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Chapter 7:    Memory Addressing

The 8088's registers are very powerful, and critically important to
writing high-performance code--but there are scarcely a dozen of them, and
they certainly can't do the job by themselves.    We need more than seven--or
seventy, or seven hundred or even seven thousand--general-purpose storage
locations.    We need storage that's capable of storing characters, numbers,
and instruction bytes in great quantities (remember that instruction bytes
are just another sort of data)--and, of course, that's just what we get by way
of the 1 megabyte of memory that the 8088 supports.

(The PC has only 640 Kb of system RAM, but nonetheless does
support a full megabyte of addressable memory.    The memory above the
640 K mark is occupied by display memory and by BIOS code stored in ROM
(read-only memory); this memory can always be read from and can in some
cases--display memory, for example--be written to as well.)

Not  only  does  the  8088 support  1  Mb of  memory,  but  it  also
provides many powerful and flexible ways to get at that memory. We'll skim
through the many memory addressing modes and instructions quickly, but
we're not going to spend a great deal of time on their basic operation.

Why  not  spend  more  time  describing  the  memory  addressing
modes and instructions?    One reason is that I've assumed throughout  The
Zen  of  Assembly  Language that  you're  at  least  passingly  familiar  with
assembler, thereby avoiding a lot of rehashing and explaining--and memory



Abrash/Zen:    Chapter 7/

addressing is fundamental to almost any sort of assembler programming.    If
you really don't know the basic memory addressing modes, a refresher on
assembler in general might be in order before you continue with The Zen of
Assembly Language.

The other reason for not spending much time on the operation of
the  memory  addressing  modes  is  that  we  have  another--and  sadly
neglected--aspect of memory addressing to discuss:    performance.

You see, while the 8088 lets you address a great deal of memory,
it isn't particularly fast at accessing all that memory. This is especially true
when dealing with blocks of memory larger than 64 Kb, but is always true to
some extent.      Memory-accessing instructions are often very long and are
always very slow.

Worse,  many  people  don't  seem  to  understand  the  sharp
distinction between memory and registers.    Some "experts" would have you
view memory locations as extensions of your register set.    With this sort of
thinking, the instructions:

mov dx,ax

and:

mov dx,MemVar 

are logically equivalent.    Well, the instructions are logically equivalent in the
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sense that they both move data into DX--but they're polar opposites when it
comes to performance.    The register-only  mov is half the length in bytes
and  anywhere  from  two  to  seven  times  faster  than  the  mov from
memory...and that's  fairly  typical  of  the  differences  between register-only
and memory-addressing instructions.

So  you  see,  saying  that  memory  is  logically  equivalent  to
registers is something like saying that a bus is logically equivalent to a 747.
Sure, you can buy a ticket to get from one place to another with either mode
of transportation...but which would you rather cross the country in?

As we'll see in this chapter, and indeed throughout the rest of the
Zen of Assembly Language, one key to optimizing 8088 code is using the
registers heavily while avoiding memory whenever you can.    Pick your spots
for such optimizations carefully, though. Optimize instructions in tight loops
and in time-critical code, but let initialization and set-up code slide; it's just
not  worth the time and effort  to optimize code that  doesn't  much affect
overall performance or response time.

Slow and lengthy as memory accessing instructions are, you're
going to end up using them a great deal in your code. (Just try to write a
useful program that doesn't access memory!) In light of that, we're going to
review the memory-addressing architecture and modes of  the 8088, then
look at the performance implications of accessing memory.    We'll see why
memory accesses are slow, and we'll  see that not all  memory addressing
modes or memory addressing instructions are created equal in terms of size
and performance.    (In truth, the differences between the various memory-
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addressing modes and instructions are just about as large as those between
register-only  and  memory-accessing  instructions.)      Along  the  way,  we'll
come across  a  number  of  useful  techniques  for  writing  high-performance
code for the PC, most notably look-up tables.    By the end of this chapter,
we'll be ready to dive into the instruction set in a big way.

We've got a lot of ground to cover, so let's get started.

DEFINITIONS

I'm going to take a moment to define some terms I'll use in this
chapter.      These  terms  will  be  used  to  describe  operands  to  various
instructions; for example, mov ax,segreg refers to copying the contents of
a segment register into AX.

reg refers to any 8- or 16-bit general-purpose register. reg8 refers
to any 8-bit (byte-sized) general-purpose register, and  reg16 refers to any
16-bit (word-sized) general-purpose register.

segreg refers to any segment register.
mem refers to any 8-, 16-, or 32-bit memory operand.     mem8

refers to any byte-sized memory operand,  mem16 refers to any word-sized
memory  operand,  and  mem32 refers  to  any  doublewordsized  memory
operand.

reg/mem refers to any 8- or 16-bit register or memory operand.
As  you'd  expect,  reg/mem8 refers  to  any  byte-sized  register  or  memory
operand,  and  reg/mem16 refers  to  any  word- sized  register  or  memory
operand.
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immed refers to any immediate (constant) instruction operand.
(Immediate addressing is discussed in detail below.)  immed8 refers to any
byte-sized  immediate  operand,  and  immed16 refers  to  any  word-sized
immediate operand.

SQUARE BRACKETS MEAN MEMORY ADDRESSING

The use of square brackets is optional when a memory location is
being addressed by name.    That is, the two following instructions assemble
to exactly the same code:

mov dx,MemVar
mov dx,[MemVar]

However, addressing memory without square brackets is an extension of the
"memory  and  registers  are  logically  equivalent"  mindset.      I  strongly
recommend that you use square brackets on all memory references in order
to keep the distinction between memory and registers clear in your mind.
This  practice  also  helps  distinguish  between  immediate  and  memory
operands.

THE MEMORY ARCHITECTURE OF THE 8088 The ability to address 1
Mb  of  memory,  while  unimpressive  by  today's  standards,  was  quite
remarkable when the PC was first introduced, 64 Kb then being standard for
"serious" microcomputers.      In fact,  an argument could be made that the
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8088's  1  Mb address  space is  the  single  factor  most  responsible  for  the
success of the IBM PC and for the exceptional software that quickly became
available  for  it.      Realistically,  the  letters  "IBM"  were  probably  more
important, but all that memory didn't hurt; quantities of memory make new
sorts of software possible, and can often compensate for limited processor
power in the form of lookup tables, RAM disks, data caching, and in-line code.
All in all, the PC's then-large memory capacity made possible a quantum leap
in software quality.

On the other hand, the 8088 actually addresses all that memory
in what is  perhaps the most awkward manner ever conceived--by way of
addressing  64  Kb  blocks  off  each  of  the  four  segment  registers.      This
scheme means that programs must perform complex and time-consuming
calculations in order to access the full 1 Mb of memory in a general way.
One  of  the  ways  in  which  assembler  programs  can  outstrip  compiled
programs is by cleverly structuring code and data so that sequential memory
accesses  generally  involve  only  memory  within  the  four  segments
addressable at any one time, thereby avoiding the considerable overhead
associated  with  calculating  full  addresses  and  frequently  reloading  the
segment registers.

In short, the 8088's memory architecture is the best of worlds and
the  worst  of  worlds:      the  best  because  a  great  deal  of  memory  is
addressable (at  least  by  1981 standards),  the worst  because it's  hard  to
access all that memory quickly.    That said, let's look at the 8088's memory
architecture in detail.    Most likely you know what we're about to discuss, but
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bear with me; I want to make sure we're all speaking the same language
before I go on to more advanced subjects.

SEGMENTS AND OFFSETS

20 bits are needed to address 1 Mb of memory, and every one of
the one-million-plus memory addresses the 8088 can handle can indeed be
expressed as a 20-bit number.    However, programs do not address memory
with 20-bit addresses.    There's a good reason for that:      20-bit addresses
would be most impractical.    For one thing, the 8088's registers are only 16
bits  in  size,  so  they couldn't  be  used to  point  to  20-bit  addresses.      For
another, three rather than two bytes would be needed to store each address
loaded by a program, making for bloated code.    In general, the 8088 just
wasn't designed to handle straight 20-bit addresses.

(You may well ask why the 8088 wasn't designed better. "Better"
is a slippery term, and the 8088 certainly has been successful...nonetheless,
that's a good question, which I'll answer in Chapter 8.    A hint:    much of the
8088's architecture is derived from the 8080, which could only address 64 Kb
in all.  The 8088 strongly reflects long-ago microcomputer technology, not
least in its limitation to 1 Mb in total.) Well, if the PC doesn't use straight
20-bit addresses, what does it use?     It uses paired segments and offsets,
which together form an address denoted as segment:offset.    For example,
the address 23F0:1512 is the address composed of the segment value 23F0
hex and the offset value 1512 hex.    (I'll always show segment:offset pairs in
hexadecimal,  which  is  by  far  the  easiest  numbering  scheme for  memory
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addressing.)    Both segments and offsets are 16-bit values.
Wait one minute!    We're just looking for 20-bit addresses, not 32-

bit addresses.    Why do we need 16 bits of segment and 16 bits of offset?
Actually, we don't need 16 bits of segment.    We could manage to

address 1 Mb perfectly well with a mere 4 bits of segment, but that's not the
way Intel set up the segment:offset addressing scheme.    I might add that
there's  some  justification  for  using  segments  and  offsets.      The
segment:offset approach is a reasonable compromise between the needs to
use memory efficiently and keep chip costs down that predominated in the
late  1970s  and  the  need  to  use  an  architecture  that  could  stretch  to
accommodate the far more sophisticated memory demands of  the 8088's
successors.    The 80286 uses an extension of the segment:offset approach to
address 16 Mb of memory in a fully protected multitasking environment, and
the 80386 goes far beyond that, as we'll see in Chapter 15.

Anyway, although we only need 4 bits of segment, we get 16 bits,
and none of them are ignored by the 8088.    20-bit addresses are formed
from segment:offset  pairs  by  shifting  the  segment  4  bits  to  the  left  and
adding it to the offset, as shown in Figure 7-1.

I'd like to take a moment to note that for the remainder of this
book, I'll use light lines to signify memory addressing in figures and heavy
lines to show data movement, as illustrated by Figure 7-1.    In the future, I'll
show segment:offset memory addressing by simply joining the lines from the
segment register and any registers and/or displacements (fixed values) used
to  generate  an  offset,  as  in  Figure  7-7,  avoiding  the  shift-and-add
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complications  of  Figure  7-1a;  the  4-bit  left  shift  of  the  segment  and  the
addition to the offset to generate a 20-bit memory address, which occurs
whenever  a  segment:offset  address  is  used,  is  implied.      Also,  when the
segment isn't germane to the discussion at hand, I may omit it and show
only the offset component or components, as in Figure 7-4; although unseen,
the  segment  is  implied,  since  one  segment  register  must  participate  in
forming virtually every 20-bit memory address, as we'll see shortly.

Figure 7-1 also illustrates another practice I'll follow in figures that
involve memory addressing:    the shading of registers and memory locations
that  change  value.      This  makes  it  easy  to  spot  the  effects  of  various
operations.    In Figure 7-1, only the contents of AL are altered; consequently,
only AL is shaded.

I'll generally follow the sequence of Figure 7-1--memory address,
memory access, final state of the PC--in memory addressing figures.    While
this detailed, step-by-step approach may seem like a bit of overkill right now,
it will be most useful for illustrating the 8088's more complex instructions,
particularly the string instructions.

Finally, the numbers in Figure 7-1--including both addresses and
data--are  in  hexadecimal.      Numbers  in  all  figures  involving  memory
addressing will be in hexadecimal unless otherwise noted.

To  continue  with  our  discussion  of  segment:offset  addressing,
shifting  a  segment  value  left  4  bits  is  equivalent  to  shifting  it  left  1
hexadecimal  digit--one  reason  that  hexadecimal  is  a  useful  notation  for
memory addresses.      Put another way, if the segment is the hexadecimal
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value  ssss and the offset  is  the hexadecimal  value  xxxx,  then the 20-bit
memory address mmmmm is calculated as follows:

ssss0
      +    xxxx
      -------
      = mmmmm

For  example,  the  20-bit  memory  address  corresponding  to  23F0:1512  is
25412 (hex) arrived at as follows:

23F00
      +    1512
      -------
      = 25412

By the way,  it  happens that  the 8088 isn't  particularly  fast  at
calculating 20-bit addresses from segment:offset pairs. Although it only takes
the 8088's Bus Interface Unit 4 cycles to complete a memory access, the
fastest  memory-accessing  instruction  the  PC has  to  offer  (xlat)  takes  10
cycles to run. Other memory-accessing instructions take longer, some much
longer.      We'll  delve  into  the  implications  of  the  8088's  lack  of  memory-
access performance shortly.

Several  questions  should  immediately  leap  into  your  mind  if
you've never encountered segments and offsets before.      Where do these
odd beasts live?    What's to prevent more than one segment:offset pair from
pointing to the same 20-bit address? What happens when the sum of the two
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gets too large to fit in 20 bits?
To answer the first question first, segment values reside in the

four segment registers:    CS, DS, ES, and SS.    One (and only one) of these
four registers participates in calculating the address for almost every single
memory access the PC makes. (Interrupts are exceptions to this rule, since
interrupt vectors are read from fixed locations in the first 1 Kb of memory.)
Segments are, practically speaking, part of every memory access your code
will ever make.

CS is always used for code addresses, such as addresses involved
in  instruction  fetching  and  branching.      DS  is  usually  used  for  accessing
memory  operands;  most  instructions  can  use  any  segment  to  access
memory operands, but DS is generally the most efficient register for data
access.    SS is used for maintaining the stack, and is used to access data in
stack frames.      Finally,  ES is used to access data anywhere in the 8088's
address space; since it's not dedicated to any other purpose, it's useful for
pointing to rarely-used segments.    ES is particular useful in conjunction with
the  string  instructions,  as  we'll  see  in  Chapter  10.      In  Chapter  6  we
discussed exactly what sort of memory accesses operate relative to each
segment  register  by  default;  we'll  continue  that  discussion  later  in  this
chapter, and look at ways to override the default segment selections in some
cases.

Offsets are not so simple as segments.    The 8088 can calculate
offsets in a number of different ways, depending on the addressing mode
being  used.      Both  registers  and  instructions  can  contain  offsets,  and
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registers and/or constant values can be added together on the fly by the
8088  in  order  to  calculate  offsets.      In  various  addressing  modes,
components of offsets may reside in BX, BP, SI, DI, SP, and AL, and offset
components can be built into instructions as well.

We'll  discuss the loading and use of the segment registers and
the calculation and use of offsets below.    First, though, let's answer our two
remaining questions.

SEGMENT:OFFSET PAIRS AREN'T UNIQUE

In answer to question number two, "What's to prevent more than
one  segment:offset  pair  from  pointing  to  the  same  20-bit  address?"  the
answer is:      nothing.      There's no rule that says two segment:offset pairs
can't point to the same address, and in fact many segment:offset pairs do
evaluate to any given address--4096 segment:offset pairs for every address,
to be precise.    For example, the following segment:offset pairs all point to
the 20- bit address 00410:    0000:0410, 0001:0400, 0002:03F0, 0003:03E0,
and so on up to 0041:0000.

You  may  have  noticed  that  we've  only  accounted  for  42h
segment:offset  pairs,  not  4096  of  them,  and  that  leads  in  neatly  to  the
answer to our third and final question.    When the sum of a segment shifted
left 4 bits and an offset exceeds 20 bits, it wraps back around to address
00000.    Basically, any bits that carry out of bit 19 (into what would be bit 20
if the 8088 had 21 addressing bits) are thrown away.    The segment:offset
pair FFFF:0010 points to the address 00000 as follows:
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FFFF0
      +    0010
      -------
        100000
        ^
    carry

with the 1 that carries out of bit 19 discarded to leave 00000.
Now we can see what the other 4,000-odd segment:offset pairs

that  point  to  address  00410  are.      FFFF:0420  points  to  00410,  as  do
FFFE:0430,  F042:FFF0, and a host of  segment:offset pairs  in between.      I
doubt you'll want to take advantage of that knowledge (in fact, there is a
user-selectable trick that can be played on the 80286 and 80386 to disable
wrapping at FFFFF, so you shouldn't count on wrapping if you can help it),
but if you do ever happen to address past the end of memory, that's how it
works on the 8088.

GOOD NEWS AND BAD NEWS

Now that we know how segments and offsets work, what are the
implications for assembler programs?     The obvious implication is that we
can  address  1  Mb of  memory,  and  that's  good  news,  since  we  can  use
memory in myriad ways to improve performance.      For example, we'll see
how look-up tables can turn extra memory into improved performance later
in this chapter.    Likewise, in Chapter 13 we'll see how in-line code lets you
trade off bytes for performance.    Much of top-notch assembler programming
involves balancing memory requirements against performance, so the more
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memory we have available, the merrier.
The bad news is this:      while there's a lot of memory, it's only

available in 64 Kb chunks.    The four segment registers can only point to four
64 Kb segments at any one time, as shown in Figure 7-2.    If you want to
access a memory location that's not in any of the four currently pointed-to
segments, there is no way to do that with a single instruction.    You must first
load  a  segment  register  to  point  to  a  segment  containing  the  desired
memory  location,  a  process  which  takes  a  minimum  of  1  and  often  2
instructions.    Only then can you access the desired memory location.

Worse, there are problems dealing with blocks of memory larger
than 64 Kb, because there's no easy way to perform calculations involving
full 20-bit addresses, and because 64 Kb is the largest block of memory that
can be addressed by way of a single segment register without reloading the
segment register. It's easy enough to access a block up to 64 Kb in size;
point a register to the start of the block, and then point wherever you wish.
For example, the following bit of code would calculate the 16-bit sum of all
the bytes in a 64 Kb array:

mov bx,seg TestArray
mov ds,bx ;point to segment:offset of start of
mov bx,offset TestArray ;array to sum
sub cx,cx ;count 64 K bytes
mov ax,cx ;set initial sum to 0
mov dh,ah ;set DH to 0 for summing later

SumLoop:
mov dl,[bx] ;get the next array element
add ax,dx ;add the array element to the sum
inc bx ;point to the next array element
loop SumLoop
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Easy  enough,  eh?      Ah,  but  it  all  falls  apart  when  a  block  of
memory is larger than 64 Kb, or when a block crosses a segment boundary.
The problem is that in either of those cases the segment must change as
well as the offset, for there's simply no way for an offset to reach more than
64 K bytes  away from any given segment register  setting.      If  a  register
containing  an  offset  reaches  the  end  of  a  segment  (reaches  the  value
0FFFFh), then it simply wraps back to zero when it's incremented. Likewise,
the instruction sequence:

mov si,0ffffh
mov al,[si+1]

merely manages to load AL with the contents of offset 0. Basically, whenever
an offset exceeds 16 bits in size, the excess bits are ignored, just as the
excess bits are ignored when a segment:offset pair adds up to an address
past the 1 Mb overall limit on 8088 memory.

So we need to work with the whole segment:offset pair in order to
handle blocks larger than 64 Kb.    Is that such a problem?    Unfortunately,
the answer is  yes.      The 8088 has no particular  aptitude for  calculations
involving more than 16 bits, and is very bad at handling segments.    There's
no way to increment a segment:offset pair as a unit, and in fact there's no
way to modify a segment register other than copying it to a general-purpose
register, modifying that register, and copying the result back to the segment
register.    All in all, it's as difficult to work with blocks of memory larger than
64 Kb as it is easy to work with blocks no larger than 64 Kb.
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For example, here's typical code to calculate the 16-bit sum of a
128 Kb array, of the sort that a high-level language might generate (actually,
the  following  code is  a  good  deal  better than most  high-level  languages
would  generate,  but  what  the  heck,  let's  give  them  the  benefit  of  the
doubt!):

mov bx,seg TestArray
mov ds,bx ;point to segment:offset of start of
mov bx,offset TestArray ;array to sum
sub cx,cx ;count 128 K bytes with SI:CX
mov si,2
mov ax,cx ;set initial sum to 0
mov dh,ah ;set DH to 0 for summing later

SumLoop:
mov dl,[bx] ;get the next array element
add ax,dx ;add the array element to the sum
inc bx ;point to the next array element
and bx,0fh ;time to advance the segment?
jnz SumLoopEnd ;not yet
mov di,ds ;advance the segment by 1; since BX has
inc di ; just gone from 15 to 0, we've advanced
mov ds,di ; 1 byte in all

SumLoopEnd:
loop SumLoop ;count down 32-bit counter
dec si
jnz SumLoop

MORE GOOD NEWS

While the above is undeniably a mess, things are not quite so
grim as they might seem.    In fact, the news is quite good when it comes to
handling multiple segments in assembler.    For one thing, assembler is much
better  than  other  languages  at  handling  segments  efficiently.      Only  in
assembler do you have complete control over all your segments; that means
that you can switch the segments as needed in order to make sure that they
are pointing to the data you're  currently  interested in.      What's  more,  in
assembler you can structure your code and data so that it falls naturally into
64 Kb blocks, allowing most of your accesses at any one time to fall within
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the currently loaded segments.
In  high-level  languages  you  almost  always  suffer  both

considerable performance loss and significant increase in code size when you
start using multiple code or data segments, but in assembler it's possible to
maintain  near-peak  performance  even  with  many  segments.      In  fact,
segment-handling is one area in which assembler truly distinguishes itself,
and  we'll  see  examples  of  assembler's  fine  touch  with  segments  in  this
chapter, Chapter 14, and Volume II of The Zen of Assembly Language.

There's  one  more  reason  that  handling  multiple  code  or  data
segments  isn't  much  of  a  problem  in  assembler,  and  that's  that  the
assembler programmer knows exactly what his code needs to do and can
optimize accordingly.      For example, suppose that we know that the array
TestArray in the last example is guaranteed to start at offset 0 in the initial
data  segment.      Given  that  extra  knowledge,  we  can  put  together  the
following version of the above code to sum a 128 Kb array:

mov bx,seg TestArray
mov ds,bx ;point to segment:offset of start of
sub bx,bx ;array to sum, which we know starts

; at offset 0
mov cx,2 ;count two 64 Kb blocks
sub ax,ax ;set initial sum to 0
mov dh,ah ;set DH to 0 for summing later

SumLoop:
mov dl,[bx] ;get the next array element
add ax,dx ;add the array element to the sum
inc bx ;point to the next array element
jnz SumLoop ;until we wrap at the end of a 64 Kb block
mov si,ds
add si,1000h ;advance the segment by 64 K bytes
mov ds,si
loop SumLoop ;count off this 64 Kb block

Compare the code within the inner loop above to that in the inner
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loop of the previous version of this example--the difference is striking.    This
inner loop is every bit as tight as that of the code for handling blocks 64 Kb-
and-less  in  size;  in  fact,  it's  slightly  tighter,  as  jnz is  faster  than  loop.
Consequently, there shouldn't be much difference in performance between
the last example and the 64 Kb and less version. Nonetheless, a basic rule of
the Zen of assembler is that we should check our assumptions, so let's toss
the three approaches to summing arrays into the Zen timer and see what
comes out.

Listing 7-1 measures the time required to calculate the 16- bit
sum of a 64 Kb block without worrying about segments.    This code runs in
619 ms, or 9.4 us per byte summed.    (Note that Listings 7-1 through 7-3
must be timed with the long-period Zen timer--via LZTIME.BAT--since they
take more than 54 ms to run.)

Listing 7-2 measures the time required to calculate the 16- bit
sum of a 128 Kb block.    As is always the case with a memory block larger
than 64 Kb, segments must be dealt with, and that shows in the performance
of Listing 7-2:      2044 ms, or 15.6 us per byte summed.      In other words,
Listing 7-1,  which doesn't  concern itself  with  segments,  sums bytes  66%
faster than Listing 7-2.

Finally, Listing 7-3 implements 128 Kb-block-handling code that
takes advantage of the knowledge that the block of memory being summed
starts at offset 0 in the initial data segment. We've speculated that Listing 7-
3  should  perform  on  a  par  with  Listing  7-3,  since  their  inner  loops  are
similar...and the Zen timer bears that out, reporting that Listing 7-3 runs in
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1239 ms--9.5 us per byte summed.
Assumptions confirmed.

NOTES ON OPTIMIZATION

There are several points to be made about Listings 7-1 through 7-
3.      First,  these  listings  graphically  illustrate  that  you  should  focus  your
optimization efforts  on inner loops.  Listing 7-3 is  considerably  bigger and
more complex than Listing  7-1,  but  by moving the  complexity  and extra
bytes out of  the inner loop, we've managed to keep performance high in
Listing 7- 3.

Now, you may well object that in the process of improving the
performance of Listing 7-3, we've altered the code so that it will only work
under certain circumstances,  and that's my second point.      Truly general-
purpose code runs slowly, no matter whether it's written in assembler, C,
BASIC,  or  COBOL.      Your  advantage  as  a  programmer--and  your  great
advantage as an assembler programmer--is that you know exactly what your
code needs to do...so why write code that wastes cycles and bytes doing
extra work?     I  stipulated that the start offset was at 0 in the initial  data
segment, and Listing 7-3 is a response to that stipulation. If the conditions to
be met had been different, then we would have come up with a different
solution.

Do you see what I'm driving at?    I hope so, for it's central to the
Zen of assembler.    A key to good assembler code is to write lean code.    Your
code should do everything you need done-- and nothing more.
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I'll  finish  up  by  pointing  out  that  Listings  7-1  through  7-3  are
excellent examples of both the hazards of using memory blocks larger than
64 Kb and of the virtues of using assembler when you must deal with large
blocks.     It's rare that you'll be able to handle larger-than-64 Kb blocks as
efficiently as blocks that fit within a single segment; Listing 7-3 does take
advantage of a very convenient special case.    However, it's equally rare that
you won't be able to handle large blocks much more efficiently in assembler
than you ever could in a high-level language.

A FINAL WORD ON SEGMENT:OFFSET ADDRESSING

Let's review what we've learned about segment:offset addressing
and assembler.    The architecture of the 8088 limits us to addressing at most
four segments--64 Kb blocks of  memory--at any time, with each segment
pointed to by a different segment register.    Accessing data in a segment that
is  not  currently  pointed to by any segment register  is  a time-consuming,
awkward process, as is handling data that spans multiple blocks. Fortunately,
assembler is adept at handling segments, and gives us considerable freedom
to structure our programs so that we're usually working within the currently
loaded segments at any one time.

On  balance,  segment:offset  addressing  is  one  of  the  less
attractive features of the 8088.    For us, however, it's actually an advantage,
since  it  allows  assembler,  with  its  superb  control  over  the  8088,  to  far
outstrip high-level languages.    We won't deal with segments a great deal in
the  remainder  of  this  volume,  since  we'll  be  focusing  on  detailed
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optimizations, but the topic will come up from time to time.    In Volume II,
we'll tackle the subject of segment management in a big way.

The  remainder  of  this  chapter  will  deal  only  with  data
addressing--that  is,  the  addressing  of  instruction  operands.  Code
addressing--in the forms of instruction fetching and branching--is a very real
part of PC performance (heck, instruction fetching is perhaps the single most
important performance factor of all!), but it's also very different from the sort
of memory addressing we'll  be discussing.      We learned as much as we'll
ever need to know (and possibly more) about instruction fetching back in
Chapters 4 and 5, so we won't pursue that aspect of code addressing any
further.      However, Chapters 12 through 14 discuss code addressing as it
relates to branching in considerable detail.

SEGMENT HANDLING

Now that  we  know  what  segments  are,  let's  look  at  ways  to
handle the segment registers, in particular how to load them quickly.    What
we are not going to do is discuss the directives that let you create segments
and the storage locations within them.

Why not discuss the segment directives?     For one thing, there
are enough directives, segment and otherwise, to fill a book by themselves.
For another thing, there are already several such books, including both the
manuals that come with MASM and TASM and the other books in this series.
The Zen of  Assembly Language is  about  writing efficient  code,  not  using
MASM, so I'll assume you already know how to use the segment, ends, and
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assume directives to define segments and  db,  dw, and the like to create
and reserve storage.    If that's not the case, brush up before you continue
reading.      We'll  use  all  of  the  above  directives  in  The  Zen  of  Assembly
Language, and we'll discuss assume at some length later in this chapter, but
we won't spend time covering the basic functionality of the segment and
data directives.

WHAT CAN YOU DO WITH SEGMENT REGISTERS?    NOT MUCH

Segment  registers  are  by  no  means  as  flexible  as  general-
purpose registers.    What can't you do with segment registers that you can
do with general-purpose registers?    Let me answer that question by way of a
story.

There's a peculiar sort of "find the mistake" puzzle that's standard
fare in children's magazines.      Such puzzles typically consist of a drawing
with a few intentional mistakes (a farmer milking a donkey, for example--a
risky  proposition  at  best),  captioned,  "What's  wrong  with  this  picture?"
Invariably, the answer is printed upside down at the bottom of the page.

I dimly recall from my childhood a takeoff that MAD magazine did
on those puzzles.    MAD showed a picture in which everything-and I do mean
everything--was  wrong.      Just  as  with  the  real  McCoy,  this  picture  was
accompanied by the caption, "What's wrong with this picture?", and by the
answer at the bottom of the page.

In  MAD,  the  answer  was:      "Better  yet,  what's  right with  this
picture?"
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Segment registers are sort of like MAD's puzzles.    What can't you
do with  segment  registers?      Better  yet,  what  can you  do  with  segment
registers?    Well, you can use them to address memory--and that's about it.

Any segment register can be copied to a general-purpose register
or memory location.      Any segment register other than CS can be loaded
from a general-purpose register or memory location. Any segment register
can be pushed onto the stack,  and any segment register  but  CS can be
popped from the stack.

And that's all.
Segment registers can't be used for arithmetic.      They can't be

operands to logical  instructions,  and they can't  take part  in comparisons.
One  segment  register  can't  even  be  copied  directly  to  another  segment
register.      Basically, segment registers can't do a blessed thing except get
loaded and get copied to a register or memory.

Now, there are reasons why segments are so hard to work with.
For  one  thing,  it's  not  all  that  important  that  segment  registers  be
manipulated quickly.    Segment registers aren't changed as often as general-
purpose registers--at least, they shouldn't be, if you're interested in decent
performance. Segment registers rarely need to be manipulated arithmetically
or logically, and when the need does arise, they can always be copied to
general-purpose  registers  and  manipulated  there.  Nonetheless,  greater
flexibility  in  handling segment registers  would  be nice;  however,  a major
expansion of the 8088's instruction set--requiring additional circuitry inside
the 8088-- would have been required in order to allow us to handle segment
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registers like general-purpose registers, and it seems likely that the 8088's
designers had other, higher-priority uses for their limited chip space.

There's  another reason why segments can only be loaded and
copied, nothing else, and it has to do with the protected mode of the 80286
and 80386 processors.    Protected mode, which we'll return to at a bit more
length in Chapter 15, is a second mode of the 80286 and 80386 that's not
compatible with either MS-DOS or the 8088, but which makes much more
memory available for program use than the familiar 1 Mb of MS-DOS/8088-
compatible real mode.

In protected mode, the segment registers don't contain memory
addresses; instead, they contain segment selectors, which the 80286 and
80386 use to look up the actual segment information--location and attributes
such as writability--in a table.    Not only would it make no sense to perform
arithmetic  and  the  like  on  segment  selectors,  since  selectors  don't
correspond  directly  to  memory  addresses,  but  because  the  segment
registers are central  to the memory protection scheme of the 80286 and
80386,  they  simply  cannot be  loaded  arbitrarily--the  80286  and  80386
literally don't allow that to happen by instantly causing a trap whenever an
invalid selector is loaded.

What's more, it can take quite a while to load a segment register
in protected mode.    In real mode, moves to and from segment registers are
just as fast as transfers involving general-purpose registers, but that's not
the case in protected mode.    For example, mov es,ax takes 2 cycles in real
mode and 17 cycles in protected mode.
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Given all of the above, all you'd generally want to do in protected
mode  is  load  the  segment  registers  with  known-good  segment  selectors
provided to you by the operating system.     That doesn't affect real mode,
which is all we care about, but since real mode and protected mode share
most instructions, the segment-register philosophy of protected mode (which
Intel no doubt had as a long-range goal even before they designed the 8088)
carries over to real mode.

And now you know why the 8088 offers so little in the way of
segment-register manipulation capability.

USING SEGMENT REGISTERS FOR TEMPORARY STORAGE

That brings us to another interesting point:    the use of segment
registers  for  temporary storage.      The 8088 has just  7 available  general-
purpose registers (remember,  we can't  use SP for anything but the stack
most  of  the  time),  and  sometimes  it  would  be  awfully  handy  to  have
somewhere  to  store  a  16-bit  value  for  a  little  while.      Can  we  use  the
segment registers for that purpose?

Some people would answer that "No," because code that uses
segments for temporary storage can't easily be ported to protected mode.    I
don't buy that, for reasons I'll explain when we get to  les.     My answer is
"Yes...when  they're  available."      Two  of  the  segment  registers  are  never
available, one is occasionally available, and one may or may not be readily
available, depending on your code.

Some segments are always in use.    CS is always busy pointing to
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the segment of the next instruction to be executed; if you were to load CS
with an arbitrary value for even 1 instruction, your program would surely
crash.      Clearly,  it's  not  a  good  idea  to  use  CS  for  temporary  storage.
(Actually, this isn't even a potential problem, as Intel has thoughtfully not
implemented the instructions--mov and  pop--that  might  load CS directly;
MASM will simply generate an error if you try to assemble pop cs or mov cs,

[mem16].    CS can only be loaded by far branches:    far calls, far returns, far
jumps, and interrupts.)

SS isn't in use during every cycle as CS is, but unless interrupts
are off, SS  might be used on any cycle.      Even if  interrupts are off, non-
maskable interrupts can occur, and of course your code will often use the
stack directly.    The risks are too great, the rewards too few.    Don't use SS
for temporary storage.

DS  can  be  used  for  temporary  storage  whenever  it's  free.
However, DS is usually used to point to the default data segment. It's rare
that you'll have a tight loop in which memory isn't accessed (it's not worth
bothering  with  such  optimizations  outside  the  tightest,  most  time-critical
code),  and  memory  is  usually  most  efficiently  accessed  via  DS.      There
certainly are loops in which DS is free--loops which use  scas to scan the
segment  pointed  to  by  ES,  for  example--but  such  cases  are  few and  far
between.      Far more common is the case in which DS is saved and then
pointed to another segment, as follows:

push ds ;preserve normal DS setting
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mov bx,seg TestArray
mov ds,bx ;point DS:BX to array in which
mov bx,offset TestArray ; to flip all bits
mov cx,TEST_ARRAY_LENGTH ;# of bytes to flip

FlipLoop:
not byte ptr [bx] ;flip all bits in current byte
inc bx ;point to next byte
loop FlipLoop
pop ds ;restore normal DS setting

This approach allows instructions within the loop to access memory without
the segment override prefix required when ES is used.    (More on segment
override prefixes shortly.)

In short, feel free to use DS for temporary storage if it's free, but
don't expect that to come up too often.

Which brings us to the use of ES for temporary storage.    ES is by
far  the  best  segment  register  to  use  for  temporary  storage;  not  being
dedicated to any full-time function, it's usually free for any sort of use at all,
including temporary storage.

Let's  look  at  an  example  of  code  that  uses  ES  for  temporary
storage to good effect.      This sample code sums selected points in a two-
dimensional word-sized array.      Let's start by tallying up the registers this
code will use.    (A bit backwards, true, but we're focusing on the use of ES for
temporary storage at the moment, and this is the best way to go about it.)

In the sample code, the list of subscripts of points to be added in
the major dimension will  be stored at DI, and the list of subscripts in the
minor dimension will stored at BX.    CX will contain the number of points to
be summed, and BP will contain the final sum.    AX and DX will be used for
multiplying, and, as usual, SP will  be used to point to the stack.      Finally,
when the code begins, SI will contain the offset of the start of the array.
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Let's  see...that  covers  all  eight  general-purpose  registers.
Unfortunately, we need yet another storage location, this one to serve as a
working pointer into the array.     There are many possible solutions to this
problem, including using the xchg instruction (which we'll cover in the next
chapter),  storing  values  in  memory  (slow),  pushing  and  popping  SI  (also
slow), or disabling interrupts and using SP (can unduly delay interrupts and
carries some risk).      Instead, here's a solution that uses ES for temporary
storage; it's not necessarily the best solution, but it does nicely illustrate the
use of ES for temporary storage:

;
; Sums selected points in a two-dimensional array.
;
; Input:
; BX = list of minor dimension coordinates to sum
; CX = number of points to sum
; DS:SI = start address of array
; DI = list of major dimension coordinates to sum
;
; Output:
; BP = sum of selected points
;
; Registers altered: AX, BX, CX, DX, SI, DI, BP, ES
;

mov es,si ;set aside the array start offset
sub bp,bp ;initialize sum to 0

TwoDimArraySumLoop:
mov ax,ARRAY_WIDTH ;convert the next major dimension
mul word ptr [di] ;coordinate to an offset in the array

; (wipes out DX)
add ax,[bx] ;add in the minor dimension coordinate
shl ax,1 ;make it a word-sized lookup
mov si,es ;point to the start of the array
add si,ax ;point to the desired data point
add bp,[si] ;add it to the total
inc di ;point to the next major dimension coordinate
inc di
inc bx ;point to the next minor dimension coordinate
inc bx
loop TwoDimArraySumLoop

If  you find yourself running out of registers in a tight loop and
you're not using the segment pointed to by ES, by all means reload one of
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your registers from ES if that will help.

SETTING AND COPYING SEGMENT REGISTERS

As  I've  said,  loading  segment  registers  is  one  area  in  which
assembler  has  a  tremendous  advantage  over  high-level  languages.  High-
level languages tend to use DS to point to a default data segment all the
time,  loading  ES  every  single  time  any  other  segment  is  accessed.      In
assembler, we can either load a new segment into DS as needed, or we can
load  ES  and  leave  it  loaded  for  as  long  as  we  need  to  access  a  given
segment.

We'll see examples of efficient segment use throughout The Zen
of Assembly Language, especially when we discuss strings, so I'm not going
to go into more detail here.    What I am going to do is discuss the process of
loading segment registers, because it is by no means obvious what the most
efficient segment-loading mechanism is.

For  starters,  let's  divide  segment  loading  into  two  categories:
setting and copying.    Segment setting refers to loading a segment register
to point to a certain segment, while segment copying refers to loading a
segment register with the contents of another segment register.    I'm making
this distinction because the instruction sequences used for the two sorts of
segment loading differ considerably.

Let's tackle segment copying first.      Segment copying is useful
when you want two segment registers to point to the same segment.    For
example, you'll want ES to point to the same segment as DS if you're using
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rep movs to copy data within the segment pointed to by DS, because DS
and ES are the default source and destination segments, respectively, for
movs.    There are two good ways to load ES to point to the same segment as
DS,  given  that  we  can't  copy  one  segment  register  directly  to  another
segment register:

push ds
pop es

and:

mov ax,ds
mov es,ax

(Any general-purpose register would serve as well as AX.)
Each of the above approaches has its virtues.      The  push/pop

approach  is  extremely  compact,  at  just  2  bytes,  and  affects  no  other
registers.    Unfortunately, it takes a less-than-snappy 27 cycles to run.    By
contrast,  the  mov/mov approach officially  takes  just  4  cycles  to  run;  16
cycles (4 bytes at 4 cycles to fetch each byte) is a more realistic figure, but
either way, mov/mov is clearly faster than push/pop.    On the other hand,
mov/mov takes  twice  as  many  bytes  as  push/pop,  and  destroys  the
contents of a general-purpose register as well.

There's no clear winner here.      Use the  mov/mov approach to
copy segment registers when you're interested in speed and can spare a
general-purpose  register,  and  use  the  push/pop approach  when  bytes
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and/or registers are at a premium.     I'll use both approaches in this book,
generally  using  push/pop in  non-time- critical  code and  mov/mov when
speed really counts.    Why waste the bytes when the cycles don't matter?

That  brings  us  to  an  important  point  about  assembler
programming.    There is rarely such a beast as the "best code" in assembler;
instead, there's code that's good in a given context. In any situation, the
choice between fast code, small code, understandable code, portable code,
maintainable code, structured code, and whatever other sort of code you can
dream up is purely up to you.    If you make the right decisions, your code will
beat high-level language code hands down, because you know more about
your  code  and  can  think  far  more  flexibly  than  any  high-level  language
possibly can.

Now  let's  look  at  ways  to  set  segment  registers.      Segment
registers can't  be loaded directly with a segment value,  but they can be
loaded either through a general-purpose register or from memory.    The two
approaches aren't always interchangeable:    one requires that the segment
name be available as an immediate operand, while the other requires that a
memory variable be set to the desired segment value.     Nonetheless, you
can generally set things up so that either approach can be used, if you really
want to--so which is best?

Well,  loading  a  segment  register  through  a  general-purpose
register, as in:

mov ax,DATA
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mov es,ax

officially takes 6 cycles.       Since the two instructions together are 5 bytes
long, however, this approach could take as much a 20 cycles if the prefetch
queue is empty.    By contrast, loading from memory, as in:

mov es,[DataSeg]

officially takes only 18 cycles, is only 4 bytes long, and doesn't destroy a
general-purpose register.      (Note that the last approach assumes that the
memory variable  DataSeg has previously been set to point to the desired
segment.)    Loading from memory sounds better, doesn't it?

It isn't.
Remember, it's  not just the number of instruction byte fetches

that affects performance--it's the number of memory accesses of all sorts.
When a segment register is loaded from memory, 2 memory accesses are
performed to read the segment value; together with the 4 instruction bytes,
that means that 6 memory accesses in all are performed when a segment
register is loaded from memory.    What that means is that loading a segment
register from memory takes anywhere from 18 to 24 (6 memory accesses at
4 cycles per access) cycles, which stacks up poorly against the 6 to 20 cycles
required to load a segment register through a general-purpose register.

In  short,  it's  clearly  fastest  to  load  segment  registers  through
general-purpose registers.
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That's not to say that there aren't times when you'll want to load
a segment register directly from memory.    If you're really tight on space, you
can save a byte every time you load a segment by using the 4-byte load
from  memory  rather  than  the  5- byte  load  through  a  general-purpose
register.      (This  is  only  worthwhile  if  there  are  multiple  segment  load
instructions,  since  the  memory  variable  containing  the  segment  address
takes 2 bytes.)    Also, if the segment you want to work with varies as your
program runs (for example, if your code can access either display memory or
a display buffer  in  system RAM),  then loading the segment register  from
memory is the way to go.    The following code is clearly the best way to load
ES to point to a display buffer that may be at any of several segments:

mov es,[DisplayBufferSegment]

Here,  DisplayBufferSegment is set externally to point to the segment in
which all screen drawing should be performed at any given time.

Finally,  segments  are often passed as stack frame parameters
from high-level  languages  to  assembler  subroutines--to  point  to  far  data
buffers and the like--and in those cases segments can best be loaded directly
from stack frames into segment registers. (We'll discuss stack frames later in
this chapter.)    It's easy to forget that segments can be loaded directly from
any addressable memory location, as we'll see in Chapter 16; all too many
people load segments from stack frames like this:
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mov ax,[bp+BufferSegment]
mov es,ax

when the following is shorter, faster, and doesn't use any general-purpose
registers:

mov es,[bp+BufferSegment]

As it happens, though, lone segment values are rarely passed as
stack frame parameters.     Instead, segment:offset pairs that provide a full
20-bit pointer to a specific data element are usually passed.    These can be
loaded as follows:

mov es,[bp+BufferSegment]
mov di,[bp+BufferOffset]

However, the designers of the 8088 anticipated the need for loading 20-bit
pointers, and gave us two most useful instructions for just that purpose:    lds

and les.

LOADING 20-BIT POINTERS WITH lds AND les

lds loads  both DS and any one general-purpose register from a
doubleword  of  memory,  and  les similarly  loads  both ES  and  a  general-
purpose register, as shown in Figure 7-3.
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While  both  instructions  are  useful,  les is  by  far  the  more
commonly used of the two.    Since most programs leave DS pointing to the
default data segment whenever possible, it's rare that we'd want to load DS
as part of a segment:offset pointer.    True, it does happen, but generally only
when we want  to  point  to  a  block  of  far  memory  temporarily  for  faster
processing in a tight loop.

ES,  on  the  other  hand,  is  the  segment  of  choice  when  a
segment:offset pointer is needed, since it's not generally reserved for any
other purpose.      Consequently,  les is  usually used to load segment:offset
pointers.

lds and les actually don't come in for all that much use in pure
assembler  programs.      The  reason  for  that  is  that  efficient  assembler
programs tend to be organized so that segments rarely need to be changed,
and so such programs tend to work with 16-bit pointers most of the time.
After all, while lds and les are efficient considering all they do, they're still
slow, with official execution times of at least 29 cycles.    If you need to load
segment:offset  pointers,  use  lds and  les,  but  try  to  load  just  offsets
whenever you can.

One place where there's no way to avoid loading segments is in
assembler code that's called from a high-level language, especially when the
large data model (the model that supports more than 64 Kb of data) is used.
When  a  high-level  language  passes  a  far  pointer  as  a  parameter  to  an
assembler subroutine, the full 20-bit pointer must be loaded from memory
before it can be used, and there lds and les work beautifully.
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Suppose that we have a C statement that calls  the assembler
subroutine AddTwoFarInts as follows:

int Sum;
int far *FarPtr1, far *FarPtr2;
:

Sum = AddTwoFarInts(FarPtr1, FarPtr2);

AddTwoFarInts could be written without les as follows:

Parms struc
dw ? ;pushed BP
dw ? ;return address

Ptr1Offset dw ?
Ptr1Segment dw ?
Ptr2Offset dw ?
Ptr2Segment dw ?
Parms ends
;
AddTwoFarInts proc near

push bp ;save caller's BP
mov bp,sp ;point to stack frame
mov es,[Ptr1Segment] ;load segment part of Ptr1
mov bx,[Ptr1Offset] ;load offset part of Ptr1
mov ax,es:[bx] ;get first int to add
mov es,[Ptr2Segment] ;load segment part of Ptr2
mov bx,[Ptr2Offset] ;load offset part of Ptr2
add ax,es:[bx] ;add the two ints together
pop bp ;restore caller's BP
ret

AddTwoFarInts endp

The subroutine is considerably more efficient when les is used, however:

Parms struc
dw ? ;pushed BP
dw ? ;return address

Ptr1 dd ?
Ptr2 dd ?
Parms ends
;
AddTwoFarInts proc near

push bp ;save caller's BP
mov bp,sp ;point to stack frame
les bx,[Ptr1] ;load both segment and offset of Ptr1
mov ax,es:[bx] ;get first int to add
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les bx,[Ptr2] ;load both segment and offset of Ptr2
add ax,es:[bx] ;add the two ints together
pop bp ;restore caller's BP
ret

AddTwoFarInts endp

(We'll talk about struc, stack frames, and segment overrides-- such as es:--
later in this chapter.)

High-level languages use  les all the time to point to data that's
not in the default data segment, and that hurts performance significantly.
Most high-level  languages aren't very smart about using  les,  either.      For
example, high-level languages tend to load a full 20-bit pointer into ES:BX
every time through a loop, even though ES never gets changed from the last
pass through the loop.    That's one reason why high-level languages don't
perform very well with more than 64 Kb of data.

You can usually easily avoid les-related performance problems in
assembler.      Consider Listing 7-4, which adds one far array to another far
array in the same way that most high-level languages would, storing both far
pointers in memory variables and loading each pointer with les every time
it's  used.  (Actually,  Listing  7-4  is  better  than  your  average  high-level
language subroutine because it uses loop, while most high-level languages
use less efficient instruction sequences to handle looping.)    Listing 7-4 runs
in 43.42 ms, or 43 us per array element addition.

Now look at Listing 7-5, which does exactly the same thing that
Listing 7-4 does...except that it loads the far pointers  outside the loop and
keeps them in the registers for the duration of the loop, using the segment-
loading  techniques  that  we  learned  earlier  in  this  chapter.      How  much
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difference does it  make to keep the far pointers in registers at all times?
Listing 7-5 runs in 19.69 ms--more than twice as fast as Listing 7-4.

Now you  know why  I  keep  saying  that  assembler  can  handle
segments much better than high-level languages can.    Listing 7-5 isn't the
ultimate in that regard, however; we can carry that concept a step further
still, as shown in Listing 7-6.

Listing 7-6 brings the full power of assembler to bear on the task
of adding two arrays.    Listing 7-6 sets up the segments so that they never
once need to be loaded within the loop. What's more, Listing 7-6 arranges
the registers so that the powerful  lodsb string instruction can be used in
place of a mov and an inc.    (We'll discuss the string instructions in Chapter
10.    For now, just take my word that the string instructions are good stuff.)
In short, Listing 7-6 organizes segment and register usage so that as much
work as possible is moved out of the loop, and so that the most efficient
instructions can be used. The results are stunning.

Listing 7-6 runs in just 13.79 ms, more than three times as fast as
Listing  7-4,  even  though  Listing  7-4  uses  the  efficient  loop and  les

instructions.    This example is a powerful reminder of two important aspects
of the Zen of assembler.    First, you must strive to play to the strengths of
the 8088 (such as the string instructions) while sidestepping its weaknesses
(such as the segments and slow memory access speed).    Second, you must
always  concentrate  on  moving  cycles  out  of  loops.      The  lds and  les

instructions outside the loop in Listing 7-6 effectively run 1000 times faster
than the  les instructions inside the loop in Listing 7-4, since the latter are
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executed 1000 times but the former are executed only once.

LOADING DOUBLEWORDS WITH les

While les isn't often used to load segment:offset pointers in pure
assembler programs, it  has another less obvious use: loading doubleword
values into the general-purpose registers.

Normally, a doubleword value is loaded into two general- purpose
registers with two instructions.    Here's the standard way to load DX:AX from
the doubleword memory variable DVar:

mov ax,word ptr [DVar]
mov dx,word ptr [DVar+2]

There's nothing wrong with this approach, but it does take between 4 and 8
bytes and between 34 and 48 cycles.    We can cut the time nearly in half,
and can usually reduce the size as well, by using les in a most unusual way:

les ax,[DVar]
mov dx,es

The only disadvantage of using les to load doubleword values is that it wipes
out the contents of ES; if that isn't a problem, there's simply no reason to
load doubleword values any other way.

Once again, there are those people who will tell you that it's a
bad idea to load ES with anything but specific segment values, because such
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code won't work if you port it to run in protected mode on the 80286 and
80836.    While that's a consideration, it's not an overwhelming one.    For one
thing,  most  code will  never be ported to  protected mode.      For  another,
protected mode programming, which we'll  touch on in Chapter 15, differs
from normal 8088 assembler programming in a number of ways; using les to
load doubleword values is unlikely to be the most difficult part of porting
code to protected mode, especially if you have to rewrite the code to run
under a new operating system.    Still, if protected mode concerns you, use a
macro such as:

LOAD_32_BITS macro Address
ifdef PROTECTED_MODE

mov ax,word ptr [Address]
mov dx,word ptr [Address+2]

else
les ax,dword ptr [Address]
mov dx,ax

endif
endm
:

LOAD_32_BITS DwordVar

to load 32-bit values.
The  les approach to loading doubleword values is not only fast

but has a unique virtue:    it's indivisible.    In other words, there's no way an
interrupt can occur after the lower word of a doubleword is read but before
the upper word is read.    For example, suppose we want to read the timer
count the BIOS maintains at 0000:046C.    We could read the count like this:

sub ax,ax
mov es,ax
mov ax,es:[46ch]
mov dx,es:[46eh]
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There's a problem with this code, though.     Every 54.9 ms, the
timer generates an interrupt which starts the BIOS timer tick handler.    The
BIOS handler then increments the timer count.    If an interrupt occurs right
after  mov ax,es:[46ch] in the above code--before mov dx,es:[46eh] can
execute--we would read half of the value before it's advanced, and half of the
value after it's advanced.    If this happened as an hour or a day turned over,
we could conceivably read a count that's seriously wrong, with potentially
disastrous  implications  for  any  program  that  relies  on  precise  time
synchronization.    Over time, such a misread of the timer is bound to happen
if we use the above code.

We could solve the problem by disabling interrupts while we read
the count:

sub ax,ax
mov es,ax
cli
mov ax,es:[46ch]
mov dx,es:[46eh]
sti

but there's a better solution.    There's no way  les can be interrupted as it
reads a doubleword value, so we'll just load our doubleword thusly:

sub ax,ax
mov es,ax
les ax,es:[46ch]
mov dx,es
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This  last  bit  of  code  is  shorter,  faster,  and  uninterruptible--in
short, it's perfect for our needs.    In fact, we could have put les to good use
reading  the  BIOS timer  count  in  the  long-period  Zen  timer,  way  back  in
Listing 2-5.    Why didn't I use it there?    The truth is that I didn't know about
using  les to load doublewords when I wrote the timer (which just goes to
show that there's always more to learn about the 8088).    When I did learn
about loading doublewords with les, it didn't make any sense to tinker with
code  that  worked  perfectly  well  just  to  save  a  few  bytes  and  cycles,
particularly because the timer count load isn't time-critical.

Remember, it's only worth optimizing for speed when the cycles
you save make a  significant  difference...which  usually  means  inside  tight
loops.

SEGMENT:OFFSET AND BYTE ORDERING IN MEMORY

Our discussion of les brings up the topic of how multi-byte values
are stored in memory on the 8088.    That's an interesting topic indeed; on
occasion we'll need to load just the segment part of a 20-bit pointer from
memory, or we'll want to modify only the upper byte of a word variable.    The
answer  to  our  question  is  simple  but  by  no  means  obvious:      multi-byte
values  are  always  stored  with  the  least-significant  byte  at  the  lowest
address.

For example, when you execute mov ax,[WordVar], AL is loaded
from address  WordVar,  and  AH is  loaded from address  WordVar+1,  as
shown in Figure 7-4.    Put another way, this:
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mov ax,[WordVar]

is logically equivalent to this:

mov al,byte ptr [WordVar]
mov ah,byte ptr [WordVar+1]

although the single-instruction version is much faster and smaller.    All word-
sized values (including address  displacements,  which we'll  get to shortly)
follow this least-significant-byte- first memory ordering.

Similarly,  segment:offset  pointers  are  stored  with  the  least-
significant  byte  of  the  offset  at  the  lowest  memory  address,  the  most-
significant byte of the offset next, the least- significant byte of the segment
after  that,  and the  most- significant  byte  of  the  segment  at  the  highest
memory address, as shown in Figure 7-5.    This:

les dx,dword ptr [FarPtr]

is logically equivalent to this:

mov dx,word ptr [FarPtr]
mov es,word ptr [FarPtr+2]

which is in turn logically equivalent to this:
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mov dl,byte ptr [FarPtr]
mov dh,byte ptr [FarPtr+1]
mov al,byte ptr [FarPtr+2]
mov ah,byte ptr [FarPtr+3]
mov es,ax

This  organization applies to all  segment:offset values stored in
memory,  including return  addresses placed on the  stack by  far  calls,  far
pointers used by far indirect calls, and interrupt vectors.

There's nothing sacred about having the least-significant byte at
the lowest address; it's just the approach Intel chose. Other processors store
values  with  most-significant  byte  at  the  lowest  address,  and  there's  a
sometimes heated debate about which memory organization is better.    That
debate is of no particular interest to us; we'll be using an Intel chip, so we'll
always be using Intel's least-significant-byte-first organization.

So, to load just the segment part of the 20-bit pointer  FarPtr,
we'd use:

mov es,word ptr [FarPtr+2]

and to increment only the upper byte of the word variable  WordPtr, we'd
use:

inc byte ptr [WordVar+1]
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Remember that the least-significant byte of any value (the byte
that's closest to bit  0 when the value is loaded into a register) is always
stored at the lowest memory address, and that offsets are stored at lower
memory addresses than segments, and you'll be set. 
LOADING SS

I'd like to take a moment to remind you that SP must be loaded
whenever  SS  is  loaded,  and  that  interrupts  should  be  disabled  for  the
duration of the load, as we discussed in the last chapter.    It would have been
handy if Intel had given us an lss instruction, but they didn't.    Instead, we'll
load SS and SP with code along the lines of:

cli
mov ss,[NewSS]
mov sp,[NewSP]
sti

EXTRACTING SEGMENT VALUES WITH THE seg DIRECTIVE

Next, we're going to look very quickly at a MASM operator and a
MASM directive.      As I've said,  this is  not a book about MASM, but these
directives are closely related to the efficient use of segments.

The seg operator returns the segment within which the following
symbol  (label  or  variable  name)  resides.      In  the  following  code,  seg

WordVar returns the segment Data, which is then loaded into ES and used
to assume ES to that segment:

Data segment



Abrash/Zen:    Chapter 7/

WordVar dw 0
Data ends
Code segment

assume cs:Code, es:Nothing
:

mov ax,seg WordVar
mov es,ax
assume es:seg WordVar
:

Code ends

You may well  ask why it's  worth bothering with  seg,  when we
could simply have used the segment name  Data instead.      The answer is
that you may not know or may not have direct access to the segment name
for variables that are declared in other modules. For example, suppose that
WordVar were external in our last example:

extrn WordVar:word
Code segment

assume cs:Code, es:Nothing
:

mov ax,seg WordVar
mov es,ax
assume es:seg WordVar
:

Code ends

This code still returns the segment of  WordVar properly, even though we
don't necessarily have any idea at all as to what the name of that segment
might be.

In short,  seg makes it easier to work with multiple segments in
multi-module programs.
JOINING SEGMENTS

Selected  assembler  modules  can  share  the  same  code  and/or
data segments even when multiple code and data segments are used. In
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other  words,  in  assembler  you  can  choose  to  share  segments  between
modules or not as you choose, by contrast with high-level languages, which
generally force you to choose between all or no modules sharing segments.
(This is not always the case, however, as we'll see in Chapter 14.)

The  mechanism  for  joining  or  separating  segments  is  the
segment directive.      If  each of two modules has a segment of the same
name, and if those segments are created as public segments (via the public

option to the segment directive), then those segments will be joined into a
single, shared segment.    If the segments are code segments, you can use
near calls (faster and smaller than far calls) between the modules.    If the
segments are data segments, then there's no need for one module to load
segment registers in order to access data in the other module.

All  in  all,  shared segments  allow multiple-module  programs to
produce code that's as efficient as single-module code, with the segment
registers changed as infrequently as possible.    In the same program in which
multiple modules share a given segment, however, other modules--or even
other parts of the same modules-- may share segments of different names,
or may have segments that are private (unique to that module).    As a result,
assembler programs can strike an effective balance between performance
and available memory:      efficient offset-only addressing most of the time,
along with access to as many segments and as much memory as the PC can
handle on an as-needed basis.

There are many ways to join segments, including grouping them
and declaring them common, and there are many options to the  segment
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directive.    We need to get on with our discussion of memory addressing, so
we won't  cover  MASM's  segment-related directives  further,  but  I  strongly
suggest that you carefully read the discussion of  those directives in your
assembler's  manual.      In  fact,  you  should  make  it  a  point  to  read  your
assembler's manual cover to cover--it may not be the most exciting reading
around, but I guarantee that there are tricks and tips in there that you'll find
nowhere else.

While we won't discuss MASM's segment-related directives again,
we will explore the topic of effective segment use again in Chapter 10 (as it
relates to the string instructions), Chapter 14 (as it relates to branching), and
in Volume II of The Zen of Assembly Language.

SEGMENT OVERRIDE PREFIXES

As we saw in Chapter 6, all memory accesses default to accessing
memory relative to one of the four segment registers. Instructions come from
CS, stack accesses and memory accesses that use BP as a pointer occur
within SS, string instruction accesses via DI are in ES, and everything else is
normally in DS. In some--but by no means all--cases, segments other than
the default segments can be accessed by way of segment override prefixes,
special bytes that can precede--prefix--instructions in order to cause those
instructions to use any one of the four segment registers.

Let's  start  by  listing  the  types  of  memory  accesses  segment
override  prefixes  can't affect.      Instructions  are  always  fetched  from CS;
there's no way to alter that.    The stack pointer is always used as a pointer
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into  SS,  no  matter  what.      ES  is  always  the  segment  to  which  string
instruction  accesses  via  DI  go,  regardless  of  segment  override  prefixes.
Basically,  it's  accesses  to  explicitly  named  memory  operands  and  string
instruction accesses via SI that are affected by segment override prefixes.
(The  segment  accessed  by  the  unusual  xlat instruction,  which  we'll
encounter later in this chapter, can also be overridden.)

The  default  segment  for  a  memory  operand  is  overridden  by
placing  the  prefix  CS:,  DS:,  ES:,  or  SS: on  that  memory  operand.  For
example:

sub bx,bx
mov ax,es:[bx]

loads AX with the word at offset 0 in ES, as opposed to:

sub bx,bx
mov ax,[bx]

which loads AX with the word at offset 0 in DS. Segment  override  prefixes
are handy in a number of situations.    They're good for accessing data out of
CS when you're not sure where DS is pointing, or when DS is temporarily
pointing to some segment that doesn't contain the data you want. (CS is the
one segment upon whose setting you can absolutely rely at any given time,
since you know that if  a given instruction is being executed, CS  must be
pointing to the segment containing that instruction.    Consequently, CS is a
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good place to put  jump tables and temporary variables in  multi-segment
programs,  and is  a particularly  handy segment in  which to stash data in
interrupt  handlers,  which  start  up with  only  CS among the  four  segment
registers set to a known value.)

In  many  programs,  especially  those  involving  high-level
languages,  DS  and  SS  normally  point  to  the  same  segment,  since  it's
convenient to have both stack frame variables and static/global variables in
the same segment.    When that's the case, ss: prefixes can be used to point
to data in the default data segment when DS is otherwise occupied.    Even
when  SS  doesn't  point  to  the  default  data  segment,  segment  override
prefixes still let you address data on the stack using pointer registers other
than BP.

Segment override prefixes are particularly handy when you need
to access data in two to four segments at once.    Suppose, for example, that
we need to add two far word-sized arrays together and store the resulting
array in the default data segment.    Assuming that SS and DS both point to
the  default  data  segment,  segment  override  prefixes  let  us  keep  all  our
pointers and counters in the registers as we add the arrays, as follows:

push ds ;save normal DS
les di,[FarPtr2] ;point ES:DI to one source array
mov bx,[DestPtr] ;point SS:BX to the destination array
mov cx,[AddLength] ;array length
lds si,[FarPtr1] ;point DS:SI to the other source array
cld ;make LODSW count up

Add3Loop:
lodsw ;get the next entry from one array
add ax,es:[di] ;add it to the other array
mov ss:[bx],ax ;save the sum in a third array
inc di ;point to the next entries
inc di
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inc bx
inc bx
loop Add3Loop
pop ds ;restore normal DS

Had we needed to, we could also have stored data in CS by using cs:.
Handy as segment override prefixes are, you shouldn't use them

too heavily if you can help it.    They're fine for one-shot instructions such as
branching through a jump table in CS or retrieving a byte from the BIOS data
area by way of ES, but they're to be avoided whenever possible inside tight
loops.     The reason:      segment override prefixes officially take 2 cycles to
execute and, since they're 1 byte long, they can actually take up to 4 cycles
to fetch and execute--and 4 cycles is a significant amount of time inside a
tight loop.

Whenever you can, organize your segments outside loops so that
segment  override  prefixes  aren't  needed  inside  loops.      For  example,
consider Listing 7-7, which uses a segment override prefix while stripping the
high bit of every byte in an array in the segment addressed via ES.    Listing
7-7 runs in 2.95 ms.

Now consider Listing 7-8, which does the same thing as Listing 7-
7, save that DS is set to match ES outside the loop. Since DS is the default
segment for the memory accesses we perform inside the loop, there's no
longer  any  need  for  a  segment  override  prefix...and  that  one  change
improves performance by nearly 14%, reducing total execution time to 2.59
ms.

The lesson is clear:    don't use segment override prefixes in tight
loops unless you have no choice.
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assume AND SEGMENT OVERRIDE PREFIXES

Segment override prefixes can find their way into your code even
if  you don't  put them there,  courtesy of  the assembler  and the  assume

directive.    assume tells MASM what segments are currently addressable via
the segment registers.    Whenever MASM doesn't think the default segment
register for a given instruction can reach the desired segment but another
segment  register  can,  MASM sticks  in  a  segment  override  prefix  without
telling you it's doing so.    As a result, your code can get bigger and slower
without you knowing about it.

Take a look at this code:

Code segment
assume cs:code

Start proc far
jmp Skip

ByteVar db 0
Skip:

push cs
pop ds ;set DS to point to the segment Code
inc [ByteVar]
:

Code ends

You know and I know that DS can be used to address ByteVar in the above
code,  since the first  thing the code does is  set  DS equal  to  CS,  thereby
loading DS to point to the segment Code. Unfortunately, the assembler does
not know that--the assume directive told it only that CS points to Code, and
assume is  all  the  assembler  has  to  go  by.      Given  this  correct  but  not
complete  information,  the  assembler  concludes  that  ByteVar must  be
addressed  via  CS  and  inserts  a  cs: segment  override  prefix,  so  the  inc
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instruction assembles as if inc cs:[ByteVar] had been used.
The result is a wasted byte and several wasted cycles. Worse yet,

you have no idea that the segment override prefix has been inserted unless
you either generate and examine a listing file or view the assembled code as
it runs in a debugger.    The assembler is just trying to help by taking some of
the burden of segment selection away from you, but the outcome is all too
often code that's invisibly bloated with segment override prefixes.

The  solution  is  simple.      Keep  the  assembler's  segment
assumptions correct at all times by religiously using the    assume   directive  
every time you load a segment.    The above example would have assembled
correctly--without a segment override prefix--if only we had inserted the line:

assume ds:Code

before we had attempted to access ByteVar.

OFFSET HANDLING

At long last, we've completed our discussion of segments. Now
it's time to move on to the other half of the memory- addressing equation:
offsets.

Offsets  are  handled  somewhat  differently  from  segments.
Segments are simply loaded into the segment registers, which are then used
to address memory as half of a segment:offset address. Offsets can also be
loaded into registers and used directly as half of a segment:offset address,
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but  just  as often offsets  are built  into instructions,  and they can also be
calculated on the fly by summing the contents of one or two registers and/or
offsets built into instructions.

At any rate, we'll quickly cover offset loading, and then we'll look
at the many ways to generate offsets for memory addressing.    The offset
portion of memory addressing is one area in which the 8088 is very flexible,
and, as we'll see, there's no one best way to address memory.
LOADING OFFSETS

Offsets are loaded with the offset operator.    offset is analogous
to the seg operator we encountered earlier; the difference, of course, is that
offset extracts  the  offset  of  a  label  or  variable  name  rather  than  the
segment.    For example:

mov bx,offset WordVar

loads BX with the offset of the variable WordVar.    If some segment register
already points to the segment containing WordVar, then BX can be used to
address memory, as for example in:

mov bx,seg WordVar
mov es,bx
mov bx,offset WordVar
mov ax,es:[bx]

We'll discuss the many ways in which offsets can be used to address memory
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next.
Before we get to using offsets to address memory, there are a

couple of points I'd like to make.    The first point is that the lea instruction
can also be used to load offsets into registers; however, an understanding of
lea requires an understanding of the 8088's addressing modes, so we'll defer
the discussion of lea until later in this chapter.

The second point is  a shortcoming of MASM that you must be
aware of when you use offset on variables that reside in segment groups.    If
you are using the group directive to make segment groups, you must always
specify the group name as well as the variable name when you use the offset
operator.    For example, if the segment _DATA is in the group DGROUP, and
WordVar is in _DATA, you must load the offset of WordVar as follows:

mov di,offset DGROUP:WordVar

If you don't specify the group name, as in:

mov di,offset WordVar

the offset of  WordVar relative to  _DATA rather than  DGROUP is  loaded;
given the way segment groups are organized (with all segments in the group
addressed in a single combined segment), an offset relative to _DATA may
not work at all.
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I realize that the above discussion won't make much sense if you
haven't  encountered the  group directive  (lucky you!).      I've  never  found
segment groups to be necessary in pure assembler code, but they are often
needed  when  sharing  segments  between  high-level  language  code  and
assembler.    If you do find yourself using segment groups, all you need to
remember is this:    when loading the offset of a variable that resides within a
segment group with  the    offset   operator,  always specify  the group name  
along with the variable name. 
mod-reg-rm ADDRESSING

There are a number of ways in which the offset of an instruction
operand  can  be  specified.      Collectively,  the  ways  of  specifying  operand
offsets  are known as addressing modes.      Most  of  the 8088's  addressing
modes fall into a category known as mod  -   reg-rm   addressing modes.    We're
going to discuss  mod-reg-rm addressing modes next;  later in the chapter
we'll discuss non- mod-reg-rm addressing modes.

mod-reg-rm addressing  modes  are  so  named  because  they're
specified by a second instruction byte, known as the mod-reg-rm byte, that
follows instruction opcodes in order to specify the memory and/or register
operands  for  many  instructions.      The  mod  -   reg-rm   byte  gets  its  name
because the various fields within the byte are used to specify the memory
addressing  mode,  the  register  used for  one operand,  and the  register  or
memory location used for the other operand, as shown in Figure 7-6.    (Figure
7-6 should make it clear that at most only one mod-reg-rm operand can be a
memory operand; one or both operands must be register operands, for there
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just  aren't  enough  bits  in  a  mod-reg-rm byte  to  specify  two  memory
operands.)

Simply put, the mod-reg-rm byte tells the 8088 where to find an
instruction's operand or operands.    (It's up to the opcode byte to specify the
data  size,  as  well  as  which  operand  is  the  source  and  which  is  the
destination.)    When a memory operand is used, the  mod-reg-rm byte tells
the 8088 how to add together the contents of registers (BX or BP and/or SI or
DI) and/or a fixed value built into the instruction (a displacement) in order to
generate the operand's memory offset.     The offset is then combined with
the contents of one of the segment registers to make a full 20-bit memory
address, as we saw earlier in this chapter, and that 20-bit address serves as
the instruction operand.    Figure 7-7 illustrates the operation of the complex
base+index+displacement addressing mode, in which an offset is generated
by  adding  BX  or  BP,  SI  or  DI,  and  a  fixed  displacement.  (Note  that
displacements  are  built  right  into  instructions,  coming  immediately  after
mod-reg-rm bytes, as illustrated by Figure 7-9.)

For example, if the opcode for  mov reg8,[reg/mem8] (8Ah) is
followed by the mod-reg-rm byte 17h, that indicates that the register DL is to
be loaded from the memory location pointed to by BX, as shown in Figure 7-
8.      Put  the  other  way  around,  mov dl,[bx] assembles  to  the  two  byte
sequence  8Ah  17h,  where  the  first  byte  is  the  opcode  for  mov  reg8,

[reg/mem8] and the second byte is the mod-reg-rm byte that selects DL as
the destination and the memory location pointed to by BX as the source.

You may well wonder how the mod-reg-rm byte works with one-
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operand instructions, such as neg word ptr ds:[140h], or with instructions
that have constant data as one operand, such as  sub [WordVar],1.    The
answer is that in these cases the reg field isn't used for source or destination
control;  instead,  it's  used  as  an  extension  of  the  opcode  byte.      So,  for
instance,  neg [reg/mem16] has an opcode byte of 0F7h and always has
bits 5-3 of the mod-reg-rm byte set to 011b.    Bits 7-6 and 2-0 of the mod  -  
reg-rm byte still select the memory addressing mode for the single operand,
but bits 5-3, together with the opcode byte, now simply tell the 8088 that the
instruction  is  neg  [reg/mem16],  as  shown  in  Figure  7-9.      not

[reg/mem16] also has an opcode byte of 0F7h, but is distinguished from
neg [reg/mem16] by bits 5-3 of the mod-reg-rm byte, which are 010b for
not and 011b for neg.

At any rate, the mechanics of mod-reg-rm addressing aren't what
we need to concern ourselves with; the assembler takes care of such details,
thank  goodness.      We  do,  however,  need  to  concern  ourselves  with  the
implications of  mod-reg-rm addressing,  particularly  size  and  performance
issues.

WHAT'S mod-reg-rm ADDRESSING GOOD FOR?

The first thing to ask is,  "What is  mod-reg-rm addressing good
for?"    What mod-reg-rm addressing does best is address memory in a very
flexible way.    No other addressing mode approaches mod-reg-rm addressing
for sheer number of ways in which memory offsets can be generated.

Look  at  Figure  7-6,  and  try  to  figure  out  how  many



Abrash/Zen:    Chapter 7/

source/destination combinations  are possible  with  mod-reg-rm addressing.
The  answer  is  simple,  since  there  are  8  bits  in  a  mod-reg-rm byte;  256
possible  source/destination  combinations  are  supported.      Any  general-
purpose register can be one operand, and any general-purpose register or
memory location can be the other operand.

If we look at memory addressing alone, we see that there are 24
distinct ways to generate a memory offset.    (8 of the 32 possible selections
that  can  be  made  with  bits  7-6  and  3-0  of  the  mod-reg-rm byte  select
general-purpose  registers.)      Some  of  those  24  selections  differ  only  in
whether 1 or 2 displacement bytes are present, leaving us with the following
16 completely distinct memory addressing modes:

[disp16] [bp+disp]
[bx] [bx+disp]
[si] [si+disp]
[di] [di+disp]
[bp+si] [bp+si+disp]
[bp+di] [bp+di+disp]
[bx+si] [bx+si+disp]
[bx+di] [bx+di+disp]

For two-operand instructions, each of those memory addressing modes can
serve as either source or destination, with either a constant value or one of
the 8 general-purpose registers as the other operand.

Basically, mod-reg-rm addressing lets you select a memory offset
in any of 16 ways (or a general-purpose register, if you prefer), and say, "Use
this as an operand."    The other operand can't involve memory, but it can be
any  general-purpose  register  or  (usually)  a  constant  value.      (There's  no
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inherent support in mod-reg-rm addressing for constant operands.    Special,
separate opcodes must used to specify constant operands for instructions
that support such operands, and a few mod-reg-rm instructions, such as mul,
don't accept constant operands at all.)

mod-reg-rm addressing is flexible indeed.

DISPLACEMENTS AND SIGN-EXTENSION

I've said that displacements can be either 1 or 2 bytes in size.
The obvious question is:    what determines which size is used?    That's an
important question, since displacement bytes directly affect program size,
which in turn indirectly affects performance via the prefetch queue cycle-
eater.

Except  in  the  case  of  direct  addressing,  which  we'll  discuss
shortly, displacements in the range -128 to +127 are stored as one byte,
then  automatically  sign-extended  by  the  8088  to  a  word  when  the
instructions  containing  them  are  executed.      (Expressed  in  unsigned
hexadecimal,  -128 to +127 covers two ranges:      0 to 7Fh and 0FF80h to
0FFFFh.)    Sign-extension involves copying bit 7 of the byte to bits 15-8, so a
byte value of  80h sign-extends to 0FF80h, and a byte value of  7Fh sign-
extends to 0007Fh. Basically, sign-extension converts signed byte values to
signed word values; since the maximum range of a signed byte is -128 to
+127, that's the maximum range of a 1-byte displacement as well.

The implication of this should be obvious:    you should try to use
displacements  in  the range -128 to  +127 whenever  possible,  in  order to
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reduce  program size  and  improve  performance.      One  caution,  however:
displacements must be either numbers or symbols equated to numbers in
order  for  the  assembler  to  be  able  to  assemble  them  as  single  bytes.
(Numbers and symbols work equally well.    In:

SAMPLE_DISPLACEMENT equ 1
:
mov ax,[bx+SAMPLE_DISPLACEMENT]
mov ax,[bx+9]

both mov instructions assemble with 1-byte displacements.)
Displacements must be constant values in order to be stored in

sign-extended bytes because when a named memory variable is used, the
assembler has no way of knowing where in the segment the variable will end
up.    Other parts of the segment may appear in other parts of the module or
may be linked in  from other  modules,  and the  linker  may also align  the
segment to various memory boundaries; any of these can have the effect of
moving a given variable in the segment to an offset that doesn't fit in a sign-
extended byte.    As a result, the following mov instruction assembles with a
2-byte displacement, even though it appears to be at offset 0 in its segment:

Data segment
MemVar db 10 dup (?)
Data ends

:
mov al,[MemVar+bx]
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NAMING THE mod-reg-rm ADDRESSING MODES The 16 distinct memory
addressing modes supported by the mod-reg-rm byte are often given a slew
of  confusing  names,  such  as  "implied  addressing,"  "based  relative
addressing," and "direct indexed addressing."    Generally, there's little need
to name addressing modes; you'll find you use them much more than you
talk about them.    However, we will need to refer to the modes later in this
book, so let me explain my preferred addressing mode naming scheme.

I find it  simplest to give a name to each of the three possible
components  of  a  memory  offset--base  for  BX  or  BP,  index  for  SI  or  DI,
displacement  for  a  1-  or  2-byte  fixed  value--and  then  just  refer  to  an
addressing mode with all the components of that mode.      That way,  mov

[bx],al uses  base  addressing,  add  ax,[si+1] uses  index+displacement
addressing,  and  mov dl,[bp+di+1000h] uses  base+index+displacement
addressing.    The names may be long at times, but they're never ambiguous
or hard to remember.

DIRECT ADDRESSING

There is one exception to the above naming scheme, and that's
direct addressing.      Direct addressing is  used when a memory address is
referenced with just a 16-bit displacement, as in mov bx,[WordVar] or mov

es:[410h],al.    You might expect direct addressing to be called displacement
addressing, but it's not, for three reasons.    First, the address used in direct
addressing is not, properly speaking, a displacement, since it isn't relative to
any register.    Second, direct addressing is a time- honored term that came



Abrash/Zen:    Chapter 7/

into use long before the 8088 was around, so experienced programmers are
more likely to speak of "direct addressing" than "displacement addressing."

Third, direct addressing is a bit  of  an anomaly in  mod-reg  -   rm  
addressing.      It's  pretty obvious why we'd  want to have direct addressing
available; surely you'd rather do this:

mov dx,[WordVar]

than this:

mov bx,offset WordVar
mov dx,[bx]

It's just plain handy to be able to access a memory location directly by name.
Now look at Figure 7-6 again.     Direct addressing really doesn't

belong in that figure at all,  does it?     The  mod-reg-rm encoding for direct
addressing should by all rights be taken by base addressing using only BP.
However, there is no addressing mode that can use only BP--if you assemble
the instruction  mov [bp],al, you'll find that it actually assembles as  mov

[bp+0],al, with a 1-byte displacement.
In  other  words,  the  designers  of  the  8088  rightly  considered

direct addressing important enough to build it into mod-reg-rm addressing in
place of a little-used addressing mode.      (BP is designed to point to stack
frames,  as  we'll  see shortly,  and there's  rarely  any use for  BP-only  base
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addressing in stack frames.)
Along the same lines, note that direct addressing always uses a

16-bit displacement.    Direct addressing does not use an 8- bit sign-extended
displacement even if the address is in the range -128 to +127.

MISCELLANEOUS INFORMATION ABOUT MEMORY ADDRESSING

Be aware that all  mod-reg-rm addressing defaults to accessing
the segment pointed to by DS--except when BP is used as part of the mod-
reg-rm address.      Any  mod-reg-rm addressing  involving  BP  accesses  the
segment  pointed  to  by  SS  by  default.  (If  DS  and  SS  point  to  the  same
segment, as they often do, you can use BP-based addressing modes to point
to  normal  data  if  necessary,  and  you  can  use  the  other  mod-reg-rm
addressing modes to point  to data on the stack.)      However,  mod-reg-rm
addressing can always be forced to use any segment register with a segment
override prefix.

There are a few other addressing terms that I  should mention
now.    Indirect addressing is commonly used to refer to any sort of memory
addressing  that  uses  a  register  (BX,  BP,  SI,  or  DI,  or  any  of  the  valid
combinations)  to  point  to  memory.      We'll  also  use  indirect  to  refer  to
branches that branch to destinations specified by memory operands, as in
jmp word ptr [SubroutinePointer].      We'll  discuss indirect branching in
detail in Chapter 14.

Immediate addressing is a non-mod-reg-rm form of addressing in
which the operand is a constant value that's built right into the instruction.
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We'll  cover  immediate  addressing  when  we're  done  with  mod-reg-rm
addressing.

Finally,  I'd like to make it  clear that a displacement is  nothing
more  than  a  fixed  (constant)  value  that's  added into  the  memory  offset
calculated  by  a  mod-reg-rm byte.      It's  called  a  displacement  because it
specifies  the  number  of  bytes  by  which  the  addressed  offset  should  be
displaced from the offset specified by the registers used to point to memory.
In mov si,[bx+1], the displacement is 1; the address from which SI is loaded
is displaced 1 byte from the memory location pointed to by BX.    In mov ax,

[si+WordVar], the displacement is the offset of WordVar.    We won't know
exactly what that offset is unless we look at the code with a debugger, but
it's a constant value nonetheless.

Don't  get  caught up worrying about the exact meaning of  the
term displacement, or indeed of any of the memory addressing terms.    In a
way, the terms are silly; mov ax,[bx] is base addressing and mov ax,[si] is
index addressing, but both load AX from the address pointed to by a register,
both are 2 bytes long, and both take 13 cycles to execute.    The difference
between the two is purely semantic from a programmer's perspective.

Notwithstanding, we needed to establish a common terminology
for the mod-reg-rm memory addressing modes, and we've done so. Now that
we  understand  how  mod-reg-rm addressing  works  and  how  wonderfully
flexible it is, let's look at its dark side.

mod-reg-rm ADDRESSING:    THE DARK SIDE
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Gee, if mod-reg-rm addressing is so flexible, why don't we use it
for all memory accesses?    For that matter, why does the 8088 even  have
any other addressing modes?

One reason is that  mod-reg-rm addressing doesn't work with all
instructions.      For  example,  the  string  instructions  can't  use  mod-reg-rm
addressing, and neither can xlat, which we'll encounter later in this chapter.
Nonetheless, most instructions, including  mov,  add,  adc,  sub,  sbb,  cmp,
and,  or,  xor,  neg,  not,  mul,  div,  and  more,  do  support  mod-reg-rm
addressing, so it would seem that there must be some other reason for the
existence of other addressing modes.

And indeed there is  another  reason for  the existence of  other
addressing modes.    In fact, there are two reasons:    speed and size.     mod-
reg-rm addressing is more flexible than other addressing modes--and it also
produces the largest, slowest code around.

It's  easy  to  understand  why  mod-reg-rm addressing  produces
larger  code  than other  memory  addressing  modes.      The  bits  needed to
encode  mod-reg-rm addressing's  many  possible  source,  destination,  and
addressing mode combinations increase the size of mod-reg-rm instructions,
and displacement bytes  can make  modreg-rm instructions larger still.      It
stands to reason that the string instruction lods, which always loads AL from
the memory location pointed to by DS:SI, should have fewer instruction bytes
than  the  mod-reg-rm instruction  mov  al,[si],  which  selects  AL  from  8
possible  destination  registers,  and  which  selects  the  memory  location
pointed to by SI from among 32 possible source operands.
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It's less obvious why mod-reg-rm addressing is slower than other
memory addressing modes.    One major reason falls out from the larger size
of mod-reg-rm instructions; we've already established that instructions with
more instruction bytes tend to run more slowly, simply because it takes time
to fetch those extra instruction bytes.    That's not the whole story, however.
It takes the 8088 a variable but considerable amount of time--5 to 12 cycles--
to  calculate  memory  addresses  from  mod-reg-rm bytes.      Those  lengthy
calculations, known as effective address (EA) calculations, are our next topic.

Before we proceed to EA calculations, I'd like to point out that
slow and bulky as mod-reg-rm addressing is, it's still the workhorse memory
addressing mode of the 8088.    It's also the addressing mode used by many
register-only instructions, such as add dx,bx and mov al,dl, with the mod-
reg-rm byte selecting register rather than memory operands.    My goodness,
some  instructions  don't  even  have a  non-mod-reg-rm addressing  mode.
Without a doubt, you'll be using mod-reg-rm addressing often in your code,
so we'll take the time to learn how to use it well. Nonetheless,  the  less-
flexible addressing modes are generally shorter and faster than mod-reg-rm
addressing.    As we'll see throughout  The Zen of Assembly Language, one
key to high-performance code is avoiding mod-reg-rm addressing as much as
possible.

WHY MEMORY ACCESSES ARE SLOW

As  I've  already  said,  mod-reg-rm memory  accesses  are  slow
partly  because instructions  that use  mod-reg-rm addressing tend to have
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many instruction bytes.    The mod-reg-rm byte itself adds 1 byte beyond the
opcode  byte,  and  a  displacement,  if  used,  will  add  1  or  2  more  bytes.
Remember,  4  cycles  are  required  to  fetch  each  and  every  one  of  those
instruction bytes.

Taken  a  step  farther,  that  line  of  thinking  reveals  why  all
instructions that  access  memory are slow:      memory is  slow.      It  takes 4
cycles  per  byte  to  access  memory  in  any  way.      That  means  that  an
instruction like mov bx,[WordVar], which is 4 bytes long and reads a word-
sized memory variable, must perform 6 memory accesses in all; at 4 cycles a
pop, that adds up to a minimum execution time of 24 cycles. Even a 2-byte
memory-accessing instruction spends a minimum of 12 cycles just accessing
memory. By contrast, most register-only operations are 1 to 2 bytes in length
and have Execution Unit execution times of 2 to 4 cycles, so the maximum
execution times for register-only instructions tend to be 4 to 8 cycles.

I've said it before, and I'll say it again:    avoid accessing memory
whenever you can.    Memory is just plain slow.

In actual use, many memory-accessing instructions turn out to be
even slower than memory access times alone would explain. For example,
the fastest possible  mod-reg-rm memory-accessing instruction,  mov  reg8,

[bx] (BP, SI, or DI would do as well as BX), has an Execution Unit execution
time of 13 cycles, although only 3 memory accesses (requiring 12 cycles) are
performed.  Similarly,  string  instructions,  xlat,  push,  and  pop take  more
cycles than can be accounted for solely by memory accesses.

The  full  explanation  for  the  poor  performance  of  the  8088's
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memory-accessing instructions lies in the microcode of the 8088 (the built-in
bit  patterns  that  sequence  the  8088  through  the  execution  of  each
instruction), which is undeniably slower than it might be.     (Check out the
execution times of  the 8088's  instructions  on the 80286 and 80386,  and
you'll see that it's possible to execute the 8088's instructions in many fewer
cycles than the 8088 requires.)    That's not something we can change; about
all we can do is choose the fastest available instruction for each task, and
we'll spend much of The Zen of Assembly Language doing just that.

There is one aspect of memory addressing that we can change,
however,  and that's  EA addressing time--the amount of  time it  takes the
8088 to calculate memory addresses.

SOME mod-reg-rm MEMORY ACCESSES ARE SLOWER THAN OTHERS

A  given  instruction  that  uses  mod-reg-rm addressing  doesn't
always execute in the same number of cycles.    The Execution Unit execution
time of mod-reg-rm instructions comes in two parts:    a fixed Execution Unit
execution  time  and  an  effective  address  (EA)  execution  time  that  varies
depending on the mod-reg-rm addressing mode used.    The two times added
together  determine  the  overall  execution  time  of  each  mod-reg-rm
instruction.

Each  mod-reg-rm instruction  has  its  own  fixed  Execution  Unit
execution  time,  which  remains  the  same  for  all  addressing  modes.  For
example, the fixed execution time of add bl,[mem] is 9 cycles, as shown in
Appendix A; this value is constant, no matter what  mod-reg-rm addressing
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mode is used.
The EA calculation time, on the other hand, depends not in the

least  on  which  instruction  is  being  executed.      EA  calculation  time  is
determined solely by the  mod-reg-rm addressing mode used, and nothing
else, as shown in Figure 7-10.    As you can see from Figure 7-10, the time it
takes the 8088 to calculate an effective address can vary greatly, ranging
from a mere 5 cycles if a single register is used to point to memory all the
way up to 11 or 12 cycles if the sum of two registers and a displacement is
used to point to memory.    (Segment override prefixes require an additional 2
cycles  each,  as we saw earlier.)      When I  discuss  the performance of  an
instruction that uses  mod-reg-rm addressing, I'll  often say that it  takes at
least a certain number of cycles to execute.    What "at least" means is that
the  instruction  will  take  that  many  cycles  if  the  fastest  mod-reg-rm
addressing mode-- base-  or  index-only--is  used,  and longer if  some other
mod-reg-rm addressing mode is selected.

Only  mod-reg-rm memory  operands  require  EA  calculations.
There  is  no  EA  calculation  time  for  register  operands,  or  for  memory
operands accessed with non-mod-reg-rm addressing modes.

In short, EA calculation time means that the choice of mod  -   reg-  
rm addressing mode directly affects performance.    Let's look more closely at
the performance implications of EA calculations.

PERFORMANCE  IMPLICATIONS  OF  EFFECTIVE  ADDRESS

CALCULATIONS
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There are a number of interesting points to be made about EA
calculation time.    For starters, it should be clear that EA calculation time is a
big reason why instructions that use mod  -   reg-rm   addressing are slow.    The
minimum EA calculation time of 5 cycles, on top of 8 or more cycles of fixed
execution time, is no bargain; the maximum EA calculation time of 12 cycles
is a grim prospect indeed.

For example, add bl,[si] takes 13 cycles to execute (8 cycles of
fixed execution time and 5 cycles of EA calculation time), which is certainly
not terrific by comparison with the 3- cycle execution time of  add bl,dl.
(Instruction fetching alters the picture somewhat, as we'll see shortly.)    At
the other end of the EA calculation spectrum, add bl,[bx+di+100h] takes
20 cycles to execute, which is horrendous no matter what you compare it to.

The  lesson  seems  clear:      use  faster  mod-reg-rm addressing
modes whenever you can.      While that's true, it's  not necessarily obvious
which  mod-reg-rm addressing modes are faster.      Base-only addressing or
index-only  addressing  are  the  mod-reg-rm addressing  modes  of  choice,
because they add only 5 cycles of EA calculation time and 1 byte, the mod-
reg-rm byte.      For instance,  mov dl,[bp] is just 2 bytes long and takes a
fairly reasonable 13 cycles to execute.

Direct addressing, which has an EA calculation time of 6 cycles, is
only slightly slower than base or index addressing so far as official execution
time  goes.      However,  direct  addressing  requires  2  additional  instruction
bytes (the 16-bit displacement) beyond the mod-reg-rm byte, so it's actually
a  good  deal  slower  than  base  or  index  addressing.      mov dl,[ByteVar]
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officially takes 14 cycles to execute, but given that the instruction is 4 bytes
long and performs a memory access, 20 cycles is a more accurate execution
time.

Base+index addressing (mov al,[bp+di] and the like) takes 1 to
2 cycles more for EA calculation time than does direct addressing,  but is
nonetheless  superior  to  direct  addressing  in  most  cases.      The  key:
base+index addressing requires only the 1  mod-reg-rm byte.    Base+index
addressing instructions are 2 bytes shorter than equivalent direct addressing
instructions,  and  that  translates  into  a  considerable
instruction-fetching/performance advantage.

The  rule  is:      use  displacement-free  mod-reg-rm addressing
modes whenever you can.    Instructions that use displacements are always 1
to  2  bytes  longer  than  those  that  use  displacement-free  mod-reg-rm
addressing  modes,  and  that  means  that  there's  generally  a  prefetching
penalty  for  the  use  of  displacements.  There's  also  a  substantial  EA
calculation  time  penalty  for  base+displacement,  index+displacement,  or
base+index+displacement addressing.    If you must use displacements, use
1-byte displacements as much as possible; we'll see an example of this when
we get to stack frames later in this chapter.

Now,  bear  in  mind  that  the  choice  of  mod-reg-rm addressing
mode really only matters inside loops, or in time-critical code. If you're going
to load DX from memory just once in  a long subroutine,  it  really  doesn't
much matter if you take a few extra cycles to load it with direct addressing
rather than base or index addressing.    It certainly isn't worth loading, say,
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BX to point to memory, as in:

mov bx,offset MemVar
mov dx,[bx]

just to use base or index addressing once--the mov instruction used to load
BX takes 4 cycles and 3 bytes,  more than negating any advantage base
addressing has over direct addressing.

Inside  loops,  however,  it's  well  worth  using  the  most  efficient
addressing mode available.      Listing 7-9, which adds up the elements of a
byte-sized  array  using  base+index+displacement  addressing  every  time
through  the  loop,  runs  in  1.17  ms.      Listing  7-10,  which  changes  the
addressing mode to base+index by adding the displacement into the base
outside the loop, runs in 1.01 ms, nearly 16% faster than Listing 7-9.    Finally,
Listing 7-11, which performs all the addressing calculations outside the loop
and uses plain old base-only addressing, runs in just 0.95 ms, 6% faster still.
(The string instruction lods is even faster than mov al,[bx], as we'll see in
Chapter 10.    Always think of your non-mod-reg-rm alternatives.)     Clearly,
the choice of addressing mode matters considerably inside tight loops.

We've learned two basic rules, then:    1)  use displacement  -   free  
mod-reg-rm addressing modes whenever you can, and 2) calculate memory
addresses  outside  loops  and  use  base-only  or  index-only  addressing
whenever possible.    The lea instruction, which we'll get to shortly, is most
useful for calculating memory addresses outside loops.
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mod-reg-rm ADDRESSING:    SLOW, BUT NOT QUITE AS SLOW AS YOU

THINK

There's no doubt about it:     mod-reg-rm addressing is slow. Still,
relative to register operands,  mod-reg-rm operands might not be quite so
slow as you think, for a very strange reason--the prefetch queue.    mod-reg-
rm addressing  executes  so  slowly  that  it  allows  time  for  quite  a  few
instruction bytes to be prefetched, and that means that instructions that use
mod-reg-rm addressing often run at pretty much their official speed.

Consider this.    mov al,bl is a 2-byte, 2-cycle instruction. String a
few such instructions together and the prefetch queue empties, making the
actual  execution  time 8  cycles--the  time it  takes  to  fetch  the  instruction
bytes. By  contrast,  mov  al,[bx] is  a  2-byte,  13-cycle  instruction.
Counting both the memory access needed to read the operand pointed to by
BX and the two instruction fetches, only 3 memory accesses are incurred by
this instruction.    Since 3 memory accesses take only 12 cycles, the 13-cycle
official execution time of mov al,[bx] is a fair reflection of the instruction's
true performance.

That doesn't mean that mov al,[bx] is faster than mov al,bl, or
that  memory-accessing  instructions  are  faster  than  register- only
instructions--they're not.    mov al,bl is a minimum of about 50% faster than
mov al,[bx] under any circumstances.    What it does mean is that memory-
accessing instructions tend to suffer less from the prefetch queue cycle-eater
than do register-only instructions, because the considerably longer execution
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times  of  memory-accessing  instructions  often  allow  a  good  deal  of
prefetching per  instruction  byte  executed.      As  a  result,  the performance
difference between the two is often not quite so great as official execution
times would indicate.

In short, memory-accessing instructions, especially those that use
mod-reg-rm addressing,  generally  have a  better  balance between overall
memory access time and execution time than register-only instructions, and
consequently  run closer  to their  rated speeds.      That's  a  mixed blessing,
since it's a side effect of the slow speed of memory-accessing instructions,
but  it  does  make  memory  access--which  is,  after  all,  a  necessary  evil--
somewhat less unappealing than it might seem. Let me emphasize that
the basic  reason that  instructions that  use  mod-reg-rm memory accesses
suffer less from the prefetch queue cycle-eater than do equivalent register-
only instructions is that both sorts of instructions have  mod-reg-rm bytes.
True, register-only  mod-reg-rm instructions don't have EA calculation times,
but they do have at least 2 bytes, making them as long as the shortest mod-
reg-rm memory-accessing  instructions.      (A  number  of  non-mod-reg-rm
instructions  are  just  1  byte  long;  we'll  meet  them  over  the  next  few
chapters.)      Since register-only instructions are much faster than memory-
accessing instructions, it's just common sense that if they're the same length
in bytes then they can be hit  much harder by the prefetch queue cycle-
eater.

Still  and  all,  register-only  mod-reg-rm instructions  are  never
longer than memory-accessing mod-reg-rm instructions, and are shorter than
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memory-accessing instructions that use displacements.    What's more, since
memory-accessing instructions must by definition access memory at least
once  apart  from  fetching  instruction  bytes,  register-only  mod-reg-rm
instructions  must  be  at  least  50%  faster  than  their  memory-accessing
equivalents--100% when word-sized operands are used.    To sum up, register-
only instructions are always much faster and often smaller than equivalent
mod-reg-rm memory-accessing  instructions.  (Register-only  instructions  are
faster than, although not necessarily shorter than or even as short as, non-
mod-reg-rm instructions--even the string instructions--as well.) Avoid
memory.    Use the registers as much as you possibly can.

THE IMPORTANCE OF ADDRESSING WELL

When you do use  mod-reg-rm addressing,  do so efficiently.  As
we've discussed, that means using base- or index-only addressing whenever
possible, and avoiding displacements when you can, especially inside loops.
If you're only going to access a memory location once and you don't have a
pointer to that location already loaded into BX, BP, SI, or DI, just use direct
addressing;  base-  and  index-only  addressing  aren't  so  much  faster  than
direct addressing that it pays to load a pointer.    As we've seen, however,
don't use direct addressing inside a loop if you can load a pointer register
outside the loop and then use base- or index-only addressing inside the loop.

It's  often  surprising  how  much  more  efficient  than  direct
addressing base- and index-only addressing are.    Consider this simple bit of
code:
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mov dl,[ByteVar]
and dl,0fh
mov [ByteVar],dl

You  wouldn't  think  that  code  could  be  improved  upon  by  adding an
instruction, but we can cut the code's size from 10 to 9 bytes by using base-
only addressing:

mov bx,offset ByteVar
mov dl,[bx]
and dl,0fh
mov [bx],dl

The cycle count is 2 higher for the latter version, but a 2-byte advantage in
instruction fetching could well overcome that.

The  point  is  not  that  base-only  addressing  is  always  the  best
solution.      In fact,  the latter example could be made much more efficient
simply by anding 0Fh directly with memory, as in:

and [ByteVar],0fh

(Always bear in mind that memory can serve as the destination operand as
well as the source operand.      When only one modification is involved, it's
always faster to modify a memory location directly, as in the last example,
than it is to load a register, modify the register, and store the register back to
memory.      However,  the  scales  tip  when two or  more  modifications  to  a
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memory  operand  are  involved,  as  we'll  see  in  Chapter  8.)  The  special
accumulator-specific direct-addressing instructions that we'll  discuss in the
next chapter make direct addressing more desirable in certain circumstances
as well.

The  point  is  that  for  repeated  accesses  to  the  same  memory
location, you should arrange your code so that the most efficient possible
instruction--base-only,  a  string  instruction,  whatever  fills  the  bill--can  be
used.      In  the  last  example,  base-only  addressing  was  superior  to  direct
addressing  when  just  two  accesses  to  the  same  byte  were  involved.
Multiply the number of accesses by ten, or a hundred, or a thousand, as is
often the case in a tight loop, and you'll  get a feel for the importance of
selecting the correct memory addressing mode in your time- critical code.

THE 8088 IS FASTER AT MEMORY ADDRESS CALCULATIONS THAN YOU

ARE

You may recall that we found earlier that when you must access a
word-sized memory operand, it is better to let the 8088 access the second
byte than to do it with a separate instruction; the 8088 is simply faster at
accessing two adjacent bytes than any two instructions can be.    Much the
same is  true of  mod-reg-rm addressing;  the 8088 is  faster  at  performing
memory address calculations than you are.    If you must add registers and/or
constant  values to address memory,  the 8088 can do it  faster during EA
calculations than you can with separate instructions.

Suppose  that  we  have  to  initialize  a  doubleword  of  memory
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pointed to by BX to zero.    We could do that with:

mov word ptr [bx],0
inc bx
inc bx
mov word ptr [bx],0

However,  it's  better  to  let  the  8088  do  the  addressing  calculations,  as
follows: 

mov word ptr [bx],0
mov word ptr [bx+2],0

True,  the  latter  version  involves  a  1-byte  displacement,  but  that
displacement is smaller than the 2 bytes required to advance BX in the first
version.    Since the incremental cost of base+displacement addressing over
base-only addressing is 4 cycles, exactly the same number of cycles as two
inc instructions, the code that uses base+displacement addressing is clearly
superior.

Similarly, you're invariably better off letting EA calculations add
one register to another than you are using add. For example, consider two
approaches to scanning an array pointed to by BX+SI for the byte in AL:

mov dx,bx ;set aside the base address
ScanLoop:

mov bx,dx ;get back the base address
add bx,si ;add in the index
cmp [bx],al ;is this a match?
jz ScanFound ;yes, we're done
inc si ;advance the index to the next byte
jmp ScanLoop ;scan the next byte

ScanFound:
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and:

ScanLoop:
cmp [bx+si],al ;is this a match?
jz ScanFound ;yes, we're done
inc si ;advance the index to the next byte
jmp ScanLoop ;scan the next byte

ScanFound:

It should be pretty clear that the approach that lets the 8088 add the two
memory components together is far superior.

While the point is perhaps a little exaggerated--I seriously doubt
anyone would use the first approach--it is nonetheless valid.    The 8088 can
add BX to SI in just 2 extra cycles as part of an EA calculation, and at the
cost of no extra bytes at all. What's more, EA calculations leave all registers
unchanged.    By contrast, at least one register must be changed to hold the
final  memory  address  when  you  perform  memory  calculations  yourself.
That's what makes the first version above so inefficient; we have to reload
BX from DX every time through the loop because it's altered by the memory-
address calculation.

I  hope  you  noticed  that  neither  example  above  is  particularly
efficient.      We'd be better off simply adding the two memory components
outside the loop and using base- or index-only addressing inside the loop.
(We'd be even better off using string instructions,  but  we'll  save that for
another chapter.) To wit:

add si,bx ;add together the memory address components
; outside the loop
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ScanLoop:
cmp [si],al ;is this a match?
jz ScanFound ;yes, we're done
inc si ;point to the next byte
jmp ScanLoop ;scan the next byte

ScanFound:

Although EA calculations can add faster than separate instructions can, it's
faster still not to add at all.     Whenever you can, perform your calculations
outside loops.

Which brings us to lea.

CALCULATING EFFECTIVE ADDRESSES WITH lea

lea is something of an odd bird, as the only mod-reg-rm memory-
addressing instruction that doesn't access memory.    lea calculates the offset
of the memory operand...and then loads that offset into one of the 8 general-
purpose registers, without accessing memory at all.    Basically, lea is nothing
more than a means by which to load the result of an EA calculation into a
register.

For example, lea bx,[MemVar] loads the offset of MemVar into
BX.    Now, we wouldn't generally want to use lea to load simple offsets, since
mov can do that more efficiently; mov bx,offset MemVar is 1 byte shorter
and  4  cycles  faster  than  lea  bx,[MemVar].      (Since  lea involves  EA
calculation, it's not particularly fast; however, it's faster than any mod-reg-rm
memory-accessing instruction, taking only 2 cycles plus the EA calculation
time.)

lea shines  when  you  need  to  load  a  register  with  a  complex
memory  address,  preferably  without  disturbing  any  of  the  registers  that
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make up the memory address.    Suppose that we want to push the address
of an array element that's indexed by BP+SI. We could use:

mov ax,offset TestArray
add ax,bp
add ax,si
push ax

which is 8 bytes long.    On the other hand, we could simply use:

lea ax,[TestArray+bp+si]
push ax

which is only 5 bytes long.    One of the primary uses of lea is loading offsets
of  variables  in  stack  frames,  because  such  variables  are  addressed  with
base+displacement addressing.

Refer  back  to  the  example  we  examined  in  the  last  section.
Suppose that we wanted to scan memory without disturbing either BX or SI.
In that case, we could use DI, with an assist from lea:

lea di,[bx+si] ;add together the memory address components
; outside the loop

ScanLoop:
cmp [di],al ;is this a match?
jz ScanFound ;yes, we're done
inc di ;point to the next byte
jmp ScanLoop ;scan the next byte

ScanFound:

lea is particularly handy in this case because it can add two registers--BX
and SI--and place the result  in  a  third register-- DI.      That  enables  us  to
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replace the two instructions:

mov di,bx
add di,si

with a single lea.
lea should  make it  clear  that  offsets  are  just  16-bit  numbers.

Adding offsets stored in BX and SI  together with  lea is  no different from
adding any two 16-bit numbers together with add, because offsets are just
16-bit numbers.    0 is a valid offset; if we execute:

sub bx,bx ;load BX with 0
mov al,[bx] ;load AL with the byte at offset 0 in DS

we'll read the byte at offset 0 in the segment pointed to by DS. It's important
that  you  understand  that  offsets  are  just  numbers,  and  that  you  can
manipulate offsets every bit as flexibly as any other values. The  flip
side is that you could, if you wished, add two registers and/or a constant
value together with lea and place the result in a third register.    Of course,
the registers would have to be BX or BP and SI or DI, but since offsets and
numbers are one and the same, there's no reason that lea couldn't be used
for arithmetic under the right circumstances.    For example, here's one way
to add two memory variables and 52 together and store the result in DX:
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mov bx,[MemVar1]
mov si,[MemVar2]
lea dx,[bx+si+52]

That's  not  to  say this  is  a  good way to  perform this  particular  task;  the
following is faster and uses fewer registers:

mov dx,[MemVar1]
add dx,[MemVar2]
add dx,52

Nonetheless, the first approach does serve to illustrate the flexibility of  lea

and the equivalence of offsets and numbers.

OFFSET WRAPPING AT THE ENDS OF SEGMENTS

Before we take our leave of  mod-reg-rm addressing,  I'd like to
repeat a point made earlier that may have slipped past unnoticed.      That
point  is  that  offsets  wrap  at  the  ends  of  segments.      Offsets  are  16-bit
entities, so they're limited to the range 0 to 64 K-1.    However, it is possible
to use two or three mod-reg-rm address components that together add up to
a number that's larger than 64 K.     For example, the sum of the memory
addressing components in the following code is 18000h:

mov bx,4000h
mov di,8000h
mov ax,[bx+di+0c000h]
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What happens in such a case?    We found earlier that segments
are limited to 64 Kb in length; is this a clever way to enlarge the effective
size of a segment?

Alas, no.    If the sum of two offset components won't fit in 16 bits,
bits 16 and above of the sum are simply ignored.    In other words, mod-reg-
rm address calculations are always performed modulo 64 K (that is, modulo
10000h), as shown in Figure 7-11. As a result, the last example will access
not the word at offset 18000h but the word at offset 8000h.    Likewise, the
following will access the byte at offset 0:

mov bx,0ffffh
mov dl,[bx+1]

The same rule holds for all memory-accessing instructions, mod-
reg-rm or otherwise:    offsets are 16-bit values; any additional bits that result
from address calculations are ignored.    Put another way, memory addresses
that reach past the end of a segment's 64 K limit wrap back to the start of
the segment.      This allows the use of  negative displacements, and is the
reason a displacement can always reach anywhere in a segment, including
addresses lower than those in the base and/or index registers, as in mov ax,

[bx-1].

NON-mod-reg-rm MEMORY ADDRESSING

mod-reg-rm addressing is the most flexible memory addressing
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mode of the 8088, and the most widely-used as well, but it's certainly not the
only addressing  mode.      The  8088  also  offers  a  number  of  specialized
addressing modes,  including stack addressing and the string  instructions.
These addressing modes are supported by fewer instructions than mod-reg-
rm instructions, and are considerably more restrictive about the operands
they'll  accept--but they're also more compact and/or faster than the  mod  -  
reg-rm instructions.

Why  are  instructions  that  use  the  non-mod-reg-rm addressing
modes generally superior to  mod-reg-rm instructions?    Simply this:    being
less  flexible  than  mod-reg-rm instructions,  they  have  fewer  possible
operands to specify, and so fewer instruction bits are needed.    Non-mod-reg-
rm instructions also don't require any EA calculation time, because they don't
support the many addressing modes of the mod-reg-rm byte.

We'll  discuss  five  sorts  of  non-mod-reg-rm memory-addressing
instructions next:    special forms of common instructions, string instructions,
immediate-addressing  instructions,  stack-oriented  instructions,  and  xlat,
which is in a category all its own.    For all these sorts of instructions, the rule
is  that  if  they're  well  matched  to  your  application,  they're  almost  surely
worth using in preference to mod-reg-rm addressing.    Some of the non-mod-
reg-rm instructions,  especially  the  string  instructions,  are  so  much  faster
than mod-reg-rm instructions that they're worth going out of your way for, as
we'll see throughout The Zen of Assembly Language.

SPECIAL FORMS OF COMMON INSTRUCTIONS
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The 8088 offers special shorter, faster forms of several commonly
used mod-reg-rm instructions, including mov, inc, and xchg.    These special
forms are both shorter and less flexible than the  mod-reg-rm forms.      For
example, the special form of inc is just 1 byte long and requires only 2 cycles
to execute, but can only work with 16-bit registers.    By contrast, the mod-
reg-rm form of  inc is at least 2 bytes long and takes at least 3 cycles to
execute, but can work with 8- or 16-bit registers or memory locations.

You don't have to specify that a special form of an instruction is to
be used; the assembler automatically selects the shortest possible form of
each instruction it assembles. That doesn't mean that you don't need to be
familiar with the special forms, however.    To the contrary, you need to be
well aware of the sorts of instructions that have special forms, as well as the
circumstances under which those special forms will be assembled.    Armed
with that knowledge, you can arrange your code so that the special forms
will be assembled as often as possible.

We'll get a solid feel for the various special forms of mod  -   reg-rm  
instructions as we discuss them individually in Chapters 8 and 9.

THE STRING INSTRUCTIONS

The string instructions are without  question the most  powerful
instructions of the 8088.    String instructions can initialize, copy, scan, and
compare arrays of data at speeds far beyond those of mortal  mod-reg-rm
instructions,  and  lend  themselves  well  to  almost  any  sort  of  repetitive
processing.    In fact, string instructions are so important that they get two
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full  chapters  of  The  Zen  of  Assembly  Language--Chapters  10  and  11--to
themselves.      We'll  defer  further  discussion of  these extremely  important
instructions until then.

IMMEDIATE ADDRESSING

Immediate addressing is a form of memory addressing in which
the constant value of one operand is built right into the instruction.      You
should think of immediate operands as being addressed by IP, since they
directly follow opcode bytes or mod  -   reg-rm   bytes, as shown in Figure 7-12.

Instructions that use immediate addressing are clearly faster than
instructions that use  mod-reg-rm addressing.    In fact, according to official
execution times, immediate addressing would seem to be much faster than
mod-reg-rm addressing.      For example,  add ax,1 is  a 4-cycle instruction,
while  add  ax,[bx] is  an  18-cycle  instruction.      What's  more,  add

reg,immed is  just  1  cycle  slower  than  add  reg,reg,  so  immediate
addressing seems to be nearly as fast as register addressing.

The  official  cycle  counts  are  misleading,  however.      While
immediate addressing is certainly faster than mod-reg-rm addressing, it is by
no means as fast as register-only addressing, and the reason is a familiar
one:      the prefetch queue cycle-eater.      You see, immediate operands are
instruction bytes; when we use an immediate operand, we increase the size
of that instruction, and that increases the number of cycles needed to fetch
the instruction's bytes.

Looked at another way, immediate operands need to be fetched
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from the memory location pointed to by IP, so immediate addressing could
be considered a memory addressing mode. Granted, immediate addressing
is an efficient memory addressing mode, with no EA calculation time or the
like--but memory accesses are nonetheless required, at the inescapable 4
cycles per byte.

The  upshot  is  simply  that  register  operands  are  superior  to
immediate  operands  in  loops  and  time-critical  code,  although  immediate
operands are still much better than mod-reg-rm memory operands.    Back in
Listing 7-11, we set DL to 0 outside the loop so that we could use register-
register adc inside the loop.    That approach allowed the code to run in 0.95
ms.      Listing  7-12  is  similar  to  Listing  7-11,  but  is  modified  to  use  an
immediate operand of 0 rather than a register operand containing 0.    Even
though the immediate operand is only byte-sized, Listing 7-12 slows down to
1.02 ms.    In other words, the need to fetch just 1 immediate operand byte
every time through the loop slowed the entire loop by about 7%.    What's
more, the performance loss would have been approximately twice as great if
we had used a word- sized immediate operand.

On the other hand, immediate operands are certainly preferable
to memory operands.    Listing 7-13, which adds the constant value 0 from
memory, runs in 1.26 ms.    (I should hope you'll never use code as obviously
inefficient as Listing 7-13; I'm just presenting it for illustrative purposes.)

To sum up:    when speed matters, use register operands rather
than  immediate  operands  if  you  can.      If  registers  are  at  a  premium,
however, immediate operands are reasonably fast, and are certainly better
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than  memory  operands.      If  bytes  rather  than  cycles  are  at  a  premium,
immediate  operands  are  excellent,  for  it  takes  fewer  bytes  to  use  an
immediate operand than it does to load a register with a constant value and
then use that register. For example:

LoopTop:
or byte ptr [bx],80h
loop LoopTop

is 1 byte shorter than: 

mov al,80h
LoopTop:

or [bx],al
loop LoopTop

However, the latter, register-only version is faster, because it moves 2 bytes
out of the loop.

There  are  many  circumstances  in  which  we  can  substitute
register-only  instructions  for  instructions  that  use  immediate  operands
without adding  any  extra  instructions.      The  commonest  of  these  cases
involve testing for zero.    There's almost never a need to compare a register
to zero; instead, we can simply and or or the register with itself and check
the  resulting  flags.      We'll  discuss  ways  to  handle  zero  in  the  next  two
chapters, and we'll see similar cases in which immediate operands can be
eliminated throughout The Zen of Assembly Language.

By the way, you should be aware that you can use an immediate
operand even when the other operand is a memory variable rather than a
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register.    For example,  add [MemVar],16 is a valid instruction, as is mov

[MemVar],52.      As I mentioned earlier, we're better off performing single
operations  directly  to  memory  than  we  are  loading  from memory  into  a
register, operating on the register, and storing the result back to memory.
However, we're generally better off working with a register when multiple
operations are involved.

Ideally,  we'd  load  a  memory  value  into  a  register,  perform
multiple operations on it there, store the result back to memory...and then
have some additional use for the value left in the register, thereby getting
double use out of our memory accesses.      For example, suppose that we
want to perform the equivalent of the C statement:

i = ++j + k;

We could do this as follows:

inc [j]
mov ax,[j]
add ax,[k]
mov [i],ax

However, we can eliminate a memory access by incrementing j in a register:

mov ax,[j]
inc ax
mov [j],ax
add ax,[k]
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mov [i],ax

While the latter version is one instruction longer than the original version, it's
actually faster and shorter.    One reason for this is that we get double use
out of loading j into AX; we increment j in AX and store the result to memory,
then  immediately  use  the  incremented  value  left  in  AX  as  part  of  the
calculation being performed.
 The other reason the second example above is superior to the
original version is that it used two of the special, more efficient instruction
forms:    the accumulator-specific direct- addressed form of mov and the 16-
bit  register-only  form  of  inc.  We'll  study  these  instructions  in  detail  in
Chapters 8 and 9.

SIGN-EXTENSION OF IMMEDIATE OPERANDS

I've  already noted  that  immediate  operands  tend  to  make for
compact code.    One key to this property is that like displacements in mod-
reg-rm addressing, word-sized immediate operands can be stored as a byte
and then extended to a word by replicating bit 7 as bits 15-8; that is, word-
sized immediate operands can be sign-extended.      Almost  all  instructions
that support immediate operands allow word-sized operands in the range -
128 to  +127 to be stored as single  bytes.      That  means that  while  and

dx,1000h is a 4-byte instruction (1 opcode byte, 1 mod-reg-rm byte, and a
2-byte immediate operand),  and dx,0fffeh is just 3 bytes long; since the
signed value of the immediate operand 0FFFEh is -2, 0FFFEh is stored as a
single immediate operand byte.
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Not all values of the form 000nnh and 0FFnnh (where  nn is any
two hex digits) can be stored as a single byte and sign- extended.    0007Fh
can be stored as a single byte; 00080h cannot. 0FF80h can be stored as a
single byte; 0FF7Fh cannot.    Watch out for cases where you're using a word-
sized immediate operand that can't be stored as a byte, when a byte-sized
immediate operand would serve as well.

For example, suppose we want to set the lower 8 bits of DX to 0.
and dx,0ff00h is a 4-byte instruction that accomplishes the desired result.
and dl,000h produces the same result in just 3 bytes.      (Of course,  sub

dl,dl does the same thing in just 2 bytes--there are many ways to skin a cat
in assembler.)  Recognizing when a word-sized immediate operand can be
handled  as  a  byte-sized  operand  is  still  more  important  when  using
accumulator-specific immediate-operand instructions, which we'll explore in
the next chapter.

mov DOESN'T SIGN-EXTEND IMMEDIATE OPERANDS

Along  the  same lines,  or bh,0ffh does  the  same thing  as  or

bx,0ff00h and  is  shorter,  while  mov bh,0ffh is  also  equivalent  and  is
shorter still...and that brings us to the one instruction which cannot sign-
extend  immediate  operands:      mov.      Word-sized  operands  to  mov are
always stored as words, no matter what size they may be.    However, there's
a  compensating factor,  and that's  that  there's  a  special,  non-mod-reg-rm
form of mov reg,immed that's 1 byte shorter than the mod-reg-rm form.

Let me put it this way.     and dx,1000h is a 4-byte instruction,
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with 1 opcode byte, 1  mod-reg-rm byte, and a 2-byte immediate operand.
mov dx,1000h, on the other hand, is only 3 bytes long.    There's a special
form of the  mov instruction, used only when a register is loaded with an
immediate value,  that  requires  just  the 1  opcode byte in  addition to  the
immediate value.

There's also the standard  mod-reg-rm form of  mov,  which is 4
bytes long for word-sized immediate operands.    This form does exactly the
same thing as the special form, but is a different instruction, with a different
opcode and a  mod-reg-rm byte.      The 8088 offers a number of  duplicate
instructions, as we'll see in the next chapter.    Don't worry about selecting
the  right  form  of  mov,  however;  the  assembler  does  that  for  you
automatically.

In  short,  you're  no  worse  off--and  often  better  off--moving
immediate values into registers than you are using immediate operands with
instructions such as  add and  xor.     It takes just 2 or 3 bytes, for byte- or
word-sized  registers,  respectively,  to  load  a  register  with  an  immediate
operand.      mov al,2 is  actually  the same size as  mov al,bl (both are 2
bytes),  although the official  execution time of  the register-only  mov is  2
cycles shorter.

On  balance,  immediate  operands  used  with  mov  reg,immed

perform  at  nearly  the  speed  of  register  operands,  especially  when  the
register is  byte-sized; consequently, there's less need to avoid immediate
operands with  mov than with other instructions. Nonetheless, register-only
instructions are never slower, so you won't go wrong using register rather
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than immediate operands.

DON'T mov IMMEDIATE OPERANDS TO MEMORY IF YOU CAN HELP IT

One final note, and then we're done with immediate addressing.
There is  no special  form of  mov for  moving an immediate operand to a
memory  operand;  the  special  form  is  limited  to  register  operands  only.
What's  more,  mov [mem16],immed16 has  no  sign-extension  capability.
This double whammy means that storing immediate values to memory is the
single least desirable way to use immediate operands.    Over the next few
chapters,  we'll  explore  several  ways  to  set  memory  operands  to  given
values.    The one thing that the various approaches have in common is that
they all improve performance by avoiding immediate operands to mov.

Don't  move immediate  values  to  memory unless  you have no
choice.

STACK ADDRESSING

While  SP  can't  be  used  to  point  to  memory  by  mod-reg-rm
instructions, it is nonetheless a memory-addressing register. After all, SP is
used to address the top of the stack.    Surely you know how the stack works,
so I'll simply note that SP points to the data item most recently pushed onto
the  top  of  the  stack  that  has  not  yet  been  popped  off  the  stack.
Consequently, stack data can only be accessed in Last In, First Out (LIFO)
order via SP (that is, the order in which data is popped off the stack is the
reverse of the order in which it was pushed on).    However, other addressing
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modes--in particular mod-reg-rm BP-based addressing--can be used to access
stack data in non-LIFO order, as we'll see when we discuss stack frames.  

What's so great about the stack?    Simply put, the stack is terrific
for temporary storage.    Each named memory variable, as in:

MemVar dw 0

takes up 1 or more bytes of memory for the duration of the program.    That's
not the case with stack data, however; when data is popped from the stack,
the  space  it  occupied  is  freed  up  for  other  use.      In  other  words,  stack
memory is a reusable resource. This makes the stack an excellent place to
store temporary data, especially when large data elements such as buffers
and structures are involved.

Space allocated on the stack is also unique for each invocation of
a  given  subroutine,  which  is  useful  for  any  subroutine  that  needs  to  be
capable of being called directly or indirectly from itself.    Stack-based storage
is how C implements automatic (dynamic) variables, which are unique for
each invocation of a given subroutine.    In fact, stack-based storage is the
heart of the parameter-passing mechanism used by most C implementations,
as well as the mechanism used for automatic variables, as we'll see shortly.

Don't  underestimate the flexibility of  the stack.      I've heard of
programs that actually compile code right into a buffer on the stack, then
execute that code in place,  on the stack. While that's a strange concept,
stack memory is  memory like  any other,  and instruction  bytes  are  data;
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obviously, those programs needed a temporary place in which to compile
code, run it, and discard it, and the stack fits those requirements nicely.

Similarly, suppose that we need to pass a pointer to a variable
from an assembler program to a C subroutine...but there's no variable to
point to in the assembler code, because we keep the variable in a register.
Suppose also that the C subroutine actually modifies the pointed-to variable,
so  we  need  to  retrieve  the  altered  value  after  the  call.      The  stack  is
admirably  suited  to  the  job;  at  the  beginning  of  the  following  code,  the
variable of interest is in DX, and that's just where the modified result is at the
end of the code:

;
; Calls: int CSubroutine(int *Count, char *BufferPointer).
;

mov dx,MAX_COUNT ;store the maximum # of bytes to handle
; in the count variable

push dx ;store the count variable on the stack
; for the duration of the call

mov dx,sp ;put a pointer to the just-pushed temporary
; count variable in DX

mov ax,offset TestBuffer
push ax ;pass the buffer pointer parameter
push dx ;pass the count pointer parameter
call CSubroutine ;do the count
add sp,4 ;clear the parameter bytes from the stack
pop dx ;get the actual count back into DX

The  important  point  in  the  above  code  is  that  we  created  a
temporary memory variable on the stack as we needed it; then, when the
call was over, we simply popped the variable back into DX, and its space on
the stack was freed up for other use.    The code is compact, and not a single
byte of memory storage had to be reserved permanently.

Compact code without the need for permanent memory space is
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the hallmark of  stack-based code.      It's  often possible  to write amazingly
complex  code  without  using  mod-reg-rm addressing  or  named  variables
simply by pushing and popping registers.      The code tends to be compact
because  push  reg16 and  pop  reg16 are each only 1 byte long.      push

reg16 and pop reg16 are so compact because they don't need to support
the complex memory-addressing options  of  mod-reg-rm addressing;  there
are only 8 possible register operands, and each instruction can only address
one location, by way of the stack pointer, at any one time.    (push mem16

and pop mem16 are mod-reg-rm instructions, and so they're 2-4 bytes long;
push reg16 and pop reg16, and push segreg and pop segreg as well,
are special, shorter forms of push and pop.)

For once, though, shorter isn't necessarily better.    You see, push

and pop are memory-accessing instructions, and although they don't require
EA  calculation  time,  they're  still  slow--like  all  instructions  that  access
memory.      push and  pop are  fast  considering  that  they  are  word-sized
memory-accessing instructions--push takes 15 cycles,  pop takes just 12--
and  they  make  for  good  prefetching,  since  only  3  memory  accesses
(including instruction fetches) are performed during an official execution time
of 12 to 15 cycles.     Nonetheless, they're clearly slower than register-only
instructions.    This is basically the same case we studied when we looked into
copying  segments;  it's  faster  but  takes  more  bytes  and  requires  a  free
register to preserve a register by copying it to another register:

mov dx,ax
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:
mov ax,dx

than it is to preserve it by pushing and popping it:

push ax
:

pop ax

What does all this mean to you?    Simply this:    use a free register
for temporary storage if speed is of the essence, and push and pop if code
size  is  your  primary  concern,  if  speed  is  not  an  issue,  or  if  no  registers
happen to be free.    In any case, it's faster and far more compact to store
register values temporarily by pushing and popping them than it is to store
them to memory with mod-reg-rm instructions.    So use push and pop...but
remember that they come with substantial performance overhead relative to
register-only instructions.

AN EXAMPLE OF AVOIDING push AND pop

Let's  quickly  look at  an example  of  improving performance by
using register-only instructions rather than  push and  pop.    When copying
images into display memory, it's common to use code like:

;
; Copies an image into display memory.
;
; Input:
; BX = width of image in bytes
; DX = height of image in lines
; BP = number of bytes from the start of one line to the
; start of the next
; DS:SI = pointer to image to draw
; ES:DI = display memory address at which to draw image
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; Direction flag must be cleared on entry
;
; Output:
; none
;
DrawLoop:

push di ;remember where the line starts
mov cx,bx ;# of bytes per line
rep movsb ;copy the next line
pop di ;get back the line start offset
add di,bp ;point to the next line in display memory
dec dx ;repeat if there are any more lines
jnz DrawLoop

That's fine, but 1 push and 1 pop are performed per line, which
seems a shame...all the more so given that we can eliminate those pushes
and pops altogether, as follows:

;
; Copies an image into display memory.
;
; Input:
; BX = width of image in bytes
; DX = height of image in lines
; BP = number of bytes from the start of one line to the
; start of the next
; DS:SI = pointer to image to draw
; ES:DI = display memory address at which to draw image
; Direction flag must be cleared on entry
;
; Output:
; none
;

sub bp,bx ;# of bytes from the end of 1 line of the
; image in display memory to the start of
; the next line of the image

DrawLoop:
mov cx,bx ;# of bytes per line
rep movsb ;copy the next line
add di,bp ;point to the next line in display memory
dec dx ;repeat if there are any more lines
jnz DrawLoop

Do you see what we've done?    By converting an obvious solution
(advancing 1 full line at a time) to a less-obvious but fully equivalent solution
(advancing only the remaining portion of  the line),  we've saved about 27
cycles per loop...at no cost. Given inputs like the width of the screen and
instructions like push and pop, we tend to use them; it's just human nature
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to frame solutions in familiar terms.    By rethinking the problem just a little,
however, we can often find a simpler, better solution.

Saving 27 cycles not by knowing more instructions but by  not
using two powerful instructions is an excellent example indeed of the Zen of
assembler. 
MISCELLANEOUS NOTES ABOUT STACK ADDRESSING

Before we proceed to stack frames, I'd like to take a moment to
review a few important points about stack addressing.

SP always points to the next item to be popped from the stack.
When you push a value onto the stack, SP is first decremented by 2, and
then the value is stored at the location pointed to by SP.    When you pop a
value off of the stack, the value is read from the location pointed to by SP,
and then SP is incremented by 2.      It's useful to know this whenever you
need to point to data stored on the stack, as we did when we created and
pointed to a temporary variable on the stack a few sections back, and as we
will need to do when we work with stack frames.

push and  pop can  work  with  mod-reg-rm-addressed  memory
variables  as  easily  as  with  registers,  albeit  more  slowly  and  with  more
instruction bytes.    push [WordVar] is perfectly legitimate, as is pop word

ptr [bx+si+100h].    Bear in mind, however, that only 16-bit values can be
pushed and popped;  push bl won't  work,  and neither will  pop byte ptr

[bx].
Finally, please remember that once you've popped a value from

the stack, it's gone from memory.    It's tempting to look at the way the stack
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pointer works and think that the data is still in memory at the address just
below the new stack pointer,  but that's simply not the case, as shown in
Figure  7-13.      Sure,  sometimes the  data  is  still  there--but  whenever  an
interrupt occurs, it uses the top of the stack, wiping out the values that were
most recently popped.    Interrupts can happen at any time, so unless you're
willing to disable interrupts, accessing popped stack memory is a sure way to
get intermittent bugs.

Even  if  interrupts  are  disabled,  it's  really  not  a  good  idea  to
access popped stack data.      Why bother, when stack frames give you the
same sort of access to stack data, but in a straightforward, risk-free way?
Not  coincidentally,  stack  frames  are  our  next  topic,  but  first  let  me
emphasize:    once you've popped data off the stack, it's gone from memory.
Vanished.  Kaput.      Extinct.      For  all  intents  and  purposes,  that  data  is
nonexistent.

Don't access popped stack memory.    Period.

STACK FRAMES

Stack  frames  are  transient  data  structures,  usually  local  to
specific subroutines, that are stored on the stack.      Two sorts of data are
normally  stored  in  stack  frames:      parameters  that  are  passed  from the
calling routine by being pushed on the stack, and variables that are local to
the subroutine using the stack frame.

Why use stack frames?    Well, as we discussed earlier, the stack
is an excellent place to store temporary data, a category into which both
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passed parameters and local storage fall.      push and  pop aren't good for
accessing stack frames, which often contain many variables and which aren't
generally  accessed in  LIFO order;  however,  there are several  mod-reg-rm
addressing modes that are perfect for accessing stack frames--the mod-reg-
rm addressing modes involving BP.    (We can't use SP for two reasons: it can't
serve  as  a  memory  pointer  with  mod-reg-rm addressing  modes,  and  it
changes constantly during code execution, making offsets from SP hard to
calculate.)

If you'll recall, BP-based addressing modes are the only mod-reg-
rm addressing modes that don't access DS by default.    BP- based addressing
modes access SS by default, and now we can see why--in order to access
stack frames.    Typically, BP is set to equal the stack pointer at the start of a
subroutine,  and is  then used to  point  to  data in  the stack frame for  the
remainder of the subroutine, as in:

push bp ;save caller's BP
mov bp,sp ;point to stack frame
mov ax,[bp+4] ;retrieve a parameter
:

pop bp ;restore caller's BP
ret

If temporary local storage is needed, SP is moved to allocate the necessary
room:

push bp ;save caller's BP
mov bp,sp ;point to stack frame
sub sp,10 ;allocate 10 bytes of local storage
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mov ax,[bp+4] ;retrieve a parameter
mov [bp-2],ax ;save it in local storage
:

mov sp,bp ;dump the temporary storage
pop bp ;restore caller's BP
ret

I'm not going to spend a great deal of time on stack frames, for
one simple reason:    they're not all that terrific in assembler code.    Stack
frames  are  ideal  for  high-level  languages,  because  they  allow  regular
parameter-passing  schemes  and  support  dynamically  allocated  local
variables.    For assembler code, however, stack frames are quite limiting, in
that they require a single consistent parameter-passing convention and the
presence of code to create and destroy stack frames at the beginning and
end of each subroutine.    In particular, the ability of assembler code to pass
pointers  and  variables  in  registers  (which  is  much  more  efficient  than
pushing  them  on  the  stack)  is  constrained  by  standard  stack  frames
conventions.    In addition, the BP register, which is dedicated to pointing to
stack frames, normally cannot be used for other purposes when stack frames
are used; the loss of one of a mere seven generally-available 16-bit registers
is not insignificant.

High-level  language  stack  frame  conventions  also  generally
mandate the preservation of several registers--always BP, usually DS, and
often SI and DI as well--and that requires time-consuming pushes and pops.
Finally, while stack frame addressing is compact (owing to the heavy use of
bp+disp addressing with 1-byte displacements), it is rather inefficient, even
as memory- accessing instructions go; mov ax,[bp+disp8] is only 3 bytes
long, but takes 21 cycles to execute.
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In  short,  stack  frames are  powerful  and useful--but  they don't
make for the best possible 8088 code.    The best compiled code, yes, but not
the best assembler code.

What's  more,  compilers  handle stack frames very  efficiently.  If
you're going to work within the constraints of stack frames, you may have a
difficult  time  out-coding  compilers,  which  rarely  miss  a  trick  in  terms  of
generating efficient stack frame code. Handling stack frames well is not so
simple as it might seem; you have to be sure not to insert unneeded stack-
frame-related code, such as code to load BP when there is no stack frame,
and you need to be sure that you always preserve the proper registers when
they're altered, but not otherwise.     It's not hard, but it's tedious, and it's
easy to make mistakes that either waste bytes or lead to bugs as a result of
registers that should be preserved but aren't.

When you work with stack frames, you're trying to out- compile a
compiler while playing by its rules, and that's hard to do.    In pure assembler
code, I generally recommend against the use of stack frames, although there
are surely exceptions to this rule.    Personally, I often use C for the sort of
code that requires stack frames, building only the subroutines that do the
time-critical work in pure assembler.      Why not let a compiler do the dirty
work,  while  you  focus  your  efforts  on  the  code  that  really  makes  a
difference?

WHEN STACK FRAMES ARE USEFUL

That's not to say that stack frames aren't useful  in assembler.
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Stack frames are not only useful but mandatory when assembler subroutines
are called from high-level language code, since the stack frame approach is
the  sole  parameter-passing  mechanism  for  most  high-level  language
implementations.

Assembler subroutines for use with high-level languages are most
useful;  together,  assembler  subroutines  and  high-level  languages  provide
relatively good performance and fast development time.    The best code is
written in assembler, but the best code within a reasonable time frame is
often written in a high-level language/assembler hybrid.      Then, too, high-
level  languages  are  generally  better  than  assembler  for  managing  the
complexities of very large applications.

In  short,  stack frames are  generally  useful  in  assembler  when
assembler  is  interfaced  to  a  high-level  language.      High- level  language
interfacing  and  stack  frame  organization  varies  from  one  language  to
another, however, so I'm not going to cover stack frames in detail, although I
will offer a few tips about using stack frames in the next section.    Before I do
that, I'd like to point out an excellent way to mix assembler with high- level
language  code:      in-line  assembler.      Many  compilers  offer  the  option  of
embedding assembler  code directly  in  high-level  language code;  in  many
cases,  high-level  language  and  assembler  variables  and  parameters  can
even be shared.    For example, here's a Turbo C subroutine to set the video
mode:

void SetVideoMode(unsigned char ModeNumber) {
asm mov ah,0
asm mov al,byte ptr [ModeNumber]
asm int 10h
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}

What  makes  in-line  assembler  so  terrific  is  that  it  lets  the
compiler handle all the messy details of stack frames while freeing you to
use  assembler.      In  the  above  example,  we  didn't  have  to  worry  about
defining and accessing the stack frame;  Turbo C  handled all  that  for  us,
saving and setting up BP and substituting the appropriate BP+disp value for
ModeNumber.    In- line assembler is harder to use for large tasks than is
pure assembler, but in most cases where the power of assembler is needed
in a high-level language, in-line assembler is a very good compromise.

One  warning:      many  compilers  turn  off  some  or  all  code
optimization in subroutines that contain in-line assembler.    For that reason,
it's often a good idea  not to mix high-level language and in-line assembler
statements when performance matters.    Write your time-critical code either
entirely  in  in- line  assembler  or  entirely  in  pure  assembler;  don't  let  the
compiler insert code of uncertain quality when every cycle counts.

Still and all, when you need to create the fastest or tightest code,
try to avoid stack frames except when you must interface your assembler
code to a high-level language.    When you must use stack frames, bear in
mind that  assembler  is  infinitely  flexible;  there  are more ways to  handle
stack frames than are dreamt of in high-level languages.    In Chapter 16 we'll
see an unusual but remarkably effective way to handle stack frames in a
Pascal-callable assembler subroutine.

TIPS ON STACK FRAMES
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Before we go on to xlat, I'm going to skim over a few items that
you may find useful should you need to use stack frames in assembler code.

MASM provides the  struc directive for defining data structures.
Such data structures can be used to access stack frames, as in:

Parms struc
dw ? ;pushed BP
dw ? ;return address

X dw ? ;X coordinate parameter
Y dw ? ;Y coordinate parameter
Parms end

:
DrawXY proc near

push bp ;save caller's stack frame pointer
mov bp,sp ;point to stack frame
mov cx,[bp+X] ;get X coordinate
mov dx,[bp+Y] ;get Y coordinate
:

pop bp
ret

DrawXY endp

MASM structures  have a  serious  drawback when used with stack frames,
however:    they don't allow for negative displacements from BP, which are
generally used to access local variables stored on the stack.      While it  is
possible to access local storage by accessing all variables in the stack frames
at positive offsets from BP, as in:

Parms struc
Temp dw ? ;temporary storage
OldBP dw ? ;pushed BP

dw ? ;return address
X dw ? ;X coordinate parameter
Y dw ? ;Y coordinate parameter
Parms end

:
DrawXY proc near

push bp ;save caller's stack frame pointer
sub sp,OldBP ;make room for temp storage
mov bp,sp ;point to stack frame
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mov cx,[bp+X] ;get X coordinate
mov dx,[bp+Y] ;get Y coordinate
mov [bp+Temp],dx ;set aside Y coordinate
:

add sp,OldBP ;dump temp storage space
pop bp
ret

DrawXY endp

this approach has two disadvantages.     First, it prevents us from dumping
temporary storage with  mov sp,bp, requiring instead that we use the less
efficient  add sp,OldBP.      Second, and more important,  it  makes it  more
likely that parameters will be accessed with a 2-byte displacement.

Why?      Remember  that  a  1-byte  displacement  can  address
memory in the range -128 to +127 bytes away from BP.    If our entire stack
frame is addressed at positive offsets from BP, then we've lost the use of a
full one-half of the addresses that we can access with 1-byte displacements. 

Now, we can use negative stack frame offsets in assembler; it's
just a bit more trouble than we'd like.    There are many possible solutions,
ranging  from a  variety  of  ways  to  use  equated  symbols  for  stack  frame
variables, as in:

Temp equ -2 ;temporary storage
X equ 4 ;X coordinate parameter
Y equ 6 ;Y coordinate parameter

and:

Temp equ -2 ;temporary storage
X equ 4 ;X coordinate parameter
Y equ X+2 ;Y coordinate parameter
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up to ways to get the assembler to adjust structure offsets for us.    See my
"On Graphics" column in the July 1987 issue of Programmer's Journal (issue
5.4) for an elegant solution, provided by John Navas.     (Incidentally, TASM
provides  special  directives--arg and  local--that  handle  many  of  the
complications of stack frame addressing and allow negative offsets.)

While we're discussing stack frame displacements, allow me to
emphasize that  you should  strive  to  use 1-byte displacements  into  stack
frames as  much  as  possible.      If  you have so many parameters  or  local
variables that 2-byte displacements must be used, make an effort to put the
least frequently used variables at those larger displacements.    Alternatively,
you may want to put large data elements such as arrays and structures in
the stack frame areas that are addressed with 2-byte displacements, since
such data elements are often accessed by way of pointer registers such as
BX and SI, rather than directly via bp+disp addressing.    Finally, you should
avoid forward references to structures; if you refer to elements of a structure
before the structure itself is defined in the code, you'll always get 2- byte
displacements, as we'll see in Chapter 14.

Whenever you're uncertain whether 1- or 2-byte displacements
are being used, simply generate a listing file, or look at your code with a
debugger.

By the way, it's  worth examining the size of  your stack frame
displacements even in high-level languages.    If you can figure out the order
in which your compiler organizes data in a stack frame, you can often speed
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up  and  shrink  your  code  simply  by  reorganizing  your  local  variable
declarations  so  that  arrays  and  structures  are  at  2-byte  offsets,  allowing
most variables to be addressed with 1-byte offsets.

STACK FRAMES ARE OFTEN IN DS

While it's not always the case, often enough the stack segment
pointed to by SS and the default data segment pointed to by DS are one and
the same.    This is true in most high-level language memory models, and is
standard for COM programs.

If DS and SS are the same, the implication is clear:    all mod-reg-
rm addressing modes can be used to point to stack frames. That's a real
advantage if you need to scan stack frame arrays and the like, because SI or
DI can be loaded with the array start address and used to address the array
without the need for segment override prefixes.    Similarly, BX could be set
to point to a stack frame structure, which could then be accessed by way of
bx+disp addressing without a segment override.    In short, be sure to take
advantage of the extra stack frame addressing power that you have at your
disposal when SS equals DS.

USE BP AS A NORMAL REGISTER IF YOU MUST

When stack frame addressing is in use, BP is normally dedicated
to addressing the current stack frame.    That doesn't mean you can't use BP
as a normal register in a tight loop, though, and use it as a normal register
you  should;  registers  are  too  scarce  to  let  even  one  go  to  waste  when
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performance matters. Just push BP, use it however you wish in the loop, then
pop it when you're done, as in:

push bp ;preserve stack frame pointer
mov bp,LOOP_COUNT ;get # of times to repeat loop

LoopTop:
:

dec bp ;count off loops
loop LoopTop
pop bp ;restore stack frame pointer

Of course, the stack frame can't be accessed while BP is otherwise occupied,
but you don't want to be accessing memory inside a tight loop anyway if you
can help it.

Using  BP  as  a  normal  register  in  a  tight  loop  can  make  the
difference  between  a  register-only  loop  and  one  that  accesses  memory
operands,  and that  can translate  into  quite  a  performance improvement.
Also, don't forget that BP can be used in mod-reg  -   rm   addressing even when
stack  frames  aren't  involved,  so  BP  can  come  in  handy  as  a  memory-
addressing register when BX, SI,  and DI are otherwise engaged.      In that
usage, however, bear in mind that there is no BP-only memory addressing
mode; either a 1- or 2-byte displacement or an index register (SI or DI) or
both is always involved.

THE MANY WAYS OF SPECIFYING mod-reg-rm ADDRESSING

There  are,  it  seems,  more  ways  of  specifying  an  operand
addressed with mod-reg-rm addressing than you can shake a stick at.    For
example, [bp+MemVar+si],  MemVar[bp+si],  MemVar[si][bp], and [bp]
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[MemVar+si] are all equivalent.    Now stack frame addressing introduces us
to  a  new  form,  involving  the  dot  operator:      [bp.MemVar+si].      Or
[bp.MemVar.si].    What's the story with all these mod-reg-rm forms?

It's actually fairly simple.    The dot operator does the same thing
as the plus operator:    it adds two memory addressing components together.
Any memory-addressing component enclosed in brackets is also added into
the  memory  address.      The  order  of  the  operands  doesn't  matter,  since
everything  resolves  to  a  mod-reg  -   rm   byte  in  the  end;  mov al,[bx+si]

assembles  to  exactly  the  same  instruction  as  mov al,[si+bx].      All  the
constant  values and symbols  (variable  names and equated values)  in  an
address are added together into a single displacement, and that's used with
whatever memory addressing registers are present (from among BX, BP, SI,
and DI) to form a mod-reg-rm address.    (Of course, only valid combinations--
the  combinations  listed  in  Figure  7-6--will  assemble.)      Lastly,  if  memory
addressing registers are present, they must be inside square brackets, but
that's optional for constant values and symbols.

There  are  a  few  other  rules  about  constructing  memory
addressing operands, but I avoid those complications by making it a practice
to use a single simple  mod-reg-rm memory address notation.    As I said at
the start of this chapter, I prefer to put square brackets around all memory
operands, and I also prefer to use only the plus operator.    There are three
reasons for this: it's not complicated, it reminds me that I'm programming in
assembler, not in a high-level language where complications such as array
element size are automatically taken care of,  and it  reminds me that I'm
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accessing a memory operand rather than a register operand, thereby losing
performance and gaining bytes.

You can use whatever mod-reg-rm addressing notation you wish.
I do suggest, however, that you choose a single notation and stick with it.
Why confuse yourself?

xlat

At long last, we come to the final addressing mode of the 8088.
This addressing mode is unique to the  xlat instruction, an odd and rather
limited  instruction  that  can  nonetheless  outperform  every  other  8088
instruction under the proper circumstances.

The operation of  xlat is  simple:      AL is loaded from the offset
addressed by the sum of BX and AL, as shown in Figure 7- 14.    DS is the
default data segment, but a segment override prefix may be used.

As you can see,  xlat bears no resemblance to any of the other
addressing modes.    It's certainly limited, and it always wipes out one of the
two registers it uses to address memory (AL).    In fact, the first thought that
leaps to mind is:    why would we ever want to use xlat?

If xlat were slow and large, the answer would be never. However,
xlat is just 1 byte long, and, at 10 cycles, is as fast at accessing a memory
operand as any 8088 instruction.    As a result,  xlat is excellent for a small
but often time-critical category of tasks.

xlat excels  when  byte  values  must  be  translated  from  one
representation to another.      The most common example occurs when one
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character set must be translated to another, as for example when the ASCII
character set used by the PC is translated to the EBCDIC character set used
by IBM mainframes.    In such a case xlat can form the heart of an extremely
efficient loop, along the lines of the following:

;
; Converts the contents of an ASCII buffer to an EBCDIC buffer.
; Stops when a zero byte is encountered, but copies the zero byte.
;
; Input:
; DS:SI = pointer to ASCII buffer.
;
; Output: none
;
; Registers altered: AL, BX, SI, DI, ES
;

mov di,ds
mov es,di
mov di,si ;point ES:DI to the ASCII buffer as well
mov bx,offset ASCIIToEBCDICTable

;point to the table containing the EBCDIC
; equivalents of ASCII codes

cld
ASCIIToEBCDICLoop:

lodsb ;get the next ASCII character
xlat ;convert it to EBCDIC
stosb ;put the result back in the buffer
and al,al ;zero byte is the last byte
jnz ASCIIToEBCDICLoop

Besides being small and fast, xlat has an advantage in that byte-
sized look-up values don't need to be converted to words before they can be
used to address memory.    (Remember, mod-reg-rm addressing modes allow
only word-sized registers to be used to address memory.)      If  we were to
implement the look-up in the last example with mod-reg-rm instructions, the
code would become a good deal less efficient no matter how efficiently we
set up for mod-reg-rm addressing:

sub bh,bh ;for use in converting a byte in BL
; to a word in BX

mov si,offset ASCIIToEBCDICTable
;point to the table containing the EBCDIC
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; equivalents of ASCII codes
ASCIIToEBCDICLoop:

lodsb ;get the next ASCII character
mov bl,al ;get the character into BX, where

; we can use it to address memory
mov al,[si+bx] ;convert it to EBCDIC
stosb ;put the result back in the buffer
and al,al ;zero byte is the last byte
jnz ASCIIToEBCDICLoop

In  short,  xlat is  clearly  superior  when a  byte-sized  look-up  is
performed, so long as it's possible to put both the look-up value and the
result in AL.    Shortly, we'll see how xlat can be used to good effect in a case
where it certainly isn't the obvious choice.

MEMORY IS CHEAP:    YOU COULD LOOK IT UP

xlat, simply put, is a table look-up instruction.    A table look-up
occurs whenever you use an index value to look up a result in an array, or
table, of data.    A rough analogy might be using the number on a ballplayer's
uniform to look up his name in a program.

Look-up tables are a superb way to improve performance.    The
basic  premise  of  look-up  tables  is  that  it's  faster  to  precalculate  results,
either  by letting the assembler  do the work or  by calculating the results
yourself and inserting them in the source code, than it is to have the 8088
calculate them at run time.    The key factor is this:    the 8088 is relatively
fast at looking up data in tables and slow at performing almost any kind of
calculation.    Given that, why not perform your calculations before run time,
when speed doesn't matter, and let the 8088 do what it does best at run
time?

Now,  look-up  tables  do  have  a  significant  disadvantage--they
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require extra memory.    This is a trade-off we'll see again and again in The
Zen of Assembly Language:    cycles for bytes.    If you're willing to expend
more  memory,  you  can  almost  always  improve  the  performance  of  your
code.    One trick to generating top-notch code is knowing when that trade-off
is worth making.

Let's look at an example that illustrates the power of look- up
tables.    In the process, we'll see an unusual but effective use of xlat; we'll
also see that there are many ways to approach any programming task, and
we'll get a first-hand look at the cycles-for-bytes tradeoff that arises so often
in assembler programming.

FIVE WAYS TO DOUBLE BITS

The  example  we're  about  to  study  is  based  on  the  article
"Optimizing for Speed," by Michael Hoyt, which appeared in  Programmer's
Journal in March, 1986 (issue 4.2).    This is the article I referred to back in
Chapter 2 as an example of a programmer operating without full knowledge
about code performance on the PC.    By no means am I denigrating Mr. Hoyt;
his article simply happens to be an excellent starting point for examining
both look-up tables and the hazards of the prefetch queue cycle-eater.

The goal of Mr. Hoyt's article was to expand a byte to a word by
doubling each bit, for the purpose of converting display memory pixels to
printer pixels in order to perform a screen dump.    So, for example, the value
01h (00000001b)  would  become 0003h (0000000000000011b),  the  value
02h  (00000010b)  would  become  000Ch  (0000000000001100b),  and  the
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value 5Ah (01011010b) would become 33CCh (0011001111001100b).    Now,
in general this isn't a particularly worthy pursuit, given that the speed of the
printer is likely to be the limiting factor; however, speed could matter if the
screen dump code is used by a background print spooler. At any rate, bit-
doubling is an ideal application for look-up tables, so we're going to spend
some time studying it.

Mr. Hoyt started his article with code that doubled each bit by
testing that bit and branching accordingly to set the appropriate doubled bit
values.      He  then  optimized  the  code  by  eliminating  branches  entirely,
instead using fast shift and rotate instructions, in a manner similar to that
used by Listing 7-14.

Eliminating branches isn't a bad idea in general, since, as we'll
see in Chapter 12, branching is very slow.    However, as we've already seen
in Chapter 4, instruction fetching is also very slow...and the code in Listing 7-
14  requires  a  lot of  instruction  fetching.      70  instruction  bytes  must  be
fetched for each byte that's doubled, meaning that this code can't possibly
run in less than about 280 (70 times 4) cycles per byte doubled, even though
its official Execution Unit execution time is scarcely 70 cycles.

The Zen timer confirms our calculations, reporting that Listing 7-
14 runs in 6.34 ms, or about 300 cycles per byte doubled.      (The excess
cycles  are  the  result  of  DRAM  refresh.)      As  a  result  of  this  intensive
instruction fetching, Mr. Hoyt's optimized shift-and-rotate code actually ran
slower than his original test-and-jump code, as discussed in my article "More
Optimizing for Speed," Programmer's Journal, July, 1986 (issue 4.4).



Abrash/Zen:    Chapter 7/

So far, all we've done is confirm that the prefetch queue cycle-
eater can cause code to run much more slowly than the official execution
times would indicate.     This is of course not news to us; in fact, I  haven't
even bothered to show the test- and-jump code and contrast it with the shift-
and-rotate  code,  since  that  would  just  restate  what  we  already  know.
What's interesting is not that Mr. Hoyt's optimization didn't make his code
faster, but rather that a look-up table approach can make the code  much
faster.    So let's plunge headlong into look-up tables, and see what we can do
with this code.

TABLE LOOK-UPS TO THE RESCUE

Bit-doubling is beautifully suited to an approach based on look-up
tables.     There are only 256 possible input values, all byte-sized, and only
256 possible output values, all word-sized. Better yet, each input value maps
to one and only one output value, and all the input values are consecutive,
covering the range 0 to 255, inclusive.

Given those parameters, it should be clear that we can create a
table  of  256  words,  one  corresponding  to  each  possible  byte  to  be  bit-
doubled.    We can then use each byte to be doubled as a look-up index into
that  table,  retrieving  the  appropriate  bit-doubled  word  with  just  a  few
instructions.    Granted, 512 bytes would be needed to store the table, but
the 50 or so instruction bytes we would save would partially compensate for
the size of the table.     Besides, surely the performance improvement from
eliminating all those shifts, rotates, and especially instruction fetches would
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justify the extra bytes...wouldn't it?
It  would  indeed.      Listing  7-15,  which  uses  the  table  look-up

approach I've just described, runs in just 1.32 ms--more than four times as
fast  as  Listing  7-14!      When performance matters,  trading  less  than 500
bytes for a more than four-fold speed increase is quite a deal.    Listing 7-15 is
so fast  that  it's  faster  than Listing  7-14 would  be  even if  there were  no
prefetch  queue cycle-eater;  in  other  words,  the  official  execution  time of
Listing 7-15 is faster than that of Listing 7-14.    Factor in instruction fetch
time,  though,  and you  have a  fine example  of  the  massive  performance
improvement that look-up tables can offer.

The key to Listing 7-15, of course, is that I precalculated all the
doubled bit masks when I wrote the program.    As a result, the code doesn't
have  to  perform  any  calculation  more  complex  than  looking  up  a
precalculated bit mask at run time.    In a little while, we'll see how MASM can
often perform look-up table calculations at assembly time, relieving us of the
drudgery of precalculating results.

THERE ARE MANY WAYS TO APPROACH ANY TASK

Never assume that there's only one way, or even one "best" way,
to approach any programming task.    There are always many ways to solve
any given programming problem in assembler, and different solutions may
well be superior in different situations.

Suppose, for example, that we're writing bit-doubling code in a
situation where size is more important than speed, perhaps because we're
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writing a memory-resident program, or  perhaps because the code will  be
used  in  a  very  large  program that's  squeezed  for  space.      We'd  like  to
improve our speed, if we can-- but not at the expense of a single byte.    In
this case, Listing 7-14 is preferable to Listing 7-15--but is Listing 7-14 the
best we can do?

Not by a long shot.
What we'd like to do is somehow shrink Listing 7-15 a good deal.

Well, Listing 7-15 is so large because it has a 512-byte table that's used to
look up the bit-doubled words that can be selected by the 256 values that
can be stored in a byte.     We can shrink the table a great deal simply by
converting it to a 16- byte table that's used to look up the bit-doubled bytes
that can be selected by the 16 values that can be stored in a nibble (4 bits),
and performing two look-ups into that table, one for each half of the byte
being doubled.

Listing 7-16 shows this double table look-up solution in action.
This listing requires only 23 bytes of code for each byte doubled, and even if
you add the 16-byte size of the table in, the total size of 39 bytes is still
considerably smaller than the 70 bytes needed to bit-double each byte in
Listing  7-14.  What's  more,  the  table  only  needs  to  appear  once  in  any
program, so practically speaking Listing 7-16 is  much more compact than
Listing 7-14.

Listing  7-16  also  is  more  than  twice  as  fast  as  Listing  7- 14,
clocking in at 2.52 ms.    Of course, Listing 7-16 is nearly twice as  slow as
Listing 7-15--but then, it's much more compact.
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There's that choice again:    cycles or bytes.
In truth, there are both cycles and bytes yet to be saved in Listing

7-16.    If we apply our knowledge of mod-reg-rm addressing to Listing 7-16,
we'll realize that it's a waste to use base+displacement addressing with the
same displacement twice in a row; we can save a byte and a few cycles by
loading SI with the displacement and using base+index addressing instead.
Listing 7- 17, which incorporates this optimization, runs in 2.44 ms, a bit
faster than Listing 7-16.

There's yet another optimization to be made, and this one brings
us full circle, back to the start of our discussion of look-up tables.     Think
about  it:      Listing  7-17  basically  does  nothing  more  than  use  two nibble
values as look-up indices into a table of byte values.    Sound familiar?    It
should--that's an awful lot like a description of xlat.    (xlat can handle byte
look-up values, but this task is just a subset of that.)

Listing  7-18  shows  an  xlat-based  version  of  our  bit-doubling
code.    This code runs in just 1.94 ms, still about 50% slower than the single
look-up approach, but a good deal  faster than anything else we've seen.
Better yet, this approach takes just 16 instruction bytes per bit-doubled byte
(32 if you count the table)--which makes this by far the shortest approach
we've  seen.  Comparing  Listing  7-18  to  Listing  7-14  reveals  that  we've
improved the code to an astonishing degree:    Listing 7-18 runs more than
three times as fast as Listing 7-14, and yet it requires less than one-fourth as
many instruction bytes per bit- doubled byte.

There are many lessons here.    First, xlat is extremely efficient at
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performing the limited category of tasks it can manage; when you need to
use a byte index into a byte-sized look- up table, xlat is often your best bet.
Second,  the  official  execution  times  aren't  a  particularly  good  guide  to
writing high- performance code.    (Of course, you already knew that!)    Third,
there is no such thing as the best code, because the fastest code is rarely
the smallest code, and vice-versa.

Finally,  there  are  an  awful  lot  of  solutions  to  any  given
programming problem on the 8088.    Don't fall into the trap of thinking that
the obvious solution is the best one.    In fact, we'll see yet another solution
to the bit-doubling problem in Chapter 9;  this solution,  based on the  sar

instruction, isn't like any of the solutions we've seen so far.
We'll see look-up tables again in Chapter 14, in the form of jump

tables.

INITIALIZING MEMORY

Assembler offers excellent data-definition capabilities, and look-
up  tables  can  benefit  greatly  from  those  capabilities.      No  high-level
language even comes close to assembler so far as flexible definition of data
is concerned, both in terms of arbitrarily mixing different data types and in
terms of letting the assembler perform calculations at assembly time; given
that, why not let the assembler generate your look-up tables for you?

For example, consider the multiplication of a word-sized value by
80,  a  task  often  performed  in  order  to  calculate  row  offsets  in  display
memory.    Listing 7-19 does this with the compact but slow mul instruction,
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at a pace of 30.17 us per multiply.    Listing 7-20 improves to 15.08 us per
multiply  by  using  a  faster  shift-and-add  approach.      However,  the
performance of the shift-and-add approach is limited by the prefetch queue
cycle-eater; Listing 7-21, which looks the multiplication results up in a table,
is considerably faster yet, at 12.26 us per multiply.    Once again, the look-up
approach is faster even than tight register-only code, but that's not what's
most interesting here. What's really interesting about Listing 7-21 is that it's
the  assembler,  not  the  programmer,  that  generates  the  look-up  table  of
multiples of 80.    Back in Listing 7-15, I had to calculate and type each entry
in the look-up table myself.    In Listing 7-21, however, I've used the rept and
= directives  to  instruct  the  assembler  to  build  the  table  automatically.
That's even more convenient than you might think; not only does it save the
tedium of a lot of typing, but it avoids the sort of typos that inevitably creep
in whenever a lot of typing is involved.

Another  area  in  which  assembler's  data-definition  capabilities
lend themselves to good code is in constructing and using mini-interpreters,
which  are  nothing  less  than  task- specific  mini-languages  that  are  easily
created and used in assembler.    We'll discuss mini-interpreters at length in
Volume II of The Zen of Assembly Language.

You  can  also  take  advantage  of  assembler's  data  definition
capabilities  by  assigning  initial  values  to  variables  when  they're  defined,
rather than initializing them with code.    In other words:

MemVar dw 0
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takes no time at all  at run time;  MemVar simply  is 0 when the program
starts.    By contrast:

MemVar dw ?
:

mov [MemVar],0

takes 20 cycles at run time, and adds 6 bytes to the program as well.
In general, the rule is:     calculate results and initialize data at or

before assembly time if you can, rather than at run time.    What makes look-
up tables so powerful is simply that they provide an easy way to shift the
overhead of calculations from run time to assembly time.

A BRIEF NOTE ON I/O ADDRESSING

You  may  wonder  why  we've  spent  so  much  time  on  memory
addressing but none on input/output (I/O) addressing.    The answer is simple:
I/O addressing is so limited that there's not much to know about it.    There
aren't  any  profound performance  implications  or  optimizations  associated
with I/O addressing simply because there are only two ways to perform I/O.

out, which writes data to a port, always uses the accumulator for
the source operand:    AL when writing to byte- sized ports, AX when writing
to word-sized ports.    The destination port address may be specified either by
a constant value in the range 0-255 (basically direct port addressing with a
byte-sized  displacement)  or  by  the  value  in  DX  (basically  indirect  port
addressing).    Here are the two possible ways to send the value 5Ah to port
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99: 

mov al,5ah
out 99,al
mov dx,99
out dx,al

Likewise, in, which reads data from a port, always uses AL or AX
for  the  destination  operand,  and  may  use  either  a  constant  port  value
between 0 and 255 or the port  pointed to by DX as the source operand.
Here are the two ways to read a value from port 255 into AL:

in al,0ffh
mov dx,0ffh
in al,dx

And that just about does it for I/O addressing.    As you can see,
there's not much flexibility or opportunity for Zen here. All  I/O data must
pass  through the accumulator,  and if  you want to access a port  address
greater than 255, you must address the port with DX.    What's more, there
are no substitutes for the I/O instructions; when you need to perform I/O,
what we've just seen is all there is.

While the I/O instructions are a bit awkward, at least they aren't
particularly slow, at 8 (DX-indirect) or 10 (direct- addressed) cycles apiece,
with no EA calculation time.      Neither are the I/O instructions particularly
lengthy;  in  fact,  in and  out are  considerably  more  compact  than  the
memory-addressing instructions, which shouldn't be surprising given that the
I/O instructions provide such limited functionality.    The DX-indirect forms of
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both in and out are just 1 byte long, while the direct- addressed forms are 2
bytes long.

Each I/O access takes over the bus and thereby briefly prevents
prefetching, much as each memory access does.    However, the ratio of total
bus accesses (including instruction byte fetches) to execution time for in and
out isn't bad.    In fact, byte-sized DX-indirect I/O instructions, which are only
1 byte long and perform only one I/O access, should actually run in close to
the advertised 8 cycles per out.

Among our limited repertoire of I/O instructions, which is best?    It
doesn't make all  that much difference, but given the choice between DX-
indirect I/O instructions and direct-addressed I/O instructions for heavy I/O,
choose DX-indirect, which is slightly faster and more compact.    For one-shot
I/O to ports in the 0-255 range, use direct-addressed I/O instructions, since it
takes three bytes and 4 cycles to set up DX for a DX-indirect I/O instruction.

On balance, though, don't worry about I/O--just do it when you
must.    Rare indeed is the program that spends an appreciable amount of its
time performing I/O--and given the paucity of I/O addressing modes, there's
not much to be done about performance in such cases anyway.

VIDEO PROGRAMMING AND I/O I'd like to make one final point about I/O
addressing.      This section won't mean much to you if you haven't worked
with video programming, and I'm not going to explain it further now; we'll
return to the topic when we discuss video programming in Volume II.    For
those of you who are involved with video programming, however, here goes.
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Word-sized  out instructions--out dx,ax--unquestionably provide
the fastest way to set the indexed video registers of the CGA, EGA, and VGA.
Just put the index of the video register you're setting in AL and the value
you're setting the register to in AH, and out dx,ax sets both the index and
the register in a single instruction.    Using byte-sized out instructions, we'd
have to do all this to achieve the same results:

out dx,al
inc dx
xchg ah,al
out dx,al
dec dx
xchg ah,al

(Sometimes you can leave off the final  dec and  xchg, but the word-sized
approach is still much more efficient.)

However, there's a potential pitfall to the use of word- sized out

instructions to set indexed video registers.    The 8088 can't actually perform
word-sized I/O accesses, since the bus is only 8 bits wide.    Consequently, the
8088 breaks 16-bit I/O accesses into two 8-bit accesses, one sending AL to
the addressed port, and a second one sending AH to the addressed port plus
one. (If you think about it, you'll realize that this is exactly how the 8088
handles word-sized memory accesses too.)

All well and good.    Unfortunately, on computers built around the
8086,  80286,  and the like,  the processors  do not  automatically  break up
word-sized I/O accesses, since they're fully capable of outputting 16 bits at
once.    Consequently, when word-sized accesses are made to 8-bit adapters
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like  the  EGA  by  code  running  on  such  computers,  it's  the  bus,  not  the
processor, that breaks up those accesses.    Generally, that works perfectly
well--but on certain PC-compatible computers, the bus outputs the byte in AH
to the addressed port plus one first, and  then sends the byte in AL to the
addressed  port.      The  correct  values  go  to  the  correct  ports,  but  here
sequence is critical;  out dx,ax to an indexed video register relies on the
index in  AL being output  before the data in  AH,  and that  simply doesn't
happen.      As a result, the data goes to the wrong video register, and the
video programming works incorrectly--sometimes disastrously so.

You may protest that any computer that gets the sequencing of
word-sized out instructions wrong isn't truly a PC-compatible, and I suppose
that's so.    Nonetheless, if a computer runs everything except your code that
uses word-sized out instructions, you're going to have a tough time selling
that  explanation.      Consequently,  I  recommend  using  byte-sized  out

instructions to indexed video registers whenever you can't be sure of the
particular PC-compatible models on which your code will run.

AVOID MEMORY!

We've come to the end of our discussion of memory addressing.
Memory addressing on the 8088 is no trivial matter, is it?    Now that we've
familiarized ourselves with the registers and memory addressing capabilities
of  the  8088,  we'll  start  exploring  the  instruction  set,  a  journey  that  will
occupy most of the rest of this volume.

Before we leave the realm of memory addressing, let me repeat:
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avoid memory.    Use the registers to the hilt; register- only instructions are
shorter and faster.    If you must access memory, try not to use mod-reg-rm
addressing; the special memory- accessing instructions, such as the string
instructions and  xlat, are generally shorter and faster.     When you do use
mod-reg-rm addressing,  try  not  to  use  displacements,  especially  2-byte
displacements.

Last  but  not  least,  choose  your  spots.      Don't  waste  time
optimizing  non-critical  code;  focus  on  loops  and  other  chunks  of  code in
which  every  cycle  counts.      Assembler  programming is  not  some sort  of
game where the object is to save cycles and bytes blindly.    Rather, the goal
is a dual one:    to produce whole programs that perform well and to produce
those programs as quickly as possible.     The key to doing that is knowing
how to optimize code, and then doing so in time-critical code--and  only in
time-critical code.


