc.style = CS_HREDRAW | CS_VREDRAW | CS_BYTEALIGNCLIENT;
 wc.lpfnWndProc = DXAppWndProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hInstance = hInstance;
 wc.hIcon = LoadIcon(hInstance, ICON_RES);
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = NULL;
 wc.lpszMenuName = (LPSTR)NULL;
 wc.lpszClassName = "DirectXAppWnd";
 RegisterClass(&wc);

 // Create and show the main window
 m_hMainWnd = CreateWindowEx(
 WS_EX_TOPMOST,
 "DirectXAppWnd",
 "Generic DirectX Game",
 WS_POPUP,
 0, 0, 640, 480,
 NULL,
 NULL,
 hInstance,
 NULL);
 if(!m_hMainWnd)
 {
 MessageBox (NULL,
 "Unable to create main window.",
 "DirectX App Error",
 MB_OK);
 return FALSE;
 }

 ShowWindow(m_hMainWnd, nCmdShow);
 UpdateWindow(m_hMainWnd);
 // Initialize DirectDraw
 ddrval = DirectDrawCreate(NULL, &m_lpTheDDObject, NULL);
 if(ddrval == DD_OK)
 {
 // Get exclusive mode
 ddrval = m_lpTheDDObject->SetCooperativeLevel(m_hMainWnd,
 DDSCL_EXCLUSIVE | DDSCL_FULLSCREEN);
 if(ddrval == DD_OK)
 {
 // Set video mode to 640x480x256
 ddrval = m_lpTheDDObject->SetDisplayMode(640, 480, 8);
 if(ddrval == DD_OK)
 {
 // Create the primary surface with 1 back buffer
 ddsd.dwSize = sizeof(ddsd);
 ddsd.dwFlags = DDSD_DDCAPS | DDSD_BACKBUFFERCOUNT;
 ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |
 DDSCAPS_FLIP |
 DDSCAPS_COMPLEX;
 ddsd.dwBackBufferCount = 1;
 ddrval = m_lpTheDDObject->CreateSurface(&ddsd,
 &m_lpDDSPrimary, NULL);
 if(ddrval == DD_OK)
 {
 // Get a pointer to the back buffer
 ddscaps.dwCaps = DDSCAPS_BACKBUFFER;
 ddrval = m_lpDDSPrimary->
 GetAttachedSurface(&ddscaps, &m_lpDDSBack);
 if(ddrval == DD_OK)
 {
 if (loadSpritesFromBitmapRes())
 {
 if (loadSplashScreen())
 return TRUE;
 else
 {
 MessageBox(NULL, "Error - unable to load splash"
 " screen - probably not enough video memory on"
 " your display adapter",
 "DirectX App Error", MB_OK);
 return FALSE;
 }
 }
 else
 {
 MessageBox(NULL, "Error - unable to load sprites "
 "- probably not enough video memory on your "
 "display adapter",
 "DirectX App Error", MB_OK);
 return FALSE;
 }
 }
 }
 }
 }
 }
 m_hLastError = ddrval;
 wsprintf(buf, "Direct Draw Init Failed (%08lx)\n", ddrval);
 MessageBox(m_hMainWnd, buf, "DirectX App Error", MB_OK);
 shutdown();
 DestroyWindow(m_hMainWnd);
 return FALSE;
}

BOOL CDirectXApp :: loadSplashScreen ()
{
 // create and set the palette
 m_lpDDSplashPal = DDLoadPalette(m_lpTheDDObject, SPLASH_RES);
 if (m_lpDDSplashPal)
 m_lpDDSPrimary->SetPalette(m_lpDDSplashPal);
 // Create the offscreen surface, by loading our bitmap.
 m_lpDDSSplash = DDLoadBitmap(m_lpTheDDObject, SPLASH_RES, 0, 0);
 if(m_lpDDSSplash == NULL)
 {
 shutdown();
 DestroyWindow(m_hMainWnd);
 return FALSE;
 }
 // We're not going to use it, but we have to set a color key for
 // the splash screen since we're going to use the sprite drawing
 // logic to display it
 DDSetColorKey(m_lpDDSSplash, RGB(0,0,0));
 // Set up the special splash screen sprite
 splash_sprite.setSource (m_lpDDSSplash,0,0,640,480);
 // Set back sprite palette
 if (m_lpDDPal)
 m_lpDDSPrimary->SetPalette(m_lpDDPal);
 return TRUE;
}

void CDirectXApp :: selectSplashPalette ()
{
 // Set splash palette
 if (m_lpDDSplashPal)
 m_lpDDSPrimary->SetPalette(m_lpDDSplashPal);
}

void CDirectXApp :: selectSpritePalette ()
{
 // Set sprite palette
 if (m_lpDDPal)
 m_lpDDSPrimary->SetPalette(m_lpDDPal);
}

void CDirectXApp :: drawSplashScreen ()
{
 renderSprite (splash_sprite);
}

BOOL CDirectXApp :: loadSpritesFromBitmapRes ()
{
 // create and set the palette
 m_lpDDPal = DDLoadPalette(m_lpTheDDObject, SPRITE_RES);
 if (m_lpDDPal)
 m_lpDDSPrimary->SetPalette(m_lpDDPal);
 // Create the offscreen surface, by loading our bitmap.
 m_lpDDSSprite = DDLoadBitmap(m_lpTheDDObject, SPRITE_RES, 0, 0);
 if(m_lpDDSSprite == NULL)
 {

 shutdown();
 DestroyWindow(m_hMainWnd);
 return FALSE;
 }
 // if we did not want to hard code the palette index (0xff)
 // we can also set the color key like so...
 DDSetColorKey(m_lpDDSSprite, RGB(0,0,0));
 return TRUE;
}

void CDirectXApp :: shutdown ()
{
 m_bActive = FALSE;
 if(m_lpTheDDObject != NULL)
 {
 if(m_lpDDSPrimary != NULL)
 {
 m_lpDDSPrimary->Release();
 m_lpDDSPrimary = NULL;
 }
 m_lpTheDDObject->Release();
 m_lpTheDDObject = NULL;
 }
 shutdownSound();
}

int CDirectXApp :: go()
{
 MSG msg;
 // Run the message loop, calling gameSlice on idle
 while (1)
 {
 if (PeekMessage (&msg, NULL, 0, 0, PM_NOREMOVE))
 {
 if (!GetMessage(&msg, NULL, 0, 0))
 return msg.wParam;
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 else if (m_bActive)
 gameSlice();
 }
 return msg.wParam;
}

That's the CDirectXApp object. We've set a few rules along the way that we should recap. All CDirectXApp-based
applications must:

Subclass CDirectXApp and override the gameSlice() function.
Define a window procedure for the main window and name it DXAppWndProc.
Define a bitmap resource for the game sprites and call it DXAPP_SPRITES.
Define a bitmap resource for the game splash screen and call it DXAPP_SPLASH.
Define an icon resource for the app and call it DXAPP_ICON.

So, the resource file for the WROXBlox! app will have the following things in it:

// wbsprite.bmp contains the game sprites
DXAPP_SPRITES BITMAP wbsprite.bmp

// wbsplash.bmp contains the game splash screen
DXAPP_SPLASH BITMAP wbsplash.bmp
// wroxblox.ico is the game's icon
DXAPP_ICON ICON wroxblox.ico

CDirectXSprite: An Animated Sprite Object
Earlier in the chapter, we defined what a sprite was. Now let's decide what we want in our sprite object. Basically,
we want the sprite object to manage a piece of an off-screen surface to be used for drawing an animated image on
the screen. We need to be able to draw, animate, hide, show and move the sprite. The sprite needs to keep track of its
own position and other states. We also want the sprite to be able to detect collisions between itself and other sprites,
and with the edges of the screen.

Sprite Cel Animation
We'll animate our sprites by displaying a sequence of separate images for them, which, like the frames of a film, will
make them look as if they're moving. To do this, for each animated sprite, we'll put a string of equal-sized images, or
cels, right next to each other in the sprite bitmap. Then we'll tell the sprite that its piece of the sprite bitmap
encompasses the whole string of cels, and we'll tell it how big one cel is. Then the sprite will draw just one cel for
itself. When we tell it to animate, it will move to the next cel.

Sprite Motion
Each sprite must know its position on the screen, which makes moving it easy—just put it in a new position. It
would be nicer, however, if we could do a little more than just that. We're going to give each sprite an X and Y
velocity, and when we tell it to move, it will increment its X and Y position by those amounts. To make it more
useful, we'll store the velocity in tenths of a pixel to give it finer resolution.

Sprite Collisions
There are all kinds of tricky ways to do detect collisions, but we're not going to delve into any of them here. For the
sake of simplicity, we're going to go with the simplest possible: rectangle intersection. Basically, when two sprites
collide, we'll look at the intersection of their bounding rectangles to determine what kind of collision occurred.

Sprite Aging
We need to be able to hide and show sprites, and it's sometimes useful to be able to have some kind of countdown
until a sprite disappears. We'll call this aging. A good example of this is when a sprite is supposed to explode after
it's been by a laser blast. The sprite must first switch over to the explosion sprite images, then, when the last cel of
the explosion has been drawn, it should disappear. Setting its aging to equal the number of cels in the explosion
sequence would accomplish this.

Rendering a Sprite on a Surface
All we need to do to draw the sprite is to BltFast() its current cel image to the back buffer with source
transparency. When we were building the CDirectXApp object, there was a member in there called
renderSprite(), which turned around and called a drawOn() function in CDirectXSprite. The drawOn()
function will just do a BltFast() from the sprite's off-screen surface to the back buffer.

CDirectXSprite Declaration
Here's the class declaration for CDirectXSprite:

// Sprite velocity and internal position registers will be in tenths of a
// Pixel, but we could change that by putting something else here
#define VELOCITY_PRECISION 10
// Codes to indicate whether move() triggered an edge bounce

#define BOUNCED_TOP 0x0001
#define BOUNCED_BOTTOM 0x0002
#define BOUNCED_LEFT 0x0004
#define BOUNCED_RIGHT 0x0008

class CDirectXSprite
{
protected:

 // Source
 LPDIRECTDRAWSURFACE lpDDSSource; // Source surface
 int nSrcX; // X position of first frame of sprite on source surface
 int nSrcY; // Y position of first frame of sprite on source surface
 int nSrcW; // Width of frames of sprite
 int nSrcH; // Height of frames of sprite
 //Animation
 UINT nNumFrames; // Total number of frames that make up sprite
 // - must all be on one row
 UINT nCurFrame; // Current frame to display on next flip
 // Display Position
 int nDisplayX; // Position on display surface to draw
 // sprite, * 10 - ie, 6000 = display at 600
 int nDisplayY; // Position on display surface to draw
 // sprite, * 10 - ie, 4000 = display at 400
 // Motion
 int nXVelocity; // Increment to add to pixel position on
 // each move (in tenths)
 int nYVelocity; // Increment to add to pixel position on
 //each move (in tenths)
 BOOL bBounceTop; // Does sprite bounce at this edge, or run off?
 BOOL bBounceBottom; // Does sprite bounce at this edge, or run off?
 BOOL bBounceLeft; // Does sprite bounce at this edge, or run off?
 BOOL bBounceRight; // Does sprite bounce at this edge, or run off?
 // State
 int nLife; // -1 = "immortal", 0 = dead (don't process sprite),
 // n = number of frames til dead
public:
 CDirectXSprite ()
 {
 lpDDSSource = 0;
 nSrcX = 0;
 nSrcY = 480;
 nSrcW = 64;
 nSrcH = 64;
 nNumFrames = 1;
 nCurFrame = 0;
 nDisplayX = 0;
 nDisplayY = 0;
 nXVelocity = 0;
 nYVelocity = 0;
 bBounceTop = FALSE;
 bBounceBottom = FALSE;
 bBounceLeft = FALSE;
 bBounceRight = FALSE;
 nLife = -1;
 }

 void setSource (LPDIRECTDRAWSURFACE lpSrc, UINT nX, UINT nY,
 UINT nWidth, UINT nHeight)

 {
 lpDDSSource = lpSrc;
 nSrcX = nX;
 nSrcY = nY;
 nSrcW = nWidth;
 nSrcH = nHeight;
 }
 int spriteWidth () {return nSrcW;}
 int spriteHeight () {return nSrcH;}

 UINT numFrames () {return nNumFrames;}
 void setNumFrames (UINT nNewFrames) {nNumFrames = nNewFrames;}
 // 0-based frame index
 UINT curFrame () {return nCurFrame;}
 void setCurFrame (UINT nNewCur) {nCurFrame = nNewCur;}
 void advanceFrame ()
 {
 nCurFrame ++;
 // Loop back to beginning if necessary
 if (nCurFrame == nNumFrames)
 nCurFrame = 0;
 }

 // Values are in pixels
 int displayX() {return nDisplayX/VELOCITY_PRECISION;}
 int displayY() {return nDisplayY/VELOCITY_PRECISION;}
 void setDisplayX(int nNewX) {nDisplayX = nNewX * VELOCITY_PRECISION;}
 void setDisplayY(int nNewY) {nDisplayY = nNewY * VELOCITY_PRECISION;}
 // Values are in velocity precision
 int velocityX () {return nXVelocity;}
 int velocityY () {return nYVelocity;}
 void setVelocityX (int nNewVX) {nXVelocity = nNewVX;}
 void setVelocityY (int nNewVY) {nYVelocity = nNewVY;}
 BOOL bounceTop () {return bBounceTop;}
 BOOL bounceBottom () {return bBounceBottom;}
 BOOL bounceLeft () {return bBounceLeft;}
 BOOL bounceRight () {return bBounceRight;}
 void setBounceTop (BOOL bNewBounce=TRUE)
 {bBounceTop = bNewBounce;}
 void setBounceBottom (BOOL bNewBounce=TRUE)
 {bBounceBottom = bNewBounce;}
 void setBounceLeft (BOOL bNewBounce=TRUE)
 {bBounceLeft = bNewBounce;}
 void setBounceRight (BOOL bNewBounce=TRUE)
 {bBounceRight = bNewBounce;}
 int life () {return nLife;}
 void setLife (int nNewLife) {nLife = nNewLife;}
 void age () {if (nLife > 0) nLife--;}

 UINT move (); // Update the position by adding the velocities,
 // and bouncing if necessary
 // Returns bounce edge code if bounce occurred
 UINT collidesWith (CDirectXSprite& other_sprite);
 // Returns bounce code if other sprite overlaps this one
 // Render sprite on the given surface
 // Usually, you'll use CDirectXApp::renderSprite() (which calls this)
 HRESULT drawOn (LPDIRECTDRAWSURFACE lpSurf)
 {
 RECT rcRect;

 rcRect.top = nSrcY;
 rcRect.bottom = nSrcY + nSrcH;
 rcRect.left = nSrcX + (curFrame()*nSrcW);
 rcRect.right = nSrcX + nSrcW + (curFrame()*nSrcW);
 return lpSurf->BltFast(displayX(), displayY(), lpDDSSource,
 &rcRect, DDBLTFAST_SRCCOLORKEY|DDBLTFAST_WAIT);
 }
};

OK, now here are the move() and collidesWith() functions:

UINT CDirectXSprite :: collidesWith (CDirectXSprite& other_sprite)
{
 // Them
 RECT rThem = {other_sprite.displayX(),other_sprite.displayY(),
 other_sprite.displayX()+other_sprite.spriteWidth(),
 other_sprite.displayY()+other_sprite.spriteHeight()};
 // Us
 RECT rUs = {displayX(), displayY(), displayX()+spriteWidth(),
 displayY()+spriteHeight()};
 RECT isect;
 if (IntersectRect (&isect, &rThem, &rUs))
 {
 // Collision occurred - set bounce codes
 // Returns BOUNCED_LEFT if bounce is mostly along a vert. edge
 // Returns BOUNCED_TOP if bounce is mostly along a horiz. edge
 if ((isect.right - isect.left) > (isect.bottom - isect.top))
 return BOUNCED_TOP;
 else
 return BOUNCED_LEFT;
 }
 // No bounce
 return 0;
}

UINT CDirectXSprite :: move ()
{
 UINT bounced = 0;
 // Update position
 nDisplayX += nXVelocity;
 nDisplayY += nYVelocity;

 // Check bounce
 if (bounceTop())
 {
 if (displayY() < 0)
 {
 // Invert Y velocity
 nYVelocity = -nYVelocity;
 // Reflect
 nDisplayY = -nDisplayY;
 bounced = BOUNCED_TOP;
 }
 }
 if (bounceBottom())

 {
 if ((displayY()+nSrcH) > 480)
 {
 // Invert Y velocity
 nYVelocity = -nYVelocity;
 // Back off
 setDisplayY(480-nSrcH);
 bounced = BOUNCED_BOTTOM;
 }
 }
 if (bounceLeft())
 {
 if (displayX() < 0)
 {
 // Invert X velocity
 nXVelocity = -nXVelocity;
 // Reflect
 nDisplayX = -nDisplayX;
 bounced = BOUNCED_LEFT;
 }
 }
 if (bounceRight())
 {
 if ((displayX()+nSrcW) > 640)
 {
 // Invert X velocity
 nXVelocity = -nXVelocity;
 // Back off
 setDisplayX(640-nSrcW);
 bounced = BOUNCED_RIGHT;
 }
 }
 return bounced;
}

CDirectXSound: A Sound Object
The last object we'll build is a wrapper around a wave audio sound. We'll use the SndObj stuff from Dsutil.h
make this really easy. Here's the class declaration for our CDirectXSound class:

class CDirectXSound
{
protected:
 LPDIRECTSOUND m_pDSound; // "Parent" DirectSound object
 HSNDOBJ m_hSnd; // Sound handle
public:
 CDirectXSound ()
 {
 m_pDSound = NULL;
 m_hSnd = NULL;
 }
 BOOL init (LPDIRECTSOUND pDS, LPCSTR szName, int nConcurrent = 1);
 // pan=0 - centered pan=-10,000 - way left pan=+10,000 - way right
 BOOL play (int pan = 0, DWORD dwFlags = 0);
 void destroy ();
};

Here are the function definitions:

BOOL CDirectXSound :: init (LPDIRECTSOUND pDS, LPCSTR szName, int nConcurrent)
{
 // Remember "parent" IDirectSound
 m_pDSound = pDS;
 // Attempt to create
 m_hSnd = SndObjCreate (pDS, szName, nConcurrent);
 return (m_hSnd != NULL);
}

void CDirectXSound :: destroy ()
{
 // Clean up
 SndObjDestroy (m_hSnd);
 m_hSnd = NULL;
 m_pDSound = NULL;
}

BOOL CDirectXSound :: play (int pan, DWORD dwFlags)
{
 // Styled after DSUtil's SndObjPlay(), but with panning
 // Only try to play if we have a sound object
 if (m_hSnd != NULL)
 {
 // If looping, don't replay
 if ((!(dwFlags & DSBPLAY_LOOPING) || (m_hSnd->iAlloc == 1)))
 {
 // Get a buffer to play with
 IDirectSoundBuffer *pDSB = SndObjGetFreeBuffer(m_hSnd);

 if (pDSB != NULL)
 {
 // Set panning
 pDSB->SetPan(pan);
 // Play
 return (pDSB->Play(0, 0, dwFlags) == DS_OK);
 }
 }
 }
 return FALSE;
}

Pretty simple.

Fitting It All Together
To use these classes, you'll need to do the things listed at the end of the section above on CDirectXApp, plus:

Declare a global CDirectXApp object for your app.
Build a WinMain() function.

 It will typically look something like this:

// The game object - type is descendant class from CDirectXApp
CMyGame theGame;
int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)

{
 // Initialize the game object
 if (!theGame.setupGame(hInstance, nCmdShow))
 return FALSE;
 // Message Loop
 int retval = theGame.go();
 // Going down - clean up the game object
 theGame.stopGame();
 return retval;
}

setupGame() and stopGame() are members of the descendant class that presumably turn around and call
CDirectXApp::init() and CDirectXApp::shutdown() respectively. The setupGame() and stopGame()
functions might also do other game-specific stuff, like setting up CDirectXSprites and CDirectXSounds for the
game to use. The descendant app class can own CDirectXSprites and CDirectXSounds as members for use by
the gameSlice() function.

WROXBlox! Application Architecture
Now we have the C++ tools to build the WROXBlox! Application, let's map the concepts we've just covered to the
WROXBlox! project. All the pesky DirectX stuff is out of our way now; the rest is game logic.

As the rest of the code for WROXBlox! is game logic, we'll leave out the code here. Have a look on
the CD if you're interested.

Subclassing CDirectXApp: CWroxGame
Naturally, the first thing we'll want to do is make a subclass of CDirectXApp for the WROXBlox! Game. We'll call
it CWroxGame.

There are basically three kinds of members that we're going to put in CWroxGame:
Any CDirectXSprite objects the game needs.
Any CDirectXSound objects the game needs.
Any variables necessary for the game logic (the state, for instance).

We're also going to need to override the gameSlice() function, and we'll want to add some functions for
initializing and destroying the game elements. Take a look back at the state diagram for WROXBlox! that we laid
out earlier in the chapter. There's some stuff that we'll also want to add to CWroxGame to manage the game states.

The WROXBlox! DXAppWndProc() Function
We're relying on Windows messages for a few things, which are, of course, dealt with in the window procedure:

long FAR PASCAL DXAppWndProc (HWND hWnd, UINT msg, WPARAM wParam,
 LPARAM lParam)
{
 switch(msg)
 {
 // Keep the cursor turned off
 case WM_SETCURSOR:
 SetCursor(NULL);
 return TRUE;
 case WM_KEYDOWN:
 switch(wParam)
 {
 // Exit game if either Esc or F12 is pressed
 case VK_ESCAPE:

 case VK_F12:
 PostMessage(hWnd, WM_CLOSE, 0, 0);
 break;
 // Otherwise, see if game has a use for it
 default:
 theGame.processKey(wParam);
 break;
 }
 break;
 // Timer is used to delay between game states
 case WM_TIMER:
 theGame.processTimer();
 break;

 case WM_DESTROY:
 // Going down - deactivate game
 theGame.setActive(FALSE);
 PostQuitMessage(0);
 break;
 }
 return DefWindowProc(hWnd, msg, wParam, lParam);
}

Summary
In this chapter, we've surveyed the basics of using the DirectX API, including DirectDraw, DirectSound, DirectPlay,
and DirectInput. We wrote a complete game in C++, and an example program using the DirectPlay API.

Network Programming
Introduction
Windows NT is built from the ground up for networking, which means that it supports quite a number of protocol
stacks out of the box. These protocol stacks include: NetBEUI, DLC (Data Link Control), NWLink (NetWare Link),
TCP/IP, etc. However, a protocol stack is not the same as a programming interface; for example, NetBEUI and
NetBIOS are not the same thing. NetBEUI is the protocol stack, while NetBIOS is the programming interface. In
fact, the NetBIOS programming interface can be provided by protocols other than NetBEUI. When we talk about
network programming, we are talking about writing distributed applications using Windows NT network
programming interfaces. A distributed (or client-server, if you like the buzz word) application consists of two parts:
a server, which provides some services, and a client, which handles user interaction. The two parts usually, but not
necessarily, reside on different computers connected via a network. For them to communicate with each other, we
need to use the network programming interfaces, which are sometimes also referred to as IPC (Inter-process
Communication) mechanisms, that Windows NT provides.

At the time of writing, some of the functionality described in this chapter for named pipes and
mailslots are specific to Windows NT. Unfortunately this is also true of the code. If you wish to use
the code on Windows 95, feel free to modify the programs.

IPC Mechanisms
Windows NT provides many IPC mechanisms: NetBIOS, Windows Sockets (TCP/IP), NetDDE, RPC (Remote
Procedure Call), named pipes and mailslots. Let's look briefly at each one.

NetBIOS
NetBIOS first appeared with the IBM PC Network adapter card in August 1984. The IBM PC Network is IBM's first
LAN. Since then, NetBIOS has become a standard programming interface in the PC environment for developing
client-server applications. A NetBIOS client-server application can communicate over various protocols, e.g.
NetBEUI protocol (NBF), NWLink NetBIOS (NWNBLink), and NetBIOS over TCP/IP (NetBT). Although other
newer IPCs, e.g. RPC, named pipes, etc., have surpassed NetBIOS in flexibility, portability and ease of
programming, NetBIOS is still provided for backward compatibility.

WinSock
The Windows Sockets API is an independent specification developed through cooperation of many software
vendors, including Microsoft, NetManage, etc., to provide a standard for a network programming interface based on
the popular Berkeley Software Distribution (BSD) sockets interface, developed at the University of California,
Berkeley in the early 1980s. The intention is that Windows Sockets is used as the standard networking API for all
Windows platforms. The continuing growth in the use of TCP/IP networking makes Windows Sockets a very
popular IPC to use. We'll cover Windows Sockets in detail in the next chapter.

NetDDE
NetDDE is an extension of Windows' Dynamic Data Exchange (DDE) which provides information-sharing
capabilities between applications running on two computers across the network.

RPC

Remote Procedure Call (RPC) was originally developed by Sun Microsystems. It has been adopted by the Open
Software Foundation (OSF) as part of the Distributed Computing Environment (DCE) specification and is supported
by most of the major computer vendors. Windows NT's RPC implementation is inter-operable with other DCE-
based systems. The RPC mechanism allows a client application using a specially compiled 'stub' library to find a
server which can execute a function remotely on its behalf and passes the function and data to the server's RPC
Runtime. When the function is completed by the server, the data and results are sent back to the client application.
The interesting part of RPC is that it can use other IPC mechanisms to establish communications between the
computers on which the client and the server applications run. If the client and server are on the same computer, the
Local Procedure Call (LPC) mechanism can be used instead, making RPC extremely flexible and portable.

Named Pipes and Mailslots
Named pipes and mailslots were first introduced with OS/2 and the Microsoft LAN Manager. Unlike other IPCs,
they are implemented as file systems. As such, they share the same security and access control as file systems, such
as NTFS, which is unique among the IPCs we've mentioned so far. Named pipes provide connection-oriented
communication between applications running on the same computer, or on different computers connected by a
network. Windows NT's implementation of mailslot provides a connection-less communication mechanism that
supports broadcasts. They are provided for backward compatibility with existing Microsoft LAN Manager and IBM
LAN Server applications and other applications such as the Microsoft SQL Server.

This chapter concentrates on writing client-server applications using named pipes, mailslots and NetBIOS. Named
pipes and mailslots are selected because they're simple and easy to use due to their file-like API and their inter-
operability with existing LAN Manager and LAN Server applications. NetBIOS is chosen to contrast the
programming interface used by mailslots and named pipes.

Named Pipes
Named pipes provide a two-way connection-oriented communication channel between applications running either
on the same machine or on different machines connected over a network. Windows NT's named pipe
implementation is based on that of OS/2, with enhancements in asynchronous support and increased security. The
most interesting enhancement is impersonation, which allows a server to change its security identity to that of the
client's. For example, suppose a database server system uses named pipes to receive read/write requests from clients.
When a request comes in, the database server program can change its identity to that of the client (i.e., impersonate
the client) before attempting to perform the request. This allows better security control on the data in the database by
denying clients with insufficient security clearances to access sensitive data. The named pipe API functions can be
divided into server, client and general categories:

Category Function Description

Server CreateNamedPipe() Creates a server instance of a named pipe.
ConnectNamedPipe() Waits for a client connection.
DisconnectNamedPipe() Disconnects an instance of a named pipe from a

client.
Client WaitNamedPipe() Waits for a server named pipe to become available.

CallNamedPipe() Connects, writes, reads and closes the named pipe.
TransactNamedPipe() Writes to and reads from a connected named pipe.

General GetNamedPipeHandleState() Retrieves current information about a named pipe.
GetNamedPipeInfo() Retrieves the named pipe characteristics.
PeekNamedPipe() Copies but leaves data intact in the named pipe.
SetNamedPipeHandleState() Sets read mode and blocking mode of a named pipe.

ImpersonateNamedPipeClient() Assumes the identity of a client application.
RevertToSelf() Resumes its own identity.

Opening a client-side named pipe, reading/writing and closing of a named pipe are performed using normal file
operations: CreateFile(), ReadFile(), WriteFile() and CloseHandle() respectively.

Creating a Connection
In order to establish a connection using a named pipe, the server and the client side do things differently. The client
side instigates a connection.

Server Side
The server takes the following steps:

1The server creates an instance of a named pipe by calling CreateNamedPipe() with the desired
characteristics, e.g. the maximum number of concurrent instances supported, input/output buffer
size, etc. (more on the attributes later).

2The server then waits for a client to connect to the named pipe by calling ConnectNamedPipe().

3 Once the connection has been established, the client requests the server to perform one or more
functions on its behalf.

4The server breaks the connection by calling DisconnectNamedPipe(). After this, the server
may either go back to Step 2 (i.e. wait for another connection), or carry on.

5The server destroys the named pipe instance by calling CloseHandle().

You should note that Windows 95 doesn't support server-side named pipe functions. In other words,
Windows 95 applications can only be clients. Also, Windows 95 named pipes don't support overlapped
I/O operations (to be discussed later).

A Wrapper for Named Pipes
Designing a wrapper for named pipes, or any IPC, is not easy. Depending on what you want to achieve, the resultant
class or classes may look very different when designed by two individuals. For example, one may choose to
encapsulate all named pipe functions in a base class. Another person may want the base class to encapsulate the
common functions of different connection-oriented IPCs. If you're faced with different designs, it's always good to
take a common denominator approach, which means that you don't provide all functions of an IPC in a class or
classes like this. I'm designing the wrapper classes for use by named pipes, mailslots and NetBIOS, so I'm taking the
latter approach, i.e. not including all named pipe functions in the wrapper classes. In fact, these classes only provide
a minimal set of file-like operations, namely: Open(), Read(), Write() and Close().

At first glance, these classes appear very limited in the tasks that they can do, because they don't provide all the
available functions of any IPC. On closer examination, though, you'll see that, since C++ is an object-oriented
language, if you need to, it's easy to derive a new class from the wrapper classes to provide the extra functions
specific to a certain IPC . On the other hand, if the user just needs the four basic file-like operations as they write an
application, these classes give him or her the potential to change the application's transport mechanism from one to
another with minimal fuss, because no functions specific to a particular IPC have been used.

CCommBase is an abstract class, upon which the named pipe and mailslot classes are derived. The four major

methods provided by these classes are: Open(), Read(), Write() and Close(), which you're already familiar
with. To use one of these classes for communication, you just need to Open() the IPC, use Read() and Write() to
perform I\O and Close() the IPC when you're done. Initially, I was tempted to use the MFC CFile class as the
base class to derive my mailslot and named pipe classes, but I looked into it and found that CFile contains a lot of
member functions, such as Seek(), Remove(), Rename(), etc., which are meaningless for mailslots and named
pipes. If I used CFile as base, I would have to override all these member functions to throw an exception, like the
MFC socket classes do. In a word: messy.

Read on for a brief description of these classes.

CCommBase
This is the abstract base class. Its class definition is:

class CCommBase
{
protected:
 HANDLE m_Handle;
 BOOL m_InSession;
 BOOL m_Async;
 CString m_FileName;
 DWORD m_ErrorCode;
 OVERLAPPED m_ReadOl;
 OVERLAPPED m_WriteOl;
public:
 CCommBase();
 CCommBase(BOOL fUseOverlap);
 ~CCommBase();
 inline DWORD GetError() { return m_ErrorCode; };
 inline BOOL IsConnected() { return m_InSession; };
 virtual BOOL Open(const char* pszFileName, UINT nOpenFlags = 0) = 0;
 virtual UINT Read(void* pBuf, UINT nCount);
 virtual UINT Write(const void* pBuf, UINT nCount);
 virtual void Close();
};

It provides the implementation of the three basic file operations: Read(), Write() and Close(). These functions
are all synchronous, i.e. they don't return control to the caller until the operation is completed, even if an overlapped
operation is specified in the constructor. When USE_OVERLAP (defined in Ccommba.h) is specified, Read() and
Write() use an event object in an OVERLAPPED structure to wait until the operation is complete. The reason for
using USE_OVERLAP is that it allows concurrent read and write operations. If USE_OVERLAP is not specified, I/O
operations are serialized. For example, if a Read() is issued in one thread before a Write() in another (without
using the USE_OVERLAP mode), the Write() will not return until the Read() completes. If there's no incoming
data, both operations block. This may not be what you would expect or want, especially if you have a lot of data to
send but little to receive. All named pipe classes use USE_OVERLAP.

When USE_OVERLAP is specified, the constructor creates OVERLAPPED structures for subsequent Read() and
Write() operations. Each OVERLAPPED structure contains an event object for synchronization. The CCommbase
constructors are shown below:

CCommBase::CCommBase()
{
 //initialize class data members
 m_InSession = FALSE;
 m_Handle = INVALID_HANDLE_VALUE;
 m_ErrorCode = 0;
 m_Async = USE_NO_OVERLAP;

}

CCommBase::CCommBase(BOOL fUseOverlap)
{
 //initialize class data members
 m_InSession = FALSE;
 m_Handle = INVALID_HANDLE_VALUE;
 m_ErrorCode = 0;
 //create overlap structure and event objects
 //if overlapped i/o is to be used
 if ((m_Async = fUseOverlap) == USE_OVERLAP)
 {
 memset(&m_ReadOl, 0, sizeof(OVERLAPPED));
 memset(&m_WriteOl, 0, sizeof(OVERLAPPED));
 m_ReadOl.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
 m_WriteOl.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
 }
};

The implementation of Read() and Write() uses ReadFile() and WriteFile() respectively:

UINT CCommBase::Read(void* pBuf, UINT nCount)
{
 ULONG bytesRead;
 BOOL retCode;
 //read using either overlapped or non-overlapped i/o
 retCode = ReadFile(m_Handle, pBuf, nCount,&bytesRead,
 (m_Async)? &m_ReadOl: NULL);
 if (!retCode)
 {
 if ((m_ErrorCode = GetLastError()) == ERROR_IO_PENDING)
 {
 //wait till operation is complete: overlapped i/o only
 WaitForSingleObject(m_ReadOl.hEvent, INFINITE);
 //get the i/o results
 GetOverlappedResult (m_Handle, &m_ReadOl, &bytesRead, FALSE);
 return bytesRead;
 }
 return 0;
 }
 else
 return bytesRead;
};

UINT CCommBase::Write(const void* pBuf, UINT nCount)
{
 ULONG bytesWritten;
 char *buffer = (char *) pBuf;
 //write using either overlapped or non-overlapped i/o
 if (!WriteFile(m_Handle, pBuf, nCount, &bytesWritten,
 (m_Async)? &m_WriteOl: NULL))
 {
 if ((m_ErrorCode = GetLastError()) == ERROR_IO_PENDING)
 {
 //wait till operation is complete: overlapped i/o only
 WaitForSingleObject(m_WriteOl.hEvent, INFINITE);
 //get the i/o results
 GetOverlappedResult (m_Handle, &m_WriteOl, &bytesWritten, FALSE);
 return bytesWritten;
 }
 return 0;
 }
 else
 return bytesWritten;
};

When USE_OVERLAP is specified, Read() and Write() pass the address of their OVERLAPPED structure to
ReadFile() and WriteFile() respectively to carry out asynchronous I/O. The code checks that the operation is
pending and waits until it finishes by blocking at WaitForSingleObject() on the OVERAPPED structure's event
object. When the event object is signaled, GetOverlappedResult() is used to retrieve the operation results.

CNamedPipeServer
CNamedPipeServer is derived from CCommBase. Its class definition is:

class CNamedPipeServer: public CCommBase
{
public:
 CNamedPipeServer();
 ~CNamedPipeServer();
 virtual BOOL Open(const char* pszFileName, UINT nOpenFlags = 0);
};

It implements the virtual member function Open(). During Open(), it creates a server named pipe and waits for a
pipe connection by calling CreateNamePipe() and ConnectNamedPipe() respectively. It returns only when
either an error occurs or when a connection is made.

BOOL CNamedPipeServer::Open(const char* pszFileName, UINT nOpenFlags)
{
 //check if a name has been specified
 if (!pszFileName)
 return FALSE;
 //create server-side named pipe
 m_Handle = CreateNamedPipe (pszFileName,
 (nOpenFlags)? nOpenFlags:
 PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
 PIPE_WAIT | PIPE_READMODE_MESSAGE | PIPE_TYPE_MESSAGE,
 PIPE_UNLIMITED_INSTANCES,
 SEND_BUF_SIZE,
 RECV_BUF_SIZE,
 NAMEDPIPE_TIME_OUT,
 NULL);
 //retrieve error code if any
 if (m_Handle == INVALID_HANDLE_VALUE)
 {
 m_ErrorCode = GetLastError();
 return FALSE; // flag is not set here.
 };
 //save pipe name
 m_FileName = pszFileName;
 //prepare for overlapped i/o
 OVERLAPPED ol;
 memset(&ol, 0, sizeof(OVERLAPPED));
 ol.hEvent = CreateEvent(NULL, FALSE, TRUE, NULL);
 //wait for pipe connection
 BOOL fResult = TRUE;
 if (!ConnectNamedPipe(m_Handle, &ol))
 {
 if ((m_ErrorCode = GetLastError()) == ERROR_IO_PENDING)
 {
 //keep waiting
 WaitForSingleObject(ol.hEvent, INFINITE);
 //get result
 DWORD bytesRead;
 if (!(fResult = GetOverlappedResult(m_Handle, &ol,

 &bytesRead, FALSE)))
 {
 m_ErrorCode = GetLastError();
 fResult = FALSE;
 }
 }
 }
 else
 {
 m_InSession = TRUE;
 }
 CloseHandle(ol.hEvent);
 return fResult;
}

Creating the Named Pipe
The CreateNamedPipe() function creates an instance of a named pipe and returns a handle for subsequent pipe
operations. A server application uses this function both to create a named pipe with the specified attributes and to
create a new instance of an existing named pipe. Creating a named pipe requires a lot of information to be specified,
so let's take a closer look at CreateNamedPipe().

 HANDLE CreateNamedPipe(
 LPCTSTR lpName, // address of pipe name
 DWORD dwOpenMode, // pipe open mode
 DWORD dwPipeMode, // pipe-specific modes
 DWORD nMaxInstances, // maximum number of instances
 DWORD nOutBufferSize, // output buffer size, in bytes
 DWORD nInBufferSize, // input buffer size, in bytes
 DWORD nDefaultTimeOut, // time-out time, in milliseconds
 LPSECURITY_ATTRIBUTES
 lpSecurityAttributes // address of security attributes structure
);

The parameters supplied to CreateNamedPipe() are as follows:

lpName is a pointer to a string containing the name of the pipe to be created. This name is in the form of:

\\.\pipe\pipename

A name must start with \\.\pipe\, followed by an identifying name. The whole pipe name is limited to 256
characters and is case-insensitive. The name that you use can have any character other than a backlash (\), e.g.:

\\.\pipe\mynamedpipe
\\.\pipe\datapipe

The period (.) in the above example represents the name of the server machine. A server can create a named pipe
instance using the period to represent the local machine. However, for a client to connect to a remote server, it must
replace the period with the name of the server using either CreateFile() or CallNamedPipe().

dwOpenMode is a flag that specifies the access mode defining the direction in which the information flows through a
named pipe. The choices are:

Flag Meaning

PIPE_ACCESS_INBOUND The server reads and the client writes (half duplex).
PIPE_ACCESS_OUTBOUND The server writes and the client reads (half duplex).
PIPE_ACCESS_DUPLEX Read/write is allowed in both directions (full duplex).

You can also add the following characteristics to a named pipe:

Flag Meaning

FILE_FLAG_WRITE_THROUGH Disables buffering over a network. Doing so usually slows down the
pipe.

FILE_FLAG_OVERLAPPED Enables asynchronous read and write operations. For example, a
write operation returns immediately, while the operation continues in
the background. You can use a WriteFile() and specify an event
object to be signaled on completion, or use WriteFileEx() to
register a callback function which is called when the operation
completes.

The next parameter, dwPipeMode, is a combination of flags which specify the read, write and wait modes of the
pipe. The possible write flags are:

Flag Meaning

PIPE_TYPE_BYTE Specifies that the pipe should operate in byte mode, i.e. data is
written to the pipe as a stream of bytes.

PIPE_TYPE_MESSAGE Specifies that the pipe should operate in message mode, i.e. each
write command sends just one, complete message. An invisible
header specifying the length of the message is inserted in the
beginning of the message and removed automatically once it's been
read.

The read mode flags have the same meaning as write mode flags, but are for the read operation instead. Possible
values are PIPE_READMODE_BYTE and PIPE_READMODE_MESSAGE.

The wait mode flags define whether or not a read operation from an empty pipe will cause the thread issuing it to
block. Possible values are PIPE_WAIT and PIPE_NOWAIT. PIPE_WAIT is the default.

nMaxInstances defines the maximum instances of a named pipe. A CreateNamedPipe() function fails if it's
called after the maximum number of instances have already been created. PIPE_UNLIMITED_INSTANCES specifies
that there are no instance limitations.

nOutBufferSize and nInBufferSize define the initial buffer size for a pipe. If the buffer sizes are defined too
small, performance degrades.

nDefaultTimeOut specifies the default timeout value in milliseconds for a client-side named pipe which calls the
WaitNamedPipe() function using a timeout value of NMPWAIT_USE_DEFAULT_WAIT.

Finally, since named pipes are implemented as a file system, a SECURITY_ATTRIBUTES structure can be specified.
We simply use NULL for this so that the default security descriptor is used.

Waiting for the Client
After you have created the named pipe and set up the OVERLAPPED structure, if you use USE_OVERLAP, Open()
calls ConnectNamedPipe() to wait for an incoming connection. The ConnectNamedPipe() function enables a
named pipe server to wait for a client process to connect to an instance of a named pipe. A client process connects by
calling either the CreateFile() or CallNamedPipe() function.

 BOOL ConnectNamedPipe(
 HANDLE hNamedPipe, // handle of named pipe to connect
 LPOVERLAPPED lpOverlapped // address of overlapped structure
);

Closing the Connection
CNamedPipeServer doesn't use DisconnectNamedPipe() to force a connected client off. Instead, it uses
CloseHandle(). The implication is that CNamedPipeServer cannot reuse the pipe handle for another connection,
but has to create a new one for a new connection. This eliminates the house-keeping work involved in reusing a pipe
handle, but introduces a slight overhead in creating a new instance of a named pipe every time a new connection is
required.

Client Side
On the client side, the following steps are taken:

1The client waits for the availability of a server named pipe instance by calling
WaitNamedPipe().To do this, the client must know the name of the server-side named pipe. If all
the instances of the server-side named pipe are in use, the client either waits until an instance is
available or times out, depending on the behavior specified in WaitNamedPipe().

2The client tries to connect to a named pipe by calling the file function, CreateFile(). Again, in
order to do this, the client must know the name of the server-side named pipe.

3The client makes one or more requests to the server when the connection is established.

4After all processing has been completed, the client disconnects the named pipe and destroys the
named pipe handle by calling CloseHandle().

The interaction between the server and client-side applications is depicted in the following diagram:

CNamedPipeClient
CNamedPipeClient is derived from CCommBase. Its class definition is:

class CNamedPipeClient: public CCommBase
{
public:
 CNamedPipeClient();
 ~CNamedPipeClient();
 virtual BOOL Open(const char* pszFileName, UINT nOpenFlags = 0);
};

It implements the virtual member function Open(). During Open(), it waits for a server named pipe to become
available by calling WaitNamePipe() before connecting to it using CreateFile(). Open() returns only when an
error or timeout occurs, or when a connection is made.

BOOL CNamedPipeClient::Open(const char* pszFileName, UINT nOpenFlags)
{

 //check if a name has been specified
 if (!pszFileName)
 return FALSE;
 //wait for a server named pipe to become available
 if (!WaitNamedPipe(pszFileName, NAMEDPIPE_TIME_OUT))
 {
 m_ErrorCode = GetLastError();
 return FALSE;
 }
 //try to establish a pipe connection
 m_Handle = CreateFile (pszFileName,
 (nOpenFlags)? nOpenFlags:
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_WRITE ,
 NULL,
 OPEN_EXISTING,
 FILE_FLAG_OVERLAPPED,
 NULL);
 //retrieve error code if any
 if (m_Handle == INVALID_HANDLE_VALUE)
 {
 m_ErrorCode = GetLastError();
 return FALSE;
 };
 m_InSession = TRUE;
 m_FileName = pszFileName;
 return TRUE;
};

Waiting on a Pipe
The WaitNamedPipe() function waits until either a timeout interval elapses or an instance of the specified server-
side named pipe is available for connection. You can use NMPWAIT_USE_DEFAULT_WAIT as the dwTimeout value
to use the default value defined for the pipe by CreateNamedPipe().

 BOOL WaitNamedPipe(
 LPCTSTR lpNamedPipeName, // address of name of pipe to wait for
 DWORD dwTimeout // time-out interval, in milliseconds
);

An Example of Using Named Pipes
Before we go through an example of using named pipes to build client-server applications we need to take a look at
mailslots.

The reason for this is that named pipes are easy to use as long as you know the server's pipe name, but how do you
get the name? You may have discovered by now that pipe names can be quite long and weird, so, as you'll see,
combining them with mailslots makes them a little easier to use. The combined example shown later illustrates how
these IPCs actually complement each other.

Mailslots
Unlike named pipes, which provide two-way connection-oriented communication between two parties, mailslots are
designed to work in only one direction and are used in situations where many applications need to talk to the same
application. Two classes of mailslots are supported by the Microsoft LAN Manager and IBM LAN Server: class 1
mailslots provide guaranteed delivery and class 2 mailslots provide a connection-less best-effort (i.e. delivery not
guaranteed) delivery which supports broadcasts.

Windows NT only implements a subset of the Microsoft OS/2 LAN Manager mailslots API, i.e. class 2 mailslots.
These are most useful for identifying other computers or services on a network, e.g. the Computer Browser service
under Windows NT uses mailslots. We'll come back to using mailslots to discover services on the network later, but
first, let's take a closer look at how mailslots are generally used.

When an application creates a mailslot, it receives a mailslot handle, which must be used when the application reads
messages from the mailslot. The application that creates the mailslot is called the mailslot server. A mailslot exists
until all server handles to it have been closed, or all server applications have terminated.

The more common server mailslot API functions include:

Function Description

CreateMailslot() Creates a mailslot and returns a mailslot handle.
GetMailslotInfo() Retrieves the maximum message size, the mailslot size, the size of the next

message in the mailslot, the number of messages in the mailslot and the
amount of time a read operation can wait for a message.

SetMailslotInfo() Changes the read timeout for a mailslot.

A mailslot client is an application that writes a message to a mailslot. Any application that knows the name of the
mailslot can write messages into it. Messages are delivered on a first-come-first-served basis, i.e. without priority. In
my opinion, the most important feature of mailslots is their ability to broadcast messages within a domain. If
applications in a domain have each created a mailslot using similar names, every message that is broadcast using
that name in the domain is received by each of the applications. Because one application can control both a server
mailslot handle and the client handle retrieved when the mailslot is opened for a write operation, applications can
easily implement a simple message-passing facility within a domain. Messages broadcast to a domain can be no
larger than 400 bytes, although messages sent to an individual mailslot are limited only by the maximum message
size specified by the creator of the mailslot (which can be unlimited). Because a mailslot is either send-only or
receive-only, there's no need to use the USE_OVERLAP mode as in the named pipe classes.

A Wrapper for Mailslots
Many of the mailslot API functions are actually WIN32 file I/O functions, including CreateFile(), ReadFile(),
WriteFile() and CloseHandle(). As you can see, these are, in fact, common with named pipes, which means
that we'll derive the mailslot classes from CCommBase.

CMailSlotServer
CMailSlotServer is derived from CCommBase. Its class definition is:

class CMailSlotServer: public CCommBase
{
protected:
 DWORD m_Timeout;

public:
 CMailSlotServer();
 CMailSlotServer(DWORD timeout);
 ~CMailSlotServer();
 virtual BOOL Open(const char* pszFileName, UINT nOpenFlags = 0);
};

It implements the virtual member function Open(). During Open(), it creates a server mailslot by calling the
CreateMailslot() API. It returns only when either an error occurs or a mailslot is created.

BOOL CMailSlotServer::Open(const char* pszFileName, UINT nOpenFlags)
{
 //check if a name has been specified
 if (!pszFileName)
 return FALSE;
 //create server mailslot
 m_Handle = CreateMailslot(pszFileName, BUF_SIZE, m_Timeout, NULL);
 //retrieve error if any
 if (m_Handle == INVALID_HANDLE_VALUE)
 {
 m_ErrorCode = GetLastError();
 return FALSE;
 };
 m_FileName = pszFileName;
 m_InSession = TRUE;
 return TRUE;
}

CreateMailslot()
The CreateMailslot() function creates a mailslot with the specified name and returns a handle that a mailslot
server can use to perform operations on the mailslot. The mailslot is local to the computer that creates it. An error
occurs if a mailslot with the specified name already exists.

 HANDLE CreateMailslot(
 LPCTSTR lpName, // address of string for mailslot name
 DWORD nMaxMessageSize, // maximum message size
 DWORD lReadTimeout, // milliseconds before read time-out
 LPSECURITY_ATTRIBUTES
 lpSecurityAttributes // address of security structure
);

When an application creates a mailslot, lpName must specify a name. The mailslot name must have the following
form:

 \\.\mailslot\[path]\name

Mailslot names are case-insensitive. As with pipes, the name always starts with \\.\mailslot\ , followed by the
name, optionally preceded by a path consisting of one or more pseudo-directory names, separated by backslashes.
nMaxMessageSize is used to specify the maximum size, in bytes, of a message that can be written to the mailslot.
A zero denotes a message of any size.

lReadTimeout specifies the amount of time, in milliseconds, that a read option will wait for a message to be
written to the mailslot. Special values include zero, which denotes return immediately if there is no message, and
MAILSLOT_WAIT_FOREVER, which denotes that the read operation should wait indefinitely.

lpSecurityAttributes specifies the security attributes to be used. A NULL can be used to denote default security
where the handle is not inherited.

CMailSlotClient
CMailSlotClient is derived from CCommBase. Its class definition is:

class CMailSlotClient: public CCommBase
{
public:
 CMailSlotClient();
 ~CMailSlotClient();
 virtual BOOL Open(const char* pszFileName, UINT nOpenFlags = 0);
};

It implements the virtual member function Open(). During Open(), it opens the desired mailslot by calling
CreateFile(). It returns when the operation completes or an error occurs.

BOOL CMailSlotClient::Open(const char* pszFileName, UINT nOpenFlags)
{
 //check if a name has been specified
 if (!pszFileName)
 return FALSE;
 //open a named mailslot
 m_Handle = CreateFile (pszFileName,
 (nOpenFlags)? nOpenFlags:
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ | FILE_SHARE_WRITE ,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 NULL);
 //retrieve error if any
 if (m_Handle == INVALID_HANDLE_VALUE)
 {
 m_ErrorCode = GetLastError();
 return FALSE;
 };
 m_InSession = TRUE;
 m_FileName = pszFileName;
 return TRUE;
};

Writing Client-server Applications
Before we give you an example on how to use these mailslot and named pipe classes, we'll first take a general look
at client-server applications. Unfortunately, the term client-server can mean different things to different people.
Although people come up with a range of definitions, in general, it usually refers to a style of computing involving
two logically related entities that cooperate over a network to accomplish a task. These two logically related entities
are the client and the server.

The client, or the service requester, instigates communication to a server and asks for certain services to be
performed by the server on its behalf. The server, or service provider, services the request and responds with the
requested information. Normally, clients and servers communicate over a network, but there's no reason why they
cannot be run on the same computer.

A client application usually provides a graphical user interface to the user, validates data entered by the user, sends
requests to the server on the user's behalf and presents the response from the server to the user in the appropriate
format.

A server application receives requests from the client, carries out the requests and sends the requested information
back to the client. A server application is usually more complicated than a client application because it has to handle
things like multiple clients, data integrity, access control, etc., which a client application doesn't need to worry about.
A server application may not need a user interface at all, because that's usually handled by the client.

The reason that client-server computing has received so much attention recently comes from the industry trend
towards downsizing (right-sizing) business applications to PCs and workstations. Downsizing refers to the process
by which large mainframe and mini applications are broken up into smaller applications to run on one or more
network servers. This trend has developed in response to the increased availability of inexpensive but powerful PC
and workstation hardware. By converting existing large mainframe and mini applications into client-server
applications, running on these networked PCs and workstations, downsizing brings with it both cost benefits (due to
cheaper hardware and software development and maintenance) and the availability of computing power to the users
in the form of desktop computers.

There are many kinds of client-server applications. One of the most common is a file server which accepts client
requests for file records over a network. All network operating systems provide this service.

A database server accepts client SQL (Structured Query Language) requests and returns the data over the network.
Instead of sending all data back to the client and letting it sort out the information itself, a database server processes
the request and picks out only the information that the client requested. This saves network bandwidth and means
that less powerful, inexpensive PCs or workstations can run client applications. Only the servers need to run on
powerful hardware platforms.

To be able to talk to a server, a client must:

1 Find out where a particular service is being offered (there might be more than one server
on the network).

2 Connect to the server.

3 Obtain the service.

4 Disconnect from the server when done.

Some applications, such as Telnet, do not go out and find all servers that they can connect to, but rather rely on the
user to enter a valid address. This is because there are simply too many servers to report and trying to report them all
usually involves broadcasting messages, which is a no-no for a wide-area network. Besides, broadcast messages
don't usually pass through routers which connect various networks together. Consequently, Telnet relies on the user
to specify either the domain name of the machine on which the server resides, for example,

mint.sydney.sterling.com

or an IP address in dotted decimal notation:

199.0.128.61

For a discussion of TCP/IP and WinSock, have a look at the following chapter.

For client-server applications running on small to medium size local area networks, finding the servers on the
network makes the application more user-friendly and easier to use. Let us explore how we can do this by using an
example.

An Mailslot/Named Pipe Example
Our example is a multiparty chat application which consists of the server, Chatsvr.exe, and the client,

Chatcli.exe. The application allows users on different computers connected via a local area network to
communicate via a client and server. It works in much the same way as the Windows NT Chat and IRC (Internet
Relay Chat) programs. The server displays the number of client connections in its main window. You can see in the
next screenshot that the client main window consists of two edit controls. The top edit control displays the messages
received from other users and the bottom one allows the user to compose a message to send. The Send push button,
just below the input edit control, is used to send the message. Once it has been sent, the input edit control is emptied
to allow the user to enter a new message.

When the user starts Chatcli.exe, the Send button is disabled. It's enabled automatically once a connection to the
server has been made. The user can view all the chat servers on the network by selecting the Server\Connect...
menu. You can see the Connect dialog box below. The user can disconnect from a server by selecting the Server\
Disconnect menu.

Making the Connection
In the section on named pipes, we discussed how simple it is for a client to connect to a server, providing that the
client knows the name of the named pipe. But how do you find out the name of the pipe? A simple way is to let the
user specify the server, but this isn't very user-friendly. The user has to remember a pipe name which is could be
long, ugly and difficult to type in correctly. The alternative approach is to let the application do the work itself and
provide a list of servers for the user to choose. The good thing about this is that it means you don't have to maintain
a server location file. When a new server is added, the application automatically detects it and adds it to its list.

How do we do it? Simple; use mailslots and the directed broadcast capability that they bring. Let's say the pipe's
name is,

\\.\pipe\abc

 the server mailslot is,

\\.\mailslot\zephyr\abcserv

and each client creates a mailslot called,

\\.\mailslot\zephyr\abcclnt

(You'll see later that the name for a client is actually unimportant.)

When the client application starts, it broadcasts to all servers' mailslots a message that contains its mailslot name, so
it broadcasts the message to:

*\mailslot\zephyr\abcserv

When it receives a message, each server sends its pipe name to the client's mailslot. The client receives the response
and keeps a list of all the servers' pipe names. When a client wants to connect to a particular server, it just chooses
one from list.

The client can repeat this process periodically to keep its server list up-to-date. Alternatively, the client may repeat
this procedure whenever the user asks for the server list, from a menu or a toolbar, etc. Once a named pipe
connection has been established, the client and server can then exchange whatever information they desire.

The Server
There are a number of different ways for you to organize the server application. You could use a single thread to
handle all connections, a separate thread to handle each connection, a fixed number of worker threads, together with
Windows NT I/O completion ports to manage multiple connection, or any variation on all of these. To help me
illustrate the use of named pipes and mailslots, and because it's easy to understand, I'll use a separate thread to
handle each connection.

 Chatsvr is a single-document application created using the AppWizard.

In its constructor, CChatsvrDoc creates the mailslot handling thread MailThreadProc(), which is responsible for
responding to broadcasts sent by chat clients to discover servers on the network. The thread first creates a
CMailSlotServer object for receiving mail and a CMailSlotClient object for replying to the client whose
name is contained in the broadcast message. The reply message is the name of the server named pipe which the
client should use to make the server connection.

//Mailslot thread
//
UINT MailThreadProc(LPVOID pParam)
{

 char *name = (char *) pParam;
 char message[BUFFER_SIZE];
 char computer_name[NAME_LEN];
 char pipe_name[NAME_LEN];
 DWORD computer_name_len = sizeof(computer_name);
 CMailSlotServer mail_server;
 CMailSlotClient client;
 //create server mailslot to receive broadcasts from clients
 if (mail_server.Open(name))
 {
 GetComputerName(computer_name, &computer_name_len);
 //listen for broadcasts
 while (mail_server.Read(message, sizeof(message)))
 {
 //use content of the mail as return mailslot name
 if (client.Open(message))
 {
 //give the client the name of our
 //server named pipe
 wsprintf(pipe_name, PIPE_NAME, computer_name);
 client.Write(pipe_name, strlen(pipe_name));
 }
 else
 MessageBeep(0);
 client.Close();
 }
 }
 else
 {
 //probably already had another instance running so quit
 MessageBeep(0);
 AfxGetApp()->m_pMainWnd->SendMessage(WM_CLOSE);
 }
 return 0;
}

The constructor of CChatsvrDoc also spawns a thread for listening to an incoming named pipe connection from a
client.

//Server Named pipe thread
//there can be more than one at a time
//
UINT PipeThreadProc(LPVOID pParam)
{
 CNamedPipeServer pipe;
 CNamedPipeServer *other_pipe;
 char alias[NAME_LEN];
 char message[BUFFER_SIZE];
 UINT bytes;
 //make sure we don't create too many threads
 //wait till the others have died
 WaitForSingleObject(hInstanceSem, INFINITE);
 //open the server named pipe
 wsprintf(message, PIPE_NAME, ".");
 if (!pipe.Open(message))
 RaiseException(1, 0, 0, NULL);
 //add pipe object to list while
 //guarding against concurrent list access
 WaitForSingleObject(hListSem, INFINITE);
 pipe_list.AddTail((CObject *) &pipe);

 //update client connection count
 PostMessage(hView, ID_MSG_CONNECT, NULL,

 (LPARAM) pipe_list.GetCount());
 ReleaseSemaphore(hListSem, 1, NULL);
 //clone itself to handle another instance of the named pipe
 AfxBeginThread(PipeThreadProc, NULL);
 //the first message received is always the name of the client
 if ((bytes = pipe.Read(alias, sizeof(alias))))
 {
 alias[bytes] = 0;
 //wait for more messages
 while ((bytes = pipe.Read(message, sizeof(message))))
 {
 //prevent concurrent access
 WaitForSingleObject(hListSem, INFINITE);
 //write to received message to all pipes
 //preceeded by the
 //name of the sender
 for (POSITION pos = pipe_list.GetHeadPosition();
 pos != NULL;)
 {
 other_pipe = (CNamedPipeServer *)
 pipe_list.GetNext(pos);
 other_pipe->Write(alias, strlen(alias));
 other_pipe->Write(message, bytes);
 }

 ReleaseSemaphore(hListSem, 1, NULL);
 }
 }
 //remove pipe object from list
 WaitForSingleObject(hListSem, INFINITE);
 pipe_list.RemoveAt(pipe_list.Find((CObject *) &pipe));
 //update client connection count
 PostMessage(hView, ID_MSG_CONNECT, NULL,
 (LPARAM) pipe_list.GetCount());
 ReleaseSemaphore(hListSem, 1, NULL);
 //enable another clone to run
 ReleaseSemaphore(hInstanceSem, 1, NULL);
 return 0;
}

The permitted number of instances of the named pipe is governed by the initial count of the semaphore,
hInstanceSem, which is initialized to MAX_INSTANCE. Since the first thing that the read thread does is to wait on
this semaphore, it blocks as long as there are already MAX_INSTANCE running. When it gets past this semaphore, it
creates an instance of the pipe by calling CNamedPipeServer's Open() member function. When a connection is
made, it saves the CNamedPipeSever object in an MFC CObList object. pipe_list, posts an ID_MSG_CONNECT
message with the number of connections (number of CNamedPipeServer objects in the pipe_list) in the
lParam to the CChatsvrView object and clones itself so that a new thread can take over its place to wait for
another incoming connection.

The read thread then does it's stuff. The first message it receives is always going to be the name of the client (you
may consider this our chat server's protocol) which it promptly saves. It then continues to read from the pipe. Any
message it receives is sent to all CNamedPipeServer objects in the pipe_list, preceded by the name of the
sender that it saved earlier. This means that a message sent by any client will be sent to all connected clients with the
sender's name preceding the message.

When a Read() fails, it means that the pipe has been broken. The read thread immediately removes its
CNamedPipeServer object from the pipe_list and posts the ID_MSG_CONNECT message with the lParam set to

the current number of pipe connections to the CChatsvrView object. It then releases the semaphore,
hInstanceSem, so that another waiting read thread may proceed, and terminates. As connections are made and
broken, read threads are created and destroyed.

Since more than one read thread can access the pipe_list, it is protected from concurrent access by the
semaphore, hListSem.

Instead of deriving CChatsvrView from CView, as most applications do, CChatsvrView is derived from
CFormView. CFormView allows the main window to attach controls to it in much the same way as a CDialog
object, i.e. you can use the resource editor to paint the controls. The controls attached include a static text label
Clients connected: and a read-only edit field which displays the number of client connections. You can see the view
window is below. As I said, CChatsvrView is informed of the number of clients currently connected to the server
by ID_MSG_CONNECT messages.

The Client
The client application is Chatcli.exe, which is also generated using the AppWizard. The CChatcliDoc class
provides communication with the chat server and manages the Server\Connect... and Server\Disconnect menu
options.

Like CChatsvrDoc, CChatcliDoc creates in its constructor the mailslot-handling thread MailThreadProc(),
which is responsible for finding chat servers on the network.

//Mailslot thread to find all servers
//
UINT MailThreadProc(LPVOID pParam)
{
 char computer_name[NAME_LEN];
 char name[NAME_LEN];
 DWORD computer_name_len = sizeof(computer_name);
 CMailSlotServer mymail(TIMEOUT); //specify read timeout value
 char message[MAX_MSG_SIZE];
 char *buffer;
 //construct this application's mailslot name
 //use the thread Id to make the mailslot name unique
 //hence multiple instances of the application can be run
 //on the same machine for testing
 sprintf(name, MY_MAILSLOT_NAME, ".", GetCurrentThreadId());
 //create it for receiving incoming mail
 if (mymail.Open(name))
 {
 GetComputerName(computer_name, &computer_name_len);
 }

 else
 {
 MessageBeep(0);
 RaiseException(1, 0, 0, NULL);
 }
 //construct mailslot object for sending mail
 CMailSlotClient client;
 while (TRUE)
 {
 WaitForSingleObject(hEvent, INFINITE);
 if (fQuit)
 break;
 if (!client.Open(SVR_MAILSLOT_NAME))
 {
 RaiseException(1, 0, 0, NULL);
 }
#ifndef _NO_NETWORK
 sprintf(name, MY_MAILSLOT_NAME, computer_name,
 GetCurrentThreadId());
#endif
 //broadcast our mailslot name
 client.Write(name, strlen(name));
 client.Close();
 //wait for replies until TIMEOUT seconds past without
 //any reply
 int bytesRead;
 while ((bytesRead = mymail.Read(message, MAX_MSG_SIZE)))
 {
 buffer = new char[bytesRead + 1];
 memcpy(buffer, message, bytesRead);
 buffer[bytesRead] = 0;
 if (!PostMessage(hDialog, ID_MSG_SERVER, NULL,
 (LPARAM) buffer))
 delete [] buffer;
 MessageBeep(0);
 }
 }
 return 0;
}

The mailslot thread uses the broadcast capability of a mailslot to discover all the chat servers on the network. The
thread first creates a CMailSlotServer object for receiving mail replies and then a CMailSlotClient object for
broadcasting to all chat servers. In order for the discovery process to work, all chat servers must have a mailslot with
the name:

\\computername\mailslot\zephyr\chatsvr

(Obviously, computername is different for different computers.) The mailslot thread broadcasts its
CMailSlotServer name to all servers, sending the mail to,

*\mailslot\zephyr\chatsvr

and waits for replies in its server mailslot. When it receives a reply, the mailslot thread copies the reply to a buffer
and posts a ID_MSG_SERVER message to the CServer object, which is responsible for displaying server names,
with the lParam set to the buffer address. If there is no reply in ten seconds, it assumes that it's found all the servers
on the network and goes back to waiting for request to find servers.

CChatcliDoc also handles the Server/Connect... and Server/Disconnect menu selections. When Server/Connect...

is selected, control is passed to CChatcliDoc::OnFileConnect() which displays a dialog box implemented
using the CServer class. If a server has been selected on return from the dialog box (indicated by IDOK),
OnFileConnect() tries to connect to the selected server's named pipe. If the connection is made, it sends the
computer and user names through the pipe for user identification, spawns a read thread (PipeReadThreadProc())
to read from the pipe, then sends the user Windows message ID_MSG_CONNECT with the lParam set to 1 to the
CChatcliView object to inform it of a connection, so that CChatcliView can enable the Send button. When the
pipe thread receives a message over the pipe, it copies the message to a buffer and posts an ID_MSG_RECEIVE
message to the CChatcliView object with lParam set to the buffer address.

//Pipe read thread
//
UINT PipeReadThreadProc(LPVOID pParam)
{
 //pipe object passed from CChatcliDoc
 CNamedPipeClient *pipe = (CNamedPipeClient *) pParam;
 char message[MAX_MSG_SIZE];
 char *buffer;
 //wait for input from named pipe
 int bytesRead;
 while ((bytesRead = pipe->Read(message, MAX_MSG_SIZE)))
 {
 //inform CChatcliView that data have been received
 buffer = new char[bytesRead + 1];
 memcpy(buffer, message, bytesRead);
 buffer[bytesRead] = 0;
 if (!PostMessage(hView, ID_MSG_RECEIVE, NULL, (LPARAM) buffer))
 delete [] buffer;
 }
 //named pipe broken: clean up
 PostMessage(hView, ID_MSG_CONNECT, NULL, 0);
 return 0;
}

When the user selects Server/Disconnect, CChatcliDoc:OnFileDisconnect() disconnects the named pipe and
sends the user message ID_MSG_CONNECT with the lParam set to 0 so that CChatcliView can disable the Send
button.

CChatcliDoc also manages enabling and disabling of the Server/Connect... and Server/Disconnect menus such that
only one of them is enabled at a time, depending on the state of the server connection.

Like the server, CChatcliView is derived from CFormView to manage three controls in its main window: the
multiline input/output edit controls and the Send button.

The Send button is enabled only when there is a connection to a server. When the user clicks on the Send button,
CChatcliView::OnButtonSend() receives control. First of all, it checks whether there's text in the input edit
control. If there's none, it displays an error message. If it finds some text, it retrieves the input edit control's text
buffer and invokes the CChatcliDoc::Send() method to send the text to the chat server.

As we said earlier, CChatcliDoc and its spawned threads use two Windows user messages to inform
CChatcliView of certain events.

When an ID_MSG_CONNECT message is received, CChatcliView::OnConnect() uses the lParam to determine
whether the event is for a pipe connection (1) or a pipe disconnection (0). It enables or disables the Send button
accordingly.

When an ID_MSG_RECEIVE message is received, CChatcliView::OnReceive() uses the lParam as a pointer to
the received data and appends the data to the output edit control before freeing the buffer.

CServer is a CDialog-derived class to handle server selection. The dialog box consists of a list box for displaying
the servers it finds, a Connect button and a Cancel button. When the user clicks the Connect button, CServer passes
the selected server name back to CChatcliDoc::OnFileConnect() to make a connection. The user clicks the
Cancel button, obviously, to exit from the dialog box without making a selection.

When the CServer object is created, an event object handle is passed to its constructor. It sets the event object to
signal the mail thread to start looking for servers. Each ID_MSG_SERVER message contains a server pipe name
which CServer puts into its list box. Consequently, the list box is updated as servers are discovered.

NetBIOS
NetBIOS was introduced by IBM with its first LAN in 1984. Since then, it has become a popular programming
interface for writing LAN-based client-server applications. For example, the OS/2 Database Manager uses NetBIOS
to communicate with its clients. NetBIOS provides both datagram and session support. Datagrams are short
messages sent, but not necessarily delivered, across a network. In contrast, a session is a connection-oriented
communication channel between two parties which guarantees that messages are delivered. In fact, you may
consider datagram and session services as NetBIOS's equivalents to mailslots and named pipes, respectively.

Programming-wise, NetBIOS is very different from mailslots and named pipes, which are unique among NT's IPCs
in that they provide a file-like interface. NetBIOS has only one API:

UCHAR Netbios(PNCB pNcb);

where pNcb is a pointer to the NetBIOS Control Block (NCB) whose definition is given below:

typedef struct _NCB {
 UCHAR ncb_command; /* command code */
 UCHAR ncb_retcode; /* return code */
 UCHAR ncb_lsn; /* local session number */
 UCHAR ncb_num; /* number of our network name */
 PUCHAR ncb_buffer; /* address of message buffer */
 WORD ncb_length; /* size of message buffer */
 UCHAR ncb_callname[NCBNAMSZ];/* blank-padded name of remote*/
 UCHAR ncb_name[NCBNAMSZ]; /* our blank-padded netname */
 UCHAR ncb_rto; /* rcv timeout/retry count */
 UCHAR ncb_sto; /* send timeout/sys timeout */
 void (CALLBACK *ncb_post)(struct _NCB *);/* POST routine address*/
 UCHAR ncb_lana_num; /* lana (adapter) number */
 UCHAR ncb_cmd_cplt; /* 0xff => command pending */
 UCHAR ncb_reserve[10]; /* reserved, used by BIOS */
 HANDLE ncb_event; /* HANDLE to Win32 event which*/
 /* will be set to the signaled*/
 /* state when an ASYNCH */
 /* command completes */
} NCB, *PNCB;

You must set up an NCB before you call WIN32's NetBIOS API.

ncb_command contains the NetBIOS command to be executed. You can execute a NetBIOS command either
synchronously or asynchronously. A synchronous operation doesn't return control to the caller until it finishes, while
an asynchronous one returns control immediately, even while the command is still executing. In 16-bit Windows,
you'll almost never use NetBIOS in the synchronous mode, because the whole system freezes until NetBIOS
completes the operation. This is not a problem with Win32 because of its multitasking capability. In fact, it's easier
to use NetBIOS in synchronous rather than asynchronous mode. Asynchronous mode is specified by setting the most
significant bit of ncb_command.

To get a good understanding of programming NetBIOS, you must really get to grips with the concept of names.
There are two kinds of names: a group name and a unique name. A NetBIOS name is 16 bytes long and cannot start
with a * (which has special meaning for certain commands) or a binary zero. You must register a name with
NetBIOS before you start communicating with other computers.

Group names are non-unique, which means that several applications in a NetBIOS network can have the same group
name. Group names are useful in connectionless communication where one application wants to talk to multiple
applications with the same group name similar to the way we use mailslots in the network chat example. You
shouldn't establish a (connection-oriented) session with a group name because there's no way to predict which
application it connects to if there are a number of applications with the same group name running.

In contrast, a unique name, by definition, is unique in the network. You will not be able to create a unique name if
that name has already been registered in the network. Once you have registered a unique name, other computers on
the network can communicate solely with your application by using that name.

NetBIOS Commands
The more common NetBIOS commands are listed below by category.

Name Management Commands
Command Meaning

NCBADDNAME Add a unique name.
NCBADDGRNAME Add a group name.
NCBDELNAME Delete a name (either group or unique).

Datagram Commands
Command Meaning

NCBDGRECV Receive a datagram.
NCBDGRECVBC Receive a broadcast datagram.
NCBDGSEND Send a datagram.
NCBDGSENDBC Send a datagram broadcast.

Session Commands
Command Meaning

NCBCALL Instigate a session.
NCBLISTEN Wait for a session.
NCBRECV Receive data over a specific session.
NCBRECVANY Receive data over any session.
NCBSEND Send data over a specific session.
NCBCHAINSEND Send chained buffer over a specific session.
NCBSSTAT Retrieve session status information.
NCBHANGUP Terminate a session.

General Commands
Command Meaning

NCBRESET Clear all names in local name table,
NCBCANCEL Cancel a previous command,

Using NetBIOS Commands
NetBIOS returns a name number in the ncb_num member of the NCB structure on successfully adding a name to the
local name table using either a NCBADDNAME or a NCBADDGRNAME command. Once a name, either group or unique,
has been registered with NetBIOS, an application can start communicating with another application.

For example, if an application wants to send a datagram , it has to set up a NCBDGSEND command with the
ncb_num , ncb_callname, ncb_buffer and ncb_length fields set to its name number, the NetBIOS name of the
application to which it wants to send the datagram, the pointer to the message to send and the length of the message
respectively. The receive end sets up a NCBDGRECV NCB similarly to receive a datagram addressed to it.

To establish a session, the application instigating the session (client) uses the NCBCALL command while the receiver
(server) issues a NCBLISTEN command. The server can use the special value, * ,as the first character in its
ncb_callname field to specify that it accepts a session request from all names. Once the session has been
established, a logical session name number is returned in the ncb_lsn field. From then on, all communication
between the parties uses this logical session name number to set up commands like NCBSEND, NCBRECV,
NCBHANGUP, etc.

Using asynchronous commands in 16-bit Windows requires setting up a post routine in the ncb_cmd_cplt field.
The asynchronous command returns immediately. The post routine is called when the command finishes. This
mechanism is still supported under Win32, but the preferred way to handle asynchronous commands is to use the
new ncb_event field to specify an event object for NetBIOS to signal on completion. You can then use a
WaitForSingleObject() call to wait for the event object to be signaled.

NCB is the traditional way to program NetBIOS applications. Windows NT actually allows you to
program an application in WinSock (using Wsnetbs.h and Wsock32.lib) that uses the NetBEUI
transport layer. However, you still need to know the basics of the transport protocol, such as
addressing, broadcast capability, etc. to use WinSock with NetBEUI successfully.

A Wrapper for NetBIOS
I want to provide the same C++ interface to NetBIOS as I have for named pipes and mailslots, so that applications
written using these C++ network communication classes can easily switch from using mailslots and named pipes to
NetBIOS. Another reason is to hide the complexity of the NetBIOS interface from the user. The user only programs
using the four file-like class member functions: Open(), Read(), Write() and Close(). Consequently, the public
member functions of the NetBIOS classes are exactly the same as those for mailslots and named pipes. However,
there are new protected functions for carrying out certain common NetBIOS services.

CNBiosCommBase
CNBiosCommBase is the NetBIOS equivalent of CCommBase class for mailslots and named pipes. Like CCommBase,
CNBiosCommBase is an abstract class which doesn't implement the public member function : Open(). Its class
definition is:

//communication base class
class CNBiosCommBase
{
protected:
 static BOOL m_Initialized;
 UCHAR m_Num;
 UCHAR m_Lsn;
 UCHAR m_RecvCmd;
 UCHAR m_SendCmd;
 BOOL m_InSession;
 CString m_MyName;

 CString m_PartnerName;
 DWORD m_ErrorCode;
 DWORD m_Timeout;
 HANDLE m_TermEvent;
 CNcb *m_Recvncb;
 CNcb *m_Sendncb;
 UCHAR CreateGroupName(CString& name);
 UCHAR CreateUniqueName(CString& name);
 void NormalizeName(CString& target, CString source);
 void DeleteName(CString& name);
 void CancelCmd(CNcb& cancelncb);
 void Initialize();
 DWORD Wait(HANDLE hEvent, DWORD timeout);
public:
 CNBiosCommBase();
 CNBiosCommBase(UCHAR sendCmd, UCHAR recvCmd,
 DWORD timeout = INFINITE, HANDLE hTermEvent = NULL);
 ~CNBiosCommBase();
 inline DWORD GetError() { return m_ErrorCode; };
 inline BOOL IsConnected() { return m_InSession; };
 virtual BOOL Open(const char* pszFileName,
 UINT nOpenFlags = 0) = 0;
 virtual UINT Read(void* pBuf, UINT nCount);
 virtual UINT Write(const void* pBuf, UINT nCount);
 virtual void Close();
};

It implements the Read(), Write() and Close() functions and a number of basic NetBIOS services, such as
adding/deleting group and unique names, limiting/padding a name to 16 bytes for use as a NetBIOS name, etc. All
these basic NetBIOS helper functions are executed synchronously. The static data member m_Initialized is used
in its constructor to detect the first instance of CNBiosCommBase's derived class object such that the NetBIOS
NCBRESET command is executed once and only once for a process in CNBiosCommBase's constructor by calling the
member function, Initialize().

//constructor
CNBiosCommBase::CNBiosCommBase()
{
 m_Timeout = INFINITE;
 m_Num = 0;
 m_Lsn = 0;
 m_RecvCmd = NCBRECV;
 m_SendCmd = NCBSEND;
 m_InSession = FALSE;
 m_ErrorCode = 0;
 m_TermEvent = NULL;
 m_Recvncb = new CNcb(CREATE_EVENT_OBJECT);
 m_Sendncb = new CNcb;
 Initialize();
}

//constructor with command and timeout specifications
CNBiosCommBase::CNBiosCommBase(UCHAR sendCmd, UCHAR recvCmd,
 DWORD timeout, HANDLE hTermEvent)
{
 m_Timeout = timeout;
 m_Num = 0;
 m_Lsn = 0;
 m_RecvCmd = recvCmd;
 m_SendCmd = sendCmd;
 m_InSession = FALSE;
 m_ErrorCode = 0;
 m_TermEvent = hTermEvent;

 m_Recvncb = new CNcb(CREATE_EVENT_OBJECT);
 m_Sendncb = new CNcb;
 Initialize();
}

void CNBiosCommBase::Initialize()
{
 //initialize class data members
 m_InSession = FALSE;
 m_Num = m_Lsn = 0;
 m_ErrorCode = 0;
 if (!m_Initialized)
 {
 CNcb ncb;
 ncb.m_ncb.ncb_command = NCBRESET;
 m_ErrorCode = Netbios(&ncb.m_ncb);
 m_Initialized = TRUE;
 }
}

The simple convenience class CNcb is used to initialize an NCB structure and provide an event object for
synchronizing asynchronous NetBIOS commands. Using an event object for synchronization is better than using
post routines, which use significantly more system resources. CNcb's class definition and its implementation is:

#define LANA 0
//helper class for managing NetBios NCBs
class CNcb
{
public:
 BOOL m_CreateEvent;
 NCB m_ncb;
 CNcb(BOOL fCreateEvent = NO_EVENT_OBJECT, UCHAR lana = LANA);
 ~CNcb();
};

//Initialze NCB and create event object if required
CNcb::CNcb(BOOL fCreateEvent, UCHAR lana)
{
 memset(&m_ncb, 0, sizeof(NCB));
 m_ncb.ncb_lana_num = lana;
 m_CreateEvent = fCreateEvent;
 if (m_CreateEvent)
 m_ncb.ncb_event = CreateEvent(NULL, TRUE, FALSE, NULL);
};

//get rid of the NCB and event object
CNcb::~CNcb()
{
 if (m_CreateEvent)
 CloseHandle(m_ncb.ncb_event);
};

We need the data member m_CreateEvent to determine in the destructor whether to delete the event object and
because, when it's executing a NetBIOS command synchronously, the system uses an event object in the
ncb_event field for synchronization. Although the system closes the event object handle before returning from the
NetBIOS call, the ncb_field still contains some value. Also, all data member are public to facilitate access.

It should be noted that CNcb initializes ncb_lana_num to 0. You may need to change LANA to 1 in
order for these NetBIOS classes to work on your workstation if you have configured your workstation
to use your second network adapter.

Only the asynchronous NetBIOS commands are used to implement the member functions, Read() and Write().
Let's look at the implementation of Read():

//read a datagram or a message from a session
UINT CNBiosCommBase::Read(void* pBuf, UINT nCount)
{
 if (m_Num == 0)
 return 0;
 //receive a message
 m_Recvncb->m_ncb.ncb_command = m_RecvCmd | ASYNCH;
 m_Recvncb->m_ncb.ncb_num = m_Num;
 m_Recvncb->m_ncb.ncb_lsn = m_Lsn;
 m_Recvncb->m_ncb.ncb_buffer = (PUCHAR) pBuf;
 m_Recvncb->m_ncb.ncb_length = nCount;
 if (!Netbios(&m_Recvncb->m_ncb) &&
 (m_Recvncb->m_ncb.ncb_retcode == NRC_PENDING))
 Wait(m_Recvncb->m_ncb.ncb_event, m_Timeout);
 m_ErrorCode = m_Recvncb->m_ncb.ncb_retcode;
 if (m_Recvncb->m_ncb.ncb_retcode == NRC_PENDING)
 {
 //cancel previous command on timeout
 CancelCmd(*m_Recvncb);
 return 0;
 }
 else if (m_Recvncb->m_ncb.ncb_retcode)
 return 0;
 return m_Recvncb->m_ncb.ncb_length;
};

The first thing that Read() does is to check whether a name has been registered with NetBIOS. If a name has been
registered, m_Num will contain a non-zero number. (We'll see later that a CNBiosComm-derived class object is
responsible for registering names.) It then uses the CNcb object m_Recvncb created in its constructor to issue either
NCBDGRECV or NCBRECV command, which is specified in the class data member m_RecvCmd. Unlike synchronous
NetBIOS commands, which return the error code when the command is completed, an asynchronous command
returns zero (no error) while still executing the command. Read() checks the NCB field ncb_retcode to decide
what to do next. If the value is NRC_PENDING, Read() waits on the event object until it gets signaled on command
completion or times out. Read ()saves the ncb_retcode in the data member m_ErrorCode for retrieval, using
the GetError() member function. If the command is still incomplete on timeout, Read() cancels the operation by
calling the protected member function CancelCmd(), which issues a NCBCANCEL command.

The Write() member function is implemented in a similar fashion, using the NCBDGSEND or NCBSEND command:

//send a datagram or a message over a session
UINT CNBiosCommBase::Write(const void* pBuf, UINT nCount)
{
 if (m_Num == 0)
 return 0;
 //send a message
 m_Sendncb->m_ncb.ncb_command = m_SendCmd;
 memcpy(m_Sendncb->m_ncb.ncb_callname,
 (const char *) m_PartnerName, NCBNAMSZ);
 m_Sendncb->m_ncb.ncb_num = m_Num;
 m_Sendncb->m_ncb.ncb_lsn = m_Lsn;
 m_Sendncb->m_ncb.ncb_buffer = (PUCHAR) pBuf;
 m_Sendncb->m_ncb.ncb_length = nCount;
 if (!Netbios(&m_Sendncb->m_ncb) &&
 (m_Sendncb->m_ncb.ncb_retcode == NRC_PENDING))
 Wait(m_Sendncb->m_ncb.ncb_event, m_Timeout);

 m_ErrorCode = m_Sendncb->m_ncb.ncb_retcode;
 if (m_Sendncb->m_ncb.ncb_retcode == NRC_PENDING)
 {
 //cancel previous command on timeout
 CancelCmd(*m_Sendncb);
 return 0;
 }
 else if (m_Sendncb->m_ncb.ncb_retcode)
 return 0;
 return nCount;
};

CNBiosSessionServer
CNBiosSessionServer is derived from CNBiosCommBase. Its class definition is given below:

class CNBiosSessionServer: public CNBiosCommBase
{
protected:
 static int m_Instances;
 CNcb *m_Openncb;

public:
 CNBiosSessionServer();
 CNBiosSessionServer(DWORD timeout, HANDLE hTermEvent = NULL);
 ~CNBiosSessionServer();
 virtual BOOL Open(const char* pszFileName,
 UINT nOpenFlags = 0);
};

It implements a virtual destructor and the virtual member function, Open().

Like all CNBiosCommBase-derived NetBIOS classes, its constructor sets up the data members m_RecvCmd and
m_SendCmd, so that Read() and Write() know which command to issue.

Before it carries on, Open() verifies that a NetBIOS name (local or remote) has been specified. It uses the NetBIOS
NCBADDNAME command to create a unique name for the server. If it fails, it could mean that the name has already
been created earlier. This may not be a problem because an application can use the same name to establish multiple
sessions with different applications. In order to verify that, Open() executes a NCBSSTAT command to find out more
about the sessions associated with the name and retrieves the name's ncb_num for use in a subsequent NCBLISTEN
command to wait for an incoming session. An asynchronous NCBLISTEN is used so that the caller has the option to
wait indefinitely, or wait till a timeout occurs.

//Open a NetBios session
BOOL CNBiosSessionServer::Open(const char* pszFileName, UINT nOpenFlags)
{
 //check if a name has been specified
 if (!pszFileName)
 return FALSE;
 //create NetBios name for server
 NormalizeName(m_MyName, pszFileName);
 if ((m_Num = CreateUniqueName(m_MyName)) == 0)
 {
 //name has been created
 CNcb ncb;
 SESSION_HEADER header;
 //retrieve NetBios name number
 ncb.m_ncb.ncb_command = NCBSSTAT;
 ncb.m_ncb.ncb_buffer = (PUCHAR) &header;
 ncb.m_ncb.ncb_length = sizeof(SESSION_HEADER);
 memcpy(ncb.m_ncb.ncb_name,
 (const char *) m_MyName, NCBNAMSZ);

 if ((m_ErrorCode = Netbios(&ncb.m_ncb)) == NRC_INCOMP)
 m_Num = header.sess_name;
 else
 return FALSE;
 }
 m_Instances++;
 //wait for incoming session
 m_Openncb->m_ncb.ncb_command = NCBLISTEN | ASYNCH;
 NormalizeName(m_PartnerName, "*");
 memcpy(m_Openncb->m_ncb.ncb_callname,
 (const char *) m_PartnerName, NCBNAMSZ);
 memcpy(m_Openncb->m_ncb.ncb_name,
 (const char *) m_MyName, NCBNAMSZ);
 if (!Netbios(&m_Openncb->m_ncb) &&
 (m_Openncb->m_ncb.ncb_retcode == NRC_PENDING))
 Wait(m_Openncb->m_ncb.ncb_event, m_Timeout);
 m_ErrorCode = m_Openncb->m_ncb.ncb_retcode;
 if (m_Openncb->m_ncb.ncb_retcode == NRC_PENDING)
 {
 //cancel previous command on timeout
 CancelCmd(*m_Openncb);
 return FALSE;
 }
 else if (m_Openncb->m_ncb.ncb_retcode)
 return FALSE;
 m_InSession = TRUE;
 m_Lsn = m_Openncb->m_ncb.ncb_lsn;
 return TRUE;
}

The only other thing that we need to cover is CNBiosSessionServer's destructor. Since multiple sessions can be
established using one name, the destructor checks that there are no more active or pending active sessions associated
with the name before deleting it from the local NetBIOS name table The static data member m_Instances is used
to keep track of the object instances.

CNBiosSessionClient
CNBiosSessionClient, once again, is derived from CNBiosCommBase.

class CNBiosSessionClient: public CNBiosCommBase
{
protected:
 CNcb *m_Openncb;

public:
 CNBiosSessionClient();
 CNBiosSessionClient(DWORD timeout, HANDLE hTermEvent = NULL);
 ~CNBiosSessionClient();
 virtual BOOL Open(const char* pszFileName,
 UINT nOpenFlags = 0);
};

Unlike CNBiosSessionServer, the constructor creates a unique name based on the current thread identifier. This
is used for communicating with another application whose NetBIOS name is specified in Open().

Open() uses the name specified as its remote partner's name for establishing a NetBIOS session.

//Open a NetBios session to a server
BOOL CNBiosSessionClient::Open(const char* pszFileName, UINT nOpenFlags)
{
 //check if a name has been specified
 if (!pszFileName)

 return FALSE;
 //establish session to remote partner name
 NormalizeName(m_PartnerName, pszFileName);
 m_Openncb->m_ncb.ncb_command = NCBCALL | ASYNCH;
 memcpy(m_Openncb->m_ncb.ncb_callname,
 (const char *) m_PartnerName, NCBNAMSZ);
 memcpy(m_Openncb->m_ncb.ncb_name,
 (const char *) m_MyName, NCBNAMSZ);
 if (!Netbios(&m_Openncb->m_ncb) &&
 (m_Openncb->m_ncb.ncb_retcode == NRC_PENDING))
 Wait(m_Openncb->m_ncb.ncb_event, m_Timeout);
 m_ErrorCode = m_Openncb->m_ncb.ncb_retcode;
 if (m_Openncb->m_ncb.ncb_retcode == NRC_PENDING)
 {
 //cancel previous command on timeout
 CancelCmd(*m_Openncb);
 return FALSE;
 }
 else if (m_Openncb->m_ncb.ncb_retcode)
 return FALSE;
 m_InSession = TRUE;
 m_Lsn = m_Openncb->m_ncb.ncb_lsn;
 return TRUE;
};

Since each instance of a CNBiosSessionClient object only establishes a single session with a remote application,
it simply deletes its name from the NetBIOS name table in its destructor by calling the protected member function:
DeleteName().

CNBiosDatagramServer
CNBiosDatagramServer, unlike CNBiosSessionServer, uses the connectionless datagram services for
communication which makes implementation relatively simple, compared to CNBiosSessionServer. Its class
definition is given below:

class CNBiosDatagramServer: public CNBiosCommBase
{
public:
 CNBiosDatagramServer();
 CNBiosDatagramServer(DWORD timeout, HANDLE hTermEvent = NULL);
 ~CNBiosDatagramServer();
 virtual BOOL Open(const char* pszFileName,
 UINT nOpenFlags = 0);
};

Open() simply creates a NetBIOS group name for the name specified and records the ncb_num in m_Num for use by
Read() and Write() (implemented in CNBiosCommBase).

//Establish NetBios name for server
BOOL CNBiosDatagramServer::Open(const char* pszFileName, UINT nOpenFlags)
{
 //check if a name has been specified
 if (!pszFileName)
 return FALSE;
 //create server mailslot
 NormalizeName(m_MyName, pszFileName);
 if ((m_Num = CreateGroupName(m_MyName)) == 0)
 return FALSE;
 return TRUE;
}

CNBiosDatagramClient
CNBiosDatagramClient also creates a unique name behind the scenes in its constructor, like
CNBiosSessionClient, for communicating with the server whose name is specified in Open(). Its class
definition is given below:

class CNBiosDatagramClient: public CNBiosCommBase
{
public:
 CNBiosDatagramClient();
 CNBiosDatagramClient(DWORD timeout, HANDLE hTermEvent = NULL);
 ~CNBiosDatagramClient();
 virtual BOOL Open(const char* pszFileName,
 UINT nOpenFlags = 0);
};

The Open() implementation is even simpler than that of CNBiosDatagramServer's. All it does is to save the
server's name in the m_PartnerName data member for use in subsequent Read()s and Write()s.

//establish remote partner name
BOOL CNBiosDatagramClient::Open(const char* pszFileName, UINT nOpenFlags)
{
 //check if a name has been specified
 if (!pszFileName)
 return FALSE;
 NormalizeName(m_PartnerName, pszFileName);
 return TRUE;
};

A NetBIOS Example
The network chat example also illustrates how NetBIOS classes are used, at the same time, demonstrating how easy
it is to replace the transport layer of an client-server application by simply switching from using the mailslot and
named pipe classes to using the NetBIOS classes. Aside from the class name changes in the program sources (which
are unavoidable), the other changes are made in Cchatsvrdoc.cpp and Cchatclidoc.cpp, concerning the names
used for pipes and mailslots. These changes are shown below.

CChatSvrDoc
From:

MAILSLOT_NAME \\computername\mailslot\zephyr\chatsvr
PIPE_NAME \\computername\pipe\chatsvr

to:

MAILSLOT_NAME \\chatsvr
PIPE_NAME \\computername\chatsvr

CChatcliDoc
From:

SVR_MAILSLOT_NAME \\computername\mailslot\zephyr\chatsvr
MY_MAILSLOT_NAME \\computername\mailslot\zephyr\chatcli\nnn

to:

SVR_MAILSLOT_NAME \\chatsvr
MY_MAILSLOT_NAME \\computername\nnn

where nnn is a unique number (the thread identifier is used for this purpose).

Note that NetBIOS names do not have to start with \\. I've just use the named pipe convention, where the first part
of a remote pipe's name is \\computername, for NetBIOS names for connection-oriented sessions to minimize the
changes required of the chat application. As you can see, I still use names like MAILSLOT_NAME and PIPE_NAME
although they're really NetBIOS names.

The chatsvr and chatcli programs work in the same way as their counter-parts that used mailslots and named
pipes. There are no appreciable differences in the appearance of the application to indicate whether it is using
mailslots/named pipes or NetBIOS transport.

Choosing the IPC to Use
Which IPC you choose to use in an application depends on the needs of the application and the availability of the
IPC on the platforms that the application intends to run on. For example, a named pipe can only be created on
Windows NT, which precludes running the server application on Windows 95 or Windows 3.1. You should also take
a good look at what the application needs to do. If an application needs to send small volumes of information from
one end to many other ends (one-to-many relationship), you should use a connectionless IPC with broadcast or
multicast capability, such as mailslots and NetBIOS datagrams. On the other hand, if an application delivers large
volumes of information from one end to another end (one-to-one relationship), you should consider a connection-
oriented IPC, such as named pipe or NetBIOS session. Although I only mention NetBIOS, mailslots and named
pipes here because this chapter is on programming using these three IPCs, there's no reason why you should limit
yourself to using them alone. Use whatever's suitable and available on the platform.

So, when you're choosing which IPC to use, you should ask yourself these questions:

Is the IPC available on all my target platforms?
Should I use connectionless or connection-oriented IPCs?
How easy or difficult is it to use the IPC?
What is its performance like?
How much system resources does the IPC consume?

Summary
This chapter has surveyed the various IPCs available on Windows NT for writing distributed (client-server)
applications and discussed in detail how to use three IPCs: NetBIOS, mailslots and named pipes. We have taken a
look at a simple but powerful approach to using NetBIOS, mailslots and named pipes in writing client-server
applications, which utilizes NetBIOS and mailslots' broadcast capability for discovering services on a network and
uses either a NetBIOS session or a named pipe for the actual exchange of information between the client and server.
A number of simple C++ classes are developed to encapsulate these IPCs for use in writing client-server
applications. They all use the file metaphor in which the major class member functions are the well-known Open(),
Read(), Write() and Close() operations. A simple multi-party chat application is developed to illustrate the use
of these classes in organizing a typical client-server application.

WinSock Internet Programming
Of all the emerging technologies of the digital age, nothing is more hyped than the so-called information highway.
To most, the information highway is the Internet, a collection of computers connected together using standard
protocols to exchange information. Many others see the Internet as just a first step in the construction of the
superhighway. Whatever your view, there's no doubt that the Internet is quickly evolving and is changing the way we
work and communicate with each other.

The explosive growth of the Internet in the past couple of years has spawned many new corporations, alliances and
research programs. Announcements are made almost daily by software companies committing to build Internet
connectivity into existing and future hardware and software products. New software programs are being developed
to take advantage of the expansive connectivity made possible by the Internet.

In this chapter, you'll learn how to make your own Visual C++ applications Internet-capable by using the Windows
Sockets Application Programming Interface (WinSock API). Specifically, we'll cover:

The Socket programming model
WinSock asynchronous extensions
MFC Classes: CAsyncSocket and CSocket
Building a Finger client application using CAsyncSocket
Building a Home Automation client and server application using CSocket, CSocketFile and
CArchive

A Brief History of WinSock
It's safe to say that the network protocol TCP/IP is largely responsible for the quick growth of the Internet. It's built
on an open, layered architecture which makes it compatible with almost any lower-layer network infrastructure.
Independence from the lower layers, the physical and data link layers, means that TCP/IP can run on any network
medium, such as Ethernet, Token Ring, Serial Line, FDDI, etc. This flexibility and the open spirit in which it was
developed has propelled TCP/IP into its current ubiquity.

TCP/IP quickly became the architecture of choice for developing network applications. The push began in UNIX
environments, but it soon found its way into the DOS-based personal computer market. Inexpensive LANs, fast C
and C++ compilers and the acceptance of Windows by the business community all paved the way for the quick
entrance of TCP/IP into the PC world. Shortly after, many more PC software developers took interest in providing
network services with their applications and different TCP/IP APIs began to surface. WinSock was one of them.

The Windows Sockets API (more commonly known as WinSock, or occasionally just WSA) is an extension of the
original Sockets API. Sockets is an application programming interface that was developed in the early days of the
Internet by the University of California at Berkeley for its version of UNIX. The API makes it easier to develop
network applications because it shields the developer from the complexities of the underlying network. The API
adds a layer of abstraction that allows developers to concentrate on the problem domain (the application or business
logic) and not so much on the network peculiarities. It does so by generalizing the communication mechanism
through the use of handles, in much the same way that file handles make it easier to work with disk files.

WinSock is an evolving, living document that describes network programming under Microsoft Windows. That is,
WinSock is really just a specification that describes a network programming model. The specification is not owned
by anyone. In fact, it was drafted through the cooperative efforts of a number of software vendors, all interested in
having a standard for writing network applications under the Windows family of operating systems. Any vendor is
free to implement the API specification, and many have. Each network vendor may provide its own version of the
Winsock.dll (or Wsock32.dll) to implement the Windows Sockets API for that vendor's particular protocol
stack. Microsoft began shipping its own version of the Winsock.dll as an add-on to Windows for Workgroups and
is now distributing it as a standard component of Windows 95 and Windows NT.

The success of the WinSock API is due largely to the spirit in which it was born. The specification was drafted
through the cooperative efforts of a number of software vendors, all interested in having a standard for writing
network applications under the Windows family of operating systems. The WinSock Group, which began in 1991 as
an informal gathering at Interop (a TCP/IP networking trade show), was organized to define a way for Windows-
based applications to interact with TCP/IP. The current WinSock standard, Version 1.1, was released in January of
1993 and is largely built around TCP/IP, but certainly not restricted to it. In fact (although a great many
implementations use TCP/IP), the specification is protocol-independent.

The informal gathering at Interop that led to the birth of the WinSock Standards Group was led by Martin Hall of
Stardust Technologies. The WinSock Group continues to refine the specification and is currently completing Version
2, which includes extensions for additional network transports and new media.

For more information about the WinSock Group and the new specification, visit the Stardust web site
at http://www.stardust.com.

WinSock Concepts
A socket is a software handle, similar to a file handle, that can be used to both send and receive data over a network.
Like a file handle, a socket identifies a data structure which provides the information needed to orchestrate read and
write operations. However, a socket represents an abstraction a bit more complex than a disk file. In other words,
using a socket is not quite as easy and straightforward as using a file handle. Fortunately, MFC provides a set of
classes (notably CAsyncSocket and CSocket) that reduce the complexities associated with using the bare-bones
WinSock API. The MFC classes wrap socket handles, data structures and WinSock API functions into C++ objects.
Thus, network programming can be approached from an object-oriented perspective, instantiating objects and
calling methods. The exact sequence of steps (methods to be called) required to effectively use a socket depends on
the type and role of the socket.

Types of Sockets
There are two types of sockets from which to choose: datagram and stream.

Datagram sockets allow data to be transferred over a network with a minimum of overhead. However, nothing is
free. The reason for the low overhead is because datagram sockets use UDP as the network transport protocol. UDP
guarantees that when the data is delivered it will be correct, but it doesn't guarantee delivery in all cases. The data
may be lost, discarded, or arrive out of sequence. Datagram sockets are most often used when a small amount of
data needs to be exchanged and the overhead of establishing a reliable stream connection is not warranted. For
example, a datagram socket is perfect for simple systems that send status updates to other applications, without too
much concern over whether or not they are heard.

Stream sockets are used to establish reliable, two-way connections to transfer streams of bytes. Again, nothing is
free. The reliability is attained by relying on TCP as the network transport protocol. TCP ensures that data is
delivered error-free by performing additional, sometimes time-consuming, handshaking with the receiver. Stream
sockets are well suited for applications that require the error-free exchange of large amounts of data. Most Internet
protocols, including the HyperText Transfer Protocol (HTTP), File Transfer Protocol (FTP) and many others rely
on stream sockets.

The socket type is defined when the socket is created and cannot be changed later. The MFC C++ socket classes
(discussed in more depth later this chapter) implement stream sockets by default, as shown by the second parameter
of the CAsyncSocket::Create() member function listed below:

BOOL Create(UINT nSocketPort = 0, int nSocketType=SOCK_STREAM,
 long lEvent = FD_READ | FD_WRITE | FD_OOB | FD_ACCEPT |
 FD_CONNECT | FD_CLOSE, LPCTSTR lpszSocketAddress = NULL);

We'll take a closer look at all of the parameters later. First, let's look at how sockets are used and the roles and
responsibilities of the programs wishing to exchange information across a network.

The Role of a Socket
It takes two to tango. Clients lead and servers follow. Servers arrive at the dance first and wait quietly along the
wall, waiting for clients to call. Clients arrive later looking for a specific server and they always request a specific
dance.

Socket programming is always approached from the perspective of clients and servers. In general, client sockets
initiate connections and server sockets wait for and accept them. (This discussion assumes that we're using stream
sockets, the most commonly used type of socket for Internet programming.) However, after the initial contact, either
the client or the server is capable of sending the first packet of data. The actual 'dance steps' depend on the
application or protocol. The Internet has some clearly defined protocols that establish the roles and responsibilities
of the client and server sockets. Later in this chapter, we'll take a close look at the Finger protocol with a simple
Internet application that is used to look for information about a user on a specific host.

When a socket is created, a program does not expressly indicate the role (client or server) of the socket, or how it
will be used. Instead, the role is defined by the particular set and sequence of socket functions called. For example,
to use a client socket, you simply create the socket, call the connect function to attempt to reach a server and
establish a communication end-point, send and receive data, then close the socket. Server sockets, on the other hand,
are used a bit differently. First, you create a socket (just like you create a client socket), bind it to a specific service
or port and set it to quietly listen for clients trying to connect. Then, when a connection attempt is detected, you can
accept the connection and create a new socket to delegate the responsibility of servicing the client. The newly
created socket will perform the data exchange with the client, allowing the server socket to continue listening for
connection requests from other clients.

IP Addresses and Port Numbers
So how does a client know how to reach a server? Well, the client must know two things: the IP address of the
server's host computer and the specific service port number.

The IP address names the computer on which the server process is running, thus making it possible for a client to
call on a specific 'dance partner'. Every computer on the Internet must have a unique address that distinguishes it
from every other. Internet addresses are 32-bit numbers that are usually represented in a dotted decimal notation,
where the 32-bit value is broken up into four 8-bit decimal chunks, separated by dots. This notation makes it easier
for us carbon-based life forms to read and remember IP addresses. For example, the IP address 0xFF010A01 can be
written as 255.1.10.1.

The port number identifies the specific service running on the host computer named by the IP address. Continuing
with the analogy, the port identifies the 'dance step'. The Internet has some well-known dances that are assigned
specific port numbers. So, for a client wishing to dance the File Transfer Protocol (FTP), it first identifies the dance
partner (the host computer with a specific IP address), then the FTP port, 21. If the client fancies HyperText Transfer
Protocol (HTTP) instead, it should try port 80. As an example, the following table lists a few of the well-known port
numbers:

Port Number Protocol

21 FTP (File Transfer Protocol)
23 Telnet
25 SMTP (Simple Mail Transport Protocol)
79 Finger
80 HTTP (HyperText Transfer Protocol)

You can find defines for many of the well known port numbers in Winsock.h as IPPORT_servicename, so, for
example, you can use IPPORT_TELNET and IPPORT_FINGER instead of 23 and 79.

If you're developing a custom application, the port number you use should be in the range of 1,025 – 5,000. These
values are set aside by the Internet Assigned Numbers Authority for user-defined services. Port numbers from 0 –
1,024 are reserved for well-known services such as HTTP.

Network Byte Order
We'll take a look at one final concept before we move on to examine the use of sockets and the MFC classes. When
you're developing applications that are going to talk to the outside world, you need to keep in mind that it's a jungle
out there. There are many different types of hardware platforms, each one a potential host or client to which we may
want to connect and exchange data. And guess what—each has its own way of storing and manipulating multibyte
data elements, such as integers and longs. This is a problem.

The most notable example is with the Intel and Motorola processors. Intel uses a little-endian byte ordering scheme
which means that the least significant byte of a multibyte value is stored in memory before the most significant byte.
Motorola uses a big-endian byte ordering scheme which means that the most significant byte of a multibyte value is
stored in memory before the least significant byte. Seems crazy, but that's the way it is.

The bottom line is that you simply can't send multibyte data elements to another machine without some sort of
translation, unless you're absolutely, without a doubt, 100% certain that the receiver machine uses the same byte
ordering scheme. Of course, to ensure the portability of your code, you should never assume anything and take the
extra effort to translate your data to network order before you send it, and back to host order once you've received it.
To accomplish this is a simple matter of invoking what I call the 'Esperanto functions'.

The WinSock API provides four functions for converting numbers to and from network byte order. They are:

Function Description

htons() Takes a 16-bit (short) number in host byte order and returns a 16-bit number in
network byte order.

ntohs() Takes a 16-bit (short) number in network byte order and returns a 16-bit number
in host byte order.

htonl() Takes a 32-bit (long) number in host byte order and returns a 32-bit number in
network byte order.

ntohl() Takes a 32-bit (long) number in network byte order and returns a 32-bit number in
host byte order.

You would need to use these functions when you're exchanging data which is to be interpreted by the network or by
another machine. For example, the WinSock API function ::connect() expects that the port number you pass to it
is already in network byte order. However, if you're using the MFC implementation of this function on one of the
socket classes, for example CAsyncSocket::Connect(), (and you should be), the port number will be in host
byte order because the MFC function takes care of calling htons() to convert it for you. The line of code that does
this (you'll find it in Sockcore.cpp in your MFC source directory) appears as:

sockAddr.sin_port = htons((u_short)nHostPort);

Once a socket is connected, none of this really applies if the application is simply exchanging ASCII characters as a
stream of bytes. It really only applies to applications that are exchanging multibyte data elements, usually numeric,
that need to be interpreted by both sides.

Let's Dance
We said earlier that, generally, clients initiate connections and servers wait for and accept them. This scenario really
applies to just stream sockets, because they're connection-oriented. Given what we have learned about stream
sockets, IP addresses and port numbers, let's take a look at the typical steps that you'll need to take to establish a

connection, send and receive data and close a connection.

To start, an MFC WinSock client application will instantiate an element of one of the socket classes,
CAsyncSocket or CSocket. (We'll examine the difference between these classes later in the chapter.) Then it will
call Create() on this MFC socket to create the underlying socket handle. A client announces its intentions to dance
by calling the Connect() function on the socket (this wraps the WinSock API ::connect() function). This is one
of the prototypes for the MFC socket class member:

BOOL Connect(LPCTSTR lpszHostAddress, UINT nHostPort);

Notice that, to connect to a server, the client must specify the address of the host computer and the port number of
the particular service in which it's interested. Keep in mind that this is the MFC implementation of the
::connect() function. It does a lot of work for us that we would otherwise have to do ourselves, using the 'bare-
bones' WinSock API. For example, the lpszHostAddress parameter allows us to specify either an IP address as a
string in dotted decimal notation (e.g. "204.148.170.2") or a Domain Name such as "www.wrox.com". If we
pass an IP address, the function takes care of converting the string to a 32-bit number in network byte order.
However, if we pass a Domain Name, the function will call the WinSock API function ::gethostbyname() to
lookup the IP address for us using DNS. Of course, the MFC Connect() function also takes care of converting the
port number to network byte order.

A server doesn't call the Connect() function because it doesn't initiate connections. Instead, a server waits around
listening for connection attempts and accepts them. To accomplish this, a raw WinSock API server application
would first call the ::bind() function to register a socket with a specific port number. Then it would call the
::listen() function to wait for clients attempting to connect to that port. Of course, the MFC socket classes
provide their own version of ::bind() (as a member function imaginatively called Bind()) This is the prototype
for Bind():

BOOL Bind(UINT nSocketPort, LPCTSTR lpszSocketAddress = NULL);

Again, MFC does some work for us here. The function will convert the port number to network byte order and will
convert the IP address from a string in dotted decimal notation to a 32-bit number in network byte order. If no IP
address is specified, then the function will set the IP address to the WinSock constant INADDR_ANY. You don't
usually need to specify an address, since using INADDR_ANY causes the WinSock to use an appropriate network
interface address.

In fact, the Bind() function is rarely called directly by an MFC application because a socket is automatically bound
to a port by the MFC implementation of the Create() function which calls the Bind() function internally.

Once a socket is bound to a port, an MFC server calls the Listen() member function to wait for clients attempting
to connect. The Listen() function is declared as:

BOOL Listen(int nConnectionBacklog = 5);

The only parameter to this function is optional (it defaults to 5 if not specified) and defines the maximum length to
which the queue of pending connections can grow (the valid range is from 1 to 5). When a listening socket detects a
connection attempt (we'll see how it does this later), the MFC server should call the Accept() member function to
create a new socket which will be used to service the connection. The listening socket is then free to continue
listening for new connections, while the newly created socket manages the sending and receiving of data with the
client. Accept() is declared as:

virtual BOOL Accept(CAsyncSocket& rConnectedSocket,
 SOCKADDR* lpSockAddr = NULL, int* lpSockAddrLen = NULL);

The Accept() member function is called on the instance of the listening socket. We pass to it a reference to a new
socket that will be used to service the connection. The reference should point to a new, uninitialized socket, since the
Accept() function will do the work of creating it and finalizing the connection with the client. The other two

optional parameters can be used to get the address information of the client attempting to connect. You don't usually
need them because you can get the IP address of the client through the newly connected socket object that you pass
into this function after the connection is finalized.

Once the connection has been established, the client and/or server is free to begin the dance by sending data. Exactly
which side sends the first packet depends on the protocol, but, in most cases, the client leads. For example, with the
Finger protocol (port 79), the client begins by sending a user ID (as a stream of characters followed by a carriage
return and line feed) immediately after the connection is established. The server responds by sending back details
about the user's account on the server's host computer then it closes the connection.

To send data over a connected socket, the client and/or server can use the MFC class member function Send(). This
is the prototype:

virtual int Send(const void* lpBuf, int nBufLen, int nFlags = 0);

The Send() function will return the total number of characters sent or the value SOCKET_ERROR if an error occurs.
Keep in mind that the total characters sent maybe less than the number indicated by nBufLen. In this case, the
application must be prepared to try again with the remaining, unsent buffer contents (we'll discuss the mechanics of
this later in the next chapter). If an error is detected, the application should call the GetLastError() method to get
the particular error code. The MFC implementation of Send() does absolutely nothing more than to call the raw
WinSock ::send() function, passing it the parameters untouched.

Once the data has been sent across the connected socket, it's up to the receiving end to take the trouble to read it. A
client and/or server can read the contents of a socket's input buffer by calling the Receive() class member:

int Receive(void* lpBuf, int nBufLen, int nFlags);

The receive function will read as many characters as are currently available up to the number specified by the
parameter nBufLen. If there are more characters to read than can fit into lpBuf, the application should be prepared
to call Receive() again to read the remaining characters (we'll cover the mechanics of this later in the chapter).
Like the Send() function, the MFC implementation of Receive() does nothing more than to call the WinSock API
version. If an error occurs, the function will return SOCKET_ERROR. The application should call GetLastError()
to get the exact error code.

From this point, the client and the server may continue to send and receive data back and forth until one side decides
that the dance is over and it's time to close the connection. To close a connection, an application should call the
Close() member function of the connected socket. The prototype is:

virtual void Close();

Calling the Close() function frees all resources associated with the socket, including any queued data remaining in
the send or receive buffers. An error will result if any further socket functions are called after the socket is closed.

The table below recaps the function calls necessary and the sequence of the calls:

Client Server
CAsyncSocket::Create(...)
Create a socket & bind the socket to a port.
CAsyncSocket::Listen() Listen for connections.

CAsyncSocket::Create()
Create a socket.
CAsyncSocket::Connect(...)
Connect to an IP address and port.

CAsyncSocket::Accept(...) Accept the connection and create a

new socket to handle send and receive.
CAsyncSocket::Send(...)
Send data.

CAsyncSocket::Receive(...)
Receive data.
CAsyncSocket::Send(...)
Send data.

CAsyncSocket::Receive(...)
Receive data.

CAsyncSocket::Close()
Close.

The Asynchronous Model
WinSock was designed to take advantage of the message-based architecture of Windows. Most of the extensions to
the original Berkeley sockets model were made to accommodate the cooperative multitasking Windows 3.x
operating system. For example, socket functions that can potentially take a while to complete can be made to return
immediately before completing (i.e. they can be executed asynchronously) so that other Windows programs,
including the calling program, can continue to execute and dispatch messages. When the socket function finally does
complete, the WinSock DLL will post a message to the application, signaling the status of the socket. Under this
model, network programming becomes event-driven, asynchronous and fits well into the Windows environment.

This is a departure from the traditional programming model employed by a large number of existing UNIX-based
sockets applications. Most of these rely on the preemptive nature of the operating system to effectively manage
multitasking. That is, when a socket function is called that takes a while to complete, the calling application is
blocked from further execution until the function completes. However, other applications continue to run because
the preemptive operating system is able to switch tasks. This architecture makes it easy to develop applications that
are sequential in nature, and so fit well into the traditional character-based, command-line UNIX environment.

Windows NT and Windows 95 are also preemptive multitasking operating systems. This means that you can write
socket programs that block waiting for socket functions to complete without keeping the whole system tied up.
However, keep in mind that the thread calling a blocking function is suspended until the blocking task completes. If
the thread is the only thread of the process, or it's the main user interface thread, all user input is halted until the
function completes.

One way to avoid this is to use multiple threads, perhaps worker threads, to handle the blocking calls. This is fine if
the program is designed exclusively for Windows NT or Windows 95, but if you plan to deploy the application for
Windows 3.x (which doesn't support independent threads), you should use the extended asynchronous WinSock API.
In fact, we recommend that you use the asynchronous model whenever possible, regardless of the target platform. It
makes for more portable code and doesn't complicate your application logic with the unnecessary management of
multiple threads.

Having said that, it turns out that, to get things done, there are many times you may want to use both the
asynchronous approach and threads. This is especially true of server applications that are handling requests from
multiple clients. For example, an HTTP server would most likely use the asynchronous approach to detect
connection attempts and to read client requests. It would then create worker threads to send replies (usually files that
are quite large) so that the main thread can remain responsive to further connection requests from other clients.

WinSock Messages

So now we've seen that WinSock can use an asynchronous model and we know the steps necessary to establish a
connection, send and receive data and close the connection. But how does all this work in the message-based
architecture of Windows? How does a server know that a client is trying to connect? How does a server know that a
client has sent data? How does a client know that a server has replied?

The answer to all of these questions is that the WinSock DLL sends a message to the application whenever a
network event occurs. Well, not just any network event, just the ones in which the application is interested.

The important thing to note here is that by registering an interest in this particular event, the program is informing
the WinSock DLL that it wants the corresponding function to be made non-blocking. This means that future calls
made to that function will most likely return immediately with the value SOCKET_ERROR. However, this doesn't
mean that an actual error occurred. To determine whether an error really did occur, the application should call the
member GetLastError() of the socket class. If the error code returned is WSAEWOULDBLOCK, WinSock is simply
indicating that the connection didn't complete immediately; that it would have blocked and is still in progress. The
DLL will send a message to the application later, when the operation completes.

To register an interest in a network event, an MFC application calls AsyncSelect() on their socket object. Behind
the scenes, this makes use of the WinSock API function ::WSAAsyncSelect(). The function is declared as:

int WSAAsyncSelect(SOCKET hSocket, HWND hWnd, u_int wMsg,
 long lEvents);

It's useful to examine this bare-bones WinSock API prototype because it illustrates the message-based architecture
that we've been talking about. The MFC version hides some of this from us, so we'll look at that next.

This function is about the most important function in the WinSock API. It's used to request that the WinSock DLL
should send a message to the window identified by hWnd whenever network events specified by the value in
lEvents occur for the socket hSocket. The message that is to be sent is specified by the parameter wMsg. The
value of lEvent is created by performing a bit-wise OR operation on any of the constants listed in the following
table.

Event Meaning

FD_ACCEPT Send a message whenever a client is attempting to connect to a listening
socket. The application can call the Accept() function without it
blocking.

FD_CLOSE Send a message when the socket has been closed.
FD_CONNECT Send a message when a connection attempt is completed.
FD_OOB Send a message when out-of-band data is available to be read.
FD_READ Send a message when there is data available to be read.
FD_WRITE Send a message when a socket is ready for writing.

Each call to ::WSAAsyncSelect() overrides the setting of the last call. To cancel all event notifications, call the
function with lEvent set to zero (this doesn't cancel events already posted to the message queue, only the delivery
of future events). When an event does occur, the DLL will send the message, wMsg, to the window indicated by
hWnd. The wParam parameter sent as part of the message will contain the socket handle; the lParam parameter's
low-word will contain the event (one of the FD_ values listed above) and the high-word will contain an error code if
applicable.

A single message is sent for each event that occurs. For example, if there's data to be read from a socket and
FD_READ notifications have been enabled for that socket, the DLL will post a single FD_READ event to the indicated
window. The application must then call the appropriate receive function (based on type of socket) to re-enable
further notification for this event. If after calling the receive function there's still more data to read, the DLL will

post another FD_READ event to the window's message queue. Otherwise, no more FD_READ events will be generated
until more data arrives. Write notifications work in a similar fashion. For example, when data is sent to a stream
socket, the Send() function will attempt to push through as many bytes as it can in one shot. If less than the total
amount is sent, the application should wait for the DLL to post an FD_WRITE event before it attempts to resend the
remaining bytes. The DLL will continue to post additional FD_WRITE events when the socket is capable of handling
another attempt.

The two exceptions to the model just presented are the FD_CLOSE and FD_CONNECT events. These two events only
occur once for a given socket. The FD_CLOSE event notifies a window that a socket has been closed. The
FD_CONNECT event notifies a window that a socket is now connected. All of the other events can occur several
times over the life of a socket.

Let's take a closer look at each of these events, including the curious FD_OOB event, by examining the MFC
implementation of the ::WSAAsyncSelect() function. We'll start by presenting the MFC socket classes, beginning
with the class CAsyncSocket.

MFC Socket Classes
As we've mentioned, MFC includes two classes that embody the WinSock API. CAsyncSocket is the socket base
class which encapsulates the asynchronous architecture that we've been discussing. CSocket is a synchronous, easy-
to-use class derived from CAsyncSocket. There are also additional classes that work with CAsyncSocket and
CSocket to present a more object-oriented interface to socket programming. We'll look at each of the classes
throughout this chapter, beginning with the base class CAsyncSocket.

CAsyncSocket
CAsyncSocket hides most of the complexities of dealing with the WinSock API from the developer. It makes
socket programming easier by encapsulating socket handles, data structures and WinSock API functions into a C++
class derived from CObject. Probably the neatest thing about CAsyncSocket is that it collaborates with a 'secret'
class, CSocketWnd, which redirects event notifications back to CAsyncSocket. Therefore, instead of handling
event notifications through the message map of a window in your application, you simply override virtual members
of the CAsyncSocket class. The CSocketWnd window, which is created as a hidden window by MFC, calls these
virtual functions each time a network event occurs. The functions correspond directly to the socket events listed
earlier. For example, to handle the event FD_CONNECT, you override the class member OnConnect().

To accomplish this callback scheme, you need to register your interest in the various events discussed above. Instead
of using the raw ::WSAAsyncSelect() function, you should use a wrapper provided by the CAsyncSocket class.
The member function is named AsyncSelect() and its prototype is:

BOOL AsyncSelect(long lEvents = FD_READ | FD_WRITE | FD_OOB |
 FD_ACCEPT | FD_CONNECT | FD_CLOSE);

Notice the absence of the parameters hSocket, hWnd and wMsg that appeared in the bare-bones WinSock API. The
hSocket parameter isn't needed because the CAsyncSocket object keeps track of that information internally in the
attribute m_hSocket. The hWnd and wMsg parameters are also not needed because messages are always directed to
the hidden CSocketWnd window and the message is always WM_SOCKET_NOTIFY. Really, the only thing that the
MFC function does is call the WinSock API version with the appropriate parameters added (it also provides for
'thread safety' by tracking the handle to the hidden window across thread contexts). So, the only parameter that you
must specifically supply is the value of lEvents. Remember that the value lEvents is the result of a bit-wise OR
operation and it indicates the network events that we're interested in receiving.

When an event occurs, the hidden window will call the appropriate virtual function of the CAsyncSelect-derived
object to handle that event. To add functionality, you must derive your own socket classes from either
CAsyncSocket or CSocket. As a matter of fact, the default versions of the virtual callback functions do absolutely
nothing! They are simply place holders and you should override the functions for the events in which you are

interested. Let's take a closer look at these functions and their use. They are listed in the table below with their
corresponding event identifiers.

Function Event Identifier

OnAccept() FD_ACCEPT
OnClose() FD_CLOSE
OnConnect() FD_CONNECT
OnOutOfBandData() FD_OOB
OnReceive() FD_READ
OnSend() FD_WRITE

OnAccept()
The OnAccept() function is called by the framework to notify a listening socket that another application is
requesting a connection to the IP address and port number to which the socket is listening. The OnAccept()
function is only valid for a stream socket that is bound and listening to a specific port. It indicates that the
application should call the Accept() function to complete the connection and to re-enable the event for other
connection attempts. Calling Accept() in response to this event will probably succeed immediately.

void CMyListeningSocket::OnAccept(int nErrorCode)
{
 if (nErrorCode == 0)
 {
 CMyConnectionSocket *pSocket = new CMyConnectionSocket;
 if (Accept(*pSocket))
 {
 ...
 }
 else
 {
 delete pSocket;
 }
 }
}

The example above illustrates the basics of establishing a connection with a remote application. This is from the
perspective of the server, since OnAccept() is only valid for listening sockets. First, the program should check the
value of nErrorCode to make sure that everything's OK. The only possible error code is WSAENETDOWN, indicating
that the network subsystem failed. Next, the application creates a new socket to serve as the connection end-point.
The new socket will be responsible for handling the send and receive operations with the connected client, so that
the listening socket is free to continue listening for other connection attempts. Finally, the Accept() function is
called to complete the connection. Upon a successful return, the new socket will be connected to the client and will
inherit all of the properties of the listening socket. The application should then be prepared to handle send and
receive operations, using the newly created socket and should destroy it when done.

OnClose()
The OnClose() function is called by the framework when the remote host terminates a connection. It is only valid
for a stream socket that was previously successfully connected to a remote socket by calling either the Connect()
or Accept() function.

Be careful, though. The OnClose() notification simply means that the remote socket has finished sending data. It
doesn't mean that you have finished reading, so, before you destroy the closed socket, you should always call the
Receive() function first to check for any unread buffered data. Also, keep in mind that either side can close a
connection by calling the Close() member function of CAsyncSelect. The destructor method of CAsyncSocket
will automatically call the Close() member function.

void CMySocket::OnClose(int nErrorCode)
{
 if (nErrorCode == 0)
 {
 // Fake an OnRead() event to force app to check receive buffer
 OnRead(0);
 . . .
 delete this;
 }
}

This example illustrates one possible way of handling the OnClose() event. It calls the OnRead() function, which
tricks the application into trying to read the receive buffer one last time. Then, depending on the application, perhaps
it could display the data to the user. (Usually, the application will have to cache the data in an internal buffer as it is
received. The Finger application that we'll be developing later in this chapter uses a simple CString object to store
incoming bytes.) Finally, since it's no longer needed, the socket is destroyed. Clearly what action you decide to take
will be application-specific.

OnConnect()
The OnConnect() function is called by the framework to notify a client that a previous call to the Connect()
function has completed. It can only occur once in the connection-life of a socket and is useful for one-time
initialization procedures. Be sure to examine the nErrorCode parameter to check whether the connection was
indeed successful.

void CMySocket::OnConnect(int nErrorCode)
{
 if (nErrorCode == 0)
 {
 m_timeConnected = CTime::GetCurrentTime();
 }
 else
 {

 ::AfxMessageBox("Connect failed!");
 delete this;
 }

}

The example above illustrates one possible use of the OnConnect() function. The socket first checks the value of
nErrorCode to verify that the connection was successful. If it was, it updates an internal attribute of the derived
class CMySocket to keep track of when it actually connected. This might be useful for an application that keeps
track of connection statistics. If the connection fails, it simply displays a message and then destroys itself.

Note that OnConnect() and OnSend() apply only to CAsyncSocket. In CSocket, these methods
are never called because the calls to Connect() and Send() block; they don't return until they
complete.

OnOutOfBandData()
The OnOutOfBandData() function is called by the framework to notify an application that there is 'urgent data'
available to be read. Conceptually, the WinSock API uses out of band data to simulate a second independent
channel for two connected stream sockets to exchange high-priority data. It's similar to an OnRecieve() message,
but it informs the application that it should call the Receive() function with the MSG_OOB flag set to read the
urgent data (the value of which is always application-specific). The documentation for the CAsyncSocket class
suggests that you avoid using out of band data in your applications. There is some confusion about the specification
under WinSock 1.1, so differences exist between implementations. The MFC documentation suggests that if you
need this functionality, you should create a second socket for passing urgent or high priority data.

OnReceive()
The OnReceive() function is called by the framework to notify the socket that there is data in the buffer that can be
retrieved by calling the Receive() member function. It indicates that calling Receive() will probably succeed
immediately. If any data remains in the buffer after calling Receive(), the DLL will post another FD_READ event
which will trigger OnReceive() again.

void CMySocket::OnReceive(int nErrorCode)
{
 TCHAR tmp[512 + 1];
 int nCount;
 switch (nCount = Receive(tmp, 512, 0))
 {
 case SOCKET_ERROR:
 // Call GetLastError() to determine the cause
 . . .
 break;
 case 0:
 // The other end gracefully closed the socket.
 break;
 default:
 tmp[nCount] = '\0';
 m_strRecvBuffer += tmp;
 break;
 }
}

This example demonstrates one possible implementation of the OnReceive() function. The function calls
Receive() to read up to 512 characters (if there are more than 512 waiting to be read, the DLL will post another
FD_READ event, triggering the OnReceive() function again). If an error is reported by the Receive() function,
GetLastError() is called to determine the exact error code. The application should check the return code and
handle it appropriately. If Receive() returns zero, this indicates that the connection has been closed by the
connected socket. If the Receive() function returns a value greater than zero, the characters read are appended to
the end of a CString object, m_strReceive.

Warning: This is not necessarily a good implementation, since a socket can receive any kind of
data, and lots of it. Unless you're certain that your application will only be receiving small string
values, I would recommend against using a CString object as a receive buffer.

OnSend()
The OnSend() function is called by the framework to notify an application that it can send data by calling the
Send() function. It indicates that calling Send() will probably succeed immediately. With each call to the Send()
function, the WinSock DLL will try to push as many bytes through as it can in one shot. It will then post another
FD_WRITE event when it is ready for more, triggering OnSend() again. Your application must keep track of how
much was sent with each call to the Send() function and be prepared to try again if the DLL can't send it all.

void CMySocket::OnSend(int nErrorCode)
{
 // Make sure there is something to send
 if (m_strSendBuffer.IsEmpty())
 return;
 // Try to send it all!
 int nSent = Send(m_strSendBuffer, m_strSendBuffer.GetLength());
 if (nSent == SOCKET_ERROR)
 {
 // See what happened
 switch (GetLastError())

 {
 // These are OK, we'll try again later.
 case WSAEWOULDBLOCK:
 case WSAEINPROGRESS:
 return ;
 default:
 // Yikes!
 break;
 }
 }
 else
 {
 // Remove what was sent from the send buffer
 m_strSendBuffer = m_strSendBuffer.Mid(nSent);
 }
}

The example above illustrates one possible implementation of the OnSend() function. It assumes that there is a
member variable named m_strSendBuffer of type CString which contains the data to be sent. First, the function
checks to see whether there is, in fact, anything to send by calling the IsEmpty() method of the string. If there is
something to send, it attempts to send the entire string all at once and checks the return code to see if it was
successful. If the return code is SOCKET_ERROR, it calls the GetLastError() function to get the exact error code.
Error codes of WSAEWOULDBLOCK and WSAEINPROGRESS are acceptable in this example because the DLL will post
another FD_WRITE event when it can. Other errors should be handled appropriately. If the value of nSent is
something other than SOCKET_ERROR, the application removes the sent characters from the string. Remember that
nSent may be less than the total to send. If it is, only the sent characters are removed from the send string and the
WinSock DLL will post another FD_WRITE event when it can.

Just as a reminder, OnConnect() and OnSend() apply only to CAsyncSocket. In CSocket,
these methods are never called because the calls to Connect() and Send() don't return until they
complete.

The CAsyncSocket class has an additional virtual function, called ConnectHelper(), that is of some interest.
It's not exactly a callback function, though; it's a protected virtual function that you can override to complete
the connection process. It's called by CAsyncSocket::Connect() as the final step before actually attempting to
connect. This makes it easy to override the actual connection code without overriding the first part of Connect()
which is responsible for converting a dotted decimal IP address or a domain name into a valid network address. The
CSocket class overrides this function to pump messages waiting for the connection to complete before returning,
making the connection function synchronous. Another possible reason for overriding the function is presented
below:

BOOL CMySocket::ConnectHelper(const SOCKADDR* lpSockAddr,
 int nSockAddrLen)
{
 // Set the status code and notify of event
 SetStatus(CMySocket::statusConnecting);
 BroadcastEvent(CMySocket::eventConnecting);
 // Register an interest in Connection Event. This will
 // make this socket asynchronous.
 AsyncSelect(FD_CONNECT);
 // Do the super class method. If it returns true then we
 // were connected immediately.
 if (CAsyncSocket::ConnectHelper(lpSockAddr, nSockAddrLen))
 {
 // Execute the logic already coded to handle a connection.
 OnConnect(0);
 return TRUE;
 }
 else

 {
 // Return OK if connection is deferred.
 return (GetLastError() == WSAEWOULDBLOCK);
 }
}

The function begins by calling the SetStatus() and BroadcastEvent() functions. These are not
CAsyncSocket functions; they are methods added to the derived class, CMySocket. The parameter passed to
SetStatus() is an enumerated value that is stored internally by the object to keep track of its current state. Here,
the status is set to statusConnecting to indicate that a connection attempt is in progress. BroadcastEvent() is
used to send a message to any window that is interested in getting status updates for the socket. Of course, the event
can be any value, not just the standard WinSock events, because this is not part of MFC, but is application-specific.
Here, the enumerated value eventConnecting (which doesn't correspond to any of the standard WinSock events)
is being sent. BroadcastEvent() doesn't have to send messages; it could call some function of another object,
perhaps a CDocument object, or update a status bar instead.

Next, the ConnectHelper() calls AsyncSelect() to register an interest in future connection attempts. This
automatically sets up the socket to be non-blocking and asynchronous. This means that a future call to the WinSock
API ::connect() function would probably return immediately with an 'error', indicating that the function would
have blocked. This is exactly what we want to happen. In fact, the very next statement calls the
CAsyncSocket::ConnectHelper() function, which simply turns around and calls the WinSock API
::connect() function. We check the return code and if it returns successfully (not likely, as we've just explained),
the connection was established. In this case, we call the OnConnect() function because we want to perform the
same logic that would have been executed had the function completed asynchronously. If the call to the
CAsyncSocket::ConnectHelper() function returns with an error, we check to see if the error code is
WSAEWOULDBLOCK, which is not really an error at all. In this case, the OnConnect() function will be called by the
framework when the connection is completed.

ConnectHelper() simply gives us a little more control over the entire process. We'll be using it in the Finger
application that we develop later in this chapter. When we build Finger, we'll be developing a CAsyncSocket-
derived class that implements the SetStatus() and BroadcastEvent() functions described above, but, before
we do that, let's take a look at the other MFC socket class, CSocket.

CSocket
CSocket is derived from CAsyncSocket and its goal is to provide an easy-to-use object that deals with sockets in a
synchronous fashion. It collaborates with a couple of other classes to make sending and receiving data to and from a
socket much the same as writing and reading data to and from a disk file. This makes it easier to use than the
CAsyncSocket model, but in some cases, it's a little less flexible.

CSocket works with the MFC class CSocketFile to send and receive socket data over a network. Once a
CSocket is associated with a CSocketFile, you can call the CSocketFile class members to read and write
directly to the socket as if it were a file. In fact, you can even associate a CArchive object with CSocketFile to
support the serialization of objects to and from a socket. Of course, for this to work, both the sending and receiving
side of the connection must speak MFC. In other words, it doesn't make sense to serialize an object to a socket if the
receiver isn't also an MFC application that can de-serialize the object. This fact makes CArchive unusable when
you're writing well-known Internet applications like Finger and Telnet. The protocols for these applications simply
do not allow for the storage schemes used by CArchive. However, you can still use CSocketFile as a stand-alone
file object with any Internet applications, since it sends to and receives from a socket using a simple stream of
characters.

CSocket differs from CAsyncSocket in that it's designed to be mostly synchronous. In other words, CSocket
functions generally do not return to the caller until their operations have completed. For example, the
ConnectHelper() function, which is overridden in Csocket, implements a message pump, looping until it
intercepts the FD_CONNECT message. When the message is received, the function returns to the caller with a value
indicating the success of the operation. To the application, this means two things. The first is that when the

Connect() function is called, it won't return until the socket is in fact connected (assuming there are no errors). The
second is that the OnConnect() callback function will never be called, since the FD_CONNECT message is
intercepted by the message loop in ConnectHelper(). Thus, the Connect() function is a quasi-synchronous
operation that makes sure Windows messages are dispatched while it waits for the one message in which it's
interested that indicates the connect has completed.

The other synchronous CSocket function is Send(). It also implements a message pump that is used when it's
unable to send all of the requested data at once. It loops, peeking for the FD_WRITE message and doesn't return until
all of the data has been sent. This is mostly done to accommodate the use of CSocketFile and CArchive. These
two classes really make socket programming much easier, especially when you need to send C++ objects back and
forth between MFC applications. As an example, the following snippet of code shows the steps necessary to send an
object, pSomeObject, to a socket named pSomeSocket:

CSocketFile file(pSomeSocket);
CArchive ar(&file, CArchive::store);
pSomeObject->Serialize(ar);

Simple! On the receiving side, it's the same process except that the archive should be created with the
CArchive::load flag set instead. Keep in mind that the OnSend() callback of the sending socket is never called
because the message loop in SendChunk() (a helper for Send()) intercepts the FD_WRITE event. However, on the
receiving side, the OnReceive() will be called when data arrives to the socket.

To illustrate the use of CSocket, CSocketFile and CArchive, we're going to build both the client and the server
for a truly interesting application (well, I think so) at the end of this chapter. The application will allow you to
control the appliances in your home from anywhere in the world! Yes, we'll build a server application that accepts
commands to turn lights on and off, control dimmer switches and even open and close drapes. We'll also build a
client application that will connect to our 'magic' server and send it the commands to control your home. Don't
believe me? It's actually pretty simple and it makes for a good example of the power of using the MFC serialization
feature with sockets.

But before we build the CSocket sample application, it makes sense to look a complete application that uses
CAsyncSocket. This will give us a better understanding of the foundation upon which CSocket is built. So let's
begin now by constructing an Internet Finger client application.

Building a Finger Client
It's time to roll up our sleeves and get down to programming our first real Internet application. We'll start with a
simple Finger client program that will allow us to look up information about users in the databases of host
computers all over the world (well, the ones attached to the Internet anyway). Why begin with Finger? Well, it's a
relatively simple protocol that illustrates almost all of the elements of a complete Internet application. (I say almost
because we'll be approaching it strictly from a client's perspective. Server functions like Listen() and Accept()
are not used.) For this reason, and because it's fairly easy to implement with a small amount of coding, Finger has
become the 'Hello, World' of socket programming.

We have supplied a simple Finger server on the CD with the book so that you can easily test the
client. We won't be discussing the server in this chapter, but full source code is provided. It uses
similar techniques to the home automation server that you'll see later in the chapter.

Let's begin with an example of the expected input and output for Finger. For example, to find out who usrname is,
anyone with a Finger client program could issue this command:

finger usrname@somecompany.com

Finger is most often used in this command-line format because it was born on UNIX machines, but, of course, we'll
be adding a nice Windows interface to the program with edit boxes and command buttons. Anyway, the result is that
the server responds with something like this:

Login name: usrname In real life: User Name
Directory: /usr/users/usrname Shell: /bin/sh
Last login Wed Jan 3 15:21 on ttyp6 from 206.2.188.172
No Plan.

It's not terribly interesting, but it's exciting when you see it work for the first time! The specific information that is
returned is up to the server, but the RFC suggests that the server should return the user's full name, address or office
location and telephone number.

RFC stands for Request For Comments. RFCs are documents describing the behavior and
requirements for various Internet-related protocols. Since the behaviors described by RFCs are
works in progress, a single protocol such as Finger may have many RFCs through the course of its
development. Each RFC receives a number with larger numbers representing more recent RFCs
than smaller numbers. Currently Finger is described by RFC 1288.

Most servers will include a user's logon name, the last time that user logged on or checked mail, and the contents of
a plan file if one exists (a plan file is a simple text file that can contain anything the user wants to say to everyone
that Fingers).

The Finger application, like the majority of Internet programs, follows the client/server model. A client begins by
attempting to establish a connection to the user's host computer. Remember that a client must indicate both the
address of the host computer and a port number in order to establish a connection. In the example above, the address
of the host computer is identified by the domain name somecompany.com, which must be converted to an IP
address before it can be used. The port number is always 79, as shown in the table earlier in the chapter. Next,
assuming the connection was successful, the client will send an ASCII command to the server followed by a CR/LF
pair. The command is usually just the user's logon name (usrname in the example above).

The server responds by sending back the requested information. Again, the data may be in any format, so I would
advise that you don't try too hard to parse it. About the only thing that you can count on is that each line will be
separated by a CR/LF pair. That's about it. When the server is done, it terminates the connection by closing the
socket. The client should then read the socket and display the information to the user. Simple!

Finger Client Finger Server

The client creates a socket with Create(). The server socket is created, bound to port and listening.
The client attempts a connection with Connect() using the
Finger port (79).

The server accepts the connection.
In OnConnect(), the client registers an interest in other events
using AsyncSelect().
In OnSend(), the client sends Finger a command by calling
Send().

The server receives a command and sends back the requested
information.

In OnReceive(), the client receives the results of Finger by
calling Receive()(OnReceive() may be called a number of
times until all the information is received.)

Once the information's been sent, the server closes the
connection.

...
OnClose() notifies the client that the connection is closed

Constructing the Interface
Now that we understand the basics of what we need to do, let's take a few minutes here to discuss the design
goals for the application's user interface. The main goal is to keep it simple, both for the user and the application
developer if we can help it.

From the user's perspective, there needs to be a way to enter the name or IP address of a host computer, a way to
enter the logon name of a user to Finger and a way to submit the Finger request. The user of our application will
want to be able to enter this information quickly, just like they can when they use the command-line version, so
we shouldn't hamper them with unnecessary menus and dialog boxes. The application does only one thing, so
there really is no need for too many bells and whistles.

From the developer's perspective, there needs to be a way to get the same information from the user and a way to
display the results. Again, there's no need to complicate the application and we could probably live without an
extended document-view architecture. In fact, I think a simple dialog-based interface will do just fine. Here, you
can see what the final version should look like:

You can find this application on the CD in the WinFinger directory. To create this application, run MFC
AppWizard (exe) and make sure that you select the radio button labeled Dialog based on Step 1. Also, be sure to
check the Windows Sockets check box under the question, Would you like to include WOSA support? on Step 2 of
the AppWizard. You can leave all the other options at their default settings.

The next step is to edit the dialog template that was created for us. Add three edit boxes to the dialog as illustrated
above; one for the host name, one for the user name and one for the response. The response edit field should have
the Multi-line style bit checked. Also, change the OK button so that it reads Finger and has the identifier
IDC_FINGER. This will serve as our submit button. You should also set the Cancel button's label to read Done.

Now activate ClassWizard and add a member variable to the dialog class of type CString for each of the edit
boxes. I'll use m_strUser, m_strHost and m_strResponse throughout this example. Finally, add a member
function named OnFinger() to handle the BN_CLICKED message for the button IDC_FINGER.

Compile your program and we're ready to start coding! We will begin by creating a new socket class.

The Finger Socket Class
For this program, we'll use inheritance to construct a new class, CFingerSocket, derived from CAsyncSocket.
We use CAsyncSocket here to clearly illustrate the use of AsyncSelect() and the callback functions that make
the entire application asynchronous. We've also included a ConnectHelper() function in this class to show how to
override and extend the connection function.

The CFingerSocket class will:

Handle the sending of the user id in response to an OnSend() callback.
Handle the receiving of the host results in response to an OnReceive() callback.
Keep track of its current state.
Broadcast important events to the WinFinger application window.

CFingerSocket will encapsulate all of the logic of the Finger protocol. To use it, an application simply creates an
instance of the object, sets the user ID that is to be sent, then it connects it to the remote host. CFingerSocket will

do the rest. Let's take a look at the header file, FingerSocket.h.

If you take a look at the section towards the beginning, labeled // Definitions, you'll notice two items. The first
is a compiler directive checking to see whether WM_SOCKETEVENT has been previously defined. WM_SOCKETEVENT
is the message that will be sent to your window when something interesting happens (e.g. the socket is connected).

#ifndef WM_SOCKETEVENT
#error You must define 'WM_SOCKETEVENT' as a WM_USER message.
#endif

The value of WM_SOCKETEVENT is not defined here; it's left up to the developer to choose the appropriate WM_USER
value to assign to it. The benefit of not hard-coding it here is that you can give it any value that makes sense to the
particular application that uses this class. Thus, you can safely use the message identifier without it conflicting with
another user-defined message in your application. We don't have any other user-defined messages in this application
but I always try to code with reuse in mind.

The bottom line is that you should have a declaration something like the one below in your application header file,
or better yet, in the StdAfx.h header file. If you don't, you'll get a compiler error reminding you to declare it.

 #define WM_SOCKETEVENT (WM_USER + 1)

Next, you'll notice a very strange definition for ON_WM_SOCKETEVENT(). This definition is a new message map
signature for the WM_SOCKETEVENT message that we've just discussed:

#ifndef ON_WM_SOCKETEVENT
#define ON_WM_SOCKETEVENT() \
 { WM_SOCKETEVENT, 0, 0, 0, AfxSig_vwwh, \
 (AFX_PMSG)(AFX_PMSGW)(void (AFX_MSG_CALL CWnd::*)(UINT, UINT,
SOCKET))OnSocketEvent },
#endif

Note that message map signatures are considered part of the implementation of MFC, so are subject to
change.

This is just a small convenience for writing the message handler. The message signature will take care of splitting
the wParam and lParam values of the message into the appropriate components defined for the message. To use it,
first add the definition to your window's message map, something like we did in WinFingerDlg.cpp:

BEGIN_MESSAGE_MAP(CWinFingerDlg, CDialog)
//{{AFX_MSG_MAP(CWinFingerDlg)
//}}AFX_MSG_MAP
 ON_WM_SOCKETEVENT()
END_MESSAGE_MAP()

You'll probably want to add it outside of the ClassWizard area, as I've done here. ClassWizard will not be able to
help you with this message map entry.

The next thing to do is to declare your handler function. You must call it OnSocketEvent() (because that is the
name included in the message signature) and you should declare it as:

afx_msg void OnSocketEvent(UINT nEvent, UINT nErrorCode, SOCKET hSocket);

We'll discuss how this function gets invoked shortly, but before that let's take a look at the rest of the header file
which defines the interface for CFingerSocket and is shown below:

class CFingerSocket : public CAsyncSocket
{
 DECLARE_DYNAMIC (CFingerSocket);
public:
 // Socket Status Codes

 enum SocketStatus
 {
 // enumeration values not shown (see code on CD)
 };
 // Socket Events
 enum SocketEvent
 {
 // enumeration values not shown (see code on CD)
 };
// Constructors
public:
 CFingerSocket(LPCTSTR lpszUser, CWnd *pWndNotify = NULL);
// Attributes
public:
 // Accessors
 UINT GetStatus() { return m_nStatus; }
 void SetStatus(UINT nStatus) { m_nStatus = nStatus; }
 void GetText(CString &str) { str = m_strRecvBuffer; }
protected:
 CWnd* m_pWndNotify; // This is who we notify
 SocketStatus m_nStatus; // The socket status
 CString m_strSendBuffer; // Our simple send Buffer
 CString m_strRecvBuffer; // Out simple receive Buffer
// Operations
public:
// Overridables
public:
 // Socket Methods
 virtual BOOL ConnectHelper(const SOCKADDR* lpSockAddr,
 int nSockAddrLen);
 virtual void OnClose(int nErrorCode);
 virtual void OnConnect(int nErrorCode);
 virtual void OnReceive(int nErrorCode);
 virtual void OnSend(int nErrorCode);
 // Other Methods
 virtual void BroadcastEvent(SocketEvent nEvent, UINT nErrorCode = 0);
// Implementation
public:
 virtual ~CFingerSocket();
};

The constructor for the CFingerSocket class takes two parameters: a string of characters and a pointer to a
window. The string of characters, lpszUser, is obviously the logon name of the user which we are going to Finger.
The other parameter, pWndNotify, is a pointer to a window to which we want all WM_SOCKETEVENT messages for
this socket sent. Thus, when you instantiate a CFingerSocket object, the object will store the user's logon name
and it will be sent soon after the socket is connected. The socket will also store a pointer to the window and it will
broadcast WM_SOCKETEVENT messages to it as things move along. As you might have guessed, the function
BroadcastEvent() is the function responsible for sending the messages and the events that it can broadcast are
declared as enumerated values under enum SocketEvent.

CFingerSocket also keeps track of its current status. As events are triggered and the socket moves from one state
to another, the member variable m_nStatus will be assigned one of the values in the enumeration enum
SocketStatus. You can call the accessor method GetStatus() at any time to query the current status of the
socket. There isn't a whole lot of use for this, except perhaps to check the status of a socket before performing
another operation on that socket. For example, suppose the user clicks on the Finger button of our application while
the socket is waiting to be connected. The socket status member variable would tell us statusConnecting and
you could then either cancel the outstanding request or ask the user to wait until it finishes.

Next, take a look at the attributes m_strSendBuffer and m_strRecvBuffer. As their names imply, they are both
CString objects and they are used to store data that is to be sent and data that is received. The send buffer is
assigned the value lpszUser in the constructor. Later, when the OnSend() callback function is called,
CFingerSocket will send whatever it finds in m_strSendBuffer and it will empty the buffer as it goes. As data
is received, CFingerSocket will append the received characters to m_strRecvBuffer. The GetText() accessor
method can be called at any time to get the contents of the receive buffer.

A word of caution. Using a CString object as a receive buffer can be dangerous. You never know what the host
socket will return in response to your Finger request, or how much data is going to be returned. (The RFC states that
if no user ID is sent, the server should return a list of all users either logged on or that have accounts. This could be a
very large amount of data!) Normally, you should be OK because the protocol specifically states that returned data
must be ASCII with CR/LF pairs separating each line. However, you never know when you're going to come across
a misbehaved Finger server. So, while using a CString is not the greatest for a commercial implementation, it is
used here because it clearly illustrates the mechanics of OnReceive() without complicating the code with
extraneous buffering logic. On the other hand, using a CString as the send buffer is perfectly fine here because we
are completely controlling its contents.

The last thing to notice at the bottom of the header file is the overrides of the CAsyncSocket virtual functions.
Notice that not all of them are overridden, just the ones that make sense to our application. We'll be taking a look at
the code for each one shortly, but first, let's begin by examining the constructor for our class. It appears as:

CFingerSocket::CFingerSocket(LPCTSTR lpszUser, CWnd* pWndNotify)
{
 // Initialize the status code
 m_nStatus = CFingerSocket::statusReady;
 // Save the window to notify
 m_pWndNotify = pWndNotify;
 m_strSendBuffer = lpszUser;
 // Protocol requirement
 m_strSendBuffer += "\r\n";
}

Nothing too surprising here. The socket status is initialized, a pointer to the window to notify is saved, and the logon
name to Finger is added to the send buffer. Also, a CR/LF pair are added to the end of the send buffer so that the
host can determine when we are done sending the command. This is a protocol requirement and if you forget to send
it, your client will sit there waiting forever for the host to send its reply. Of course, the server will be waiting for you
to finish sending the command!

If you look back to the header file at the prototype of the constructor, you'll notice that there's no default value for
the parameter lpszUser. You must supply a value when you create an instance of the class. The value will be added
to the send buffer so that it's ready to be sent as soon as the socket is connected. CFingerSocket is thus able to
manage the requirements of the protocol without the application needing to get involved in the handling of read and
write notifications. However, even though CFingerSocket is a self-contained and self-managing object, it still
should be able to at least notify the application of its progress. That's the purpose of the optional parameter
pWndNotify, which is a pointer to a window that will receive event notifications through its message map. That is,
as interesting things happen to the socket (such as when it receives data, sends data, etc.) the socket will broadcast
the events to the window. It does so by calling its own BroadcastEvent() method, shown below:

void CFingerSocket::BroadcastEvent(SocketEvent nEvent, UINT nErrorCode)
{
 if (m_pWndNotify)
 {
 // Send the event
 m_pWndNotify->SendMessage(WM_SOCKETEVENT,
 MAKEWPARAM(nEvent, nErrorCode),
 (LPARAM) m_hSocket);
 }
}

The function first checks to see if there is, in fact, 'anyone listening'. If there's a window to send a message to, the
function sends the WM_SOCKETEVENT message. Remember, this is the user-defined message that you have to declare
and that triggers the OnSocketEvent() handler. The event and the error code are passed to your handler in the
wParam parameter. The lParam will contain the handle of the socket sending the message. It's best to use the
provided ON_WM_SOCKETEVENT() message map signature defined in the header file, since it will take care of
splitting the parameters out for you. By the way, it's easy for you to change BroadcastEvent()so that it calls a
function rather than sending a message. For example, you may want it to call a function of a CDocument object.
Also keep in mind that it really isn't needed to create a simple Finger client, but we'll use it in our WinFinger
application to keep the user informed of the progress by updating the caption of the window as the process moves
along.

So when is this function called and what calls it? Take a look at the ConnectHelper() function which has the
following implementation:

BOOL CFingerSocket::ConnectHelper(const SOCKADDR* lpSockAddr,
 int nSockAddrLen)
{
 // Set the status code and notify of event
 SetStatus(CFingerSocket::statusConnecting);
 BroadcastEvent(CFingerSocket::eventConnecting);
 // Pay attention to connect notification
 AsyncSelect(FD_CONNECT);
 // Attempt the connect
 if (CAsyncSocket::ConnectHelper(lpSockAddr, nSockAddrLen))
 {
 // Connected Now!
 OnConnect(0);
 return TRUE;
 }
 else
 {
 // Return OK if connection is deferred.
 return (GetLastError() == WSAEWOULDBLOCK);
 }
}

Remember that ConnectHelper() is a virtual method of CAsyncSocket that is called by the framework as part of
the Connect() function. We override it here because we want more control over how the socket connects to a
remote host. The first thing we do is set the socket status and then broadcast the WM_SOCKET message to whatever
window is interested. Remember that the connection may take a while to complete, so the status is set to reflect an
'in progress' value.

Next, we call the AsyncSelect() function to make the operation asynchronous. This tells the WinSock DLL not to
block waiting for the operation to complete. Instead, it should post an FD_CONNECT message to our socket (actually,
to the CSocketWnd window associated with our socket) when it is done. All other events are disabled for now. They
will be re-enabled as needed, as we'll see later.

Next, we call the ConnectHelper() function of our super class, CAsyncSocket. If you peek at the MFC source
code for the function, you'll see that it does nothing more than to call the WinSock API ::connect() function, so
we check the return code to see whether the connect was successful. If it was, it indicates that our socket was able to
complete the connection right away. However, this is very unlikely, since we told the API not to block waiting for
the connection, but it is possible (in which case no FD_CONNECT would be posted to the socket), so we code for it by
calling our OnConnect() handler directly. We have some code in OnConnect() that we want to execute whether
the call completes synchronously or asynchronously, so we make sure that the function gets called. Now, if the call
to the CAsyncSocket's ConnectHelper() is not successful (the more likely scenario), we check the last error to
see whether it's the value WSAEWOULDBLOCK. This is OK and it's what we expect. It simply means that the
connection is still in progress. Any other error is a problem and our function will return the Boolean value FALSE.

Next, let's take a look at our callback function, OnConnect(), which will be called by the framework when the
connection attempt is finally completed. Note that I said completed and not established. The function will be called
as a result of either a successful or unsuccessful connection attempt.

void CFingerSocket::OnConnect(int nErrorCode)
{
 // Check to see if the connection was OK
 if (nErrorCode == 0)
 {
 // Report the new status
 SetStatus (CFingerSocket::statusConnected);
 BroadcastEvent (CFingerSocket::eventConnect);
 // Pay attention to other events
 AsyncSelect(FD_READ | FD_WRITE | FD_CLOSE);
 }
 else
 {
 // Report the problem
 SetStatus(CFingerSocket::statusReady);
 BroadcastEvent(CFingerSocket::eventConnect, nErrorCode);
 }
}

So first thing's first. We check the value of the parameter nErrorCode. If it's anything other than zero, the
connection failed. In this case, we simply reset our socket status back to the original value and broadcast the result
back to the notification window. On the other hand, if the connection is OK, we change our status code to
statusConnected and broadcast the news to the notification window. Then, and most importantly, we ask the
WinSock API to send us notification messages whenever the socket receives data, sends data, or is closed. If you
forget to do this, your socket will be deaf, dumb and blind!

Once the socket has been connected, the very next notification the WinSock API will send is FD_WRITE, indicating
that the socket is ready to accept data to send. This event will trigger our OnSend() callback function which is
implemented as:

void CFingerSocket::OnSend(int nErrorCode)
{
 if (m_strSendBuffer.IsEmpty())
 {
 // Notify whoever is interested then get out
 BroadcastEvent(CFingerSocket::eventSend);
 return;
 }
 // Try to send what's in the buffer
 int nSent = Send(m_strSendBuffer, m_strSendBuffer.GetLength());
 if (nSent == SOCKET_ERROR)
 {
 UINT nErrorCode = GetLastError();
 // See what happened
 switch (nErrorCode)
 {
 // These are OK and expected!
 case WSAEWOULDBLOCK:
 case WSAEINPROGRESS:
 return;

 default:
 // Report the error.
 BroadcastEvent(CFingerSocket::eventError, nErrorCode);
 break;
 }
 }

 else
 {
 // Remove what was sent from the send buffer
 m_strSendBuffer = m_strSendBuffer.Mid(nSent);
 // Notify whoever is interested.
 BroadcastEvent(CFingerSocket::eventSend);
 }
}

The OnSend() function will be called whenever the socket is capable of accepting data to be written to the
connected socket. It's called once, almost immediately after a successful connection, but is not called again until
after you call the Send() function. Send() is called an enabling function because calling it enables further
OnSend() notifications. In other words, when you call Send(), the API will try to write as much as it can to the
socket. Later, when it's ready to handle another write attempt, it will post another FD_WRITE event, triggering the
OnSend() function again.

Our implementation first checks the contents of m_strSendBuffer to see if there is in fact anything to send.
Remember that this member variable is where the logon name of the user to Finger is stored by the constructor. The
first time OnSend() is called, the function IsEmpty() should return FALSE. Therefore, the CAsyncSocket
Send() method will be called to try to send the entire logon name all at once. (There shouldn't be any problem with
that!) We then check to see how many characters were actually sent, or if an error occurred. The sent characters are
removed from the send buffer so that the next time OnSend() is called (and it will be called again after each call to
Send()) only the remaining, unsent portion is transmitted. If an error occurs, we check to see if it's one of the
acceptable errors listed in the switch statement. Other errors are broadcast to the notification window.

After the host receives the information we sent, it responds by sending back the information about our user. The
OnReceive() function of our socket will be called each time data arrives and can be successfully read (maybe).
Our implementation appears below:

void CFingerSocket::OnReceive(int nErrorCode)
{
 TCHAR tmp[BUFSIZE + 1];
 int nCount;
 switch (nCount = Receive(tmp, BUFSIZE, 0))
 {
 case SOCKET_ERROR:
 // Report it!
 BroadcastEvent(CFingerSocket::eventError, GetLastError());
 break;
 case 0:
 // The server gracefully closed the socket.
 OnClose(0);
 break;
 default:
 // Add the text to the receive buffer
 tmp[nCount] = '\0';
 m_strRecvBuffer += tmp;
 break;
 }
 // Tell whoever cares of the the event
 BroadcastEvent(CFingerSocket::eventReceive);
}

The first thing we do is call the Receive() function to read up to BUFSIZE bytes at a time (BUFSIZE is defined as
512 for the purposes of this example). This is a completely arbitrary number. The Receive() function will do what
it can to read the requested number of characters. It may actually read less, but never more, than this number. If there
are fewer than 512 characters to read, it will return immediately having read only what was available. In other
words, it doesn't wait for that many to be available before returning. If there are more than 512, it will read up to 512

and the WinSock API will post another FD_READ event, triggering OnReceive() once again. Note that Receive(),
like Send(), is an enabling function. This means that OnReceive() will be called once when data first arrives. It
doesn't get triggered again until after you call Receive() to read the buffer contents, and only then if there's more
data to be read.

There's another approach to receiving data that may be useful. Rather than hard-coding the size of
the temporary buffer used to receive the data, some applications make a call to the CAsyncSocket
member function IOCtl() to first determine the total number of bytes queued for the application to
receive. For example:
DWORD dwBytes;
pSocket->IOCtl(FIONREAD, &dwBytes);
Then, the application can allocate the exact buffer size to receive the data. This avoids extra calls
to OnReceive() that result when the buffer is too small. This might make your application a little
snappier, but is usually not necessary.

As the data arrives, our function slaps a string-terminator at the end and then appends it to the CString receive
buffer. If an error is encountered, it's broadcast to the notification window. Also, if the total number of characters
read during one call to Receive() is zero, this indicates that the server has closed the connection.

The last method of CFingerSocket is the OnClose() handler. OnClose() is called when either side, the server or
the client, closes the connection. Our implementation appears below:

void CFingerSocket::OnClose(int nErrorCode)
{
 // Update our status code
 SetStatus(CFingerSocket::statusReady);
 BroadcastEvent(CFingerSocket::eventDisconnect);
}

As you can see, it does nothing more than to reset its internal status code and then broadcast the event to the
notification window. For our application, the server is the one the closes the connection. It does so after spilling its
guts about the user we are Fingering. Therefore, this event is of great importance to our application. We'll use this
event as an indication that it's time to display the contents of the receive buffer to our user. Let's shift gears now and
focus our attention on using the CFingerSocket class within our application.

The CWinFingerDlg Class
WinFinger is a dialog-based application. Our main window, CWinFingerDlg, manages the use of the socket class
just described by creating a new socket each time the user presses the Finger button. It also responds to the broadcast
messages sent by the socket by displaying the socket progress and by displaying the host response when it arrives.
CWinFingerDlg has one member variable to keep track of the socket object, declared as a pointer to a Finger
socket, as shown below:

CFingerSocket* m_pSocket;

The window's constructor sets this pointer to NULL and the handler for the BN_CLICKED event of the Finger button
does the work of creating the socket. The handler, OnFinger(), is implemented as:

void CWinFingerDlg::OnFinger()
{
 // Update the MFC member variables that are connected
 // to the controls
 UpdateData(TRUE);
 if (m_strHost.IsEmpty())
 {
 // The loopback address
 m_strHost = "127.0.0.1" ;

 }
 // Reset the response value
 m_strResponse.Empty();
 UpdateData(FALSE);
 // Delete the socket it it exists
 if (m_pSocket)
 {
 delete m_pSocket;
 }

 // Create a new socket to use for this finger request
 // Set it up to send notifications to this window
 m_pSocket = new CFingerSocket(m_strUser, this);
 if (m_pSocket->Create())
 {
 // Try to connect. This will most likely return right away
 // and then send 'Connecting' event since it would otherwise block.
 if (!m_pSocket->Connect(m_strHost, 79))
 {
 delete m_pSocket;
 m_pSocket = NULL;
 // The connect failed!
 AfxMessageBox(IDP_FINGER_CONNECT_FAILED);
 }
 }
 else
 {
 delete m_pSocket;
 m_pSocket = NULL;
 // The Create failed! Most unusual!
 AfxMessageBox(IDP_SOCKET_CREATE_FAILED);
 }
}

The first thing the function does is to call the UpdateData() function to perform the dialog's field exchange
routine. When UpdateData() is called with the parameter value TRUE, it will copy the contents of the edit boxes
into the associated member variables. Next, the function checks the contents of the member variable m_strHost to
see whether the user has entered a host address. If not, we want our application to connect to a Finger server running
on the user's machine. We accomplish this by setting the host address to the magic IP address 127.0.0.1. This IP
address is known as a loopback address. It allows your machine to talk to itself as if it were both the client and the
server. Moving on, we clear the contents of the field exchange variable m_strResponse and then update the
display. Now we're finally ready to deal with the socket object.

If the socket object already exists, we delete it. Really, we should check its status to see whether there's a Finger
already in progress. You could call the GetStatus() function, report the status to the user, then let the user make
the decision about canceling the operation. Alternatively, you could disable the Finger button until the first Finger is
complete.

In either case, the next step is to instantiate a new CFingerSocket object. We do so by passing the user logon name
(m_strUser) and the window to notify (this) to the constructor. Then we create the socket and try to connect to
the host using port 79 (the well-known Finger port). If the connect is successful, we're on our way! But remember,
just because the connect returns TRUE doesn't mean that we're actually connected. Most likely, it means that the
connection is in progress and that we'll receive a notification later when it finishes.

Let's take a look at our dialog's notification handler now. It's implemented as:

void CWinFingerDlg::OnSocketEvent (UINT nEvent, UINT nErrorCode, SOCKET hSocket)
{
 CString string;

 // Get the socket that sent this message
 CFingerSocket* pSocket = (CFingerSocket*)
 CFingerSocket::FromHandle(hSocket);
 ASSERT (pSocket != NULL);
 // Check the event code
 switch (nEvent)
 {
 case CFingerSocket::eventConnecting:
 string.LoadString(IDS_WF_CONNECTING);
 break;
 case CFingerSocket::eventConnect:
 if (nErrorCode == 0)
 {
 string.LoadString(IDS_WF_CONNECTED);
 }
 else
 {
 string.LoadString(IDS_NO_CONNECT);
 AfxMessageBox(string + m_strHost);
 string.LoadString(IDS_WF_DEFAULT);
 delete m_pSocket;
 m_pSocket = NULL;
 }
 break;
 case CFingerSocket::eventReceive:
 string.LoadString(IDS_WF_RECEIVING);
 break;
 case CFingerSocket::eventSend:
 string.LoadString(IDS_WF_SENDING);
 break;
 case CFingerSocket::eventDisconnect:
 string.LoadString(IDS_WF_DISCONNECTED);
 m_pSocket->GetText(m_strResponse);
 UpdateData(FALSE);
 delete m_pSocket;
 m_pSocket = NULL;
 break;
 case CFingerSocket::eventError:
 GetWindowText(string);
 break;
 }
 SetWindowText(string);
}

The first thing we do is get a pointer to the socket that sent this message by calling FromHandle() to lookup the
MFC object that is attached to the socket handle. This is completely unnecessary in this application because we've
rigged it so that there's only one socket 'alive' at any one given point in time, that socket being m_pSocket.
However, it illustrates the correct use of the OnSocketEvent() handler in a multi-socket application.

Next, we check to see which event occurred. Most are just progress messages and we respond by simply updating
the caption of the window so that the user is kept informed of the progress. In response to the connect event, we
check the value of nErrorCode to see whether it was successful. If it wasn't, we inform the user and delete the
socket. The event of real importance to the application is the disconnect event, eventDisconnect. We respond to it
by displaying the contents of the receive buffer to the user. Remember that this event is sent by the OnClose()
method of the socket, indicating that the server has finished sending data and has closed the socket. This is the ideal
time to display the results by updating our dialog's field exchange member variable and then performing the screen

update.

That's it! Try out the application by running the program that's included on the CD-ROM in the back of this book.
You don't even need access to the Internet to test the example, since we've also supplied a Finger server. I encourage
you to study the code for both the server and client and try to make a few improvements. For example, you could
think about using something other than a CString for the receive buffer or try adding a timer to see how long a
request takes and to cancel long-running requests. You can learn a lot from this simple application.

For our next project, let's leave our asynchronous socket class behind and take a look at an application that uses
CSocket instead.

Building a Home Automation Application
The Finger client we built in the previous section uses the MFC class CAsyncSocket exclusively. CAsyncSocket
is the socket base class that comes very close to coding at the 'bare-bones' WinSock API level. It provides for some
abstraction above the API, but not much. CSocket, on the other hand, is a subclass of CAsyncSocket that makes
socket programming even easier. It works with a couple of other classes which allow you to uses a socket like you
would a file. To illustrate the use of CSocket, CSocketFile and CArchive, let's build an application to automate
our homes!

The application that we'll be constructing, WinSwitch, is divided into two programs. The first is a dialog-based
server program that can send commands across the wiring in your house to turn appliances on and off, using simple
X-10 technology. All you need is a standard serial port, a CP-290 controller and one or more X-10 modules,
although you don't need them to compile and run the application.

For more information about Home Automation, you can visit the web page
http://www.hometeam.com

Here, you can see the interface for our server program:

As you can see, the server creates a socket that listens on port 4000. It also opens the serial port COM2 to try to find
the CP-290 controller and then it waits patiently for clients trying to connect. When a client does connect, the server
will create a new socket to communicate with the client and then it waits for the client to send a command. The
commands come in the form of serialized objects. The client constructs the objects and sends them to the server
through a socket with an associated CArchive. The interface for the client looks like this:

The WinSwitch Client program allows the end-user to select an X-10 module and a dimmer setting and it sends the
information to the server program that does all the work of communicating with the CP-290 controller. Each module
is identified by a unique House Code and Unit Code, such as A1 or C8. The client program provides two
CComboBox controls to identify the module and a CSliderCtrl to set the dimmer level. When the user presses the
Send button, the program instantiates a CX10Unit object with the module information and serializes it to the socket
archive. When the server receives the object, it sends the information to the CP-290 which does all the real work.
The server then sends back a message to the client in the form of a CString object. The client will display this
message to the user when it receives it.

Let's take a look at the details!

The WinSwitch Server
The server application, WinSwitch Server, is a simple dialog-based application, since there's really no need for
much of a user interface; it's a network-based server after all. To create this application, we used MFC AppWizard
(exe) to create a Dialog based application and, of course, we selected Windows Sockets support from Step 2 of
the AppWizard. The remaining options were left at their default settings. Next, we added the list box control
shown and the Start and Stop buttons to the dialog resource.

Let's take a look at the handler for the BN_CLICKED event of the Start button:

void CWinSwitchSDlg::OnStart()
{
 // Try to listen to the port
 m_pLSocket = new CListenSocket(this);
 if (m_pLSocket->Create(WINSWITCH_PORT))
 {
 if (m_pLSocket->Listen())
 {
 // Display Startup message
 CString strMsg;
 strMsg.Format(_T("I'm listening to port %d..."), WINSWITCH_PORT);
 m_list.ResetContent();
 Display(strMsg);
 // Enable/Disable buttons
 m_btnStart.EnableWindow(FALSE);
 m_btnStop.EnableWindow(TRUE);
 }
 }
 else

 {
 delete m_pLSocket;
 m_pLSocket = NULL;
 }
 // Try to "start" the CP290 on COM2
 if (m_CP290.Open(2))
 {
 Display(_T("The CP290 is on COM2")) ;
 }
 else
 {
 Display(_T(" -> Could not find CP290 on COM2"));
 }
}

The first thing the function does is create a CListenSocket socket, m_pLSocket, to listen for clients wishing to
connect to the WinSwitch port. After creating the listening socket, it displays a start-up message (Display() is a
simple method that adds a string to the list box), disables the Start button and enables the Stop button. Finally, the
function tries to initialize the CP-290 controller by calling its Open() method.

m_CP290 is a member variable of type CCP290 which provides a high-level object for dealing with the serial port
and sending commands to the CP-290 controller. The Open() method simply opens the serial port passed as a
parameter, COM2 in this example, at 600 baud as required by the controller. I won't bore you with the details of the
class CCP290 here. The complete source code is available on the CD-ROM provided with this book. One thing,
though, is to be sure that the symbol VC_EXTRALEAN is not defined in StdAfx.h. If it is, the communications
functions needed to access the serial port won't be available. Let's move on and look at how the listening socket
connects.

The listening socket is created as an instance variable of the class CWinSwitchSDlg, the main window, and it will
receive OnAccept() notifications when a client tries to connect. Notice that the constructor of CListenSocket is
passed the this pointer for the dialog. The socket will use it to keep a pointer to the window and forward events to
it as they are received. Actually, the only event that it is really interested in is OnAccept() which is implemented in
CListenSocket as:

void CListenSocket::OnAccept(int nErrorCode)
{
 // Tell the Server Window
 if (m_pWnd)
 {
 m_pWnd->OnSocketAccept(this);
 }
}

Pretty simple! This is the only function declared in the class CListenSocket and it just turns around and calls the
OnSocketAccept() function of the main window (m_pWnd is the CWinSwitchSDlg window passed as the this
pointer to the socket constructor).

CWinSwitchSDlg::OnSocketAccept() is implemented as:

void CWinSwitchSDlg::OnSocketAccept(CListenSocket* pLSocket)
{
 // Called by the listening socket when a client
 // tries to connect
 CClientSocket* pCSocket = new CClientSocket(this);
 if (pLSocket->Accept(*pCSocket))
 {
 // Initalize the connection socket (files and archives)
 pCSocket->Initialize();
 // Add the new socket to our list of active clients

 m_clients.AddTail(pCSocket);
 // Find out who we're talking to
 CString strAddr;
 UINT nPort;
 pCSocket->GetPeerName(strAddr, nPort);
 // Display IP address of client
 Display(_T("Accepted a connection from ") + strAddr);
 }
 else
 {
 // This would be strange
 Display(_T("Accept Failed!"));
 delete pCSocket;
 }
}

First, the function creates another socket of type CClientSocket, which will be used to manage the connection.
Just like the listening socket, the new socket is created with the this pointer passed to its constructor. This will
ensure that the server receives notifications as they occur on the connected socket. Next, the Accept() function of
the listening socket is called with a reference to our new socket passed as a parameter. The Accept() function will
complete the connection with the client application providing our new socket as the end-point. Then, the
Initialize() function of the new socket is called (we'll take a look at it in a minute) and the new socket is added
to a CObList list, m_clients, just to keep track of it. A message is displayed to anyone bored enough to be sitting
around watching our server run. Notice the use of the function GetPeerName(). GetPeerName() will tell us the IP
address and port number of the client machine. This is interesting information and is displayed in the list box.

CClientSocket is the most interesting class in this entire application. It's used by both the server and the client
programs to send and receive objects using the really neat CSocketFile and CArchive classes. Let's take a look at
the definition of CClientSocket:

class CClientSocket : public CSocket
{
 DECLARE_DYNAMIC(CClientSocket);
// Construction
public:
 CClientSocket(CWinSwitchSDlg* pWnd);
 void Initialize();
// Unit Functions
public:
 void SendUnit(CX10Unit& unit);
 void ReceiveUnit(CX10Unit& unit);
 void SendMsg(LPCTSTR lpszMessage);
 void ReceiveMsg(CString& strMsg);
// Attributes
protected:
 CWinSwitchSDlg* m_pWnd;
 CSocketFile* m_pSocketFile;
 CArchive* m_pArchiveIn;
 CArchive* m_pArchiveOut;
// Overridable callbacks
protected:
 virtual void OnReceive(int nErrorCode);
 virtual void OnClose(int nErrorCode);
 // Implementation
public:
 virtual ~CClientSocket();

};

The first thing to notice is that this class is derived from CSocket. CSocket is the synchronous MFC-defined class
that makes it possible to use sockets like files. CClientSocket will take advantage of this wonderful fact by
associating itself with a CArchive object and serializing the objects it's asked to send and receive. Take a look at the
protected attributes of the class and you'll see a pointer to a CSocketFile object and two pointers to CArchive
objects. They are created by the function Initialize() and used by the member functions SendUnit(),
ReceiveUnit(), SendMsg() and ReceiveMsg(). The function Initialize() appears below. Remember that
it's called by the main window once the client socket has been created by the OnSocketAccept() method.

void CClientSocket::Initialize()
{
 m_pSocketFile = new CSocketFile(this);
 m_pArchiveIn = new CArchive(m_pSocketFile, CArchive::load);
 m_pArchiveOut = new CArchive(m_pSocketFile, CArchive::store);
}

The function creates a new CSocketFile and passes this to the constructor. The constructor will attach the socket
to the file so that read and write operations called on the file are directed to the socket. Also, two archives (one for
loading and one for storing), are created and attached to the socket file. This sets the stage for serializing objects
directly to the socket! To illustrate, let's now look at the send and receive functions of our client socket class.

A server can send a textual message to a client by calling the SendMsg() function. It's implemented as:

void CClientSocket::SendMsg(LPCTSTR lpszMsg)
{
 CString strMsg(lpszMsg);
 *m_pArchiveOut << strMsg;
 m_pArchiveOut->Flush();
}

The function just creates a CString object and stores it to the archive. Also, it calls the Flush() function to force
the buffer contents out to the socket immediately. Too easy! You can bet that the ReceiveMsg() function is just as
easy:

void CClientSocket::ReceiveMsg(CString& strMsg)
{
 *m_pArchiveIn >> strMsg;
}

The other two send and receive functions are used to serialize CX10Unit objects to and from a socket. The class
CX10Unit encapsulates the specifics about an X-10 module and it implements a standard Serialize() function
that can be used with our socket's send and receive functions:

void CClientSocket::ReceiveUnit(CX10Unit& unit)
{
 unit.Serialize(*m_pArchiveIn);
}

void CClientSocket::SendUnit(CX10Unit& unit)
{
 unit.Serialize(*m_pArchiveOut);
 m_pArchiveOut->Flush();
}

So, the only question is, when are these functions called? To answer that, let's jump back to the CWinServerSDlg
class (our server's main window) and look at the OnSocketReceive() function. This function is called by the

CClientSocket whenever it has received data that needs to be read.

void CWinSwitchSDlg::OnSocketReceive(CClientSocket* pCSocket)
{
 // Need to build a unit object to receove the data
 CX10Unit unit;
 pCSocket->ReceiveUnit(unit);
 // Display the thing
 m_list.SetCurSel(m_list.AddString(_T("Received: ") +
 unit.Description()));
 if (m_CP290.IsOpen())
 {
 // Send the unit information to the CP-290 controller
 m_CP290.SetUnit(unit);
 // Send message back to client
 pCSocket->SendMsg(unit.Description() + _T(" - OK"));
 }
 else
 {
 // Tell the client the bad news.
 pCSocket->SendMsg(_T("CP-290 is not available!"));
 }
}

This server function creates a local variable of type CX10Unit and then calls the socket's ReceiveUnit() function,
described earlier. We display a message on the list box and then check to see whether the CP-290 controller is
available to handle the request. If it is, the function passes the unit information to the controller and then sends back
a textual message to the WinSwitch Client indicating the request has been passed on to the controller. If the
controller is not available, a different message is sent back to the client.

And that's it! The server really does nothing more beyond passing the request off to the controller. So let's take a
look now at the client application to see how it establishes a connection with the server, sends the unit information
and receives messages.

The WinSwitch Client
The WinSwitch Client has one purpose: to send commands to the server program. As written, it's a simple
application that allows the user to specify the address of an X-10 module, set a dimmer level using a slider control
and send the request off to the WinSwitch Server. Also, it can accept textual messages sent by the server and display
them to the end-user. This program uses the same CClientSocket class employed by the server program (with a
slight modification to accommodate the new main window) and it illustrates the use of CSocket in a client
application. When we're attempting to connect to the server, we'll see that there's a difference between using
CSocket over CAsyncSocket. Let's jump right in…

The WinSwitch Client program, like the server program, is a dialog-based, AppWizard-produced application with
WOSA support. We added combo box and slider controls to the dialog template, as well as a Send button. Let's
begin by looking at the code for the OnSend() handler:

void CWinSwitchCDlg::OnSend()
{
 // See if we need to connect first
 if (!m_pSocket)
 {
 // Try to connect. If we can't, bail out.
 // DoConnect will display error message
 if (!DoConnect())
 return;
 }
 // We are connected. Do field exchange to

 // update the member variables.
 UpdateData(TRUE);
 // Create an X-10 Unit Object
 CX10Unit unit(m_strHouseCode.GetAt(0),
 ::atoi(m_strUnitCode),
 15 - m_slider.GetPos());
 // Send it!
 m_pSocket->SendUnit(unit);
}

To start, the function checks to see whether a socket has already been created. There's only one socket object used in
the program and it remains open until either the server shuts down or the user presses the Close button. So, if the
socket is already created, the function moves along and calls the dialog's UpdateData() function to transfer the
values the use enters from the controls to the associated member variables. Then the function constructs a new
CX10Unit object with the values selected by the user. Finally, the socket's SendUnit() function is called to
serialize the object to the awaiting server.

One thing to point out here is the statement:

15 - m_slider.GetPos()

This will get the position of the slider control and invert the value so that up is down and down is up. In other words,
after applying this formula, moving the slider thumb north increases the value and moving the slider thumb south
decreases the value. This works because there was a previous call to the SetRange(0,15) in OnInitDialog().

If the socket is not yet connected when this function is called, the dialog's DoConnect() method is invoked.
DoConnect() will handle the dirty work of asking the user for the IP address (or domain name) of the server and
the appropriate port number to use. Keep in mind that we're using the synchronous class CSocket in this program.
Therefore, the connect can be handled in this way (since it doesn't return to the caller until it has completed). Had
we been using the asynchronous class CAsyncSocket, we couldn't have written to the socket in OnSend(). We
would have to wait until we received the OnConnect() notification. Of course, we would not be able to use an
archive either! Let's look at DoConnect() next:

BOOL CWinSwitchCDlg::DoConnect()
{
 // Display the connect dialog
 CConnectDlg dlg(this);
 // Set default values
 dlg.m_strHost = _T("127.0.0.1");
 dlg.m_nPort = WINSWITCH_PORT;
 if (dlg.DoModal() == IDOK)
 {
 // Create the new socket
 m_pSocket = new CClientSocket(this);
 if (m_pSocket->Create())
 {
 // Try to connect using the user-entered values
 if (m_pSocket->Connect(dlg.m_strHost, dlg.m_nPort))
 {
 // Build CSocketFile and CArchive objects
 m_pSocket->Initialize();
 return TRUE;
 }
 else
 {
 // Connect Failed!
 MessageBox(_T("Could not connect to ") + dlg.m_strHost);
 }
 }

 else
 {
 // Create Failed - very unusual!
 MessageBox(_T("Could not Create() a new socket!"));
 }
 }
 // Not Conencted!
 if (m_pSocket)
 delete m_pSocket;
 m_pSocket = NULL;
 return FALSE;
}

As you can see, the function creates a modal dialog to get the address and port number of the server from the user.
Notice the default value of "127.0.0.1" is set for the IP address. Remember from our discussion earlier of the
Finger application that this special address is a loopback address that makes it possible to test the application
without using a network. Of course, to be truly useful, the application should be used over a network and the address
should default to a value read from the registry.

If the user presses the OK button, the DoConnect() function will try to create a socket and connect to the address
and port entered by the user. Remember that Connect() will not return until the operation is complete (although it
does pump messages in the mean time). If it's successful, the socket's initialization function is called to create the
CSocketFile and CArchive objects. Control will then return to the main window's handler for the Send button
and the unit information will be transmitted.

Lastly, let's examine the code that handles the receipt of textual messages from the server. Recall that the server
application sends back messages after it receives and process the unit information sent by the client. The code below
is all it takes to read the message and display it to the user.

void CWinSwitchCDlg::OnSocketReceive(CClientSocket *pSocket)
{
 pSocket->ReceiveMsg(m_strMsg);
 UpdateData(FALSE);
}

That's it! You can now manage the appliances in your home or office from just about anywhere. This little
application actually has a lot of potential, but you might want to try a few improvements. For example, it would be
nice if the client could request a list of modules from the server, sorted by name, so that the user doesn't have to
specify a cryptic address. I'll leave that exercise up to you. Using CSocket, CSocketFile and CArchive, it's
actually very simple to implement. You can serialize anything! Objects can be disassembled at one end and
reassembled at the other.

Summary
The Internet is exploding! People are thinking of new applications everyday to take advantage of the fact that it's
everywhere and it's inexpensive. With tools like Visual C++ and the classes provided by MFC, implementing those

new ideas is getting easier.

In this chapter, we introduced the WinSock Application Programming Interface. We focused on its asynchronous
extensions, designed to take advantage of Windows' message-based architecture. We talked about the different types
of sockets, datagram and stream, and how they can be used in a client/server environment. We also discussed
important concepts, such as network byte ordering, IP addresses and port numbers within the context of the MFC
socket classes. Finally, we developed two complete applications, demonstrating the use of all of the MFC socket
classes including CAsyncSocket, CSocket, CSocketWindow, CSocketFile and CArchive.

Intranet Programming with
WinINet

Internet-enabled Applications
Previous chapters have illustrated how Windows sockets provide a transport-independent way of programming
network-based applications. Even though we had a great deal of control over how the application uses the network,
we also had to do a significant amount of work to implement even a very simple network application. In a real
production environment, the problem becomes even more complex. We would have had to take a hard look at other
details, including access authentication, security and network failure scenarios. The problem becomes very complex
very quickly if the same application designer has to consider the application requirements as well as the networking
details. This is especially true if the target network is a huge, heterogeneous, unfriendly network such as the Internet.

Despite the fanfare associated with the Internet and the Information Highway, analysts and experts agree that
intranets will become productive and profitable long before the actual Internet. An intranet is an isolated network,
connecting computers within a corporation using existing Internet-based technologies. For example, a particular
company may have an intranet consisting of a World Wide Web server at each of their departmental sites, giving
information on the department's activities.

By isolating the corporate intranet from the Internet outside, a company can enjoy the benefits provided by Internet
technologies without suffering the drawbacks. No worries about external security break-in attempts, leakage of
proprietary secrets, etc.

Ironically, when we set about implementing real business solutions on the intranet, using existing Internet
technologies, we discover just how limited these technologies really are. In particular, the building blocks that we
can utilize are a handful of protocols, mostly designed in the 1970s, having changed very little since. The basic set
of application level protocols includes:

File Transfer Protocol (FTP)
Gopher Protocol
Network News Transfer Protocol (NNTP)
Simple Mail Transfer Protocol (SMTP)
Hypertext Transfer Protocol (HTTP)
Telnet and Remote Login (rlogin)
Simple Network Management Protocol (SNMP)
Bootstrapping Protocol (BOOTP)
Domain Name System (DNS)
Network File System (NFS) and Remote Procedure Calls (RPC)
X Protocol
Finger
Whois
Archie
WAIS
Veronica
Ping and Traceroute

While sufficient for satisfying the information consumption demands of the general public on the Internet, these
protocols fall short on delivering reliable, easy-to-use yet flexible services needed for business-oriented applications
on the Intranet.

To solve more and more complex business problems with Internet-based technology, new protocols and easier-to-
use development tools and programming interfaces need to be introduced. Network-based software has to be made
easier to program. Only then can the designer concentrate on the complex business problem at hand, and not toil
over the details of networking transport programming.

In a relentless race to become the dominant force in the future of the Internet, Microsoft and its competitors are
scrambling to define flexible yet easy to use software foundations upon which to build new Internet/intranet-enabled
applications. This is an exciting time. Both the independent software developer and the end user will benefit from
this intense competition.

In this chapter, we'll examine the design and implementation of an intranet application. It solves a common problem
found in corporate MIS: the need to distribute and collect information in a timely and accurate manner across the
enterprise. We'll look at a versatile new operating system extension from Microsoft which we can use to great
advantage: the Win32 Wininet.dll library, referred to as WinINet. Instead of working out a new protocol from
scratch, we'll leverage WinINet and combine the standard FTP and Gopher protocols into a useful custom
application protocol. We'll examine the API in detail and discuss the operation of the two protocols.

Next, we'll describe the design and implementation of our intranet 'corporate information system' using the custom
protocol. This will show how you can use the WinINet APIs to implement practical business applications today. The
object-oriented design will leverage Visual C++ and MFC to make programming a lot easier. Finally, we'll examine
how we can set up and test the application on a network.

WinINet Technology
WinINet is actually a fundamental component of the complex Microsoft ActiveX client architecture. It's the first
available component from the ActiveX suite. See Chapter 17 for more coverage of the overall ActiveX strategy.

For our purposes, we can view WinINet simply as a set of new Win32 function calls which will facilitate the
implementation of our network-based applications. Microsoft has announced that the WinINet extension will be
built into all new versions of Windows, and will become a part of the standard Win32 API set. This will preserve our
investment in using WinINet, which, for corporate developers and managers, is often a key issue.

We'll be using WinINet to access a standard FTP and a Gopher server in a very application-specific manner. In
essence, we'll be using the standard FTP and Gopher protocol to create a new protocol that only our application will
understand. This will enable us to illustrate the design of a complete intranet application within the limited space of
this chapter.

The figure above shows how our application will be working over two distinct layers of networking middleware.
The WinSock library isolates higher layers from transport dependencies and the complexity in programming to
different transports. The WinINet protocol in turn insulates us from the difference between implementations of FTP,
Gopher and HTTP servers, and the complexity in programming the protocol details. Actually, WinINet completely
shields us from having to deal with WinSock at all. Overall, what we gain is the ability to keep a sharp focus on our
application problem, without having to work out many of the details related to network programming.

The WinINet API
The WinINet API is currently provided in the form of a dynamic link library (DLL). Applications which make use of
WinINet will be required to link with Wininet.lib, which is provided in the ActiveX developer's kit. Future
versions of Win32 SDK will include the WinINet libraries and header files as a standard component.

WinINet provides an operations-based interface to the client features of the three most popular protocols of the
Internet:

File Transfer Protocol (FTP)
Gopher Protocol

Hypertext Transfer Protocol (HTTP)

Our focus will be on the FTP and Gopher support offered by WinINet. Moreover, future Microsoft products will
provide a much higher level of programming access to HTTP and HTML decoding, which will practically eliminate
the need for HTTP within WinINet. See the ActiveX HTML document description in the next chapter for more
details.

By using the WinINet API in our project, we can:
Avoid programming directly to Windows sockets and having to learn the idiosyncrasies of TCP/IP or
sockets.
Avoid having to include code which is dependent upon specific FTP, HTTP or Gopher
implementations.
Avoid having to track changes or extensions in the FTP, HTTP, Gopher or their associated security or
authentication standards; Microsoft will track these changes and modify the WinINet implementation
while maintaining the same API for us.

WinINet supports multithreaded applications, persistent caching and Unicode API versions. We won't be exploiting
these features of WinINet in our project, but we'll briefly describe them here.

Multithreaded Application Support
The WinINet API is designed to be completely thread-safe and re-entrant, which is consistent with most Win32
APIs. In a typical networking application, better overall throughput may be obtained if certain operations can be
carried out in parallel.

For example, on a moderately slow connection to a network, an application that needs to open multiple connections
to servers may be able to attempt those connections simultaneously, instead of serially, one at a time. In Windows 95
or Windows NT, you can do this by creating additional threads. Because it is re-entrant and thread-safe, any thread
created by an application can freely call the WinINet API functions without having to worry about corrupting the
internal states maintained by the WinINet run time. Internal session synchronization is also guaranteed, even in
multithreaded applications.

Persistent Caching Support
To improve information access performance, the WinINet APIs can make use of a persistent cache. This cache
retains images of the most recently accessed network resources. If the same resource is requested by the application,
it will be fetched from the cache, instead of across the network. WinINet carries this task out through a generic
helper DLL, called Urlcache.dll.

One can immediately see drawbacks in a corporate information system having hidden caching active. Imagine the
problems that you might from users inadvertently retrieving stale information from the cache, thinking that it's
current. Fortunately, you can disable persistent caching explicitly when WinINet API calls are made.

In general, persistent caching isn't useful for intranet-based applications. It's more applicable to Internet access.
Unlike the high speed access to information sources on an intranet, the typical Internet connections are restricted to
analog modems of 28.8k bps. Typical Internet users don't really mind so much if the retrieved data is a few hours
old. In these cases, the caching of recently used resources will dramatically improve the perceived responsiveness of
the network.

The cache maintained by WinINet is a common URL cache which can be used by other Internet applications running
on the same client PC. The space for caching is allocated right from the filesystem accessible by the local machine.
Don't confuse this cache with the cache often provided by caching servers (i.e. the caching web server at your
Internet service provider). Some interesting Internet applications, such as off-line resource viewers, can be written
using WinINet persistent cache support.

Unicode API Support
Unicode-enabled applications allow for localization in countries which may make use of very large character sets,
which applies to most languages of the Far East. Rather than a single-byte ANSI encoded char data type, a double-
byte Unicode character is used instead. Unicode is a worldwide character encoding standard, with a unified
character set, representing all the characters in modern computing, used across all languages of the international
marketplace

WinINet APIs which return or take parameters that contains characters, strings, or structures containing characters or
strings are sensitive to Unicode encoding. There are actually two version of each API in the WinINet library: one for
the ANSI character encoding and one for the Unicode character encoding. Consistent with the Win32 standard,
WinINet Unicode APIs can be enabled by setting a flag during the compilation process. The WinINet APIs
themselves always take LPCTSTR, LPTSTR and TCHAR as parameters, instead of the usual LPCSTR, LPSTR and char
types. This enables the calling application to use either ANSI or Unicode parameters. If the calling application is
also consistent in using the LPCTSTR, LPTSTR and TCHAR types, it can also participate in the ANSI to Unicode
switch should it be necessary.

The process of enabling an application to be used in multiple countries with different languages is generally termed
internationalization, but this encompasses many more aspects of program design and implementation than just
Unicode support alone. Coverage of internationalization techniques is beyond the scope of this chapter.

The WinINet Operational Model
This sections will discuss the WinINet operational model and the specific API functions that we'll be using in the
implementation of our intranet project.

WinINet provides simultaneous connections to multiple protocol servers within one single-threaded or multithreaded
application. The management of multiple connections is performed through a hierarchy of Internet handles. When
an application is started, it must initialize the WinINet libraries via the InternetOpen() call and obtain an
application session handle from WinINet. With this handle, the application can make a new connection to a protocol
server and get a new connection handle in return from the system.

Synchronous and Asynchronous Operations
WinINet supports both synchronous and asynchronous API operations.

In a synchronous operation, any API calls made during the session (between InternetOpen() and when the
application session handle is closed) will block until:

The operation is properly completed.
The time elapsed has exceeded specified timeouts.
The operation is canceled by another thread.

You should use synchronous operations for any new WinINet applications. It is also the default mode of operation
for WinINet. You can manage multiple concurrent active connections with synchronous mode operations by using
one thread per connection (this is one situation where using multiple threads actually greatly simplifies the
programming problem and enhances performance). To ensure that the performance objective will not be
compromised, always remember to place a capacity limit on the maximum number of threads that can be created
within an application. The number of threads that you can create before performance deteriorates depends on the
hosting hardware platform and the nature of work performed by the threads. You should determine this via careful
testing on the minimal hardware requirements of your application.

We'll describe the asynchronous mode of operation in the next paragraph, but since our sample application doesn't
use it, we've included this just to shed some light on the reason for many of the optional parameters in the WinINet
API.

If the application session is opened with the INTERNET_FLAG_ASYNC flag set when InternetOpen() is called, the

WinINet library will attempt to service API calls asynchronously whenever possible. In this case, calls to the API
will almost always return immediately. In the asynchronous mode, if an API call returns TRUE, the operation has
completed. If the API call returns FALSE, the GetLastError() API should be called and verified against the
ERROR_IO_PENDING value. An ERROR_IO_PENDING value indicates that the API operation is being completed
asynchronously. Meanwhile, the application can get on with any other work. When the operation is finally
completed, the status callback function will be called with the INTERNET_STATUS_REQUEST_COMPLETE code.

You can have several pending API calls active during asynchronous operation. If this is the case, how will the single
status callback function tell which request the completion message is for? The answer lies in an optional context
parameter in all APIs which supports asynchronous operation. Typically, you can use this DWORD context parameter
to store a pointer or an index into data structures containing more information relating to the specific API calling
instance. For asynchronous operations, this context parameter is mandatory for API calls.

To summarize, asynchronous mode applications must:
Call InternetOpen() with the INTERNET_FLAG_ASYNC.
Define a status callback function and register it via InternetSetStatusCallback().
Always call APIs with a context parameter.
Check for an API pending situation by verifying that the return code is FALSE and
GetLastError() returns ERROR_IO_PENDING.
Decode the context parameter when the status callback function is called with
INTERNET_STATUS_REQUEST_COMPLETE.

It's clear that asynchronous mode applications can be quite difficult to write and test. Their style is reminiscent of
Windows 3.1 communications programming and is mostly supported just for compatibility. The asynchronous mode
is most suited to applications which must be single-threaded and stay responsive to the end user, although you can
also use it in extreme performance and memory sensitive situations where the overhead of threading may be a
concern. In demanding situations like this, though, there may be other more suitable mechanisms, such as writing
directly to WinSock and implementing only the elements of the protocol used.

Error Handling
Since WinINet is an extension of the Win32 API, it reports errors in exactly the same way as other Win32 APIs. If an
API fails, an application should check the error code, which can be done via the Win32 GetLastError()function.
Specifically for FTP and Gopher operations, however, more extensive error reporting support is available via the
InternetGetLastResponseInfo() API. This API provides more extensive error text whenever
GetLastError() returns ERROR_INTERNET_EXTENDED_ERROR.

Consistent with Win32 conventions, an API typically returns TRUE for successful operations and FALSE for failed or
pending operations. Some APIs return an HINTERNET handle, where a NULL return value also indicates operation
failure.

In synchronous mode multithreaded operations, be aware that the GetLastError()and
InternetGetLastResponseInfo() functions are guaranteed to be thread-safe. Each thread will receive the
expected error information. However, you should always check the return code from
InternetGetLastResponseInfo()to make sure that the function has succeeded.

Internet Handles
The Internet handle type, HINTERNET, is used throughout the WinINet functions. There is no equivalence between
Win32 file handle and Internet handles, which means that you shouldn't use the Internet handles in Win32 file IO
functions.

Internet handles are being used to represent different system objects in WinINet:
An application's WinINet session and its associated run-time support environment; this is returned by

the InternetOpen() API.
One of potentially many application connections to a remote protocol server; this is returned by the
InternetConnect() API.
A specific 'file-find' handle returned by the FtpFindFirstFile(), or GopherFindFirstFile()
APIs.
One or more 'file' or item level handles for Internet resources being manipulated through WinINet
functions; this handle is returned from FtpOpenFile() or GopherOpenFile() API call.

Each application session handle can be associated with many application connection handles, and each application
connection handle may be associated with a file-find handle. Each application connection can also be associated
with many Internet 'file' level resource handles. It's the application's responsibility to track this hierarchy of handles
and to ensure that handles are closed properly when they are no longer needed.

A typical application will manage the handles like this:

1 Call InternetOpen() to establish a session handle and store it.

2 Open one or more connections to FTP, Gopher or HTTP servers via
InternetOpenURL() or InternetConnect(). Store one handle per connection that has been
opened.

3 For each connection, examine the available 'files' or resource items via the
FtpFindFirstFile(), GopherFindFirstFile() and InternetFindNextFile() APIs. The
FtpFindFirstFile() and GopherFindFirstFile() APIs are used to obtain a 'file-find' handle,
which is used by the InternetFindNextFile() API to enumerate the available 'files'. Close the
'file-find' handle using InternetCloseHandle() after the required 'file' is found.

4 Create one or more 'file' item level handles via the FtpOpenFile() or
GopherOpenFile() APIs. Manipulate these 'files' via their handles. The WinINet implementation
of FtpOpenFile() allows only one open 'file' level handle per server connection at any time.

5 Close these 'file' handles via InternetCloseHandle() as soon as they're no longer
required.

6 Close the handle associated with a connection via InternetCloseHandle().

7 After making sure all connection handles and their associated 'file-find' and 'file' item
handles are closed, close the session handle from InternetOpen() with the
InternetCloseHandle() call.

The next figure shows the hierarchy of HINTERNET handles and their relationships:

The API Functions
The set of WinINet API functions divides into four groups:

General Internet functions
FTP functions
Gopher Functions
HTTP Functions

We won't be covering the HTTP functions in this chapter.
These functions are fully documented by Microsoft on the ActiveX Developers Kit, so we won't bore
you with the details here.

An Overview of General Internet Functions
The following is a description of the general Internet functions provided by WinINet, which are quite a mixed bag
because they don't fit into the operation of a specific protocol. They include functions that are used to initialize
WinINet or set WinINet applications: global flags and options, functions to set callback for asynchronous

operations, functions for obtaining extended error information and functions to create protocol-specific connections.

In an attempt to minimize the number of new Win32 functions, there are several common functions in the group
which are used specifically in conjunction with connection level functions. These are InternetGetNextFile(),
InternetReadFile(), InternetWriteFile(), which are 'factored out' of the protocol-specific set of APIs to
reduce the API count.

Function Name Description

InternetOpen() Initializes the WinINet run-time support system for this application.
InternetCloseHandle() Release the resources held by the Internet handle.
InternetReadFile() Reads data from FTP, Gopher or HTTP source 'file'.
InternetWriteFile() Writes data to an open 'file' in an FTP session.
InternetSetStatusCallback() Sets a callback function to report status information.
InternetFindNextFile() Continues 'file' enumeration, used in conjunction with

FtpFindFirstFile() or GopherFindFirstFile().
InternetQueryDataAvailable() Queries the amount of data available in the current 'file'.
InternetQueryOption() Obtain current values of various options flags.
InternetSetOption() Sets a particular options flag.
InternetGetLastResponseInfo() Retrieves extended error text information.
InternetConnect() Opens a protocol session (FTP, HTTP, or Gopher) on the net, and logs

on the user.

An Overview of FTP Functions
FTP functions are available to traverse remote server directories, enumerate remote files, add and delete files and
directories or send and receive files. There is also an escape function to issue raw FTP commands to the remote
server.

Function Name Description

FtpFindFirstFile() Starts enumerating files in the current directory, works in conjunction with
InternetFindNextFile() function for enumeration of files.

FtpGetFile() Retrieves an entire file from the server and placed it in a local file.
FtpPutFile() Copies an entire file from the local file system to the server.
FtpDeleteFile() Deletes a file on the server if possible.
FtpRenameFile() Renames a file on the server if possible.
FtpOpenFile() Opens a file on the server for either reading or writing, works in

conjunction InternetReadFile() and InternetWriteFile().
FtpCreateDirectory() Creates a new directory on the server if possible.
FtpRemoveDirectory() Deletes a directory on the server if possible.
FtpSetCurrentDirectory() Changes the client's current directory on the server.
FtpGetCurrentDirectory() Returns the client's current directory on the server.
FtpCommand() Issues an raw FTP command to the server.

An Overview of Gopher Functions
Gopher functions are available to traverse server menus and request transfer to remote locators. Support functions
are also available to create a locator from scratch, as well as deciphering the attributes of a Gopher object.

Function Name Description

GopherFindFirstFile() Starts enumerating a Gopher directory listing.
GopherOpenFile() Starts retrieving a Gopher object.
GopherCreateLocator() Forms a Gopher locator for use in other Gopher function calls.
GopherGetAttribute() Retrieves attribute information on the Gopher object.

The FTP and Gopher Protocols
In a nutshell, FTP is a protocol which allows networked computers to exchange files. The protocol takes care of
differences in dissimilar computers running different operating systems.

The Gopher protocol, on the other hand, provides a text-based menu-driven way to access a group of network
resources. Most of the interaction within a Gopher session involves navigating and traversing hierarchically linked
menu entries.

We'll now go on to describe the two protocols, both of which work on top of TCP/IP, but before we do, we need to
clarify several basic concepts of TCP/IP. TCP/IP provides services delivering packets between two computers
representing two end-points on the network. A TCP connection is reliable because packets sent through a TCP
connection are guaranteed to arrive at the other end in the same sequence that they were sent, and without being
corrupted. Other protocols within the TCP/IP suite don't provide such reliable delivery, nor do they guarantee
sequencing.

The FTP Protocol
The FTP protocol is a TCP protocol and makes only TCP connections between two computers.

This is what happens during an FTP session:

1 The FTP server listens on a well-known TCP port (usually 21) for requests; this is done
via a passive open on the port.

2 The FTP client initiates an active open on the server's TCP port and a TCP connection is
established between the client and server; this is the control connection used to pass the client's
command to the server and the server's replies to the client.

3 A data connection, separate from the control connection, is made each time the client and
server agree to transfer a file; this data connection is made and destroyed for each file transfer.

All commands sent through the control connection are in ASCII.

The data connection is established by the client sending a PORT command to the server. After making a passive open
(open a port for the purpose of accepting TCP connections) to an available port, the client sends a PORT command to
the server with the available port number. Once the server has received this over the control connection, it will make
an active connection to the client's available port when necessary. This will create the connection to send the data
sent.

One the server has successfully received the PORT command, the client can request a file retrieval via the RETR
command. The server will then open the data connection, send the file and close the data connection to signify the
end of transmission.

If the client sends a STOR command instead, the server will open the data connection ready to receive the file. The

client should close the data connection at the end of transmission to signify the end of transmission.

Typically, FTP applications will hide the details of the protocol from the end user, greeting her instead with a
graphical user interface, or much higher level text commands.

However, even a cursory understanding of what goes on underneath will give the user give some clues to what's
happening and to some of the configurable options on a highly configurable library like WinINet.

The Gopher Protocol
The Gopher protocol is a TCP protocol which makes only TCP connections between two computers.

The Gopher protocol is less complex than the FTP protocol. Unlike FTP, it has no concept of a session, and
connections don't stay up for any length of time, just long enough to transfer the requested information. Instead, the
following happens:

1 The Gopher server listens on a well known TCP port (usually 70) for requests, via a
passive open on the port.

2 The Gopher client initiates an active open on the server's TCP port and a TCP connection
is established between the client and server. The client immediately sends a retrieval string to the
server.

3 The Gopher server sends all it has to say about the retrieval string to the client and closes
the connection.

This is repeated for every Gopher request. Both the retrieval string and the information from the server are always in
ASCII.

The information from the server is usually a series of lines in ASCII, ending with a carriage return and line feed
character. The last line sent by the server before closing the connection is a single period (.).

If the Gopher protocol is so simple, how does it work? The magic lies in the retrieval string sent to the server and the
information returned from the server. Each line returned from the server before the period is a locator. (You'll see a
lot more about this later.) The locator is in ASCII and consists of the following fields, separated by tab characters
(except for the Gopher type code, which is always the first character):

A Gopher type code
The friendly name of the item
The selector, or retrieval string
The hostname of the computer containing the item
The port number of the service

The Gopher type code indicates what the item is and will be tabulated later. Two typical values are text files (0) or
directories (1), but the defined list is quite comprehensive. The friendly name is a human readable description of the
item content. The selector is the retrieval string to be sent to the remote host in another Gopher transaction. The
hostname and port number tell the Gopher client how to reach the next server.

By examining the type code, the Gopher client knows what to do with the rest of the fields, and what to expect when
the host server is contacted via the selector. For example, if the type indicates a binary file, the next Gopher request
to the selector will return the binary file and the Gopher client should receive every byte until the server closes the
connection. It shouldn't attempt to parse carriage return and line feed characters.

Our Protocol
By combining the power of Gopher in presenting a complex hierarchy of information, and the two way data transfer
capability of the FTP protocol, we create our own protocol for CIS.

We need to tell the CIS application what picture and text to display on the button, and, if it corresponds to a form,
which form to pop up. We can do this by modify Gopher non-intrusively, without extending it or changing the basic
protocol (this is done so that regular Gopher clients can be used to access the CIS server site for testing). We simply
attaching extra information to the item friendly name and using the friendly name itself for the button label. For
example, for a button that says Welcome to Hawaii! and is used to display bitmap number 4 and form number 2, the
item friendly name will be: Welcome to Hawaii!(4,2). The information inside the bracket will be stripped
before the string is used as the button label.

We use FTP as it's only for forms submission, since Gopher doesn't provide a mechanism for sending information
from the client to the server. When a form is to be submitted, CIS will collapse all the information on the form,
together with the time, date and ID of the button pressed and send the entire collection via an FTP-based put file
command. The server must be set to allow anonymous logins to have write permission. Data from the forms will
always be deposited into the default root directory of the FTP server, and the forms will have unique names because
each filename will be keyed by user name, as well as a unique integer based on the client system time.

A Corporate Information System
The competitive business environment has driven most corporate MIS departments to re-evaluate how they collect
and distribute their information. Most of the inherited, heavy process, paper-based systems are being streamlined
and/or replaced by faster automated electronic systems. Slow internal publishing processes are being made
redundant by online systems which distribute information accurately and promptly. The conventional routing of
paper forms via internal mail is quickly being displaced by electronic forms and custom workflow applications.

Large corporations are increasingly being pushed to develop systems to distribute information to their remote branch
offices, remote employees, affiliates and even customers. Whether or not a business has the competitive edge often
comes down to how quickly and reliably it can send out accurate information to interested parties.

For corporate MIS developers, systems based on existing database and file access technology can often be sufficient
for small group data sharing. To implement a corporate wide intranet-based system, however, these conventional
means of sharing/distributing information often either don't fit the mark, or become too complex to administer.

Thanks to the maturity of Internet technologies, you fulfill rapid information dissemination requirements of your
application. To illustrate the point, we will implement the framework for one such system. The following is a
hypothetical 'mini feature specification' for the CIS project. Feature or User Requirement Specifications are standard
requirement in almost all corporate development projects.

"CIS must provide the user with a non-intimidating, easy to use interface for navigating and accessing corporate
information resources. Current corporate users are most familiar with the 'windows and push-button' oriented
interface of Microsoft Windows and X-Windows workstations.

CIS must allow users to easily navigate the corporate network to find and view the information they need. It must
also provide a mechanism for collecting information from the user. This mechanism must be totally customizable.
Initially, it should support customizable forms.

CIS should be designed to use standard protocols, thus avoiding the expense involved in developing custom server
software.

CIS must allow individual departments within our enterprise to publish and provide their own information resources
at their own site over the worldwide corporate TCP/IP network. The administration of server sites must be simple
enough for the current pool of UNIX server administrators, as well as the new Windows NT server administrators, to
handle.

CIS must allow for the user interface and data access to be customized and localized at each of the individual
branches according to local requirements.

CIS must provide an upward compatibility path should corporate MIS decide to adopt an alternative information
sharing infrastructure. This is especially true for the World Wide Web based technologies currently being
investigated."

If all this sounds like a tall order, it is! However, it will probably ring a familiar bell for most contemporary
consultants and analysts working in an MIS or downsizing environment. These are very frequent and real
requirements!

'Why don't we just give them the Web?' is one question that immediately comes to mind. That strategy has at least
three problems, the first of which is the issue ofuser friendliness. Until everyone in the corporate structure has
become familiar with the Internet, the complex user interface of most current day browsers can be quite daunting.
While most will know how to push buttons, open windows or fill out an e-form, they will find it difficult to
comprehend what a persistent cache, Java console, or mime-encoded document is.

The second problem involves the handling of error conditions. As we have control of the source code we can avoid
the critic messages like 'object not found error 1.07e?', 'Server does not have a DNS entry' or 'URL has moved' that
Internet browsers tend to report. Instead, we can give user friendly messages which also have some meaning for the
support people down the corridor.

The third problem is a strange one, involving something rather intangible. For some reason, probably due to the
phenomenal success of the Internet and the myth and hype surrounding it, many users associate web browsers with
security problems. They tend to place more trust in rigid custom applications developed in-house than they do in
having the exact same information presented, often more attractively, on web pages. With the announcement of new
technologies, such as ActiveX, the landscape here may change with time. ActiveX will blur the distinction between
what we know as the 'desktop metaphor' and the Internet web browser. ActiveX will also provide many more
opportunities for an application to exert control over the presentation of Internet based information to the user. The
accelerated evolution towards seamless integration of the Internet with the desktop will greatly benefit those
developing intranet applications.

Designing the CIS
All right, it's time to bring out the drawing board and design our system. To comply with all the requirements, we've
decided to do custom object-oriented development using Visual C++ and MFC. We'll use WinINet to handle the
network communications required for the project. Imagine the following hypothetical high-level or product design
specification:

"CIS will provide the user with a simple push button interface to navigate
corporate information resources.

CIS will allow the user to navigate the corporate network by pushing a panel of buttons. Users will be able to locate
the information they need without having to use additional tools or changing user interface. CIS will also let them
customize the forms. Forms can be designed using the resource editor and ClassWizard tools provided with standard
Microsoft Visual C++.

CIS will make use of the standard, well tested, FTP and Gopher protocols from the Internet. Standard FTP and
Gopher servers can be set up for servicing the CIS application. No server- based development will be required for
CIS operations.

CIS will allow individual departments to manage and publish their own information resources. It will be easy for
system administrators familiar with maintaining UNIX FTP and Gopher to administer the CIS hosts.

The CIS user interface is extensible through custom C++ programming. The basic structure of CIS will allow the
addition of Unicode support for branches with foreign language requirements.

CIS will provide an upward migration path towards integration with the World Wide Web, should it be adopted to

distribute corporate wide information in the near future. The CIS application will support a seamless transition
between itself and standard web browsers in a subsequent release."

We have tried to satisfy every one of the feature/user requirements in our design of the CIS.

CIS will present the user with a panel of push buttons. Each push button will contain a picture (bitmap) and a
description of the information that the user will see if they click it or a description of a new navigation point. When
the user clicks a button, CIS will either:

Present the user with a new panel of push buttons to select from.
Display a text file of information.
Display a custom electronic form for the user to fill out.

As it processes the request that the user makes through the push button, CIS may transparently transfer the user
across different servers on the corporate network.

The user interface and custom forms will be coded based on MFC. WinINet and the standard Gopher protocol will
allow the user to navigate through the information. Specifically, we'll be making extensive use of Gopher's
hierarchical menu, its ability to transparently link across multiple servers in one request, and its ability to serve
ASCII text files.

Since the Gopher protocol is designed only to handle navigation and information read requests, we need an
alternative mechanism to implement the submission of electronic forms. WinINet's support for the FTP protocol fits
the bill perfectly. The data from the forms will be transferred to a file on a remote FTP server using WinINet FTP for
manual or automated processing.

To begin the actual design of the CIS, we'll proceed to:
Wrap WinINet in a hierarchy of C++ classes.
Design and implement the required operation support data structures according to the standard MFC
document/view model.
Design and implement the required user interface, including a new button class to handle our custom
requirements.
Design and implement the linkage between the WinINet back end, user interface and internal data
structures.

Wrapping WinINet with C++
Let's add a wrapper around the WinINet extensions to make it easier to call from C++. Since MFC will eventually
offer a complete wrapping for the WinINet APIs in subsequent Visual C++ versions, we'll try to do an adequate job
at hand, but not attempt to solve all the generic problems.

In wrapping WinINet, we'll try to:
Hide the Internet handles hierarchy as much as possible and provide automatic close when necessary.
Provide frequently used, default parameters to the WinINet APIs, making the calling code easier to
write, simpler to read and maintain.
Provide useful data object classes for our CIS application.

Our basic WinINet wrapping includes the following seven classes:

CInetSession CInetConn CFTPConn
CGopherConn CInetItem CFTPItem
CGopherItem

The next figure shows the derivation relationship between these classes:

In the following pages, we'll describe the design rationale for each of the classes and how we intend them to be used.
We'll also examine the interrelationships between the classes.

CInetSession Class
The CInetSession class represents a complete Internet session. It hides the global Internet session handle required
when the WinINet run time is initialized for a specific application. Member functions provided actually wrap many
of the general functions. These include Get/Set functions for global options, and the establishment of application
sessions/connections.

The member functions of the CInetSession class do the following:
Initialize and take down WinINet, via Open() and Close() members.
Create protocol connections, via Connect(), ConnectGopher(), and ConnectFtp() members.
Configure WinINet protocol parameters, via SetConnectionInfo(),

SetConnectionOptions(), and SetDataOptions().
Track outstanding asynchronous operations, via IncAsyncCount(), DecAsyncCount() and
GetAsyncCount().
Maintain the internal 'open connection' list, via DeleteConn().

Before any WinINet operations can be invoked, the application must call the Open() member to initialize WinINet
through the application's CInetSession object.

CInetSession works like a protocol connections factory. You instantiate it once to initialize the WinINet
environment, then you call the connection functions repeatedly, once for each of the protocol connections you
require. The connection functions actually create new CInetConn, CGopherConn or CFTPConn objects with its
Connect(), ConnectGopher() and ConnectFtp() member functions. (We'll describe these classes later.) The
pointer to each newly created CInetConn, CGopherConn or CFTPConn object is stored in a private m_OpenConn
list, to track all the currently opened connections in this session. The close() operation uses the m_OpenConn list
to close up any connections which may still be open.

In asynchronous mode, the IncAsyncCount(), DecAsyncCount() and GetAsyncCount() functions help to
track the pending operation. These are simple functions which manipulate an internal counter. You should use
IncAsyncCount() each time an asynchronous operation is submitted, and call the DecAsyncCount() within the
status callback function each time an asynchronous operation is completed. This will allow the CInetSession class
to determine whether any outstanding asynchronous operations are still pending, before allowing the WinINet
session to close.

CInetSession Member Functions
The following table list and describes each member of the CInetSession class:

Member Function Description

CInetSession() A constructor which initializes the handle.
~CInetSession() A destructor which closes the handle if necessary.
Close() Explicitly closes the Internet session handle.
Connect() A general function to connect to a remote protocol server and log on the

user.
ConnectFTP() Connects to an FTP remote protocol server and logs on the user.
ConnectGopher() Connects to a Gopher remote server and logs on the user.
Open() Opens the Internet session.
SetConnectionInfo() Sets time-out and retry values for the Internet connection.
SetConnectionOptions() Sets control channel time-outs associated with FTP.
SetDataOptions() Sets data connection time-outs and retries.
IncAsyncCount() Increments the outstanding asynchronous operations counter.
DecAsyncCount() Decrements the outstanding asynchronous operations counter.
GetAsyncCount() Retrieves the current asynchronous operations count.
DeleteConn() Deletes the connection specified from the connections tracking list.

CInetSession::Open()
Once you have created an instance of this class, you must first open an Internet session by calling Open(). The
definition is as follows:

BOOL CInetSession::Open(LPCTSTR Agent, UINT Flags,

 UINT AccessType , LPCTSTR ProxyName , LPCSTR ProxyBypass,
 INTERNET_STATUS_CALLBACK lpfnNetCallBack)
{
 if((m_hSession = InternetOpen(Agent,
 AccessType,
 ProxyName,
 ProxyBypass,
 Flags
)) == NULL)
 return FALSE;
 if (NULL != lpfnNetCallBack)
 InternetSetStatusCallback(m_hSession, lpfnNetCallBack);
 return TRUE;
}

As you can see, this member is simply a wrapper for the InternetOpen() API from WinINet. We simply pass on
the parameters passed to Open() to InternetOpen(). InternetOpen() returns a HINTERNET handle if
successful, or NULL otherwise, which we store in CInetSession::m_hSession as we'll need this handle in the
other methods. To save work for people using asynchronous mode, the status callback function pointer can be passed
in during a call to Open(). If this is supplied, the member function will make a call to
InternetSetStatusCallback() to register the callback function with WinINet.

The Agent parameter is a string, with the name of your application. Accesstype can be:

Flag Meaning

INTERNET_OPEN_TYPE_PRECONFIG Preconfigured (through the registry).
INTERNET_OPEN_TYPE_DIRECT Direct to Internet.
INTERNET_OPEN_TYPE_PROXY Through CERN proxy.

For most intranet applications, use INTERNET_OPEN_TYPE_DIRECT. For Internet applications, with a CERN
security proxy between the client station and the net, use INTERNET_OPEN_TYPE_PROXY and supply the proxy
name in the ProxyName parameter. You can use ProxyBypass to supply a list of proxy-bypass hostnames, i.e.
access to this list of hosts will not go through the proxy.

ProxyName and ProxyBypass can both be set to NULL for intranet applications.

The Flags parameter can be set to INTERNET_FLAG_OFFLINE or INTERNET_FLAG_ASYNC. The
INTERNET_FLAG_OFFLINE is used mainly for Internet applications and indicates that all access to Internet
resources should be from the persistent cache only.

INTERNET_FLAG_ASYNC is the flag which indicates to WinINet that all connections and APIs from this application
should be made in the asynchronous mode. For most intranet applications, including our CIS, using 0 for Flags is
sufficient.

CInetSession::Connect()
After opening a session, you will need to make a connection to the service that you want to use. For this, we have
provided three methods: Connect(), ConnectFTP() and ConnectGopher(). Each of these use the
InternetConnect() API, the only difference being the return type. Connect() allows connection to either FTP,
Gopher or HTTP servers, returning a pointer to a CInetConn object. ConnectFTP()obviously connects to FTP
services returning a pointer to a CFTPConn object, while ConnectGopher() connects to Gopher services, returning
a pointer to a CGopherConn object.

The definition of Connect() is:

CInetConn * CInetSession::Connect(LPCTSTR ServerName,

 UINT Service, UINT Flags, INTERNET_PORT ServerPort,
 LPCTSTR UserName,LPCTSTR Password, UINT Context)
{
 HINTERNET hConnect;
 ASSERT(m_hSession != NULL);
 if((hConnect = InternetConnect(
 m_hSession,
 ServerName,
 ServerPort,
 UserName,
 Password,
 Service,
 Flags,
 Context
)) == NULL)
 return ((CInetConn *) NULL);
 else
 {
 CInetConn * ab = new CInetConn(hConnect, this);
 if (NULL != ab)
 m_OpenConn.AddHead(ab);
 return ab;
 }
}

After making sure that we have a valid session handle, we call the InternetConnect() API, passing along the
parameters. If InternetConnect() returns a valid HINTERNET handle, we create a new CInetConn object,
passing the handle and a class pointer to the constructor. The newly created CInetConn class will use the handle for
its operations, and will use the class pointer to access CInetConn::DeleteConn() to manage open connections.

The parameters we pass to InternetConnect() are as follows.

We use the handle from InternetOpen() stored in m_hSession for the first parameter.

The ServerName and ServerPort should contain the hostname and port number for the connection. The hostname
can also be entered as an IP address. You need not specify the ServerPort (i.e. just specify 0) if the 'well-known'
port for a service is used.

The UserName and Password is used for FTP session login. Set them to NULL for other services. If you set them to
NULL for FTP, you'll automatically get anonymous login using the user's e-mail address from the registry.

Service specifies the type of service that you are connecting to and can be either INTERNET_SERVICE_FTP,
INTERNET_SERVICE_Gopher, or INTERNET_SERVICE_HTTP.

The only valid Flags parameter is INTERNET_CONNECT_FLAG_PASSIVE for FTP service. This specifies that
passive mode should be used for all FTP connections.

Context is the context parameter passed to the callback function if one is registered. This is usually used in the
asynchronous mode of API access.

CInetSession::ConnectGopher() and CInetSession::ConnectFTP()
The ConnectGopher() and ConnectFTP() methods are similar to Connect(). We simply fill in some of the
parameters to InternetConnect() with default parameters, and return pointers to different classes:

CFTPConn * CInetSession::ConnectFTP(LPCTSTR ServerName,
 LPCTSTR UserName, LPCTSTR Password, UINT Flags,
 UINT Context)
{
 HINTERNET hConnect;
 ASSERT(m_hSession != NULL);

 if((hConnect = InternetConnect(
 m_hSession,
 ServerName,
 0,
 UserName,
 Password,
 INTERNET_SERVICE_FTP,
 Flags,
 Context
)) == NULL)
 return ((CFTPConn *) NULL);
 else
 {
 CFTPConn * ab = new CFTPConn(hConnect, this);
 if (NULL != ab)
 m_OpenConn.AddHead(ab);
 return ab;
 }
}

CGopherConn * CInetSession::ConnectGopher(LPCTSTR ServerName,
UINT Context)
{
 HINTERNET hConnect;
 ASSERT(m_hSession != NULL);
 if((hConnect = InternetConnect(
 m_hSession,
 ServerName,
 0,
 NULL,
 NULL,
 INTERNET_SERVICE_GOPHER,
 0,
 Context
)) == NULL)
 return ((CGopherConn *) NULL);
 else
 {
 CGopherConn * ab = new CGopherConn(hConnect, this);
 if (NULL != ab)
 m_OpenConn.AddHead(ab);
 return ab;
 }
}

CInetSession::Close()
BOOL CInetSession::Close()
{
 if (m_asyncCount == 0)
 {
 // close all remaining open connections
 while(! m_OpenConn.IsEmpty())
 {
 m_OpenConn.GetHead()->CloseConnection();
 m_OpenConn.RemoveHead();
 }
 if(NULL != m_hSession)
 InternetCloseHandle(m_hSession);
 return TRUE;
 }
 else
 return FALSE;
}

This is the function used to close the WinINet session. If asynchronous mode is used, the Close() will fail if any
tracked asynchronous operations are still pending. Otherwise, this function will check the list of currently opened
connections and close anything else that is still open. Finally, it will call InternetCloseHandle() on the session
handle.

The InternetCloseHandle() function is a catchall for closing any WinINet handles. This applies to the
application session handle, any protocol connection handles, or FTP or Gopher 'file' handles.

CInetSession::SetConnectionInfo()
BOOL CInetSession::SetConnectInfo(UINT uiTimeout , UINT uiRetries, UINT uiBackoff)
{
 if(InternetSetOption(m_hSession, INTERNET_OPTION_CONNECT_TIMEOUT,
 &uiTimeout, sizeof(UINT)) == FALSE)
 return FALSE;
 if(InternetSetOption(m_hSession, INTERNET_OPTION_CONNECT_RETRIES,
 &uiRetries, sizeof(UINT)) == FALSE)
 return FALSE;
 return(InternetSetOption(m_hSession, INTERNET_OPTION_CONNECT_BACKOFF,
 &uiBackoff, sizeof(UINT)));
}

CInetSessionSetConnectInfo() sets the connect timeout in milliseconds, the number of connect retries, and
the connect backoff timing values when an Internet connection is attempted. The member functions simplifies the
required calls to the InternetSetOption() API by grouping the related values together and making all the calls
within the same function.

The InternetSetOptions() API is used to set a specific Internet option (the second parameter) with the value
pointed to by the third parameter for the session corresponding to the handle specified in m_hSession.

We also need to pass the size of the parameter that we're passing to InternetSetOption(),which, in our case, is
the size of an UINT.

Although we only set the connection options (INTERNET_OPTION_CONNECT_TIMEOUT,
INTERNET_OPTION_CONNECT_RETRIES and INTERNET_OPTION_CONNECT_BACKOFF), other options which can
be set currently includes:

Option Meaning

INTERNET_OPTION_CONNECT_TIMEOUT The time-out in milliseconds when attempting an Internet
connection.

INTERNET_OPTION_CONNECT_RETRIES The maximum number of retries in attempt to make
Internet connection.

INTERNET_OPTION_CONNECT_BACKOFF The number of milliseconds to wait between retries.
INTERNET_OPTION_CONTROL_SEND_TIMEOUT The time-out in milliseconds when trying to send over the

control channel in FTP sessions.
INTERNET_OPTION_CONTROL_RECEIVE_TIMEOUT The time-out in milliseconds when waiting to receive

over the control channel in FTP.
INTERNET_OPTION_DATA_SEND_TIMEOUT The time-out in milliseconds when trying to send data.
INTERNET_OPTION_DATA_RECEIVE_TIMEOUT The time-out in milliseconds when trying to receive data.
INTERNET_OPTION_ASYNC_PRIORITY Sets the priority of this download if it's an asynchronous

download.
INTERNET_OPTION_CONTEXT_VALUE Sets the context value associated with this Internet

handle.
INTERNET_OPTION_USERNAME Sets the user name associated with a handle returned by

the InternetConnect API.
INTERNET_OPTION_PASSWORD Sets the password associated with the handle returned by

InternetConnect API
INTERNET_OPTION_READ_BUFFER_SIZE Sets the size of the read buffer for FtpGetFile().
INTERNET_OPTION_WRITE_BUFFER_SIZE Sets the size of the write buffer for FtpPutFile().

CInetSession::SetControlOptions()
To set timing options specific to the FTP control channel, we again use similar wrapping as
CInetSession::SetConnectionOptions() in CInetSession::SetControlOptions().

BOOL CInetSession::SetControlOptions(UINT uiSendTimeout, UINT uiRecvTimeout)
{
 if(InternetSetOption(m_hSession, INTERNET_OPTION_CONTROL_SEND_TIMEOUT,
 &uiSendTimeout, sizeof(UINT)) == FALSE)
 return FALSE;
 return(InternetSetOption(m_hSession,
 INTERNET_OPTION_CONTROL_RECEIVE_TIMEOUT,
 &uiRecvTimeout, sizeof(UINT)));
}

CInetSession::SetDataOptions()
Again, we combine the send timeout value and the receive timeout value for the FTP data channel, to be set by the
CInetSession::SetDataOptions() function. The construction is identical to earlier
CInetSession::SetxxxOptions() member functions. The more obscure options which are not covered by the
trio of CInetSession::SetConnectionOptions(), CInetSession::SetControlOptions(), and
CInetSession::SetDataOptions() must be changed explicitly using InternetSetOption() API calls if
necessary.

BOOL CInetSession::SetDataOptions(UINT uiSendTimeout, UINT uiRecvTimeout)
{
 if(InternetSetOption(m_hSession, INTERNET_OPTION_DATA_SEND_TIMEOUT,
 &uiSendTimeout, sizeof(UINT)) == FALSE)
 return FALSE;
 return(InternetSetOption(m_hSession,
 INTERNET_OPTION_DATA_RECEIVE_TIMEOUT,
 &uiRecvTimeout, sizeof(UINT)));
}

CInetSession::IncAsyncCount() and CInetSession::DecAsyncCount()
UINT CInetSession::IncAsyncCount()
{
 return (++m_asyncCount);
}

UINT CInetSession::DecAsyncCount()
{
 m_asyncCount--;
 m_asyncCount = (m_asyncCount < 0)? 0:m_asyncCount;
 return m_asyncCount;
}

These two functions increment and decrement the outstanding asynchronous operations counter maintained by the
CInetSession class. They are supplied to help the user to implement asynchronous mode applications. The
IncAsyncCount() member should be used each time an asynchronous operation is submitted, and the
DecAsyncCount() member should be called within the status callback function when an asynchronous operation

has completed. Their implementations are trivial. Strictly speaking, the counter m_asyncCount should be protected
via some synchronization mechanism (i.e. a semaphore), since DecAsyncCount() may be simultaneously called
from a separate thread context as an IncAsyncCount(). However, the increment and decrement operation is
essentially atomic on 80x86 based machines.

CInetSession::GetAsyncCount()
UINT CInetSession::GetAsyncCount()
{
 return m_asyncCount;
}

This function simply provide access to the current value of the outstanding asynchronous operations counter.

CInetSession::DeleteConn()
BOOL CInetSession::DeleteConn(CInetConn * myCon)
{
 POSITION aPos = m_OpenConn.Find(myCon);
 if (NULL == aPos)
 return FALSE;
 else
 m_OpenConn.RemoveAt(aPos);
 return TRUE;
}

CInetSession maintains a list of new connections which it creates. Each member contains a pointer to the
corresponding CInetConn derived object. The list is declared as a templated type-safe list:

protected:
 CTypedPtrList<CPtrList, CInetConn *> m_OpenConn;

An element is added to this list every time CInetSession::Connect(), CInetSession::ConnectGopher(),
or CInetSessionConnectFTP() succeeds. An element is removed from the list through a call to the
CInetSession::DeleteConn() each time a previously created connection is closed or deleted. The
DeleteConn() function simply locates the supplied CInetConn pointer parameter in the m_OpenConn list. If
found, it will delete the element from the list.

CInetConn Class
The CInetConn is a base class for different application sessions, which we'll call protocol connections, to
differentiate them from the Internet session established between WinINet and the application.

Although this class is used as a base class for CGopherConn and CFTPConn, we can still use it for a generic
connection to a service (i.e. when we use CInetSession::Connect()). In particular, this class can be used to
access arbitrary URL based resources using the OpenUrl(), ReadFile() and CloseFile() functions.

To use this class for reading URLs, you need to:

1Create a CInetConn object using the CInetSession::Connect() function.
2Call CInetConn::OpenUrl() with the required URL.
3Keep calling CInetConn::ReadFile() until end of file is reached.
4Call CInetConn::CloseFile() to close the URL file stream.
5Repeat steps 2 to 4 as many times as necessary.
6Call CInetConn::CloseConnection() to terminate the connection.

A pointer back to the Internet session object is maintained within CInetConn, and inherited by both CGopherConn

and CFTPConn. This pointer may be accessed via the CInetConn::GetSession()member, and is used internally
by CInetConn to delete the pointer from the session object's 'currently open connections' list.

For each Internet session established, we can open any number of protocol connections. The CFTPConn and
CGopherConn classes implement these connections. The CInetConn base class maintains the Internet handle
corresponding to the connection. The CGopherConn and CFTPConn classes have member functions which wrap
some of the possible operations provided by WinINet for these protocols.

CInetConn Member Functions
The members of CInetConn give basic IO capabilities to CGopherConn and CFTPConn, and are tabulated below:

Member Function Description

CInetConn() A constructor which initializes the connection protocol handle and session
pointer.

~CInetConn() A destructor which closes the connection handle if necessary.
OpenUrl() Opens a specified URL file stream.
ReadFile() Reads from an opened URL file stream.
CloseFile() Closes the currently open URL file stream.
GetSession() Gets a pointer to the session from which this CInetConn object was

instantiated.
CloseConnection() Closes the currently open connection.

CInetConn::OpenUrl()
BOOL CInetConn::OpenUrl(LPCTSTR url, DWORD flags, DWORD context, LPCSTR headers, DWORD
hdrLength)
{
 ASSERT(m_hConnection != NULL);
 m_hFile = InternetOpenUrl(m_hConnection,url, headers, hdrLength,
 flags, context);
 return ((NULL == m_hFile)? FALSE: TRUE);
}

This function is a thin wrapper for the InternetOpenUrl() call. We first verify that the open connection,
m_hConnection, is valid, then we call InternetOpenUrl(), passing the parameters. The URL to be opened is
specified in the url parameter. Optional headers can be provided through the headers and hdrLength parameters.
If supplied, the headers parameter should be in standard HTTP header format for HTTP server processing. The
headers string can be zero delimited, in which case hdrLength can be set to -1L. Otherwise, the length specified
by hdrLength will be taken to be valid against the header string. For asynchronous mode, a context can be supplied
via the context parameter.

The InternetOpenUrl() call also takes a flags parameter. The value for flags can be one or more of:

Flag Meaning

INTERNET_FLAG_RELOAD Get the data again from the source.
INTERNET_FLAG_DONT_CACHE Do not use caching in retrieving the URL. This flag is most

appropriate for most intranet applications.
INTERNET_FLAG_RAW_DATA Return WIN32_FIND_DATA for FTP and GOPHER_FIND_DATA for

gopher URLs.
INTERNET_FLAG_SECURE Request SSL or PCT service.

INTERNET_FLAG_EXISTING_CONNECT Try to reuse existing connection in opening the URL if possible.

Most intranet applications, like CIS, can use the default value of INTERNET_FLAG_DONT_CACHE |
INTERNET_FLAG_EXISTING_CONNECT.

If this call is successful, a file level handle, m_hFile, is returned and kept within the CInetConn class. This handle
is subsequently used in ReadFile() calls.

CInetConn::ReadFile()
BOOL CInetConn::ReadFile(LPVOID lpBuffer, DWORD byteIn, LPDWORD byteOut)
{
 ASSERT((m_hConnection != NULL)&&(m_hFile != NULL));
 return InternetReadFile(m_hFile, lpBuffer, byteIn, byteOut);
}

Once a URL resource has been opened, a file stream is available from which data can be read. The
CInetConn::ReadFile() function takes a buffer and fills it with bytes from the open stream. Internally, it simply
calls the InternetReadFile() WinINet API.

For the InternetReadFile() API, the first parameter is a 'file' level handle (i.e. m_hFile). The syntax of the API
is modeled on the Win32 ReadFile() call. lpBuffer points to the buffer area to store the data read. This function
guarantees that byteIn number of bytes will always be read unless an end of file condition is reached. In an end of
file condition, the return value will be TRUE, but the byteOut parameter will be set to less than byteIn. If byteIn
number of bytes isn't available, the API will block until the specified number of bytes are read or if end of file is
reached (unless the session is operating in the asynchronous mode).

CInetConn::CloseFile()
void CInetConn::CloseFile()
{
 if (NULL != m_hFile)
 InternetCloseHandle(m_hFile);
}

The CInetConn::CloseFile() function simply closes the internal file level handle. It should be used in between
every URL read, since each new URL fetch requires a separate CInetConn::OpenUrl() call. Note that only the
file level handle is closed; the protocol connection handle is left intact.

CInetConn::GetSession()
CInetSession * CInetConn::GetSession()
{
 return pm_hSession;
}

CInetConn::GetSession() provides external access to the session handle. This is typically used to make session
level calls given a CInetConn or derived object.

CInetConn::CloseConnection()
void CInetConn::CloseConnection()
{
 CloseFile();
 if (NULL != m_hConnection)
 {
 pm_hSession->DeleteConn(this);
 InternetCloseHandle(m_hConnection);
 m_hConnection = NULL;

 }
}

This function is called when you need to close the connection without destroying the CInetConn object. The
function is implemented by first closing any open file level handles, follow by closing of the connection level
handle, m_hConnection, using InternetCloseHandle(). It also maintains the open connections list within the
associated CInetSession object by calling its CInetSession::DeleteConn() function.

CGopherConn Class
Derived from CInetConn class, the CGopherConn class specializes it for the Gopher protocol operations. The
simplicity of the Gopher protocol has kept the number of APIs and their parameters down. The members in the
CGopherConn class may be used for:

Manipulating Gopher locators, via the CreateLocator() and GetLocatorType() member
functions.
Enumerating Gopher menus, via the GetFirstItem() and GetNextItem() member functions.
Accessing Gopher item contents, via the OpenFile() and ReadEntireFile() member functions.

CGopherConn protocol connection objects are created during a session through
CInetSession::ConnectGopher() calls. Connections to multiple Gopher servers can be maintained per session
through the instantiation of multiple CGopherConn objects.

A typical Gopher based application can use this class following these steps:

1Create a CGopherConn object using the CInetSession::ConnectGopher()
function.
2Request the user to enter a Gopher host.
3Call CGopherConn::CreateLocator() with the supplied host and all default
parameters to locate the root Gopher directory on the host.
4Call CGopherConn::GetFirstItem() with the locator to obtain the first
CGopherItem.

5Call CGopherConn::GetNextItem() to enumerate all available Gopher items at
this level.
6Display the friendly name of all the available Gopher items for the user to
select.
7When the user selects an item, check its locator type via the
CGopherConn::GetLocatorType() member, repeat from step four if the selected
item is a directory; if the selected item is a text file, call the
CGopherConn::GetEntireFile() to read the file and display it to the user.
8Keep repeating from step 4 until user aborts.

9Disconnect from the session by destroying the CGopherConn object.

CGopherConn Member Functions
A complete list of member functions is given in the following table:

Member Function Description

CgopherConn() A constructor which initializes the connection protocol handle and session
pointer.

~CgopherConn() A destructor which closes the connection protocol handle if necessary.

CreateLocator() Takes the components and makes a locator.
GetFirstItem() Obtains the first Gopher item in an enumeration.
GetLocatorType() Examines a locator and returns its type.
GetNextItem() Obtains the next Gopher item during an enumeration.
OpenFile() Opens a Gopher file given a locator.
ReadEntireFile() Reads an entire Gopher file from remote into a CString object.

CGopherConn::CreateLocator()
BOOL CGopherConn::CreateLocator(LPCTSTR Host, INTERNET_PORT Port,
 LPCTSTR FriendlyName, LPCTSTR Selector,
 UINT Type, CString & Locator)
{
 ASSERT(m_hConnection != NULL);
 LPTSTR tmpStr = Locator.GetBuffer(coniMAX_LOCATOR_SIZE);
 if (tmpStr == NULL)
 return FALSE;
 DWORD tmpSize = coniMAX_LOCATOR_SIZE;
 if(GopherCreateLocator(
 Host,
 Port,
 FriendlyName,
 Selector,
 Type,
 tmpStr,
 &tmpSize) == FALSE)
 {
 *tmpStr = '\0';
 Locator.ReleaseBuffer();
 return FALSE;
 }
 Locator.ReleaseBuffer(tmpSize);
 return TRUE;
}

CGopherConn::CreateLocator() fabricates a Gopher locator strings by combining parts which makes it up: a
hostname, a port number, a friendly name, a selector string and a Gopher locator type. Acceptable locator types are
documented later in the CGopherConn::GetLocatorType() function. Internally,
CGopherConn::CreateLocator() is implemented by calling the GopherCreateLocator() WinINet API call.
CGopherConn::CreateLocator() will build the locator string into a CString reference variable.

The GopherCreateLocator() API doesn't require any Internet handle. It accepts component parts and makes up a
Gopher locator. Typically, a Gopher locator is created to call the GopherFindFirstFile() function to begin
enumeration of available Gopher items from the remote server.

 Host specifies the Gopher server hostname or IP address. Port is the port on which the Gopher server is listening,
passing a value of INVALID_PORT_NUMBER will use the well known port number for Gopher. FriendlyName
selects the file or directory to be displayed by the server, a NULL value will obtain the default Gopher directory.
Selector is the string to be sent to the Gopher server to obtain information, again use NULL for this parameter if
you're constructing a Gopher locator for use with the GopherFindFirstFile() API. Type specifies the type of
the Gopher item. Locator is a pointer to a buffer to hold the locator returned. lpdwBufferLength holds the size
of Locator upon entry and the actual size of the locator upon return.

As in CIS, you frequently need to get at the root directory of a specific host. For this, we can call

CGopherConn::GopherCreateLocator() with,
hostname = Gopher host name
port = INVALID_PORT_NUMBER (use the well-known port)
FriendlyName = NULL (use default Gopher directory)
Selector=NULL

to obtain a locator which we will pass to CGopherConn::GetFirstItem() for enumerating the root directory.

CGopherConn::GetFirstItem()
BOOL CGopherConn::GetFirstItem(CGopherItem & gItem,
 LPCTSTR Locator, LPCTSTR SearchString,
 DWORD Flag, DWORD Context)
{
 ASSERT(m_hConnection != NULL);
 if ((gItem.m_hItem = GopherFindFirstFile(
 m_hConnection,
 Locator,
 SearchString,
 &(gItem.m_Data),
 Flag,
 Context)) == NULL)
 return FALSE;
 return TRUE;
}

CGopherConn::GetFirstItem() is used in enumeration of a Gopher directory. It takes as parameters an input
Locator parameter, typically obtained from a previous GopherCreateLocator() call. It can also take an optional
SearchString, Flag, and Context parameter. Upon return, the input CGopherItem object will be filled with
information for continued enumeration through repeated CGopherConn::GetNextItem() calls. The function is
implemented by calling GopherFindFirstFile() WinINet API and passing the matching parameters.

GopherFindFirstFile() requires a protocol connection level handle, which, in our case, is m_hConnection. It
will connect to the Gopher server and locate the requested documents, files, directory tree, or other Gopher
compatible search resources. The returned 'file-find' handle is stored in m_hItem member of the input
CGopherItem reference object: gItem.

Locator can be a locator created by CreateLocator() pointing to a remote Gopher server, as in our case. It can
also be NULL if the default top-most level of the Gopher directory is desired. The SearchString parameter is used
only with index servers where extra search criteria are required. We need to pass a pointer to a GOPHER_FIND_DATA
structure, which the API will fill with a locator and information on the first Gopher item for enumeration. We do this
by passing a pointer to the m_data member of the input CGopherItem reference object : &(gItem.m_Data).
Flag can have one or more of these values:

Flag Meaning

INTERNET_FLAG_RELOAD Get the data again from the source.
INTERNET_FLAG_DONT_CACHE Do not use caching in retrieving the URL. This flag is most

appropriate for most intranet applications.
INTERNET_FLAG_RAW_DATA Return WIN32_FIND_DATA for FTP and GOPHER_FIND_DATA

for gopher URLs.
INTERNET_FLAG_SECURE Request SSL or PCT service.
INTERNET_FLAG_EXISTING_CONNECT Try to reuse the existing connection to open the URL if possible.

 Context is the context information that will be passed to the status callback function during the asynchronous
mode of operations.

CGopherConn::GetLocatorType()
BOOL CGopherConn::GetLocatorType(LPCTSTR Locator, DWORD & Type)
{
 return(GopherGetLocatorType(Locator, &Type));
}

This member is simply a wrapper for the GopherGetLocatorType() API. Given a Gopher locator retrieved from
the remote server, this function scans the locator and determines its type. Locator contains the null-terminated
Gopher locator string. Type points to a DWORD where the type will be returned. There are different types of locator,
all listed here:

Type Description

GOPHER_TYPE_TEXT_FILE An ASCII text file.
GOPHER_TYPE_DIRECTORY A Gopher directory.
GOPHER_TYPE_CSO A CSO phone book server.
GOPHER_TYPE_ERROR An error condition.
GOPHER_TYPE_MAC_BINHEX A Macintosh file in BINHEX format.
GOPHER_TYPE_DOS_ARCHIVE A DOS archive file.
GOPHER_TYPE_UNIX_UUENCODED A UUENCODED file.
GOPHER_TYPE_INDEX_SERVER An index server.
GOPHER_TYPE_TELNET A Telnet Server.
GOPHER_TYPE_BINARY A binary file.
GOPHER_TYPE_REDUNDANT Refers to a duplicated server.
GOPHER_TYPE_TN3270 A TN3270 server.
GOPHER_TYPE_GIF A GIF graphics file.
GOPHER_TYPE_IMAGE An image file.
GOPHER_TYPE_BITMAP A bitmap file.
GOPHER_TYPE_MOVIE A movie file.
GOPHER_TYPE_SOUND A sound file.
GOPHER_TYPE_HTML An HTML document.
GOPHER_TYPE_PDF A PDF file.
GOPHER_TYPE_CALENDAR A calendar file.
GOPHER_TYPE_INLINE An inline file
GOPHER_TYPE_UNKNOWN The item type is unknown.
GOPHER_TYPE_ASK An Ask+ item.
GOPHER_TYPE_GOPHER_PLUS A Gopher+ item.

CGopherConn::GetNextItem()
BOOL CGopherConn::GetNextItem(CGopherItem & FirstItem,
 CGopherItem & NewItem)
{
 // the file-find handle lives with the first Gopher Item
 return(InternetFindNextFile(
 FirstItem.m_hItem,
 (LPVOID) (&NewItem.m_Data)));
}

This method is used in conjunction with GetFirstItem() to get all the items available at a specified locator, and

simply wraps the InternetFindNextFile() API.

The InternetFindNextFile() requires two parameters. The first parameter must be a 'file-find' level handle.
This handle is filled into the CGopherItem object by the GetFirstItem() member function. The second
parameter is a void pointer to a GOPHER_FIND_DATA structure. We obtain this information from the two
CGopherItem objects passed to the method.

Each call to GetNextFile() with the same FirstItem parameter will fetch the next available item. The call will
fail (return code equals FALSE) and the GetLastError() API will return ERROR_NO_MORE_FILES if the end of
list is reached.

CGopherConn::OpenFile()
BOOL CGopherConn::OpenFile(LPCSTR locator, DWORD flags,
 LPCSTR View, DWORD context)
{
 ASSERT(m_hConnection != NULL);
 if (NULL != m_hCurFile)
 {
 InternetCloseHandle(m_hCurFile);
 m_hCurFile = NULL;
 }
 m_hCurFile = GopherOpenFile(m_hConnection,
 locator, View, flags, context);
 if (NULL == m_hCurFile)
 return FALSE;
 else
 return TRUE;
}

Once the desired Gopher information has located, and before it can be accessed, the Gopher data stream must be
'opened' and 'read'. This is done with the API calling the GopherOpenFile() and InternetReadFile()
functions. The next function, CGopherConn::ReadEntireFile() takes this approach.
CGopherConn::OpenFile() simply wraps the GopherOpenFile() WinINet API. It first makes sure that the 'file
level handle' member CGopherConn::m_hCurFile is not currently open, and, if it is, closes it.

The GopherOpenFile() function opens a Gopher file at the remote server. A file level handle is returned by the
function if successful. This file handle can be used in InternetReadfile() API to access the remote file, in our
case through the CGopherConn::ReadEntireFile() wrapper.

This function requires a connection level handle m_hConnection. It takes a locator, locator, typically from the
enumeration process using CGopherConn::GetFirstFile() or CGopherConn::GetNextFile(). Some
Gopher servers offer more than one view of the file. View specifies which view of the file to open. In our case, this
doesn't apply and we'll use NULL. flags controls the use of the cache and can be any values allowed for
CGopherConn::GetFirstItem(). context is context information passed to the status callback function for
asynchronous operations.

CGopherConn::ReadEntireFile()
BOOL CGopherConn::ReadEntireFile(LPCTSTR locator,
 CString & wholeFile)
{
 LPTSTR aBuf;
 DWORD readSize;
 if (OpenFile(locator))
 {
 aBuf = new char [MAX_BUF_SIZE];

 if (NULL != aBuf)
 {
 while(InternetReadFile(m_hCurFile, aBuf, MAX_BUF_SIZE,
 &readSize))
 {
 if(0 == readSize) break; // this is EOF
 // assume all text files
 aBuf [readSize] = '\0';
 wholeFile = wholeFile + aBuf;
 }
 InternetCloseHandle(m_hCurFile);
 }
 else
 {
 delete [] aBuf;
 return TRUE;
 }
 delete [] aBuf;
 }
 else
 return FALSE;
 return TRUE;
}

Leveraging the flexibility of a CString to handle very large variable size strings and the structure of our
CGopherConn class definition, the CGopherConn::ReadEntireFile() function opens a Gopher information
locator pointed to by locator and reads all its content into a supplied CString reference variable: wholefile.
The implementation is straightforward. First the CGopherConn::OpenFile() function is used to open a file level
handle, then InternetReadFile() is called to repeatedly read the remote file until end of file is reached. As the
file is being read, a temporary buffer aBuf is used to contain the pieces. Meanwhile, the pieces in aBuf are
repeatedly concatenated into the CString reference input variable: wholefile.

Our CIS application makes extensive use of this function to greatly simplify Gopher text file transfers.

CFTPConn Class
CFTPConn is another CInetConn-derived class. It specializes the protocol connection for FTP operations by
providing a comprehensive set of member functions. CFTPConn objects and the protocol connection is created by
CInetSession::ConnectFTP() calls. You can have several FTP connections simultaneously active within one
CInetSession. Some of the services offered by the CFTPConn class include:

Remote Directory Manipulation, via CreateDirectory(), GetCurrentDirectory(),
RemoveDirectory() and SetCurrentDirectory().
File Manipulation, via DeleteFile(), GetFile(), PutFile(), SubmitAFile() and
RenameFile().

Most CFTPConn member functions provides a thin wrapping over the corresponding WinINet API functions,
supplying hidden handles and applicable default parameters wherever applicable. Specifically, the enumeration
functions of the WinINet API for FTP have not been wrapped. This is mainly due to the very simplistic requirement
of CIS, which doesn't need to find or traverse directories on the remote FTP server.

A typical FTP-based application can use the CFTPConn class following these steps:

1Create a CFTPConn object using the CInetSession::ConnectFTP() function,
taking from the user the appropriate host name, user ID and password as
required
2Ask the user for the file name on the remote host to be downloaded, or allow
the user to select a local file for upload (if you want to be able to allow the user
to select from remote files, the CFTPConn class must be extended to cover
enumeration).

3Call CFTPConn::PutFile() to upload a file or CFTPConn::GetFile() to download
a file.
4Repeat step 2 and 3 until all desired file transfers have been done.
5Disconnect from session by destroying the CFTPConn object.

CFTPConn Members Functions
Here is a table of the member functions:

Member Function Description

CFTPConn() A constructor which initializes the handle.
~CFTPConn() A destructor which closes the handle if necessary.
CreateDirectory() Creates a directory on the remote server.
DeleteFile() Deletes a file on the remote server.
GetCurrentDirectory() Gets the current working directory from the remote server.
GetFile() Retrieves a file from the remote server to local disk.
PutFile() Sends a file from the local disk to the remote server.
RemoveDirectory() Removes a directory from the remote server.
RenameFile() Renames a file on the remote server.
SetCurrentDirectory() Changes the current working directory on the remote server.
SubmitAFile() Opens a file for writing on the remote server, fills the file with

content from a CString variable, names the file with a unique name
composed of user ID and a random number and completes transfer
before returning.

CFTPConn::CreateDirectory()
BOOL CFTPConn::CreateDirectory(LPCTSTR DirName)
{
 ASSERT(m_hConnection != NULL);
 return(FtpCreateDirectory(m_hConnection,
 DirName));
}

This function is a thin wrap over the FtpCreateDirectory() WinINet function, supplying only the connection
level handle m_hConnection. It will attempt to create a directory on the remote system. DirName is the name of
the directory to create, the allowable length is dependent on the specific FTP server implementation. The path of the
directory specified can be absolute or relative to the current working directory on the remote server.

CFTPConn::DeleteFile()
BOOL CFTPConn::DeleteFile(LPCSTR Name)
{
 ASSERT(m_hConnection != NULL);
 return(FtpDeleteFile(m_hConnection,
 Name));
}

This function deletes the named file, Name, from the remote system at the current directory. It's a thin wrap over the
FtpDeleteFile() WinINet function. The file path specified, Name, can be either an absolute or a relative path
from the current directory.

CFTPConn::GetCurrentDirectory()
BOOL CFTPConn::GetCurrentDirectory(CString & DirName)
{
 ASSERT(m_hConnection != NULL);
 LPTSTR tmpStr = DirName.GetBuffer(MAX_PATH);
 DWORD tmpSize = MAX_PATH;
 if (NULL == tmpStr)
 return FALSE;
 if(FALSE == FtpGetCurrentDirectory(m_hConnection,
 tmpStr,
 &tmpSize))
 {
 *tmpStr = '\0';
 DirName.ReleaseBuffer();
 return FALSE;
 }
 DirName.ReleaseBuffer();
 return TRUE;
}

This function wraps the FtpGetCurrentDirectory() WinINet function. It returns the current directory on the
remote server in a supplied CString reference parameter: DirName. An assumption is made that the maximum
length of a file path does not exceed the value of the MAX_PATH constant.

CFTPConn::GetFile()
BOOL CFTPConn::GetFile(LPCTSTR RemoteFile, LPCTSTR NewFile,
 BOOL FailIfExist,
 UINT Attributes, UINT Flags, UINT Context)
{
 ASSERT(m_hConnection != NULL);
 return(FtpGetFile(m_hConnection,
 RemoteFile,
 NewFile,
 FailIfExist,
 Attributes,
 Flags,
 Context));
}

This function performs a file download from the remote server to the local machine in one shot. It wraps the
FtpGetFile() WinINet API function and supplies a connection level handle, m_hConnection.

For the FtpGetFile() function, m_hConnection is a connection-level handle. RemoteFile contains the remote
file name to be retrieved. NewFile contains the local file name to be written. FailIfExist controls whether the
API will fail if the local file already exists. Attributes specifies the attributes of the newly created file. It can
contain any flags and attributes allowed by the Win32 CreateFile() API. Flags can be either
FTP_TRANSFER_TYPE_ASCII or FTP_TRANSFER_TYPE_BINARY, although it's best to use
FTP_TRANSFER_TYPE_BINARY for PC to PC file transfers. Context is context information passed to the status
callback function during asynchronous mode of operation.

A return value of TRUE indicates that the file is successfully retrieved.

CFTPConn::PutFile()
BOOL CFTPConn::PutFile(LPCTSTR LocalFile, LPCSTR RemoteFile,
 UINT Flags, UINT Context)
{
 ASSERT(m_hConnection != NULL);
 return(FtpPutFile(m_hConnection,
 LocalFile,
 RemoteFile,

 Flags,
 Context));
}

This function uploads a file from the local computer to the remote computer in one shot. It provides a wrap of the
FtpPutFile() WinINet API call.

For FtpPutFile(), m_hConnection is a connection level handle. LocalFile contains the path of the local file to
be transferred. RemoteFile contains the path where the remote file is to be created. Flags can be either
FTP_TRANSFER_TYPE_ASCII or FTP_TRANSFER_TYPE_BINARY, use the default FTP_TRANSFER_TYPE_BINARY
for PC to PC file transfers. Context is context information for the status callback function during asynchronous
mode of operation.

A return value of TRUE indicates that the file is successfully retrieved.

CFTPConn::RemoveDirectory()
BOOL CFTPConn::RemoveDirectory(LPCTSTR DirName)
{
 ASSERT(m_hConnection != NULL);
 return(FtpRemoveDirectory(m_hConnection,
 DirName));
}

This function removes a directory from the remote server. It wraps the FtpRemoveDirectory() WinINet API.

The directory specified by DirName can be absolute or relative to the remote working directory. A return value of
TRUE indicates that the remote directory has been successfully removed.

CFTPConn::RenameFile()
BOOL CFTPConn::RenameFile(LPCTSTR ExistingName, LPCSTR NewName)
{
 ASSERT(m_hConnection != NULL);
 return(FtpRenameFile(m_hConnection,
 ExistingName,
 NewName));
}

This function wraps the FtpRenameFile() WinINet API.

It renames a file on the remote FTP server if possible. m_hConnection is a connection level handle,
ExistingName contains the name of the existing file on the remote server. NewName contains the new name of the
file.

If this function returns TRUE, the file has been renamed successfully.

CFTPConn::SetCurrentDirectory()
BOOL CFTPConn::SetCurrentDirectory(LPCTSTR DirName)
{
 ASSERT(m_hConnection != NULL);
 return(FtpSetCurrentDirectory(m_hConnection,
 DirName));
}

This function is a wrap for the FtpSetCurrentDirectory() API.

It changes the current working directory of an FTP connection. m_hConnection is a connection-level handle.

DirName contains the path of the desired current directory. The path can be relative to current directory or a full
path.

A return value of TRUE indicates the current directory has been successfully changed.

CFTPConn::SubmitAFile()
BOOL CFTPConn::SubmitAFile(CString & myContent)
{
 char fname[MAX_PATH];
 GetTempFileName(".",CIS_UID_PREFIX,0, fname);
 if (NULL != m_curFTPFile)
 {
 InternetCloseHandle(m_curFTPFile);
 m_curFTPFile = NULL;
 }
 m_curFTPFile = FtpOpenFile(m_hConnection, fname, GENERIC_WRITE,
 FTP_TRANSFER_TYPE_BINARY, 0);
 TRACE("Filename is %s\n", fname);
 if (NULL != m_curFTPFile)
 {
 DWORD tpLength = myContent.GetLength();
 DWORD tpWritten;
 LPTSTR aBuf;
 if (InternetWriteFile(m_curFTPFile,
 aBuf = myContent.GetBuffer(tpLength),
 tpLength, &tpWritten))
 {
 while (tpWritten < tpLength)
 {
 tpLength = tpLength - tpWritten;
 aBuf += tpWritten;
 if (FALSE ==
 InternetWriteFile(m_curFTPFile,
 aBuf,
 tpLength, &tpWritten))
 break;
 }
 }
 myContent.ReleaseBuffer();
 InternetCloseHandle(m_curFTPFile);
 }
 else
 return FALSE;
 return TRUE;
}

SubmitAFile() is a highly customized function specifically designed to work with the CIS application. It's
designed to upload a file containing a variable size string, input as a CString reference variable myContent, to the
root directory of a connected FTP server using a temporary name and anonymous FTP. SubmitAFile() does its
work by calling FtpOpenFile() to open the remote file for upload, then repeatedly calling
InternetWriteFile() until the file upload is completed. CIS counts on this function for uploading abstracts from
user input forms to the FTP server.

CGopherItem and CFTPItem Classes
Last but not least, we have the item classes, which correspond to FTP and Gopher directories, links or files.
CInetItem is the virtual base class for CGopherItem and CFTPItem. CInetItem maintains the 'file-find' level
handle associated with the item in m_hItem. Ideally, CGopherItem and CFTPItem should actually maintain the file
level handle associated with the item. Unfortunately, the FTP protocol only allows one open file per protocol
connection, which makes the m_hItem member of CFTPItem rather meaningless. The following are the class
definitions:

class CInetItem
{
// Construction
public:
 VOID CloseItemHandle();
 CInetItem();
 virtual ~CInetItem();
 HINTERNET m_hItem;
};

class CFTPItem:public CInetItem
{
public:
 CFTPItem();
 virtual ~CFTPItem();
 WIN32_FIND_DATA m_Data;
};

class CGopherItem:public CInetItem
{
public:
 BOOL GetLocator(CString & locator, DWORD & GType);
 CGopherItem();
 virtual ~CGopherItem();
 GOPHER_FIND_DATA m_Data;
};

'File-find' level handles are used in enumerating the elements available in an FTP directory or at a locator location
within Gopher. To make the relationship between the classes even more complicated, only the first 'file-find' level
handle in an enumeration list is really significant. This is partially due to protocol restrictions, and partially due to
Microsoft's desire to mimic the GetFirst-FindNext style of programming familiar to DOS programmers in WinINet.
During an enumeration of items, the first 'file-find' handle returned from a WinINet FtpGetFirstFile() or
GopherGetFirstFile() call is repeatedly passed into an InternetGetNextFile() call to obtain successive
items. WinINet (actually the remote server) keeps the state of the session internally between calls to
InternetGetNextFile().

To work around the complications described above, the CInetItem handle is valid only if it is the first item on an
enumerated list. You could design a 'file-find' object purely for handling the enumeration process, but it would be
overkill for our CIS project.

CFTPItem and CGopherItem classes mainly contain data corresponding to items from a FTP or Gopher
enumeration. For example, the CIS application maintains a map of CGopherItem objects in its document class in
order to quickly retrieve a Gopher item associated with the user button push. CInetItem is actually the only class in
the hierarchy derived from the MFC CObject base class. This adds serialization support for the CFTPItem and
CGopherItem which will allow us to save these objects or a list of these objects easily to a file.

Implementation of the CIS
To implement CIS, we first start with a skeletal set of code generated from App Wizard. The base code is generated
with the following App Wizard options selected:

MDI Application
OLE Full Server Enabled
OLE Automation Enabled
MFC in Static Library

We won't take advantage of most of the enabled OLE options until a later chapter, but generating the base project
with the appropriate options will avoid awkward retrofitting when we need the support later on.

The generated project provides us with these classes:
CAboutDlg CChildFrame
CCISOLE2App CCISOLE2Doc
CCISOLE2SrvItem CCISOLE2View
CInPlaceFrame CMainFrame

To the basic framework set of code, we add the new functionality. CIS operates within a single document
framework, but we are enabling MDI support to make the later transition to OLE simpler. Most of the MDI handling
capability is effectively disabled by eliminating the capability to create or open a new document. This is
accomplished by removing the associated menu item and toolbar buttons.

To display the user interface, we divide the client area of the window into fifteen equal areas and draw the buttons
tiled into this area. The OnDraw() function of the CCISOLE2View class handles this; m_labels is the array of
buttons.

void CCISOLE2View::OnDraw(CDC* pDC)
{
 CCISOLE2Doc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 < code segment skipped >

 UINT wUnit, hUnit;
 CRect myRect;
 GetClientRect(&myRect);
 wUnit = myRect.Width()/5;
 hUnit = myRect.Height()/3;
 for (int i=0; i<5; i++)
 {
 for (int j=0; j<3; j++)
 {
 UINT tmpIdx = (i*3)+j;
 m_Labels[tmpIdx].Create(aStr,
 WS_CHILD | WS_VISIBLE |
 BS_PUSHBUTTON | BS_OWNERDRAW,
 CRect(i*wUnit,j*hUnit,(i+1)*wUnit-1,
 (j+1)*hUnit-1),this, tmpIdx);

 m_Labels[tmpIdx].SetBitmaps(decoded, aBitmap);
 m_Labels[tmpIdx].SetWindowText(aStr); // hidden text!
 }
}
< code segment skipped>
}

The CButton and the CBitmapButton classes provided by MFC are inadequate for our purposes, as we need to
display both a custom bitmap and a button text on the button. Both the bitmap and text must also resize when the
client area changes. We must create a custom button class, CCISButton, which we'll describe in a later section.

To create the custom forms that can be triggered through the decoding of a retrieved Gopher item, we use the dialog
editor to create the dialog resource IDD_INFOVIEW, IDD_ORDER, IDD_SIGNUP, and IDD_SUGGEST. We then use
ClassWizard to create the corresponding C++ CDialog derived classes, CFormDView, CFormOrder,
CFormSignup, and CFormSugg. These are the general purpose information viewing form, a stationary supplies
order form, an activities sign-up form and a comment submission form, respectively.

CIS can be extended by adding more custom forms here. The code in these form are largely untouched from how
they were generated in, except that member variables are defined for the fields and a GetFormInfo() function is
added for all the submittable forms. The purpose of GetFormInfo() is to construct a single CString variable
containing the concatenated string representation of all the field values and a form identification, each separated by a
| character. The application will call this function to create the form submission content. If you want to make CIS
more useful, you can definitely add more data validation and custom code to these forms.

The User Interface
To provide a very easy to use interface, the information will be presented to the user as a panel of buttons. As we
mentioned above, the CButton and CBitmapButton classes in MFC are very simple. We need a button class which
can display both a bitmap and variable text and which can scale with the client area of the hosting frame window. To
accomplish this, we create our own class, called CCISButton.

The CCISButton class implements a SetBitmaps() function, which allows the application to specify the bitmaps
and the text to be displayed on the button; up to four bitmaps and one button label text string can be specified. The
DrawItem() function is overridden for drawing the button border, the bitmap and the text string when the button is
in one of it's possible states (enabled, disabled, focused and pressed).

void CCISButton::DrawItem(LPDRAWITEMSTRUCT lpDIS)
{
 ASSERT(lpDIS != NULL);
 ASSERT(m_bitmap.m_hObject != NULL); // required
 // use the main bitmap for up, the selected bitmap for down
 CBitmap* pBitmap = &m_bitmap;
 UINT state = lpDIS->itemState;
 if ((state & ODS_SELECTED) && m_bitmapSel.m_hObject != NULL)
 pBitmap = &m_bitmapSel;
 else if ((state & ODS_FOCUS) && m_bitmapFocus.m_hObject != NULL)
 pBitmap = &m_bitmapFocus; // focused
 else if ((state & ODS_DISABLED) && m_bitmapDisabled.m_hObject != NULL)
 pBitmap = &m_bitmapDisabled; // for disabled
 // draw the whole button
 CDC* pDC = CDC::FromHandle(lpDIS->hDC);
 CDC memDC;
 // create a backing store for drawing
 memDC.CreateCompatibleDC(pDC);
 CBitmap* pOld = memDC.SelectObject(pBitmap);
 if (pOld == NULL)
 return; // destructors will clean up
 CRect rect;
 rect.CopyRect(&lpDIS->rcItem);
 ASSERT(m_bitmap.m_hObject != NULL);
 CSize bitmapSize;
 BITMAP bmInfo;
 VERIFY(m_bitmap.GetObject(sizeof(bmInfo), &bmInfo) == sizeof(bmInfo));
 // throw the bitmap on the button, make it fit
 pDC->StretchBlt(rect.left, rect.top,
 rect.Width(), rect.Height(),

 &memDC, 0, 0, bmInfo.bmWidth,
 bmInfo.bmHeight, SRCCOPY);
 // get a scale font
 UINT desiredFontSize = rect.Height()/10;
 LOGFONT logFont; memset(&logFont, 0, sizeof(LOGFONT));
 logFont.lfHeight = desiredFontSize;

 CFont font;
 CFont* pOldFont = NULL;
 if (font.CreateFontIndirect(&logFont))
 pOldFont = pDC->SelectObject(&font);
 // find out how much space the label will take
 CRect textRect = rect;
 textRect.DeflateRect(2,2); // take account of margins
 pDC->DrawText(m_buttonText,
 &textRect, DT_CALCRECT | DT_WORDBREAK | DT_CENTER);
 if (textRect.Height() < rect.Height())
 {
 // otherwise too much text, cannot print text
 // manually center it
 UINT padding = (rect.Width() - textRect.Width()) /2;
 textRect.OffsetRect(padding,
 rect.Height() - textRect.Height() - desiredFontSize/2);
 pDC->DrawText(m_buttonText,
 &textRect, DT_WORDBREAK | DT_CENTER);
 }
 // restore font
 if (pOldFont != NULL)
 pDC->SelectObject(pOldFont);
 COLORREF topLeft, bottomRight;
 // pressed vs normal button details
 if (state & ODS_SELECTED)
 {
 topLeft = RGB(127,127,127);
 bottomRight = RGB(255,255,255);
 }
 else
 {
 topLeft = RGB(255,255,255);
 bottomRight = RGB(127,127,127);
 }
 // Draw the 3D frame, 2 pixels thick
 rect.DeflateRect(1,1);
 pDC->Draw3dRect(&rect, topLeft, bottomRight);
 rect.DeflateRect(1,1);
 pDC->Draw3dRect(&rect, topLeft, bottomRight);
 memDC.SelectObject(pOld);
}

The default MM_TEXT mapping mode is used to simplify the placement calculation and drawing operation. To give
the button a realistic feel, we handle the left mouse button down message and repaint the button with a white 'flash'.

void CCISButton::OnLButtonDown(UINT nFlags, CPoint point)
{
 CRect rect;
 GetClientRect(&rect);
 CClientDC dc(this);
 // Flash and Draw Immediately
 dc.FillSolidRect(&rect, RGB(255,255,255));
 Invalidate();
 RedrawWindow();

 CButton::OnLButtonDown(nFlags, point);
}

Document and View Class
For CIS, the application class is CCISOLE2App, the document class is CCISOLE2Doc, and the view class is
CCISOLE2View. The application class maintains an CInetSession object, m_InetSess, corresponding to the
Internet session between WinINet and the CIS application.

The document class contains a pointer to any active Gopher and/or FTP protocol connection objects. The Gopher
connection object, m_Gopher, is created when the application starts up, in the first OnNewDocument() call and is
maintained for the entire session. The FTP connection object, m_FTP, is created and destroyed on-demand when
form submission occurs. This happens in the SubmitForm() member function.

The document class also contains an MFC template-based CMap class, containing a Gopher friendly name to
facilitate Gopher locator mapping for the currently active Gopher menu directory.

CMap<CString, LPCTSTR, CGopherItem, CGopherItem &> m_GopherMap;

This map is updated each time the FillGopherMap() is called. It happens when the user clicks on a button
representing a Gopher link item or a Gopher menu directory.

The view class is responsible for:
Presenting the button interface to the user.
Intercepting button presses and providing appropriate action.
Calling the document class to traverse a Gopher menu directory.
Displaying the appropriate form for the button and submitting the results.
Displaying a remote text file to be viewed by the user.

Most of the work of presenting the button interface is done within the OnDraw() member function, as we discussed
previously. Since the CCISButtons will resize themselves, the only thing you need to do when you are resizing the
client area is to redraw the buttons.

The Gopher locator map is actually maintained in the document class. To 'find again' the Gopher locator
corresponding to a button, the original Gopher friendly name must be passed back in a call to the document class's
GetLocator() function. However, remember that the Gopher friendly name contains forms and button graphic
information, and doesn't correspond to the button label. To overcome this difficulty, the actual window text field of
the window associated with a button is used. In other words, the button label supplied in the SetBitmaps() call of
the CCISButton object is different from the one supplied to the SetWindowText() call. The hidden window text
always contain the full Gopher friendly name and can be used to find the Gopher locator. A couple of helper
functions, DecodeForm() and DecodeString() are used to decode the Gopher friendly name to find the desired
bitmap to display on the face of the button, and the desired form to display when a user clicks a button.

With the sample CIS, I have implemented three custom forms and a capability to read a text file of information. The
OnCommand() function of the view class is overridden to intercept the user clicking any buttons. If the user clicks a
button that corresponds to a form, the form is displayed. The text viewing form requires a call to the
ReadEntireFile() member function of the CGopherConn object belonging the document class. Processing of all
other forms requires calling the forms GetFormInfo() function to retrieve the entries, then sending the form to the
remote FTP server via the document class's SubmitForm() member function. The implemented behavior of CIS is
minimal, but can be easily extended to provide more custom forms, or more specialized document viewing or
submitting capabilities.

Testing on the Network
To test the CIS over a network, you must have access to a Gopher server and an FTP server. The Microsoft Internet

Information Server (IIS) provides an HTTP (World Wide Web) service, as well as FTP and Gopher services. IIS
version 1.0 is available for free download from the Microsoft web site (http://www.microsoft.com/). Version
2.0 and subsequent release will be available as a standard component of the new Windows NT server releases (4.0
and later). Note that IIS version 1.0 can only run on the server version of Windows NT. Later releases may be able to
run on the workstation Windows NT.

For our example and all our script files, we'll only be using the IIS, but you may use any Gopher and FTP servers,
including non-PC based implementations (i.e. UNIX variants). All configuration files are in ASCII text and can be
readily edited using any ASCII editor.

Unlike a stand-alone application, testing a custom network-based application requires significant resources and
preparation. You can use a loop back system to test CIS. The loop back system will run both the development
software, the client CIS, as well as the FTP and Gopher servers from the IIS. This configuration is sufficient for
initial testing, but to do so you'll need a Pentium machine with 32 megabytes of memory running Windows NT
server Version 3.51 at service pack level 4 or later.

In actual production testing, however, loop back testing can't replace testing over the network. Much of the subtleties
of network application-based programming won't surface until the application is actually exercised over a network.
The following assumes that you either have a loop back setup or at least two machines on the network, one running
NT server and another the CIS application.

Setting up the Test Bed
By definition, Internet is TCP/IP, so you must make sure that TCP/IP is properly installed on your computer. If you
don't have an actual LAN card, install the dial-up adapter using the network applet in the control panel of Windows
NT. If you have two machines on the network, make sure that a ping from one machine to another is okay, and vice
versa.

To simplify the installation and testing, you should also make sure that a WINS server is running in your network.
You can start the WINS service from the Services applet in the Control Panel. WINS will automatically map the
NetBIOS-based machine name (i.e. the machine name you set up Windows NT with) to the required IP address.

I've supplied a sample corporate information data set for testing. To test it, you must have set up IIS using all default
values. You should test IIS to make sure that it's working. In addition, make sure that the root of the FTP and Gopher
hierarchy are descending from the same directory (typically Inetsrv), and that the Gopher root is named
gophroot, while the FTP root is named ftproot. Install the data following the instructions on the CD-ROM.
After the extraction, change directory to gophscpt and run the Mktree batch file, followed by the Try batch file.
These files will use the IIS gdsset command to create the necessary Gopher locator hidden files. You can edit this
file to customize the application.

Once you've set this up, try a regular Gopher client and make sure that you can access both the FTP and Gopher
features. Most web browsers can also be used as a Gopher or FTP client. If you're using a web browser such as
Microsoft Internet Explorer or Netscape Navigator, you can type in gopher://<pc name> or ftp://<pc name> to test it.
There's no point in trying CIS unless both FTP and Gopher servers of the IIS are working properly. Also, make sure
that write access as well as anonymous login is enabled for FTP. You can configure this through the IIS
administration applet.

Finally, once you have IIS FTP or Gopher properly set up, the data files extracted and the Gopher menus created
using the batch file, you're ready to test CIS. Before you run CIS, make sure that you have compiled CIS with the
hostname of the server appropriately entered in Cisconfig.h.

Try out CIS. Test the menu traversal, try viewing a remote file and try submitting a form. Having gone through the
design from scratch, and finally seeing it in action, by now, you'll probably have many ideas on how you can extend
this skeletal intranet application for practical use. The next section will provide some more suggestions.

Extending CIS
At this stage, the CIS is far from complete. It is, however, an effective tool for experimenting with Internet/intranet-
based programming, using the WinINet APIs and standard protocols. The to-do list for CIS is very long, so the
following is only a partial list:

Add more robust forms support (i.e. complete validation).
Add more information rendering support (i.e. graphic and sound).
Add a history list for the most recently visited locations.
Implement archive capability to save and restore session configurations.
Improve usability through implementation of status callback function.
Improve the configuration procedure (i.e. fewer hard-coded constants).
Implement robust error handling and recovery.
Optimize the redraw to improve screen update time.
Revisit the class structures to better divide up the work.
Add full OLE Automation support.
Integrate with other Internet and intranet tools.

Summary
When you consider the functionality embodied in CIS, it's amazing how little custom programming is actually
required to achieve it. By leveraging off well-known and extremely well-tested FTP and Gopher protocol as our
protocol building blocks, we've saved tremendous design and testing efforts associated with implementation of new
custom protocols. We've made it possible to use non-PC servers (i.e. UNIX system), and have made it easier to
generate and maintain standard ASCII files. We've made system configuration a lot more flexible and by using the
WinINet library, we've avoided the daunting task of programming the standard protocols via Winsock, allowing us
to focus on more complex functionality. Also, through the encapsulation of object-oriented design, we've wrapped
the WinINet library and partitioned the problem into manageable pieces.

In this chapter, we've discussed Internet and intranet programming, and the reasons for its rising importance over the
next decade. We then examined WinINet, Microsoft's operating system extension to support Internet/intranet
programming. Using a hypothetical CIS as a sample, we proceeded to design and implement a usable, pragmatic,
extensible framework for creating intranet. Finally, we've discussed how to test CIS, and have illustrated the
complexity associated with network application testing.

The other simple, yet very important message that we've tried to get across in these pages is that the most successful
Internet/intranet applications will make the most pragmatic use of both existing and new basic network
programming building blocks (protocols, middleware libraries). For the professional engineer/analyst/programmer,
it's important to be familiar with as many of the standard network programming building blocks as possible. These
are the basic tools for the new generation of network- based applications, ultimately leading to the utopian world of
true distributed computing.

In the blink of an eye, between January and March of 1996, Microsoft have managed to provide literally hundreds of
new network programming building blocks through their ActiveX campaign. In the next chapter, we'll explore the
very exciting ActiveX architecture and its associated network programming building blocks.

ActiveX Documents and Objects
The CIS application that we created in the previous chapter made use of the WinINET extension to give us a flexible
framework upon which to build custom intranet/Internet applications. Following the rapid adoption of intranet-based
web browsing by major corporations, we'll examine how to seamlessly integrate the CIS custom application into a
web browser.

For example, if another department within our hypothetical corporation has standardized a new World Wide Web
browser for their information sharing, we may be asked to fulfill our original design promise by enhancing the CIS
to work in harmony with the browser. Access to the CIS should be transparent to the web browser user . The new
Microsoft ActiveX architecture provides a mechanism to accomplish exactly this. ActiveX is the new branding for
the family of technologies implementing Microsoft's new Internet strategy.

In this chapter, we'll first take a look at Microsoft's Internet strategy, explaining many of the new terms and
concepts. We'll then proceed to examine an Internet extension of Microsoft's OLE technology known as Active
Documents (or Doc Objects in Microsoft internal lingo). We'll then show you step-by-step how to enable a Doc
Object within an Internet application by adding Active Document support to our CIS application. Finally, we'll test
the new CIS using two new Active Document containers, including the new Internet Explorer 3.0.

Microsoft's ActiveX Internet Strategy
In March 1996, Microsoft announced their unifying Internet strategy to the public from their Professional
Developer's Conference in San Francisco. This marked the birth of Microsoft's ActiveX campaign. Appealing to the
public's familiarity with the current World Wide Web, Microsoft introduced a coherent family of technologies which
will bring the 'passive' world of web browsing into Microsoft's vision of an 'active' Internet universe. Microsoft is
leveraging its dominance as the desktop PC platform and exploiting several leading edge web technologies,
including real-time dynamic web page generation, digital signatures, secure transactions and client-side scripted
applets. Beneath this is a whole new set of building blocks, tools, protocols, object access models and APIs that
promise to make it much easier to write useful Internet/intranet-enabled applications.

The Client/Server Model
By far the most popular model of network programming on the Internet is the client/server model. Following this
trend, the ActiveX technologies group is split between a client subset and a server subset (see below). In a typical
scenario, an user will be interacting with a client application, which will then retrieve and manipulate information
provided and processed by one or more server computers distributed throughout the Internet and/or the intranet.

A system where the handling of the client request involves more than one server is often called a multitiered
client/server system. The ActiveX architecture is totally compatible with the multitiered model. For example, a client
request for the latest corporate report may involve the retrieval of a web page from the web server, incorporating
data retrieved in real time from a SQL database server, and triggering an e-mail message to the administrator.

Sorting through the Jargon
Let's take a look at how Microsoft plan to make the Internet active, at the same time promoting their software as the
best choice for developing and servicing intranet applications.

First, let's understand what's happening on the PC desktop. This can be a PC connected to the Internet occasionally
via analog modem or ISDN dialup, or it can be a PC permanently or intermittently connected to a local area network
offering Internet or intranet services. No discussion of the client technology will be complete without first taking a
look at the Internet Explorer.

The Internet Explorer Universal Client
In December of 1995, Microsoft released their World Wide Web browser, called Internet Explorer 1.0, which is
based on technologies licensed by Spyglass Inc. In March of 1996, an upgrade of the Internet Explorer, called
version 2.0 was officially released. Internet Explorer 2.0 has features competitive with the leading browser from
Netscape Inc. and also provides various bug fixes.

Microsoft will release Internet Explorer 3.0 in the second quarter of 1996. While appearing innocently to the user as
an upgrade from Explorer 2.0, the architecture of Internet Explorer 3.0 will be radically different from 2.0 and will
enable rapid transition to the fully-fledged ActiveX Shellview shortly after.

The Shellview will be an enhanced version of the current Explorer (file and system explorer, not the Internet
explorer) applet provided with Windows 95 and Windows NT, which will integrate the navigation of resources on
your computer (i.e. disk drive, printers), with those on the network that the computer is connected to (i.e. remote
disk drive, remote printers, remote database servers), as well as the Internet/intranet (i.e. FTP sites, web servers,
audio libraries). Furthermore, Shellview will display and operate any compliant document resource anywhere within
the navigation hierarchy without activating another application. Document resources will be able to optionally
implement a 'hyperlinking' interface, which will allow any non-HTML-based document to provide 'WWW-like'
hyper-jumps within the navigation universe. By integrating the Windows Explorer and the Internet Explorer, and
allowing activation of applications within the Explorer, Microsoft will make it possible for the user to stay within
the Explorer for his or her entire computing experience. This will allow Microsoft to leverage the universally
acclaimed 'easy-to-use' user interface of the World Wide Web.

Behind the scenes, Microsoft have completely rewritten Internet Explorer 3.0 to use components. Unlike its
monolithic cousin, Internet Explorer 3.0 is simply an Active Document container. It's a very small program which
hosts the HTML Active Document, provides a display area and handles message dispatch for user selection and
input. Most of the work we associate with the browser will be performed by the HTML Active Document, a COM-
based DLL supplied by Microsoft. Segregating the container from the document provides great flexibility. Software
developers can now provide their own value-added container frame, within which they can host the Microsoft
HTML Active Document, providing full Internet Explorer 3.0 functionality within their own product (subject to
licensing from Microsoft, of course). An Active Document container can also host any other COM-based DLLs
containing Active Document, providing more ways to present information (both network-based and local), including
proprietary file formats. Microsoft will definitely provide Active Documents support for all their Microsoft Office
applications, which means that the user will be able to navigate down to and display any Office application
documents within the navigation universe without leaving the Internet Explorer.

As an additional bonus, the Microsoft Internet Explorer 3.0 container will also support a new HyperLinking
interface, which will allow non-HTML documents (i.e. a Microsoft Word document) to contain a hyper-reference
(graphical or text) to other local or networked documents or resources. Any application vendors can implement the

Active Document interfaces, allowing their application to run in-frame within Explorer 3.0 or other Active
Document containers. To the user, this means that even non web pages can contain functional hyper-links to other
web or non-web pages. Users will be able to jump in and out of web pages and legacy documents without having to
distinguish between them.

The ActiveX Stack
Another very important component layer underneath the new Internet Explorer 3.0 is formed by the ActiveX
scripting engines and ActiveX controls, which are actually existing technologies wrapped up in a new name.

Many Visual Basic and Borland Delphi programmers are already familiar with the VBX and OCX controls. These
are drop-in pieces of preprogrammed functionality which the hosting program can make use of by setting properties
and calling methods. What makes them unlike common subroutine libraries is their object-like capability to handle
their own initialization, memory allocation and user interface requirements. Microsoft has renamed OCX as ActiveX
controls, and fully enabled them for distributed computing. All OCX (ActiveX) controls are COM objects:
functional subsystems that are coded to Microsoft Component Object Model standards.

There's an undercurrent of excitement running through the community of web page authors, sparked by Sunsoft's
Java technology. Java is a programming language similar to C++, but with the unique property that Java programs
may be embedded into a web page. When a user accesses a web page with an embedded Java program, the browser
(i.e. Netscape or Internet Explorer) will activate and execute the program. Embedded Java programs are frequently
called applets. These applets enable processing on the client without incurring network traffic or server access. To
ensure security, a set of trusted services on the client side provide limited run-time support for Java applets.

To participate in this excitement, Microsoft has licensed Sunsoft's Java technology for use in their Internet Explorer
and ActiveX products. Microsoft also plan to provide a Visual Java development tool, code named Jakarta. At the
same time as supporting Java, Microsoft will also support and promote an alternative scripting technology based on
their Visual Basic product. This scripting technology will be called VBScript, and Microsoft promises to make the
source code for the scripting engine freely available for any purpose. To put more control on Java applets, Microsoft
have heavily wrapped the script execution environment with an ActiveX access layer. Java applets will be executing
within a virtual machine hosted within the ActiveX scripting engine. The same virtual machine will expose Java
classes as COM objects. This will make it possible for non-Java script programs (i.e. VBScript) to call and make
use of Java objects. At the same time, run-time support will be provided for Java applets to make use of any COM
objects, including ActiveX controls. Adding even more flexibility, Microsoft has defined interfaces which will make
it possible for third parties to totally replace the ActiveX scripting engine. This will allow for Internet scripting using
languages other than VBScript.

ActiveX controls can already be utilized by a very large set of development tools, including Visual C++, Visual
Basic, Borland Delphi, Borland C++ , PowerBuilder, etc. Add to this the suite of up-coming web page authoring
tools, and the ActiveX scripting support and you have a real winner. Web page authors can drag-and-drop a variety
of functional pieces onto their web page, write simple script language programs to coordinate their functions and
immediately publish their creation on the Web. Internet/intranet application developers can easily use the large pool
of available ActiveX controls to create the client side of their application.

Some work needs to be done to modify the existing architecture for OLE controls into an Internet savvy family of
ActiveX controls. The major constraint here is the bandwidth available for Internet access. Today, when an OLE
control is activated by the hosting application, its code and associated data are quickly brought into memory from
the disk or over a high speed LAN. The OLE control is immediately ready for action. ActiveX controls, on the other
hand, must frequently be brought over from an Internet server through very slow connections. For the near future,
these connections will be largely restricted to analog modems working at about 28.8kbps, so the actual foot-print of
the ActiveX controls must be minimized to reduce the download time. Furthermore, a scheme must be developed to
allow the user to feel that the web page or application is still responsive while the code and/or the data is being
downloaded. To make all this possible, Microsoft will be promoting an updated ActiveX control specification,
currently known as OCX96, as well as a new object name resolution mechanism called Asynchronous Moniker.

Current OLE control technology depends on some rather hefty run-time libraries (MFC and C++
run-times) having been installed on the user's machine. In the world of web users, there's no
guarantee at all that these run-time DLLs will in fact be there, even if the user's machine is running
an MS Windows. So ActiveX controls must be built with a certain degree of stand-alone capability.

Underneath the scripting support and ActiveX controls, Microsoft need to provide services to locate network
resources and to retrieve and store network information. To unify the methods of locating resources (i.e. servers,
files, printers, information items) in the navigation universe, Microsoft have provided a URL (Universal Resource
Locator) moniker layer. This is an enhancement of OLE monikers and will allow URLs to be used to locate

networking resources. A URL is a string such as "http://www.microsoft.com/" which contains a protocol
specification, and a 'path' to the machine and resource identification.

Once a resource is located in the navigation universe, what the application can do with it will depend on the
application, as well as the protocol through which the resource can be accessed. This is called a binding. Initially,
Microsoft will support the standard set of HTTP, FTP and Gopher bindings, as well as providing for addition of any
application specific binding and/or protocols. The support for HTTP, FTP and Gopher protocols will be provided
through the WinINET extension to the Win32 API.

The ActiveX Server Architecture
On the server, side, Microsoft is attempting to maximize the leverage of its existing Windows NT server product and
the BackOffice suite of server products. Microsoft has made its Internet Information Server 1.0 (IIS) widely
available for free over the Internet. IIS contains Microsoft's web server.

To allow the development of Internet and intranet-based applications within IIS, Microsoft have implemented the
Common Gateway Interface (CGI) standard, as well as its own Internet Server Application Programming Interface
(ISAPI). Both interfaces allow for information collected from a web site or a browser to be passed into an external
program for processing. The program may also return information formatted by HTML to be displayed on the client
browser. Having evolved from a UNIX-centric environment, most current day Internet/intranet server applications
make use of CGI. The key difference between CGI and ISAPI is that CGI requires the spawning of a new process
for each request handled by CGI, whereas ISAPI runs in-process for multiple requests. ISAPI accomplishes this
through the use of custom dynamic-linked libraries and Windows NT's multithreading support.

Essentially, the BackOffice suite consists of several data management servers, tailored for large corporations. The
SNA Server manages the connection to legacy host systems, the Exchange Server manages a corporation's internal
and external messaging, the System Management Server manages a corporation's networked-based assets and the
SQL Server manages all relationally structured data. As such, these servers already answer some very compelling
and proven business needs.

Deploying these servers over the Internet will be straightforward, since they can operate over TCP/IP networks. To
this end, Microsoft have announced the availability of PPPT (Point to Point Protocol Tunneling) to allow
BackOffice users to create virtual private networks over a public Internet connection. This means that unmodified
BackOffice clients can now have secure access to the BackOffice servers over the Internet.

However, in some instances, organizations need have control over publishing information managed by the
BackOffice servers as web pages. This is currently done by writing an ISAPI or CGI application which accesses the
BackOffice servers via their corresponding APIs (i.e. MAPI for Exchange Server, ODBC for SQL Server, etc.).
However, to make this process easier, especially for the upcoming ActiveX scripts and ActiveX controls, new
connector and proxy components will be introduced, which will allow IIS to directly access information managed
across the BackOffice suite. A version of the Internet Database Connector is supplied with the IIS to allow for the
dynamic creation of web pages containing live data from an ODBC source, without coding.

To simplify the implementation of a server Internet/intranet application, Microsoft is determined to move the
ActiveX run-time stack over to the server. By positioning ActiveX behind Windows NT server's encryption, security
and authentication layers, Microsoft have provided these capabilities to services written using server ActiveX.

The availability of the ActiveX stack on the server will mean that the development of Windows NT server
applications is no longer the restricted domain of guru C/C++ programmers. Instead, it will be open those using
Visual Basic, Delphi, Java, PERL or any other supported scripting language. The ability to use many existing
ActiveX controls on the server side will make a good base of prefabricated functionality available to anyone
developing a server application from day one. There is no penalty for using interpreted scripting languages in the
server application, as long as sufficiently powerful hardware is available.

The Holy Grail: Distributed COM
Since 1992, Microsoft have had a vision to enable distributed computing through their Component Object Model,
allowing COM-based objects to be instantiated and utilized transparently over a network. Back in the Windows NT
Professional Developer's conference of 1993, Microsoft demonstrated distributed COM and circulated sample code.
At that point, distributed COM existed only in the barest of prototypical forms. Unsolved issues germane to
widespread use of distributed COM, such as provision of adequate directory services, licensing mechanisms, and
platform independence, remained.

Once again, in 1996, Microsoft has reintroduced distributed COM as a powerful futuristic enhancement to much of
the ActiveX architecture. The same unsolved issues regarding the widespread use of distributed COM remain, but
some progress has been made on some of them, and certain trends that have occurred in technology and the market
have rendered them moot for a large proportion of users. The increasing dominance of Win32 platforms is rendering
platform-independence irrelevant for a larger and larger segment of the market, and it has dawned on many that
distributed object invocation mechanisms, such as distributed COM, can be quite useful, even in the absence of
directory services, when coupled with HTTP as the mechanism for first establishing connections.

The fundamentals of distributed COM are simple: a intermediate proxy layer in the COM support run time will farm
requests for COM interfaces and/or methods transparently over the network.

With distributed COM in place, the scripting engine on the client side can make use of server COM objects directly,
bypassing an entire stack of software layers. By the same token, server Active Documents can communicate with the
client user interface host directly.

Distributed COM can only be of limited use until several very tough technical and business issues have been
addressed.

First and foremost, a directory service which manages objects and the ownership of information in the entire
navigation space (from the local machine to right across the Internet) needs to be in place. Without this, it would
take days to configure a moderate-sized application that makes use of hundreds of distributed objects each time it's
used. Unfortunately, such a 'universal' directory service is not likely to be established in the near future, due to the
fragmented landscape of existing network naming services, each with their own approach to solving this complex
problem.

Secondly, component object authors would like to be rewarded for their effort. A solid network-wide licensing
manager needs to be in place. There is currently no accepted business model for a truly distributed component
world. How will providers of component objects over the Internet be paid? How will usage of the object be
metered? These are very hard questions to answer.

Last but certainly not least, as the Internet is composed of millions of heterogeneous computers, a component object
which is platform- dependent is a very poor solution.

Putting it Altogether
Let's put all the pieces that we have discussed so far together, and see what the new ActiveX architecture looks like.

Internet Explorer 3.0
Now it's time to take a quick look at the new ActiveX architecture in action. What happens when we run the Internet
Explorer 3.0 executable? If we compare the alpha copy of the Internet Explorer 3.0 with Internet Explorer 2.0, we

can see the different EXEs and DLLs that are loaded:

Internet Explorer 3.0 Internet Explorer 2.0
Iexplore.exe Ie20.exe
Mshtml.dll Secbasic.dll
Hlink.dll Secur32.dll
Oleaut32.dll Msnsspc.dll
Urlmon.dll Mcm.dll
Wininet.dll Treenvcl.dll
Urlcache.dll Svcprop.dll
Shdocvw.dll Moscc.dll

Tapi32.dll
Mosmisc.dll
Moscl.dll
Sec_sspi.dll

Version.dll Version.dll
Mpr.dll Mpr.dll
Crtdll.dll Crtdll.dll
Url.dll Url.dll
Ole32.dll Ole32.dll
Msvcrt20.dll Msvcrt20.dll
Wsock32.dll Wsock32.dll
Winmm.dll Winmm.dll
Rpcrt4.dll Rpcrt4.dll
Comctl32.dll Comctl32.dll
Sage.dll Sage.dll
Shell32.dll Shell32.dll
User32.dll User32.dll
Gdi32.dll Gdi32.dll
Advapi32.dll Advapi32.dll
Kernel32.dll Kernel32.dll

In the Internet Explorer 2.0, besides the standard support DLLs, such as Shell32.dll, Gdi32.dll, etc., we can
see the Spyglass heritage in the Mos*.dll series. What's more interesting is how Internet Explorer 3.0 has been
divided into components. Gone is the Mos*.dll series of DLLs. Instead we have:

File Contains

Iexplore.exe Internet Explorer 3.0 main frame window.
Shdocvw.dll ActiveX Shell Explorer Control; provides access to all the functionality of Internet

Explorer through COM; also acts as Active Document container for the
Mshtml.dll Active Document.

Mshtml.dll ActiveX HTML Viewing Active Document Server; implements HTTP retrieval,
decoding, and display.

Wininet.dll ActiveX WinINET Win32 Extension.
Hlink.dll ActiveX Hyperlinking Support.
Urlmon.dll ActiveX URL Moniker Implementation.
Urlcache.dll ActiveX System wide URL caching support.

If we cross reference this with ActiveX diagram, we can see that the client component architecture is well in place,
even in this Alpha release of Internet Explorer 3.0.

Future updates will merge the Windows Explorer with the Internet Explorer by replacing the Iexplore.exe
hosting frame with an Explorer.exe hosting frame. Later, Windows 95 and Windows NT versions will swap the
shell for the hosting frame, which means that the browser becomes the user interface to the operating system and the
user will never need to exit the browser (universal client) again.

Other Active Internet Fronts
The Microsoft Internet strategy encompasses much more than the ActiveX client/server architecture. It also
represents Microsoft's complete shift in focus and attitude towards the Internet. The following sections will describe
some of the other on-going Internet focused developments.

Microsoft have announced an entire new suite of products which use the ActiveX technology, including software,
such as Frontpage, for creating web pages and managing web sites, various Internet Assistants (for Word, Excel,
PowerPoint, etc.) and Internet Studio. Also becoming available are ActiveX development tools, such as Visual Basic
Scripting Edition (for creating, debugging and testing of VB script programs) and Visual J++ (formerly called
Jakarta, for creating, debugging and testing of Java applets).

Adding to the BackOffice Suite will be a new Merchant Server for doing electronic commerce transactions, a high-
end public Internet Server, code-named Normandy, a 'next generation' Directory Server , and a Search Server. All in
all, BackOffice will become a potent suite of interoperating servers to handle any Internet or intranet site
requirements.

To protect against malicious programs hidden in the form of downloadable ActiveX components, a 'code signing'
mechanism will be available. Using digital signatures, a hierarchy of 'trusted certificate agencies' and public key
encryption, it will ascertain the origin of a piece of code (i.e. an ActiveX control) and make sure that it hasn't been
tampered with during transmission.

To facilitate live collaboration over the Internet/intranet, Microsoft have announced the ActiveX Conferencing API
and standards. Anticipating the shift from 2D graphical web pages to the future 3D web worlds, enabled by new
standards such as VRML, Microsoft has fortified support for 3D graphics in its operating system through the Direct
3D API initiative. Adapting to demands from the public, hungry for better net-based multimedia support, Microsoft
has introduced ActiveMovie for standard-based video playback, and has begun to implement quality of service
(QOS) support into Windows NT.

QOS allows networking applications to negotiate, reserve and guarantee bandwidth. This is a fundamental feature
for high speed network interconnect technologies, such as ATM (asynchronous transfer mode). Most new
networking hardware, the new proposed version of the Internet Protocol and the new version of the Winsock
standard, all have provision for QOS. By providing QOS support within the operating system, Microsoft have finally
guaranteed the quality of service between client and server applications. Finally, the users will be able to get crystal
clear, non breaking, constant bit-rate video or audio (as good as the TV and radio that we are used to) delivered
directly over the Internet.

Active Documents and Doc Objects
A detailed and complete analysis of the ActiveX architecture is beyond the scope of this book, so, instead, we'll
concentrate on a part of ActiveX, called Active Documents or Doc Objects.

Despite the understandable excitement over the Internet/intranet and new ActiveX-based technologies, we must
acknowledge that abandoning the huge software base that has been written without these technologies in mind is
unrealistic. It would be wonderful, though, to be able to 'activate' these applications and make them net-savvy with
just a little work! Microsoft have tried to address these issues with Doc Objects. Essentially, Doc Objects allow
conventional applications to participate in ActiveX after just a few relatively simple modifications.

In real terms, this means that someone using an ActiveX-compatible browser to surf web pages can view a link
containing a document from a legacy application. The user can view the document in any format (standard or
proprietary) and directly from within the browser, so they won't be aware of the transition. To the user, it appears as
another web page, potentially providing new ways of interacting.

All of a sudden, you can publish information on your intranet in proprietary formats that your users are already
familiar with. In our case, we're going to take the CIS from the WinINET chapter and retrofit it to become an
ActiveX document server. The corporate intranet users in our hypothetical corporation can migrate to Microsoft
Internet Explorer as their standard desktop browser, and still enjoy the simple custom behaviors provided by the
CIS.

Beneath the Hood
How do Doc Objects work?

The support provided by Doc Objects is divided between the container and the server. A Doc Object container is
typically a 'value added frame'. Good examples are the Microsoft Office Binder provided with Microsoft Office is
such a container, the Internet Explorer frame provided with Internet Explorer 3.0, or the Explorer frame (combining
local system navigation with net navigation) to be provided with Microsoft's Internet update.

Doc Object servers are similar to older OLE in-place editing document servers. As a matter of fact, existing in-place
editing servers can be readily modified to be Doc Object servers.

When an Doc Object container hosts a Doc Object server, it gives control of the entire client area of the container to
the server. This is unlike the OLE embedding/in-place editing server, which only gets a small window in the
document being edited. Menu merging is performed, and the toolbar provided by the server is posted, in addition to
the container's main toolbar. This is shown in the figure below, when our CIS is hosted inside the Internet Explorer
3.0.

Another difference between an OLE embedding/in-place editing server and a Doc Object server is that the user
doesn't need to double-click the Doc Object to make it active. The Doc Object is always in-place active, as soon as it
is given control of the container's client area.

Finally, since the Doc Object takes over the entire editing area of the container, it is also responsible for controlling
the layout of the printed output. Printing is done through a print method, and no metafile is necessary, since it's no
longer just a portion of a larger output, as with conventional OLE embedding.

The OLE COM Foundation
It would be very difficult to understand Doc Objects without some fundamental understanding of OLE and COM.
We've covered the foundation of COM in previous chapters, so I'll give a very brief recap just to refresh our memory
on the subject matter.

OLE is an umbrella term for a family of object-oriented distributed computing technologies from Microsoft. COM is
the common tie between the OLE technologies. It stands for Common Object Model and is a binary object model.
This binary model is language-independent and soon will be operating system and platform-independent. The model
specifies the life cycle of an object, prescribes how objects expose their capabilities, how they interact with each

other, and how object interactions can span process and machine boundaries.

COM objects expose their functionality and interact through a set of agreed-upon interfaces. An interface is a
collection of functions and has a globally unique ID (GUID) associated with it. Each new version of an interface has
to have a new GUID. The GUID is a very, very large number which guarantees that each and every interface defined
by anyone on earth at anytime past or present will be unique.

The most basic interface is called IUnknown. All COM interfaces are based on it and, more importantly, all objects
must implement it. IUnknown implements three functions AddRef(), Release(), and QueryInterface().
AddRef() and Release() are used in object life cycle control via reference counting. Whenever an object gives
out an interface pointer, AddRef() is called to increment a reference counter. When the calling component no
longer needs the interface, Release() is called to decrement the reference counter. It is generally safe to unload the
object from memory if the reference count goes to zero.

QueryInterface() is used to determine the interfaces that an object will support. When QueryInterface() is
called with the unique ID of a particular interface, the object will return a pointer the requested interface if it is
supported. Since every COM interface is based on IUnknown, and IUnknown implements the QueryInterface()
function, we can get an interface pointer to any other interface that an object supports. Once a pointer to an interface
is obtained, any function provided by that interface can be called. This allows a component to gain access to all the
capabilities of an object given just one single interface pointer. Helper functions which instantiate or locate objects
only have to return one interface pointer.

This is enough of an OLE refresher for us to proceed with an examination of the interfaces implementing Doc
Object server functionality.

The New Interfaces
Assuming that you're starting with an application which supports OLE document embedding and in-place activation,
the application would have already implemented the following required interfaces:

IPersistStorage
IPersistFile
IOleObject
IDataObject
IOleInPlaceObject
IOleInPlaceActiveObject

To support Doc Object, we need to modify the implementation of some of these interfaces. In addition, the following
new Doc Object interfaces must be implemented:

IOleDocument
IOleDocumentView
IOleDocumentCommandTarget
IPrint

The last two interfaces, IOleDocumentCommandTarget and IPrint, are required only if you need to pass
command events from the container to the document, or you need to support printing through the container,
respectively.

We'll be taking a detailed look at how we implement these interfaces when we add Doc Object support to the CIS
example from the previous chapter. But first, let's take a brief look at our overall approach to the conversion..

An Easy MFC Approach
Coding an Active Document server from scratch is not for the faint of heart, due to the large number of interfaces
and functions that must be supported. Fortunately, this is seldom necessary, as MFC already provides most of the
capabilities through some well-tested base class code from Microsoft.

An application developed using MFC, generated via the Visual C++ App Wizard with full OLE server support
would have default support for many of the required interfaces. The following lists the required OLE document
embedding and in-place activation interfaces automatically supported by MFC-generated code, as well as the MFC
classes which implement the required interface:

Required Interface MFC Class Implementing the Interface

IOleObject COleServerDoc
IDataObject COleServerDoc
IPersistStorage COleServerDoc
IPersistFile COleLinkingDoc
IOleInPlaceObject COleServerDoc
IOleInPlaceActiveObject COleServerDoc

You can find all of the above interface declarations in the interface maps for the COleServerDoc and
COleLinkingDoc classes in the source file Msdev/Mfc/Include/Afxole.h supplied with Visual C++.

To complete the embedding/in-place editing support, we need to customize:

document serialization
the redrawing of the in-place frame for the activated and non-activated states
the management of the negotiation for the size and location of the in-place frame
menu and toolbar merging.

We'll be looking at specific implementation details in the next section with our CIS application.

With Visual C++ 4.1, Microsoft have provided a sample program called BINDSCRB which adds Active Document
support to the sample SCRIBBLE program used in the MFC tutorial. It's called BINDSCRB because it makes
SCRIBBLE compatible with the BINDER component of Office 95, which is, essentially, the very first Active
Document container. Put another way, Microsoft have borrowed the 'embedded document with full control of
container's client area' technology from the Office 95 BINDER application as a template for Active Document.
Besides being a good sample of Active Document server programming, it also provides valuable base classes which
can be used in any other MFC application wishing to use this technology. We'll be borrowing heavily from
BINSCRB in our CIS conversion.

Specifically, BINDSCRB provides a COleDocObjectServer class to replace the COleServerDoc class; a
COleDocObjectServerItem class to replace the COleServerItem class; and a CDocObjectIPFrameWnd class
to replace the COleIPFrameWnd class. These classes are derived from the classes that they replace, and they make
the required modifications to the base class behavior, making them compatible with Active Document. BINDSCRB
also implements the new Doc Object interfaces required. Here's a list of these required interfaces, and the new class
responsible for implementing it:

Required Interface New Class Implementing the Interface

IoleDocument ColeDocObjectServer
IoleDocumentView ColeDocObjectServer
IoleDocumentCommandTarget ColeDocObjectServer

IPrint ColeDocObjectServer

The declaration for the above interface map is in the Binddoc.h file from the BINDSCRB project. We'll examine
how these new classes modify their base classes in the next section, when we add Active Document support to CIS.

Activate the CIS
We now proceed to retrofit our CIS program to include support for Active Document. The Active Document
container we will be using to test the CIS will be the alpha version of Internet Explorer 3.0. As an Active Document
hosting container, there are a number of limitations associated with this release:

It cannot support multiple views per document.
It can only view one document at a time.
It does not make use of the IPrint interface.
It doesn't fully support the usage of the IOleDocumentCommandTarget interface.

To cope with these limitations, our implementation will only provide a single view per document. For the IPrint
and the IOleDocumentCommandTarget interface, we'll provide stubs, but not implement the details.

The procedures documented here are not unique to CIS. They can be used to add Active Document support to any
MFC-based application.

We'll now examine how the new CIS will be implementing each of the required interfaces and their associated
functions through the BINDSCRB supplied classes. Along the way, we'll get a detailed look at the new interfaces.

You may want to follow along by examining the source code provided on the accompanying CD-ROM. Be
forewarned, though, that this project consists of a very large body of code, and navigating it may not be trivial!
However, if you fasten your seatbelts and stay with me, you'll soon see that we're actually doing very little work to
the original CIS during the conversion, thanks to the tremendous BINDSCRB code pool. We'll save the actual
conversion process until the end. After the exercise, please join me in a silent prayer for the MFC crew to absorb this
pool of code into the basic application framework ASAP!

Note that in the description following, interface functions are specified in MIDL notation where applicable.
Compared to regular C/C++ syntax, this notation provides additional information for function arguments,
differentiating input arguments from output arguments.

IOleDocument Interface
The document/view model of Doc Objects is almost identical to that of MFC. A view is a window into the data
contained within the document. A document can be associated with many views. Each view can have a different
display presentation of the data contained in a document. The IOleDocument interface provides the container with
capability to create and manage views, as well as obtaining information on the document. IOleDocument has the
following functions:

CreateView()
GetDocMiscStatus()
EnumViews()

CreateView() Function
HRESULT IOleDocument::CreateView([in] IOleInPlaceSite *pIPSite,
 [in] IStream *pstm, [in] DWORD dwReserved,
 [out] IOleDocumentView **ppView)

This function allows the document container to either request that the server creates a new view (when pstm is
NULL), or loads a saved view from the pstm stream.

pIPSite is a pointer to the container's in-place site to be associated with the new view. This interface is provided by

the container's view site object. A view site object is responsible for managing the container's display area for a
specific view. If pIPSite is NULL, the container must later call the view's
IOleDocumentView::SetInPlaceSite() to set the site.

The new view's IOleDocumentView interface is returned in ppView. Once the view has been created successfully,
the container can call IOleDocumentView::Show() or IOleDocumentView::UIActivate() to make it visible.

CIS supports only a single view, through Binddcmt.cpp from BINDSCRB, which it implements CreateView()
via:

STDMETHODIMP CDocObjectServerDoc::XOleDocument::CreateView(
 LPOLEINPLACESITE pipsite, LPSTREAM pstm,
 DWORD dwReserved, LPOLEDOCUMENTVIEW* ppview)
{
...
 if (dwReserved == 0 && pThis->m_pDocSite != NULL)
 {
 // if view site is already
 // set, fail.
 if (pThis->m_pViewSite == NULL)
 {
 LPOLEDOCUMENTVIEW pView =
 (LPOLEDOCUMENTVIEW)pThis->GetInterface(&IID_IOleDocumentView);
 ASSERT(pView != NULL);
 // Set the site for the view
 hr = pView->SetInPlaceSite(pipsite);
 if (hr == NOERROR)
 {
 // Return the IOleDocumentView pointer
 pView->AddRef();
 *ppview = pView;
 }
 // If a saved view stream is provided
 // restore it
 if (pstm)
 hr = pView->ApplyViewState(pstm);
 }
 }
...
}

GetDocMiscStatus() Function
HRESULT IOleDocument::GetDocMiscStatus([out] DWORD *pdwStatus)

This provides properties of the Doc Object in a DWORD pdwStatus. It's implemented to let the container know what
the Doc Object is capable of.

The bit values are:

Constant Value Description

DOCMISC_CANCREATEMULTIPLEVIEWS 1 The document can support multiple views.
DOCMISC_SUPPORTCOMPLEXRECTANGLES 2 The document can support complex

rectangles.
DOCMISC_CANTOPENEDIT 4 The document has minimal or no user

interface and cannot honor open edit.
DOCMISC_NOFILESUPPORT 8 The document supports IpersistStorage,

but not IpersistFile.

CIS doesn't create multiple views, doesn't support complex rectangles, supports open editing and saving or loading
from a file. The bit-mask for this configuration is 0, so CIS/BINDSCRB implements GetDocMiscStatus(), again
in Binddcmt.cpp, via:

STDMETHODIMP CDocObjectServerDoc::XOleDocument::GetDocMiscStatus(
 LPDWORD pdwStatus)
{
...
 *pdwStatus = 0;
 return NOERROR;
}

EnumViews() Function
HRESULT IOleDocument::EnumViews([out] IEnumOleDocumentViews **ppEnum,
 [out] IOleDocumentView **ppView)

The container calls this function to enumerate all the views provided by the Doc Object. ppEnum is a pointer to the
IEnumOleDocumentViews interface of an enumerator object. If the document doesn't support multiple views, the
pointer to a single view is returned via *ppView.

Since the CIS Doc Object will support only a single view, it calls QueryInterface() to get a pointer to the
IOleDocumentView interface and returns it in *ppView:

STDMETHODIMP CDocObjectServerDoc::XOleDocument::EnumViews(
 LPENUMOLEDOCUMENTVIEWS* ppEnumView, LPOLEDOCUMENTVIEW* ppView)
{
...

 // We only support a single view
 *ppEnumView = NULL;
 HRESULT hr = QueryInterface(IID_IOleDocumentView, (LPVOID*)ppView);
 return hr;
}

IOleDocumentView Interface
The IOleDocumentView interface provides various functions for the container to manipulate, manage, or activate a
particular view of a Doc Object. IOleDocumentView has the following functions:

SetInPlaceSite()
GetInPlaceSite()
GetDocument()
SetRect()
GetRect()
SetRectComplex()
Show()
UIActivate()
Open()
CloseView()
SaveViewState()
ApplyViewState()
Clone()

SetInPlaceSite() and GetInPlaceSite() Functions
HRESULT IOleDocumentView::SetInPlaceSite([in] IOleInPlaceSite *pIPSite)

HRESULT IOleDocumentView::GetInPlaceSite([out] IOleInPlaceSite **ppIPSite)

These functions allows a container to associate a view site object with a view, or returns a pointer to the currently
associated site for the view.

For SetInPlaceSite(), if the view already has a site associated, the view must call
IOleInPlaceObject::InPlaceDeactivate(), and then release the old site. The view should remember the site
passed in pIPSite.

For GetInPlaceSite(), the view should return either a pointer to the site most recently set by the container or
NULL. If a site is returned, the view must remember to do an AddRef() on the interface.

The implementation of these functions is straight forward in CIS, as they are almost a word-for-word translation of
the above statements.

The implementation of SetInPlaceSite() is:

STDMETHODIMP CDocObjectServerDoc::XOleDocumentView::SetInPlaceSite(
 LPOLEINPLACESITE pIPSite)
{
 // if currently inplace active, deactivate
 if (pThis->IsInPlaceActive())
 pThis->m_xOleInPlaceObject.InPlaceDeactivate();
 // release the view site pointer
 if (pThis->m_pViewSite)
 pThis->m_pViewSite->Release();
 // store the site and addref
 pThis->m_pViewSite = pIPSite;
 if (pThis->m_pViewSite != NULL)
 pThis->m_pViewSite->AddRef();
 return NOERROR;
}

The implementation of GetInPlaceSite() is:

STDMETHODIMP CDocObjectServerDoc::XOleDocumentView::GetInPlaceSite(
 LPOLEINPLACESITE* ppIPSite)
{
...
 if (pThis->m_pViewSite)
 pThis->m_pViewSite->AddRef();
 *ppIPSite = pThis->m_pViewSite;
 return NOERROR;
}

GetDocument() Function
HRESULT IOleDocumentView::GetDocument([out] IUnknown **ppunk)

This function lets the container obtain a pointer to the IUnknown interface of the view's associated document,
returned in ppunk. Having retrieved this interface, the container can obtain any other interface provided by the
document object.

CIS/BINDSRB implements this interface simply through QueryInterface()as:

STDMETHODIMP CDocObjectServerDoc::XOleDocumentView::GetDocument(
LPUNKNOWN* ppUnk)
{
...

 HRESULT hr = pThis->m_xOleDocument.QueryInterface(IID_IUnknown,
 (LPVOID*)ppUnk);
 ASSERT(*ppUnk != NULL);
 return hr;
}

Note that QueryInterface() does the AddRef() for us.

SetRect() and GetRect() Functions
[input_sync] HRESULT IOleDocumentView::SetRect([in] LPRECT prcView)

HRESULT IOleDocumentView::GetRect([out] LPRECT prcView)

These functions enable the setting and retrieval of the viewport coordinates of the view window. When it receives
this call, the view should resize itself to the new coordinates.

CIS/BINDSCRB implements SetRect() by delegating to a member function called OnSetItemRects():

STDMETHODIMP CDocObjectServerDoc::XOleDocumentView::SetRect(
 LPRECT lprcView)
{
...
 pThis->OnSetItemRects(lprcView, lprcView);
 hr = NOERROR;
...
}

The handling of OnSetItemRects() in the CCISOLE2Doc class stores the coordinates for resizing of the buttons in
CIS to fit the view window upon the next time the screen is re-drawn.

GetRect() returns the viewport coordinates in the client coordinates of the view window.

CIS/BINDSCRB delegates the function to the GetItemPosition() function:

STDMETHODIMP CDocObjectServerDoc::XOleDocumentView::GetRect(
 LPRECT lprcView)
{
...

 pThis->GetItemPosition(lprcView);
 return NOERROR;
}

This actually ends up calling the GetItemPosition() function of the base COleServerDoc class. The rectangle
returned is the coordinates of the only item being edited in place, which coincides with the dimension of the view.

SetRectComplex() Function
[input_sync] HRESULT IOleDocumentView::SetRectComplex([in] LPRECT prcView,
 [in] LPRECT prcHScroll, [in] LPRECT prcVScroll, [in] LPRECT prcSizeBox)

This function is used by containers to set the coordinates of the view port, the scroll bars, and the size box. Simpler
Doc Objects which don't support complex rectangles can return E_NOTIMPL.

If the Doc Object supports complex rectangles, it should immediately resize to the rectangle specified by prcView,
and put the scrollbars and size box at prcHScroll, prcVScroll, and prcSizeBox respectively.

CIS/BINDSCRB doesn't support complex rectangles, so it simply returns E_NOTIMPL.

Show() Function
HRESULT IOleDocumentView ::Show ([in] BOOL fShow)

A view supporting this function should show or hide itself according to the value of the fShow flag. If the fShow
flag is TRUE, the Doc Object should in-place activate without UI activation. Then it should show the view window.
If fShow is FALSE, the Doc Object should call IOleDocumentView::UIActivate(FALSE) and then hide the
view.

UIActivate() Function
HRESULT IOleDocumentView::UIActivate([in] BOOL fUIActivate)

The Doc Object should either activate or de-activate its user interface, according to the state of the fUIActivate
flag. UI elements include the menus, toolbars and accelerators. Merging menus and toolbars should also be done
here. If fUIActivate flag is FALSE, the Doc Object would typically make a call to
IOleInPlaceObject::UIDeactivate() to deactivate the active object and its user interface elements.

CIS/BINDSCRB implements this function by delegating to the OnActivateView() function.
OnActivateView() is a complex function which creates the in-place frame window as a child of the site obtained
from the container, performs in-place activation and negotiation for merging of menus and toolbars. See the sample
code file Bindview.cpp for its implementation. In future versions of the MFC, this functionality will become an
integral part of the application framework, eliminating the need to recode this functionality for every new Doc
Object server.

Open() Function
HRESULT IOleDocumentView::Open(void)

This function is equivalent to the IOleObject::DoVerb(OLEIVERB_OPEN). The container wishes to open the
view in an independent pop-up window. If the Doc Object doesn't support this 'open in a separate window'
functionality, it should return E_NOTIMPL. It should also ensure that the IOleDocument::GetMiscStatus()
returns a bit-mask with DOCMISC_CANTOPENEDIT set, as well as ensuring the bits in the DocObject registry key are
set appropriately.

If the document supports its own frame, the implementation typically begins with a call to
IOleInPlaceObject::InPlaceDeactivate(). Then the view displays the separate window.

While the separate window is displayed, the view holds on to all the interface pointers, as well as a pointer to the
container's in-place site. If the container calls IOleDocumentView::Show() during this time, the view should hide
and show the pop-up window accordingly. When the user closes the separate window,
IOleInPlaceSite::OnInPlaceActivate() should be called to give the container a chance to optionally
activate the UI.

Should it wish to close the view permanently, the container will officially call
IOleDocumentView::CloseView().

CIS/BINDSCRB doesn't support the use of a separate window, so it simply returns E_NOTIMPL.

CloseView() Function
HRESULT IOleDocumentView::CloseView([in] DWORD dwReserved)

The container calls this function to tell the view to close down completely. The view should hide itself by calling
IOleDocumentView::Show (FALSE) and then release the site retained by calling
IOleDocumentView::SetInPlaceSite(NULL). A container will typically call this before it deletes the view.

CIS/BINDSCRB implements CloseView() exactly as described above:

STDMETHODIMP CDocObjectServerDoc::XOleDocumentView::CloseView(
 DWORD dwReserved)
{
...

 // Call IOleDocumentView::Show(FALSE) to hide the view
 Show(FALSE);
 // Call IOleDocumentView::SetInPlaceSite(NULL) to deactivate the object
 HRESULT hr = SetInPlaceSite(NULL);
 return hr;
}

SaveViewState() and ApplyViewState() Function
HRESULT IOleDocumentView::SaveViewState([in] IStream *pstm)

HRESULT IOleDocumentView::ApplyViewState([in] IStream *pstm)

These functions allow the container to ask the view to save or restore its state from the supplied stream pstm. The
state can contain any attributes specific to the view, including appearance, type, size, zoom factor, insertion point,
etc. When it's writing to the stream, the view must abide by the rules of IPersistStream and write its CLSID as
the first element in the stream. When it's reading from the stream, the view must do its own validation. Typically, the
container calls SaveViewState() before it deactivates the view, and uses ApplyViewState() after it has
instantiated a new view.

CIS/BINDSCRB returns E_NOTIMPL for SaveViewState(), but does provide an implementation for
ApplyViewState(). The ApplyViewState() implementation uses a CArchive to load the state and delegates to
an OnApplyViewState() function. However, no state is archived or restored at this time. Due to the work -in-
progress nature of the BINDSCRB sample, we can see this asymmetric behavior in Bindview.cpp.

STDMETHODIMP CDocObjectServerDoc::XOleDocumentView::ApplyViewState(
 LPSTREAM pstm)
{
...

 HRESULT hr = NOERROR;

 // Attach the stream to an MFC file object
 COleStreamFile file;
 file.Attach(pstm);
 CFileException fe;
 // load it with CArchive
 CArchive loadArchive(&file, CArchive::load |
 CArchive::bNoFlushOnDelete);
 TRY
 {
 pThis->OnApplyViewState(loadArchive);
 loadArchive.Close();

 file.Detach();
 }
 CATCH(COleException, pOE)
 {
 hr = pOE->m_sc;
 }
 AND_CATCH_ALL(e)
 {
 hr = E_UNEXPECTED;
 }
 END_CATCH_ALL

 return hr;
}

Clone() Function
RESULT IOleDocumentView::Clone([in] IOleInPlaceSite *pIPSiteNew,
 [out] IOleDocumentView **ppViewNew)

The container will call this function when it needs to create a clone of the current view object on a new viewport and
view site with the same state and context. This is very similar to the IOleDocument::CreateView() function and
is often used to support the File/New... menu function supported by the container.

pIPSiteNew contains the in-place site to be associated with the view, and the new view is returned in ppViewNew.

CIS/BINDSCRB supports a single view only and does not support cloning so it returns E_NOTIMPL.

IOleDocumentCommandTarget Interface
The IOleDocumentCommandTarget interface provides the container with a way to query a Doc Object server for
support of specific commands, as well as dispatching those commands to be executed by the Doc Object server. The
interface is designed to be bidirectional and extensible. Sending of commands from the Doc Object to the container
is supported by the container's implementation of the IOleDocumentCommandTarget interface. We can define new
commands in the future, using the same dispatch mechanism. Each command is deemed to belong to a command
group represented by a GUID.

The default command group is identified by GUID=NULL and contains the following standard Office 95 commands
(recall that the BINDSRIB sample makes good o'SCRIBBLE Office 95 Binder compatible):

Command ID Description

OLECMDID_OPEN File Open
OLECMDID_NEW File New
OLECMDID_SAVE File Save
OLECMDID_SAVEAS File Save As
OLECMDID_SAVECOPYAS File Save Copy As
OLECMDID_PRINT File Print
OLECMDID_PRINTPREVIEW File Print Preview
OLECMDID_PAGESETUP File Page Setup
OLECMDID_SPELL Tools Spelling
OLECMDID_PROPERTIES File Properties
OLECMDID_CUT Edit Cut
OLECMDID_COPY Edit Copy

OLECMDID_PASTE Edit Paste
OLECMDID_PASTESPECIAL Edit Paste Special
OLECMDID_UNDO Edit Undo
OLECMDID_REDO Edit Redo
OLECMDID_SELECTALL Edit Select All
OLECMDID_CLEARSELECTION Edit Clear
OLECMDID_ZOOM View Zoom.
OLECMDID_GETZOOMRANGE Get zoom range associated with the view.

The two functions in the IOleCommandTarget interface are:

QueryStatus()
Exec()

QueryStatus() Function
[input_sync] HRESULT IOleCommandTarget ::QueryStatus(
 [unique][in] const GUID *pguidCmdGroup, [in] ULONG cCmds,
 [in,out][size_is(cCmds)] OLECMD *prgCmds,
 [unique][in,out] OLECMDTEXT *pCmdText);

This is an optional interface. The container calls this function to query the Doc Object for the support of various
commands (or vice versa in the other direction) belonging to a command group pguidCmdGroup. An array of
OLECMD structures is passed in via prgCmds. cCmds indicates the number of commands contained in the array. The
container is interested in the support for the commands specified in the cmdID structure member of this array. The
Doc Object's implementation should fill in the cmdf field of each command with a bit-mask consisting of a
combination of the following OLECMDF enumeration:

Bit-mask Constant Description

OLECMDF_SUPPORTED The Doc Object supports this command.
OLECMDF_ENABLED This command is available and enabled.
OLECMDF_LATCHED This command is a toggle and is on.
OLECMDF_NINCHED This command is a toggle but no state information is available.

The OLECMD structure for prgCmds is defined to contain the following members:

Type Member Description

ULONG cmdID ID for command
DWORD Cmdf flags for command
enum OLECMDTEXTF Indicates what a command target object should store into the

OLECMDTEXT structure

We can call this function to obtain the name or status bar text for a command. To determine whether the container
wanted this service, check the OLECMDTEXTF member of the elements of the prgCmds array. They can contain
values from the following OLECMDTEXTF enumeration:

Constant Description

OLECMDTEXTF_NONE No text return is required.
OLECMDTEXTF_NAME The name of command should be returned.
OLECMDTEXTF_STATUS The status string of command should be returned.

If the OLECMDTEXTF member contains OLECMDTEXF_NAME, the object should place the name of the command into
the Rgwz member of pCmdText. If the member contains OLECMDTEXTF_STATUS, the implementation should place
the status line text into the Rgwz member. The cwActual member should be updated to reflect the actual length.

The pCmdText parameter is of an OLECMDTEXT structure, defined to contain the following members. Only the first
command tagged in the prgCmds array will have text returned.

Type Member Description

DWORD cmdtextf Indicates what the implementation should do.
ULONG CwActual The number of characters filled in by the implementation.
ULONG CwBuf The input size of the buffer.
wchar_t Rgwz The input buffer to hold the returned text.

CIS/BINDSCRB doesn't support this optional interface. The function is simply stubbed in the Bindtarg.cpp.

Exec() Function
HRESULT IOleCommandTarget ::Exec([unique][in] const GUID *pguidCmdGroup,
 [in] DWORD nCmdID, [in] DWORD nCmdExecOpt,
 [unique][in] VARIANTARG *pvaIn, [unique][in,out] VARIANTARG *pvaOut)

This function is a caller's request for the object to perform a command or display help. The command is specified by
the pguidCmdGroup and nCmdID combination. It is the caller's responsibility to ensure that the command is
supported by the object via an IOleCommandTarget::QueryStatus() call. The action for the object to take is
specified via the nCmdExecOpt parameter. This parameter can contain values from the OLECMDEXECOPT
enumeration:

Value Description

OLECMDEXECOPT_PROMPTUSER Execute the command after taking user input.
OLECMDEXECOPT_DONTPROMPTUSER Execute the command silently; no user input is required.
OLECMDEXECOPT_DODEFAULT Let the called object decide whether to prompt user or not.
OLECMDEXECOPT_SHOWHELP Show the help for the command.

If the command to be executed requires input parameters, the pvarIn parameter will point to a VARIANTARG
variable containing one or more input values. If the command returns one or more values, the appropriate
VARIANTARG variable must be created and returned by the implementation as pvarOut.

CIS/BINDSCRB doesn't support this optional function, so the code in Bindtarg.cpp provides a stub.

IPrint Interface
IPrint is an optional interface to be implemented by views. It provides the container with a command to print the

view (via a function, instead of as a request to create a metafile, as in the case with embedded OLE items), a
command for setting the initial page number when the container is printing several objects or documents together
and a command to retrieve information associated with printing from the view.

The IPrint interface has three functions:

SetInitialPageNum()
GetPageInfo()
Print()

SetInitialPageNum() Function
HRESULT IPrint::SetInitialPageNum([in] LONG nFirstPage)

The container calls this function to set the first page to print for this document. nFirstPage is a LONG and may
actually be negative, to indicate an offset from the currently displayed page. Not all Doc Objects would implement
this capability, as it may not make sense for certain printing applications.

CIS/BINDSCRB does not support the IPrint optional interface.

GetPageInfo() Function
HRESULT IPrint::GetPageInfo([out] LONG *pnFirstPage, [out] LONG *pcPages)

The container calls this function to obtain information about the pages to be printed. If pnFirstPage is not NULL
upon input, it will contain the page number of the first page to be printed upon return. pcPages will contain a count
of all pages to be printed, as long as it is not NULL upon input.

Print() Function
HRESULT IPrint::Print([in] DWORD grfFlags, [in,out] DVTARGETDEVICE **pptd,
 [in,out] PAGESET **pppageset, [unique][in,out] STGMEDIUM *pstgmOptions,
 [in] IContinueCallback *pcallback, [in] LONG nFirstPage,
 [out] LONG *pcPagesPrinted, [out] LONG *pnLastPage)

The container calls this to print the view on the printer specified by the pptd parameter. pptd is a Win32
DVTARGETDEVICE structure. The implementation should check the dmOrientation field and attempt to honor the
paper orientation during printing. Other information, such as paper size and number of copies, can be obtained by
the DEVMODE member. grfFlags can contain values from the PRINTFLAG enumeration:

Constant Description

PRINTFLAG_MAYBOTHERUSER Allows the view to interact with the user. No interaction is
allowed if not set (i.e. must print completely in one shot with
no user interface).

PRINTFLAG_PROMPTUSER If the PRINTFLAG_MAYBOTHERUSER is set, this indicates to
the view that it should prompt the user for print options using
a print dialog.

PRINTFLAG_USERMAYCHANGEPRINTER Allows the user to change printer when they are presented
with a print options dialog. This option is only valid if both
PRINTFLAG_MAYBOTHERUSER and
PRINTFLAG_PROMPTUSER flags are set.

PRINTFLAG_RECOMPOSETODEVICE Asks the view to recompose itself to the specified device.
Otherwise, the view is free to compose base on any former

device associations.
PRINTFLAG_PRINTTOFILE Prints to the file named by the portname member of the

DVTARGETDEVICE structure.

If either PRINTFLAG_MAYBOTHERUSER or PRINTFLAG_PROMPTUSER flags are specified, pptd and ppPageSet
may be different upon return to the caller. nFirstPage specifies the page number of the first page to be printed and
should be used to override any pre-set first page number.

pstgmOptions is a pointer to a serialized property sheet, specifying view-specific state information which the
container should hold and pass back on subsequent calls to the Print() function. The caller doesn't know the
format of this information, so can't examine or modify this structure. This parameter may be used to print the view
with the same auxiliary settings or configurations on different printers. The parameter can be NULL if it is not
needed.

ppPageSet contains a PAGESET structure which controls which pages are to be printed. The members of the
PAGESET structure are:

Type Member Description

ULONG cbStruct The size of the structure in bytes (must align on 4 bytes
boundary).

BOOL FoddPages Indicates that only odd-numbered pages in the set are to
be printed.

BOOL FevenPages Indicates that only even-numbered pages in the set are to
be printed.

PAGERANGE * RgPages Contains pairs of page range, which are sorted in
increasing order and are not overlapping. Taken
together, this list specifies the pages to print.

ULONG CpageRange The number of page-range pairs in RgPages.

The RgPages member of PAGESET is a PAGERANGE structure, containing a pair of page number. It is defined to be:

Type Member Description

LONG nFromPage The first page in this print range.
LONG nToPage The last page in this print range. If it is

PAGESET_TOLASTPAGE, then all pages between nFromPage
and the last legal page will be printed.

After the printing operation, when the Print() function returns, pcPagesPrinter contains the number of pages
actually printed and pnLastPage returns the number of the last page printed.

The printing operation itself is blocking, with respect to the calling container. However, the implementation of
IPrint() is required to periodically call the IContinueCallBack::FContinuePrint() function through the
interface pCallback parameter. The guideline here is to consider the human response speed and poll pCallback
frequent enough so that the user can cancel the printing without delay.

IContinueCallBack Interface

The IContinueCallBack interface is a generic interface for periodic callback, allowing for a lengthy blocking
operation to be canceled. It is defined to contain two functions:

FContinue()
FContinuePrinting()

FContinuePrinting() is actually a specialization of FContinue().

FContinue() Function
HRESULT IContinueCallback::FContinue(void)

This asks whether operation should continue. A return value of S_OK indicates it is all right to continue operation,
while S_FALSE indicates that the operation should be aborted as soon as possible.

FContinuePrinting() Function
HRESULT IContinueCallback::FContinuePrinting(LONG cPagesPrinted, LONG nCurrentPage,
LPOLESTRING pszPrintStatus)

This asks caller (container) whether the blocking printing operation should be continued. It's used to allow the user
to cancel the operation (as in the FContinue() function), as well as allowing the container to display status
reporting user interface element to the user (i.e. page being printed).

cPagesPrinted should contains the total number of pages printed thus far. nCurrentPage contains the page
number of the page being printed. Note that it is entirely possible to call FContinuePrinting() multiple times
with the same cPagesPrinted and nCurrentPage values. This will depend on how long it takes to print a page.
pwszPrintStatus are status reporting text messages passed to the caller. The caller may display these messages in
a status box.

As in FContinue(), a return value of S_OK indicates that printing should continue. A S_FALSE or E_UNEXPECTED
return value indicates that printing should be aborted as soon as possible.

Modifications to Embedding/In-place Editing Code
As well as implementing new Active Document interfaces, it is also necessary to modify the base OLE
embedding/in-place editing code to support Active Document activation. The following will examine the
modifications necessary, and shows how CIS/BINDSCRB implements these modifications.

IOleObject::SetClientSite() Modification
The original implementation of IOleObject::SetClientSite() must be modified to detect whether the site
supplied from the container will support IOleDocumentSite. If it does, we must behave like an Active Document,
otherwise, regular in-place server behavior will be appropriate.

CIS, through code taken from the file Oleobjct.cpp from the BINDSCRB sample, implements
CDocObjectServerDoc::XDocOleObject::SetClientSite() as:

STDMETHODIMP CDocObjectServerDoc::XDocOleObject::SetClientSite(
 LPOLECLIENTSITE pClientSite)
{
...
 // Perform normal SetClientSite processing.
 hr = pThis->m_xOleObject.SetClientSite(pClientSite);
 // release old document site
 if (pThis->m_pDocSite != NULL)
 {
 pThis->m_pDocSite->Release();
 pThis->m_pDocSite = NULL;
 }
 // Check to see whether this object should act
 // as a document object by querying for
 // IOleDocumentSite, storing it in m_pDocSite
 if (pClientSite != NULL)
 hr = pClientSite->QueryInterface(IID_IOleDocumentSite,
 (LPVOID*)&pThis->m_pDocSite);
 return hr;
}

IOleObject::DoVerb() Modifications
The DoVerb() function of the IOleObject interface must be changed to support OLEIVERB_HIDE,
OLEIVERB_OPEN and OLEIVERB_SHOW slightly differently.

For CIS, these are implemented in the CDocObjectServerItem class' OnHide(), OnOpen(), OnShow() function
respectively.

An Active Document server should never receive OLEIVERB_HIDE while it's in-place activated (which is all the
time, unless it supports 'open as a separate window' functionality). If this verb is received, we should report a
problem. CIS implements this through Binditem.cpp from BINDSCRB, as:

void CDocObjectServerItem::OnHide()
{
 CDocObjectServerDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 if (pDoc->IsDocObject())
 AfxThrowOleException(OLEOBJ_E_INVALIDVERB);
 else
 COleServerItem::OnHide();
}

For OLEIVERB_OPEN, we need to activate the Active Document:

void CDocObjectServerItem::OnOpen()
{
 CDocObjectServerDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 if (pDoc->IsDocObject())
 pDoc->ActivateDocObject();
 else
 COleServerItem::OnOpen();
}

The OLEIVERB_SHOW handling is the same as OLEIVERB_OPEN:

void CDocObjectServerItem::OnShow()
{
 CDocObjectServerDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 if (pDoc->IsDocObject())
 pDoc->ActivateDocObject();
 else
 COleServerItem::OnShow();
}

The document performs ActivateDocObject() by asking the stored IOleDocumentSite from the container to
activate the current view.

Modification to In-place Activation
The in-place activation code must be modified from normal OLE embedding/in-place activation by:

Drawing the view's scrollbar inside the rectangle instead of outside (remember we're taking over the
entire client area).
Skipping the drawing of the hatched border or selectors.
Skipping the call to IOleInPlaceSite::OnPosRectChange().
Doing nothing in IOleObject::SetExtent() calls.

For CIS/BINDSCRB, see the code in Bindipfw.cpp. For OnRequestPositionChange(), it does nothing:

void CDocObjectIPFrameWnd::OnRequestPositionChange(LPCRECT lpRect)
{
 CDocObjectServerDoc* pDoc = (CDocObjectServerDoc*)GetActiveDocument();
 ASSERT_VALID(pDoc);
 ASSERT(pDoc->IsKindOf(RUNTIME_CLASS(CDocObjectServerDoc)));

 // DocObjects don't need to generate OnPosRectChange calls, so we
 // just return if this is a DocObject.
 if (pDoc->IsDocObject())
 return;
 // The default behavior is to not affect the extent during the
 // call to RequestPositionChange. This results in consistent
 // scaling behavior.
 pDoc->RequestPositionChange(lpRect);
}

See RecalcLayout() in Bindipfw.cpp for details of the detailed drawing adjustment coding. This code provide
the skipping of hatched border draw and ensures that the scrollbars are drawn within the client rectangle.

Also, IOleObject::SetExtent() calls are ignored in XDocOleObject::SetExtent() in the Oleobjct.cpp
file:

STDMETHODIMP CDocObjectServerDoc::XDocOleObject::SetExtent(
 DWORD dwDrawAspect, LPSIZEL lpsizel)
{
 METHOD_PROLOGUE_EX(CDocObjectServerDoc, DocOleObject)
 ASSERT_VALID(pThis);

 // DocObjects ignore SetExtent calls, so return E_FAIL
 if (pThis->IsDocObject())
 return E_FAIL;
 // Otherwise, just do the normal processing
 return pThis->m_xOleObject.SetExtent(dwDrawAspect, lpsizel);
}

Merge the Help Menus of Container and View
The help menus of both the container and the Active Document should be available to the user. This is accomplished
via some fairly complex calculation and coding. Fortunately, the office binder support coding provided in
Mfcbind.cpp performs it for us in the helper functions MfcBinderMergeMenus() and
MfcBinderUnMergeMenus(). CIS makes use of this through the
CDocObjectIPFrameWnd::BuildSharedMenu() and CDocObjectIPFrameWnd::DestroySharedMenu()
functions in the Bindipfw.cpp file.

This complex, yet very regular operation could be easily absorbed into the MFC framework in a future version.

Adding New Registry Keys
To support Active Documents, the registry needs to be populated with new keys. These new keys include a
DocObject key associated with the Active Document's CLSID:

HKEY_CLASSES_ROOT\<clsid>\DocObject=<flags>

The flags should be a 32 bit bit-mask, identical to the returned value from the Active Document's
IOleDocument::GetDocMiscStatus() function. See the description earlier in this chapter for these flags.

Another key of vital importance is:

HKEY_CLASSES_ROOT\CLSID\<clsid>\DefaultExtension=<file extension>

For example, CIS has file extension .CIS.

Other keys that should be added if not already existing are:

HKEY_CLASSES_ROOT\CLSID\<clsid>\DocObject
HKEY_CLASSES_ROOT\CLSID\<clsid>\Printable

The Printable key should only be added if IPrint is supported.

The office binder helper function MFCBinderUpdateRegistry() in Mfcbind.cpp will perform all this for you. It
should be called from the InitInstance() function in the CWinApp derived class.

Now that we have had BINDSCRB do almost all the tough parts for us, we must first add normal embedding and in-
place editing support to CIS.

To add embedding and in-place editing support, we'll need to:

Add document serialization.
Add in-place activation support.

Adding Serialization Support
Adding serialization in CIS will allow us to save CIS documents to disk or compound document storage. This is a
prerequisite for OLE embedding support.

Like many other applications, CIS doesn't naturally require documents to be saved in its normal operation. If you
have an application, like CIS, which doesn't naturally support the File/Save... and File/Open... operations, you'll have
to think of saving some operation states which will allow the user to pick up from where they left off. What we will
be saving to the archive for CIS will be the most recently used Gopher locator (an ASCII string) . This locator will
allow us to display the same selection of buttons when the file is reloaded.

First, we add the CString m_curLocator member variable to the CCISOLE2Doc class. This is the variable where
we'll hold the most recently used Gopher locator. We initialize it in the constructor and update it every time we
update the Gopher map:

BOOL CCISOLE2Doc::FillGopherMap(LPCTSTR Locator)
{
 // calling Locator must not be part of Map, otherwise
 // it will be deleted in the RemoveAll(). We'll make
 // it safe by storing a local copy
 CString myLocator = Locator;
 m_GopherMap.RemoveAll();
 CGopherItem * FirstItem = new CGopherItem;
 BOOL firstItemAvailable;

 m_curLocator = Locator; // store the current locator
 // dual use, if locator not supplied, just grab the
 // default one from the specified host
 if ((NULL == Locator) || (0 == m_curLocator.GetLength()))
 firstItemAvailable = m_Gopher->GetFirstItem(*FirstItem);
 else
 firstItemAvailable = m_Gopher->GetFirstItem(*FirstItem,
 (LPCTSTR) myLocator);
...

Notice that we have also modified the check for a null value for the locator string. In fact, the locator may be
pointing to a string with a \0 as its first character. Only a check against the length will ensure that both cases are
covered.

To add serialization support, we override the Serialize() function:

void CCISOLE2Doc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 ar << m_curLocator;
 }
 else
 {
 ar >> m_curLocator;
 }
}

This completes the serialization support. Next, we need to add in-place editing support.

Adding In-place Activation Support
The OnDraw() function of the CCISOLE2ServerItem is called when the embedded item is not active. This
function draws to a metafile, which is used in drawing the inactive object. Since this is not strictly necessary for
Active Document support (i.e. Active Documents are always in-place active), we'll do the minimum here.

BOOL CCISOLE2SrvrItem::OnDraw(CDC* pDC, CSize& rSize)
{
 CCISOLE2Doc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 // All drawing takes place in the metafile device context
 CSize sizeDoc = pDoc->GetDocSize();
 pDC->SetMapMode(MM_ANISOTROPIC);
 sizeDoc.cy = -sizeDoc.cy;
 pDC->SetWindowExt(sizeDoc);
 pDC->SetWindowOrg(0,0);

 POSITION pos = pDoc->GetFirstViewPosition();
 CCISOLE2View * pView = (CCISOLE2View *) pDoc->GetNextView(pos);
 pDC->DPtoLP(&sizeDoc);
 CRect ab(0,0,sizeDoc.cx, sizeDoc.cy);
 ab.DeflateRect(3,3);
 CBrush aBrush;
 aBrush.CreateSolidBrush(RGB(255,0,0));
 pDC->FillRect(ab, &aBrush);
 return TRUE;
}

The OnGetExtent() function of the CCISOLE2SrvrItem class also needs to be overridden to return the item size
in HIMETRIC units. Since our buttons will scale to whatever size the in-place window may be, we save the last
known size of the window and return it to the container in this function.

BOOL CCISOLE2SrvrItem::OnGetExtent(DVASPECT dwDrawAspect, CSize& rSize)
{
 // Most applications, like this one, only handle drawing the
 // DVASPECT_CONTENT flag
 if (dwDrawAspect != DVASPECT_CONTENT)
 return CDocObjectServerItem::OnGetExtent(dwDrawAspect, rSize);
 // CCISOLE2SrvrItem::OnGetExtent is called to get the extent in
 // HIMETRIC units of the entire item. The default implementation
 // here simply returns a hard-coded number of units.
 CCISOLE2Doc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CSize sizeDoc = pDoc->GetDocSize();
 CClientDC dc(NULL);
 dc.SetMapMode(MM_ANISOTROPIC);
 dc.SetWindowExt(sizeDoc);
 dc.SetWindowOrg(0,0);
 rSize = sizeDoc;
 dc.DPtoHIMETRIC(&rSize);
 return TRUE;
}

The size of the document is stored in a CSize member variable, m_DocSize, in the CCISOLE2Doc class. It is
initialized to 100 pixels-by-100 pixels in the constructor and refreshed each time the OnSetItemRects() call is
made. This call is typically made indirectly by the container when the item is being resized.

void CCISOLE2Doc::OnSetItemRects(LPCRECT lpPosRect, LPCRECT lpClipRect)
{
 // call base class to change the size of the window
 CDocObjectServerDoc::OnSetItemRects(lpPosRect, lpClipRect);
 m_DocSize.cx = lpPosRect->right - lpPosRect->left;
 m_DocSize.cy = lpPosRect->bottom - lpPosRect->top;
}

If you have followed along with the modifications to the original CIS source code and have not yet copied the
BINDSCRB files over, it will be a good time now to check and verify that the serialization is working and that
embedding/in-place editing also works. For a container host, you can use either the CONTAIN sample container
from the MFC samples, or any of the Office 95 applications. Select Insert/Object... and CISOLE document and
watch as a mini-CIS appears embedded in the document.

The CIS buttons are still fully functional, even when they are embedded, and CIS will resize with the in-place frame.
When CIS is deactivated, the buttons disappear from the client area. This is because we didn't implement the
unnecessary metafile redraw for update of the server item. Reactivation of the embedded CIS object is achieved with
a double click. This double click activation is very unnatural for CIS and makes it unsuitable as an embedded/in-
place activated OLE server.

By now, you probably have a question on your mind.

Is that all we had to do to make CIS an Active Document server?

The answer is YES! The Binder support classes provided by the BINDSCRB sample does most of the tough work
for us. When MFC absorbs it in a future version, all we'll have to do is to click a check box in AppWizard to get
Active Document support.

Making Use of BINDSCRB Classes
If you're following along and have completed the modification of the original CIS code for OLE embedding/in-place
activation, the next step is to add the new classes provided by the BINDSCRB sample software from the Visual C++
4.1 CD-ROM. Copy the following files from the BINDSCRB sample to the modified CIS directory:

Binddcmt.cpp Binddoc.cpp
Bindipfw.cpp Binditem.cpp
Bindtarg.cpp Bindview.cpp
Mfcbind.cpp Oleobjct.cpp
Print.cpp Binddoc.h
Bindipfw.h Binditem.h
Mfcbind.h

Once the files are copied, add all the new .cpp files to the CIS project. From the developers studio's class view,
select CCISOLE2Doc class, modify the base class to CDocObjectServerDoc instead of COleServerDoc
(Cisole2doc.h). Select the CCISOLE2SrvItem class and modify the base class to CDocObjectServerItem ,
instead of COleServerItem (Srvritem.h). Select the CInPlaceFrame class and modify the base class to
CDocObjectIPFrameWnd instead of COleIPFrameWnd (Ipframe.h).

Enabling the Doc Object
To continue the base class replacement, replace all references to COleServerDoc in Cisole2doc.h and

Cisole2doc.cpp to CDocObjectServerDoc. Replace all references to CCISOLE2SrvItem in Srvritem.h and
Srvritem.cpp to CDocObjectServerItem. Replace all references to COleIPFrameWnd in Ipframe.h and
Ipframe.cpp to CDocObjectIPFrameWnd. Finally, modify Cisole2doc.cpp, Srvritem.cpp and
Ipframe.cpp to include Binddoc.h, Binditem.h and Bindipfw.h respectively. This completes the replacement
of the base class.

The final step in converting CIS to an Active Document server involves adding a tag in the registry, telling the shell
that CIS will support Active Document. You can do this by replacing the App Wizard-generated registry update line
with a support function MfcBinderUpdateRegistry(). Do this in the CCISOLE2App::InitInstance()
function in the Cisole2.cpp file.

BOOL CCISOLE2App::InitInstance()
{
...
 //BINDER:
 // Binder objects have some special registry entries that
 // MFC doesn't know about. Instead of calling
 // COleTemplateServer::UpdateRegistry, call our special
 // registration function
 MfcBinderUpdateRegistry(pDocTemplate, OAT_INPLACE_SERVER);
 //END_BINDER
...
}

That's it! Rebuild the CIS project, run it as a stand-alone application once to update the registry, and CIS is now
ready to participate in the ActiveX party.

Testing with Doc Object Containers
We're now ready to test our new Active Document server, but first we must find some working Active Document
containers. The two most widely available containers supporting full Active Document hosting are:

Office 95 Binder
Internet Explorer 3.0

Future versions of NCSA Mosaic and potentially other web browsers may also support Active Document hosting.
For now, let's look at how CIS manages to plug-and-play with the above containers.

The Microsoft Office Binder
The Microsoft Office 95 binder is a Doc Object container which allows you to manipulate Office 95 documents in
the same frame. You can create a binder consisting of a mixture of Word, Excel and Powerpoint documents. By
clicking on the iconic representation of the document on the left frame, the document will be activated on the right
half and you can use the native menus and toolbars to edit the document. The entire document can be saved as one
big binder document. A binder can also be printed in one shot with running page numbers through all the
subdocuments (as long as the IPrint interface is implemented by the Doc Object).

To add a CIS document to the binder, use the Section menu. Select either Add... or Add from File.... Add from File...
will required a previously saved CIS file. If you use Add..., you'll have to select CISOLE object from the list of
insertable objects. Once you have activated a CIS document, try adding an Excel and Word document. Try switching
between them to see how the binder container switches between the Doc Objects.

The figure below shows CIS being hosted within the Office Binder. Also in the binder are a Word document and an
Excel document.

Internet Explorer 3.0
Internet Explorer 3.0 is an Active Document container. The web browser functionality itself is provided by an
MSHTML Active Document. It's easy for Internet Explorer to use another Active Document, like CIS. You can try
out hosting of CIS within Internet Explorer. You can do this by typing in the name of a saved CIS file into the URL
window (i.e. C:\TEST1.CIS), or enter it through a link in a standard HTML page.

Internet Explorer 3.0 will currently only run only on Windows NT 4.x or Windows 95. This means that we cannot
test CIS on a single Windows NT machine using loopback unless it's running Windows NT 4.x. In my case, I've used
a separate Windows 95 machine connected via LAN to the Windows NT development server.

As a matter of fact, the URL (file://C:\TEST1.CIS for the alpha version, or file:///C:\TEST1.CIS for the
beta version) can be a URL hypertext link on a web page. When the user clicks on the hypertext link, CIS will
become active within the Internet Explorer frame with the current location set to the one saved in the Test.cis file.

The backward and forward buttons of Internet Explorer will switch between the CIS 'page' and the recently traversed
HTML web pages. Merged menus and the combined toolbar expose the 'return to start' button of CIS. Microsoft is
currently in the process of defining the details of a hyperlinking interface. With this and the IOleCommandTarget
interface, it will be possible to expose CIS pages as part of the navigation sequence. This will mean that the forward
and backward buttons can also be used to traverse through a history list of CIS pages.

By interspersing web pages with links to existing Active Documents, legacy non-HTML documents can participate
in Internet/intranet-based information publishing without any conversion. The user can navigate one 'navigation

space' consisting of the local machine, the local network, the local Intranet and the Internet. Users can search for
information, store it, retrieve it, route it, send it and manipulate it, all within the same frame provided by a universal
client. What we formerly called the browser, for all intents and purposes, has became the single, universal interface
to the operating system.

OLE Server to Active Document Recap
In summary, we have performed the following procedure to convert an MFC application to an Active Document
server:

Add serialization support if not already existing.
Add basic OLE embedding and in-place editing support, implementing minimal support for
DocItem's metafile draw.
Add Active Document base class files from the BINDSCRB project and inherit the application
classes from these new base classes instead of standard MFC OLE.
Replace the standard registry update function in the application's InitInstance() member
function with MfcBinderUpdateRegistry().

Microsoft intends to make this procedure even easier in Visual C++ 4.2 and beyond by providing Active Document
support as an option when App Wizard generates the initial framework for an application.

Summary
In this chapter, we've discussed Microsoft's new Internet/intranet focus and have examined the technological
components of its new ActiveX strategy. We have made a microscopic examination of the innards of the Active
Document portion of the ActiveX client architecture and illustrated how it can facilitate a seamlessly integrated
desktop-LAN-WAN-World experience for the user. We've also got our hands dirty by actually adding support for
Active Document by enhancing the WinINET-based intranet application from the previous chapter. From this
experience, we have seen how easy it is to add Active Document support to MFC-based applications.

To limit the scope of discussion within these two chapters, we had to make it extremely Microsoft-centric.
Obviously, Microsoft don't conduct business in a vacuum. There are formidable opponents in the marketplace,
including Netscape, IBM/Lotus, Novell and Sunsoft, each supplying their own set of Internet/intranet interfaces,
object models and distributed computing infrastructure. With Microsoft at the helm, controlling the desktop
computing marketplace, however, the ActiveX movement is guaranteed to have significant user support in the
foreseeable future.

Consistent with my message for the WinINET chapter, the most important asset of a contemporary practicing
software architect/developer/engineer is his/her familiarity with the building blocks currently available to solve
problems in any specific problem domain. In this new wired world of distributed computing, many of the ActiveX
building blocks described in this chapter will go on in history to become the fabric for many innovative applications.

What is WROX Press?
WROX Press is a computer book publisher which promotes a brand new concept - clear, jargon-
free programming and database titles that fulfill your real demands. We publish for everyone,
from the novice through to the experienced programmer. To ensure our books meet your needs,
we carry out continuous research on all our titles. Through our dialog with you we can craft the
book you really need.

We welcome suggestions and take all of them to heart - your input is paramount in creating the
next great WROX title. Use the reply card inside the book or mail us at:

feedback@wrox.com
or

Compuserve 100063,2152
WROX Press Inc

2710 W. Touhy
Chicago
IL 60645
U.S.A.

Tel:(312) 465 3559
Fax: (312) 465 4063

On the World Wide Web:
http://www.wrox.com/

