
Abrash/Zen: Table of Contents/

Table of Contents for The Zen of Assembler

Introduction

Part I: The Zen of Assembler

 Chapter 1: Zen?

 Chapter 2: Assume Nothing
The Zen timer
Starting the Zen timer
Time and the PC
Stopping the Zen timer
Reporting timing results
Notes on the Zen timer
A sample use of the Zen timer
The long-period Zen timer
A sample use of the long-period Zen timer
Further reading
Armed with the Zen timer, onward and upward

Abrash/Zen: Table of Contents/

Part II: Knowledge

 Chapter 3: Context
The traditional model
Cycle-eaters
Code is data

Inside the 8088
Stepchild of the 8086
Which model to use?

 Chapter 4:    Things Mother Never Told You:
        Under the Programming Interface

          Cycle eaters redux
The 8-bit bus cycle-eater
 The impact of the 8-bit bus cycle-eater
 What to do about the 8-bit bus cycle-eater?
The prefetch queue cycle-eater
 Official execution times are only part of the story
 There is no such beast as a true instruction execution time
 Approximating overall execution times

            What to do about the prefetch queue cycle-eater?
Holding up the 8088

          Dynamic RAM refresh:    The invisible hand
 How DRAM refresh works in the PC
 The impact of DRAM refresh

            What to do about the DRAM refresh cycle-eater?
Wait states

          The display adapter cycle-eater
            The impact of the display adapter cycle-eater

 What to do about the display adapter cycle-eater?
What does it all mean?

 Chapter 5:    Night of the Cycle-Eaters
No, we're not in Kansas anymore
Cycle-eaters by the battalion
...there's still no such beast as a true execution time
170 cycles in the life of a PC
The test set-up
The results
Code execution isn't all that exciting

Abrash/Zen: Table of Contents/

The 8088 really does coprocess
When does an instruction execute?
The true nature of instruction execution
Variability
You never know unless you measure (in context!)
The longer the better
Odds and ends
Back to the programming interface

Abrash/Zen: Table of Contents/

 Chapter 6: The 8088
An overview of the 8088
Resources of the 8088

Registers
The 8088's register set
The general-purpose registers
 The AX register
 The BX register
 The CX register
 The DX register
 The SI register
 The DI register
 The BP register
 The SP register
The segment registers
 The CS register
 The DS register
 The ES register
 The SS register
Other registers
The Instruction Pointer
The FLAGS register
 The Carry (C) flag
 The Parity (P) flag
 The Auxiliary Carry (A) flag
 The Zero (Z) flag
 The Sign (S) flag
 The Overflow (O) flag
 The Interrupt (I) flag
 The Direction (D) flag
 The Trap (T) flag
There's more to life than just registers

Chapter 7: Memory Addressing
Efficient stack frames...the odd architecture of 8088 memory
access...use nears whenever possible, use <=64K fars if not...organize
programs and data so you can set up the segments for long periods at
a time, to reduce a far task to a series of near operations...leave ES
loaded if possible...loading segments (push/pop vs. mov/mov vs. mov
reg,mem...immediate addressing incurs overhead...<<<MORE>>>

Abrash/Zen: Table of Contents/

Chapter 8: Strange Fruit of the 8080
The 8080 legacy
 More than a passing resemblance
Accumulator-specific instructions
Accumulator-specific direct-addressing instructions
 Looks aren't everything
 How fast are they?
 When should you use them?
Accumulator-specific immediate-operand instructions
An accumulator-specific example
Other accumulator-specific instructions
The accumulator-specific version of test
The AX-specific version of xchg
Pushing and popping the 8080 flags
 lahf and sahf:    An example
 A brief digression on optimization
Onward to the instruction set

 Chapter 9: Around and About the Instruction Set
Shortcuts for handling zero and constants

            Making zero
            Initializing constants from the registers
            Initializing two bytes with a single mov
            More fun with zero

inc and dec
            Using 16-bit incs and decs for 8-bit operations
            How inc and add (and dec and sub) differ--and why
          Carrying results along in a flag

Byte-to word and word-to-doubleword conversion
xchg is handy when registers are tight
Destination:    Register
neg and not
Rotates and shifts

            Rotates
            Shifts
            Signed division with sar

ASCII and decimal adjust
 daa, das, and packed BCD arithmetic
 aam, add, and unpacked BCD arithmetic
 aas, aas, and decimal ASCII arithmetic

Abrash/Zen: Table of Contents/

Mnemonics that cover multiple instructions
On to the string instructions

 Chapter 10: String Instructions:    The Magic Elixir
Inherently faster and smaller...repeated string instructions have
prefetch benefits as well...as with LOOP, don't assume string
instructions are always faster (SCASB versus CMP/JZ)...use word
whenever possible...REP doesn't work on 64K items---how to
handle...prefixes...don't use multiple prefixes...REP in its various
forms...initializing blocks

Abrash/Zen: Table of Contents/

 Chapter 11: Branching
Jumps are slow...know all the jump conditions
(JS)...JCXZ/LOOP/LOOPNZ/LOOPZ (no flag effects)...jumping from
memory...jumping from a register...constructing a jump as a return on
the stack to preserve/save registers...jump tables...INT...jmp/jmp vs
call/ret...pop/jmp reg for ret...faking IRET w/flags..faking INT w/far
call...On to the 80286 and 80386...fake far call by pushing CS and
doing a near call

 Chapter 12:    80286/80386 Considerations
Both chips were designed to pretty much eliminate the prefetch queue
bottleneck---with zero-wait-state memory, so long as you don't
branch...memory and I/O wait states in stock ATs...wait states &
memory architecture in 80386 machines...the prefetch queue...8-bit
bus emulation...branching...word and doubleword alignment (tale of
developing Zen timer)...registers still pay off...much- reduced effective
address calculation time...8/16-bit memory wait states (including
display adapters!)...buses are slowed down for standard
peripherals...can't really plan as well for these, though, except not to
expect your code to run as fast as it should...refresh

 Chapter 13: System Resources
Interrupts...Timers...DMA controller...BIOS (write dot)...DOS...let them
all do for you what they do well...beware of redirection

 Chapter 14: Understanding What MASM Can Do
The de facto standard for the 8088 world...this is not a MASM book, but
there are some aspects of MASM that are part of the Zen of assembler,
and you should be very familiar with it...MASM is a strange assembler--
learn to live with it...don't calculate anything at run time that you can
calculate at assembly time (tables)...conditional block for debugging
and development

 Chapter 15: Macros: The Good, the Bad, and the Occasionally Ugly
Let them do the work for you wherever possible (backward jumps,
psuedo-instructions)...sometimes of dubious reliability...building a table
of addresses...using macros to build tables...macros slow up
assembly...it can be costly to rely heavily on high-level macros or
subroutines, since by being reusable they can be inefficient: modifying
working code often works better...mention TASM

Abrash/Zen: Table of Contents/

Part III: The Flexible Mind

 Chapter 16: Knowledge Matters Only when It's Used
The programmer's integration of knowledge and application is the key
to good software...two levels: 1) making the most effective code locally
(local optimization); 2) matching that to the application (global
optimization)...no sharp line between the two...key is always to know
what the PC can do, then match that to the task as efficiently as
possible, even when that means using unorthodox techniques...we'll
look at an example, then review a number of general and specific
principles for "zenning" code (define "zenning")...zen in big ways
(program structure, algorithms) & little ways (clever test & jump)

 Chapter 17: Executing Zen: A Case History
"Zenning" the simple example from Turbo Pascal Solutions

 Chapter 18: Limit Scope as Needed to Match Available Resources
Use buffers <=64K in size, to allow speedy searching and
manipulation, paging in data with restartable string instructions if
necessary to support this...reduce resolution or color selection if
there's not enough memory otherwise...in short, look for ways to pare
the program back to the essentials if that's what it takes to run well on
a PC...example of redirected file filtering versus internally buffered
filtering versus block string filtering

 Chapter 19: Be Willing to Break Your Own Rules When Necessary
Don't always preserve all registers...don't stick to parameter-passing
conventions when it's not worth it

Abrash/Zen: Table of Contents/

 Chapter 20: Think Laterally: Use Your Right Brain
Pick the right algorithm, but match it to the potential of the PC...avoid
compileritis like the plague (compilers can out-compile you, but they
can't out-lateral you; you know more and can assume more; don't write
assembler code built around compiler conventions like stack
frames)...example of A XOR B XOR B to transfer values when an
intermediate register wasn't available...don't trap yourself in a limited
environment (C programmer who cleared the screen a character at a
time; using longs, fars, or huges unnecessarily) (also, don't build in
permanent safeguards against yourself--- modularity and security are
nice, but speed is better--- during development, insert safeguards so
that they can later be pulled by setting a single flag)...follow the trail
wherever it leads (my path to understanding the display adapter
bottleneck)...understand all the code you use (tale of Joel and his EGA
ID code from a book)...know when it's worth the effort (inside loops,
but not necessarily when setting up for loops) (searching
examples)...know when to be elegant (searching/sorting
examples)...each solution is a unique work of art...example of
animation during vertical non-display: I was so sure no more objects
could be animated, and then John pointed out that page flipping
allowed any number---a different perspective on system
resources...example of non-blue underlined text on the EGA and
VGA...don't be afraid to dive in and apply Zen to already-working
code---in important code, just working is not enough

 Chapter 21: Live in the Registers
Registers avoid effective address calculation...fewer instruction
bytes...in a way, prefetch queue bottleneck is worse (overdemands on
BIU), but fewer bytes per function...register-specific instructions (INC
word, XCHG with AX)...using registers to hold constants...use all the
registers (Dan's use of SP with interrupts on---but it would have been
all right with interrupts off)...remember that BP can address off any
segment, and if SS and DS are the same (as in COM files), BP is by-and-
large as useful as BX for memory addressing...using half-
registers...PUSH/RET to vector if registers are in short supply...memory
variables should be in [] brackets--they are not like having lots of
registers!...funnel multiple cases to clean-up code, with values in
registers, so there's only one set of memory- accessing
instructions...avoid immmediate operands (keep cmp & add, etc.,

Abrash/Zen: Table of Contents/

values in registers if possible--extension of zero/constant handling in
chapter 9)

Abrash/Zen: Table of Contents/

 Chapter 22: Don't jump!
Strange title, when decision-making is key, but 8088 is slow at
branching, so minimize it (decision-making and repeating differ)...what
the prefetch queue means when branching...ADC DI,0 versus JNC/INC
DI...preload default value & jump only one way...lead into in-line code 2
chapters away through next chapter

 Chapter 23: Memory Is Cheap (You Could Look It Up)
Throwing memory at problems can compensate for limited processor
power...tables are a good way of precalculating results...jump
tables..put them in CS if you're not sure what DS will be---the cost is
small...multiplying by 80...bit doubling

 Chapter 24: (Sometimes) LOOP Is a Crock: In-line Alternatives
Just because there's an instruction for looping doesn't mean it's
particularly fast...in-line code can do the same thing without the
branching penalty...mix the two for a large fraction of both the speed
benefits of in-line code and the size benefits of LOOP...looping high to
low instead of low to high...more about in-line code in general

 Chapter 25: Flexible Data & Mini-Interpreters
Assembler is by far the best language for flexible data
specification...mini-interpreters are compact and reliable, and can be
driven by flexible data strings containing addresses of tables and
routines, as well as data of any type...mini-interpreters allow use of
programming models unique to assembler (could even embed control
strings in CS and returning to the instruction immediately following the
string-courtesy of a DDJ article)...don't be afraid to put data in CS,
which can help with staying in the near model

 Chapter 26: Display Adapter Programming
CGA, MDA, Hercules, EGA, and VGA programming
considerations...using string instructions & related approaches, to
minimize memory accesses...prerotate images...predefine control
strings...byte align, don't mask/clip within a byte...don't xor/and/or if
possible, since full wait on second, but preferable to two
accesses...single instructions to read/modify/write

 Chapter 27: Odds and Ends
Returning results and statuses...self-modifying code...move work

Abrash/Zen: Table of Contents/

outside loops...parameter passing...be clever with high/low bit testing
(rotate, shift, sign test)...boolean logic & binary arithmetic...and
bx,xxxx to both convert to word and mask off

Abrash/Zen: Table of Contents/

Part IV: Animation: The Zen of Assembler in Action

 Chapter 28: Animation Fundamentals
How animation is generated...a personal journey through animation
driver code and techniques...what various approaches do best

 Chapter 29: A Discourse on VGA Graphics
Basic adapter architecture and resources

 Chapter 30: Evolution of an Animation Application
The germ of the program...growing the program concept in the
framework of the VGA

 Chapter 31: Key Pieces of the Animation Program
Animation drivers...panning

 Chapter 32: An Overview of the Animation Program Code
A quick scan through the code, looking at overall logic

Appendixes

 Appendix A: The 8088 Instruction Set
Includes sizes & timings...286/386 instructions & timings would be
useful as well

 Appendix B: Listing of the Animation Program

