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Chapter 9:    Around and About the Instruction Set

So far, we've covered assembler programming in a fairly linear
fashion, with one topic leading neatly to the next and with related topics
grouped  by  chapter.      Alas,  assembler  programming  isn't  so  easily
pigeonholed.    For one thing, the relationships between the many facets of
assembler  programming  are  complex;  consider  how  often  I've  already
mentioned the string instructions,  which we have yet  to discuss  formally.
For another, certain aspects of assembler stand alone, and are simply not
particularly closely related to any other assembler topic.

Some interesting members of the 8088's instruction set fall into
the category of stand-alone topics, as do unusual applications of a number of
instructions.    For example, while the knowledge that inc ax is a byte shorter
than inc al doesn't have any far-reaching implications, that knowledge can
save a byte and a few cycles when applied properly.    Likewise, the use of
cbw to  convert  certain  unsigned  byte  values  to  word  values  is  a  self-
contained programming technique.

Over the last few chapters, we've covered the 8088's registers,
memory addressing, and 8080-influenced instructions. In this chapter, we'll
touch on more 8088 instructions.     Not all the instructions, by any means
(remember,  I'm  assuming  you  already  know  8088  assembler)  but  rather
those instructions with subtle, useful idiosyncracies.    These instructions fall
into  the  class  described  above--well  worth  knowing  but  unrelated to  one
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another--so this chapter will be a potpourri of assembler topics, leaping from
one instruction to another.

In the next chapter we'll  return to a more linear format as we
discuss the string instructions.    After that we'll get into branching, look-up
tables,  and  more.      For  now,  though,  hold  on  to  your  hat  as  we  bound
through the instruction set.

SHORTCUTS FOR HANDLING ZERO AND CONSTANTS

The instruction set of the 8088 can perform any of a number of
logical  and  arithmetic  operations  on  byte-  and  word-sized,  signed  and
unsigned integer values.    What's more, those values may be stored either in
registers or in memory.    Much of the complexity of the 8088's instruction set
results from this flexibility--and so does the slow performance of many of the
8088's instructions.    However, some of the 8088's instructions can be used
in a less flexible--but far speedier--fashion. Nowhere is this more apparent
than in handling zero.

Zero pops up everywhere in assembler programs.    Up counters
are initialized to zero.    Down counters are counted down to zero. Flag bytes
are compared to zero.    Parameters of value zero are passed to subroutines.
Zero is surely the most commonly-used value in assembler programming--
and the easiest value to handle, as well.
MAKING ZERO

For  starters,  there  is  almost  never  any  reason  to  assign  the
immediate value zero to a register.    Why assign zero to a register when sub
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reg,reg or xor reg,reg always zeros the register in fewer cycles (and also in
fewer bytes for 16-bit registers)?    The only time you should assign the value
zero to a register rather than clearing the register with sub or xor is when
you need to preserve the flags, since mov doesn't affect the flags but sub

and xor do.

INITIALIZING CONSTANTS FROM THE REGISTERS

As we discussed in  the last  chapter,  it  pays to  clear  a direct-
addressed memory variable by zeroing AL or AX and storing that register to
the  memory  variable.      If  you're  setting  two  or  more  direct-addressed
variables to any specific value (and here we're talking about any value, not
just zero), it's worth storing that value in the accumulator and then storing
the accumulator to the memory variables.    (When initializing large blocks of
memory, rep stos works better still, as we'll see in Chapter 10.)    The basic
principle is this:    avoid extra immediate-operand bytes by storing frequently-
used constants in registers and using the registers as operands.

Listing 9-1 provides an example of initializing multiple memory
variables to the same value.      This listing, which stores 0FFFFh in AX and
then stores AX to three memory variables, executes in 17.60 us per three-
word  initialization.      That's  more  than  28% faster  than  the  22.63  us  per
initialization of Listing 9-2, which stores the immediate value 0FFFFh to each
of the three words.     Listing 9-1 is that much faster than Listing 9-2  even
though Listing 9-1 is one instruction longer per initialization. The difference?
Each of the three mov instructions in Listing 9- 2 is 3 bytes longer than the
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corresponding mov in Listing 9-1: two bytes are taken up by the immediate
value  0FFFFh,  and  one  extra  byte  is  required  because  the  accumulator-
specific direct- addressing form of mov isn't used.    That's a total of 9 extra
bytes for the three mov instructions of Listing 9-2, more than offsetting the 3
bytes  required  by  the  extra  instruction  mov  ax,0ffffh of  Listing  9-1.
(Remember,  the 8088 doesn't  sign- extend immediate operands to  mov.)
As always, those extra bytes take 4 cycles each to fetch.

Shorter is better.
If you're initializing more than one register to zero, you can save

1 cycle per additional register by initializing just one of the registers, then
copying it to the other registers, as follows:

sub si,si ;point to offset 0 in DS
mov di,si ;point to offset 0 in ES
mov dx,si ;initialize counter to 0

While mov reg,reg is 2 bytes long, the same as sub reg,reg, according to
the official specs  mov is the faster of the two by 1 cycle.      Whether this
translates into any performance advantage depends on the code mix--if the
prefetch queue is empty, code fetching time will dominate and mov will have
no advantage--but it can't hurt and might help.

Similarly, if you're initializing multiple 8-bit registers to the same
non-zero value,  you  can  save  up  to  2  cycles  per  additional  register  by
initializing one of the registers and copying it to the other(s).    While  mov

reg,immed8 is 2 cycles slower than mov reg,reg, both instructions are the
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same size.
Finally, if you're initializing multiple 16-bit registers to the same

non-zero value, it  always pays to initialize one register and copy it to the
other(s).    The reason:     mov reg,immed16, at 3 bytes in length, is a byte
longer (and 2 cycles slower) than mov reg,reg.

INITIALIZING TWO BYTES WITH A SINGLE mov

While  we're  on the topic  of  initializing  registers  and variables,
let's  take  a  quick  look  at  initializing  paired  bytes.  Suppose  we  want  to
initialize AH to 16h and AL to 1.    The obvious solution is to set each register
to the desired value:

mov ah,16h
mov al,1

However, a better solution is to set the pair of registers with a single mov:

mov ax,1601h

The paired-register initialization is a byte shorter and 4 cycles faster...and
does exactly the same thing as the separate initializations!

A trick that makes it easier to initialize paired 8-bit registers is to
shift  the  value  for  the  upper  register  by  8  bits.  For  example,  the  last
initialization could be performed as:
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mov ax,(16h shl 8) + 1

This method has two benefits.      First, it's easy to distinguish between the
values for the upper and lower registers; 16 and 1 are easy to pick out in the
above  example.      Second,  it's  much  simpler  to  handle  non-hexadecimal
values by shifting and adding. You must admit that:

mov dx,(201 shl 8) + 'A'

is easier to write and understand than:

mov dx,0c941h ;DH=201, DL='A'

You need not limit paired-byte initializations to registers. Adjacent
byte-sized memory variables can be initialized with a single word access as
well.    If you do use paired-byte initializations of memory variables, though,
be  sure  to  place  prominent  comments  around  the  memory  variables;
otherwise, you or someone else might accidentally separate the pair at a
later date, ruining the initialization.

MORE FUN WITH ZERO

What else can we do with zero?    Well, we can test the zero/non-



Abrash/Zen:    Chapter 9/

zero status of a register with either  and  reg,reg or  or  reg,reg.     Both of
these  instructions  set  the  Zero  flag  just  as  cmp  reg,0 would...and  they
execute faster and are anywhere from 0 to 2 bytes shorter than cmp.    (Both
and reg,reg and or reg,reg are guaranteed to be at least 1 byte shorter
than cmp reg,0 except when reg is AL, in which case all three instructions
are the same length.)    Listing 9-3, which uses and dx,dx to test for the zero
status of DX, clocks in at 3.62 us per test.    That's 25% faster than the 4.53
us per test of Listing 9-4, which uses cmp dx,0.

As described in the last chapter, it is (surprisingly) faster to load
the accumulator from a direct-addressed memory variable and and or or the
accumulator with itself in order to test whether that memory variable is zero
than  it  is  to  simply  compare  the  memory  variable  with  an  immediate
operand.    For instance:

mov al,[ByteFlag]
and al,al
jnz FlagNotZero

is equivalent to and faster than:

cmp [ByteFlag],0
jnz FlagNotZero

Finally, there are some cases in which tests that are really not
zero/non-zero  tests  can  be  converted  to  tests  for  zero.      For  example,
consider a test to check whether or not DX is 0FFFFh. We could use  cmp
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dx,0ffffh, which is three bytes long and takes 4 cycles to execute.    On the
other hand, if we don't need to preserve DX (that is, if we're performing a
one-time-only test) we could simply use inc dx, which is only one byte long
and takes just 2 cycles to execute, and then test for a zero/non-zero status.
So, if we don't mind altering DX in the course of the test:

cmp dx,0ffffh
jnz NotFFFF

and:

inc dx
jnz NotFFFF

are functionally the same...save that the latter version is much smaller and
faster.

A similar case of turning a test into a zero/non-zero test occurs
when testing a value for membership in a short sequence of consecutive
numbers--the  equivalent  of  a  C  switch  construct  with  just  a  few  cases
consisting  of  consecutive  values.      (Longer  and/or  non-consecutive
sequences should be handled with look-up tables.)    For example, suppose
that you want to perform one action if CX is 4, another if CX is 3, a third
action if CX is 2, and yet another if CX is 1.    Listing 9-5, which uses four cmp

instructions to test for the four cases of interest, runs in 17.01 us per switch
handled.      That's  a good 4.94 us slower per switch than the 12.07 us of
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Listing 9-6, so Listing 9-5 runs at less than 75% of the speed of Listing 9-6.
Listing 9-6 gets its speed boost by using the 1-byte dec cx instruction rather
than the 3-byte  cmp cx,immed8 instruction to test for  each of  the four
cases, thereby turning all the tests into zero/non-zero tests.

Unorthodox, yes--but very effective.      The moral  is  clear:  even
when the 8088 has an instruction that's clearly intended to perform a given
task (such as   cmp   for comparing), don't assume that instruction is the best  
way to perform that task under all conditions.

inc AND dec

inc and  dec are  simple,  unpretentious  instructions--and  more
powerful  than you  might  imagine.      Since  inc and  dec require  only  one
operand (the immediate value 1 that's added or subtracted is implied by the
instruction), they are among the shortest (1 to 4 bytes) and fastest (2 to 3
cycles  for  a  register  operand,  but  up  to  35  for  a  word-sized  memory
operand--keep  your  operands  in  registers!)  instructions  of  the  8088.      In
particular, when working with 16-bit register operands, inc and dec are the
fastest arithmetic instructions of the 8088, with an execution time of 2 cycles
paired with a length of just 1 byte.

How much difference does it make to use inc or dec rather than
add or sub?    When you're manipulating a register, the answer is:    a lot.    In
fact,  it's  actually  better  to  use  two inc instructions  to  add 2 to  a  16-bit
register  than to add 2  with a single  add,  because a  single  add with  an
immediate operand of 2 is 3 bytes long, three times the length of a 16-bit
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register  inc.  (Remember,  shorter  is  better,  thanks  to  the  prefetch  queue
cycle- eater.)

The same is true of  dec versus  sub as of  inc versus  add.    For
example, the code in Listing 9-7, which uses a 16-bit register dec instruction,
clocks in at 5.03 us per loop, 33% faster than the 6.70 us of the code in
Listing 9-8, which uses a sub instruction to decrement DX.

The  difference  between  the  times  of  Listings  9-7  and  9-8  is
primarily attributable to the 8 cycles required to fetch the two extra bytes of
the  sub instruction.      To  illustrate  that  point,  consider  Listing  9-9,  which
decrements  DX twice  per  loop.  Listing  9-9  executes  in  5.80 us  per  loop,
approximately halfway between the times of Listings 9-7 and 9-8.      That's
just what we'd expect, since the loop in Listing 9-9 is 1 byte longer than the
loop in Listing 9-7 and 1 byte shorter than the loop in Listing 9-8.

Use   inc   or   dec   in preference to   add   or   sub   whenever possible  .
(Actually, when SP is involved there's an exception to the above

rule for code that will run on 80286- or 80386-based computers.    Such code
should use  add,  sub,  push, and  pop to alter SP in preference to  inc and
dec, because an odd stack pointer is highly undesirable on 16- and 32-bit
processors.    I'll cover this topic in detail in Chapter 15.)

I'd like to pause at this point to emphasize that the 16-bit register
versions of inc and dec are different beasts from the run-of-the-mill inc and
dec instructions.    As with the 16-bit register  xchg-with-AX instructions we
discussed in the last chapter, there are actually two separate inc instructions
on the 8088, one of which is a superset of the other.    (The same is true of
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dec, but we'll just discuss inc for now.)
Figure 9-1 illustrates the two forms of  inc.      While  the special

form is limited to 16-bit register operands, it has the advantage of being a
byte shorter  and a  cycle  faster  than the  mod-reg-rm register  form,  even
when both instructions operate on the same register.    As you'd expect, 8088
assemblers automatically use the more efficient special  version whenever
possible,  so  you  don't  need  to  select  between  the  two  forms  explicitly.
However,  it's  up to  you to  use 16-bit  register  inc (and  dec)  instructions
whenever you possibly can, since only then can the assembler assemble the
more efficient form of those instructions.

For  example,  Listing  9-7,  which  uses  the  1-byte-long  16-bit
register form of dec to decrement the 16-bit DX register, executes in 5.03 us
per loop, 15% faster than Listing 9-10, which uses the 2-byte-long mod-reg-
rm form of dec to decrement the 8- bit DL register and executes in 5.79 us
per loop.

USING 16-BIT inc AND dec INSTRUCTIONS FOR 8-BIT OPERATIONS

If you're clever, you can sometimes use the 16-bit form of inc or
dec even when you only want to affect an 8-bit register. Consider Listing 9-
11, which uses AL to count from 0 to 8.    Since AL will never pass 0FFh and
turn over (the only circumstance in which inc ax modifies AH), it's perfectly
safe to use inc ax rather than inc al.    In this case, both instructions always
produce the same result; however, inc ax produces that result considerably
more  rapidly  than  inc  al.      If  you  do  use  such  a  technique,  however,
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remember that the flags are set on the basis of the  whole operand.     For
example,  dec ax will set the Zero flag only when both AH and AL--not AL
alone--go to zero.    This seems obvious, but if you're thinking of AL as the
working register, as in Listing 9-11, it's easy to forget that dec ax sets the
flags to reflect the status of AX, not AL.

To carry the quest for inc and dec efficiency to the limit, suppose
we're constructing code which contains nested countdown loops.    Suppose
further that all  registers but CX are in use,  so all  we've got available for
counters are CH and CL.    Normally, we would expect to use two 8-bit  dec

instructions here.    However, we know that the counter for the inner loop is 0
after the loop is completed, so we've got an opportunity to perform a 16-bit
dec for the outer loop if we play our cards right.

Listing 9-12 shows how this trick works.    CH is the counter for the
inner  loop,  and  we  are  indeed  stuck  with  an  8-bit  dec for  this  loop.
However,  by  the  time  we  get  around  to  using  CL  as  a  counter,  CH  is
guaranteed  to  be  0,  so  we  can use  a  16-bit  dec cx for  the  outer  loop.
Granted, it would be preferable to place the 16-bit  dec in the time-critical
inner loop,  and if  that loop were long enough, we might  well  do that by
pushing CX for the duration of the inner loop; nonetheless, a 16-bit  dec is
preferable in any loop, and in Listing 9-12 we get the benefits of a 16-bit dec

at no cost other than a bit of careful register usage.
By the way, you've likely noticed that Listing 9-12 fairly begs for a

loop instruction at the bottom of the outer loop. That's certainly the most
efficient code in this case; I've broken the loop into a dec and a jnz only for
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illustrative purposes.

HOW inc AND add (AND dec AND sub) DIFFER--AND WHY

inc and dec are not exactly the same as add 1 and sub 1. Unlike
addition and subtraction, inc and dec don't affect the Carry flag.    This can
often be a nuisance, but there is a good use for this quirk of  inc and dec,
and that's in adding or subtracting multi-word memory values.

Multi-word memory values are values longer than 16 bits that are
stored in memory.    On the 8088 such values can only be added together by
a  series  of  16-  and/or  8-bit  additions.      The  first  addition--of  the  least-
significant words--must be performed with  add, or with  adc with the Carry
flag set to 0.    Subsequent additions of successively more-significant words
must be performed with adc, so that the carry-out can be passed from one
addition to the next via the Carry flag.    The same is true of sub,  sbb, and
borrow for subtraction of multi-word memory variables.

Some way is needed to address each of the words in a multi-
word memory value in turn, so that each part of the value may be used as an
operand.    Consequently, multi-word memory values are often pointed to by
registers  (BP or  BX and/or  SI  or  DI),  which  can be advanced to  point  to
successively  more-significant  portions  of  the  values  as  addition  or
subtraction  proceeds.      If,  however,  there  were  no  way  to  advance  a
memory-addressing register without modifying the Carry flag, then adc and
sbb would only work properly if we preserved the Carry flag around the inc

instructions, with pushf and popf or lahf and sahf.
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inc and dec don't affect the Carry flag, however, and that greatly
simplifies the process of adding multi-word memory variables.    The code in
Listing 9-13, which adds together two 64bit memory variables--one pointed
to  by  SI  and  the  other  pointed  to  by  DI--only  works  because  the  inc

instructions that advance the pointers don't affect the Carry flag values that
join  the  additions  of  the  various  parts  of  the  variables.      (It's  equally
important that loop doesn't affect any flags, as we'll see in Chapter 14.)

CARRYING RESULTS ALONG IN A FLAG

As  mentioned  in  Chapter  6  and  illustrated in  the  last  section,
many instructions don't affect all the flags, and some don't affect any flags at
all.    You can take advantage of this by carrying a status along in the FLAGS
register for several instructions before testing that status.    Of course, if you
do choose to carry a status along, all of the instructions executed between
setting the status and testing it must leave the status alone.

For example, the following code tests AL for a specific value, then
sets AL to 0 even before branching according to the results of the test:

cmp al,RESET_FLAG ;sets Z to reflect test result
mov al,0 ;set AL for the code following the

; branch
;*** NOTE: THIS INSTRUCTION MUST ***
;*** NOT ALTER THE Z FLAG!              ***

jz IsReset ;branch according the to Z flag set
; by CMP

In this example, AL must be set to 0 no matter which way the branch goes.
If  we were to set  AL after  the branch rather than before,  two  mov al,0
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instructions--one  for  each  code  sequence  that  might  follow  jz  IsReset--
would be needed.    If we set AL before the cmp instruction, the test couldn't
even be performed because the value under test in AL would be lost.     In
very specific cases  such as  this,  clear  advantages  result  from carrying a
status flag along for a few instructions.

One  caution  when  using  the  above  approach:      never  set  a
register  to  zero via    sub    reg,reg or    xor    reg,reg while  carrying a status
along.    With time, you'll get in the habit of setting registers to zero with sub

reg,reg or  xor  reg,reg, either of which is faster (and often smaller) than
mov reg,0. Unfortunately, sub and xor affect the flags, while mov doesn't.
For example:

cmp al,RESET_FLAG ;sets Z to reflect status under test
sub al,al ;alters Z, causing the code to

; malfunction
jz IsReset ;won't jump properly

fails to preserve the Zero flag between the  cmp and the  jz, and wouldn't
work properly.    In cases such as this, always be sure to use mov.

The bugs that can arise from the use of a carried-along status
that is accidentally wiped out are often hard to reproduce and difficult to
track  down,  so  all  possible  precautions  should  be  taken  whenever  this
technique is  used.      No more  than a  few instructions--and  no  branches--
should occur between the setting and the testing of the status.    The use of a
carried-along  status  should  always  be  clearly  commented,  as  in  the  first
example in this  section.      Careful  commenting is particularly important in
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order to forestall trouble should you (or worse, someone else) alter the code
at a later date without noticing that a status is being carried along.

If  you  do  need  to  carry  a  status  along  for  more  than  a  few
instructions, store the status with either pushf or lahf, then restore it later
with popf or sahf, so there's no chance of the intervening code accidentally
wiping the status out.

BYTE-TO-WORD AND WORD-TO-DOUBLEWORD CONVERSION

On the 8088 the need frequently arises to convert byte values to
word values.    A byte value might be converted to a word in order to add it to
a 16-bit value, or in order to use it as a pointer into a table (remember that
only 16-bit registers can be used as pointers, with the lone exception of AL in
the case of xlat).    Occasionally it's also necessary to convert word values to
doubleword values.    One application for word-to-doubleword conversion is
the preparation of a 16-bit dividend for 32-bit by 16-bit division.

Unsigned values are converted to a larger data type by simply
zeroing  the  upper  portion  of  the  desired  data  type.      For  example,  an
unsigned byte value in DL is converted to an unsigned word value in DX with:

sub dh,dh

Likewise, an unsigned byte value in AL can be converted to a doubleword
value in DX:AX with:
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sub dx,dx
mov ah,dh

In principle, conversion of a signed value to a larger data type is
more complex, since it requires replication of the high (or sign) bit of the
original  value  throughout  the  upper  portion  of  the  desired  data  type.
Fortunately,  the  8088  provides  two  instructions  that  handle  the
complications of signed conversion for us:    cbw and cwd.    cbw sets all the
bits  of  AH  to  the  value  of  bit  7  of  AL,  performing  signed  byte-to-word
conversion.      cwd sets  all  the  bits  of  DX  to  the  value  of  bit  15  of  AX,
performing signed word-to-doubleword conversion.

There's nothing tricky about cbw and cwd, and you're doubtless
familiar  with  them  already.      What's  particularly  interesting  about  these
instructions is that they're each only 1 byte long, 1 byte  shorter than  sub

reg,reg.    What's more, the official execution time of cbw is only 2 cycles, so
it's 1 cycle faster than sub as well.    cwd's official execution time is 5 cycles,
but since it's shorter than  sub, it will  actually often execute more rapidly
than sub, thanks to the prefetch queue cycle-eater.

What all this means is that cbw and cwd are the preferred means
of  converting values  to  larger  data  types,  and should  be used whenever
possible.    In particular, you should use cbw to convert unsigned bytes in the
range 0-7Fh to unsigned words. While it may seem strange to use a signed
type-conversion instruction to convert unsigned values, there's no distinction
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between unsigned bytes in the range 0 to 7Fh and signed bytes in the range
0 to +127, since they have the same values and have bit 7 set to 0.

Listing  9-14  illustrates  the  use  of  cbw to  convert  an  array  of
unsigned byte values between 0 and 7Fh to an array of word values.    Note
that values are read from memory and written back to memory and the loop
counter is decremented, so this is a realistic usage of  cbw rather than an
artificial situation designed to show the instruction in the best possible light.
Despite all the other activity occurring in the loop, Listing 9- 14 executes in
10.06 us per loop, 12% faster than Listing 9-15, which executes in 11.31 us
per  loop  while  using  sub  ah,ah to  perform  unsigned  byte-to-word
conversion.

cwd can be used in a similar manner to speed up the conversion
of  unsigned  word  values  in  the  range  0-7FFFh  to  doubleword  values.
Another clever use of  cwd is as a more efficient way than sub reg,reg to
set DX to 0 when you're certain that bit 15 of AX is 0 or as a better way than
mov reg,0FFFFh to set DX to 0FFFFh when you're sure that bit 15 of AX is
1. Similarly, cbw can be used as a faster way to set AH to 0 whenever bit 7
of AL is 0 or to 0FFh when bit 7 of AL is 1.

Viewed objectively, there's no distinction between using  cbw to
convert AL to a signed word, to zero AH when bit 7 of AL is 0, and to set AH
to 0FFh when bit 7 of AL is 1.    In all three cases each bit of AH is set to the
value of bit 7 of AL.    Viewed conceptually, however, it can be useful to think
of  cbw as  capable  of  performing  three  distinct  functions:      converting  a
signed value in AL to a signed value in AX, setting AH to 0 when bit 7 of AL is
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0, and setting AH to 0FFh when bit 7 of AL is 1. After all, an important aspect
of the Zen of assembler is the ability to view your resources (such as the
instruction  set)  from the  perspective  most  suited  to  your  current  needs.
Rather than getting locked in to the limited functionality of the instruction set
as it  was intended to be used, you must tap into the functionality of the
instruction set as it is capable of being used.

Listing 9-14 is an excellent example of how focusing too closely
on a particular sort of optimization or getting too locked into a particular
meaning for an instruction can obscure a better approach.    In Listing 9-14,
aware that the values in the array are less than 80h, we cleverly use cbw to
set AH to 0. This means that AH is set to zero every time through the loop--
even though AH never changes from one pass through the loop to the next!
This makes sense only if you view each byte-to-word conversion in isolation.
Listing 9-16 shows a more sensible approach, in which AH is set to 0 just
once,  outside  the  loop.  In  Listing  9-16,  each  byte  value  is  automatically
converted to a word value in AX simply by being loaded into AL.

In the particular case of Listing 9-16, it happens that moving the
setting of AH to 0 outside the loop doesn't improve performance; Listing 9-16
runs  at  exactly  the  same speed as  Listing  9-14,  no doubt  thanks  to  the
prefetch queue and DRAM refresh cycle-eaters.    That's just a fluke, though--
on average, an optimization such as the one in Listing 9-16 will save about 4
cycles.    Don't let the quirks of the 8088 deter you from the pursuit of saving
bytes and cycles--but do remember to always time your code to make sure
you've improved it!
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If for any reason AH did change each time through the loop, we
could no longer use the method of Listing 9-16, and Listing 9- 14 would be a
good alternative.    That's why there are no hard- and-fast rules that produce
the best assembler code.    Instead, you must respond flexibly to the virtually
infinite variety of assembler coding situations that arise.    The bigger your
bag of tricks, the better off you'll be.

xchg IS HANDY WHEN REGISTERS ARE TIGHT

One key to good assembler code is avoiding memory and using
the registers as much as possible.    When you start juggling registers in order
to get the maximum mileage from them, you'll  find that  xchg is  a good
friend.

Why?    Because the 8088's general-purpose registers are actually
fairly special-purpose.    BX is used to point to memory, CX is used to count,
SI is used with lods, and so on.    As a result, you may want to use a specific
register  for  two  different  purposes  in  a  tight  loop.      xchg makes  that
possible.

Consider the case where you need to handle both a loop count
and a shift count.    Ideally, you would want to use CX to store the loop count
and CL to store the shift count.    Listing 9-17 uses CX for both purposes by
pushing  and  popping  the  loop  count  around  the  use  of  the  shift  count.
However, this solution is less than ideal because push and pop are relatively
slow instructions.    Instead, we can use xchg to swap the lower byte of the
loop count with the shift count, giving each a turn in CL, as shown in Listing
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9-18.    Listing 9-18 runs in 15.08 us per byte processed, versus the 20.11 us
time of Listing 9-17.     That's a 33% improvement from a seemingly minor
change!    The secret is that push and pop together take 27 cycles, while a
register- register xchg takes no more than 4 cycles to execute once fetched
and only 8 cycles even when the prefetch queue is empty.

Neither Listing 9-17 or Listing 9-18 is the most practical solution
to this particular problem.    A better solution would be to simply store the
loop count in a register other than CX and use  dec/jnz rather than  loop.
The  object  of  this  exercise  wasn't  to  produce  ideal  code,  but  rather  to
illustrate that  xchg gives you both speed and flexibility when you need to
use a single register for more than one purpose.

xchg is also useful when you need more memory pointers in a
loop than there are registers that can point to memory.    See Chapter 8 for
an example of the use of  xchg to allow BX to point to two arrays.    As the
example in Chapter 8 also points out, the form of xchg used to swap AX with
another general-purpose register is 1 byte shorter than the standard form of
xchg.

Finally, xchg is useful for getting and setting a memory variable
at the same time.    For example, suppose that we're maintaining a flag that's
used by an interrupt handler.    One way to get the current flag setting and
force the flag to zero is:

cli ;turn interrupts off
mov al,[Flag] ;get the current flag value
mov [Flag],0 ;set the flag to 0
sti ;turn interrupts on



Abrash/Zen:    Chapter 9/

(It's  necessary  to  disable  interrupts  to  ensure  that  the  interrupt  handler
doesn't  change  Flag between the instruction that  reads the flag and the
instruction that resets it.)

With  xchg,  however,  we can do the same thing with just  two
instructions:

sub al,al ;set AL to 0
xchg [Flag],al ;get the current flag value and

; set the flag to 0

Best of  all,  we don't  need to disable interrupts in the  xchg- based code,
since  interrupts  can  only  occur  between  instructions,  not  during  them!
(Interrupts  can occur between repetitions of a repeated string instruction,
but that's because a single string instruction is actually executed multiple
times  when  it's  repeated.      We'll  discuss  repeated  string  instructions  at
length in Chapters 10 and 11.)

DESTINATION:    REGISTER

Many arithmetic and logical operations can be performed with a
register as one operand and a memory location as the other, with either one
being the source and the other serving as the destination.      For example,
both of the following forms of sub are valid:

sub [bx],al
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sub al,[bx]

The two instructions are not the same, of course.    Memory is the destination
in the first case, while AL is the destination in the second case.    That's not
the only distinction between the two instructions, however.    There's also a
major difference in the area of performance.

Consider this.    Any instruction, such as sub, that has a register
source operand and a memory destination operand must access memory
twice:      once  to  fetch  the  destination  operand  prior  to  performing  an
operation, and once to store the result of the operation to the destination
operand.    By contrast, the same instruction with a memory source operand
and a register destination operand must access memory just once, in order
to fetch the source value from memory.    Consequently, having a memory
operand  as  the  destination  imposes  an  immediate  penalty  of  at  least  4
cycles  per instruction,  since each memory access  takes a  minimum of  4
cycles.

As  it  turns  out,  however,  the  extra  time  required  to  access
destination  memory  operands  with  such  instructions--which  include  adc,
add,  and,  or,  sbb,  sub, and  xor--is not 4 but 7 cycles, according to the
official  specs  in  Appendix  A.      We  can  measure  the  actual  difference  by
timing the code in Listings 9-19 and 9- 20.    As it turns out, the code with AL
as the destination takes just 5.03 us per instruction.    That's 1.00 us (4.77
cycles) or nearly 20% faster than the code with memory as the destination
operand, which takes 6.03 us per instruction.

The moral of the story?    Simply to keep those operands which
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tend to be destination operands most frequently--counters, pointers, and the
like--in registers whenever possible.    The ideal situation is one in which both
destination and source operands are in registers.

By  the  way,  remember  that  an  instruction  with  a  word-sized
memory  operand  requires  an  additional  4  cycles  per  memory  access  to
access the second byte of the word.    Consequently:

add [si],dx ;performs 2 word-sized accesses
; (= 4 byte-sized accesses)

takes 8 cycles longer than:

add [si],dl ;performs 2 byte-sized accesses

However:

add dx,[si] ;performs 1 word-sized access
; (= 2 byte-sized accesses)

takes only 4 cycles longer than:

add dl,[si] ;performs 1 byte-sized access

since only one memory access is performed by each.
A final note:    at least one 8088 reference lists cmp as requiring



Abrash/Zen:    Chapter 9/

the same 7 additional cycles as sub when used with a memory operand that
is the destination rather than the source.  Not so--cmp requires the same
time no matter which operand is a memory operand.    That makes sense,
since  cmp doesn't actually modify the destination operand and so has no
reason to perform a second memory access.      The same is true for  test,
which doesn't modify the destination operand.

neg AND not

neg and  not are  short,  fast  instructions  that  are  sometimes
undeservedly overlooked.    Each instruction is 2 bytes long and executes in
just 3 cycles when used with a register operand, and each instruction can
often replace a longer instruction or several instructions.

not  mem/reg is  similar  to  xor  mem/reg,0ffffh (or  xor

mem/reg,0ffh for 8-bit operands), but is usually 1 byte shorter and 1 cycle
faster.    (If mem/reg is AL, not and xor are the same length, but not is still 1
cycle faster.)    Another difference between the two instructions is that unlike
xor, not doesn't affect any of the status flags.    This can be useful for, say,
toggling  the  state  of  a  flag byte  without  disturbing  the  statuses  that  an
earlier operation left in the FLAGS register.

neg negates a signed value in a register or memory variable. You
can think of  neg as subtracting the operand from 0 and storing the result
back in the operand.    The flags are set to reflect this subtraction from 0, so
neg ax sets the flags as if:
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mov dx,ax
mov ax,0
sub ax,dx

had been performed.
One interesting consequence of the way in which  neg sets the

flags is that the Carry flag is set in every case except when the operand was
originally 0.     (That's because in every other case a value larger than 0 is
being subtracted from 0,  resulting  in  a  borrow.)      This  is  very  handy for
negating 32-bit operands quickly.    In the following example, DX:AX contains
a 32-bit operand to be negated:

neg dx
neg ax
sbb dx,0

Although it's not obvious, the above code does indeed negate DX:AX, and
does  so  very  quickly  indeed.      (You  might  well  think  that  there  couldn't
possibly be a faster way to negate a 32-bit value, but in Chapter 13 we'll see
a decidedly unusual approach that's faster still.    Be wary of thinking you've
found the fastest possible code for any task!)

How does the above negation code work?      Well,  normally  we
would want to perform a two's complement negation by flipping all bits of
the operand and then adding 1 to it, as follows:
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not dx ;flip all bits...
not ax ;...of the operand
add ax,1 ;remember, INC doesn't set the Carry flag!
adc dx,0 ;then add 1 to finish the two's complement

However, this code is 10 bytes long, a full 3 bytes longer than our optimized
negation code.    In the optimized code, the first negation word flips all bits of
DX and adds 1 to that result, and the second negation flips all bits of AX and
adds 1 to that result.    At this point, we've got a perfect two's complement
result, except that 1 has been added to DX.    That's incorrect-- unless AX was
originally 0. Aha!    Thanks to the way neg sets the flags, the Carry flag
is always set  except when the operand was originally 0. Consequently, we
need only to subtract from DX the carry-out from neg ax and we've got a 32-
bit two's-complement negation--in just 7 bytes!

By the way, 32-bit negation can also be performed with the three
instruction, 7-cycle sequence:

not dx
neg ax
sbb dx,-1

If you can understand why this sequence works, you've got a good handle on
neg,  not,  and  two's  complement  arithmetic.      (Hint:      the  underlying
principle in the last sequence is exactly the same as with the neg/neg/sbb

approach we just discussed.)     If  not, wait until Chapter 13, in which we'll
explore the workings of 32-bit negation in considerable detail.
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neg is also handy for generating differences without using  sub

and  without  using  other  registers.      For  example,  suppose  that  we're
scanning  a  list  for  a  match with  AL.      repnz scasb (which  we'll  discuss
further in Chapter 10) is ideal for such an application.    However, after repnz

scasb has found a match, CX contains the number of entries in the list that
weren't  scanned,  not  the  number  that  were scanned,  and  it's  the  latter
number that we want in CX.    Fortunately, we can use  neg to convert the
entries-remaining count in CX into an entries-scanned count, as follows:

; The value to search for is already in AL, and ES:DI
; already points to the list to scan.

mov cx,[NumberOfEntries] ;# of entries to scan
cld ;make SCASB count up
repnz scasb ;look for the value
jnz ValueNotFound ;the value is not in the list
neg cx ;the # of entries not scanned

; times -1
add cx,[NumberOfEntries] ;total # of entries - # of

; entries not scanned = # of
; entries scanned

Thanks to neg, this replaces the longer code sequence:

; The value to search for is already in AL, and ES:DI
; already points to the list to scan.

mov cx,[NumberOfEntries] ;# of entries to scan
cld ;make SCASB count up
repnz scasb ;look for the value
jnz ValueNotFound ;the value is not in the list
mov ax,[NumberOfEntries] ;total # of entries
sub ax,cx ;total # of entries - # of

; entries not scanned = # of
; entries scanned

mov cx,ax ;put the result back in CX

Another advantage of neg in the above example is that it lets us
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generate the entries-remaining count  without  using another register.      By
contrast, the alternative approach requires the use of a 16-bit register for
temporary storage.      When registers are in short supply--as is usually the
case--the register-conserving nature of neg can be most useful.

ROTATES AND SHIFTS Next,  we're  going to  spend some time going
over interesting aspects of the various shift and rotate instructions.    To my
mind, the single most fascinating thing about these instructions concerns
their ability to shift or rotate by either 1 bit or the number of bits specified by
CL; in particular, it's most informative to examine the relative performance of
the two approaches for multi-bit operations.

It's much more desirable than you might think to perform multi-
bit shifts and rotates by repeating the shift or rotate CL times, as opposed to
using multiple 1-bit shift or rotate instructions.    As is so often the case, the
cycle counts in Appendix A are misleading in this regard.    As it turns out,
shifting or rotating multiple bits by repeating an instruction CL times, as in:

mov cl,4
shr ax,cl

is almost always faster than shifting by 1 bit repeatedly, as in:

shr ax,1
shr ax,1
shr ax,1
shr ax,1
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This is true even though the official specs in Appendix A indicate that the
latter approach is more than twice as fast.

Shifting or rotating by CL also requires fewer instruction bytes for
shifts of more than 2 bits.      In fact, that reduced instruction byte count is
precisely the reason the shift/rotate by CL approach is faster.    As we saw in
Chapter 4, fetching the instruction bytes of shr ax,1 takes up to four cycles
per byte; each shift or rotate instruction is 2 bytes long, so shr ax,1 can take
as much as 8 cycles per bit shifted.    By contrast, only 4 instruction bytes in
total need to be fetched in order to load CL and execute shr ax,cl.    Once
those bytes  are fetched,  shr ax,cl runs at its  Execution Unit  speed of  4
cycles  per  bit  shifted,  since  no  additional  instruction  fetching  is  needed.
Better yet,  the  next instruction's bytes can be prefetched while a shift  or
rotate by CL executes.

The point is not that shifts and rotates by CL are faster than you'd
expect, but rather that 1-bit shifts and rotates are slower than you'd expect,
courtesy of the prefetch queue cycle- eater.    The question is, of course, at
what point does it become faster to shift or rotate by CL instead of using
multiple 1-bit shift or rotate instructions?

To answer that, I've timed the two approaches, shown in Listings
9-21 and 9-22, for shifts ranging from 1 to 7 bits, by altering the equated
value of BITS_TO_SHIFT accordingly.    The results are as follows:
+-----------------------------------------------------------+
¦               Time taken to Time taken to shift ¦
¦ Bits shifted     shift by CL 1 bit at a time          ¦
¦ (BITS_TO_SHIFT)     (Listing 9-21) (Listing 9-22)            ¦
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¦-----------------------------------------------------------¦
¦     1             3.6 us 1.8 us                  ¦
¦     2             4.2 us 3.6 us                  ¦
¦     3             5.0 us                          5.4 us                  ¦
¦     4             5.9 us                          7.2 us                  ¦
¦     5             6.7 us                          9.1 us                  ¦
¦     6             7.5 us                        10.9 us                  ¦
¦     7             8.4 us                        12.7 us                  ¦
+-----------------------------------------------------------+

Astonishingly, it hardly ever pays to shift or rotate by multiple bit
places  with  separate  1-bit  instructions.      The  prefetch  queue  cycle-eater
exacts such a price on 1-bit shifts and rotates that it pays to shift or rotate by
CL for shifts of 3 or more bits.    Actually, the choice is not entirely clear-cut
for 3- to 5-bit shifts/rotates, since the 1-bit-at-a-time approach can become
relatively somewhat faster if the prefetch queue is full when the shift/rotate
sequence begins.    Still, there's no question but what shifting or rotating by
CL is as good as or superior to using multiple 1-bit shifts for most multi-bit
shifts.

By the way, you should be aware that the contents of CL are not
changed when CL is used to supply the count for a shift or rotate instruction.
This  allows you to load CL once and then use it  to control  multiple  shift
and/or rotate instructions.

SHIFTING AND ROTATING MEMORY

One feature of the 8088 that for some reason is often overlooked
is the ability to shift or rotate a memory variable. True, the 8088 doesn't shift
or rotate memory variables very  rapidly, but the capability is there should
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you need it.    If you should find the need to perform a multi-bit shift or rotate
on  a  memory  variable,  for  goodness  sakes  use  a  CL  shift!      Every  1-bit
memory shift/rotate takes a minimum of 20 cycles.    By contrast, a shift-by-
CL memory shift/rotate takes a minimum of 25 cycles, but only 4 additional
cycles per bit shifted.    It doesn't take a genius to see that for, say, a 4-bit
rotate, the 41 cycles taken by the CL shift would beat the stuffing out of the
80 cycles taken by the four 1-bit shifts.

ROTATES

You should be well aware that there are two sorts of rotates.    One
category, made up of rol and ror, consists of rotates that simply rotate the
bits in the operand, as shown in Figure 9-2.    These instructions are useful for
adjusting masks, swapping nibbles, and the like.    For example:

mov cl,4
ror al,cl

swaps the high and low nibbles of AL.     Note that these instructions don't
rotate  through  the  Carry  flag.      However,  they  do copy  the  bit  wrapped
around to the other end of the operand to the Carry flag as well. The  other
rotate category, made up of  rcl and rcr, consists of rotates that rotate the
operand through the Carry flag, as shown in Figure 9-3.    These instructions
are useful for multi- word shifts and rotates.    For example:
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shr dx,1
rcr cx,1
rcr bx,1
rcr ax,1

shifts the 64-bit value in DX:CX:BX:AX right one bit.
The rotate instructions affect fewer flags than you might think,

befitting their  role  as bit-manipulation rather than arithmetic  instructions.
None of the rotate instructions affect the Sign, Zero, Auxiliary Carry, or Parity
flags.    On 1-bit left rotates the Overflow flag is set to the exclusive-or of the
value of the resulting Carry flag and the most-significant bit of the result.
On 1-bit right rotates the Overflow flag is set to the exclusive-or of the two
most-significant  bits  of  the  result.  (These  Overflow  flag  settings  indicate
whether the rotate has changed the sign of the operand.)    On rotates by CL
the setting of the Overflow flag is undefined. 

SHIFTS

Similarly, there are two sorts of shift instructions.    One category,
made up of shl (also known as sal) and shr, consists of shifts that shift out
to the Carry flag, shifting a 0 into the vacated bit of the operand, as shown in
Figure 9-4.    These instructions are used for moving masks and bits about
and for performing fast unsigned division and multiplication by powers of 2.
For example:
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shl ax,1

multiplies AX, viewed as an unsigned value, by 2.
The other shift  category contains only  sar.      sar performs the

same  shift  right  as  does  shr,  save  that  the  most  significant  bit  of  the
operand is preserved rather than zeroed after the shift, as shown in Figure 9-
5.    This preserves the sign of the operand, and is useful for performing fast
signed division by powers of 2.    For example:

sar ax,1

divides AX, viewed as a signed value, by 2.
The shift instructions affect the arithmetic-oriented flags that the

rotate  instructions  leave  alone,  which  makes  sense  since  the  shift
instructions can perform certain types of multiplication and division.    Unlike
the rotate instructions, the shift instructions modify the Sign, Zero, and Parity
flags  in  the  expected  ways.      The  setting  of  the  Auxiliary  Carry  flag  is
undefined.      The  setting  of  the  Overflow flag  by  the  shift  instructions  is
identical to the Overflow settings of the rotate instructions.     On 1-bit left
shifts the Overflow flag is set to the exclusive-or of the resulting Carry flag
and the most- significant bit of the result.    On 1-bit right shifts the Overflow
flag is set to the exclusive-or of the two most- significant bits of the result.
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Basically, any given shift will set the Overflow flag to 1 if the sign
of the result differs from the sign of the original operand, thereby signalling
that the shift has not produced a valid signed multiplication or division result.
sar always sets the Overflow flag to 0, since sar can never change the sign
of an operand.    shr always sets the Overflow flag to the high-order bit of the
original value, since the sign of the result is always positive.    On shifts by CL
the setting of the Overflow flag is undefined. 

SIGNED DIVISION WITH sar

One tip if you do use sar to divide signed values:    for negative
dividends, sar rounds to the integer result of the next largest absolute value.
This can be confusing, since for positive values  sar rounds to the integer
result of the next smallest absolute value, just as shr does.    That is:

mov ax,1
sar ax,1

returns 1/2=0, while: 

mov ax,-1
sar ax,1

doesn't return -1/2=0, but rather -1/2=-1.    Similarly, sar insists that -5/4=-2,
not -1.    This is actually a tendency to round to the next integer value less
than  the  actual  result  in  all  cases,  which  is  exactly  what  shr also  does.
While that may be consistent, it's nonetheless generally a nuisance, since we
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tend to expect that, say, -1/2*-1 should equal 1/2*1, but with sar we actually
get 1 for the former and 0 for the latter.

The solution?    For a signed division by  n of a negative number
with  sar, simply add  n-1 to the dividend before shifting. This compensates
exactly for the rounding sar performs.    For example:

mov ax,-1 ;sample dividend
and ax,ax ;is the dividend negative?
jns DoDiv ;it's positive, so we're ready to divide
add ax,2-1 ;it's negative, so we need to compensate.

; This is division by 2, so we'll
; add n-1 = 2-1

DoDiv:
sar ax,1 ;signed divide by 2

returns 0, just what we'd expect from -1/2.
That's a quick look at what the shift and rotate instructions were

designed to do.    Now let's bring a little Zen of assembler to bear in cooking
up a  use  for  sar that  you can be fairly  sure  was  never  planned by the
architects of the 8088. 
BIT-DOUBLING MADE EASY

Think back to the bit-doubling example of Chapter 7, where we
found that a bit-doubling routine based on register-register instructions didn't
run nearly  as fast as it  should have, thanks to the prefetch queue.      We
boosted the performance of the routine by performing a table look-up, and
that's the best solution that I know of.    There is, however, yet another bit-
doubling technique (conceived by my friend Dan Illowsky) that's faster than
the original shift-based approach.    Interestingly enough, this new technique
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uses sar.
Let's consider sar as a bit-manipulation instruction rather than as

a signed arithmetic instruction.    What does sar really do?    Well, it shifts all
the bits of the operand 1 bit to the right, and it shifts bit 0 of the operand
into the Carry flag. The most significant bit of the operand is left unchanged--
and it is also shifted 1 bit to the right.

In other words, the most significant bit is doubled!
Once we've  made the  conceptual  leap  from  sar as  arithmetic

instruction  to  sar as  "bit-twiddler,"  we've  got  an  excellent  tool  for  bit-
doubling.    The code in Listing 7-14 placed the byte containing the bits to be
doubled  in  two  registers  (BL  and  BH)  and  then  doubled  the  bits  with  4
instructions:

shr bl,1
rcr ax,1
shr bh,1
rcr ax,1

By contrast, the sar approach, illustrated in Listing 9-23, requires
only one source register and doubles the bits with just 3 instructions:

shr bl,1
rcr ax,1
sar ax,1

The sar approach requires only 75% as many code bytes as the
approach in Listing 7-14.    Since instruction fetching dominates the execution
time of  Listing  7-14,  the  shorter  sar-based  code  should  be  considerably
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faster,  and indeed it  is.      Listing  9-23  doubles  bits  in  47.07 us  per  byte
doubled, more than 34% faster than the 63.36 us of Listing 7-14.    (Note that
the ratio of the execution times is almost exactly 3-to-4...which is the ratio of
the code sizes of the two approaches.    Keep your code short!)

Mind you, the  sar approach of Listing 9-23 is still  much slower
than the look-up approach of Listing 7-15.    What's more, the code in Listing
9-23 is both slower and larger than the xlat- based nibble look-up approach
shown in Listing 7-18, so sar really isn't a preferred technique for doubling
bits.    The point to our discussion of bit-doubling with sar is actually this:    all
sorts of interesting possibilities open up once you start to view instructions in
terms of what they do, rather than what they were designed to do.

ASCII AND DECIMAL ADJUST

Now we come to the ASCII and decimal-adjust instructions: daa,
das, aaa, aas, aam, and aad.    To be honest, I'm covering these instructions
only because many people have asked me what they are used for.    In truth,
they aren't useful very often, and there aren't any particularly nifty or non-
obvious uses for them that I'm aware of, so I'm not going to cover them at
great length, and you shouldn't spend too much time trying to understand
them unless they fill a specific need of yours. Still, the ASCII and decimal-
adjust instructions do have their purposes, so here goes.

daa, das, AND PACKED BCD ARITHMETIC

daa ("decimal adjust AL after addition") and das ("decimal adjust
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AL after subtraction")  adjust AL to the correct value after addition of  two
packed  BCD (binary  coded  decimal)  operands.  Packed  BCD is  a  number-
storage format whereby a digit between 0 and 9 is stored in each nibble, so
the hex value 1000h interpreted in BCD is 1000 decimal, not 4096 decimal.
(Unpacked BCD is similar to packed BCD, save that only one digit rather than
two is stored in each byte.)

Naturally, the addition of two BCD values with the add instruction
doesn't  produce the  right  result.      The  contents  of  AL  after  add al,bl is
performed with 09h (9 decimal in BCD) in AL and 01h (1 decimal in BCD) in
BL is 0Ah, which isn't even a BCD digit.    What daa does is take the binary
result of the addition of a packed BCD byte (two digits) in AL and adjust it to
the correct sum.    If, in the last example, daa had been performed after add

al,bl, AL would have contained 10h, which is 10 in packed BCD--the correct
answer.

das performs a similar  adjustment after  subtraction of  packed
BCD numbers.      The mechanics of  daa and  das are a bit complex, and I
won't go into them here, since I know of no use for the instructions save to
adjust packed BCD results.     Yes, I  do remember that I told you to look at
instructions for what they can do, not what they were designed to do.    As far
as I know, though, the two are one and the same for daa and das.    I'll tell
you  what:      look  up  the  detailed  operation  of  these  instructions,  find  an
unintended use for them, and let me know what it is. I'll be delighted to hear!
One possible  hint:      these  instructions  are  among the  very  few that  pay
attention to the Auxiliary Carry flag.
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I'm not going to spend any more time on daa and das, because
they're  just  not  used  that  often.      BCD  arithmetic  is  used  primarily  for
working with on values to an exact number of decimal digits.    (By contrast,
normal binary arithmetic stores values to an exact number of  binary digits,
which  can  cause  rounding  problems  with  decimal  calculations.)
Consequently,  BCD arithmetic  is  useful  for  accounting  purposes,  but  not
much else. Moreover, BCD arithmetic is decidedly slow.    If you're one of the
few who need BCD arithmetic, the BCD-oriented instructions are there, and
BCD  arithmetic  is  well-discussed  in  the  literature-- it's  been  around  for
decades, and many IBM mainframes use it--so go to it.    For the rest of you,
don't worry that you're missing out on powerful and mysterious instructions--
the BCD instructions are deservedly obscure.

aam, aad, AND UNPACKED BCD ARITHMETIC

aam and  aad are BCD instructions of a slightly different flavor
and a bit more utility.      aam ("ASCII adjust AX after multiply") adjusts the
result in AL of the multiplication of two single-digit unpacked BCD values to a
valid two-digit unpacked BCD value in AX.    This is accomplished by dividing
AL by 10 and storing the quotient  in  AH and the remainder in  AL.      (By
contrast, div stores the quotient in AL and the remainder in AH.)

aad ("ASCII  adjust  AL  before division")  converts  a  two-digit
unpacked  BCD  value  in  AX  into  the  binary  equivalent  in  AX.      This  is
performed by multiplying AH by 10, adding it to AL, and zeroing AH.    The
binary  result  of  aad can  then be divided  by  a  single-digit  BCD value  to
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generate a single-digit BCD result.
By the way, "ASCII adjust" really means unpacked BCD for these

instructions, since ASCII  digits with the upper nibble zeroed are unpacked
BCD digits.    aaa and aas, which we'll discuss shortly, explicitly convert ASCII
digits into unpacked BCD, but aam and aad require that you use and to zero
the upper nibble of ASCII digits before performing multiplication and division.

aam can be used to implement multiplication of arbitrarily long
unpacked BCD operands  one digit at a time.     That is, with  aam you can
multiply decimal numbers just the way we do it  with a pencil  and paper,
multiplying one digit of each product together at a time and carrying the
results along.    Presumably, aad can be used similarly in the division of two
BCD operands, although I've never found an example of the use of aad.

At any rate, the two instructions do have some small use apart
from unpacked BCD arithmetic.    They can save a bit of code space if you
need to perform exactly the specified division by 10 of aam or multiplication
by 10 and addition of aad, although you must be sure that the result can fit
in a single byte.    In particular, aam has an advantage over div in that a div

by an 8- bit divisor requires a 16-bit dividend in AX, while aam uses only an
8-bit  dividend in  AL.      aam has  another  advantage in  that  unlike  div,  it
doesn't require a register to store the divisor.

For example, Listing 9-24 shows code that converts a byte value
to  a  three-digit  ASCII  string  by  way  of  aam.      Listing  9-25,  by  contrast,
converts a byte value to an ASCII string by using explicit division by 10 via
div.    Listing 9-24 is only 28 bytes long per byte converted, 2 bytes shorter
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than Listing 9-25. Listing 9-24 also executes in 54.97 us per conversion, 2.65
us faster than the 57.62 us of Listing 9-25.    Normally, an improvement of
2.65 us  would have us  jumping up and down,  but  the lengthy execution
times of both conversion routines mean that the speed advantage of Listing
9-24 is only about 5%.    That's certainly an improvement--but painfully slow
nonetheless.

aam and  aad would  be  more  interesting  if  they  provided
significantly  faster ways than  div and  mul to  divide and multiply  by 10.
Unfortunately, that's not the case, as the above results illustrate.     aad and
aam must  use  the  8088's  general-purpose  multiplication  and  division
capabilities, for they are just about as slow as  mul and  div.      aad is the
speedster of the two at 60 cycles per execution, while aam executes in 83
cycles.

NOTES ON mul AND div

I'd  like to take a moment to note some occasionally  annoying
characteristics of  mul and  div.     mul (and  imul, but I'll refer only to  mul

from now on for brevity) has a tendency to surprise you by wiping out a
register that you'd intuitively think it wouldn't, because the product is stored
in twice as many bits as either factor.    For example, mul bl stores the result
in AX, not AL, and  mul cx stores the result in DX:AX, not AX.    While this
sounds simple enough, it's easy to forget in the heat of coding.

Similarly, it's easy to forget that div requires that the dividend be
twice as large as the divisor and quotient.    (The following discussion applies
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to idiv as well; again, I'll refer only to div for brevity.)    In order to divide one
16-bit value by another, it's essential that the 16-bit dividend be extended to
a 32-bit value, as in:

mov bx,[Divisor]
mov ax,[Dividend]
sub dx,dx ;extend Dividend to an unsigned 32-bit value
div bx

(cwd can be used for sign-extension to a 32-bit value.)    What's particularly
tricky about 32-bit-by-16-bit division is that it leaves the remainder in DX.
That means that if you perform multiple 16-bit-by-16-bit divisions in a loop,
you must zero DX every time through the loop.    For example, the following
code to convert a binary number to five ASCII digits wouldn't work properly,
because the dividend wouldn't be properly extended to 32 bits after the first
division, which would leave the remainder in DL:

mov ax,[Count] ;value to convert to ASCII
sub dx,dx ;extend Count to an unsigned 32-bit value
mov bx,10 ;divide by 10 to convert to decimal
mov si,offset CountEnd-1 ;ASCII count goes here
mov cx,5 ;we want 5 ASCII digits

DivLoop:
div bx ;divide by 10
add dl,'0' ;convert this digit to ASCII
mov [si],dl ;store the ASCII digit
dec si ;point to the next most significant digit
loop DivLoop

On the other hand, the following code would work perfectly well, because it
extends the dividend to 32 bits every time through the loop:

mov ax,[Count] ;value to convert to ASCII
mov bx,10 ;extend Count to an unsigned 32-bit value
mov si,offset CountEnd-1 ;ASCII count goes here
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mov cx,5 ;we want 5 ASCII digits
DivLoop:

sub dx,dx ;extend the dividend to an unsigned 32-bit value
div bx ;divide by 10
add dl,'0' ;convert this digit to ASCII
mov [si],dl ;store the ASCII digit
dec si ;point to the next most significant digit
loop DivLoop

All of the above goes for 8-bit-by-8-bit division as well, except that in that
case it's the 8-bit dividend in AL that you must extend to a word in AX before
each division.

There's another tricky point to div:    div can crash a program by
generating  a  divide-by-zero  interrupt  (interrupt  0)  under  certain
circumstances.    Obviously, this can happen if you divide by zero, but that's
not the only way div can generate a divide-by-zero interrupt.    If a division is
attempted for which the quotient doesn't fit into the destination register (AX
for 32-bit-by-16-bit divides, AL for 16-bit-by-8-bit divides), a divide-by-zero
interrupt occurs.    So, for example:

mov ax,0ffffh
mov dl,1
div dl

results in a divide-by-zero interrupt.
Often, you know exactly what the dividend and divisor will be for

a particular division, or at least what range they'll be in, and in those cases
you don't  have to worry about  div causing a divide-by-zero interrupt.      If
you're not sure that the dividend and divisor are safe, however, you  must
guard against potential problems.      One way to do this is  by intercepting
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interrupt  0  and  handling  divide-by-zero  interrupts.      The  alternative  is  to
check the dividend and divisor before each division to make sure both that
the divisor is non-zero and that the dividend isn't so much larger than the
divisor that the result won't fit in 8 or 16 bits, whichever size the division
happens to be.

This division-by-zero business is undeniably a nuisance to have to
deal with--but it's absolutely necessary if  you're going to perform division
without knowing that the inputs can safely be used.

aaa, aas, AND DECIMAL ASCII ARITHMETIC

Finally,  we come to  aaa and  aas,  which  support  addition  and
subtraction of decimal ASCII digits.    Actually, aaa and aas support addition
and subtraction of any two unpacked BCD digits, or indeed of any two bytes
at all the lower nibbles of which contain digits in the range 0-9.

aaa ("ASCII  adjust  after  addition")  adjusts  AL  to  the  correct
decimal (unpacked BCD) result of the addition of two nibbles.    Consider this:
if you add two digits in the range 0-9, one of three things can happen.    The
result can be in the range 0-9, in which case no adjustment is needed and no
decimal carry has occurred.     Alternatively, the result can be in the range
0Ah- 0Fh, in which case the result can be corrected by adding 6 to the result,
taking the result modulo 16 (decimal), and setting carry- out.    Finally, the
result can be in the range 10h-12h, in which case the result can be corrected
in exactly the same way as for results in the range 0Ah-0Fh.

aaa handles all three cases with a single 1-byte instruction.    aaa
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assumes that an add or adc instruction has just executed, with the Auxiliary
Carry flag set appropriately.    If the Auxiliary Carry flag is set (indicating a
result in the range 10h-12h) or if the lower nibble of AL is in the range 0Ah-
0Fh, then 6 is added to AL, the Auxiliary Carry and Carry flags are set to 1,
and AH is incremented.      Finally,  the upper nibble of AL is set to 0 in all
cases.

What does all this mean?    Obviously, it means that it's easy to
add together unpacked BCD numbers.    More important, though, is that aaa

makes  it  fast  (4  cycles  per  aaa)  and  easy  to  add  together  ASCII
representations  of  decimal  numbers.      That's  genuinely  useful  because it
takes a slew of cycles to convert a binary number to an ASCII representation;
after all, a division by 10 is required for each digit to be converted.    ASCII
numbers  are  necessary  for  all  sorts  of  data  displays  for  which  speed  is
important,  ranging  from  game  scores  to  instrumentation  readouts.  aaa

makes  possible  the  attractive  alternative  of  keeping  the  numbers  in
displayable ASCII forms at all times, thereby avoiding the need for any sort of
conversion at all.

Listing 9-26 shows the use of aaa in adding the value 1-- stored
as the ASCII decimal string "00001"--to an ASCII decimal count.    Granted, it
takes much longer to perform the ASCII decimal increment shown in Listing
9-26 than it does to execute an inc instruction--more than 100 times as long,
in fact, at 93.00 us per ASCII decimal increment versus a maximum of 0.809
us  per  inc.      However,  Listing  9-26  maintains  the  count  in  instantly-
displayable  ASCII  form,  and  for  frequently-displayed  but  rarely- changed
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numbers, a ready-to-display format can more than compensate for lengthier
calculations.

If you do use aaa, remember that you have not one but two ways
to use the carry-out that indicates that a decimal digit has counted from 9
back around to 0.    The Carry flag is set on carry- out; that's what we use as
the carry-out status in Listing 9-26. In addition, though, AH is incremented by
aaa whenever decimal carry-out occurs.    It's certainly possible to get some
extra  mileage  by  putting  the  next-most-significant  digit  in  AH  before
performing  aaa so  that  the  carry-out  is  automatically  carried.  It's  also
conceivable that you could use aaa specifically to increment AH depending
on  either  the  value  in  AL  or  on  the  setting  of  the  Auxiliary  Carry  flag,
although I've never seen such an application.    Since the Auxiliary Carry flag
isn't testable by any conditional jump (or indeed by any instructions other
than  daa,  das,  aaa,  and  aas),  aaa is  perhaps the best hope for getting
extra utility from that obscure flag.

aas ("ASCII adjust after subtraction") is well and truly the mirror
image of aaa.    aas is designed to be used after a sub or sbb, subtracting 6
from the result, decrementing AH, and setting the Carry flag if the result in
AL is not in the range 0-9, and zeroing the high nibble of AL in any case.
You'll find that wherever aaa is useful, so too will be aas.

MNEMONICS THAT COVER MULTIPLE INSTRUCTIONS

As we've seen several times in this chapter and the last, 8088
assembler often uses a single mnemonic, such as mov, to name two or more
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instructions that perform the same operations but are quite different in size
and execution speed.    When the assembler encounters such a mnemonic in
assembler  source  code,  it  automatically  chooses  the  most  efficient
instruction that fills the bill.

For  example,  earlier  in  this  chapter  we learned  that  there's  a
special 16-bit register-only version of  inc that's shorter and faster than the
standard mod-reg-rm version of inc.    Whenever you use a 16-bit register inc

in source code--for example, inc ax-- the assembler uses the more efficient
16-bit register-only inc; otherwise, the assembler uses the standard version.

Naturally, you'd prefer to use the most efficient version of a given
mnemonic  whenever  possible.      The only  way to  do that  is  to  know the
various instructions described by each mnemonic and to strive to use the
forms of the mnemonic that assemble to the most efficient instruction.    For
instance, consider the choice between  inc ax and  inc al.     Without inside
knowledge, there's  nothing to choose from between these two assembler
lines.    In fact, there might be a temptation to choose the 8-bit form on the
premise that an 8-bit operation can't  possibly be slower than a 16-bit one.
Actually, of course, it can...but you'll only know that the 16-bit inc is the one
to pick if you're aware of the two instructions inc describes.

This  section  is  a  summary  of  mnemonics  that  cover  multiple
instructions, many of which we've covered in detail elsewhere in this book.
The mnemonics that describe multiple instructions are:

      _ inc,  which  has  a  mod-reg-rm version  and  a  16-bit  register- only
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version, as described earlier in this chapter (the same applies to dec).
      _ xchg, which has a mod-reg-rm version and a 16-bit exchange- with-AX-

only version, as described in Chapter 8.
      _ add, which has two mod-reg-rm versions (one for adding a register and

a  memory  variable  or  a  second  register  together,  and  another  for
adding  immediate  data  to  a  register  or  memory  variable)  and  an
accumulator-specific  immediate-addressing  version,  as  described  in
Chapter 8 (the same applies to adc, and, cmp, or, sbb, sub, test and
xor, also as described in Chapter 8).

      _ mov, which requires further explanation.

mov covers  several  instructions,  and  it's  worth  understanding
each one.      The basic form of  mov is a  mod-reg-rm form that copies one
register  or  memory  variable  to  another  register  or  memory  variable.
(Memory-to-memory moves  are  not  permitted,  however.)      There's  also  a
mod-reg-rm form of mov that allows the copying of a segment register to a
general-purpose register or a memory variable, and vice-versa.    Last among
the  mod-reg-rm versions of  mov, there's a form of  mov that supports the
setting of a register or a memory variable to an immediate value.

There are two more versions of mov, both of which are non- mod-
reg-rm forms of the instruction.      There's an accumulator- specific version
that  allows  the  transfer  of  values  between  direct-addressed  memory
variables and the accumulator (AL or AX) faster and in fewer bytes than the
mod-reg-rm instruction, as discussed in Chapter 8.    There's also a register-
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specific form of  mov, as we discussed in Chapter 7; I'd like to discuss that
version of mov further, for it's an important instruction indeed.

Every  mod-reg-rm instruction requires at least 2 bytes, one for
the instruction opcode and one for the mod-reg-rm byte. Consequently, the
mod-reg-rm version of  mov  mem/reg,immed8 is 3 bytes long, since the
immediate  value  takes  another  byte.  However,  there's  a  register-specific
immediate-addressing form of  mov that doesn't have a  mod-reg-rm byte.
Instead, the register selection is built right into the opcode, so only 1 byte is
needed to both describe the instruction and select the destination.      The
result:    the register-specific immediate- addressing form of mov allows mov

reg,immed8 to  assemble  to  just  2  bytes,  and  mov  reg,immed16 to
assemble to just 3 bytes. The  presence  of  the  register-specific
immediate-addressing version of mov makes loading immediate values into
registers  quite  reasonable  in  terms  of  code  size  and  performance.      For
example,  mov al,0 assembles  to  a  2-byte  instruction,  exactly  the  same
length as sub al,al.    Granted, sub al,al is 1 cycle faster than mov al,0, and
sub ax,ax is both 1 cycle faster and 1 byte shorter than  mov ax,0,  but
nonetheless  the  upshot  is  that  registers  can  be  loaded  with  immediate
values fairly efficiently.

Be aware, however, that the same is  not generally true of  add,
sub,  or  any  of  the  logical  or  arithmetic  instructions--the  mod-reg-rm
immediate-addressing  forms  of  these  instructions  take  a  minimum  of  3
bytes.      As mentioned above, though, the accumulator-specific immediate-
addressing forms of these instructions are fast and compact at 2 or 3 bytes
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in length.
While there is a special form of  mov for loading registers with

immediate data, there is no such form for loading memory variables.    The
shortest possible instruction for loading memory with an immediate value is
3 bytes long, and such instructions can range all the way up to 6 bytes in
length.    In fact, thanks to the 8088's accumulator- and register-specific mov

instructions:

mov al,0
mov [MemVar],al

is not only the same length as: 

mov [MemVar],0

but is also 2 cycles faster!
Learn well those special cases where a single mnemonic covers

multiple instructions--and  use them!      They're one of  the secrets of  good
8088 assembler code.

ON TO THE STRING INSTRUCTIONS

We've cut a wide swath through the 8088's instruction set in this
chapter, but we have yet to touch on one important set of instructions--the
string  instructions.      These  instructions,  which  are  perhaps  the  most
important  instructions  the  8088  has  to  offer  when  it  comes  to  high-
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performance programming, are coming up next.    Stay tuned.


