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Chapter 5:    Night of the Cycle-Eaters

When sorrows come, they come not single spies,
But in battalions.

-- William Shakespeare, Hamlet

Thus  far  we've  explored  what  might  be  called  the  science  of
assembler programming.    We've dissected in considerable detail the many
factors that affect code performance, increasing our understanding of the PC
greatly in the process.    We've approached the whole business in a logical
fashion,  measuring  8  cycles  here,  accounting  for  6  cycles  there,  always
coming up with reasonable explanations for the phenomena we've observed.
In short, we've acted as if assembler programming for the PC can be reduced
to a well-understood, cut-and-dried cookbook discipline once we've learned
enough.

I'm here to tell you it ain't so.
Assembler programming for the PC can't be reduced to a science,

and the cycle-eaters are the reasons why.    The 8-bit bus and prefetch queue
cycle-eaters give every code sequence on the PC unique and hard-to-predict
performance  characteristics.      Throw  in  the  DRAM  refresh  and  display
adapter cycle-eaters and you've got virtually infinite possibilities not only for
the performance of different code sequences but also for the performance of
the same code sequence at different times!    There is simply no way to know
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in advance exactly how fast a specific instance of an instruction will execute,
and  there's  no  way  to  be  sure  what  code  is  the  fastest  for  a  particular
purpose.    Instead, what we must do is use the Zen timer to gain experience
and develop rules of thumb, write code by feel as much as by prescription,
and measure the actual performance of what we write.

In other words, we must become Zen programmers.
As you read this, you may understand but not believe. Surely, you

think, there must be a way to know what the best code is for a given task.
How can it not be possible to come up with a purely rational solution to a
problem that involves that most rational of man's creations, the computer?

The answer lies in the nature of the computer in question. While
it's true that it's not impossible to understand the exact performance of a
given piece of code on the IBM PC, because of the 8-bit bus and prefetch
queue cycle-eaters it is extremely complex and requires expensive hardware.
And then, when you fully understand the performance of that piece of code,
what have you got?    Only an understanding of one out of millions of possible
code sequences, each of which is a unique problem requiring just as much
analysis as did the first code sequence.

That's bad enough, but the two remaining cycle-eaters make the
problem of understanding code performance more complex still. The DRAM
refresh and display adapter cycle-eaters don't affect the execution of each
instruction  equally;  they  occur  periodically  and  have  varying  impacts  on
performance when they do occur, thereby causing instruction performance
to vary as a function not only of the sequence of instructions but also of
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time.      In  other  words,  the  understanding  you  gain  of  a  particular  code
sequence may not even be valid the next time that code runs, thanks to the
varying effects of the DRAM refresh and display adapter cycle-eaters.

In short, it is true that the exact performance of assembler code
is indeed a solvable problem in the classic sense, since everything about the
performance of a given execution of a given chunk of code is knowable given
enough time, effort, and expensive hardware.    It is equally true, however,
that the exact performance of assembler code over time is such a complex
problem that it might as well be unsolvable, since that hard-won knowledge
would be so specific as to be of no use.    We are going to spend the rest of
this  chapter  proving  that  premise.      First  we'll  look  at  some  of  the
interactions between the cycle-eaters; those interactions make the prediction
of code performance still more complex than we've seen thus far.    After that
we'll look at every detail of 170 cycles in the life of the PC.    What we'll find is
that  if  we  set  out  to  understand  the  exact  performance  of  an  entire
assembler program, we could well spend the rest of our lives at that task--
and would be no better off than we were before.

The object of this chapter is to convince you that when it comes
to  writing  assembler  code  there's  no  complete  solution,  no  way  to
understand  every  detail  or  get  precise,  unvarying  answers  about
performance.      We  can come  close,  though,  by  understanding  the  basic
operation of the PC, developing our intuition, following rules of thumb such
as  keeping  instructions  short,  and  always  measuring  code  performance.
Those  approaches  are  precisely  what  this  book  is  about,  and  are  the
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foundation of the Zen of assembler.

NO, WE'RE NOT IN KANSAS ANYMORE

You  may  be  feeling  a  bit  lost  at  this  point.      That's  certainly
understandable, for the last two chapters have covered what is surely the
most esoteric aspect of assembler programming. I must tell  you that this
chapter will be more of the same.

Follow along as best you can, but don't be concerned if some of
the material is outside your range right now.    Both the following chapters
and experience will give you a better feel for what this chapter is about.    It's
important that you be exposed to these concepts now, though, so you can
recognize them when you run into them later.      The key concept to come
away from this chapter with is that the cycle-eaters working together make
for such enormous variability of code performance that there's no point in
worrying  about  exactly  what's  happening  in  the  execution  of  a  given
instruction or sequence of instructions.    Instead, we must use rules of thumb
and a programming feel developed with experience, and we must focus on
overall performance as measured with the Zen timer. 
CYCLE-EATERS BY THE BATTALION

Taken individually the cycle-eaters are formidable, as we saw in
the last chapter.    Cycle-eaters don't line up neatly and occur one at a time,
though.    They're like the proverbial 900- pound gorilla--they occur whenever
they  want.      Frequently  one  cycle-eater  will  occur  during  the  course  of
another cycle-eater, with compound (and complex) effects.



Abrash/Zen:    Chapter 5/

For example, it's perfectly legal to put code in display memory
and execute that code.    However, as the instruction bytes of that code are
fetched they'll be subjected to the display adapter cycle-eater, meaning that
each  instruction  byte  could  easily  take  twice  as  long  as  usual  to  fetch.
Naturally, this will worsen the already serious effects of the prefetch queue
cycle-eater.    (Remember that the prefetch queue cycle-eater is simply the
inability of the 8088 to fetch instruction bytes quickly enough.)    In this case,
the display adapter and prefetch queue cycle-eaters together could make
overall  execution  times  five to  ten  times  longer  than the  times  listed in
Appendix A!

As another example, the DRAM refresh and 8-bit bus cycle- eaters
can work together to increase the variability of code performance.    When
DRAM  refresh  occurs  during  an  instruction  that  accesses  a  word-sized
memory operand, the instruction's memory accesses are held up until the
DRAM  refresh  is  completed.  However,  the  exact  amount  by  which  the
instruction's  accesses are delayed (and which access is  delayed, as well)
depends on exactly where in the course of  execution the instruction was
when the DRAM refresh came along.    If the DRAM refresh happens just as
the 8088 was about to begin a bus access, the 8088 can be held up for a
long  time.      If,  however,  the  DRAM  refresh  happens  while  the  8088  is
performing internal operations, such as address calculations or instruction
decoding, the impact on performance will be less.

The point is  not,  Lord knows, that you should understand how
every  cycle-eater  affects  every  other  cycle-eater  and  how  together  and



Abrash/Zen:    Chapter 5/

separately they affect each instruction in your code.    Quite the opposite, in
fact.     I certainly don't understand all the interactions between cycle-eaters
and code performance, and frankly I don't ever expect (or want) to.    Rather,
what  I'm  telling  you  (again)  is  that  a  complete  understanding  of  the
performance of a given code sequence is so complex and varies so greatly
with  context  that  there's  no  point  worrying  about  it.      As  a  result,  high-
performance  assembler  code  comes  from  programming  by  intuition  and
experience and then measuring performance, not from looking up execution
times  and  following  rigid  rules.      In  a  way  that's  all  to  the  good:
experienced,  intuitive  assembler  programmers  are  worth  a  great  deal,
because no compiler can rival a good assembler programmer's ability to deal
with cycle-eaters and the complexity of code execution on the 8088.

One fallout of the near-infinite variability of code performance is
that  the  exact  performance  of  a  given  instruction  is  for  all  intents  and
purposes undefined.    There are so many factors affecting performance, and
those factors can vary so easily with time and context, that there's just no
use to trying to tag a given instruction with a single execution time.    In other
words...

...THERE'S STILL NO SUCH BEAST AS A TRUE EXECUTION TIME

Thanks to the combined efforts of the cycle-eaters, it's more true
than ever that there's no such thing as a single "true" execution time for a
given instruction.    As you'll recall, I said that in the last chapter.    Why do I
keep bringing it up?    Because I don't want you to look at the times reported
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by our tests of 1000 repetitions of the same instruction and think that those
times are the true execution times of that instruction--they aren't, any more
than the official cycle times in Appendix A are the true times.     There is no
such thing as a true execution time on the 8088.    There are only execution
times in context.

Do you remember the varying performances of  shr in different
contexts in Chapter 4?    Well, that was just for repeated instances of one or
two instructions.    Imagine how much variation cycle-eaters could induce in
the  performance  of  a  sequence  of  ten  or  twenty  different  instructions,
especially if some of the instructions accessed word-sized display memory
operands.    You should always bear in mind that the times reported by the
Zen timer are accurate only for the particular code sequence you've timed,
not for all instances of a given instruction in all code sequences. There's just
no way around it:    you must measure the performance of your code to know
how fast it is.    Yes, I know--it would be awfully nice just to be able to look up
instruction execution times and be done with it.      That's not the way the
8088 works, though--and the odd architecture of the 8088 is what the Zen of
assembler is all about.

170 CYCLES IN THE LIFE OF A PC

Next, we're going to examine every detail of instruction execution
on the PC over a period of  170 cycles.      One reason for  doing this  is  to
convince any of you who may still harbor the notion that there must be some
way to come up with hard-and-fast execution times that you're on a fool's
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quest.    Another reason is to illustrate many of the concepts we've developed
over the last two chapters.

A third reason is simple curiosity.    We'll spend most of this book
measuring instruction execution times and inferring how cycle-eaters and
instruction execution are interacting.    Why not take a look at the real thing?
It  won't  answer  any fundamental  questions,  but  it  will  give  us  a  feel  for
what's going on under the programming interface.

THE TEST SET-UP

The code we'll observe is shown in Listing 5-1.    This code is an
endless  loop in  which  the value stored in  the variable  i is  copied to  the
variable  j over and over by way of AH.    The  DS: override prefixes on the
variables, while not required, make it clear that both variables are accessed
by way of DS.

The  detailed  performance  of  the  code  in  Listing  5-1  was
monitored with the logic analyzer capability of  the OmniLab multipurpose
electronic  test  instrument  manufactured  by  Orion  Instruments.      (Not
coincidentally, I was part of the team that developed the OmniLab software.)
OmniLab's probes were hooked up to a PC's 8088 and bus, Listing 5-1 was
started, and a snapshot of code execution was captured and studied.

By  the  way,  OmniLab,  a  high-performance  but  relatively  low-
priced instrument, costs (circa 1989) about $9,000.    Money is one reason
why you probably won't want to analyze code performance in great detail
yourself!
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The following lines of the 8088 were monitored with OmniLab: the
16 lines that carry addresses, 8 of which also carry data, the READY line
(used to hold the 8088 up during DRAM refresh), and the QS1 and QS0 lines
(which signal transfers of instruction bytes from the prefetch queue to the
Execution Unit).    The /MEMR and /MEMW lines on the PC bus were monitored
in order to observe memory accesses.    The 8088 itself provides additional
information about bus cycle timing and type, but the lines described above
will show us program execution in plenty of detail for our purposes.

Odds are that you, the reader, are not a hardware engineer. After
all, this is a book about software, however far it may seem to stray at times.
Consequently, I'm not going to show the execution of Listing 5-1 in the form
of the timing diagrams of which hardware engineers are so fond.    Timing
diagrams are fine for observing the state of a single line, but are hard to
follow at an overall level, which is precisely what we want to see. Instead,
I've condensed the information I collected with OmniLab into an event time-
line, shown in Figure 5-1.

THE RESULTS

Figure 5-1 shows 170 consecutive 8088 cycles.    To the left of the
cycle time-line Figure 5-1 shows the timing of instruction byte transfers from
the prefetch queue to the Execution Unit. This information was provided by
the QS1 and QS0 pins of the 8088.    To the right of the cycle time-line Figure
5-1 shows the timing of bus read and write accesses.    The timing of these
accesses was provided by the /MEMR and /MEMW lines of the PC bus, and the
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data and addresses were provided by the address/data lines of the 8088.
One note for the technically oriented:    since bus accesses take 4 cycles from
start to finish, I considered the read and write accesses to complete on the
last cycle during which /MEMR or /MEMW was active.

Take  a  minute  to  look  Figure  5-1  over,  before  we  begin  our
discussion.    Bear in mind that Figure 5-1 is actually a simplified, condensed
version of the information that actually appeared on the 8088's pins.      In
other words, if you choose to analyze cycle-by-cycle performance yourself,
the data will be considerably harder to interpret than Figure 5-1! 
CODE EXECUTION ISN'T ALL THAT EXCITING

The first thing that surely strikes you about Figure 5-1 is that it's
awfully tedious, even by assembler standards.    During the entire course of
the figure only seven instructions are executed--not much to show for all the
events listed.    The monotony of picking apart code execution is one reason
why  such  a  detailed  level  of  understanding  of  code  performance  isn't
desirable.

THE 8088 REALLY DOES COPROCESS

The next notable aspect of Figure 5-1 is that you can truly see the
two  parts  of  the  8088--the  Execution  Unit  and  the  Bus  Interface  Unit--
coprocessing.    The left side of the time-line shows the times at which the EU
receives  instruction  bytes  to  execute,  indicating  the  commencement  and
continuation of instruction execution.    The right side of the time-line shows
the  times  at  which  the  BIU  reads  or  writes  bytes  from  or  to  memory,
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indicating instruction fetches and accesses to memory operands.
The  two  sides  of  the  time-line  overlap  considerably.      For

example, at cycle 10 the EU receives the opcode byte of mov ds:[j],ah from
the prefetch queue at the same time that the BIU prefetches the mod-reg-rm
byte for the same instruction.    (We'll discuss mod-reg-rm bytes in detail in
Chapter 7.)    Clearly, the two parts of the 8088 are processing independently
during cycle 10. The  EU  and  BIU  aren't  always  able  the  process
independently,  however.      The EU spends a considerable  amount of  time
waiting  for  the  BIU  to  provide  the  next  instruction  byte,  thanks  to  the
prefetch queue cycle-eater.    This is apparent during cycles 129 through 135,
where the EU must wait 6 cycles for the mod-reg-rm byte of mov ah,ds:[i]

to arrive.    Back at cycle 84, the EU only had to wait 1 cycle for the same
byte to arrive.    Why the difference?

The difference is the result of the DRAM refresh that occurred at
cycle 118, preempting the bus and delaying prefetching so that the mod-reg-
rm byte  of  mov  ah,ds:[i] wasn't  available  until  cycle  135.      What's
particularly  interesting  is  that  this  variation  occurs  even  though  the
sequence of instructions is exactly the same at cycle 83 as at cycle 129.    In
this case, it's the DRAM refresh cycle-eater that causes identical instructions
in identical code sequences to execute at different speeds.    Another time, it
might be the display adapter cycle-eater that causes the variation, or the
prefetch  queue  cycle-eater,  or  a  combination  of  the  three.      This  is  an
important lesson in the true nature of code execution:    the same instruction
sequence may execute at different speeds at different times.
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WHEN DOES AN INSTRUCTION EXECUTE?

One somewhat startling aspect of Figure 5-1 is that it makes it
clear that there is no such thing as the time interval during which a given
instruction--and only that instruction--executes. There is the time at which a
given byte of an instruction is prefetched, there is a time at which a given
byte of an instruction is sent to the EU, and there is a time at which each
memory operand byte of an instruction is accessed.    None of those times
really marks the start or end of an instruction, though, and the instruction
fetches and memory accesses of  one instruction usually overlap those of
other instructions.    Figure 5-2 illustrates the full range of action of each of
the instructions in Figure 5-1.    (In Figure 5-2, and in Figure 5-3 as well, the
two sides of the time-line are equivalent; there is no specific meaning to text
on, say, the left side as there is in Figure 5-1.    I simply alternate sides in
order to keep one instruction from running into the next.)

For example, at cycle 143 the last instruction byte of mov ah,ds:

[i] is sent to the EU.    At cycle 144 the opcode of the next instruction, mov

ds:[j],ah, is prefetched.    Not until cycle 150 is the operand of mov ah,ds:

[i] read, and not until cycle 154 is the opcode byte of mov ds:[j],ah sent to
the EU.    Which instruction is executing between cycles 143 and 154?

It's easiest to consider execution to start when the opcode byte of
an instruction is sent to the EU and end when the opcode byte of the next
instruction is sent to the EU, as shown in Figure 5-3.    Under this approach,
the current  instruction  is  charged with  any instruction  fetch  time for  the
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opcode byte of the next instruction that isn't overlapped with EU execution of
the current instruction.    This is consistent with our conclusion in Chapter 4
that  execution  time  is,  practically  speaking,  EU  execution  time  plus  any
instruction fetch time that's not overlapped with the EU execution time of
another instruction.  Therefore,  mov ah,ds:[i] executes during cycles 129
through 153.

In truth, though, the first hint of  mov ah,ds:[i] occurs at cycle
122,  when the  opcode  byte  is  fetched.      In  fact,  since  read  accesses  to
memory take 4 cycles, the 8088 must have begun fetching the opcode byte
earlier still.    Figure 5-2 assumes that the 8088 starts bus accesses 2 cycles
before the cycle during which /MEMR or /MEMW becomes inactive.      That
assumption may be off by a cycle, but none of our conclusions would be
altered if that were the case.    Consequently, the instruction mov ah,ds:[i]

occupies the attention of at least some part of the 8088 from around cycle
120 up through cycle 153, or 34 cycles, as shown in Figure 5-2.

Figure 5-3 shows that  mov ah,ds:[i] doesn't take 34 cycles to
execute, however.      The instruction fetching that occurs during cycles 120
through 128 is overlapped with the execution of the preceding instruction, so
those cycles aren't counted against the execution time of  mov ah,ds:[i].
The instruction does take 25 cycles to execute, though, illustrating the power
of  the  cycle- eaters:      according  to  Appendix  A,  mov  ah,ds:[i] should
execute in 14 cycles, so just two of the cycle-eaters, the prefetch queue and
DRAM  refresh,  have  nearly  doubled  the  actual  execution  time  of  the
instruction in this context. 
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THE TRUE NATURE OF INSTRUCTION EXECUTION

Figure 5-1 makes it perfectly clear that at the lowest level code
execution is really nothing more than two parallel chains of execution, one
taking place in the EU and one taking place in the BIU.    What's more, the BIU
interleaves  instruction  fetches  for  one  instruction  with  memory  operand
accesses for another instruction.    Thus, instruction execution really consists
of three interleaved streams of events.

Unfortunately,  assembler  itself  tests  the  limits  of  human
comprehension of processor actions.    Thinking in terms of the interleaved
streams of events shown in Figure 5-1 is too much for any mere mortal.    It's
ridiculous  to  expect  that  an  assembler  programmer  could  visualize
interleaved instruction fetches, EU execution, and memory operand fetches
as he writes code, and in fact no one even tries to do so.

And that  is  yet another reason why an understanding of  code
performance at the level shown in Figure 5-1 isn't desirable.

VARIABILITY

This  brings  us  to  an  excellent  illustration  of  the  variability  of
performance,  even  for  the  same  instruction  in  the  same  code  sequence
executing at  different  times.      As  we just  discovered,  the  mov ah,ds:[i]

instruction that starts at cycle 129 takes 25 cycles to execute.    However, the
same instruction starting at cycle 33 takes 27 cycle to execute.    Starting at
cycle  83,  mov ah,ds:[i] takes  just  21  cycles  to  execute.      That's  three
significantly different times for the same instruction executing in the same
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instruction sequence!
How can this be?    In this case it's the DRAM refresh cycle- eater

that's stirring things up by periodically holding up 8088 bus accesses for 4
cycles  or  more.      This  alters  the  8088's  prefetching  and  memory  access
sequence,  with  a  resultant  change  in  execution  time.      As  we  discussed
earlier, the DRAM refresh read at cycle 118 takes up valuable bus access
time, keeping the 8088 from fetching the mod-reg-rm byte of mov ah,ds:[i]

ahead of time and thereby pushing the succeeding bus accesses a few cycles
later in time.

The DRAM refresh and display  adapter  cycle-eaters  can  cause
almost any code sequence to vary in much the same way over time. That's
why  the  Zen  timer  reports  fractional  times.      It  is  also  the  single  most
important reason why a micro-analysis of code performance of the sort done
in Figure 5-1 is not only expensive and time-consuming but also pointless.    If
a given instruction following the same sequence of instructions can vary in
performance by 20%, 50%, 100% or even more from one execution to the
next, what sort of performance number can you give that instruction other
than as part of  the overall  instruction sequence?      What point is  there in
trying to understand the instruction's exact performance during any one of
those executions?

The answer, briefly stated, is:    no point at all. 
YOU NEVER KNOW UNLESS YOU MEASURE (IN CONTEXT!)

I  hope I've convinced you that the actual performance of 8088
code is best viewed as the interaction of many highly variable forces, the net
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result  of  which  is  measurable but  hardly  predictable.      But  just  in  case I
haven't, consider this...

Figure  5-1  illustrates  the  execution  of  one  of  the  simplest
imaginable code sequences.    The exact pattern of code execution repeats
after 144 cycles, so even with DRAM refresh we have an execution pattern
that repeats after only 6 instructions.    That's not likely to be the case with
real code, which rarely features the endless alternation of two instructions.
In  real  code  the  code  mix  changes  endlessly,  so  DRAM refresh  and  the
prefetch  queue  cycle-eater  normally  result  in  a  far  greater  variety  of
execution sequences than in Figure 5-1.

Also, only two of the four cycle-eaters are active in Figure 5-1.
Since Listing 5-1 uses no word-sized operands, the 8-bit bus cycle-eater has
no effect other than slowing instruction prefetching.    Likewise, Listing 5-1
doesn't access display memory, so the display adapter cycle-eater doesn't
affect performance.    Imagine if we threw those cycle-eaters into Figure 5-1
as well!

Worse  still,  in  the  real  world  interrupts  occur  often  and
asynchronously,  flushing  the  prefetch  queue  and  often  changing  the
fetching, execution, and memory operand access patterns of whatever code
happens to be running.    Most notable among these interrupts is the timer
interrupt,  which  occurs  every  54.9  ms.  Because  the  timer  interrupt  may
occur  after  any instruction  and doesn't  always  take the  same amount  of
time, it can cause execution to settle into new patterns.    For example, after I
captured the sequence shown in Figure 5-1 I took another snapshot of the
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execution of Listing 5-1.    The second snapshot did not match the first.    The
timer interrupt had kicked execution into a different pattern, in which the
same instructions were executed, with the same results--but not at exactly
the same speeds.

Other interrupts, such as those from keyboards, mice, and serial
ports, can similarly alter program performance.    Of course, interrupts and
cycle-eaters don't change the effects of code--add ax,1 always adds 1 to AX,
and  so  on--but  they  can  drastically  change  the  performance  of  a  given
instruction  in  a  given  context.      That's  why  we  focus  on  the  overall
performance of code sequences in context, as measured with the Zen timer,
rather than on the execution times of individual instructions.

THE LONGER THE BETTER

Now is a good time to point out that the longer the instruction
sequence  you  measure,  the  less  variability  you'll  normally  get  from one
execution to the next.    Over time, the perturbations caused by the DRAM
refresh cycle-eater  tend to  average out,  since  DRAM refresh occurs  on a
regular  basis.  Similarly,  a  lengthy  code  sequence  that  accesses  display
memory  multiple  times  will  tend  to  suffer  a  fairly  consistent  loss  of
performance to the display adapter cycle-eater.    By contrast, a short code
sequence  that  accesses  display  memory  just  once  may  vary  greatly  in
performance from one run to the next, depending on how many wait states
occur on the one access during a given run.

In short, you should time either long code sequences or repeated
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executions of shorter code sequences.    While there's no strict definition of
"long" in this context, the effects of the DRAM refresh and display adapter
cycle-eaters should largely even out in sequences longer than about 100 us.
While you can certainly use the Zen timer to measure shorter intervals, you
should take multiple readings in such cases to make sure that the variations
the cycle-eaters can cause from one run to the next aren't  skewing your
readings.

ODDS AND ENDS

There are a few more interesting observations to be made about
Figure 5-1.    For one thing, we can clearly see that while bus accesses are
sometimes farther apart than 4 cycles, they are never any closer together.
This confirms our earlier observation that bus cycles take a minimum of 4
cycles.

On the other hand, instruction bytes can be transferred from the
prefetch queue to the Execution Unit at a rate of 1 byte per cycle when the
EU needs them that quickly.    This reinforces the notion that the EU can use
up instruction bytes faster than the BIU can fetch them.    In fact, we can see
the EU waiting for an instruction byte fetch from cycle 130 to cycle 135, as
discussed earlier.    It's worth noting that after the instruction byte transfer to
the EU at cycle 135, the next two instruction byte transfers occur at cycles
139 and 143,  each occurring 4  cycles  after  the  previous  transfer.      That
mimics the 4 cycles separating the fetches of those instruction bytes, and
that's no coincidence.    During these cycles the EU does nothing but wait for
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the BIU to fetch instruction bytes--the most graphic demonstration yet of the
prefetch queue cycle-eater.

The prefetch queue cycle-eater can be observed in another way
in Figure 5-1.    A careful reading of Figure 5-1 will make it apparent that the
prefetch queue never contains more than 2 bytes at any time.      In other
words, the prefetch queue not only never fills,  it  never gets more than 2
bytes ahead of the Execution Unit.    Moreover, we can see at cycles 33 and
34 that the EU can empty those 2 bytes from the prefetch queue in just 2
cycles. There's no doubt but what the BIU often fights a losing battle in trying
to keep the EU supplied with instruction bytes.

BACK TO THE PROGRAMMING INTERFACE

It's not important that you grasp everything in this chapter, so
long as  you understand that  the factors  affecting the performance of  an
instruction  in  a  given  context  are  complex  and  vary  with  time.      These
complex and varied factors make it virtually impossible to know beforehand
at what speed code will actually run.    They also make it both impractical and
pointless  to  understand  exactly--down  to  the  cycles--why  a  particular
instruction or code sequence performs as well or poorly as it does.

As a result, high-performance assembler programming must be
an intuitive art, rather than a cut-and-dried cookbook process. That's why
this  book  is  called  The  Zen  of  Assembly  Language,  not  The  Assembly
Language Programming Reference Guide.    That's also why you  must time
your code if you want to know how fast it is.
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Cycle-eaters underlie the programming interface, the topic we'll
tackle  next.      Together,  cycle-eaters  and  the  programming  interface
constitute the knowledge aspect of the Zen of assembler.    Ultimately, the
concept  of  the  flexible  mind  rests  on  knowledge,  and  algorithms  and
implementation  rest  on  the flexible  mind.      In  short,  cycle-eaters  are the
foundation of the Zen of assembler, and as such they will pop up frequently
in the following chapters in a variety of contexts.    The constant application
of our understanding of the various cycle-eaters to working code should clear
up any uncertainties you may still have about the cycle-eaters.

Next,  we'll  head up out  of  the land of  the cycle-eaters  to  the
programming  interface,  the  far  more  familiar  domain  of  registers,
instructions, memory addressing, DOS calls and the like.    After our journey
to  the  land  of  the  cycle-eaters,  however,  don't  be  surprised  if  the
programming interface looks a little different.    Assembler code never looks
quite  the  same  to  a  programmer  who  understands  the  true  nature  of
performance.


