
Abrash/Zen:    Chapter 7/

Chapter 7:    Memory Addressing

The 8088's registers are very powerful, and critically important to
writing high-performance code--but there are scarcely a dozen of them, and
they certainly can't do the job by themselves.    We need more than seven--or
seventy, or seven hundred or even seven thousand--general-purpose storage
locations.    We need storage that's capable of storing characters, numbers,
and instruction bytes in great quantities (remember that instruction bytes
are just another sort of data)--and, of course, that's just what we get by way
of the 1 megabyte of memory that the 8088 supports.

(The PC has only 640 Kb of system RAM, but nonetheless does
support a full megabyte of addressable memory.    The memory above the
640 K mark is occupied by display memory and by BIOS code stored in ROM
(read-only memory); this memory can always be read from and can in some
cases--display memory, for example--be written to as well.)

Not only does the 8088 support 1 Mb of memory, but it also
provides many powerful and flexible ways to get at that memory. We'll skim
through the many memory addressing modes and instructions quickly, but
we're not going to spend a great deal of time on their basic operation.

Why not spend more time describing the memory addressing
modes and instructions?    One reason is that I've assumed throughout The
Zen of Assembly Language that you're at least passingly familiar with
assembler, thereby avoiding a lot of rehashing and explaining--and memory

Abrash/Zen:    Chapter 7/

addressing is fundamental to almost any sort of assembler programming.    If
you really don't know the basic memory addressing modes, a refresher on
assembler in general might be in order before you continue with The Zen of
Assembly Language.

The other reason for not spending much time on the operation of
the memory addressing modes is that we have another--and sadly
neglected--aspect of memory addressing to discuss:    performance.

You see, while the 8088 lets you address a great deal of memory,
it isn't particularly fast at accessing all that memory. This is especially true
when dealing with blocks of memory larger than 64 Kb, but is always true to
some extent.    Memory-accessing instructions are often very long and are
always very slow.

Worse, many people don't seem to understand the sharp
distinction between memory and registers.    Some "experts" would have you
view memory locations as extensions of your register set.    With this sort of
thinking, the instructions:

mov dx,ax

and:

mov dx,MemVar

are logically equivalent.    Well, the instructions are logically equivalent in the

Abrash/Zen:    Chapter 7/

sense that they both move data into DX--but they're polar opposites when it
comes to performance.    The register-only mov is half the length in bytes
and anywhere from two to seven times faster than the mov from
memory...and that's fairly typical of the differences between register-only
and memory-addressing instructions.

So you see, saying that memory is logically equivalent to
registers is something like saying that a bus is logically equivalent to a 747.
Sure, you can buy a ticket to get from one place to another with either mode
of transportation...but which would you rather cross the country in?

As we'll see in this chapter, and indeed throughout the rest of the
Zen of Assembly Language, one key to optimizing 8088 code is using the
registers heavily while avoiding memory whenever you can.    Pick your spots
for such optimizations carefully, though. Optimize instructions in tight loops
and in time-critical code, but let initialization and set-up code slide; it's just
not worth the time and effort to optimize code that doesn't much affect
overall performance or response time.

Slow and lengthy as memory accessing instructions are, you're
going to end up using them a great deal in your code. (Just try to write a
useful program that doesn't access memory!) In light of that, we're going to
review the memory-addressing architecture and modes of the 8088, then
look at the performance implications of accessing memory.    We'll see why
memory accesses are slow, and we'll see that not all memory addressing
modes or memory addressing instructions are created equal in terms of size
and performance.    (In truth, the differences between the various memory-

Abrash/Zen:    Chapter 7/

addressing modes and instructions are just about as large as those between
register-only and memory-accessing instructions.)    Along the way, we'll
come across a number of useful techniques for writing high-performance
code for the PC, most notably look-up tables.    By the end of this chapter,
we'll be ready to dive into the instruction set in a big way.

We've got a lot of ground to cover, so let's get started.

DEFINITIONS

I'm going to take a moment to define some terms I'll use in this
chapter.    These terms will be used to describe operands to various
instructions; for example, mov ax,segreg refers to copying the contents of
a segment register into AX.

reg refers to any 8- or 16-bit general-purpose register. reg8 refers
to any 8-bit (byte-sized) general-purpose register, and reg16 refers to any
16-bit (word-sized) general-purpose register.

segreg refers to any segment register.
mem refers to any 8-, 16-, or 32-bit memory operand.    mem8

refers to any byte-sized memory operand, mem16 refers to any word-sized
memory operand, and mem32 refers to any doublewordsized memory
operand.

reg/mem refers to any 8- or 16-bit register or memory operand.
As you'd expect, reg/mem8 refers to any byte-sized register or memory
operand, and reg/mem16 refers to any word- sized register or memory
operand.

Abrash/Zen:    Chapter 7/

immed refers to any immediate (constant) instruction operand.
(Immediate addressing is discussed in detail below.) immed8 refers to any
byte-sized immediate operand, and immed16 refers to any word-sized
immediate operand.

SQUARE BRACKETS MEAN MEMORY ADDRESSING

The use of square brackets is optional when a memory location is
being addressed by name.    That is, the two following instructions assemble
to exactly the same code:

mov dx,MemVar
mov dx,[MemVar]

However, addressing memory without square brackets is an extension of the
"memory and registers are logically equivalent" mindset.    I strongly
recommend that you use square brackets on all memory references in order
to keep the distinction between memory and registers clear in your mind.
This practice also helps distinguish between immediate and memory
operands.

THE MEMORY ARCHITECTURE OF THE 8088 The ability to address 1
Mb of memory, while unimpressive by today's standards, was quite
remarkable when the PC was first introduced, 64 Kb then being standard for
"serious" microcomputers.    In fact, an argument could be made that the

Abrash/Zen:    Chapter 7/

8088's 1 Mb address space is the single factor most responsible for the
success of the IBM PC and for the exceptional software that quickly became
available for it.    Realistically, the letters "IBM" were probably more
important, but all that memory didn't hurt; quantities of memory make new
sorts of software possible, and can often compensate for limited processor
power in the form of lookup tables, RAM disks, data caching, and in-line code.
All in all, the PC's then-large memory capacity made possible a quantum leap
in software quality.

On the other hand, the 8088 actually addresses all that memory
in what is perhaps the most awkward manner ever conceived--by way of
addressing 64 Kb blocks off each of the four segment registers.    This
scheme means that programs must perform complex and time-consuming
calculations in order to access the full 1 Mb of memory in a general way.
One of the ways in which assembler programs can outstrip compiled
programs is by cleverly structuring code and data so that sequential memory
accesses generally involve only memory within the four segments
addressable at any one time, thereby avoiding the considerable overhead
associated with calculating full addresses and frequently reloading the
segment registers.

In short, the 8088's memory architecture is the best of worlds and
the worst of worlds:    the best because a great deal of memory is
addressable (at least by 1981 standards), the worst because it's hard to
access all that memory quickly.    That said, let's look at the 8088's memory
architecture in detail.    Most likely you know what we're about to discuss, but

Abrash/Zen:    Chapter 7/

bear with me; I want to make sure we're all speaking the same language
before I go on to more advanced subjects.

SEGMENTS AND OFFSETS

20 bits are needed to address 1 Mb of memory, and every one of
the one-million-plus memory addresses the 8088 can handle can indeed be
expressed as a 20-bit number.    However, programs do not address memory
with 20-bit addresses.    There's a good reason for that:    20-bit addresses
would be most impractical.    For one thing, the 8088's registers are only 16
bits in size, so they couldn't be used to point to 20-bit addresses.    For
another, three rather than two bytes would be needed to store each address
loaded by a program, making for bloated code.    In general, the 8088 just
wasn't designed to handle straight 20-bit addresses.

(You may well ask why the 8088 wasn't designed better. "Better"
is a slippery term, and the 8088 certainly has been successful...nonetheless,
that's a good question, which I'll answer in Chapter 8.    A hint:    much of the
8088's architecture is derived from the 8080, which could only address 64 Kb
in all. The 8088 strongly reflects long-ago microcomputer technology, not
least in its limitation to 1 Mb in total.) Well, if the PC doesn't use straight
20-bit addresses, what does it use?    It uses paired segments and offsets,
which together form an address denoted as segment:offset.    For example,
the address 23F0:1512 is the address composed of the segment value 23F0
hex and the offset value 1512 hex.    (I'll always show segment:offset pairs in
hexadecimal, which is by far the easiest numbering scheme for memory

Abrash/Zen:    Chapter 7/

addressing.)    Both segments and offsets are 16-bit values.
Wait one minute!    We're just looking for 20-bit addresses, not 32-

bit addresses.    Why do we need 16 bits of segment and 16 bits of offset?
Actually, we don't need 16 bits of segment.    We could manage to

address 1 Mb perfectly well with a mere 4 bits of segment, but that's not the
way Intel set up the segment:offset addressing scheme.    I might add that
there's some justification for using segments and offsets.    The
segment:offset approach is a reasonable compromise between the needs to
use memory efficiently and keep chip costs down that predominated in the
late 1970s and the need to use an architecture that could stretch to
accommodate the far more sophisticated memory demands of the 8088's
successors.    The 80286 uses an extension of the segment:offset approach to
address 16 Mb of memory in a fully protected multitasking environment, and
the 80386 goes far beyond that, as we'll see in Chapter 15.

Anyway, although we only need 4 bits of segment, we get 16 bits,
and none of them are ignored by the 8088.    20-bit addresses are formed
from segment:offset pairs by shifting the segment 4 bits to the left and
adding it to the offset, as shown in Figure 7-1.

I'd like to take a moment to note that for the remainder of this
book, I'll use light lines to signify memory addressing in figures and heavy
lines to show data movement, as illustrated by Figure 7-1.    In the future, I'll
show segment:offset memory addressing by simply joining the lines from the
segment register and any registers and/or displacements (fixed values) used
to generate an offset, as in Figure 7-7, avoiding the shift-and-add

Abrash/Zen:    Chapter 7/

complications of Figure 7-1a; the 4-bit left shift of the segment and the
addition to the offset to generate a 20-bit memory address, which occurs
whenever a segment:offset address is used, is implied.    Also, when the
segment isn't germane to the discussion at hand, I may omit it and show
only the offset component or components, as in Figure 7-4; although unseen,
the segment is implied, since one segment register must participate in
forming virtually every 20-bit memory address, as we'll see shortly.

Figure 7-1 also illustrates another practice I'll follow in figures that
involve memory addressing:    the shading of registers and memory locations
that change value.    This makes it easy to spot the effects of various
operations.    In Figure 7-1, only the contents of AL are altered; consequently,
only AL is shaded.

I'll generally follow the sequence of Figure 7-1--memory address,
memory access, final state of the PC--in memory addressing figures.    While
this detailed, step-by-step approach may seem like a bit of overkill right now,
it will be most useful for illustrating the 8088's more complex instructions,
particularly the string instructions.

Finally, the numbers in Figure 7-1--including both addresses and
data--are in hexadecimal.    Numbers in all figures involving memory
addressing will be in hexadecimal unless otherwise noted.

To continue with our discussion of segment:offset addressing,
shifting a segment value left 4 bits is equivalent to shifting it left 1
hexadecimal digit--one reason that hexadecimal is a useful notation for
memory addresses.    Put another way, if the segment is the hexadecimal

Abrash/Zen:    Chapter 7/

value ssss and the offset is the hexadecimal value xxxx, then the 20-bit
memory address mmmmm is calculated as follows:

ssss0
      +    xxxx

      = mmmmm

For example, the 20-bit memory address corresponding to 23F0:1512 is
25412 (hex) arrived at as follows:

23F00
      +    1512

      = 25412

By the way, it happens that the 8088 isn't particularly fast at
calculating 20-bit addresses from segment:offset pairs. Although it only takes
the 8088's Bus Interface Unit 4 cycles to complete a memory access, the
fastest memory-accessing instruction the PC has to offer (xlat) takes 10
cycles to run. Other memory-accessing instructions take longer, some much
longer.    We'll delve into the implications of the 8088's lack of memory-
access performance shortly.

Several questions should immediately leap into your mind if
you've never encountered segments and offsets before.    Where do these
odd beasts live?    What's to prevent more than one segment:offset pair from
pointing to the same 20-bit address? What happens when the sum of the two

Abrash/Zen:    Chapter 7/

gets too large to fit in 20 bits?
To answer the first question first, segment values reside in the

four segment registers:    CS, DS, ES, and SS.    One (and only one) of these
four registers participates in calculating the address for almost every single
memory access the PC makes. (Interrupts are exceptions to this rule, since
interrupt vectors are read from fixed locations in the first 1 Kb of memory.)
Segments are, practically speaking, part of every memory access your code
will ever make.

CS is always used for code addresses, such as addresses involved
in instruction fetching and branching.    DS is usually used for accessing
memory operands; most instructions can use any segment to access
memory operands, but DS is generally the most efficient register for data
access.    SS is used for maintaining the stack, and is used to access data in
stack frames.    Finally, ES is used to access data anywhere in the 8088's
address space; since it's not dedicated to any other purpose, it's useful for
pointing to rarely-used segments.    ES is particular useful in conjunction with
the string instructions, as we'll see in Chapter 10.    In Chapter 6 we
discussed exactly what sort of memory accesses operate relative to each
segment register by default; we'll continue that discussion later in this
chapter, and look at ways to override the default segment selections in some
cases.

Offsets are not so simple as segments.    The 8088 can calculate
offsets in a number of different ways, depending on the addressing mode
being used.    Both registers and instructions can contain offsets, and

Abrash/Zen:    Chapter 7/

registers and/or constant values can be added together on the fly by the
8088 in order to calculate offsets.    In various addressing modes,
components of offsets may reside in BX, BP, SI, DI, SP, and AL, and offset
components can be built into instructions as well.

We'll discuss the loading and use of the segment registers and
the calculation and use of offsets below.    First, though, let's answer our two
remaining questions.

SEGMENT:OFFSET PAIRS AREN'T UNIQUE

In answer to question number two, "What's to prevent more than
one segment:offset pair from pointing to the same 20-bit address?" the
answer is:    nothing.    There's no rule that says two segment:offset pairs
can't point to the same address, and in fact many segment:offset pairs do
evaluate to any given address--4096 segment:offset pairs for every address,
to be precise.    For example, the following segment:offset pairs all point to
the 20- bit address 00410:    0000:0410, 0001:0400, 0002:03F0, 0003:03E0,
and so on up to 0041:0000.

You may have noticed that we've only accounted for 42h
segment:offset pairs, not 4096 of them, and that leads in neatly to the
answer to our third and final question.    When the sum of a segment shifted
left 4 bits and an offset exceeds 20 bits, it wraps back around to address
00000.    Basically, any bits that carry out of bit 19 (into what would be bit 20
if the 8088 had 21 addressing bits) are thrown away.    The segment:offset
pair FFFF:0010 points to the address 00000 as follows:

Abrash/Zen:    Chapter 7/

FFFF0
      +    0010

        100000
        ^
    carry

with the 1 that carries out of bit 19 discarded to leave 00000.
Now we can see what the other 4,000-odd segment:offset pairs

that point to address 00410 are.    FFFF:0420 points to 00410, as do
FFFE:0430, F042:FFF0, and a host of segment:offset pairs in between.    I
doubt you'll want to take advantage of that knowledge (in fact, there is a
user-selectable trick that can be played on the 80286 and 80386 to disable
wrapping at FFFFF, so you shouldn't count on wrapping if you can help it),
but if you do ever happen to address past the end of memory, that's how it
works on the 8088.

GOOD NEWS AND BAD NEWS

Now that we know how segments and offsets work, what are the
implications for assembler programs?    The obvious implication is that we
can address 1 Mb of memory, and that's good news, since we can use
memory in myriad ways to improve performance.    For example, we'll see
how look-up tables can turn extra memory into improved performance later
in this chapter.    Likewise, in Chapter 13 we'll see how in-line code lets you
trade off bytes for performance.    Much of top-notch assembler programming
involves balancing memory requirements against performance, so the more

Abrash/Zen:    Chapter 7/

memory we have available, the merrier.
The bad news is this:    while there's a lot of memory, it's only

available in 64 Kb chunks.    The four segment registers can only point to four
64 Kb segments at any one time, as shown in Figure 7-2.    If you want to
access a memory location that's not in any of the four currently pointed-to
segments, there is no way to do that with a single instruction.    You must first
load a segment register to point to a segment containing the desired
memory location, a process which takes a minimum of 1 and often 2
instructions.    Only then can you access the desired memory location.

Worse, there are problems dealing with blocks of memory larger
than 64 Kb, because there's no easy way to perform calculations involving
full 20-bit addresses, and because 64 Kb is the largest block of memory that
can be addressed by way of a single segment register without reloading the
segment register. It's easy enough to access a block up to 64 Kb in size;
point a register to the start of the block, and then point wherever you wish.
For example, the following bit of code would calculate the 16-bit sum of all
the bytes in a 64 Kb array:

mov bx,seg TestArray
mov ds,bx ;point to segment:offset of start of
mov bx,offset TestArray ;array to sum
sub cx,cx ;count 64 K bytes
mov ax,cx ;set initial sum to 0
mov dh,ah ;set DH to 0 for summing later

SumLoop:
mov dl,[bx] ;get the next array element
add ax,dx ;add the array element to the sum
inc bx ;point to the next array element
loop SumLoop

Abrash/Zen:    Chapter 7/

Easy enough, eh?    Ah, but it all falls apart when a block of
memory is larger than 64 Kb, or when a block crosses a segment boundary.
The problem is that in either of those cases the segment must change as
well as the offset, for there's simply no way for an offset to reach more than
64 K bytes away from any given segment register setting.    If a register
containing an offset reaches the end of a segment (reaches the value
0FFFFh), then it simply wraps back to zero when it's incremented. Likewise,
the instruction sequence:

mov si,0ffffh
mov al,[si+1]

merely manages to load AL with the contents of offset 0. Basically, whenever
an offset exceeds 16 bits in size, the excess bits are ignored, just as the
excess bits are ignored when a segment:offset pair adds up to an address
past the 1 Mb overall limit on 8088 memory.

So we need to work with the whole segment:offset pair in order to
handle blocks larger than 64 Kb.    Is that such a problem?    Unfortunately,
the answer is yes.    The 8088 has no particular aptitude for calculations
involving more than 16 bits, and is very bad at handling segments.    There's
no way to increment a segment:offset pair as a unit, and in fact there's no
way to modify a segment register other than copying it to a general-purpose
register, modifying that register, and copying the result back to the segment
register.    All in all, it's as difficult to work with blocks of memory larger than
64 Kb as it is easy to work with blocks no larger than 64 Kb.

Abrash/Zen:    Chapter 7/

For example, here's typical code to calculate the 16-bit sum of a
128 Kb array, of the sort that a high-level language might generate (actually,
the following code is a good deal better than most high-level languages
would generate, but what the heck, let's give them the benefit of the
doubt!):

mov bx,seg TestArray
mov ds,bx ;point to segment:offset of start of
mov bx,offset TestArray ;array to sum
sub cx,cx ;count 128 K bytes with SI:CX
mov si,2
mov ax,cx ;set initial sum to 0
mov dh,ah ;set DH to 0 for summing later

SumLoop:
mov dl,[bx] ;get the next array element
add ax,dx ;add the array element to the sum
inc bx ;point to the next array element
and bx,0fh ;time to advance the segment?
jnz SumLoopEnd ;not yet
mov di,ds ;advance the segment by 1; since BX has
inc di ; just gone from 15 to 0, we've advanced
mov ds,di ; 1 byte in all

SumLoopEnd:
loop SumLoop ;count down 32-bit counter
dec si
jnz SumLoop

MORE GOOD NEWS

While the above is undeniably a mess, things are not quite so
grim as they might seem.    In fact, the news is quite good when it comes to
handling multiple segments in assembler.    For one thing, assembler is much
better than other languages at handling segments efficiently.    Only in
assembler do you have complete control over all your segments; that means
that you can switch the segments as needed in order to make sure that they
are pointing to the data you're currently interested in.    What's more, in
assembler you can structure your code and data so that it falls naturally into
64 Kb blocks, allowing most of your accesses at any one time to fall within

Abrash/Zen:    Chapter 7/

the currently loaded segments.
In high-level languages you almost always suffer both

considerable performance loss and significant increase in code size when you
start using multiple code or data segments, but in assembler it's possible to
maintain near-peak performance even with many segments.    In fact,
segment-handling is one area in which assembler truly distinguishes itself,
and we'll see examples of assembler's fine touch with segments in this
chapter, Chapter 14, and Volume II of The Zen of Assembly Language.

There's one more reason that handling multiple code or data
segments isn't much of a problem in assembler, and that's that the
assembler programmer knows exactly what his code needs to do and can
optimize accordingly.    For example, suppose that we know that the array
TestArray in the last example is guaranteed to start at offset 0 in the initial
data segment.    Given that extra knowledge, we can put together the
following version of the above code to sum a 128 Kb array:

mov bx,seg TestArray
mov ds,bx ;point to segment:offset of start of
sub bx,bx ;array to sum, which we know starts

; at offset 0
mov cx,2 ;count two 64 Kb blocks
sub ax,ax ;set initial sum to 0
mov dh,ah ;set DH to 0 for summing later

SumLoop:
mov dl,[bx] ;get the next array element
add ax,dx ;add the array element to the sum
inc bx ;point to the next array element
jnz SumLoop ;until we wrap at the end of a 64 Kb block
mov si,ds
add si,1000h ;advance the segment by 64 K bytes
mov ds,si
loop SumLoop ;count off this 64 Kb block

Compare the code within the inner loop above to that in the inner

Abrash/Zen:    Chapter 7/

loop of the previous version of this example--the difference is striking.    This
inner loop is every bit as tight as that of the code for handling blocks 64 Kb-
and-less in size; in fact, it's slightly tighter, as jnz is faster than loop.
Consequently, there shouldn't be much difference in performance between
the last example and the 64 Kb and less version. Nonetheless, a basic rule of
the Zen of assembler is that we should check our assumptions, so let's toss
the three approaches to summing arrays into the Zen timer and see what
comes out.

Listing 7-1 measures the time required to calculate the 16- bit
sum of a 64 Kb block without worrying about segments.    This code runs in
619 ms, or 9.4 us per byte summed.    (Note that Listings 7-1 through 7-3
must be timed with the long-period Zen timer--via LZTIME.BAT--since they
take more than 54 ms to run.)

Listing 7-2 measures the time required to calculate the 16- bit
sum of a 128 Kb block.    As is always the case with a memory block larger
than 64 Kb, segments must be dealt with, and that shows in the performance
of Listing 7-2:    2044 ms, or 15.6 us per byte summed.    In other words,
Listing 7-1, which doesn't concern itself with segments, sums bytes 66%
faster than Listing 7-2.

Finally, Listing 7-3 implements 128 Kb-block-handling code that
takes advantage of the knowledge that the block of memory being summed
starts at offset 0 in the initial data segment. We've speculated that Listing 7-
3 should perform on a par with Listing 7-3, since their inner loops are
similar...and the Zen timer bears that out, reporting that Listing 7-3 runs in

Abrash/Zen:    Chapter 7/

1239 ms--9.5 us per byte summed.
Assumptions confirmed.

NOTES ON OPTIMIZATION

There are several points to be made about Listings 7-1 through 7-
3.    First, these listings graphically illustrate that you should focus your
optimization efforts on inner loops. Listing 7-3 is considerably bigger and
more complex than Listing 7-1, but by moving the complexity and extra
bytes out of the inner loop, we've managed to keep performance high in
Listing 7- 3.

Now, you may well object that in the process of improving the
performance of Listing 7-3, we've altered the code so that it will only work
under certain circumstances, and that's my second point.    Truly general-
purpose code runs slowly, no matter whether it's written in assembler, C,
BASIC, or COBOL.    Your advantage as a programmer--and your great
advantage as an assembler programmer--is that you know exactly what your
code needs to do...so why write code that wastes cycles and bytes doing
extra work?    I stipulated that the start offset was at 0 in the initial data
segment, and Listing 7-3 is a response to that stipulation. If the conditions to
be met had been different, then we would have come up with a different
solution.

Do you see what I'm driving at?    I hope so, for it's central to the
Zen of assembler.    A key to good assembler code is to write lean code.    Your
code should do everything you need done-- and nothing more.

Abrash/Zen:    Chapter 7/

I'll finish up by pointing out that Listings 7-1 through 7-3 are
excellent examples of both the hazards of using memory blocks larger than
64 Kb and of the virtues of using assembler when you must deal with large
blocks.    It's rare that you'll be able to handle larger-than-64 Kb blocks as
efficiently as blocks that fit within a single segment; Listing 7-3 does take
advantage of a very convenient special case.    However, it's equally rare that
you won't be able to handle large blocks much more efficiently in assembler
than you ever could in a high-level language.

A FINAL WORD ON SEGMENT:OFFSET ADDRESSING

Let's review what we've learned about segment:offset addressing
and assembler.    The architecture of the 8088 limits us to addressing at most
four segments--64 Kb blocks of memory--at any time, with each segment
pointed to by a different segment register.    Accessing data in a segment that
is not currently pointed to by any segment register is a time-consuming,
awkward process, as is handling data that spans multiple blocks. Fortunately,
assembler is adept at handling segments, and gives us considerable freedom
to structure our programs so that we're usually working within the currently
loaded segments at any one time.

On balance, segment:offset addressing is one of the less
attractive features of the 8088.    For us, however, it's actually an advantage,
since it allows assembler, with its superb control over the 8088, to far
outstrip high-level languages.    We won't deal with segments a great deal in
the remainder of this volume, since we'll be focusing on detailed

Abrash/Zen:    Chapter 7/

optimizations, but the topic will come up from time to time.    In Volume II,
we'll tackle the subject of segment management in a big way.

The remainder of this chapter will deal only with data
addressing--that is, the addressing of instruction operands. Code
addressing--in the forms of instruction fetching and branching--is a very real
part of PC performance (heck, instruction fetching is perhaps the single most
important performance factor of all!), but it's also very different from the sort
of memory addressing we'll be discussing.    We learned as much as we'll
ever need to know (and possibly more) about instruction fetching back in
Chapters 4 and 5, so we won't pursue that aspect of code addressing any
further.    However, Chapters 12 through 14 discuss code addressing as it
relates to branching in considerable detail.

SEGMENT HANDLING

Now that we know what segments are, let's look at ways to
handle the segment registers, in particular how to load them quickly.    What
we are not going to do is discuss the directives that let you create segments
and the storage locations within them.

Why not discuss the segment directives?    For one thing, there
are enough directives, segment and otherwise, to fill a book by themselves.
For another thing, there are already several such books, including both the
manuals that come with MASM and TASM and the other books in this series.
The Zen of Assembly Language is about writing efficient code, not using
MASM, so I'll assume you already know how to use the segment, ends, and

Abrash/Zen:    Chapter 7/

assume directives to define segments and db, dw, and the like to create
and reserve storage.    If that's not the case, brush up before you continue
reading.    We'll use all of the above directives in The Zen of Assembly
Language, and we'll discuss assume at some length later in this chapter, but
we won't spend time covering the basic functionality of the segment and
data directives.

WHAT CAN YOU DO WITH SEGMENT REGISTERS?    NOT MUCH

Segment registers are by no means as flexible as general-
purpose registers.    What can't you do with segment registers that you can
do with general-purpose registers?    Let me answer that question by way of a
story.

There's a peculiar sort of "find the mistake" puzzle that's standard
fare in children's magazines.    Such puzzles typically consist of a drawing
with a few intentional mistakes (a farmer milking a donkey, for example--a
risky proposition at best), captioned, "What's wrong with this picture?"
Invariably, the answer is printed upside down at the bottom of the page.

I dimly recall from my childhood a takeoff that MAD magazine did
on those puzzles.    MAD showed a picture in which everything-and I do mean
everything--was wrong.    Just as with the real McCoy, this picture was
accompanied by the caption, "What's wrong with this picture?", and by the
answer at the bottom of the page.

In MAD, the answer was:    "Better yet, what's right with this
picture?"

Abrash/Zen:    Chapter 7/

Segment registers are sort of like MAD's puzzles.    What can't you
do with segment registers?    Better yet, what can you do with segment
registers?    Well, you can use them to address memory--and that's about it.

Any segment register can be copied to a general-purpose register
or memory location.    Any segment register other than CS can be loaded
from a general-purpose register or memory location. Any segment register
can be pushed onto the stack, and any segment register but CS can be
popped from the stack.

And that's all.
Segment registers can't be used for arithmetic.    They can't be

operands to logical instructions, and they can't take part in comparisons.
One segment register can't even be copied directly to another segment
register.    Basically, segment registers can't do a blessed thing except get
loaded and get copied to a register or memory.

Now, there are reasons why segments are so hard to work with.
For one thing, it's not all that important that segment registers be
manipulated quickly.    Segment registers aren't changed as often as general-
purpose registers--at least, they shouldn't be, if you're interested in decent
performance. Segment registers rarely need to be manipulated arithmetically
or logically, and when the need does arise, they can always be copied to
general-purpose registers and manipulated there. Nonetheless, greater
flexibility in handling segment registers would be nice; however, a major
expansion of the 8088's instruction set--requiring additional circuitry inside
the 8088-- would have been required in order to allow us to handle segment

Abrash/Zen:    Chapter 7/

registers like general-purpose registers, and it seems likely that the 8088's
designers had other, higher-priority uses for their limited chip space.

There's another reason why segments can only be loaded and
copied, nothing else, and it has to do with the protected mode of the 80286
and 80386 processors.    Protected mode, which we'll return to at a bit more
length in Chapter 15, is a second mode of the 80286 and 80386 that's not
compatible with either MS-DOS or the 8088, but which makes much more
memory available for program use than the familiar 1 Mb of MS-DOS/8088-
compatible real mode.

In protected mode, the segment registers don't contain memory
addresses; instead, they contain segment selectors, which the 80286 and
80386 use to look up the actual segment information--location and attributes
such as writability--in a table.    Not only would it make no sense to perform
arithmetic and the like on segment selectors, since selectors don't
correspond directly to memory addresses, but because the segment
registers are central to the memory protection scheme of the 80286 and
80386, they simply cannot be loaded arbitrarily--the 80286 and 80386
literally don't allow that to happen by instantly causing a trap whenever an
invalid selector is loaded.

What's more, it can take quite a while to load a segment register
in protected mode.    In real mode, moves to and from segment registers are
just as fast as transfers involving general-purpose registers, but that's not
the case in protected mode.    For example, mov es,ax takes 2 cycles in real
mode and 17 cycles in protected mode.

Abrash/Zen:    Chapter 7/

Given all of the above, all you'd generally want to do in protected
mode is load the segment registers with known-good segment selectors
provided to you by the operating system.    That doesn't affect real mode,
which is all we care about, but since real mode and protected mode share
most instructions, the segment-register philosophy of protected mode (which
Intel no doubt had as a long-range goal even before they designed the 8088)
carries over to real mode.

And now you know why the 8088 offers so little in the way of
segment-register manipulation capability.

USING SEGMENT REGISTERS FOR TEMPORARY STORAGE

That brings us to another interesting point:    the use of segment
registers for temporary storage.    The 8088 has just 7 available general-
purpose registers (remember, we can't use SP for anything but the stack
most of the time), and sometimes it would be awfully handy to have
somewhere to store a 16-bit value for a little while.    Can we use the
segment registers for that purpose?

Some people would answer that "No," because code that uses
segments for temporary storage can't easily be ported to protected mode.    I
don't buy that, for reasons I'll explain when we get to les.    My answer is
"Yes...when they're available."    Two of the segment registers are never
available, one is occasionally available, and one may or may not be readily
available, depending on your code.

Some segments are always in use.    CS is always busy pointing to

Abrash/Zen:    Chapter 7/

the segment of the next instruction to be executed; if you were to load CS
with an arbitrary value for even 1 instruction, your program would surely
crash.    Clearly, it's not a good idea to use CS for temporary storage.
(Actually, this isn't even a potential problem, as Intel has thoughtfully not
implemented the instructions--mov and pop--that might load CS directly;
MASM will simply generate an error if you try to assemble pop cs or mov cs,

[mem16].    CS can only be loaded by far branches:    far calls, far returns, far
jumps, and interrupts.)

SS isn't in use during every cycle as CS is, but unless interrupts
are off, SS might be used on any cycle.    Even if interrupts are off, non-
maskable interrupts can occur, and of course your code will often use the
stack directly.    The risks are too great, the rewards too few.    Don't use SS
for temporary storage.

DS can be used for temporary storage whenever it's free.
However, DS is usually used to point to the default data segment. It's rare
that you'll have a tight loop in which memory isn't accessed (it's not worth
bothering with such optimizations outside the tightest, most time-critical
code), and memory is usually most efficiently accessed via DS.    There
certainly are loops in which DS is free--loops which use scas to scan the
segment pointed to by ES, for example--but such cases are few and far
between.    Far more common is the case in which DS is saved and then
pointed to another segment, as follows:

push ds ;preserve normal DS setting

Abrash/Zen:    Chapter 7/

mov bx,seg TestArray
mov ds,bx ;point DS:BX to array in which
mov bx,offset TestArray ; to flip all bits
mov cx,TEST_ARRAY_LENGTH ;# of bytes to flip

FlipLoop:
not byte ptr [bx] ;flip all bits in current byte
inc bx ;point to next byte
loop FlipLoop
pop ds ;restore normal DS setting

This approach allows instructions within the loop to access memory without
the segment override prefix required when ES is used.    (More on segment
override prefixes shortly.)

In short, feel free to use DS for temporary storage if it's free, but
don't expect that to come up too often.

Which brings us to the use of ES for temporary storage.    ES is by
far the best segment register to use for temporary storage; not being
dedicated to any full-time function, it's usually free for any sort of use at all,
including temporary storage.

Let's look at an example of code that uses ES for temporary
storage to good effect.    This sample code sums selected points in a two-
dimensional word-sized array.    Let's start by tallying up the registers this
code will use.    (A bit backwards, true, but we're focusing on the use of ES for
temporary storage at the moment, and this is the best way to go about it.)

In the sample code, the list of subscripts of points to be added in
the major dimension will be stored at DI, and the list of subscripts in the
minor dimension will stored at BX.    CX will contain the number of points to
be summed, and BP will contain the final sum.    AX and DX will be used for
multiplying, and, as usual, SP will be used to point to the stack.    Finally,
when the code begins, SI will contain the offset of the start of the array.

Abrash/Zen:    Chapter 7/

Let's see...that covers all eight general-purpose registers.
Unfortunately, we need yet another storage location, this one to serve as a
working pointer into the array.    There are many possible solutions to this
problem, including using the xchg instruction (which we'll cover in the next
chapter), storing values in memory (slow), pushing and popping SI (also
slow), or disabling interrupts and using SP (can unduly delay interrupts and
carries some risk).    Instead, here's a solution that uses ES for temporary
storage; it's not necessarily the best solution, but it does nicely illustrate the
use of ES for temporary storage:

;
; Sums selected points in a two-dimensional array.
;
; Input:
; BX = list of minor dimension coordinates to sum
; CX = number of points to sum
; DS:SI = start address of array
; DI = list of major dimension coordinates to sum
;
; Output:
; BP = sum of selected points
;
; Registers altered: AX, BX, CX, DX, SI, DI, BP, ES
;

mov es,si ;set aside the array start offset
sub bp,bp ;initialize sum to 0

TwoDimArraySumLoop:
mov ax,ARRAY_WIDTH ;convert the next major dimension
mul word ptr [di] ;coordinate to an offset in the array

; (wipes out DX)
add ax,[bx] ;add in the minor dimension coordinate
shl ax,1 ;make it a word-sized lookup
mov si,es ;point to the start of the array
add si,ax ;point to the desired data point
add bp,[si] ;add it to the total
inc di ;point to the next major dimension coordinate
inc di
inc bx ;point to the next minor dimension coordinate
inc bx
loop TwoDimArraySumLoop

If you find yourself running out of registers in a tight loop and
you're not using the segment pointed to by ES, by all means reload one of

Abrash/Zen:    Chapter 7/

your registers from ES if that will help.

SETTING AND COPYING SEGMENT REGISTERS

As I've said, loading segment registers is one area in which
assembler has a tremendous advantage over high-level languages. High-
level languages tend to use DS to point to a default data segment all the
time, loading ES every single time any other segment is accessed.    In
assembler, we can either load a new segment into DS as needed, or we can
load ES and leave it loaded for as long as we need to access a given
segment.

We'll see examples of efficient segment use throughout The Zen
of Assembly Language, especially when we discuss strings, so I'm not going
to go into more detail here.    What I am going to do is discuss the process of
loading segment registers, because it is by no means obvious what the most
efficient segment-loading mechanism is.

For starters, let's divide segment loading into two categories:
setting and copying.    Segment setting refers to loading a segment register
to point to a certain segment, while segment copying refers to loading a
segment register with the contents of another segment register.    I'm making
this distinction because the instruction sequences used for the two sorts of
segment loading differ considerably.

Let's tackle segment copying first.    Segment copying is useful
when you want two segment registers to point to the same segment.    For
example, you'll want ES to point to the same segment as DS if you're using

Abrash/Zen:    Chapter 7/

rep movs to copy data within the segment pointed to by DS, because DS
and ES are the default source and destination segments, respectively, for
movs.    There are two good ways to load ES to point to the same segment as
DS, given that we can't copy one segment register directly to another
segment register:

push ds
pop es

and:

mov ax,ds
mov es,ax

(Any general-purpose register would serve as well as AX.)
Each of the above approaches has its virtues.    The push/pop

approach is extremely compact, at just 2 bytes, and affects no other
registers.    Unfortunately, it takes a less-than-snappy 27 cycles to run.    By
contrast, the mov/mov approach officially takes just 4 cycles to run; 16
cycles (4 bytes at 4 cycles to fetch each byte) is a more realistic figure, but
either way, mov/mov is clearly faster than push/pop.    On the other hand,
mov/mov takes twice as many bytes as push/pop, and destroys the
contents of a general-purpose register as well.

There's no clear winner here.    Use the mov/mov approach to
copy segment registers when you're interested in speed and can spare a
general-purpose register, and use the push/pop approach when bytes

Abrash/Zen:    Chapter 7/

and/or registers are at a premium.    I'll use both approaches in this book,
generally using push/pop in non-time- critical code and mov/mov when
speed really counts.    Why waste the bytes when the cycles don't matter?

That brings us to an important point about assembler
programming.    There is rarely such a beast as the "best code" in assembler;
instead, there's code that's good in a given context. In any situation, the
choice between fast code, small code, understandable code, portable code,
maintainable code, structured code, and whatever other sort of code you can
dream up is purely up to you.    If you make the right decisions, your code will
beat high-level language code hands down, because you know more about
your code and can think far more flexibly than any high-level language
possibly can.

Now let's look at ways to set segment registers.    Segment
registers can't be loaded directly with a segment value, but they can be
loaded either through a general-purpose register or from memory.    The two
approaches aren't always interchangeable:    one requires that the segment
name be available as an immediate operand, while the other requires that a
memory variable be set to the desired segment value.    Nonetheless, you
can generally set things up so that either approach can be used, if you really
want to--so which is best?

Well, loading a segment register through a general-purpose
register, as in:

mov ax,DATA

Abrash/Zen:    Chapter 7/

mov es,ax

officially takes 6 cycles.      Since the two instructions together are 5 bytes
long, however, this approach could take as much a 20 cycles if the prefetch
queue is empty.    By contrast, loading from memory, as in:

mov es,[DataSeg]

officially takes only 18 cycles, is only 4 bytes long, and doesn't destroy a
general-purpose register.    (Note that the last approach assumes that the
memory variable DataSeg has previously been set to point to the desired
segment.)    Loading from memory sounds better, doesn't it?

It isn't.
Remember, it's not just the number of instruction byte fetches

that affects performance--it's the number of memory accesses of all sorts.
When a segment register is loaded from memory, 2 memory accesses are
performed to read the segment value; together with the 4 instruction bytes,
that means that 6 memory accesses in all are performed when a segment
register is loaded from memory.    What that means is that loading a segment
register from memory takes anywhere from 18 to 24 (6 memory accesses at
4 cycles per access) cycles, which stacks up poorly against the 6 to 20 cycles
required to load a segment register through a general-purpose register.

In short, it's clearly fastest to load segment registers through
general-purpose registers.

Abrash/Zen:    Chapter 7/

That's not to say that there aren't times when you'll want to load
a segment register directly from memory.    If you're really tight on space, you
can save a byte every time you load a segment by using the 4-byte load
from memory rather than the 5- byte load through a general-purpose
register.    (This is only worthwhile if there are multiple segment load
instructions, since the memory variable containing the segment address
takes 2 bytes.)    Also, if the segment you want to work with varies as your
program runs (for example, if your code can access either display memory or
a display buffer in system RAM), then loading the segment register from
memory is the way to go.    The following code is clearly the best way to load
ES to point to a display buffer that may be at any of several segments:

mov es,[DisplayBufferSegment]

Here, DisplayBufferSegment is set externally to point to the segment in
which all screen drawing should be performed at any given time.

Finally, segments are often passed as stack frame parameters
from high-level languages to assembler subroutines--to point to far data
buffers and the like--and in those cases segments can best be loaded directly
from stack frames into segment registers. (We'll discuss stack frames later in
this chapter.)    It's easy to forget that segments can be loaded directly from
any addressable memory location, as we'll see in Chapter 16; all too many
people load segments from stack frames like this:

Abrash/Zen:    Chapter 7/

mov ax,[bp+BufferSegment]
mov es,ax

when the following is shorter, faster, and doesn't use any general-purpose
registers:

mov es,[bp+BufferSegment]

As it happens, though, lone segment values are rarely passed as
stack frame parameters.    Instead, segment:offset pairs that provide a full
20-bit pointer to a specific data element are usually passed.    These can be
loaded as follows:

mov es,[bp+BufferSegment]
mov di,[bp+BufferOffset]

However, the designers of the 8088 anticipated the need for loading 20-bit
pointers, and gave us two most useful instructions for just that purpose:    lds

and les.

LOADING 20-BIT POINTERS WITH lds AND les

lds loads both DS and any one general-purpose register from a
doubleword of memory, and les similarly loads both ES and a general-
purpose register, as shown in Figure 7-3.

Abrash/Zen:    Chapter 7/

While both instructions are useful, les is by far the more
commonly used of the two.    Since most programs leave DS pointing to the
default data segment whenever possible, it's rare that we'd want to load DS
as part of a segment:offset pointer.    True, it does happen, but generally only
when we want to point to a block of far memory temporarily for faster
processing in a tight loop.

ES, on the other hand, is the segment of choice when a
segment:offset pointer is needed, since it's not generally reserved for any
other purpose.    Consequently, les is usually used to load segment:offset
pointers.

lds and les actually don't come in for all that much use in pure
assembler programs.    The reason for that is that efficient assembler
programs tend to be organized so that segments rarely need to be changed,
and so such programs tend to work with 16-bit pointers most of the time.
After all, while lds and les are efficient considering all they do, they're still
slow, with official execution times of at least 29 cycles.    If you need to load
segment:offset pointers, use lds and les, but try to load just offsets
whenever you can.

One place where there's no way to avoid loading segments is in
assembler code that's called from a high-level language, especially when the
large data model (the model that supports more than 64 Kb of data) is used.
When a high-level language passes a far pointer as a parameter to an
assembler subroutine, the full 20-bit pointer must be loaded from memory
before it can be used, and there lds and les work beautifully.

Abrash/Zen:    Chapter 7/

Suppose that we have a C statement that calls the assembler
subroutine AddTwoFarInts as follows:

int Sum;
int far *FarPtr1, far *FarPtr2;
:

Sum = AddTwoFarInts(FarPtr1, FarPtr2);

AddTwoFarInts could be written without les as follows:

Parms struc
dw ? ;pushed BP
dw ? ;return address

Ptr1Offset dw ?
Ptr1Segment dw ?
Ptr2Offset dw ?
Ptr2Segment dw ?
Parms ends
;
AddTwoFarInts proc near

push bp ;save caller's BP
mov bp,sp ;point to stack frame
mov es,[Ptr1Segment] ;load segment part of Ptr1
mov bx,[Ptr1Offset] ;load offset part of Ptr1
mov ax,es:[bx] ;get first int to add
mov es,[Ptr2Segment] ;load segment part of Ptr2
mov bx,[Ptr2Offset] ;load offset part of Ptr2
add ax,es:[bx] ;add the two ints together
pop bp ;restore caller's BP
ret

AddTwoFarInts endp

The subroutine is considerably more efficient when les is used, however:

Parms struc
dw ? ;pushed BP
dw ? ;return address

Ptr1 dd ?
Ptr2 dd ?
Parms ends
;
AddTwoFarInts proc near

push bp ;save caller's BP
mov bp,sp ;point to stack frame
les bx,[Ptr1] ;load both segment and offset of Ptr1
mov ax,es:[bx] ;get first int to add

Abrash/Zen:    Chapter 7/

les bx,[Ptr2] ;load both segment and offset of Ptr2
add ax,es:[bx] ;add the two ints together
pop bp ;restore caller's BP
ret

AddTwoFarInts endp

(We'll talk about struc, stack frames, and segment overrides-- such as es:--
later in this chapter.)

High-level languages use les all the time to point to data that's
not in the default data segment, and that hurts performance significantly.
Most high-level languages aren't very smart about using les, either.    For
example, high-level languages tend to load a full 20-bit pointer into ES:BX
every time through a loop, even though ES never gets changed from the last
pass through the loop.    That's one reason why high-level languages don't
perform very well with more than 64 Kb of data.

You can usually easily avoid les-related performance problems in
assembler.    Consider Listing 7-4, which adds one far array to another far
array in the same way that most high-level languages would, storing both far
pointers in memory variables and loading each pointer with les every time
it's used. (Actually, Listing 7-4 is better than your average high-level
language subroutine because it uses loop, while most high-level languages
use less efficient instruction sequences to handle looping.)    Listing 7-4 runs
in 43.42 ms, or 43 us per array element addition.

Now look at Listing 7-5, which does exactly the same thing that
Listing 7-4 does...except that it loads the far pointers outside the loop and
keeps them in the registers for the duration of the loop, using the segment-
loading techniques that we learned earlier in this chapter.    How much

Abrash/Zen:    Chapter 7/

difference does it make to keep the far pointers in registers at all times?
Listing 7-5 runs in 19.69 ms--more than twice as fast as Listing 7-4.

Now you know why I keep saying that assembler can handle
segments much better than high-level languages can.    Listing 7-5 isn't the
ultimate in that regard, however; we can carry that concept a step further
still, as shown in Listing 7-6.

Listing 7-6 brings the full power of assembler to bear on the task
of adding two arrays.    Listing 7-6 sets up the segments so that they never
once need to be loaded within the loop. What's more, Listing 7-6 arranges
the registers so that the powerful lodsb string instruction can be used in
place of a mov and an inc.    (We'll discuss the string instructions in Chapter
10.    For now, just take my word that the string instructions are good stuff.)
In short, Listing 7-6 organizes segment and register usage so that as much
work as possible is moved out of the loop, and so that the most efficient
instructions can be used. The results are stunning.

Listing 7-6 runs in just 13.79 ms, more than three times as fast as
Listing 7-4, even though Listing 7-4 uses the efficient loop and les

instructions.    This example is a powerful reminder of two important aspects
of the Zen of assembler.    First, you must strive to play to the strengths of
the 8088 (such as the string instructions) while sidestepping its weaknesses
(such as the segments and slow memory access speed).    Second, you must
always concentrate on moving cycles out of loops.    The lds and les

instructions outside the loop in Listing 7-6 effectively run 1000 times faster
than the les instructions inside the loop in Listing 7-4, since the latter are

Abrash/Zen:    Chapter 7/

executed 1000 times but the former are executed only once.

LOADING DOUBLEWORDS WITH les

While les isn't often used to load segment:offset pointers in pure
assembler programs, it has another less obvious use: loading doubleword
values into the general-purpose registers.

Normally, a doubleword value is loaded into two general- purpose
registers with two instructions.    Here's the standard way to load DX:AX from
the doubleword memory variable DVar:

mov ax,word ptr [DVar]
mov dx,word ptr [DVar+2]

There's nothing wrong with this approach, but it does take between 4 and 8
bytes and between 34 and 48 cycles.    We can cut the time nearly in half,
and can usually reduce the size as well, by using les in a most unusual way:

les ax,[DVar]
mov dx,es

The only disadvantage of using les to load doubleword values is that it wipes
out the contents of ES; if that isn't a problem, there's simply no reason to
load doubleword values any other way.

Once again, there are those people who will tell you that it's a
bad idea to load ES with anything but specific segment values, because such

Abrash/Zen:    Chapter 7/

code won't work if you port it to run in protected mode on the 80286 and
80836.    While that's a consideration, it's not an overwhelming one.    For one
thing, most code will never be ported to protected mode.    For another,
protected mode programming, which we'll touch on in Chapter 15, differs
from normal 8088 assembler programming in a number of ways; using les to
load doubleword values is unlikely to be the most difficult part of porting
code to protected mode, especially if you have to rewrite the code to run
under a new operating system.    Still, if protected mode concerns you, use a
macro such as:

LOAD_32_BITS macro Address
ifdef PROTECTED_MODE

mov ax,word ptr [Address]
mov dx,word ptr [Address+2]

else
les ax,dword ptr [Address]
mov dx,ax

endif
endm
:

LOAD_32_BITS DwordVar

to load 32-bit values.
The les approach to loading doubleword values is not only fast

but has a unique virtue:    it's indivisible.    In other words, there's no way an
interrupt can occur after the lower word of a doubleword is read but before
the upper word is read.    For example, suppose we want to read the timer
count the BIOS maintains at 0000:046C.    We could read the count like this:

sub ax,ax
mov es,ax
mov ax,es:[46ch]
mov dx,es:[46eh]

Abrash/Zen:    Chapter 7/

There's a problem with this code, though.    Every 54.9 ms, the
timer generates an interrupt which starts the BIOS timer tick handler.    The
BIOS handler then increments the timer count.    If an interrupt occurs right
after mov ax,es:[46ch] in the above code--before mov dx,es:[46eh] can
execute--we would read half of the value before it's advanced, and half of the
value after it's advanced.    If this happened as an hour or a day turned over,
we could conceivably read a count that's seriously wrong, with potentially
disastrous implications for any program that relies on precise time
synchronization.    Over time, such a misread of the timer is bound to happen
if we use the above code.

We could solve the problem by disabling interrupts while we read
the count:

sub ax,ax
mov es,ax
cli
mov ax,es:[46ch]
mov dx,es:[46eh]
sti

but there's a better solution.    There's no way les can be interrupted as it
reads a doubleword value, so we'll just load our doubleword thusly:

sub ax,ax
mov es,ax
les ax,es:[46ch]
mov dx,es

Abrash/Zen:    Chapter 7/

This last bit of code is shorter, faster, and uninterruptible--in
short, it's perfect for our needs.    In fact, we could have put les to good use
reading the BIOS timer count in the long-period Zen timer, way back in
Listing 2-5.    Why didn't I use it there?    The truth is that I didn't know about
using les to load doublewords when I wrote the timer (which just goes to
show that there's always more to learn about the 8088).    When I did learn
about loading doublewords with les, it didn't make any sense to tinker with
code that worked perfectly well just to save a few bytes and cycles,
particularly because the timer count load isn't time-critical.

Remember, it's only worth optimizing for speed when the cycles
you save make a significant difference...which usually means inside tight
loops.

SEGMENT:OFFSET AND BYTE ORDERING IN MEMORY

Our discussion of les brings up the topic of how multi-byte values
are stored in memory on the 8088.    That's an interesting topic indeed; on
occasion we'll need to load just the segment part of a 20-bit pointer from
memory, or we'll want to modify only the upper byte of a word variable.    The
answer to our question is simple but by no means obvious:    multi-byte
values are always stored with the least-significant byte at the lowest
address.

For example, when you execute mov ax,[WordVar], AL is loaded
from address WordVar, and AH is loaded from address WordVar+1, as
shown in Figure 7-4.    Put another way, this:

Abrash/Zen:    Chapter 7/

mov ax,[WordVar]

is logically equivalent to this:

mov al,byte ptr [WordVar]
mov ah,byte ptr [WordVar+1]

although the single-instruction version is much faster and smaller.    All word-
sized values (including address displacements, which we'll get to shortly)
follow this least-significant-byte- first memory ordering.

Similarly, segment:offset pointers are stored with the least-
significant byte of the offset at the lowest memory address, the most-
significant byte of the offset next, the least- significant byte of the segment
after that, and the most- significant byte of the segment at the highest
memory address, as shown in Figure 7-5.    This:

les dx,dword ptr [FarPtr]

is logically equivalent to this:

mov dx,word ptr [FarPtr]
mov es,word ptr [FarPtr+2]

which is in turn logically equivalent to this:

Abrash/Zen:    Chapter 7/

mov dl,byte ptr [FarPtr]
mov dh,byte ptr [FarPtr+1]
mov al,byte ptr [FarPtr+2]
mov ah,byte ptr [FarPtr+3]
mov es,ax

This organization applies to all segment:offset values stored in
memory, including return addresses placed on the stack by far calls, far
pointers used by far indirect calls, and interrupt vectors.

There's nothing sacred about having the least-significant byte at
the lowest address; it's just the approach Intel chose. Other processors store
values with most-significant byte at the lowest address, and there's a
sometimes heated debate about which memory organization is better.    That
debate is of no particular interest to us; we'll be using an Intel chip, so we'll
always be using Intel's least-significant-byte-first organization.

So, to load just the segment part of the 20-bit pointer FarPtr,
we'd use:

mov es,word ptr [FarPtr+2]

and to increment only the upper byte of the word variable WordPtr, we'd
use:

inc byte ptr [WordVar+1]

Abrash/Zen:    Chapter 7/

Remember that the least-significant byte of any value (the byte
that's closest to bit 0 when the value is loaded into a register) is always
stored at the lowest memory address, and that offsets are stored at lower
memory addresses than segments, and you'll be set.
LOADING SS

I'd like to take a moment to remind you that SP must be loaded
whenever SS is loaded, and that interrupts should be disabled for the
duration of the load, as we discussed in the last chapter.    It would have been
handy if Intel had given us an lss instruction, but they didn't.    Instead, we'll
load SS and SP with code along the lines of:

cli
mov ss,[NewSS]
mov sp,[NewSP]
sti

EXTRACTING SEGMENT VALUES WITH THE seg DIRECTIVE

Next, we're going to look very quickly at a MASM operator and a
MASM directive.    As I've said, this is not a book about MASM, but these
directives are closely related to the efficient use of segments.

The seg operator returns the segment within which the following
symbol (label or variable name) resides.    In the following code, seg

WordVar returns the segment Data, which is then loaded into ES and used
to assume ES to that segment:

Data segment

Abrash/Zen:    Chapter 7/

WordVar dw 0
Data ends
Code segment

assume cs:Code, es:Nothing
:

mov ax,seg WordVar
mov es,ax
assume es:seg WordVar
:

Code ends

You may well ask why it's worth bothering with seg, when we
could simply have used the segment name Data instead.    The answer is
that you may not know or may not have direct access to the segment name
for variables that are declared in other modules. For example, suppose that
WordVar were external in our last example:

extrn WordVar:word
Code segment

assume cs:Code, es:Nothing
:

mov ax,seg WordVar
mov es,ax
assume es:seg WordVar
:

Code ends

This code still returns the segment of WordVar properly, even though we
don't necessarily have any idea at all as to what the name of that segment
might be.

In short, seg makes it easier to work with multiple segments in
multi-module programs.
JOINING SEGMENTS

Selected assembler modules can share the same code and/or
data segments even when multiple code and data segments are used. In

Abrash/Zen:    Chapter 7/

other words, in assembler you can choose to share segments between
modules or not as you choose, by contrast with high-level languages, which
generally force you to choose between all or no modules sharing segments.
(This is not always the case, however, as we'll see in Chapter 14.)

The mechanism for joining or separating segments is the
segment directive.    If each of two modules has a segment of the same
name, and if those segments are created as public segments (via the public

option to the segment directive), then those segments will be joined into a
single, shared segment.    If the segments are code segments, you can use
near calls (faster and smaller than far calls) between the modules.    If the
segments are data segments, then there's no need for one module to load
segment registers in order to access data in the other module.

All in all, shared segments allow multiple-module programs to
produce code that's as efficient as single-module code, with the segment
registers changed as infrequently as possible.    In the same program in which
multiple modules share a given segment, however, other modules--or even
other parts of the same modules-- may share segments of different names,
or may have segments that are private (unique to that module).    As a result,
assembler programs can strike an effective balance between performance
and available memory:    efficient offset-only addressing most of the time,
along with access to as many segments and as much memory as the PC can
handle on an as-needed basis.

There are many ways to join segments, including grouping them
and declaring them common, and there are many options to the segment

Abrash/Zen:    Chapter 7/

directive.    We need to get on with our discussion of memory addressing, so
we won't cover MASM's segment-related directives further, but I strongly
suggest that you carefully read the discussion of those directives in your
assembler's manual.    In fact, you should make it a point to read your
assembler's manual cover to cover--it may not be the most exciting reading
around, but I guarantee that there are tricks and tips in there that you'll find
nowhere else.

While we won't discuss MASM's segment-related directives again,
we will explore the topic of effective segment use again in Chapter 10 (as it
relates to the string instructions), Chapter 14 (as it relates to branching), and
in Volume II of The Zen of Assembly Language.

SEGMENT OVERRIDE PREFIXES

As we saw in Chapter 6, all memory accesses default to accessing
memory relative to one of the four segment registers. Instructions come from
CS, stack accesses and memory accesses that use BP as a pointer occur
within SS, string instruction accesses via DI are in ES, and everything else is
normally in DS. In some--but by no means all--cases, segments other than
the default segments can be accessed by way of segment override prefixes,
special bytes that can precede--prefix--instructions in order to cause those
instructions to use any one of the four segment registers.

Let's start by listing the types of memory accesses segment
override prefixes can't affect.    Instructions are always fetched from CS;
there's no way to alter that.    The stack pointer is always used as a pointer

Abrash/Zen:    Chapter 7/

into SS, no matter what.    ES is always the segment to which string
instruction accesses via DI go, regardless of segment override prefixes.
Basically, it's accesses to explicitly named memory operands and string
instruction accesses via SI that are affected by segment override prefixes.
(The segment accessed by the unusual xlat instruction, which we'll
encounter later in this chapter, can also be overridden.)

The default segment for a memory operand is overridden by
placing the prefix CS:, DS:, ES:, or SS: on that memory operand. For
example:

sub bx,bx
mov ax,es:[bx]

loads AX with the word at offset 0 in ES, as opposed to:

sub bx,bx
mov ax,[bx]

which loads AX with the word at offset 0 in DS. Segment override prefixes
are handy in a number of situations.    They're good for accessing data out of
CS when you're not sure where DS is pointing, or when DS is temporarily
pointing to some segment that doesn't contain the data you want. (CS is the
one segment upon whose setting you can absolutely rely at any given time,
since you know that if a given instruction is being executed, CS must be
pointing to the segment containing that instruction.    Consequently, CS is a

Abrash/Zen:    Chapter 7/

good place to put jump tables and temporary variables in multi-segment
programs, and is a particularly handy segment in which to stash data in
interrupt handlers, which start up with only CS among the four segment
registers set to a known value.)

In many programs, especially those involving high-level
languages, DS and SS normally point to the same segment, since it's
convenient to have both stack frame variables and static/global variables in
the same segment.    When that's the case, ss: prefixes can be used to point
to data in the default data segment when DS is otherwise occupied.    Even
when SS doesn't point to the default data segment, segment override
prefixes still let you address data on the stack using pointer registers other
than BP.

Segment override prefixes are particularly handy when you need
to access data in two to four segments at once.    Suppose, for example, that
we need to add two far word-sized arrays together and store the resulting
array in the default data segment.    Assuming that SS and DS both point to
the default data segment, segment override prefixes let us keep all our
pointers and counters in the registers as we add the arrays, as follows:

push ds ;save normal DS
les di,[FarPtr2] ;point ES:DI to one source array
mov bx,[DestPtr] ;point SS:BX to the destination array
mov cx,[AddLength] ;array length
lds si,[FarPtr1] ;point DS:SI to the other source array
cld ;make LODSW count up

Add3Loop:
lodsw ;get the next entry from one array
add ax,es:[di] ;add it to the other array
mov ss:[bx],ax ;save the sum in a third array
inc di ;point to the next entries
inc di

Abrash/Zen:    Chapter 7/

inc bx
inc bx
loop Add3Loop
pop ds ;restore normal DS

Had we needed to, we could also have stored data in CS by using cs:.
Handy as segment override prefixes are, you shouldn't use them

too heavily if you can help it.    They're fine for one-shot instructions such as
branching through a jump table in CS or retrieving a byte from the BIOS data
area by way of ES, but they're to be avoided whenever possible inside tight
loops.    The reason:    segment override prefixes officially take 2 cycles to
execute and, since they're 1 byte long, they can actually take up to 4 cycles
to fetch and execute--and 4 cycles is a significant amount of time inside a
tight loop.

Whenever you can, organize your segments outside loops so that
segment override prefixes aren't needed inside loops.    For example,
consider Listing 7-7, which uses a segment override prefix while stripping the
high bit of every byte in an array in the segment addressed via ES.    Listing
7-7 runs in 2.95 ms.

Now consider Listing 7-8, which does the same thing as Listing 7-
7, save that DS is set to match ES outside the loop. Since DS is the default
segment for the memory accesses we perform inside the loop, there's no
longer any need for a segment override prefix...and that one change
improves performance by nearly 14%, reducing total execution time to 2.59
ms.

The lesson is clear:    don't use segment override prefixes in tight
loops unless you have no choice.

Abrash/Zen:    Chapter 7/

assume AND SEGMENT OVERRIDE PREFIXES

Segment override prefixes can find their way into your code even
if you don't put them there, courtesy of the assembler and the assume

directive.    assume tells MASM what segments are currently addressable via
the segment registers.    Whenever MASM doesn't think the default segment
register for a given instruction can reach the desired segment but another
segment register can, MASM sticks in a segment override prefix without
telling you it's doing so.    As a result, your code can get bigger and slower
without you knowing about it.

Take a look at this code:

Code segment
assume cs:code

Start proc far
jmp Skip

ByteVar db 0
Skip:

push cs
pop ds ;set DS to point to the segment Code
inc [ByteVar]
:

Code ends

You know and I know that DS can be used to address ByteVar in the above
code, since the first thing the code does is set DS equal to CS, thereby
loading DS to point to the segment Code. Unfortunately, the assembler does
not know that--the assume directive told it only that CS points to Code, and
assume is all the assembler has to go by.    Given this correct but not
complete information, the assembler concludes that ByteVar must be
addressed via CS and inserts a cs: segment override prefix, so the inc

Abrash/Zen:    Chapter 7/

instruction assembles as if inc cs:[ByteVar] had been used.
The result is a wasted byte and several wasted cycles. Worse yet,

you have no idea that the segment override prefix has been inserted unless
you either generate and examine a listing file or view the assembled code as
it runs in a debugger.    The assembler is just trying to help by taking some of
the burden of segment selection away from you, but the outcome is all too
often code that's invisibly bloated with segment override prefixes.

The solution is simple.    Keep the assembler's segment
assumptions correct at all times by religiously using the assume directive
every time you load a segment.    The above example would have assembled
correctly--without a segment override prefix--if only we had inserted the line:

assume ds:Code

before we had attempted to access ByteVar.

OFFSET HANDLING

At long last, we've completed our discussion of segments. Now
it's time to move on to the other half of the memory- addressing equation:
offsets.

Offsets are handled somewhat differently from segments.
Segments are simply loaded into the segment registers, which are then used
to address memory as half of a segment:offset address. Offsets can also be
loaded into registers and used directly as half of a segment:offset address,

Abrash/Zen:    Chapter 7/

but just as often offsets are built into instructions, and they can also be
calculated on the fly by summing the contents of one or two registers and/or
offsets built into instructions.

At any rate, we'll quickly cover offset loading, and then we'll look
at the many ways to generate offsets for memory addressing.    The offset
portion of memory addressing is one area in which the 8088 is very flexible,
and, as we'll see, there's no one best way to address memory.
LOADING OFFSETS

Offsets are loaded with the offset operator.    offset is analogous
to the seg operator we encountered earlier; the difference, of course, is that
offset extracts the offset of a label or variable name rather than the
segment.    For example:

mov bx,offset WordVar

loads BX with the offset of the variable WordVar.    If some segment register
already points to the segment containing WordVar, then BX can be used to
address memory, as for example in:

mov bx,seg WordVar
mov es,bx
mov bx,offset WordVar
mov ax,es:[bx]

We'll discuss the many ways in which offsets can be used to address memory

Abrash/Zen:    Chapter 7/

next.
Before we get to using offsets to address memory, there are a

couple of points I'd like to make.    The first point is that the lea instruction
can also be used to load offsets into registers; however, an understanding of
lea requires an understanding of the 8088's addressing modes, so we'll defer
the discussion of lea until later in this chapter.

The second point is a shortcoming of MASM that you must be
aware of when you use offset on variables that reside in segment groups.    If
you are using the group directive to make segment groups, you must always
specify the group name as well as the variable name when you use the offset
operator.    For example, if the segment _DATA is in the group DGROUP, and
WordVar is in _DATA, you must load the offset of WordVar as follows:

mov di,offset DGROUP:WordVar

If you don't specify the group name, as in:

mov di,offset WordVar

the offset of WordVar relative to _DATA rather than DGROUP is loaded;
given the way segment groups are organized (with all segments in the group
addressed in a single combined segment), an offset relative to _DATA may
not work at all.

Abrash/Zen:    Chapter 7/

I realize that the above discussion won't make much sense if you
haven't encountered the group directive (lucky you!).    I've never found
segment groups to be necessary in pure assembler code, but they are often
needed when sharing segments between high-level language code and
assembler.    If you do find yourself using segment groups, all you need to
remember is this:    when loading the offset of a variable that resides within a
segment group with the offset operator, always specify the group name
along with the variable name.
mod-reg-rm ADDRESSING

There are a number of ways in which the offset of an instruction
operand can be specified.    Collectively, the ways of specifying operand
offsets are known as addressing modes.    Most of the 8088's addressing
modes fall into a category known as mod - reg-rm addressing modes.    We're
going to discuss mod-reg-rm addressing modes next; later in the chapter
we'll discuss non- mod-reg-rm addressing modes.

mod-reg-rm addressing modes are so named because they're
specified by a second instruction byte, known as the mod-reg-rm byte, that
follows instruction opcodes in order to specify the memory and/or register
operands for many instructions.    The mod - reg-rm byte gets its name
because the various fields within the byte are used to specify the memory
addressing mode, the register used for one operand, and the register or
memory location used for the other operand, as shown in Figure 7-6.    (Figure
7-6 should make it clear that at most only one mod-reg-rm operand can be a
memory operand; one or both operands must be register operands, for there

Abrash/Zen:    Chapter 7/

just aren't enough bits in a mod-reg-rm byte to specify two memory
operands.)

Simply put, the mod-reg-rm byte tells the 8088 where to find an
instruction's operand or operands.    (It's up to the opcode byte to specify the
data size, as well as which operand is the source and which is the
destination.)    When a memory operand is used, the mod-reg-rm byte tells
the 8088 how to add together the contents of registers (BX or BP and/or SI or
DI) and/or a fixed value built into the instruction (a displacement) in order to
generate the operand's memory offset.    The offset is then combined with
the contents of one of the segment registers to make a full 20-bit memory
address, as we saw earlier in this chapter, and that 20-bit address serves as
the instruction operand.    Figure 7-7 illustrates the operation of the complex
base+index+displacement addressing mode, in which an offset is generated
by adding BX or BP, SI or DI, and a fixed displacement. (Note that
displacements are built right into instructions, coming immediately after
mod-reg-rm bytes, as illustrated by Figure 7-9.)

For example, if the opcode for mov reg8,[reg/mem8] (8Ah) is
followed by the mod-reg-rm byte 17h, that indicates that the register DL is to
be loaded from the memory location pointed to by BX, as shown in Figure 7-
8.    Put the other way around, mov dl,[bx] assembles to the two byte
sequence 8Ah 17h, where the first byte is the opcode for mov reg8,

[reg/mem8] and the second byte is the mod-reg-rm byte that selects DL as
the destination and the memory location pointed to by BX as the source.

You may well wonder how the mod-reg-rm byte works with one-

Abrash/Zen:    Chapter 7/

operand instructions, such as neg word ptr ds:[140h], or with instructions
that have constant data as one operand, such as sub [WordVar],1.    The
answer is that in these cases the reg field isn't used for source or destination
control; instead, it's used as an extension of the opcode byte.    So, for
instance, neg [reg/mem16] has an opcode byte of 0F7h and always has
bits 5-3 of the mod-reg-rm byte set to 011b.    Bits 7-6 and 2-0 of the mod -
reg-rm byte still select the memory addressing mode for the single operand,
but bits 5-3, together with the opcode byte, now simply tell the 8088 that the
instruction is neg [reg/mem16], as shown in Figure 7-9.    not

[reg/mem16] also has an opcode byte of 0F7h, but is distinguished from
neg [reg/mem16] by bits 5-3 of the mod-reg-rm byte, which are 010b for
not and 011b for neg.

At any rate, the mechanics of mod-reg-rm addressing aren't what
we need to concern ourselves with; the assembler takes care of such details,
thank goodness.    We do, however, need to concern ourselves with the
implications of mod-reg-rm addressing, particularly size and performance
issues.

WHAT'S mod-reg-rm ADDRESSING GOOD FOR?

The first thing to ask is, "What is mod-reg-rm addressing good
for?"    What mod-reg-rm addressing does best is address memory in a very
flexible way.    No other addressing mode approaches mod-reg-rm addressing
for sheer number of ways in which memory offsets can be generated.

Look at Figure 7-6, and try to figure out how many

Abrash/Zen:    Chapter 7/

source/destination combinations are possible with mod-reg-rm addressing.
The answer is simple, since there are 8 bits in a mod-reg-rm byte; 256
possible source/destination combinations are supported.    Any general-
purpose register can be one operand, and any general-purpose register or
memory location can be the other operand.

If we look at memory addressing alone, we see that there are 24
distinct ways to generate a memory offset.    (8 of the 32 possible selections
that can be made with bits 7-6 and 3-0 of the mod-reg-rm byte select
general-purpose registers.)    Some of those 24 selections differ only in
whether 1 or 2 displacement bytes are present, leaving us with the following
16 completely distinct memory addressing modes:

[disp16] [bp+disp]
[bx] [bx+disp]
[si] [si+disp]
[di] [di+disp]
[bp+si] [bp+si+disp]
[bp+di] [bp+di+disp]
[bx+si] [bx+si+disp]
[bx+di] [bx+di+disp]

For two-operand instructions, each of those memory addressing modes can
serve as either source or destination, with either a constant value or one of
the 8 general-purpose registers as the other operand.

Basically, mod-reg-rm addressing lets you select a memory offset
in any of 16 ways (or a general-purpose register, if you prefer), and say, "Use
this as an operand."    The other operand can't involve memory, but it can be
any general-purpose register or (usually) a constant value.    (There's no

Abrash/Zen:    Chapter 7/

inherent support in mod-reg-rm addressing for constant operands.    Special,
separate opcodes must used to specify constant operands for instructions
that support such operands, and a few mod-reg-rm instructions, such as mul,
don't accept constant operands at all.)

mod-reg-rm addressing is flexible indeed.

DISPLACEMENTS AND SIGN-EXTENSION

I've said that displacements can be either 1 or 2 bytes in size.
The obvious question is:    what determines which size is used?    That's an
important question, since displacement bytes directly affect program size,
which in turn indirectly affects performance via the prefetch queue cycle-
eater.

Except in the case of direct addressing, which we'll discuss
shortly, displacements in the range -128 to +127 are stored as one byte,
then automatically sign-extended by the 8088 to a word when the
instructions containing them are executed.    (Expressed in unsigned
hexadecimal, -128 to +127 covers two ranges:    0 to 7Fh and 0FF80h to
0FFFFh.)    Sign-extension involves copying bit 7 of the byte to bits 15-8, so a
byte value of 80h sign-extends to 0FF80h, and a byte value of 7Fh sign-
extends to 0007Fh. Basically, sign-extension converts signed byte values to
signed word values; since the maximum range of a signed byte is -128 to
+127, that's the maximum range of a 1-byte displacement as well.

The implication of this should be obvious:    you should try to use
displacements in the range -128 to +127 whenever possible, in order to

Abrash/Zen:    Chapter 7/

reduce program size and improve performance.    One caution, however:
displacements must be either numbers or symbols equated to numbers in
order for the assembler to be able to assemble them as single bytes.
(Numbers and symbols work equally well.    In:

SAMPLE_DISPLACEMENT equ 1
:
mov ax,[bx+SAMPLE_DISPLACEMENT]
mov ax,[bx+9]

both mov instructions assemble with 1-byte displacements.)
Displacements must be constant values in order to be stored in

sign-extended bytes because when a named memory variable is used, the
assembler has no way of knowing where in the segment the variable will end
up.    Other parts of the segment may appear in other parts of the module or
may be linked in from other modules, and the linker may also align the
segment to various memory boundaries; any of these can have the effect of
moving a given variable in the segment to an offset that doesn't fit in a sign-
extended byte.    As a result, the following mov instruction assembles with a
2-byte displacement, even though it appears to be at offset 0 in its segment:

Data segment
MemVar db 10 dup (?)
Data ends

:
mov al,[MemVar+bx]

Abrash/Zen:    Chapter 7/

NAMING THE mod-reg-rm ADDRESSING MODES The 16 distinct memory
addressing modes supported by the mod-reg-rm byte are often given a slew
of confusing names, such as "implied addressing," "based relative
addressing," and "direct indexed addressing."    Generally, there's little need
to name addressing modes; you'll find you use them much more than you
talk about them.    However, we will need to refer to the modes later in this
book, so let me explain my preferred addressing mode naming scheme.

I find it simplest to give a name to each of the three possible
components of a memory offset--base for BX or BP, index for SI or DI,
displacement for a 1- or 2-byte fixed value--and then just refer to an
addressing mode with all the components of that mode.    That way, mov

[bx],al uses base addressing, add ax,[si+1] uses index+displacement
addressing, and mov dl,[bp+di+1000h] uses base+index+displacement
addressing.    The names may be long at times, but they're never ambiguous
or hard to remember.

DIRECT ADDRESSING

There is one exception to the above naming scheme, and that's
direct addressing.    Direct addressing is used when a memory address is
referenced with just a 16-bit displacement, as in mov bx,[WordVar] or mov

es:[410h],al.    You might expect direct addressing to be called displacement
addressing, but it's not, for three reasons.    First, the address used in direct
addressing is not, properly speaking, a displacement, since it isn't relative to
any register.    Second, direct addressing is a time- honored term that came

Abrash/Zen:    Chapter 7/

into use long before the 8088 was around, so experienced programmers are
more likely to speak of "direct addressing" than "displacement addressing."

Third, direct addressing is a bit of an anomaly in mod-reg - rm
addressing.    It's pretty obvious why we'd want to have direct addressing
available; surely you'd rather do this:

mov dx,[WordVar]

than this:

mov bx,offset WordVar
mov dx,[bx]

It's just plain handy to be able to access a memory location directly by name.
Now look at Figure 7-6 again.    Direct addressing really doesn't

belong in that figure at all, does it?    The mod-reg-rm encoding for direct
addressing should by all rights be taken by base addressing using only BP.
However, there is no addressing mode that can use only BP--if you assemble
the instruction mov [bp],al, you'll find that it actually assembles as mov

[bp+0],al, with a 1-byte displacement.
In other words, the designers of the 8088 rightly considered

direct addressing important enough to build it into mod-reg-rm addressing in
place of a little-used addressing mode.    (BP is designed to point to stack
frames, as we'll see shortly, and there's rarely any use for BP-only base

Abrash/Zen:    Chapter 7/

addressing in stack frames.)
Along the same lines, note that direct addressing always uses a

16-bit displacement.    Direct addressing does not use an 8- bit sign-extended
displacement even if the address is in the range -128 to +127.

MISCELLANEOUS INFORMATION ABOUT MEMORY ADDRESSING

Be aware that all mod-reg-rm addressing defaults to accessing
the segment pointed to by DS--except when BP is used as part of the mod-
reg-rm address.    Any mod-reg-rm addressing involving BP accesses the
segment pointed to by SS by default. (If DS and SS point to the same
segment, as they often do, you can use BP-based addressing modes to point
to normal data if necessary, and you can use the other mod-reg-rm
addressing modes to point to data on the stack.)    However, mod-reg-rm
addressing can always be forced to use any segment register with a segment
override prefix.

There are a few other addressing terms that I should mention
now.    Indirect addressing is commonly used to refer to any sort of memory
addressing that uses a register (BX, BP, SI, or DI, or any of the valid
combinations) to point to memory.    We'll also use indirect to refer to
branches that branch to destinations specified by memory operands, as in
jmp word ptr [SubroutinePointer].    We'll discuss indirect branching in
detail in Chapter 14.

Immediate addressing is a non-mod-reg-rm form of addressing in
which the operand is a constant value that's built right into the instruction.

Abrash/Zen:    Chapter 7/

We'll cover immediate addressing when we're done with mod-reg-rm
addressing.

Finally, I'd like to make it clear that a displacement is nothing
more than a fixed (constant) value that's added into the memory offset
calculated by a mod-reg-rm byte.    It's called a displacement because it
specifies the number of bytes by which the addressed offset should be
displaced from the offset specified by the registers used to point to memory.
In mov si,[bx+1], the displacement is 1; the address from which SI is loaded
is displaced 1 byte from the memory location pointed to by BX.    In mov ax,

[si+WordVar], the displacement is the offset of WordVar.    We won't know
exactly what that offset is unless we look at the code with a debugger, but
it's a constant value nonetheless.

Don't get caught up worrying about the exact meaning of the
term displacement, or indeed of any of the memory addressing terms.    In a
way, the terms are silly; mov ax,[bx] is base addressing and mov ax,[si] is
index addressing, but both load AX from the address pointed to by a register,
both are 2 bytes long, and both take 13 cycles to execute.    The difference
between the two is purely semantic from a programmer's perspective.

Notwithstanding, we needed to establish a common terminology
for the mod-reg-rm memory addressing modes, and we've done so. Now that
we understand how mod-reg-rm addressing works and how wonderfully
flexible it is, let's look at its dark side.

mod-reg-rm ADDRESSING:    THE DARK SIDE

Abrash/Zen:    Chapter 7/

Gee, if mod-reg-rm addressing is so flexible, why don't we use it
for all memory accesses?    For that matter, why does the 8088 even have
any other addressing modes?

One reason is that mod-reg-rm addressing doesn't work with all
instructions.    For example, the string instructions can't use mod-reg-rm
addressing, and neither can xlat, which we'll encounter later in this chapter.
Nonetheless, most instructions, including mov, add, adc, sub, sbb, cmp,
and, or, xor, neg, not, mul, div, and more, do support mod-reg-rm
addressing, so it would seem that there must be some other reason for the
existence of other addressing modes.

And indeed there is another reason for the existence of other
addressing modes.    In fact, there are two reasons:    speed and size.    mod-
reg-rm addressing is more flexible than other addressing modes--and it also
produces the largest, slowest code around.

It's easy to understand why mod-reg-rm addressing produces
larger code than other memory addressing modes.    The bits needed to
encode mod-reg-rm addressing's many possible source, destination, and
addressing mode combinations increase the size of mod-reg-rm instructions,
and displacement bytes can make modreg-rm instructions larger still.    It
stands to reason that the string instruction lods, which always loads AL from
the memory location pointed to by DS:SI, should have fewer instruction bytes
than the mod-reg-rm instruction mov al,[si], which selects AL from 8
possible destination registers, and which selects the memory location
pointed to by SI from among 32 possible source operands.

Abrash/Zen:    Chapter 7/

It's less obvious why mod-reg-rm addressing is slower than other
memory addressing modes.    One major reason falls out from the larger size
of mod-reg-rm instructions; we've already established that instructions with
more instruction bytes tend to run more slowly, simply because it takes time
to fetch those extra instruction bytes.    That's not the whole story, however.
It takes the 8088 a variable but considerable amount of time--5 to 12 cycles--
to calculate memory addresses from mod-reg-rm bytes.    Those lengthy
calculations, known as effective address (EA) calculations, are our next topic.

Before we proceed to EA calculations, I'd like to point out that
slow and bulky as mod-reg-rm addressing is, it's still the workhorse memory
addressing mode of the 8088.    It's also the addressing mode used by many
register-only instructions, such as add dx,bx and mov al,dl, with the mod-
reg-rm byte selecting register rather than memory operands.    My goodness,
some instructions don't even have a non-mod-reg-rm addressing mode.
Without a doubt, you'll be using mod-reg-rm addressing often in your code,
so we'll take the time to learn how to use it well. Nonetheless, the less-
flexible addressing modes are generally shorter and faster than mod-reg-rm
addressing.    As we'll see throughout The Zen of Assembly Language, one
key to high-performance code is avoiding mod-reg-rm addressing as much as
possible.

WHY MEMORY ACCESSES ARE SLOW

As I've already said, mod-reg-rm memory accesses are slow
partly because instructions that use mod-reg-rm addressing tend to have

Abrash/Zen:    Chapter 7/

many instruction bytes.    The mod-reg-rm byte itself adds 1 byte beyond the
opcode byte, and a displacement, if used, will add 1 or 2 more bytes.
Remember, 4 cycles are required to fetch each and every one of those
instruction bytes.

Taken a step farther, that line of thinking reveals why all
instructions that access memory are slow:    memory is slow.    It takes 4
cycles per byte to access memory in any way.    That means that an
instruction like mov bx,[WordVar], which is 4 bytes long and reads a word-
sized memory variable, must perform 6 memory accesses in all; at 4 cycles a
pop, that adds up to a minimum execution time of 24 cycles. Even a 2-byte
memory-accessing instruction spends a minimum of 12 cycles just accessing
memory. By contrast, most register-only operations are 1 to 2 bytes in length
and have Execution Unit execution times of 2 to 4 cycles, so the maximum
execution times for register-only instructions tend to be 4 to 8 cycles.

I've said it before, and I'll say it again:    avoid accessing memory
whenever you can.    Memory is just plain slow.

In actual use, many memory-accessing instructions turn out to be
even slower than memory access times alone would explain. For example,
the fastest possible mod-reg-rm memory-accessing instruction, mov reg8,

[bx] (BP, SI, or DI would do as well as BX), has an Execution Unit execution
time of 13 cycles, although only 3 memory accesses (requiring 12 cycles) are
performed. Similarly, string instructions, xlat, push, and pop take more
cycles than can be accounted for solely by memory accesses.

The full explanation for the poor performance of the 8088's

Abrash/Zen:    Chapter 7/

memory-accessing instructions lies in the microcode of the 8088 (the built-in
bit patterns that sequence the 8088 through the execution of each
instruction), which is undeniably slower than it might be.    (Check out the
execution times of the 8088's instructions on the 80286 and 80386, and
you'll see that it's possible to execute the 8088's instructions in many fewer
cycles than the 8088 requires.)    That's not something we can change; about
all we can do is choose the fastest available instruction for each task, and
we'll spend much of The Zen of Assembly Language doing just that.

There is one aspect of memory addressing that we can change,
however, and that's EA addressing time--the amount of time it takes the
8088 to calculate memory addresses.

SOME mod-reg-rm MEMORY ACCESSES ARE SLOWER THAN OTHERS

A given instruction that uses mod-reg-rm addressing doesn't
always execute in the same number of cycles.    The Execution Unit execution
time of mod-reg-rm instructions comes in two parts:    a fixed Execution Unit
execution time and an effective address (EA) execution time that varies
depending on the mod-reg-rm addressing mode used.    The two times added
together determine the overall execution time of each mod-reg-rm
instruction.

Each mod-reg-rm instruction has its own fixed Execution Unit
execution time, which remains the same for all addressing modes. For
example, the fixed execution time of add bl,[mem] is 9 cycles, as shown in
Appendix A; this value is constant, no matter what mod-reg-rm addressing

Abrash/Zen:    Chapter 7/

mode is used.
The EA calculation time, on the other hand, depends not in the

least on which instruction is being executed.    EA calculation time is
determined solely by the mod-reg-rm addressing mode used, and nothing
else, as shown in Figure 7-10.    As you can see from Figure 7-10, the time it
takes the 8088 to calculate an effective address can vary greatly, ranging
from a mere 5 cycles if a single register is used to point to memory all the
way up to 11 or 12 cycles if the sum of two registers and a displacement is
used to point to memory.    (Segment override prefixes require an additional 2
cycles each, as we saw earlier.)    When I discuss the performance of an
instruction that uses mod-reg-rm addressing, I'll often say that it takes at
least a certain number of cycles to execute.    What "at least" means is that
the instruction will take that many cycles if the fastest mod-reg-rm
addressing mode-- base- or index-only--is used, and longer if some other
mod-reg-rm addressing mode is selected.

Only mod-reg-rm memory operands require EA calculations.
There is no EA calculation time for register operands, or for memory
operands accessed with non-mod-reg-rm addressing modes.

In short, EA calculation time means that the choice of mod - reg-
rm addressing mode directly affects performance.    Let's look more closely at
the performance implications of EA calculations.

PERFORMANCE IMPLICATIONS OF EFFECTIVE ADDRESS

CALCULATIONS

Abrash/Zen:    Chapter 7/

There are a number of interesting points to be made about EA
calculation time.    For starters, it should be clear that EA calculation time is a
big reason why instructions that use mod - reg-rm addressing are slow.    The
minimum EA calculation time of 5 cycles, on top of 8 or more cycles of fixed
execution time, is no bargain; the maximum EA calculation time of 12 cycles
is a grim prospect indeed.

For example, add bl,[si] takes 13 cycles to execute (8 cycles of
fixed execution time and 5 cycles of EA calculation time), which is certainly
not terrific by comparison with the 3- cycle execution time of add bl,dl.
(Instruction fetching alters the picture somewhat, as we'll see shortly.)    At
the other end of the EA calculation spectrum, add bl,[bx+di+100h] takes
20 cycles to execute, which is horrendous no matter what you compare it to.

The lesson seems clear:    use faster mod-reg-rm addressing
modes whenever you can.    While that's true, it's not necessarily obvious
which mod-reg-rm addressing modes are faster.    Base-only addressing or
index-only addressing are the mod-reg-rm addressing modes of choice,
because they add only 5 cycles of EA calculation time and 1 byte, the mod-
reg-rm byte.    For instance, mov dl,[bp] is just 2 bytes long and takes a
fairly reasonable 13 cycles to execute.

Direct addressing, which has an EA calculation time of 6 cycles, is
only slightly slower than base or index addressing so far as official execution
time goes.    However, direct addressing requires 2 additional instruction
bytes (the 16-bit displacement) beyond the mod-reg-rm byte, so it's actually
a good deal slower than base or index addressing.    mov dl,[ByteVar]

Abrash/Zen:    Chapter 7/

officially takes 14 cycles to execute, but given that the instruction is 4 bytes
long and performs a memory access, 20 cycles is a more accurate execution
time.

Base+index addressing (mov al,[bp+di] and the like) takes 1 to
2 cycles more for EA calculation time than does direct addressing, but is
nonetheless superior to direct addressing in most cases.    The key:
base+index addressing requires only the 1 mod-reg-rm byte.    Base+index
addressing instructions are 2 bytes shorter than equivalent direct addressing
instructions, and that translates into a considerable
instruction-fetching/performance advantage.

The rule is:    use displacement-free mod-reg-rm addressing
modes whenever you can.    Instructions that use displacements are always 1
to 2 bytes longer than those that use displacement-free mod-reg-rm
addressing modes, and that means that there's generally a prefetching
penalty for the use of displacements. There's also a substantial EA
calculation time penalty for base+displacement, index+displacement, or
base+index+displacement addressing.    If you must use displacements, use
1-byte displacements as much as possible; we'll see an example of this when
we get to stack frames later in this chapter.

Now, bear in mind that the choice of mod-reg-rm addressing
mode really only matters inside loops, or in time-critical code. If you're going
to load DX from memory just once in a long subroutine, it really doesn't
much matter if you take a few extra cycles to load it with direct addressing
rather than base or index addressing.    It certainly isn't worth loading, say,

Abrash/Zen:    Chapter 7/

BX to point to memory, as in:

mov bx,offset MemVar
mov dx,[bx]

just to use base or index addressing once--the mov instruction used to load
BX takes 4 cycles and 3 bytes, more than negating any advantage base
addressing has over direct addressing.

Inside loops, however, it's well worth using the most efficient
addressing mode available.      Listing 7-9, which adds up the elements of a
byte-sized array using base+index+displacement addressing every time
through the loop, runs in 1.17 ms.    Listing 7-10, which changes the
addressing mode to base+index by adding the displacement into the base
outside the loop, runs in 1.01 ms, nearly 16% faster than Listing 7-9.    Finally,
Listing 7-11, which performs all the addressing calculations outside the loop
and uses plain old base-only addressing, runs in just 0.95 ms, 6% faster still.
(The string instruction lods is even faster than mov al,[bx], as we'll see in
Chapter 10.    Always think of your non-mod-reg-rm alternatives.)    Clearly,
the choice of addressing mode matters considerably inside tight loops.

We've learned two basic rules, then:    1) use displacement - free
mod-reg-rm addressing modes whenever you can, and 2) calculate memory
addresses outside loops and use base-only or index-only addressing
whenever possible.    The lea instruction, which we'll get to shortly, is most
useful for calculating memory addresses outside loops.

Abrash/Zen:    Chapter 7/

mod-reg-rm ADDRESSING:    SLOW, BUT NOT QUITE AS SLOW AS YOU

THINK

There's no doubt about it:    mod-reg-rm addressing is slow. Still,
relative to register operands, mod-reg-rm operands might not be quite so
slow as you think, for a very strange reason--the prefetch queue.    mod-reg-
rm addressing executes so slowly that it allows time for quite a few
instruction bytes to be prefetched, and that means that instructions that use
mod-reg-rm addressing often run at pretty much their official speed.

Consider this.    mov al,bl is a 2-byte, 2-cycle instruction. String a
few such instructions together and the prefetch queue empties, making the
actual execution time 8 cycles--the time it takes to fetch the instruction
bytes. By contrast, mov al,[bx] is a 2-byte, 13-cycle instruction.
Counting both the memory access needed to read the operand pointed to by
BX and the two instruction fetches, only 3 memory accesses are incurred by
this instruction.    Since 3 memory accesses take only 12 cycles, the 13-cycle
official execution time of mov al,[bx] is a fair reflection of the instruction's
true performance.

That doesn't mean that mov al,[bx] is faster than mov al,bl, or
that memory-accessing instructions are faster than register- only
instructions--they're not.    mov al,bl is a minimum of about 50% faster than
mov al,[bx] under any circumstances.    What it does mean is that memory-
accessing instructions tend to suffer less from the prefetch queue cycle-eater
than do register-only instructions, because the considerably longer execution

Abrash/Zen:    Chapter 7/

times of memory-accessing instructions often allow a good deal of
prefetching per instruction byte executed.    As a result, the performance
difference between the two is often not quite so great as official execution
times would indicate.

In short, memory-accessing instructions, especially those that use
mod-reg-rm addressing, generally have a better balance between overall
memory access time and execution time than register-only instructions, and
consequently run closer to their rated speeds.    That's a mixed blessing,
since it's a side effect of the slow speed of memory-accessing instructions,
but it does make memory access--which is, after all, a necessary evil--
somewhat less unappealing than it might seem. Let me emphasize that
the basic reason that instructions that use mod-reg-rm memory accesses
suffer less from the prefetch queue cycle-eater than do equivalent register-
only instructions is that both sorts of instructions have mod-reg-rm bytes.
True, register-only mod-reg-rm instructions don't have EA calculation times,
but they do have at least 2 bytes, making them as long as the shortest mod-
reg-rm memory-accessing instructions.    (A number of non-mod-reg-rm
instructions are just 1 byte long; we'll meet them over the next few
chapters.)    Since register-only instructions are much faster than memory-
accessing instructions, it's just common sense that if they're the same length
in bytes then they can be hit much harder by the prefetch queue cycle-
eater.

Still and all, register-only mod-reg-rm instructions are never
longer than memory-accessing mod-reg-rm instructions, and are shorter than

Abrash/Zen:    Chapter 7/

memory-accessing instructions that use displacements.    What's more, since
memory-accessing instructions must by definition access memory at least
once apart from fetching instruction bytes, register-only mod-reg-rm
instructions must be at least 50% faster than their memory-accessing
equivalents--100% when word-sized operands are used.    To sum up, register-
only instructions are always much faster and often smaller than equivalent
mod-reg-rm memory-accessing instructions. (Register-only instructions are
faster than, although not necessarily shorter than or even as short as, non-
mod-reg-rm instructions--even the string instructions--as well.) Avoid
memory.    Use the registers as much as you possibly can.

THE IMPORTANCE OF ADDRESSING WELL

When you do use mod-reg-rm addressing, do so efficiently. As
we've discussed, that means using base- or index-only addressing whenever
possible, and avoiding displacements when you can, especially inside loops.
If you're only going to access a memory location once and you don't have a
pointer to that location already loaded into BX, BP, SI, or DI, just use direct
addressing; base- and index-only addressing aren't so much faster than
direct addressing that it pays to load a pointer.    As we've seen, however,
don't use direct addressing inside a loop if you can load a pointer register
outside the loop and then use base- or index-only addressing inside the loop.

It's often surprising how much more efficient than direct
addressing base- and index-only addressing are.    Consider this simple bit of
code:

Abrash/Zen:    Chapter 7/

mov dl,[ByteVar]
and dl,0fh
mov [ByteVar],dl

You wouldn't think that code could be improved upon by adding an
instruction, but we can cut the code's size from 10 to 9 bytes by using base-
only addressing:

mov bx,offset ByteVar
mov dl,[bx]
and dl,0fh
mov [bx],dl

The cycle count is 2 higher for the latter version, but a 2-byte advantage in
instruction fetching could well overcome that.

The point is not that base-only addressing is always the best
solution.    In fact, the latter example could be made much more efficient
simply by anding 0Fh directly with memory, as in:

and [ByteVar],0fh

(Always bear in mind that memory can serve as the destination operand as
well as the source operand.    When only one modification is involved, it's
always faster to modify a memory location directly, as in the last example,
than it is to load a register, modify the register, and store the register back to
memory.    However, the scales tip when two or more modifications to a

Abrash/Zen:    Chapter 7/

memory operand are involved, as we'll see in Chapter 8.) The special
accumulator-specific direct-addressing instructions that we'll discuss in the
next chapter make direct addressing more desirable in certain circumstances
as well.

The point is that for repeated accesses to the same memory
location, you should arrange your code so that the most efficient possible
instruction--base-only, a string instruction, whatever fills the bill--can be
used.    In the last example, base-only addressing was superior to direct
addressing when just two accesses to the same byte were involved.
Multiply the number of accesses by ten, or a hundred, or a thousand, as is
often the case in a tight loop, and you'll get a feel for the importance of
selecting the correct memory addressing mode in your time- critical code.

THE 8088 IS FASTER AT MEMORY ADDRESS CALCULATIONS THAN YOU

ARE

You may recall that we found earlier that when you must access a
word-sized memory operand, it is better to let the 8088 access the second
byte than to do it with a separate instruction; the 8088 is simply faster at
accessing two adjacent bytes than any two instructions can be.    Much the
same is true of mod-reg-rm addressing; the 8088 is faster at performing
memory address calculations than you are.    If you must add registers and/or
constant values to address memory, the 8088 can do it faster during EA
calculations than you can with separate instructions.

Suppose that we have to initialize a doubleword of memory

Abrash/Zen:    Chapter 7/

pointed to by BX to zero.    We could do that with:

mov word ptr [bx],0
inc bx
inc bx
mov word ptr [bx],0

However, it's better to let the 8088 do the addressing calculations, as
follows:

mov word ptr [bx],0
mov word ptr [bx+2],0

True, the latter version involves a 1-byte displacement, but that
displacement is smaller than the 2 bytes required to advance BX in the first
version.    Since the incremental cost of base+displacement addressing over
base-only addressing is 4 cycles, exactly the same number of cycles as two
inc instructions, the code that uses base+displacement addressing is clearly
superior.

Similarly, you're invariably better off letting EA calculations add
one register to another than you are using add. For example, consider two
approaches to scanning an array pointed to by BX+SI for the byte in AL:

mov dx,bx ;set aside the base address
ScanLoop:

mov bx,dx ;get back the base address
add bx,si ;add in the index
cmp [bx],al ;is this a match?
jz ScanFound ;yes, we're done
inc si ;advance the index to the next byte
jmp ScanLoop ;scan the next byte

ScanFound:

Abrash/Zen:    Chapter 7/

and:

ScanLoop:
cmp [bx+si],al ;is this a match?
jz ScanFound ;yes, we're done
inc si ;advance the index to the next byte
jmp ScanLoop ;scan the next byte

ScanFound:

It should be pretty clear that the approach that lets the 8088 add the two
memory components together is far superior.

While the point is perhaps a little exaggerated--I seriously doubt
anyone would use the first approach--it is nonetheless valid.    The 8088 can
add BX to SI in just 2 extra cycles as part of an EA calculation, and at the
cost of no extra bytes at all. What's more, EA calculations leave all registers
unchanged.    By contrast, at least one register must be changed to hold the
final memory address when you perform memory calculations yourself.
That's what makes the first version above so inefficient; we have to reload
BX from DX every time through the loop because it's altered by the memory-
address calculation.

I hope you noticed that neither example above is particularly
efficient.    We'd be better off simply adding the two memory components
outside the loop and using base- or index-only addressing inside the loop.
(We'd be even better off using string instructions, but we'll save that for
another chapter.) To wit:

add si,bx ;add together the memory address components
; outside the loop

Abrash/Zen:    Chapter 7/

ScanLoop:
cmp [si],al ;is this a match?
jz ScanFound ;yes, we're done
inc si ;point to the next byte
jmp ScanLoop ;scan the next byte

ScanFound:

Although EA calculations can add faster than separate instructions can, it's
faster still not to add at all.    Whenever you can, perform your calculations
outside loops.

Which brings us to lea.

CALCULATING EFFECTIVE ADDRESSES WITH lea

lea is something of an odd bird, as the only mod-reg-rm memory-
addressing instruction that doesn't access memory.    lea calculates the offset
of the memory operand...and then loads that offset into one of the 8 general-
purpose registers, without accessing memory at all.    Basically, lea is nothing
more than a means by which to load the result of an EA calculation into a
register.

For example, lea bx,[MemVar] loads the offset of MemVar into
BX.    Now, we wouldn't generally want to use lea to load simple offsets, since
mov can do that more efficiently; mov bx,offset MemVar is 1 byte shorter
and 4 cycles faster than lea bx,[MemVar].    (Since lea involves EA
calculation, it's not particularly fast; however, it's faster than any mod-reg-rm
memory-accessing instruction, taking only 2 cycles plus the EA calculation
time.)

lea shines when you need to load a register with a complex
memory address, preferably without disturbing any of the registers that

Abrash/Zen:    Chapter 7/

make up the memory address.    Suppose that we want to push the address
of an array element that's indexed by BP+SI. We could use:

mov ax,offset TestArray
add ax,bp
add ax,si
push ax

which is 8 bytes long.    On the other hand, we could simply use:

lea ax,[TestArray+bp+si]
push ax

which is only 5 bytes long.    One of the primary uses of lea is loading offsets
of variables in stack frames, because such variables are addressed with
base+displacement addressing.

Refer back to the example we examined in the last section.
Suppose that we wanted to scan memory without disturbing either BX or SI.
In that case, we could use DI, with an assist from lea:

lea di,[bx+si] ;add together the memory address components
; outside the loop

ScanLoop:
cmp [di],al ;is this a match?
jz ScanFound ;yes, we're done
inc di ;point to the next byte
jmp ScanLoop ;scan the next byte

ScanFound:

lea is particularly handy in this case because it can add two registers--BX
and SI--and place the result in a third register-- DI.    That enables us to

Abrash/Zen:    Chapter 7/

replace the two instructions:

mov di,bx
add di,si

with a single lea.
lea should make it clear that offsets are just 16-bit numbers.

Adding offsets stored in BX and SI together with lea is no different from
adding any two 16-bit numbers together with add, because offsets are just
16-bit numbers.    0 is a valid offset; if we execute:

sub bx,bx ;load BX with 0
mov al,[bx] ;load AL with the byte at offset 0 in DS

we'll read the byte at offset 0 in the segment pointed to by DS. It's important
that you understand that offsets are just numbers, and that you can
manipulate offsets every bit as flexibly as any other values. The flip
side is that you could, if you wished, add two registers and/or a constant
value together with lea and place the result in a third register.    Of course,
the registers would have to be BX or BP and SI or DI, but since offsets and
numbers are one and the same, there's no reason that lea couldn't be used
for arithmetic under the right circumstances.    For example, here's one way
to add two memory variables and 52 together and store the result in DX:

Abrash/Zen:    Chapter 7/

mov bx,[MemVar1]
mov si,[MemVar2]
lea dx,[bx+si+52]

That's not to say this is a good way to perform this particular task; the
following is faster and uses fewer registers:

mov dx,[MemVar1]
add dx,[MemVar2]
add dx,52

Nonetheless, the first approach does serve to illustrate the flexibility of lea

and the equivalence of offsets and numbers.

OFFSET WRAPPING AT THE ENDS OF SEGMENTS

Before we take our leave of mod-reg-rm addressing, I'd like to
repeat a point made earlier that may have slipped past unnoticed.    That
point is that offsets wrap at the ends of segments.    Offsets are 16-bit
entities, so they're limited to the range 0 to 64 K-1.    However, it is possible
to use two or three mod-reg-rm address components that together add up to
a number that's larger than 64 K.    For example, the sum of the memory
addressing components in the following code is 18000h:

mov bx,4000h
mov di,8000h
mov ax,[bx+di+0c000h]

Abrash/Zen:    Chapter 7/

What happens in such a case?    We found earlier that segments
are limited to 64 Kb in length; is this a clever way to enlarge the effective
size of a segment?

Alas, no.    If the sum of two offset components won't fit in 16 bits,
bits 16 and above of the sum are simply ignored.    In other words, mod-reg-
rm address calculations are always performed modulo 64 K (that is, modulo
10000h), as shown in Figure 7-11. As a result, the last example will access
not the word at offset 18000h but the word at offset 8000h.    Likewise, the
following will access the byte at offset 0:

mov bx,0ffffh
mov dl,[bx+1]

The same rule holds for all memory-accessing instructions, mod-
reg-rm or otherwise:    offsets are 16-bit values; any additional bits that result
from address calculations are ignored.    Put another way, memory addresses
that reach past the end of a segment's 64 K limit wrap back to the start of
the segment.    This allows the use of negative displacements, and is the
reason a displacement can always reach anywhere in a segment, including
addresses lower than those in the base and/or index registers, as in mov ax,

[bx-1].

NON-mod-reg-rm MEMORY ADDRESSING

mod-reg-rm addressing is the most flexible memory addressing

Abrash/Zen:    Chapter 7/

mode of the 8088, and the most widely-used as well, but it's certainly not the
only addressing mode.    The 8088 also offers a number of specialized
addressing modes, including stack addressing and the string instructions.
These addressing modes are supported by fewer instructions than mod-reg-
rm instructions, and are considerably more restrictive about the operands
they'll accept--but they're also more compact and/or faster than the mod -
reg-rm instructions.

Why are instructions that use the non-mod-reg-rm addressing
modes generally superior to mod-reg-rm instructions?    Simply this:    being
less flexible than mod-reg-rm instructions, they have fewer possible
operands to specify, and so fewer instruction bits are needed.    Non-mod-reg-
rm instructions also don't require any EA calculation time, because they don't
support the many addressing modes of the mod-reg-rm byte.

We'll discuss five sorts of non-mod-reg-rm memory-addressing
instructions next:    special forms of common instructions, string instructions,
immediate-addressing instructions, stack-oriented instructions, and xlat,
which is in a category all its own.    For all these sorts of instructions, the rule
is that if they're well matched to your application, they're almost surely
worth using in preference to mod-reg-rm addressing.    Some of the non-mod-
reg-rm instructions, especially the string instructions, are so much faster
than mod-reg-rm instructions that they're worth going out of your way for, as
we'll see throughout The Zen of Assembly Language.

SPECIAL FORMS OF COMMON INSTRUCTIONS

Abrash/Zen:    Chapter 7/

The 8088 offers special shorter, faster forms of several commonly
used mod-reg-rm instructions, including mov, inc, and xchg.    These special
forms are both shorter and less flexible than the mod-reg-rm forms.    For
example, the special form of inc is just 1 byte long and requires only 2 cycles
to execute, but can only work with 16-bit registers.    By contrast, the mod-
reg-rm form of inc is at least 2 bytes long and takes at least 3 cycles to
execute, but can work with 8- or 16-bit registers or memory locations.

You don't have to specify that a special form of an instruction is to
be used; the assembler automatically selects the shortest possible form of
each instruction it assembles. That doesn't mean that you don't need to be
familiar with the special forms, however.    To the contrary, you need to be
well aware of the sorts of instructions that have special forms, as well as the
circumstances under which those special forms will be assembled.    Armed
with that knowledge, you can arrange your code so that the special forms
will be assembled as often as possible.

We'll get a solid feel for the various special forms of mod - reg-rm
instructions as we discuss them individually in Chapters 8 and 9.

THE STRING INSTRUCTIONS

The string instructions are without question the most powerful
instructions of the 8088.    String instructions can initialize, copy, scan, and
compare arrays of data at speeds far beyond those of mortal mod-reg-rm
instructions, and lend themselves well to almost any sort of repetitive
processing.    In fact, string instructions are so important that they get two

Abrash/Zen:    Chapter 7/

full chapters of The Zen of Assembly Language--Chapters 10 and 11--to
themselves.    We'll defer further discussion of these extremely important
instructions until then.

IMMEDIATE ADDRESSING

Immediate addressing is a form of memory addressing in which
the constant value of one operand is built right into the instruction.    You
should think of immediate operands as being addressed by IP, since they
directly follow opcode bytes or mod - reg-rm bytes, as shown in Figure 7-12.

Instructions that use immediate addressing are clearly faster than
instructions that use mod-reg-rm addressing.    In fact, according to official
execution times, immediate addressing would seem to be much faster than
mod-reg-rm addressing.    For example, add ax,1 is a 4-cycle instruction,
while add ax,[bx] is an 18-cycle instruction.    What's more, add

reg,immed is just 1 cycle slower than add reg,reg, so immediate
addressing seems to be nearly as fast as register addressing.

The official cycle counts are misleading, however.    While
immediate addressing is certainly faster than mod-reg-rm addressing, it is by
no means as fast as register-only addressing, and the reason is a familiar
one:    the prefetch queue cycle-eater.    You see, immediate operands are
instruction bytes; when we use an immediate operand, we increase the size
of that instruction, and that increases the number of cycles needed to fetch
the instruction's bytes.

Looked at another way, immediate operands need to be fetched

Abrash/Zen:    Chapter 7/

from the memory location pointed to by IP, so immediate addressing could
be considered a memory addressing mode. Granted, immediate addressing
is an efficient memory addressing mode, with no EA calculation time or the
like--but memory accesses are nonetheless required, at the inescapable 4
cycles per byte.

The upshot is simply that register operands are superior to
immediate operands in loops and time-critical code, although immediate
operands are still much better than mod-reg-rm memory operands.    Back in
Listing 7-11, we set DL to 0 outside the loop so that we could use register-
register adc inside the loop.    That approach allowed the code to run in 0.95
ms.    Listing 7-12 is similar to Listing 7-11, but is modified to use an
immediate operand of 0 rather than a register operand containing 0.    Even
though the immediate operand is only byte-sized, Listing 7-12 slows down to
1.02 ms.    In other words, the need to fetch just 1 immediate operand byte
every time through the loop slowed the entire loop by about 7%.    What's
more, the performance loss would have been approximately twice as great if
we had used a word- sized immediate operand.

On the other hand, immediate operands are certainly preferable
to memory operands.    Listing 7-13, which adds the constant value 0 from
memory, runs in 1.26 ms.    (I should hope you'll never use code as obviously
inefficient as Listing 7-13; I'm just presenting it for illustrative purposes.)

To sum up:    when speed matters, use register operands rather
than immediate operands if you can.    If registers are at a premium,
however, immediate operands are reasonably fast, and are certainly better

Abrash/Zen:    Chapter 7/

than memory operands.    If bytes rather than cycles are at a premium,
immediate operands are excellent, for it takes fewer bytes to use an
immediate operand than it does to load a register with a constant value and
then use that register. For example:

LoopTop:
or byte ptr [bx],80h
loop LoopTop

is 1 byte shorter than:

mov al,80h
LoopTop:

or [bx],al
loop LoopTop

However, the latter, register-only version is faster, because it moves 2 bytes
out of the loop.

There are many circumstances in which we can substitute
register-only instructions for instructions that use immediate operands
without adding any extra instructions.    The commonest of these cases
involve testing for zero.    There's almost never a need to compare a register
to zero; instead, we can simply and or or the register with itself and check
the resulting flags.    We'll discuss ways to handle zero in the next two
chapters, and we'll see similar cases in which immediate operands can be
eliminated throughout The Zen of Assembly Language.

By the way, you should be aware that you can use an immediate
operand even when the other operand is a memory variable rather than a

Abrash/Zen:    Chapter 7/

register.    For example, add [MemVar],16 is a valid instruction, as is mov

[MemVar],52.    As I mentioned earlier, we're better off performing single
operations directly to memory than we are loading from memory into a
register, operating on the register, and storing the result back to memory.
However, we're generally better off working with a register when multiple
operations are involved.

Ideally, we'd load a memory value into a register, perform
multiple operations on it there, store the result back to memory...and then
have some additional use for the value left in the register, thereby getting
double use out of our memory accesses.    For example, suppose that we
want to perform the equivalent of the C statement:

i = ++j + k;

We could do this as follows:

inc [j]
mov ax,[j]
add ax,[k]
mov [i],ax

However, we can eliminate a memory access by incrementing j in a register:

mov ax,[j]
inc ax
mov [j],ax
add ax,[k]

Abrash/Zen:    Chapter 7/

mov [i],ax

While the latter version is one instruction longer than the original version, it's
actually faster and shorter.    One reason for this is that we get double use
out of loading j into AX; we increment j in AX and store the result to memory,
then immediately use the incremented value left in AX as part of the
calculation being performed.
 The other reason the second example above is superior to the
original version is that it used two of the special, more efficient instruction
forms:    the accumulator-specific direct- addressed form of mov and the 16-
bit register-only form of inc. We'll study these instructions in detail in
Chapters 8 and 9.

SIGN-EXTENSION OF IMMEDIATE OPERANDS

I've already noted that immediate operands tend to make for
compact code.    One key to this property is that like displacements in mod-
reg-rm addressing, word-sized immediate operands can be stored as a byte
and then extended to a word by replicating bit 7 as bits 15-8; that is, word-
sized immediate operands can be sign-extended.    Almost all instructions
that support immediate operands allow word-sized operands in the range -
128 to +127 to be stored as single bytes.    That means that while and

dx,1000h is a 4-byte instruction (1 opcode byte, 1 mod-reg-rm byte, and a
2-byte immediate operand), and dx,0fffeh is just 3 bytes long; since the
signed value of the immediate operand 0FFFEh is -2, 0FFFEh is stored as a
single immediate operand byte.

Abrash/Zen:    Chapter 7/

Not all values of the form 000nnh and 0FFnnh (where nn is any
two hex digits) can be stored as a single byte and sign- extended.    0007Fh
can be stored as a single byte; 00080h cannot. 0FF80h can be stored as a
single byte; 0FF7Fh cannot.    Watch out for cases where you're using a word-
sized immediate operand that can't be stored as a byte, when a byte-sized
immediate operand would serve as well.

For example, suppose we want to set the lower 8 bits of DX to 0.
and dx,0ff00h is a 4-byte instruction that accomplishes the desired result.
and dl,000h produces the same result in just 3 bytes.    (Of course, sub

dl,dl does the same thing in just 2 bytes--there are many ways to skin a cat
in assembler.) Recognizing when a word-sized immediate operand can be
handled as a byte-sized operand is still more important when using
accumulator-specific immediate-operand instructions, which we'll explore in
the next chapter.

mov DOESN'T SIGN-EXTEND IMMEDIATE OPERANDS

Along the same lines, or bh,0ffh does the same thing as or

bx,0ff00h and is shorter, while mov bh,0ffh is also equivalent and is
shorter still...and that brings us to the one instruction which cannot sign-
extend immediate operands:    mov.    Word-sized operands to mov are
always stored as words, no matter what size they may be.    However, there's
a compensating factor, and that's that there's a special, non-mod-reg-rm
form of mov reg,immed that's 1 byte shorter than the mod-reg-rm form.

Let me put it this way.    and dx,1000h is a 4-byte instruction,

Abrash/Zen:    Chapter 7/

with 1 opcode byte, 1 mod-reg-rm byte, and a 2-byte immediate operand.
mov dx,1000h, on the other hand, is only 3 bytes long.    There's a special
form of the mov instruction, used only when a register is loaded with an
immediate value, that requires just the 1 opcode byte in addition to the
immediate value.

There's also the standard mod-reg-rm form of mov, which is 4
bytes long for word-sized immediate operands.    This form does exactly the
same thing as the special form, but is a different instruction, with a different
opcode and a mod-reg-rm byte.    The 8088 offers a number of duplicate
instructions, as we'll see in the next chapter.    Don't worry about selecting
the right form of mov, however; the assembler does that for you
automatically.

In short, you're no worse off--and often better off--moving
immediate values into registers than you are using immediate operands with
instructions such as add and xor.    It takes just 2 or 3 bytes, for byte- or
word-sized registers, respectively, to load a register with an immediate
operand.    mov al,2 is actually the same size as mov al,bl (both are 2
bytes), although the official execution time of the register-only mov is 2
cycles shorter.

On balance, immediate operands used with mov reg,immed

perform at nearly the speed of register operands, especially when the
register is byte-sized; consequently, there's less need to avoid immediate
operands with mov than with other instructions. Nonetheless, register-only
instructions are never slower, so you won't go wrong using register rather

Abrash/Zen:    Chapter 7/

than immediate operands.

DON'T mov IMMEDIATE OPERANDS TO MEMORY IF YOU CAN HELP IT

One final note, and then we're done with immediate addressing.
There is no special form of mov for moving an immediate operand to a
memory operand; the special form is limited to register operands only.
What's more, mov [mem16],immed16 has no sign-extension capability.
This double whammy means that storing immediate values to memory is the
single least desirable way to use immediate operands.    Over the next few
chapters, we'll explore several ways to set memory operands to given
values.    The one thing that the various approaches have in common is that
they all improve performance by avoiding immediate operands to mov.

Don't move immediate values to memory unless you have no
choice.

STACK ADDRESSING

While SP can't be used to point to memory by mod-reg-rm
instructions, it is nonetheless a memory-addressing register. After all, SP is
used to address the top of the stack.    Surely you know how the stack works,
so I'll simply note that SP points to the data item most recently pushed onto
the top of the stack that has not yet been popped off the stack.
Consequently, stack data can only be accessed in Last In, First Out (LIFO)
order via SP (that is, the order in which data is popped off the stack is the
reverse of the order in which it was pushed on).    However, other addressing

Abrash/Zen:    Chapter 7/

modes--in particular mod-reg-rm BP-based addressing--can be used to access
stack data in non-LIFO order, as we'll see when we discuss stack frames.

What's so great about the stack?    Simply put, the stack is terrific
for temporary storage.    Each named memory variable, as in:

MemVar dw 0

takes up 1 or more bytes of memory for the duration of the program.    That's
not the case with stack data, however; when data is popped from the stack,
the space it occupied is freed up for other use.    In other words, stack
memory is a reusable resource. This makes the stack an excellent place to
store temporary data, especially when large data elements such as buffers
and structures are involved.

Space allocated on the stack is also unique for each invocation of
a given subroutine, which is useful for any subroutine that needs to be
capable of being called directly or indirectly from itself.    Stack-based storage
is how C implements automatic (dynamic) variables, which are unique for
each invocation of a given subroutine.    In fact, stack-based storage is the
heart of the parameter-passing mechanism used by most C implementations,
as well as the mechanism used for automatic variables, as we'll see shortly.

Don't underestimate the flexibility of the stack.    I've heard of
programs that actually compile code right into a buffer on the stack, then
execute that code in place, on the stack. While that's a strange concept,
stack memory is memory like any other, and instruction bytes are data;

Abrash/Zen:    Chapter 7/

obviously, those programs needed a temporary place in which to compile
code, run it, and discard it, and the stack fits those requirements nicely.

Similarly, suppose that we need to pass a pointer to a variable
from an assembler program to a C subroutine...but there's no variable to
point to in the assembler code, because we keep the variable in a register.
Suppose also that the C subroutine actually modifies the pointed-to variable,
so we need to retrieve the altered value after the call.    The stack is
admirably suited to the job; at the beginning of the following code, the
variable of interest is in DX, and that's just where the modified result is at the
end of the code:

;
; Calls: int CSubroutine(int *Count, char *BufferPointer).
;

mov dx,MAX_COUNT ;store the maximum # of bytes to handle
; in the count variable

push dx ;store the count variable on the stack
; for the duration of the call

mov dx,sp ;put a pointer to the just-pushed temporary
; count variable in DX

mov ax,offset TestBuffer
push ax ;pass the buffer pointer parameter
push dx ;pass the count pointer parameter
call CSubroutine ;do the count
add sp,4 ;clear the parameter bytes from the stack
pop dx ;get the actual count back into DX

The important point in the above code is that we created a
temporary memory variable on the stack as we needed it; then, when the
call was over, we simply popped the variable back into DX, and its space on
the stack was freed up for other use.    The code is compact, and not a single
byte of memory storage had to be reserved permanently.

Compact code without the need for permanent memory space is

Abrash/Zen:    Chapter 7/

the hallmark of stack-based code.    It's often possible to write amazingly
complex code without using mod-reg-rm addressing or named variables
simply by pushing and popping registers.    The code tends to be compact
because push reg16 and pop reg16 are each only 1 byte long.    push

reg16 and pop reg16 are so compact because they don't need to support
the complex memory-addressing options of mod-reg-rm addressing; there
are only 8 possible register operands, and each instruction can only address
one location, by way of the stack pointer, at any one time.    (push mem16

and pop mem16 are mod-reg-rm instructions, and so they're 2-4 bytes long;
push reg16 and pop reg16, and push segreg and pop segreg as well,
are special, shorter forms of push and pop.)

For once, though, shorter isn't necessarily better.    You see, push

and pop are memory-accessing instructions, and although they don't require
EA calculation time, they're still slow--like all instructions that access
memory.    push and pop are fast considering that they are word-sized
memory-accessing instructions--push takes 15 cycles, pop takes just 12--
and they make for good prefetching, since only 3 memory accesses
(including instruction fetches) are performed during an official execution time
of 12 to 15 cycles.    Nonetheless, they're clearly slower than register-only
instructions.    This is basically the same case we studied when we looked into
copying segments; it's faster but takes more bytes and requires a free
register to preserve a register by copying it to another register:

mov dx,ax

Abrash/Zen:    Chapter 7/

:
mov ax,dx

than it is to preserve it by pushing and popping it:

push ax
:

pop ax

What does all this mean to you?    Simply this:    use a free register
for temporary storage if speed is of the essence, and push and pop if code
size is your primary concern, if speed is not an issue, or if no registers
happen to be free.    In any case, it's faster and far more compact to store
register values temporarily by pushing and popping them than it is to store
them to memory with mod-reg-rm instructions.    So use push and pop...but
remember that they come with substantial performance overhead relative to
register-only instructions.

AN EXAMPLE OF AVOIDING push AND pop

Let's quickly look at an example of improving performance by
using register-only instructions rather than push and pop.    When copying
images into display memory, it's common to use code like:

;
; Copies an image into display memory.
;
; Input:
; BX = width of image in bytes
; DX = height of image in lines
; BP = number of bytes from the start of one line to the
; start of the next
; DS:SI = pointer to image to draw
; ES:DI = display memory address at which to draw image

Abrash/Zen:    Chapter 7/

; Direction flag must be cleared on entry
;
; Output:
; none
;
DrawLoop:

push di ;remember where the line starts
mov cx,bx ;# of bytes per line
rep movsb ;copy the next line
pop di ;get back the line start offset
add di,bp ;point to the next line in display memory
dec dx ;repeat if there are any more lines
jnz DrawLoop

That's fine, but 1 push and 1 pop are performed per line, which
seems a shame...all the more so given that we can eliminate those pushes
and pops altogether, as follows:

;
; Copies an image into display memory.
;
; Input:
; BX = width of image in bytes
; DX = height of image in lines
; BP = number of bytes from the start of one line to the
; start of the next
; DS:SI = pointer to image to draw
; ES:DI = display memory address at which to draw image
; Direction flag must be cleared on entry
;
; Output:
; none
;

sub bp,bx ;# of bytes from the end of 1 line of the
; image in display memory to the start of
; the next line of the image

DrawLoop:
mov cx,bx ;# of bytes per line
rep movsb ;copy the next line
add di,bp ;point to the next line in display memory
dec dx ;repeat if there are any more lines
jnz DrawLoop

Do you see what we've done?    By converting an obvious solution
(advancing 1 full line at a time) to a less-obvious but fully equivalent solution
(advancing only the remaining portion of the line), we've saved about 27
cycles per loop...at no cost. Given inputs like the width of the screen and
instructions like push and pop, we tend to use them; it's just human nature

Abrash/Zen:    Chapter 7/

to frame solutions in familiar terms.    By rethinking the problem just a little,
however, we can often find a simpler, better solution.

Saving 27 cycles not by knowing more instructions but by not
using two powerful instructions is an excellent example indeed of the Zen of
assembler.
MISCELLANEOUS NOTES ABOUT STACK ADDRESSING

Before we proceed to stack frames, I'd like to take a moment to
review a few important points about stack addressing.

SP always points to the next item to be popped from the stack.
When you push a value onto the stack, SP is first decremented by 2, and
then the value is stored at the location pointed to by SP.    When you pop a
value off of the stack, the value is read from the location pointed to by SP,
and then SP is incremented by 2.    It's useful to know this whenever you
need to point to data stored on the stack, as we did when we created and
pointed to a temporary variable on the stack a few sections back, and as we
will need to do when we work with stack frames.

push and pop can work with mod-reg-rm-addressed memory
variables as easily as with registers, albeit more slowly and with more
instruction bytes.    push [WordVar] is perfectly legitimate, as is pop word

ptr [bx+si+100h].    Bear in mind, however, that only 16-bit values can be
pushed and popped; push bl won't work, and neither will pop byte ptr

[bx].
Finally, please remember that once you've popped a value from

the stack, it's gone from memory.    It's tempting to look at the way the stack

Abrash/Zen:    Chapter 7/

pointer works and think that the data is still in memory at the address just
below the new stack pointer, but that's simply not the case, as shown in
Figure 7-13.    Sure, sometimes the data is still there--but whenever an
interrupt occurs, it uses the top of the stack, wiping out the values that were
most recently popped.    Interrupts can happen at any time, so unless you're
willing to disable interrupts, accessing popped stack memory is a sure way to
get intermittent bugs.

Even if interrupts are disabled, it's really not a good idea to
access popped stack data.    Why bother, when stack frames give you the
same sort of access to stack data, but in a straightforward, risk-free way?
Not coincidentally, stack frames are our next topic, but first let me
emphasize:    once you've popped data off the stack, it's gone from memory.
Vanished. Kaput.    Extinct.    For all intents and purposes, that data is
nonexistent.

Don't access popped stack memory.    Period.

STACK FRAMES

Stack frames are transient data structures, usually local to
specific subroutines, that are stored on the stack.    Two sorts of data are
normally stored in stack frames:    parameters that are passed from the
calling routine by being pushed on the stack, and variables that are local to
the subroutine using the stack frame.

Why use stack frames?    Well, as we discussed earlier, the stack
is an excellent place to store temporary data, a category into which both

Abrash/Zen:    Chapter 7/

passed parameters and local storage fall.    push and pop aren't good for
accessing stack frames, which often contain many variables and which aren't
generally accessed in LIFO order; however, there are several mod-reg-rm
addressing modes that are perfect for accessing stack frames--the mod-reg-
rm addressing modes involving BP.    (We can't use SP for two reasons: it can't
serve as a memory pointer with mod-reg-rm addressing modes, and it
changes constantly during code execution, making offsets from SP hard to
calculate.)

If you'll recall, BP-based addressing modes are the only mod-reg-
rm addressing modes that don't access DS by default.    BP- based addressing
modes access SS by default, and now we can see why--in order to access
stack frames.    Typically, BP is set to equal the stack pointer at the start of a
subroutine, and is then used to point to data in the stack frame for the
remainder of the subroutine, as in:

push bp ;save caller's BP
mov bp,sp ;point to stack frame
mov ax,[bp+4] ;retrieve a parameter
:

pop bp ;restore caller's BP
ret

If temporary local storage is needed, SP is moved to allocate the necessary
room:

push bp ;save caller's BP
mov bp,sp ;point to stack frame
sub sp,10 ;allocate 10 bytes of local storage

Abrash/Zen:    Chapter 7/

mov ax,[bp+4] ;retrieve a parameter
mov [bp-2],ax ;save it in local storage
:

mov sp,bp ;dump the temporary storage
pop bp ;restore caller's BP
ret

I'm not going to spend a great deal of time on stack frames, for
one simple reason:    they're not all that terrific in assembler code.    Stack
frames are ideal for high-level languages, because they allow regular
parameter-passing schemes and support dynamically allocated local
variables.    For assembler code, however, stack frames are quite limiting, in
that they require a single consistent parameter-passing convention and the
presence of code to create and destroy stack frames at the beginning and
end of each subroutine.    In particular, the ability of assembler code to pass
pointers and variables in registers (which is much more efficient than
pushing them on the stack) is constrained by standard stack frames
conventions.    In addition, the BP register, which is dedicated to pointing to
stack frames, normally cannot be used for other purposes when stack frames
are used; the loss of one of a mere seven generally-available 16-bit registers
is not insignificant.

High-level language stack frame conventions also generally
mandate the preservation of several registers--always BP, usually DS, and
often SI and DI as well--and that requires time-consuming pushes and pops.
Finally, while stack frame addressing is compact (owing to the heavy use of
bp+disp addressing with 1-byte displacements), it is rather inefficient, even
as memory- accessing instructions go; mov ax,[bp+disp8] is only 3 bytes
long, but takes 21 cycles to execute.

Abrash/Zen:    Chapter 7/

In short, stack frames are powerful and useful--but they don't
make for the best possible 8088 code.    The best compiled code, yes, but not
the best assembler code.

What's more, compilers handle stack frames very efficiently. If
you're going to work within the constraints of stack frames, you may have a
difficult time out-coding compilers, which rarely miss a trick in terms of
generating efficient stack frame code. Handling stack frames well is not so
simple as it might seem; you have to be sure not to insert unneeded stack-
frame-related code, such as code to load BP when there is no stack frame,
and you need to be sure that you always preserve the proper registers when
they're altered, but not otherwise.    It's not hard, but it's tedious, and it's
easy to make mistakes that either waste bytes or lead to bugs as a result of
registers that should be preserved but aren't.

When you work with stack frames, you're trying to out- compile a
compiler while playing by its rules, and that's hard to do.    In pure assembler
code, I generally recommend against the use of stack frames, although there
are surely exceptions to this rule.    Personally, I often use C for the sort of
code that requires stack frames, building only the subroutines that do the
time-critical work in pure assembler.    Why not let a compiler do the dirty
work, while you focus your efforts on the code that really makes a
difference?

WHEN STACK FRAMES ARE USEFUL

That's not to say that stack frames aren't useful in assembler.

Abrash/Zen:    Chapter 7/

Stack frames are not only useful but mandatory when assembler subroutines
are called from high-level language code, since the stack frame approach is
the sole parameter-passing mechanism for most high-level language
implementations.

Assembler subroutines for use with high-level languages are most
useful; together, assembler subroutines and high-level languages provide
relatively good performance and fast development time.    The best code is
written in assembler, but the best code within a reasonable time frame is
often written in a high-level language/assembler hybrid.    Then, too, high-
level languages are generally better than assembler for managing the
complexities of very large applications.

In short, stack frames are generally useful in assembler when
assembler is interfaced to a high-level language.    High- level language
interfacing and stack frame organization varies from one language to
another, however, so I'm not going to cover stack frames in detail, although I
will offer a few tips about using stack frames in the next section.    Before I do
that, I'd like to point out an excellent way to mix assembler with high- level
language code:    in-line assembler.    Many compilers offer the option of
embedding assembler code directly in high-level language code; in many
cases, high-level language and assembler variables and parameters can
even be shared.    For example, here's a Turbo C subroutine to set the video
mode:

void SetVideoMode(unsigned char ModeNumber) {
asm mov ah,0
asm mov al,byte ptr [ModeNumber]
asm int 10h

Abrash/Zen:    Chapter 7/

}

What makes in-line assembler so terrific is that it lets the
compiler handle all the messy details of stack frames while freeing you to
use assembler.    In the above example, we didn't have to worry about
defining and accessing the stack frame; Turbo C handled all that for us,
saving and setting up BP and substituting the appropriate BP+disp value for
ModeNumber.    In- line assembler is harder to use for large tasks than is
pure assembler, but in most cases where the power of assembler is needed
in a high-level language, in-line assembler is a very good compromise.

One warning:    many compilers turn off some or all code
optimization in subroutines that contain in-line assembler.    For that reason,
it's often a good idea not to mix high-level language and in-line assembler
statements when performance matters.    Write your time-critical code either
entirely in in- line assembler or entirely in pure assembler; don't let the
compiler insert code of uncertain quality when every cycle counts.

Still and all, when you need to create the fastest or tightest code,
try to avoid stack frames except when you must interface your assembler
code to a high-level language.    When you must use stack frames, bear in
mind that assembler is infinitely flexible; there are more ways to handle
stack frames than are dreamt of in high-level languages.    In Chapter 16 we'll
see an unusual but remarkably effective way to handle stack frames in a
Pascal-callable assembler subroutine.

TIPS ON STACK FRAMES

Abrash/Zen:    Chapter 7/

Before we go on to xlat, I'm going to skim over a few items that
you may find useful should you need to use stack frames in assembler code.

MASM provides the struc directive for defining data structures.
Such data structures can be used to access stack frames, as in:

Parms struc
dw ? ;pushed BP
dw ? ;return address

X dw ? ;X coordinate parameter
Y dw ? ;Y coordinate parameter
Parms end

:
DrawXY proc near

push bp ;save caller's stack frame pointer
mov bp,sp ;point to stack frame
mov cx,[bp+X] ;get X coordinate
mov dx,[bp+Y] ;get Y coordinate
:

pop bp
ret

DrawXY endp

MASM structures have a serious drawback when used with stack frames,
however:    they don't allow for negative displacements from BP, which are
generally used to access local variables stored on the stack.    While it is
possible to access local storage by accessing all variables in the stack frames
at positive offsets from BP, as in:

Parms struc
Temp dw ? ;temporary storage
OldBP dw ? ;pushed BP

dw ? ;return address
X dw ? ;X coordinate parameter
Y dw ? ;Y coordinate parameter
Parms end

:
DrawXY proc near

push bp ;save caller's stack frame pointer
sub sp,OldBP ;make room for temp storage
mov bp,sp ;point to stack frame

Abrash/Zen:    Chapter 7/

mov cx,[bp+X] ;get X coordinate
mov dx,[bp+Y] ;get Y coordinate
mov [bp+Temp],dx ;set aside Y coordinate
:

add sp,OldBP ;dump temp storage space
pop bp
ret

DrawXY endp

this approach has two disadvantages.    First, it prevents us from dumping
temporary storage with mov sp,bp, requiring instead that we use the less
efficient add sp,OldBP.    Second, and more important, it makes it more
likely that parameters will be accessed with a 2-byte displacement.

Why?    Remember that a 1-byte displacement can address
memory in the range -128 to +127 bytes away from BP.    If our entire stack
frame is addressed at positive offsets from BP, then we've lost the use of a
full one-half of the addresses that we can access with 1-byte displacements.

Now, we can use negative stack frame offsets in assembler; it's
just a bit more trouble than we'd like.    There are many possible solutions,
ranging from a variety of ways to use equated symbols for stack frame
variables, as in:

Temp equ -2 ;temporary storage
X equ 4 ;X coordinate parameter
Y equ 6 ;Y coordinate parameter

and:

Temp equ -2 ;temporary storage
X equ 4 ;X coordinate parameter
Y equ X+2 ;Y coordinate parameter

Abrash/Zen:    Chapter 7/

up to ways to get the assembler to adjust structure offsets for us.    See my
"On Graphics" column in the July 1987 issue of Programmer's Journal (issue
5.4) for an elegant solution, provided by John Navas.    (Incidentally, TASM
provides special directives--arg and local--that handle many of the
complications of stack frame addressing and allow negative offsets.)

While we're discussing stack frame displacements, allow me to
emphasize that you should strive to use 1-byte displacements into stack
frames as much as possible.    If you have so many parameters or local
variables that 2-byte displacements must be used, make an effort to put the
least frequently used variables at those larger displacements.    Alternatively,
you may want to put large data elements such as arrays and structures in
the stack frame areas that are addressed with 2-byte displacements, since
such data elements are often accessed by way of pointer registers such as
BX and SI, rather than directly via bp+disp addressing.    Finally, you should
avoid forward references to structures; if you refer to elements of a structure
before the structure itself is defined in the code, you'll always get 2- byte
displacements, as we'll see in Chapter 14.

Whenever you're uncertain whether 1- or 2-byte displacements
are being used, simply generate a listing file, or look at your code with a
debugger.

By the way, it's worth examining the size of your stack frame
displacements even in high-level languages.    If you can figure out the order
in which your compiler organizes data in a stack frame, you can often speed

Abrash/Zen:    Chapter 7/

up and shrink your code simply by reorganizing your local variable
declarations so that arrays and structures are at 2-byte offsets, allowing
most variables to be addressed with 1-byte offsets.

STACK FRAMES ARE OFTEN IN DS

While it's not always the case, often enough the stack segment
pointed to by SS and the default data segment pointed to by DS are one and
the same.    This is true in most high-level language memory models, and is
standard for COM programs.

If DS and SS are the same, the implication is clear:    all mod-reg-
rm addressing modes can be used to point to stack frames. That's a real
advantage if you need to scan stack frame arrays and the like, because SI or
DI can be loaded with the array start address and used to address the array
without the need for segment override prefixes.    Similarly, BX could be set
to point to a stack frame structure, which could then be accessed by way of
bx+disp addressing without a segment override.    In short, be sure to take
advantage of the extra stack frame addressing power that you have at your
disposal when SS equals DS.

USE BP AS A NORMAL REGISTER IF YOU MUST

When stack frame addressing is in use, BP is normally dedicated
to addressing the current stack frame.    That doesn't mean you can't use BP
as a normal register in a tight loop, though, and use it as a normal register
you should; registers are too scarce to let even one go to waste when

Abrash/Zen:    Chapter 7/

performance matters. Just push BP, use it however you wish in the loop, then
pop it when you're done, as in:

push bp ;preserve stack frame pointer
mov bp,LOOP_COUNT ;get # of times to repeat loop

LoopTop:
:

dec bp ;count off loops
loop LoopTop
pop bp ;restore stack frame pointer

Of course, the stack frame can't be accessed while BP is otherwise occupied,
but you don't want to be accessing memory inside a tight loop anyway if you
can help it.

Using BP as a normal register in a tight loop can make the
difference between a register-only loop and one that accesses memory
operands, and that can translate into quite a performance improvement.
Also, don't forget that BP can be used in mod-reg - rm addressing even when
stack frames aren't involved, so BP can come in handy as a memory-
addressing register when BX, SI, and DI are otherwise engaged.    In that
usage, however, bear in mind that there is no BP-only memory addressing
mode; either a 1- or 2-byte displacement or an index register (SI or DI) or
both is always involved.

THE MANY WAYS OF SPECIFYING mod-reg-rm ADDRESSING

There are, it seems, more ways of specifying an operand
addressed with mod-reg-rm addressing than you can shake a stick at.    For
example, [bp+MemVar+si], MemVar[bp+si], MemVar[si][bp], and [bp]

Abrash/Zen:    Chapter 7/

[MemVar+si] are all equivalent.    Now stack frame addressing introduces us
to a new form, involving the dot operator:    [bp.MemVar+si].    Or
[bp.MemVar.si].    What's the story with all these mod-reg-rm forms?

It's actually fairly simple.    The dot operator does the same thing
as the plus operator:    it adds two memory addressing components together.
Any memory-addressing component enclosed in brackets is also added into
the memory address.    The order of the operands doesn't matter, since
everything resolves to a mod-reg - rm byte in the end; mov al,[bx+si]

assembles to exactly the same instruction as mov al,[si+bx].    All the
constant values and symbols (variable names and equated values) in an
address are added together into a single displacement, and that's used with
whatever memory addressing registers are present (from among BX, BP, SI,
and DI) to form a mod-reg-rm address.    (Of course, only valid combinations--
the combinations listed in Figure 7-6--will assemble.)    Lastly, if memory
addressing registers are present, they must be inside square brackets, but
that's optional for constant values and symbols.

There are a few other rules about constructing memory
addressing operands, but I avoid those complications by making it a practice
to use a single simple mod-reg-rm memory address notation.    As I said at
the start of this chapter, I prefer to put square brackets around all memory
operands, and I also prefer to use only the plus operator.    There are three
reasons for this: it's not complicated, it reminds me that I'm programming in
assembler, not in a high-level language where complications such as array
element size are automatically taken care of, and it reminds me that I'm

Abrash/Zen:    Chapter 7/

accessing a memory operand rather than a register operand, thereby losing
performance and gaining bytes.

You can use whatever mod-reg-rm addressing notation you wish.
I do suggest, however, that you choose a single notation and stick with it.
Why confuse yourself?

xlat

At long last, we come to the final addressing mode of the 8088.
This addressing mode is unique to the xlat instruction, an odd and rather
limited instruction that can nonetheless outperform every other 8088
instruction under the proper circumstances.

The operation of xlat is simple:    AL is loaded from the offset
addressed by the sum of BX and AL, as shown in Figure 7- 14.    DS is the
default data segment, but a segment override prefix may be used.

As you can see, xlat bears no resemblance to any of the other
addressing modes.    It's certainly limited, and it always wipes out one of the
two registers it uses to address memory (AL).    In fact, the first thought that
leaps to mind is:    why would we ever want to use xlat?

If xlat were slow and large, the answer would be never. However,
xlat is just 1 byte long, and, at 10 cycles, is as fast at accessing a memory
operand as any 8088 instruction.    As a result, xlat is excellent for a small
but often time-critical category of tasks.

xlat excels when byte values must be translated from one
representation to another.    The most common example occurs when one

Abrash/Zen:    Chapter 7/

character set must be translated to another, as for example when the ASCII
character set used by the PC is translated to the EBCDIC character set used
by IBM mainframes.    In such a case xlat can form the heart of an extremely
efficient loop, along the lines of the following:

;
; Converts the contents of an ASCII buffer to an EBCDIC buffer.
; Stops when a zero byte is encountered, but copies the zero byte.
;
; Input:
; DS:SI = pointer to ASCII buffer.
;
; Output: none
;
; Registers altered: AL, BX, SI, DI, ES
;

mov di,ds
mov es,di
mov di,si ;point ES:DI to the ASCII buffer as well
mov bx,offset ASCIIToEBCDICTable

;point to the table containing the EBCDIC
; equivalents of ASCII codes

cld
ASCIIToEBCDICLoop:

lodsb ;get the next ASCII character
xlat ;convert it to EBCDIC
stosb ;put the result back in the buffer
and al,al ;zero byte is the last byte
jnz ASCIIToEBCDICLoop

Besides being small and fast, xlat has an advantage in that byte-
sized look-up values don't need to be converted to words before they can be
used to address memory.    (Remember, mod-reg-rm addressing modes allow
only word-sized registers to be used to address memory.)    If we were to
implement the look-up in the last example with mod-reg-rm instructions, the
code would become a good deal less efficient no matter how efficiently we
set up for mod-reg-rm addressing:

sub bh,bh ;for use in converting a byte in BL
; to a word in BX

mov si,offset ASCIIToEBCDICTable
;point to the table containing the EBCDIC

Abrash/Zen:    Chapter 7/

; equivalents of ASCII codes
ASCIIToEBCDICLoop:

lodsb ;get the next ASCII character
mov bl,al ;get the character into BX, where

; we can use it to address memory
mov al,[si+bx] ;convert it to EBCDIC
stosb ;put the result back in the buffer
and al,al ;zero byte is the last byte
jnz ASCIIToEBCDICLoop

In short, xlat is clearly superior when a byte-sized look-up is
performed, so long as it's possible to put both the look-up value and the
result in AL.    Shortly, we'll see how xlat can be used to good effect in a case
where it certainly isn't the obvious choice.

MEMORY IS CHEAP:    YOU COULD LOOK IT UP

xlat, simply put, is a table look-up instruction.    A table look-up
occurs whenever you use an index value to look up a result in an array, or
table, of data.    A rough analogy might be using the number on a ballplayer's
uniform to look up his name in a program.

Look-up tables are a superb way to improve performance.    The
basic premise of look-up tables is that it's faster to precalculate results,
either by letting the assembler do the work or by calculating the results
yourself and inserting them in the source code, than it is to have the 8088
calculate them at run time.    The key factor is this:    the 8088 is relatively
fast at looking up data in tables and slow at performing almost any kind of
calculation.    Given that, why not perform your calculations before run time,
when speed doesn't matter, and let the 8088 do what it does best at run
time?

Now, look-up tables do have a significant disadvantage--they

Abrash/Zen:    Chapter 7/

require extra memory.    This is a trade-off we'll see again and again in The
Zen of Assembly Language:    cycles for bytes.    If you're willing to expend
more memory, you can almost always improve the performance of your
code.    One trick to generating top-notch code is knowing when that trade-off
is worth making.

Let's look at an example that illustrates the power of look- up
tables.    In the process, we'll see an unusual but effective use of xlat; we'll
also see that there are many ways to approach any programming task, and
we'll get a first-hand look at the cycles-for-bytes tradeoff that arises so often
in assembler programming.

FIVE WAYS TO DOUBLE BITS

The example we're about to study is based on the article
"Optimizing for Speed," by Michael Hoyt, which appeared in Programmer's
Journal in March, 1986 (issue 4.2).    This is the article I referred to back in
Chapter 2 as an example of a programmer operating without full knowledge
about code performance on the PC.    By no means am I denigrating Mr. Hoyt;
his article simply happens to be an excellent starting point for examining
both look-up tables and the hazards of the prefetch queue cycle-eater.

The goal of Mr. Hoyt's article was to expand a byte to a word by
doubling each bit, for the purpose of converting display memory pixels to
printer pixels in order to perform a screen dump.    So, for example, the value
01h (00000001b) would become 0003h (0000000000000011b), the value
02h (00000010b) would become 000Ch (0000000000001100b), and the

Abrash/Zen:    Chapter 7/

value 5Ah (01011010b) would become 33CCh (0011001111001100b).    Now,
in general this isn't a particularly worthy pursuit, given that the speed of the
printer is likely to be the limiting factor; however, speed could matter if the
screen dump code is used by a background print spooler. At any rate, bit-
doubling is an ideal application for look-up tables, so we're going to spend
some time studying it.

Mr. Hoyt started his article with code that doubled each bit by
testing that bit and branching accordingly to set the appropriate doubled bit
values.    He then optimized the code by eliminating branches entirely,
instead using fast shift and rotate instructions, in a manner similar to that
used by Listing 7-14.

Eliminating branches isn't a bad idea in general, since, as we'll
see in Chapter 12, branching is very slow.    However, as we've already seen
in Chapter 4, instruction fetching is also very slow...and the code in Listing 7-
14 requires a lot of instruction fetching.    70 instruction bytes must be
fetched for each byte that's doubled, meaning that this code can't possibly
run in less than about 280 (70 times 4) cycles per byte doubled, even though
its official Execution Unit execution time is scarcely 70 cycles.

The Zen timer confirms our calculations, reporting that Listing 7-
14 runs in 6.34 ms, or about 300 cycles per byte doubled.    (The excess
cycles are the result of DRAM refresh.)    As a result of this intensive
instruction fetching, Mr. Hoyt's optimized shift-and-rotate code actually ran
slower than his original test-and-jump code, as discussed in my article "More
Optimizing for Speed," Programmer's Journal, July, 1986 (issue 4.4).

Abrash/Zen:    Chapter 7/

So far, all we've done is confirm that the prefetch queue cycle-
eater can cause code to run much more slowly than the official execution
times would indicate.    This is of course not news to us; in fact, I haven't
even bothered to show the test- and-jump code and contrast it with the shift-
and-rotate code, since that would just restate what we already know.
What's interesting is not that Mr. Hoyt's optimization didn't make his code
faster, but rather that a look-up table approach can make the code much
faster.    So let's plunge headlong into look-up tables, and see what we can do
with this code.

TABLE LOOK-UPS TO THE RESCUE

Bit-doubling is beautifully suited to an approach based on look-up
tables.    There are only 256 possible input values, all byte-sized, and only
256 possible output values, all word-sized. Better yet, each input value maps
to one and only one output value, and all the input values are consecutive,
covering the range 0 to 255, inclusive.

Given those parameters, it should be clear that we can create a
table of 256 words, one corresponding to each possible byte to be bit-
doubled.    We can then use each byte to be doubled as a look-up index into
that table, retrieving the appropriate bit-doubled word with just a few
instructions.    Granted, 512 bytes would be needed to store the table, but
the 50 or so instruction bytes we would save would partially compensate for
the size of the table.    Besides, surely the performance improvement from
eliminating all those shifts, rotates, and especially instruction fetches would

Abrash/Zen:    Chapter 7/

justify the extra bytes...wouldn't it?
It would indeed.    Listing 7-15, which uses the table look-up

approach I've just described, runs in just 1.32 ms--more than four times as
fast as Listing 7-14!    When performance matters, trading less than 500
bytes for a more than four-fold speed increase is quite a deal.    Listing 7-15 is
so fast that it's faster than Listing 7-14 would be even if there were no
prefetch queue cycle-eater; in other words, the official execution time of
Listing 7-15 is faster than that of Listing 7-14.    Factor in instruction fetch
time, though, and you have a fine example of the massive performance
improvement that look-up tables can offer.

The key to Listing 7-15, of course, is that I precalculated all the
doubled bit masks when I wrote the program.    As a result, the code doesn't
have to perform any calculation more complex than looking up a
precalculated bit mask at run time.    In a little while, we'll see how MASM can
often perform look-up table calculations at assembly time, relieving us of the
drudgery of precalculating results.

THERE ARE MANY WAYS TO APPROACH ANY TASK

Never assume that there's only one way, or even one "best" way,
to approach any programming task.    There are always many ways to solve
any given programming problem in assembler, and different solutions may
well be superior in different situations.

Suppose, for example, that we're writing bit-doubling code in a
situation where size is more important than speed, perhaps because we're

Abrash/Zen:    Chapter 7/

writing a memory-resident program, or perhaps because the code will be
used in a very large program that's squeezed for space.    We'd like to
improve our speed, if we can-- but not at the expense of a single byte.    In
this case, Listing 7-14 is preferable to Listing 7-15--but is Listing 7-14 the
best we can do?

Not by a long shot.
What we'd like to do is somehow shrink Listing 7-15 a good deal.

Well, Listing 7-15 is so large because it has a 512-byte table that's used to
look up the bit-doubled words that can be selected by the 256 values that
can be stored in a byte.    We can shrink the table a great deal simply by
converting it to a 16- byte table that's used to look up the bit-doubled bytes
that can be selected by the 16 values that can be stored in a nibble (4 bits),
and performing two look-ups into that table, one for each half of the byte
being doubled.

Listing 7-16 shows this double table look-up solution in action.
This listing requires only 23 bytes of code for each byte doubled, and even if
you add the 16-byte size of the table in, the total size of 39 bytes is still
considerably smaller than the 70 bytes needed to bit-double each byte in
Listing 7-14. What's more, the table only needs to appear once in any
program, so practically speaking Listing 7-16 is much more compact than
Listing 7-14.

Listing 7-16 also is more than twice as fast as Listing 7- 14,
clocking in at 2.52 ms.    Of course, Listing 7-16 is nearly twice as slow as
Listing 7-15--but then, it's much more compact.

Abrash/Zen:    Chapter 7/

There's that choice again:    cycles or bytes.
In truth, there are both cycles and bytes yet to be saved in Listing

7-16.    If we apply our knowledge of mod-reg-rm addressing to Listing 7-16,
we'll realize that it's a waste to use base+displacement addressing with the
same displacement twice in a row; we can save a byte and a few cycles by
loading SI with the displacement and using base+index addressing instead.
Listing 7- 17, which incorporates this optimization, runs in 2.44 ms, a bit
faster than Listing 7-16.

There's yet another optimization to be made, and this one brings
us full circle, back to the start of our discussion of look-up tables.    Think
about it:    Listing 7-17 basically does nothing more than use two nibble
values as look-up indices into a table of byte values.    Sound familiar?    It
should--that's an awful lot like a description of xlat.    (xlat can handle byte
look-up values, but this task is just a subset of that.)

Listing 7-18 shows an xlat-based version of our bit-doubling
code.    This code runs in just 1.94 ms, still about 50% slower than the single
look-up approach, but a good deal faster than anything else we've seen.
Better yet, this approach takes just 16 instruction bytes per bit-doubled byte
(32 if you count the table)--which makes this by far the shortest approach
we've seen. Comparing Listing 7-18 to Listing 7-14 reveals that we've
improved the code to an astonishing degree:    Listing 7-18 runs more than
three times as fast as Listing 7-14, and yet it requires less than one-fourth as
many instruction bytes per bit- doubled byte.

There are many lessons here.    First, xlat is extremely efficient at

Abrash/Zen:    Chapter 7/

performing the limited category of tasks it can manage; when you need to
use a byte index into a byte-sized look- up table, xlat is often your best bet.
Second, the official execution times aren't a particularly good guide to
writing high- performance code.    (Of course, you already knew that!)    Third,
there is no such thing as the best code, because the fastest code is rarely
the smallest code, and vice-versa.

Finally, there are an awful lot of solutions to any given
programming problem on the 8088.    Don't fall into the trap of thinking that
the obvious solution is the best one.    In fact, we'll see yet another solution
to the bit-doubling problem in Chapter 9; this solution, based on the sar

instruction, isn't like any of the solutions we've seen so far.
We'll see look-up tables again in Chapter 14, in the form of jump

tables.

INITIALIZING MEMORY

Assembler offers excellent data-definition capabilities, and look-
up tables can benefit greatly from those capabilities.    No high-level
language even comes close to assembler so far as flexible definition of data
is concerned, both in terms of arbitrarily mixing different data types and in
terms of letting the assembler perform calculations at assembly time; given
that, why not let the assembler generate your look-up tables for you?

For example, consider the multiplication of a word-sized value by
80, a task often performed in order to calculate row offsets in display
memory.    Listing 7-19 does this with the compact but slow mul instruction,

Abrash/Zen:    Chapter 7/

at a pace of 30.17 us per multiply.    Listing 7-20 improves to 15.08 us per
multiply by using a faster shift-and-add approach.    However, the
performance of the shift-and-add approach is limited by the prefetch queue
cycle-eater; Listing 7-21, which looks the multiplication results up in a table,
is considerably faster yet, at 12.26 us per multiply.    Once again, the look-up
approach is faster even than tight register-only code, but that's not what's
most interesting here. What's really interesting about Listing 7-21 is that it's
the assembler, not the programmer, that generates the look-up table of
multiples of 80.    Back in Listing 7-15, I had to calculate and type each entry
in the look-up table myself.    In Listing 7-21, however, I've used the rept and
= directives to instruct the assembler to build the table automatically.
That's even more convenient than you might think; not only does it save the
tedium of a lot of typing, but it avoids the sort of typos that inevitably creep
in whenever a lot of typing is involved.

Another area in which assembler's data-definition capabilities
lend themselves to good code is in constructing and using mini-interpreters,
which are nothing less than task- specific mini-languages that are easily
created and used in assembler.    We'll discuss mini-interpreters at length in
Volume II of The Zen of Assembly Language.

You can also take advantage of assembler's data definition
capabilities by assigning initial values to variables when they're defined,
rather than initializing them with code.    In other words:

MemVar dw 0

Abrash/Zen:    Chapter 7/

takes no time at all at run time; MemVar simply is 0 when the program
starts.    By contrast:

MemVar dw ?
:

mov [MemVar],0

takes 20 cycles at run time, and adds 6 bytes to the program as well.
In general, the rule is:    calculate results and initialize data at or

before assembly time if you can, rather than at run time.    What makes look-
up tables so powerful is simply that they provide an easy way to shift the
overhead of calculations from run time to assembly time.

A BRIEF NOTE ON I/O ADDRESSING

You may wonder why we've spent so much time on memory
addressing but none on input/output (I/O) addressing.    The answer is simple:
I/O addressing is so limited that there's not much to know about it.    There
aren't any profound performance implications or optimizations associated
with I/O addressing simply because there are only two ways to perform I/O.

out, which writes data to a port, always uses the accumulator for
the source operand:    AL when writing to byte- sized ports, AX when writing
to word-sized ports.    The destination port address may be specified either by
a constant value in the range 0-255 (basically direct port addressing with a
byte-sized displacement) or by the value in DX (basically indirect port
addressing).    Here are the two possible ways to send the value 5Ah to port

Abrash/Zen:    Chapter 7/

99:

mov al,5ah
out 99,al
mov dx,99
out dx,al

Likewise, in, which reads data from a port, always uses AL or AX
for the destination operand, and may use either a constant port value
between 0 and 255 or the port pointed to by DX as the source operand.
Here are the two ways to read a value from port 255 into AL:

in al,0ffh
mov dx,0ffh
in al,dx

And that just about does it for I/O addressing.    As you can see,
there's not much flexibility or opportunity for Zen here. All I/O data must
pass through the accumulator, and if you want to access a port address
greater than 255, you must address the port with DX.    What's more, there
are no substitutes for the I/O instructions; when you need to perform I/O,
what we've just seen is all there is.

While the I/O instructions are a bit awkward, at least they aren't
particularly slow, at 8 (DX-indirect) or 10 (direct- addressed) cycles apiece,
with no EA calculation time.    Neither are the I/O instructions particularly
lengthy; in fact, in and out are considerably more compact than the
memory-addressing instructions, which shouldn't be surprising given that the
I/O instructions provide such limited functionality.    The DX-indirect forms of

Abrash/Zen:    Chapter 7/

both in and out are just 1 byte long, while the direct- addressed forms are 2
bytes long.

Each I/O access takes over the bus and thereby briefly prevents
prefetching, much as each memory access does.    However, the ratio of total
bus accesses (including instruction byte fetches) to execution time for in and
out isn't bad.    In fact, byte-sized DX-indirect I/O instructions, which are only
1 byte long and perform only one I/O access, should actually run in close to
the advertised 8 cycles per out.

Among our limited repertoire of I/O instructions, which is best?    It
doesn't make all that much difference, but given the choice between DX-
indirect I/O instructions and direct-addressed I/O instructions for heavy I/O,
choose DX-indirect, which is slightly faster and more compact.    For one-shot
I/O to ports in the 0-255 range, use direct-addressed I/O instructions, since it
takes three bytes and 4 cycles to set up DX for a DX-indirect I/O instruction.

On balance, though, don't worry about I/O--just do it when you
must.    Rare indeed is the program that spends an appreciable amount of its
time performing I/O--and given the paucity of I/O addressing modes, there's
not much to be done about performance in such cases anyway.

VIDEO PROGRAMMING AND I/O I'd like to make one final point about I/O
addressing.    This section won't mean much to you if you haven't worked
with video programming, and I'm not going to explain it further now; we'll
return to the topic when we discuss video programming in Volume II.    For
those of you who are involved with video programming, however, here goes.

Abrash/Zen:    Chapter 7/

Word-sized out instructions--out dx,ax--unquestionably provide
the fastest way to set the indexed video registers of the CGA, EGA, and VGA.
Just put the index of the video register you're setting in AL and the value
you're setting the register to in AH, and out dx,ax sets both the index and
the register in a single instruction.    Using byte-sized out instructions, we'd
have to do all this to achieve the same results:

out dx,al
inc dx
xchg ah,al
out dx,al
dec dx
xchg ah,al

(Sometimes you can leave off the final dec and xchg, but the word-sized
approach is still much more efficient.)

However, there's a potential pitfall to the use of word- sized out

instructions to set indexed video registers.    The 8088 can't actually perform
word-sized I/O accesses, since the bus is only 8 bits wide.    Consequently, the
8088 breaks 16-bit I/O accesses into two 8-bit accesses, one sending AL to
the addressed port, and a second one sending AH to the addressed port plus
one. (If you think about it, you'll realize that this is exactly how the 8088
handles word-sized memory accesses too.)

All well and good.    Unfortunately, on computers built around the
8086, 80286, and the like, the processors do not automatically break up
word-sized I/O accesses, since they're fully capable of outputting 16 bits at
once.    Consequently, when word-sized accesses are made to 8-bit adapters

Abrash/Zen:    Chapter 7/

like the EGA by code running on such computers, it's the bus, not the
processor, that breaks up those accesses.    Generally, that works perfectly
well--but on certain PC-compatible computers, the bus outputs the byte in AH
to the addressed port plus one first, and then sends the byte in AL to the
addressed port.    The correct values go to the correct ports, but here
sequence is critical; out dx,ax to an indexed video register relies on the
index in AL being output before the data in AH, and that simply doesn't
happen.    As a result, the data goes to the wrong video register, and the
video programming works incorrectly--sometimes disastrously so.

You may protest that any computer that gets the sequencing of
word-sized out instructions wrong isn't truly a PC-compatible, and I suppose
that's so.    Nonetheless, if a computer runs everything except your code that
uses word-sized out instructions, you're going to have a tough time selling
that explanation.    Consequently, I recommend using byte-sized out

instructions to indexed video registers whenever you can't be sure of the
particular PC-compatible models on which your code will run.

AVOID MEMORY!

We've come to the end of our discussion of memory addressing.
Memory addressing on the 8088 is no trivial matter, is it?    Now that we've
familiarized ourselves with the registers and memory addressing capabilities
of the 8088, we'll start exploring the instruction set, a journey that will
occupy most of the rest of this volume.

Before we leave the realm of memory addressing, let me repeat:

Abrash/Zen:    Chapter 7/

avoid memory.    Use the registers to the hilt; register- only instructions are
shorter and faster.    If you must access memory, try not to use mod-reg-rm
addressing; the special memory- accessing instructions, such as the string
instructions and xlat, are generally shorter and faster.    When you do use
mod-reg-rm addressing, try not to use displacements, especially 2-byte
displacements.

Last but not least, choose your spots.    Don't waste time
optimizing non-critical code; focus on loops and other chunks of code in
which every cycle counts.    Assembler programming is not some sort of
game where the object is to save cycles and bytes blindly.    Rather, the goal
is a dual one:    to produce whole programs that perform well and to produce
those programs as quickly as possible.    The key to doing that is knowing
how to optimize code, and then doing so in time-critical code--and only in
time-critical code.

