
Abrash/Zen: Intro/

Introduction:    Pushing the Envelope

So you want to be a PC guru?    You've set yourself an ambitious
and difficult goal, with no guarantee of success. There's no sure-fire recipe
for becoming a guru, any more than there's a recipe for becoming a chess
grand master.    There is, however, one way you can greatly improve your
chances: become an expert assembly language programmer.    Assembly
language won't by itself make you a guru--but without it you'll never reach
your full potential as a programmer.

Why is assembly language so important in this age of optimizing
compilers and program generators?    Assembly language is fundamentally
different from all other languages, as we'll see throughout The Zen of
Assembly Language.    Assembly language lets you use every last resource of
the PC to push the performance envelope; only in assembly language can
you press right up against the inherent limits of the PC.

If you aren't pushing the envelope, there's generally no reason to
program in assembler.    High-level languages are certainly easier to use, and
nowadays most high-level languages let you get at the guts of the PC--
display memory, DOS functions, interrupt vectors, and so on--without having
to resort to assembler.    If, in the other hand, you're striving for the sort of
performance that will give your programs snappy interfaces and crackling
response times, you'll find assembly language to be almost magical, for no
other language even approaches assembler for sheer speed.

Abrash/Zen: Intro/

Of course, no one tests the limits of the PC with their first
assembler program; that takes time and practice.    While many PC
programmers know something about assembler, few are experts.    The
typical programmer has typed in the assembler code from an article or two,
read a book about assembler programming, and perhaps written a few
assembler programs of his own--but doesn't yet feel that he has mastered
the language.    If you fall into this category, you've surely sensed the
remarkable potential of assembler, but you're also keenly aware of how hard
it is to write good assembler code and how much you have yet to learn.    In
all likelihood, you're not sure how to sharpen your assembler skills and take
that last giant step toward mastery of your PC.

This book is for you.
Welcome to the most exciting and esoteric aspect of the IBM PC.

The Zen of Assembly Language will teach you how to create blindingly fast
code for the IBM PC.    More important still, it will teach you how to continue
to develop your assembler programming skills on your own.    The Zen of
Assembly Language will show you a way to learn what you need to know as
the need arises, and it is that way of learning that will serve you well for
years to come.    There are facts and code aplenty in this book and in the
companion volume, but it is a way of thinking and learning that lies at the
heart of The Zen of Assembly Language. Don't take the title to mean that
this is a mystical book in any way.    In the context of assembly-language
programming, Zen is a technique that brings intuition and non-obvious
approaches to bear on difficult problems and puzzles.    If you would rather

Abrash/Zen: Intro/

think of high-performance assembler programming as something more
mundane, such as right-brained thinking or plain old craftsmanship, go right
ahead; good assembler programming is a highly individualized process.

As the subtitle of this book indicates, The Zen of Assembly
Language is about assembly language for the IBM PC (and, by definition,
compatible computers).    In particular, the bulk of the book will focus on the
capabilities of the 8088 processor that lies at the heart of the PC.    However,
many of the findings and almost all of the techniques I'll discuss can also be
applied to assembly-language programming for the other members of Intel's
808X processor family, including the 8086, 80186, 80286, and 80386
processors.    This book doesn't much apply to computers built around other
processors, such as the 68000 family, the Z80, the 8080, or the 6502, since
much of the Zen of assembly language in the case of the IBM PC derives
from the highly unusual architecture of the 808X family.

While I will spend a chapter looking specifically at the 80286
found in the AT and PS/2 Models 50 and 60 and the 80386 found in the PS/2
Model 80, I'll concentrate primarily on the 8088 processor found in the IBM
PC and XT, for three reasons. First, there are about 10,000,000 8088-based
computers around, ensuring that good 8088 code isn't going to go out of
style anytime soon.    Second, the 8088 is far and away the slowest of the
processors used in IBM-compatible computers, so no matter how carefully
code is tailored to the subtleties of the 8088, it's still going to run much
faster on an 80286 or 80386.    Third, many of the concepts I'll present
regarding the 8088 apply to the 80286 and 80386 as well, but to a different

Abrash/Zen: Intro/

degree.    Given that there are simply too many processors around to cover in
detail (and the 80486 on the way), I'd rather pay close attention to the 8088,
the processor for which top-quality code is most critical, and provide you
with techniques that will allow you to learn on your own how best to program
other processors.

WHAT YOU'LL NEED
The tools you'll need to follow this book are simple:    a text editor

to create ASCII program files, the Microsoft Assembler (MASM) or a
compatible assembler to assemble programs, and the Microsoft Linker or a
compatible linker to link programs into an executable form.    I used version
2.1 of the Brief text editor, MASM version 5.0, and the Microsoft Linker
version 3.60 to prepare the programs in this book.

There are several types of reference material you should have
available as you pursue assembler mastery.    You will certainly want a good
general reference on 8088 assembler.    IBM's hardware, BIOS, and DOS
technical reference manuals are also useful references, containing as they do
detailed information about the resources available to assembler
programmers.

If you're the type who digs down to the hardware of the PC in the
pursuit of knowledge, you'll find Intel's handbooks and reference manuals to
be invaluable (albeit none too easy to read), since Intel manufactures the
8088 and many of the support chips used in the PC.    There's simply no way
to understand what a hardware component is capable of doing in the context

Abrash/Zen: Intro/

of the PC without a comprehensive description of everything that part can
do, and that's exactly what Intel's literature provides.

Finally, keep an eye out for articles on assembly-language
programming.    Articles provide a steady stream of code from diverse
sources, and are your best source of new approaches to assembler
programming.

By the way, the terms "assembler" and "assembly-language" are
generally interchangeable.    While "assembly-language" is perhaps
technically more accurate, since "assembler" also refers to the software that
assembles assembly-language code, "assembler" is a widely-used shorthand
that I'll use throughout this book.    Similarly, I'll refer to "the Zen of
assembler" as a shorthand for "the Zen of assembly language."

THE PATH TO THE ZEN OF ASSEMBLER
The Zen of Assembly Language consists of four major parts,

contained in two volumes.    Parts I and II are in this book, Volume I, while
Parts III and IV are in Volume II, The Zen of Assembly Language:    The
Flexible Mind.    While the book you're reading stands on its own as a tutorial
in high-performance assembler code, the two volumes together cover the
whole of superior assembler programming, from hardware to
implementation. I strongly recommend that you read both.

Part I introduces the concept of the Zen of assembler and details
the tools we'll use to delve into assembler code performance.

Part II covers various and sundry pieces of knowledge about

Abrash/Zen: Intro/

assembler programming, examines the resources available when
programming the PC, and probes fundamental hardware aspects that affect
code performance.

Part III (in Volume II) examines the process of creating superior
code by combining the detailed knowledge of Part II with varied and often
unorthodox coding approaches.

Part IV (also in Volume II) illustrates the Zen of assembler in the
form of a working animation program.

The four parts together teach all aspects of the Zen of assembler:
concept, knowledge, the flexible mind, and implementation.    Together, they
will take you down the road to mastery of the IBM PC.

