
Abrash/Zen:    Chapter 5/

Chapter 5:    Night of the Cycle-Eaters

When sorrows come, they come not single spies,
But in battalions.

-- William Shakespeare, Hamlet

Thus far we've explored what might be called the science of
assembler programming.    We've dissected in considerable detail the many
factors that affect code performance, increasing our understanding of the PC
greatly in the process.    We've approached the whole business in a logical
fashion, measuring 8 cycles here, accounting for 6 cycles there, always
coming up with reasonable explanations for the phenomena we've observed.
In short, we've acted as if assembler programming for the PC can be reduced
to a well-understood, cut-and-dried cookbook discipline once we've learned
enough.

I'm here to tell you it ain't so.
Assembler programming for the PC can't be reduced to a science,

and the cycle-eaters are the reasons why.    The 8-bit bus and prefetch queue
cycle-eaters give every code sequence on the PC unique and hard-to-predict
performance characteristics.    Throw in the DRAM refresh and display
adapter cycle-eaters and you've got virtually infinite possibilities not only for
the performance of different code sequences but also for the performance of
the same code sequence at different times!    There is simply no way to know

Abrash/Zen:    Chapter 5/

in advance exactly how fast a specific instance of an instruction will execute,
and there's no way to be sure what code is the fastest for a particular
purpose.    Instead, what we must do is use the Zen timer to gain experience
and develop rules of thumb, write code by feel as much as by prescription,
and measure the actual performance of what we write.

In other words, we must become Zen programmers.
As you read this, you may understand but not believe. Surely, you

think, there must be a way to know what the best code is for a given task.
How can it not be possible to come up with a purely rational solution to a
problem that involves that most rational of man's creations, the computer?

The answer lies in the nature of the computer in question. While
it's true that it's not impossible to understand the exact performance of a
given piece of code on the IBM PC, because of the 8-bit bus and prefetch
queue cycle-eaters it is extremely complex and requires expensive hardware.
And then, when you fully understand the performance of that piece of code,
what have you got?    Only an understanding of one out of millions of possible
code sequences, each of which is a unique problem requiring just as much
analysis as did the first code sequence.

That's bad enough, but the two remaining cycle-eaters make the
problem of understanding code performance more complex still. The DRAM
refresh and display adapter cycle-eaters don't affect the execution of each
instruction equally; they occur periodically and have varying impacts on
performance when they do occur, thereby causing instruction performance
to vary as a function not only of the sequence of instructions but also of

Abrash/Zen:    Chapter 5/

time.    In other words, the understanding you gain of a particular code
sequence may not even be valid the next time that code runs, thanks to the
varying effects of the DRAM refresh and display adapter cycle-eaters.

In short, it is true that the exact performance of assembler code
is indeed a solvable problem in the classic sense, since everything about the
performance of a given execution of a given chunk of code is knowable given
enough time, effort, and expensive hardware.    It is equally true, however,
that the exact performance of assembler code over time is such a complex
problem that it might as well be unsolvable, since that hard-won knowledge
would be so specific as to be of no use.    We are going to spend the rest of
this chapter proving that premise.    First we'll look at some of the
interactions between the cycle-eaters; those interactions make the prediction
of code performance still more complex than we've seen thus far.    After that
we'll look at every detail of 170 cycles in the life of the PC.    What we'll find is
that if we set out to understand the exact performance of an entire
assembler program, we could well spend the rest of our lives at that task--
and would be no better off than we were before.

The object of this chapter is to convince you that when it comes
to writing assembler code there's no complete solution, no way to
understand every detail or get precise, unvarying answers about
performance.    We can come close, though, by understanding the basic
operation of the PC, developing our intuition, following rules of thumb such
as keeping instructions short, and always measuring code performance.
Those approaches are precisely what this book is about, and are the

Abrash/Zen:    Chapter 5/

foundation of the Zen of assembler.

NO, WE'RE NOT IN KANSAS ANYMORE

You may be feeling a bit lost at this point.    That's certainly
understandable, for the last two chapters have covered what is surely the
most esoteric aspect of assembler programming. I must tell you that this
chapter will be more of the same.

Follow along as best you can, but don't be concerned if some of
the material is outside your range right now.    Both the following chapters
and experience will give you a better feel for what this chapter is about.    It's
important that you be exposed to these concepts now, though, so you can
recognize them when you run into them later.    The key concept to come
away from this chapter with is that the cycle-eaters working together make
for such enormous variability of code performance that there's no point in
worrying about exactly what's happening in the execution of a given
instruction or sequence of instructions.    Instead, we must use rules of thumb
and a programming feel developed with experience, and we must focus on
overall performance as measured with the Zen timer.
CYCLE-EATERS BY THE BATTALION

Taken individually the cycle-eaters are formidable, as we saw in
the last chapter.    Cycle-eaters don't line up neatly and occur one at a time,
though.    They're like the proverbial 900- pound gorilla--they occur whenever
they want.    Frequently one cycle-eater will occur during the course of
another cycle-eater, with compound (and complex) effects.

Abrash/Zen:    Chapter 5/

For example, it's perfectly legal to put code in display memory
and execute that code.    However, as the instruction bytes of that code are
fetched they'll be subjected to the display adapter cycle-eater, meaning that
each instruction byte could easily take twice as long as usual to fetch.
Naturally, this will worsen the already serious effects of the prefetch queue
cycle-eater.    (Remember that the prefetch queue cycle-eater is simply the
inability of the 8088 to fetch instruction bytes quickly enough.)    In this case,
the display adapter and prefetch queue cycle-eaters together could make
overall execution times five to ten times longer than the times listed in
Appendix A!

As another example, the DRAM refresh and 8-bit bus cycle- eaters
can work together to increase the variability of code performance.    When
DRAM refresh occurs during an instruction that accesses a word-sized
memory operand, the instruction's memory accesses are held up until the
DRAM refresh is completed. However, the exact amount by which the
instruction's accesses are delayed (and which access is delayed, as well)
depends on exactly where in the course of execution the instruction was
when the DRAM refresh came along.    If the DRAM refresh happens just as
the 8088 was about to begin a bus access, the 8088 can be held up for a
long time.    If, however, the DRAM refresh happens while the 8088 is
performing internal operations, such as address calculations or instruction
decoding, the impact on performance will be less.

The point is not, Lord knows, that you should understand how
every cycle-eater affects every other cycle-eater and how together and

Abrash/Zen:    Chapter 5/

separately they affect each instruction in your code.    Quite the opposite, in
fact.    I certainly don't understand all the interactions between cycle-eaters
and code performance, and frankly I don't ever expect (or want) to.    Rather,
what I'm telling you (again) is that a complete understanding of the
performance of a given code sequence is so complex and varies so greatly
with context that there's no point worrying about it.    As a result, high-
performance assembler code comes from programming by intuition and
experience and then measuring performance, not from looking up execution
times and following rigid rules.    In a way that's all to the good:
experienced, intuitive assembler programmers are worth a great deal,
because no compiler can rival a good assembler programmer's ability to deal
with cycle-eaters and the complexity of code execution on the 8088.

One fallout of the near-infinite variability of code performance is
that the exact performance of a given instruction is for all intents and
purposes undefined.    There are so many factors affecting performance, and
those factors can vary so easily with time and context, that there's just no
use to trying to tag a given instruction with a single execution time.    In other
words...

...THERE'S STILL NO SUCH BEAST AS A TRUE EXECUTION TIME

Thanks to the combined efforts of the cycle-eaters, it's more true
than ever that there's no such thing as a single "true" execution time for a
given instruction.    As you'll recall, I said that in the last chapter.    Why do I
keep bringing it up?    Because I don't want you to look at the times reported

Abrash/Zen:    Chapter 5/

by our tests of 1000 repetitions of the same instruction and think that those
times are the true execution times of that instruction--they aren't, any more
than the official cycle times in Appendix A are the true times.    There is no
such thing as a true execution time on the 8088.    There are only execution
times in context.

Do you remember the varying performances of shr in different
contexts in Chapter 4?    Well, that was just for repeated instances of one or
two instructions.    Imagine how much variation cycle-eaters could induce in
the performance of a sequence of ten or twenty different instructions,
especially if some of the instructions accessed word-sized display memory
operands.    You should always bear in mind that the times reported by the
Zen timer are accurate only for the particular code sequence you've timed,
not for all instances of a given instruction in all code sequences. There's just
no way around it:    you must measure the performance of your code to know
how fast it is.    Yes, I know--it would be awfully nice just to be able to look up
instruction execution times and be done with it.    That's not the way the
8088 works, though--and the odd architecture of the 8088 is what the Zen of
assembler is all about.

170 CYCLES IN THE LIFE OF A PC

Next, we're going to examine every detail of instruction execution
on the PC over a period of 170 cycles.    One reason for doing this is to
convince any of you who may still harbor the notion that there must be some
way to come up with hard-and-fast execution times that you're on a fool's

Abrash/Zen:    Chapter 5/

quest.    Another reason is to illustrate many of the concepts we've developed
over the last two chapters.

A third reason is simple curiosity.    We'll spend most of this book
measuring instruction execution times and inferring how cycle-eaters and
instruction execution are interacting.    Why not take a look at the real thing?
It won't answer any fundamental questions, but it will give us a feel for
what's going on under the programming interface.

THE TEST SET-UP

The code we'll observe is shown in Listing 5-1.    This code is an
endless loop in which the value stored in the variable i is copied to the
variable j over and over by way of AH.    The DS: override prefixes on the
variables, while not required, make it clear that both variables are accessed
by way of DS.

The detailed performance of the code in Listing 5-1 was
monitored with the logic analyzer capability of the OmniLab multipurpose
electronic test instrument manufactured by Orion Instruments.    (Not
coincidentally, I was part of the team that developed the OmniLab software.)
OmniLab's probes were hooked up to a PC's 8088 and bus, Listing 5-1 was
started, and a snapshot of code execution was captured and studied.

By the way, OmniLab, a high-performance but relatively low-
priced instrument, costs (circa 1989) about $9,000.    Money is one reason
why you probably won't want to analyze code performance in great detail
yourself!

Abrash/Zen:    Chapter 5/

The following lines of the 8088 were monitored with OmniLab: the
16 lines that carry addresses, 8 of which also carry data, the READY line
(used to hold the 8088 up during DRAM refresh), and the QS1 and QS0 lines
(which signal transfers of instruction bytes from the prefetch queue to the
Execution Unit).    The /MEMR and /MEMW lines on the PC bus were monitored
in order to observe memory accesses.    The 8088 itself provides additional
information about bus cycle timing and type, but the lines described above
will show us program execution in plenty of detail for our purposes.

Odds are that you, the reader, are not a hardware engineer. After
all, this is a book about software, however far it may seem to stray at times.
Consequently, I'm not going to show the execution of Listing 5-1 in the form
of the timing diagrams of which hardware engineers are so fond.    Timing
diagrams are fine for observing the state of a single line, but are hard to
follow at an overall level, which is precisely what we want to see. Instead,
I've condensed the information I collected with OmniLab into an event time-
line, shown in Figure 5-1.

THE RESULTS

Figure 5-1 shows 170 consecutive 8088 cycles.    To the left of the
cycle time-line Figure 5-1 shows the timing of instruction byte transfers from
the prefetch queue to the Execution Unit. This information was provided by
the QS1 and QS0 pins of the 8088.    To the right of the cycle time-line Figure
5-1 shows the timing of bus read and write accesses.    The timing of these
accesses was provided by the /MEMR and /MEMW lines of the PC bus, and the

Abrash/Zen:    Chapter 5/

data and addresses were provided by the address/data lines of the 8088.
One note for the technically oriented:    since bus accesses take 4 cycles from
start to finish, I considered the read and write accesses to complete on the
last cycle during which /MEMR or /MEMW was active.

Take a minute to look Figure 5-1 over, before we begin our
discussion.    Bear in mind that Figure 5-1 is actually a simplified, condensed
version of the information that actually appeared on the 8088's pins.    In
other words, if you choose to analyze cycle-by-cycle performance yourself,
the data will be considerably harder to interpret than Figure 5-1!
CODE EXECUTION ISN'T ALL THAT EXCITING

The first thing that surely strikes you about Figure 5-1 is that it's
awfully tedious, even by assembler standards.    During the entire course of
the figure only seven instructions are executed--not much to show for all the
events listed.    The monotony of picking apart code execution is one reason
why such a detailed level of understanding of code performance isn't
desirable.

THE 8088 REALLY DOES COPROCESS

The next notable aspect of Figure 5-1 is that you can truly see the
two parts of the 8088--the Execution Unit and the Bus Interface Unit--
coprocessing.    The left side of the time-line shows the times at which the EU
receives instruction bytes to execute, indicating the commencement and
continuation of instruction execution.    The right side of the time-line shows
the times at which the BIU reads or writes bytes from or to memory,

Abrash/Zen:    Chapter 5/

indicating instruction fetches and accesses to memory operands.
The two sides of the time-line overlap considerably.    For

example, at cycle 10 the EU receives the opcode byte of mov ds:[j],ah from
the prefetch queue at the same time that the BIU prefetches the mod-reg-rm
byte for the same instruction.    (We'll discuss mod-reg-rm bytes in detail in
Chapter 7.)    Clearly, the two parts of the 8088 are processing independently
during cycle 10. The EU and BIU aren't always able the process
independently, however.    The EU spends a considerable amount of time
waiting for the BIU to provide the next instruction byte, thanks to the
prefetch queue cycle-eater.    This is apparent during cycles 129 through 135,
where the EU must wait 6 cycles for the mod-reg-rm byte of mov ah,ds:[i]

to arrive.    Back at cycle 84, the EU only had to wait 1 cycle for the same
byte to arrive.    Why the difference?

The difference is the result of the DRAM refresh that occurred at
cycle 118, preempting the bus and delaying prefetching so that the mod-reg-
rm byte of mov ah,ds:[i] wasn't available until cycle 135.    What's
particularly interesting is that this variation occurs even though the
sequence of instructions is exactly the same at cycle 83 as at cycle 129.    In
this case, it's the DRAM refresh cycle-eater that causes identical instructions
in identical code sequences to execute at different speeds.    Another time, it
might be the display adapter cycle-eater that causes the variation, or the
prefetch queue cycle-eater, or a combination of the three.    This is an
important lesson in the true nature of code execution:    the same instruction
sequence may execute at different speeds at different times.

Abrash/Zen:    Chapter 5/

WHEN DOES AN INSTRUCTION EXECUTE?

One somewhat startling aspect of Figure 5-1 is that it makes it
clear that there is no such thing as the time interval during which a given
instruction--and only that instruction--executes. There is the time at which a
given byte of an instruction is prefetched, there is a time at which a given
byte of an instruction is sent to the EU, and there is a time at which each
memory operand byte of an instruction is accessed.    None of those times
really marks the start or end of an instruction, though, and the instruction
fetches and memory accesses of one instruction usually overlap those of
other instructions.    Figure 5-2 illustrates the full range of action of each of
the instructions in Figure 5-1.    (In Figure 5-2, and in Figure 5-3 as well, the
two sides of the time-line are equivalent; there is no specific meaning to text
on, say, the left side as there is in Figure 5-1.    I simply alternate sides in
order to keep one instruction from running into the next.)

For example, at cycle 143 the last instruction byte of mov ah,ds:

[i] is sent to the EU.    At cycle 144 the opcode of the next instruction, mov

ds:[j],ah, is prefetched.    Not until cycle 150 is the operand of mov ah,ds:

[i] read, and not until cycle 154 is the opcode byte of mov ds:[j],ah sent to
the EU.    Which instruction is executing between cycles 143 and 154?

It's easiest to consider execution to start when the opcode byte of
an instruction is sent to the EU and end when the opcode byte of the next
instruction is sent to the EU, as shown in Figure 5-3.    Under this approach,
the current instruction is charged with any instruction fetch time for the

Abrash/Zen:    Chapter 5/

opcode byte of the next instruction that isn't overlapped with EU execution of
the current instruction.    This is consistent with our conclusion in Chapter 4
that execution time is, practically speaking, EU execution time plus any
instruction fetch time that's not overlapped with the EU execution time of
another instruction. Therefore, mov ah,ds:[i] executes during cycles 129
through 153.

In truth, though, the first hint of mov ah,ds:[i] occurs at cycle
122, when the opcode byte is fetched.    In fact, since read accesses to
memory take 4 cycles, the 8088 must have begun fetching the opcode byte
earlier still.    Figure 5-2 assumes that the 8088 starts bus accesses 2 cycles
before the cycle during which /MEMR or /MEMW becomes inactive.    That
assumption may be off by a cycle, but none of our conclusions would be
altered if that were the case.    Consequently, the instruction mov ah,ds:[i]

occupies the attention of at least some part of the 8088 from around cycle
120 up through cycle 153, or 34 cycles, as shown in Figure 5-2.

Figure 5-3 shows that mov ah,ds:[i] doesn't take 34 cycles to
execute, however.    The instruction fetching that occurs during cycles 120
through 128 is overlapped with the execution of the preceding instruction, so
those cycles aren't counted against the execution time of mov ah,ds:[i].
The instruction does take 25 cycles to execute, though, illustrating the power
of the cycle- eaters:    according to Appendix A, mov ah,ds:[i] should
execute in 14 cycles, so just two of the cycle-eaters, the prefetch queue and
DRAM refresh, have nearly doubled the actual execution time of the
instruction in this context.

Abrash/Zen:    Chapter 5/

THE TRUE NATURE OF INSTRUCTION EXECUTION

Figure 5-1 makes it perfectly clear that at the lowest level code
execution is really nothing more than two parallel chains of execution, one
taking place in the EU and one taking place in the BIU.    What's more, the BIU
interleaves instruction fetches for one instruction with memory operand
accesses for another instruction.    Thus, instruction execution really consists
of three interleaved streams of events.

Unfortunately, assembler itself tests the limits of human
comprehension of processor actions.    Thinking in terms of the interleaved
streams of events shown in Figure 5-1 is too much for any mere mortal.    It's
ridiculous to expect that an assembler programmer could visualize
interleaved instruction fetches, EU execution, and memory operand fetches
as he writes code, and in fact no one even tries to do so.

And that is yet another reason why an understanding of code
performance at the level shown in Figure 5-1 isn't desirable.

VARIABILITY

This brings us to an excellent illustration of the variability of
performance, even for the same instruction in the same code sequence
executing at different times.    As we just discovered, the mov ah,ds:[i]

instruction that starts at cycle 129 takes 25 cycles to execute.    However, the
same instruction starting at cycle 33 takes 27 cycle to execute.    Starting at
cycle 83, mov ah,ds:[i] takes just 21 cycles to execute.    That's three
significantly different times for the same instruction executing in the same

Abrash/Zen:    Chapter 5/

instruction sequence!
How can this be?    In this case it's the DRAM refresh cycle- eater

that's stirring things up by periodically holding up 8088 bus accesses for 4
cycles or more.    This alters the 8088's prefetching and memory access
sequence, with a resultant change in execution time.    As we discussed
earlier, the DRAM refresh read at cycle 118 takes up valuable bus access
time, keeping the 8088 from fetching the mod-reg-rm byte of mov ah,ds:[i]

ahead of time and thereby pushing the succeeding bus accesses a few cycles
later in time.

The DRAM refresh and display adapter cycle-eaters can cause
almost any code sequence to vary in much the same way over time. That's
why the Zen timer reports fractional times.    It is also the single most
important reason why a micro-analysis of code performance of the sort done
in Figure 5-1 is not only expensive and time-consuming but also pointless.    If
a given instruction following the same sequence of instructions can vary in
performance by 20%, 50%, 100% or even more from one execution to the
next, what sort of performance number can you give that instruction other
than as part of the overall instruction sequence?    What point is there in
trying to understand the instruction's exact performance during any one of
those executions?

The answer, briefly stated, is:    no point at all.
YOU NEVER KNOW UNLESS YOU MEASURE (IN CONTEXT!)

I hope I've convinced you that the actual performance of 8088
code is best viewed as the interaction of many highly variable forces, the net

Abrash/Zen:    Chapter 5/

result of which is measurable but hardly predictable.    But just in case I
haven't, consider this...

Figure 5-1 illustrates the execution of one of the simplest
imaginable code sequences.    The exact pattern of code execution repeats
after 144 cycles, so even with DRAM refresh we have an execution pattern
that repeats after only 6 instructions.    That's not likely to be the case with
real code, which rarely features the endless alternation of two instructions.
In real code the code mix changes endlessly, so DRAM refresh and the
prefetch queue cycle-eater normally result in a far greater variety of
execution sequences than in Figure 5-1.

Also, only two of the four cycle-eaters are active in Figure 5-1.
Since Listing 5-1 uses no word-sized operands, the 8-bit bus cycle-eater has
no effect other than slowing instruction prefetching.    Likewise, Listing 5-1
doesn't access display memory, so the display adapter cycle-eater doesn't
affect performance.    Imagine if we threw those cycle-eaters into Figure 5-1
as well!

Worse still, in the real world interrupts occur often and
asynchronously, flushing the prefetch queue and often changing the
fetching, execution, and memory operand access patterns of whatever code
happens to be running.    Most notable among these interrupts is the timer
interrupt, which occurs every 54.9 ms. Because the timer interrupt may
occur after any instruction and doesn't always take the same amount of
time, it can cause execution to settle into new patterns.    For example, after I
captured the sequence shown in Figure 5-1 I took another snapshot of the

Abrash/Zen:    Chapter 5/

execution of Listing 5-1.    The second snapshot did not match the first.    The
timer interrupt had kicked execution into a different pattern, in which the
same instructions were executed, with the same results--but not at exactly
the same speeds.

Other interrupts, such as those from keyboards, mice, and serial
ports, can similarly alter program performance.    Of course, interrupts and
cycle-eaters don't change the effects of code--add ax,1 always adds 1 to AX,
and so on--but they can drastically change the performance of a given
instruction in a given context.    That's why we focus on the overall
performance of code sequences in context, as measured with the Zen timer,
rather than on the execution times of individual instructions.

THE LONGER THE BETTER

Now is a good time to point out that the longer the instruction
sequence you measure, the less variability you'll normally get from one
execution to the next.    Over time, the perturbations caused by the DRAM
refresh cycle-eater tend to average out, since DRAM refresh occurs on a
regular basis. Similarly, a lengthy code sequence that accesses display
memory multiple times will tend to suffer a fairly consistent loss of
performance to the display adapter cycle-eater.    By contrast, a short code
sequence that accesses display memory just once may vary greatly in
performance from one run to the next, depending on how many wait states
occur on the one access during a given run.

In short, you should time either long code sequences or repeated

Abrash/Zen:    Chapter 5/

executions of shorter code sequences.    While there's no strict definition of
"long" in this context, the effects of the DRAM refresh and display adapter
cycle-eaters should largely even out in sequences longer than about 100 us.
While you can certainly use the Zen timer to measure shorter intervals, you
should take multiple readings in such cases to make sure that the variations
the cycle-eaters can cause from one run to the next aren't skewing your
readings.

ODDS AND ENDS

There are a few more interesting observations to be made about
Figure 5-1.    For one thing, we can clearly see that while bus accesses are
sometimes farther apart than 4 cycles, they are never any closer together.
This confirms our earlier observation that bus cycles take a minimum of 4
cycles.

On the other hand, instruction bytes can be transferred from the
prefetch queue to the Execution Unit at a rate of 1 byte per cycle when the
EU needs them that quickly.    This reinforces the notion that the EU can use
up instruction bytes faster than the BIU can fetch them.    In fact, we can see
the EU waiting for an instruction byte fetch from cycle 130 to cycle 135, as
discussed earlier.    It's worth noting that after the instruction byte transfer to
the EU at cycle 135, the next two instruction byte transfers occur at cycles
139 and 143, each occurring 4 cycles after the previous transfer.    That
mimics the 4 cycles separating the fetches of those instruction bytes, and
that's no coincidence.    During these cycles the EU does nothing but wait for

Abrash/Zen:    Chapter 5/

the BIU to fetch instruction bytes--the most graphic demonstration yet of the
prefetch queue cycle-eater.

The prefetch queue cycle-eater can be observed in another way
in Figure 5-1.    A careful reading of Figure 5-1 will make it apparent that the
prefetch queue never contains more than 2 bytes at any time.    In other
words, the prefetch queue not only never fills, it never gets more than 2
bytes ahead of the Execution Unit.    Moreover, we can see at cycles 33 and
34 that the EU can empty those 2 bytes from the prefetch queue in just 2
cycles. There's no doubt but what the BIU often fights a losing battle in trying
to keep the EU supplied with instruction bytes.

BACK TO THE PROGRAMMING INTERFACE

It's not important that you grasp everything in this chapter, so
long as you understand that the factors affecting the performance of an
instruction in a given context are complex and vary with time.    These
complex and varied factors make it virtually impossible to know beforehand
at what speed code will actually run.    They also make it both impractical and
pointless to understand exactly--down to the cycles--why a particular
instruction or code sequence performs as well or poorly as it does.

As a result, high-performance assembler programming must be
an intuitive art, rather than a cut-and-dried cookbook process. That's why
this book is called The Zen of Assembly Language, not The Assembly
Language Programming Reference Guide.    That's also why you must time
your code if you want to know how fast it is.

Abrash/Zen:    Chapter 5/

Cycle-eaters underlie the programming interface, the topic we'll
tackle next.    Together, cycle-eaters and the programming interface
constitute the knowledge aspect of the Zen of assembler.    Ultimately, the
concept of the flexible mind rests on knowledge, and algorithms and
implementation rest on the flexible mind.    In short, cycle-eaters are the
foundation of the Zen of assembler, and as such they will pop up frequently
in the following chapters in a variety of contexts.    The constant application
of our understanding of the various cycle-eaters to working code should clear
up any uncertainties you may still have about the cycle-eaters.

Next, we'll head up out of the land of the cycle-eaters to the
programming interface, the far more familiar domain of registers,
instructions, memory addressing, DOS calls and the like.    After our journey
to the land of the cycle-eaters, however, don't be surprised if the
programming interface looks a little different.    Assembler code never looks
quite the same to a programmer who understands the true nature of
performance.

