
Abrash/Zen:    Chapter 4/

Chapter 4:    Things Mother Never Told You:
Under the Programming Interface

Over  the  last  few chapters  we've  seen that  programming has
many levels, ranging from the familiar (high-level languages, DOS calls, and
the like) to the esoteric (cycle-eaters).    In this chapter we're going to jump
right in at the lowest level by examining the cycle-eaters that live beneath
the programming interface.

Why  start  at  the  lowest  level?      Simply  because  cycle-eaters
affect the performance of all assembler code, and yet are almost unknown to
most programmers.    A full understanding of virtually everything else we'll
discuss  in  The  Zen  of  Assembly  Language requires  an  understanding  of
cycle-eaters and their implications. That's no simple task, and in fact it is in
precisely  that  area  that  most  books  and  articles  about  assembler
programming fall short.

Nearly  all  literature  on  assembler  programming discusses  only
the programming interface:    the instruction set, the registers, the flags, and
the BIOS and DOS calls.    Those topics cover the functionality of assembler
programs most thoroughly-- but it's performance above all else that we're
after.    No one ever tells you about the raw stuff of performance, which lies
beneath the programming interface, in the dimly-seen realm-populated by
instruction  prefetching,  dynamic  RAM  refresh,  and  wait  states--where
software meets hardware.    This area is the domain of hardware engineers,



Abrash/Zen:    Chapter 4/

and is almost never discussed as it relates to code performance.    And yet it
is only by understanding the mechanisms operating at this level that we can
fully understand and properly improve the performance of our code.

Which brings us to cycle-eaters.

CYCLE-EATERS REVISITED

You'll recall that cycle-eaters are gremlins that live on the bus or
in  peripherals,  slowing  the  performance  of  8088  code  so  that  it  doesn't
execute at full speed.    Because cycle-eaters live outside the Execution Unit
of the 8088, they can  only affect the 8088 when the 8088 performs a bus
access (a memory or I/O read or write).      Internally,  the 8088 is a 16-bit
processor, capable of running at full speed at all times--unless external data
is required.    External data must traverse the 8088's external data bus and
the PC's data bus 1 byte at a time to and from peripherals, with cycle-eaters
lurking along every step of the way.    What's more, external data includes not
only memory operands but also instruction bytes, so even instructions with
no  memory  operands  can  suffer  from  cycle-eaters.      Since  some  of  the
8088's  fastest  instructions  are  register-only  instructions,  that's  important
indeed.

The major cycle-eaters are:
      _ The 8088's 8-bit external data bus.
      _ The prefetch queue.
      _ Dynamic RAM refresh.
      _ Wait  states, notably display memory wait  states and, in the AT and
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80386 computers, system memory wait states.

The locations of these cycle-eaters in the PC are shown in Figure
4-1.      We'll  cover  each  of  the  cycle-eaters  in  turn  in  this  chapter.      The
material  won't  be  easy,  since  cycle-eaters  are  among  the  most  subtle
aspects of assembler programming.    By the same token, however, this will
be one of the most important and rewarding chapters in this book.    Don't
worry if you don't catch everything in this chapter, but do read it all even if
the going gets a bit tough.    Cycle-eaters play a key role in later chapters, so
some familiarity with them is highly desirable. Then, too, those later chapters
illustrate cycle-eaters in action, which should help clear up any aspects of
cycle-eaters about which you're uncertain.

THE 8-BIT BUS CYCLE-EATER

Look!    Down on the motherboard!    It's a 16-bit processor! It's an
8-bit processor!    It's...

...an 8088!
Fans of the 8088 call it a 16-bit processor.    Fans of other 16-bit

processors call the 8088 an 8-bit processor.    Unbiased as we are, we know
that the truth of the matter is that the 8088 is a 16-bit processor that often
performs like an 8-bit processor.

As  we  saw  in  Chapter  3,  the  8088  is  internally  a  full  16-bit
processor, equivalent to an 8086.    In terms of the instruction set, the 8088 is
clearly a 16-bit processor, capable of performing any given 16-bit operation--
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addition,  subtraction,  even  multiplication  or  division---with  a  single
instruction.  Externally,  however,  the  8088  is  unequivocally  an  8-bit
processor, since the external data bus is only 8 bits wide.    In other words,
the programming interface is 16 bits wide, but the hardware interface is only
8 bits wide, as shown in Figure 4-2. The result of this mismatch is simple:
word-sized  data  can  be  transferred  between  the  8088  and  memory  or
peripherals at only one-half the maximum rate of the 8086, which is to say
one-half the maximum rate for which the Execution Unit of the 8088 was
designed.

As shown in Figure 4-1, the 8-bit bus cycle-eater lies squarely on
the 8088's  external  data bus.      Technically,  it  might  be more accurate to
place this cycle-eater in the Bus Interface Unit, which breaks 16-bit memory
accesses into paired 8-bit accesses, but it is really the limited width of the
external data bus that constricts data flow into and out of the 8088.    True,
the PC's bus is also only 8 bits wide, but that's just to match the 8088's 8-bit
bus; even if the PC's bus were 16 bits wide, data could still pass into and out
of the 8088 only 1 byte at a time.

Each bus access by the 8088 takes 4 clock cycles, or 0.838 us in
the PC, and transfers 1 byte.    That means that the maximum rate at which
data can be transferred into and out of the 8088 is 1 byte every 0.838 us.
While 8086 bus accesses also take 4 clock cycles, each 8086 bus access can
transfer either 1 byte or 1 word, for a maximum transfer rate of 1 word every
0.838 us. Consequently, for word-sized memory accesses the 8086 has an
effective transfer rate of 1 byte every 0.419 us.    By contrast, every word-
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sized access on the 8088 requires two 4-cycle-long bus accesses, one for the
high byte of the word and one for the low byte of the word.    As a result, the
8088 has an effective transfer rate for word-sized memory accesses of just 1
word every 1.676 us--and that, in a nutshell, is the 8-bit bus cycle-eater.

THE IMPACT OF THE 8-BIT BUS CYCLE-EATER

One obvious effect of the 8-bit bus cycle-eater is that word-sized
accesses to memory operands on the 8088 take 4 cycles longer than byte-
sized accesses.    That's why the instruction timings in Appendix A indicate
that for code running on an 8088 an additional  4 cycles are required for
every word-sized access to a memory operand.    For instance:

mov ax,word ptr [MemVar]

takes 4 cycles longer to read the word at address MemVar than:

mov al,byte ptr [MemVar]

takes  to  read  the  byte  at  address  MemVar.      (Actually,  the  difference
between the two isn't very likely to be exactly 4 cycles, for reasons that will
become clear when we discuss the prefetch queue and dynamic RAM refresh
cycle-eaters later in this chapter.)

What's more, in some cases one instruction can perform multiple
word-sized accesses,  incurring that  4-cycle  penalty  on each access.      For
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example, adding a value to a word-sized memory variable requires 2 word-
sized accesses--one to read the destination operand from memory prior to
adding  to  it,  and  one  to  write  the  result  of  the  addition  back  to  the
destination operand--and thus incurs not one but two 4-cycle penalties.    As
a result:

add word ptr [MemVar],ax

takes about 8 cycles longer to execute than:

add byte ptr [MemVar],al

String instructions can suffer from the 8-bit bus cycle- eater to a
greater  extent  than  other  instructions.      Believe  it  or  not,  a  single  rep

movsw instruction can lose as much as: 

524,280 cycles = 131,070 word-sized memory accesses x 4 cycles

to  the  8-bit  bus  cycle-eater!      In  other  words,  one  8088  instruction
(admittedly, an instruction that does a great deal) can take over one-tenth of
a second longer on an 8088 than on an 8086, simply because of the 8-bit
bus.     One-tenth of a second! That's a phenomenally long time in computer
terms; in one-tenth of a second, the 8088 can perform more than 50,000
additions and subtractions.
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The upshot of all this is simply that the 8088 can transfer word-
sized data to and from memory at only half the speed of the 8086, which
inevitably  causes performance problems when coupled with  an Execution
Unit that can process word-sized data every bit as fast as an 8086.    These
problems show up with any code that uses word-sized memory operands.
More ominously, as we will see shortly, the 8-bit bus cycle-eater can cause
performance problems with other sorts of code as well.

WHAT TO DO ABOUT THE 8-BIT BUS CYCLE-EATER?

The obvious implication of the 8-bit bus cycle-eater is that byte-
sized  memory variables  should  be  used  whenever  possible.  After  all,  the
8088 performs byte-sized memory accesses just as quickly as the 8086.    For
instance, Listing 4-1,  which uses a byte-sized memory variable as a loop
counter, runs in 10.03 us per loop.    That's 20% faster than the 12.05 us per
loop execution time of Listing 4-2, which uses a word-sized counter.    Why
the difference in execution times?      Simply because each word-sized  dec

performs 4 byte-sized memory accesses (2 to read the word- sized operand
and  2  to  write  the  result  back  to  memory),  while  each  byte-sized  dec

performs only 2 byte-sized memory accesses in all.
I'd like to make a brief aside concerning code optimization in the

listings in this book.    Throughout this book I've modelled the sample code
after  working code so that  the timing results  are applicable  to real-world
programming.    In Listings 4-1 and 4-2, for instance, I could have shown a
still greater advantage for byte-sized operands simply by performing 1000
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dec instructions  in  a  row,  with  no  branching  at  all.      However,  dec

instructions don't exist in a vacuum, so in the listings I used code that both
decremented  the  counter  and  tested  the  result.      The  difference  is  that
between decrementing a memory location (simply an instruction) and using
a loop counter (a functional instruction sequence).    If you come across code
in The Zen of Assembly Language that seems less than optimal, my desire to
provide  code  that's  relevant  to  real  programming  problems  may  be  the
reason. On the other hand, optimal code is an elusive thing indeed; by no
means should you assume that the code in this book is ideal! Examine it,
question  it,  and improve  upon  it,  for  an  inquisitive,  skeptical  mind  is  an
important part of the Zen of assembler.

Back to the 8-bit bus cycle-eater.    As I've said, you should strive
to use byte-sized memory variables whenever possible. That does not mean
that you should use 2 byte-sized memory accesses to manipulate a word-
sized memory variable in preference to 1 word-sized memory access, as, for
instance, with:

mov dl,byte ptr [MemVar]
mov dh,byte ptr [MemVar+1]

versus:

mov dx,word ptr [MemVar]
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Recall  that  every access  to  a  memory byte  takes at  least  4  cycles;  that
limitation is built  right into the 8088.      The 8088 is also built  so that the
second byte-sized memory access to a 16-bit  memory variable takes just
those 4 cycles and no more. There's no way you can manipulate the second
byte of a word-sized memory variable faster with a second separate byte-
sized instruction in less than 4 cycles.    As a matter of fact, you're bound to
access  that  second  byte  much  more  slowly  with  a  separate  instruction,
thanks  to  the  overhead  of  instruction  fetching  and  execution,  address
calculation, and the like.

For  example,  consider  Listing  4-3,  which  performs  1000 word-
sized reads from memory.    This code runs in 3.77 us per word read.    That's
45% faster than the 5.49 us per word read of Listing 4-4, which reads the
same 1000 words as Listing 4-3 but does so with 2000 byte-sized reads.
Both listings perform exactly the same number of memory accesses--2000
accesses,  each  byte-sized,  as  all  8088  memory  accesses  must  be.
(Remember that the Bus Interface Unit must perform two byte-sized memory
accesses in order to handle a word-sized memory operand.) However, Listing
4-3 is considerably faster because it expends only 4 additional cycles to read
the second byte of each word, while Listing 4-4 performs a second  lodsb,
requiring 13 cycles, to read the second byte of each word.

In short,  if  you must perform a 16-bit  memory access,  let  the
8088 break the access into two byte-sized accesses for you. The 8088 is
more efficient at that task than your code can possibly be.

Chapter 9 has further examples of ways in which you can take
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advantage of the 8088's relative speed at handling the second byte of  a
word-sized memory operand to improve your code. However, that advantage
only  exists  relative  to  the  time  taken  to  access  2  byte-sized  memory
operands;  you're  still  better  off using single  byte-sized memory accesses
rather than word-sized accesses whenever possible.      Word-sized variables
should be stored in registers to the greatest feasible extent, since registers
are  inside  the  8088,  where  16-bit  operations  are  just  as  fast  as  8-bit
operations because the 8-bit cycle-eater can't get at them.    In fact, it's a
good idea to keep as many variables of all  sorts in registers as you can.
Instructions  with  register-only  operands  execute  very  rapidly,  partially
because  they  avoid  both  the  time-consuming  memory  accesses  and  the
lengthy address calculations associated with memory operands.

There is yet another reason why register operands are preferable
to memory operands, and it's an unexpected effect of the 8-bit bus cycle-
eater.    Instructions with only register operands tend to be shorter (in terms
of bytes) than instructions with memory operands, and when it  comes to
performance, shorter is usually better.    In order to explain why that is true
and how it relates to the 8-bit bus cycle-eater, I must diverge for a moment.

For the last few pages, you may well have been thinking that the
8-bit bus cycle-eater, while a nuisance, doesn't seem particularly subtle or
difficult to quantify.    After all, Appendix A tells us exactly how many cycles
each instruction loses to the 8-bit bus cycle-eater, doesn't it?

Yes and no.    It's true that in general we know approximately how
much  longer  a  given  instruction  will  take  to  execute  with  a  word-sized
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memory operand than with a byte-sized operand, although the dynamic RAM
refresh and wait state cycle-eaters can raise the cost of the 8-bit bus cycle-
eater considerably, as we'll  see later in this chapter.      However,  all word-
sized memory accesses lose 4 cycles to the 8-bit bus cycle-eater, and there's
one sort of word-sized memory access we haven't discussed yet: instruction
fetching.    The ugliest manifestation of the 8-bit bus cycle-eater is in fact the
prefetch queue cycle-eater.

THE PREFETCH QUEUE CYCLE-EATER Simply  put,  here's  the  prefetch
queue  cycle-eater:      the  8088's  8-bit  external  data  bus  keeps  the  Bus
Interface Unit from fetching instruction bytes as fast as the 16-bit Execution
Unit can execute them, so the Execution Unit often lies idle while waiting for
the next instruction byte to be fetched.

Exactly why does this happen?    Recall that the 8088 is an 8086
internally,  but  accesses  word-sized  memory  data  at  only  one- half  the
maximum  rate  of  the  8086  due  to  the  8088's  8-bit  external  data  bus.
Unfortunately, instructions are among the word-sized data the 8086 fetches,
meaning that the 8088 can fetch instructions at only one-half the speed of
the 8086.      On the other hand, the 8086-equivalent Execution Unit of the
8088 can execute instructions every bit as fast as the 8086.    The net result
is that the Execution Unit burns up instruction bytes much faster than the
Bus  Interface  Unit  can  fetch  them,  and  ends  up  idling  while  waiting  for
instructions bytes to arrive.

The BIU can fetch instruction bytes at a maximum rate of one
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byte every 4 cycles--and that 4-cycle per instruction byte rate is the ultimate
limit on overall instruction execution time, regardless of EU speed.    While
the EU may execute a given instruction that's already in the prefetch queue
in less than 4 cycles per byte, over time the EU can't execute instructions
any faster  than they can arrive--and they can't  arrive faster  than 1 byte
every 4 cycles.

Clearly,  then,  the  prefetch  queue  cycle-eater  is  nothing  more
than one aspect of the 8-bit bus cycle-eater.    8088 code often runs at less
than the Execution Unit's maximum speed because the 8-bit data bus can't
keep  up  with  the  demand  for  instruction  bytes.      That's  straightforward
enough--so why all the fuss about the prefetch queue cycle-eater?

What  makes  the  prefetch  queue  cycle-eater  tricky  is  that  it's
undocumented  and  unpredictable.      That  is,  with  a  word-sized  memory
access, such as:

mov [bx],ax

it's well-documented that an extra 4 cycles will always be required to write
the upper byte of AX to memory.      Not so with the prefetch queue.      For
instance, the instructions:

shr ax,1
shr ax,1
shr ax,1
shr ax,1
shr ax,1
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should execute in 10 cycles, according to the specifications in Appendix A,
since  each  shr takes  2  cycles  to  execute.      Those  specifications  contain
Intel's  official  instruction  execution  times,  but  in  this  case--and  in  many
others--the  specifications  are  drastically  wrong.      Why?      Because  they
describe  execution  time  once  an  instruction  reaches  the  prefetch  queue.
They say nothing about whether a given instruction will be in the prefetch
queue when it's time for that instruction to run, or how long it will take that
instruction to reach the prefetch queue if it's not there already.    Thanks to
the  low  performance  of  the  8088's  external  data  bus,  that's  a  glaring
omission--but,  alas,  an  unavoidable  one.      Let's  look  at  why  the  official
execution times are wrong, and why that can't be helped.

OFFICIAL EXECUTION TIMES ARE ONLY PART OF THE STORY

The sequence of 5 shr instructions in the last example is 10 bytes
long.    That means that it can never execute in less than 24 cycles even if
the 4-byte prefetch queue is full  when it  starts,  since 6 instruction bytes
would still remain to be fetched, at 4 cycles per fetch.    If the prefetch queue
is empty at the start, the sequence could take 40 cycles.    In short, thanks to
instruction fetching the code won't run at its documented speed, and could
take up to 4 times as long as it is supposed to.

Why does Intel document Execution Unit execution time rather
than overall instruction execution time, which includes both instruction fetch
time  and  Execution  Unit  execution  time?      As  described  in  Chapter  3,
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instruction fetching isn't performed as part of instruction execution by the
Execution Unit, but instead is carried on in parallel by the Bus Interface Unit
whenever the external data bus isn't in use or whenever the EU runs out of
instruction bytes to execute.    Sometimes the BIU is able to use spare bus
cycles to prefetch instruction bytes before the EU needs them, so instruction
fetching takes no time at all, practically speaking.    At other times the EU
executes  instructions  faster  than the  BIU  can  fetch  them and instruction
fetching becomes a significant part of overall execution time. As a result, the
effective fetch time for a given instruction varies greatly depending on the
code mix preceding that instruction.    Similarly, the state in which a given
instruction leaves the prefetch queue affects the overall execution time of
the following instructions.

In other words, while the execution time for a given instruction is
constant, the fetch time for that instruction depends on the context in which
the  instruction  is  executing--the  amount  of  prefetching  the  preceding
instructions allowed--and can vary from a full 4 cycles per instruction byte to
no time at all. As we'll see later, other cycle-eaters, such as DRAM refresh
and  display  memory  wait  states,  can  cause  prefetching  variations  even
during different  executions  of  the  same code sequence.      Given that,  it's
meaningless to talk about the prefetch time of a given instruction except in
the context of a specific code sequence.

So now you know why the official instruction execution times are
often wrong,  and why Intel  can't  provide  better  specifications.      You also
know now why it is that you must time your code if you want to know how
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fast it really is.

THERE IS NO SUCH BEAST AS A TRUE INSTRUCTION EXECUTION TIME

The effect of the code preceding an instruction on the execution
time of that instruction makes the Zen timer trickier to use than you might
expect, and complicates the interpretation of the results reported by the Zen
timer.    For one thing, the Zen timer is best used to time code sequences that
are more than a few instructions long; below 10 us or so, prefetch queue
effects and the limited resolution of the clock driving the timer can cause
problems.

Some  slight  prefetch  queue-induced  inaccuracy  usually  exists
even when the Zen timer is used to time longer code sequences, since the
calls to the Zen timer usually alter the code's prefetch queue from its normal
state.    (As we'll see in Chapter 12, branches--jumps, calls, returns and the
like--empty the prefetch queue.)    Ideally, the Zen timer is used to measure
the performance of an entire subroutine, so the prefetch queue effects of the
branches at the start and end of the subroutine are similar to the effects of
the  calls  to  the  Zen  timer  when  you're  measuring  the  subroutine's
performance.

Another way in which the prefetch queue cycle-eater complicates
the use of the Zen timer involves the practice of timing the performance of a
few instructions over and over.    I'll often repeat one or two instructions 100
or 1000 times in a row in listings in this book in order to get timing intervals
that are long enough to provide reliable measurements.     However, as we
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just learned, the actual performance of any 8088 instruction depends on the
code mix preceding any given use of that instruction, which in turns affects
the state of the prefetch queue when the instruction starts executing.    Alas,
the  execution  time  of  an  instruction  preceded  by  dozens  of  identical
instructions reflects just one of many possible prefetch states (and not a very
likely state at that), and some of the other prefetch states may well produce
distinctly different results.

For example, consider the code in Listings 4-5 and 4-6. Listing 4-5
shows our familiar  shr case.    Here, because the prefetch queue is always
empty,  execution  time should  work out  to about  4 cycles  per byte,  or  8
cycles  per  shr,  as  shown  in  Figure  4-3.      (Figure  4-3  illustrates  the
relationship between instruction fetching and execution in a simplified way,
and is not intended to show the exact timings of 8088 operations.) That's
quite a contrast to the official 2-cycle execution time of shr.    In fact, the Zen
timer reports that Listing 4-5 executes in 1.81 us per byte, or slightly more
than 4 cycles per byte.    (The extra time is the result of the dynamic RAM
refresh cycle-eater, which we'll discuss shortly.)    Going strictly by Listing 4-5,
we would conclude that the "true" execution time of shr is 8.64 cycles.

Now let's  examine Listing  4-6.      Here  each  shr follows  a  mul

instruction.    Since mul instructions take so long to execute that the prefetch
queue is always full when they finish, each shr should be ready and waiting
in the prefetch queue when the preceding  mul ends.      As  a result,  we'd
expect that each shr would execute in 2 cycles; together with the 118 cycle
execution  time of  multiplying  0  times  0,  the  total  execution  time should
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come to 120 cycles per shr/mul pair, as shown in Figure 4-4.    And, by God,
when we run Listing 4-6 we get an execution time of 25.14 us per shr/mul

pair, or exactly 120 cycles!    According to these results, the "true" execution
time of shr would seem to be 2 cycles, quite a change from the conclusion
we drew from Listing 4-5.

The key point is this:    we've seen one code sequence in which
shr took 8-plus cycles to execute, and another in which it took only 2 cycles.
Are we talking about two different forms of  shr here?    Of course not--the
difference is purely a reflection of the differing states in which the preceding
code left the prefetch queue.      In Listing 4-5, each  shr after the first few
follows  a  slew of  other  shr instructions  which  have  sucked  the  prefetch
queue  dry,  so  overall  performance  reflects  instruction  fetch  time.      By
contrast, each shr in Listing 4-6 follows a mul instruction which leaves the
prefetch queue full, so overall performance reflects Execution Unit execution
time.

Clearly, either instruction fetch time or Execution Unit execution
time--or even a mix of the two, if an instruction is partially prefetched--can
determine code performance.    Some people operate under a rule of thumb
by which they assume that the execution time of each instruction is 4 cycles
times the number of bytes in the instruction.      While that's often true for
register-only code, it frequently doesn't hold for code that accesses memory.
For  one thing,  the rule  should be 4 cycles  times the number of  memory
accesses,  not  instruction  bytes,  since  all  accesses  take  4  cycles.      For
another,  memory-accessing  instructions  often  have  slower  Execution  Unit
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execution times than the 4 cycles per memory access rule would dictate,
because the 8088 isn't very fast at calculating memory addresses, as we'll
see in Chapter 7.    Also, the 4 cycles per instruction byte rule isn't true for
register-only instructions that are already in the prefetch queue when the
preceding instruction ends.

The truth is that it never hurts performance to reduce either the
cycle count or the byte count of a given bit of code, but there's no guarantee
that  one  or  the  other  will  improve  performance  either.      For  example,
consider Listing 4-7, which consists of a series of 4-cycle, 2-byte  mov al,0

instructions, and which executes at the rate of 1.81 us per instruction.    Now
consider Listing 4-8, which replaces the 4-cycle  mov al,0 with the 3-cycle
(but still 2-byte)  sub al,al.    Despite its 1-cycle- per-instruction advantage,
Listing 4-8 runs at exactly the same speed as Listing 4-7.    The reason:    both
instructions are 2 bytes long, and in both cases it is the 8-cycle instruction
fetch time, not the 3- or 4-cycle Execution Unit execution time, that limits
performance.

As you can see, it's easy to be drawn into thinking you're saving
cycles when you're not.    You can only improve the performance of a specific
bit of code by reducing the factor-- either instruction fetch time or execution
time, or sometimes a mix of the two--that's limiting the performance of that
code.

In  case  you  missed  it  in  all  the  excitement,  the  variability  of
prefetching  means  that  our  method  of  testing  performance  by  executing
1000 instructions in a row by no means produces "true" instruction execution
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times, any more than the official execution times in Appendix A are "true"
times.    The fact of the matter is that a given instruction takes at least as
long to execute as the time given for it in Appendix A, but may take as much
as 4 cycles per byte longer, depending on the state of the prefetch queue
when the preceding instruction ends.    The only true execution time for an
instruction  is  a  time  measured  in  a  certain  context,  and  that  time  is
meaningful only in that context.

Look  at  it  this  way.      We've  firmly  established  that  there's  no
number you can attach to a given instruction that's always that instruction's
true execution time.    In fact, as we'll see in the rest of this chapter and in
the next, there are other cycle- eaters that can work with the prefetch queue
cycle-eater to cause the execution time of an instruction to vary to an even
greater extent than we've seen so far.      That's okay, though, because the
execution time of a single instruction is not what we're really after.

What we  really want is to know how long useful working code
takes to run, not how long a single instruction takes, and the Zen timer gives
us the tool we need to gather that information. Granted, it would be easier if
we could just  add up neatly  documented instruction execution times--but
that's not going to happen.    Without actually measuring the performance of
a given code sequence, you simply don't know how fast it is.    For crying out
loud,  even  the  people  who  designed the  8088  at  Intel  couldn't  tell  you
exactly how quickly a given 8088 code sequence executes on the PC just by
looking at it!    Get used to the idea that execution times are only meaningful
in context, learn the rules of thumb in this book, and use the Zen timer to
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measure your code.

APPROXIMATING OVERALL EXECUTION TIMES

Don't  think  that  because  overall  instruction  execution  time  is
determined by both instruction fetch time and Execution Unit execution time,
the two times should be added together when estimating performance.    For
example, practically speaking, each shr in Listing 4-5 does not take 8 cycles
of instruction fetch time plus 2 cycles of Execution Unit execution time to
execute. Figure 4-3 shows that while a given  shr is executing, the fetch of
the next  shr is starting, and since the two operations are overlapped for 2
cycles, there's no sense in charging the time to both instructions.    You could
think of the extra instruction fetch time for  shr in Listing 4-5 as being 6
cycles, which yields an overall execution time of 8 cycles when added to the
2 cycles of Execution Unit execution time.

Alternatively, you could think of each shr in Listing 4-5 as taking
8 cycles to fetch, and then executing in effectively 0 cycles while the next
shr is  being  fetched.      Whichever  perspective  you  prefer  is  fine.      The
important point is that the time during which the execution of one instruction
and  the  fetching  of  the  next  instruction  overlap  should  only  be  counted
toward the overall execution time of one of the instructions. For all intents
and  purposes,  one  of  the  two  instructions  runs  at  no  performance  cost
whatsoever while the overlap exists.

As a working definition,  we'll  consider the execution time of a
given instruction in a particular context to start when the first byte of the
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instruction is sent to the Execution Unit and end when the first byte of the
next instruction is sent to the EU.    We'll discuss this further in Chapter 5.

WHAT TO DO ABOUT THE PREFETCH QUEUE CYCLE-EATER?

Reducing the impact of the prefetch queue cycle-eater is one of
the overriding principles of high-performance assembler code. How can you
do  this?      One  effective  technique  is  to  minimize  access  to  memory
operands, since such accesses compete with instruction fetching for precious
memory accesses.    You can also greatly reduce instruction fetch time simply
by your choice of instructions:     keep your instructions short.    Less time is
required to fetch instructions that are 1 or 2 bytes long than instructions that
are  5  or  6  bytes  long.      Reduced  instruction  fetching  lowers  minimum
execution time (minimum execution time is 4 cycles times the number of
instruction bytes) and often leads to faster overall execution.

While  short  instructions  minimize  overall  prefetch  time,  they
ironically  actually  often  suffer  relatively  more  from  the  prefetch  queue
bottleneck than do long instructions.    Short instructions generally have such
fast execution times that they drain the prefetch queue despite their small
size.    For example, consider the shr of Listing 4-5, which runs at only 25% of
its Execution Unit execution time even though it's only 2 bytes long, thanks
to  the  prefetch  queue  bottleneck.      Short  instructions  are  nonetheless
generally faster than long instructions, thanks to the combination of fewer
instruction bytes and faster Execution Unit execution times, and should be
used  as  much  as  possible-- just  don't  expect  them  to  run  at  their



Abrash/Zen:    Chapter 4/

documented speeds.
More than anything, the above rules mean using the registers as

heavily  as  possible,  both  because register-only  instructions  are  short  and
because they don't  perform memory accesses to read or write operands.
(Using  the  registers  is  a  topic  we'll  return  to  repeatedly  in  The  Zen  of
Assembly Language.)    However, using the registers is a rule of thumb, not a
commandment.    In some circumstances, it may actually be faster to access
memory.    (The look-up table technique, which we'll encounter in Chapter 7,
is one such case.)      What's more, the performance of the prefetch queue
(and  hence  the  performance  of  each  instruction)  differs  from  one  code
sequence to the next, and can even differ during different executions of the
same code sequence.

All  in all,  writing good assembler code is as much an art  as a
science.    As a result, you should follow the rules of thumb described in The
Zen of Assembly Language--and then time your code to see how fast it really
is.      You  should  experiment  freely,  but  always  remember  that  actual,
measured performance is the bottom line.

The prefetch queue cycle-eater looms over the performance of all
8088 code.    We'll encounter it again and again in this book, and in every
case  it  will  make  our  code  slower  than  it  would  otherwise  be.      An
understanding of the prefetch queue cycle-eater provides deep insight into
what makes some 8088 code much faster than other, seemingly similar 8088
code, and is a key to good assembler programming.    You'll never conquer
this cycle-eater, but with experience and the Zen timer you can surely gain
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the advantage.

HOLDING UP THE 8088

Over the last two chapters I've taken you further and further into
the depths of the PC, telling you again and again that you must understand
the computer at the lowest possible level in order to write good code.    At
this point, you may well wonder, "Have we gotten low enough?"

Not quite yet.    The 8-bit bus and prefetch queue cycle- eaters are
low-level indeed, but we've one level yet to go. Dynamic RAM refresh and
wait  states--our  next  topics--together  form the  lowest  level  at  which  the
hardware of the PC affects code performance.    Below this level, the PC is of
interest only to hardware engineers.

Before we begin our discussion of dynamic RAM refresh, let's step
back for a moment to take an overall look at this lowest level of cycle-eaters.
In truth, the distinctions between wait states and dynamic RAM refresh don't
much matter to a programmer.  What is important is that you understand
this:    under certain circumstances devices on the PC bus can stop the 8088
for 1 or more cycles, making your code run more slowly than it seemingly
should.

Unlike all the cycle-eaters we've encountered so far, wait states
and dynamic RAM refresh are strictly external to the 8088, as shown in Figure
4-1.    Adapters on the PC's bus, such as video and memory cards, can insert
wait states on any 8088 bus access, the idea being that they won't be able to
complete the access properly unless the access is stretched out.    Likewise,
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the channel of  the DMA controller dedicated to dynamic RAM refresh can
request control of the bus at any time, although the 8088 must relinquish the
bus before the DMA controller can take over. This means that your code can't
directly control  wait  states or dynamic RAM refresh.      However,  code  can
sometimes be designed to minimize the effects of these cycle-eaters, and
even when the cycle-eaters slow your code without there being a thing in the
world you can do about it, you're still better off understanding that you're
losing performance and knowing why your code doesn't run as fast as it's
supposed to than you were programming in ignorance.

Let's start with DRAM refresh, which affects the performance of
every program that runs on the PC.

DYNAMIC RAM REFRESH:    THE INVISIBLE HAND

Dynamic RAM (DRAM) refresh is sort of an act of God.    By that I
mean that DRAM refresh invisibly and inexorably steals up to 8.33% of all
available memory access time from your programs. While you  could stop
DRAM refresh, you wouldn't want to, since that would be a sure prescription
for crashing your computer.    In the end, thanks to DRAM refresh, almost all
code runs a bit slower on the PC than it otherwise would, and that's that.

A bit of background:    a static RAM (SRAM) chip is a memory chip
which retains its contents indefinitely so long as power is maintained.    By
contrast, each of several blocks of bits in a dynamic RAM (DRAM) chip retains
its contents for only a short time after it's accessed for a read or write.    In
order to get a DRAM chip to store data for an extended period, each of the
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blocks of  bits in that chip must be accessed regularly,  so that the chip's
stored  data  is  kept  refreshed  and  valid.      So  long  as  this  is  done  often
enough, a DRAM chip will retain its contents indefinitely.

All of the PC's system memory consists of DRAM chips.    (Some
PC-compatible computers are built with SRAM chips, but IBM PCs, XTs, and
ATs use only DRAM chips for system memory.)    Each DRAM chip in the PC
must be completely refreshed once every 4 ms (give or take a little) in order
to ensure the integrity of the data it stores.    Obviously, it's highly desirable
that the memory in the PC retain the correct data indefinitely, so each DRAM
chip in the PC must always be refreshed within 4 ms of the last refresh. Since
there's no guarantee that a given program will access each and every DRAM
once  every  4  ms,  the  PC contains  special  circuitry  and programming for
providing DRAM refresh. 
HOW DRAM REFRESH WORKS IN THE PC

Timer 1 of the 8253 timer chip is programmed at power-up to
generate a signal once every 72 cycles, or once every 15.08 us. That signal
goes to channel 0 of the 8237 DMA controller, which requests the bus from
the 8088 upon receiving the signal.    (DMA stands for direct memory access,
the ability of a device other than the 8088 to control the bus and access
memory directly, without any help from the 8088.)    As soon as the 8088 is
between memory accesses, it gives control of the bus to the 8237, which in
conjunction with special circuitry on the PC's motherboard then performs a
single 4-cycle read access to 1 of 256 possible addresses, advancing to the
next address on each successive access.    (The read access is only for the
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purpose of refreshing the DRAM; the data read isn't used.)
The 256 addresses accessed by the refresh DMA accesses are

arranged so that taken together they properly refresh all the memory in the
PC.    By accessing one of the 256 addresses every 15.08 us, all of the PC's
DRAM is refreshed in:

3.86 ms = 256 x 15.08 us

just about the desired 4 ms time I mentioned earlier.    (Only the first 640 Kb
of memory is refreshed; video adapters and other adapters above 640 Kb
containing memory that requires refreshing must provide their own DRAM
refresh.) Don't sweat the details here.    The important point is this: for at
least 4 out of every 72 cycles, the PC's bus is given over to DRAM refresh and
is not available to the 8088, as shown in Figure 4-5.    That means that as
much  as  5.56%  of  the  PC's  already  inadequate  bus  capacity  is  lost.
However, DRAM refresh doesn't necessarily stop the 8088 for 4 cycles.    The
Execution  Unit  of  the  8088  can  keep  processing  while  DRAM  refresh  is
occurring,  unless the EU needs to access memory.      Consequently,  DRAM
refresh  can  slow  code  performance  anywhere  from  0%  to  5.56%  (and
actually a bit more, as we'll see shortly), depending on the extent to which
DRAM refresh occupies cycles during which the 8088 would otherwise be
accessing memory.

THE IMPACT OF DRAM REFRESH
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Let's  look at  examples  from opposite  ends of  the spectrum in
terms of the impact of DRAM refresh on code performance.    First, consider
the series of mul instructions in Listing 4-9.    Since a 16-bit mul executes in
between 118 and 133 cycles and is only 2 bytes long, there should be plenty
of time for the prefetch queue to fill after each instruction, even after DRAM
refresh  has  taken  its  slice  of  memory  access  time.      Consequently,  the
prefetch queue should be able to keep the Execution Unit well-supplied with
instruction bytes at all times.    Since Listing 4-9 uses no memory operands,
the Execution Unit should never have to wait for data from memory, and
DRAM refresh should have no impact on performance.    (Remember that the
Execution Unit  can operate normally during DRAM refreshes so long as it
doesn't need to request a memory access from the Bus Interface Unit.)

Running Listing 4-9, we find that each mul executes in 24.72 us,
or  exactly  118 cycles.      Since  that's  the shortest  time in  which  mul can
execute, we can see that no performance is lost to DRAM refresh.    Listing 4-
9 clearly illustrates that DRAM refresh only affects code performance when a
DRAM refresh forces the Execution Unit of the 8088 to wait for a memory
access.

Now let's look at the series of shr instructions shown in Listing 4-
10.    Since shr executes in 2 cycles but is 2 bytes long, the prefetch queue
should  be  empty  while  Listing  4-10  executes,  with  the  8088  prefetching
instruction bytes non-stop. As a result, the time per instruction of Listing 4-
10 should precisely reflect the time required to fetch the instruction bytes.

Since 4 cycles are required to read each instruction byte, we'd
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expect each shr to execute in 8 cycles, or 1.676 us, if there were no DRAM
refresh.    In fact, each shr in Listing 4-10 executes in 1.81 us, indicating that
DRAM refresh is taking 7.4% of the program's execution time.    That's nearly
2% more than our worst-case estimate of the loss to DRAM refresh overhead!
In fact,  the result  indicates  that  DRAM refresh is  stealing  not  4 but  5.33
cycles out of every 72 cycles.    How can this be?

The answer is that a given DRAM refresh can actually hold up CPU
memory accesses for as many as 6 cycles, depending on the timing of the
DRAM  refresh's  DMA  request  relative  to  the  8088's  internal  instruction
execution state.      When the code in Listing 4-10 runs, each DRAM refresh
holds up the CPU for either 5 or 6 cycles, depending on where the 8088 is in
executing the current shr instruction when the refresh request occurs.    Now
we see that things can get even worse than we thought:    DRAM refresh can
steal as much as 8.33% of available memory access time--6 out of every 72
cycles--from the 8088.

Which of  the two cases we've examined reflects reality? While
either  can happen,  the  latter  case--significant  performance  reduction,
ranging as high as 8.33%--is far more likely to occur. This is especially true
for high-performance assembler code, which uses fast instructions that tend
to cause non-stop instruction fetching.

WHAT TO DO ABOUT THE DRAM REFRESH CYCLE-EATER?

Hmmm.    When we discovered the prefetch queue cycle-eater, we
learned to use short instructions.    When we discovered the 8-bit bus cycle-
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eater, we learned to use byte-sized memory operands whenever possible,
and  to  keep  word-sized  variables  in  registers.  What  can  we  do  to  work
around the DRAM refresh cycle-eater?

Nothing.
As I've said before, DRAM refresh is an act of God.    DRAM refresh

is a fundamental, unchanging part of the PC's operation, and there's nothing
you or I can do about it.    If refresh were any less frequent, the reliability of
the  PC  would  be  compromised,  so  tinkering  with  either  timer  1  or  DMA
channel 0 to reduce DRAM refresh overhead is out.    Nor is there any way to
structure  code  to  minimize  the  impact  of  DRAM  refresh.      Sure,  some
instructions are affected less by DRAM refresh than others, but how many
multiplies and divides in a row can you really use? I suppose that code could
conceivably be structured to leave a free memory access every 72 cycles, so
DRAM refresh wouldn't have any effect.    In the old days when code size was
measured  in  bytes,  not  K  bytes,  and  processors  were  less  powerful--and
complex--programmers did in fact use similar tricks to eke every last bit of
performance from their  code.      When programming the PC,  however,  the
prefetch queue cycle-eater would make such careful code synchronization a
difficult  task  indeed,  and any modest  performance improvement  that  did
result could never justify the increase in programming complexity and the
limits on creative programming that such an approach would entail.    There's
no way around it:    useful code accesses memory frequently and at irregular
intervals, and over the long haul DRAM refresh always exacts its price.

If  you're  still  harboring  thoughts  of  reducing  the  overhead  of
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DRAM refresh, consider this.    Instructions that tend not to suffer very much
from DRAM refresh are those that have a high ratio of  execution time to
instruction fetch time, and those aren't the fastest instructions of the PC.    It
certainly wouldn't make sense to use slower instructions just to reduce DRAM
refresh  overhead,  for  it's  total execution  time--DRAM  refresh,  instruction
fetching, and all--that matters. The important thing to understand about
DRAM refresh is that it generally slows your code down, and that the extent
of  that  performance  reduction  can  vary  considerably  and  unpredictably,
depending on how the DRAM refreshes interact with your code's pattern of
memory accesses.    When you use the Zen timer and get a fractional cycle
count for the execution time of an instruction, that's often DRAM refresh at
work.      (The  display  adapter  cycle- eater  is  another  possible  culprit.)
Whenever  you  get  two  timing  results  that  differ  less  or  more  than  they
seemingly should, that's usually DRAM refresh too.    Thanks to DRAM refresh,
variations of up to 8.33% in PC code performance are par for the course.

WAIT STATES

Wait states are cycles during which a bus access by the 8088 to a
device on the PC's bus is temporarily halted by that device while the device
gets ready to complete the read or write.    Wait states are well and truly the
lowest level of code performance. Everything we have discussed (and will
discuss)--even DMA accesses--can be affected by wait states.

Wait states exist because the 8088 must to be able to coexist
with any adapter, no matter how slow (within reason). The 8088 expects to



Abrash/Zen:    Chapter 4/

be able to complete each bus access--a memory or I/O read or write--in 4
cycles,  but  adapters  can't  always  respond  that  quickly,  for  a  number  of
reasons.    For example, display adapters must split access to display memory
between the 8088 and the circuitry that generates the video signal based on
the contents  of  display memory,  so they often can't  immediately  fulfill  a
request  by the 8088 for  a display memory read or  write.  To resolve this
conflict, display adapters can tell the 8088 to wait during bus accesses by
inserting one or more wait states, as shown in Figure 4-6.    The 8088 simply
sits and idles as long as wait states are inserted, then completes the access
as soon as the display adapter indicates its readiness by no longer inserting
wait states.    The same would be true of any adapter that couldn't keep up
with the 8088.

Mind you, this is all transparent to the code running on the 8088.
An instruction that encounters wait states runs exactly as if there were no
wait states, but slower.    Wait states are nothing more or less than wasted
time as far as the 8088 and your program are concerned.

By  understanding  the  circumstances  in  which  wait  states  can
occur, you can avoid them when possible.    Even when it's not possible to
work around wait states, it's still to your advantage to understand how they
can cause your code to run more slowly.

First,  let's  learn a bit  more about  wait  states  by contrast with
DRAM  refresh.      Unlike  DRAM  refresh,  wait  states  do  not  occur  on  any
regularly scheduled basis, and are of no particular duration.    Wait states can
only  occur  when an instruction  performs a  memory or  I/O read or  write.
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Both the presence of wait states and the number of wait states inserted on
any given bus access are entirely controlled by the device being accessed.
When  it  comes  to  wait  states,  the  8088  is  passive,  merely  accepting
whatever  wait  states  the  accessed  device  chooses  to  insert  during  the
course of the access.    All of this makes perfect sense given that the whole
point of the wait state mechanism is to allow a device to stretch out any
access to itself for however much time it needs to perform the access.

Like DRAM refresh, wait states don't stop the 8088 completely.
The Execution Unit can continue processing while wait states are inserted, so
long as the EU doesn't need to perform a bus access.    However, in the PC
wait  states  most  often  occur  when  an  instruction  accesses  a  memory
operand,  so in  fact  the Execution  Unit  usually  is  stopped by wait  states.
(Instruction fetches rarely wait in a PC because system memory is zero-wait-
state.     AT memory routinely inserts 1 wait state, however, as we'll see in
Chapter 15.)

As it turns out, wait states pose a serious problem in just one area
in the PC.    While any adapter can insert wait states, in the PC only display
adapters do so to the extent that performance is seriously affected.

THE DISPLAY ADAPTER CYCLE-EATER

Display  adapters  must  serve  two  masters,  and  that  creates  a
fundamental performance problem.     Master #1 is the circuitry that drives
the display screen.    This circuitry must constantly read display memory in
order to obtain the information used to draw the characters or dots displayed



Abrash/Zen:    Chapter 4/

on the screen.    Since the screen must be redrawn between 50 and 70 times
per second, and since each redraw of the screen can require as many as
36,000 reads of display memory (more in Super-VGA modes), master #1 is a
demanding master  indeed.      No matter  how demanding master  #1 gets,
though, its needs must  always be met--otherwise the quality of the picture
on the screen would suffer.

Master #2 is the 8088, which reads from and writes to display
memory in order to manipulate the bytes that the video circuitry reads to
form the picture on the screen.    Master #2 is less important than master #1,
since the 8088 affects display quality only indirectly.    In other words, if the
video  circuitry  has  to  wait  for  display  memory  accesses,  the  picture  will
develop holes, snow, and the like, but if the 8088 has to wait for display
memory accesses, the program will just run a bit slower-- no big deal.

It matters a great deal which master is more important, for while
both the 8088 and the video circuitry must gain access to display memory,
only one of the two masters can read or write display memory at any one
time.      Potential  conflicts  are resolved by flat-out  guaranteeing the video
circuitry however many accesses to display memory it needs, with the 8088
waiting for whatever display memory accesses are left over.

It turns out that the 8088 has to do a lot of waiting, for three
reasons.    First, the video circuitry can take as much as about 90% of the
available display memory access time, as shown in Figure 4-7, leaving as
little as about 10% of all display memory accesses for the 8088.      (These
percentages vary considerably among the many EGA and VGA clones.)
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Second,  because  dots  (or  pixels,  short  for  "picture  elements")
must  be drawn on the screen at  a constant  speed,  display adapters  can
provide memory accesses only at fixed intervals.    As a result, time can be
lost while the 8088 synchronizes with the start of the next display adapter
memory access, even if the video circuitry isn't accessing display memory at
that time, as shown in Figure 4-8.

Finally, the time it takes a display adapter to complete a memory
access is related to the speed of the clock which generates pixels on the
screen rather than to the memory access speed of the 8088.    Consequently,
the time taken for display memory to complete an 8088 read or write access
is  often  longer  than  the  time  taken  for  system memory  to  complete  an
access, even if the 8088 lucks into hitting a free display memory access just
as it becomes available, again as shown in Figure 4-8.    Any or all of the three
factors I've described can result in wait states, slowing the 8088 and creating
the display adapter cycle- eater.

If some of this is Greek to you, don't worry.    The important point
is that display memory is not very fast compared to normal system memory.
How slow is it?    Incredibly slow.    Remember how slow the PCjr was?    In case
you've forgotten, I'll refresh your memory:    the PCjr was at best only half as
fast as the PC.    The PCjr had an 8088 running at 4.77 MHz, just like the PC--
why do you suppose it  was so much slower?      I'll  tell  you why:      all  the
memory in the PCjr was display memory.

Enough said.
All the memory in the PC is  not display memory, however, and
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unless you're thickheaded enough to put code in display memory, the PC
isn't going to run as slowly as a PCjr.    (Putting code or other non-video data
in  unused  areas  of  display  memory  sounds  like  a  neat  idea--until  you
consider the effect on instruction prefetching of cutting the 8088's already-
poor memory access performance in half.    Running your code from display
memory is sort of like running on the hypothetical 8084--an 8086 with a 4  -  
bit bus.      Not  recommended!)      Given that  your  code and data reside in
normal system memory below the 640 K mark, how great an impact does the
display adapter cycle-eater have on performance?

The  answer  varies  considerably  depending  on  what  display
adapter and what display mode we're talking about.      The display adapter
cycle-eater is worst with the Enhanced Graphics Adapter (EGA) and the Video
Graphics  Array  (VGA).      While  the  Color/Graphics  Adapter  (CGA),
Monochrome Display Adapter (MDA), and Hercules Graphics Card (HGC) all
suffer from the display adapter cycle-eater as well, they suffer to a lesser
degree. Since the EGA and particularly the VGA represent the standard for PC
graphics now and for the foreseeable future, and since those are the hardest
graphics adapter to wring performance from, we'll restrict our discussion to
the EGA and VGA for the remainder of this chapter. 
THE IMPACT OF THE DISPLAY ADAPTER CYCLE-EATER

Even on the EGA and VGA, the effect of the display adapter cycle-
eater depends on the display mode selected.      In  text mode, the display
adapter cycle-eater is rarely a major factor.    It's not that the cycle-eater isn't
present; however, a mere 4000 bytes control the entire text mode display,
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and even with the display adapter cycle-eater it just doesn't take that long to
manipulate 4000 bytes.      Even if  the display adapter cycle-eater  were to
cause the 8088 to take as much as 5 us per display memory access--more
than ten times normal--it would still take only:

40 ms = 4000 x 2 x 5 us

to read  and write every byte of display memory.      That's a lot of time as
measured in 8088 cycles, but it's less than the blink of an eye in human
time, and video performance only matters in human time.      After all,  the
whole point of drawing graphics is to convey visual information, and if that
information  can  be  presented  faster  than  the  eye  can  see,  that  is  by
definition fast enough.

That's not to say that the display adapter cycle-eater can't matter
in text mode.    In Chapter 2 I recounted the story of a debate among letter-
writers to a magazine about exactly how quickly characters could be written
to display memory without causing snow.    The writers carefully added up
Intel's instruction cycle times to see how many writes to display memory
they could squeeze into a single horizontal retrace interval.    (On a CGA, it's
only  during  the  short  horizontal  retrace  interval  and  the  longer  vertical
retrace  interval  that  display  memory  can be  accessed  in  80-column text
mode without causing snow.)    Of course, now we know that their cardinal sin
was to ignore the prefetch queue; even if there were no wait states, their
calculations would have been overly optimistic.    There are display memory
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wait states as well, however, so the calculations were not just optimistic but
wildly optimistic.

Text mode situations such as the above notwithstanding, where
the display adapter cycle-eater really kicks in is in graphics mode, and most
especially in the high-resolution graphics modes of the EGA and VGA.    The
problem here is not that there are necessarily more wait states per access in
high- resolution graphics modes (that varies from adapter to adapter and
mode to mode).    Rather, the problem is simply that are many more bytes of
display memory per screen in these modes than in lower-resolution graphics
modes and in text modes, so many more display memory accesses--each
incurring its share of display memory wait states--are required in order to
draw an image of a given size.      When accessing the many thousands of
bytes used in the high-resolution graphics modes, the cumulative effects of
display memory wait states can seriously impact code performance, even as
measured in human time.

For example, if we assume the same 5 us per display memory
access for the EGA's high-res graphics mode that we assumed for text mode,
it would take:

260 ms = 26,000 x 2 x 5 us

to  scroll  the  screen  once  in  the  EGA's  hi-res  graphics  mode,  mode  10h.
That's more than one-quarter of a second--noticeable by human standards,
an eternity by computer standards.
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That  sounds  pretty  serious,  but  we  did  make  an  unfounded
assumption about memory access speed.      Let's get some hard numbers.
Listing 4-11 accesses display memory at the 8088's maximum speed, by way
of a rep movsw with display memory as both source and destination.    The
code in Listing 4-11 executes in 3.18 us per access to display memory--not
as long as we had assumed, but a long time nonetheless.

For comparison, let's see how long the same code takes when
accessing  normal  system RAM instead  of  display  memory.      The  code  in
Listing 4-12, which performs a  rep movsw from the code segment to the
code segment, executes in 1.39 us per display memory access.    That means
that on average 1.79 us (more than 8 cycles!) are lost to the display adapter
cycle-eater on each access.    In other words, the display adapter cycle-eater
can more than double the execution time of 8088 code!

Bear  in  mind  that  we're  talking  about  a  worst  case  here;  the
impact of the display adapter cycle-eater is proportional to the percent of
time a  given  code  sequence  spends  accessing  display  memory.      A  line-
drawing subroutine, which executes perhaps a dozen instructions for each
display  memory  access,  generally  loses  less  performance  to  the  display
adapter cycle-eater than does a block-copy or scrolling subroutine that uses
rep  movs instructions.      Scaled  and  three-dimensional  graphics,  which
spend a great deal of time performing calculations (often using  very slow
floating-point arithmetic), tend to suffer still less.

In  addition,  code  that  accesses  display  memory  infrequently
tends to suffer only about half of the maximum display memory wait states,
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because on average such code will access display memory halfway between
one available display memory access slot and the next.    As a result, code
that accesses display memory less intensively than the code in Listing 4-11
will on average lose 4 or 5 rather than 8-plus cycles to the display adapter
cycle-eater on each memory access.

Nonetheless, the display adapter cycle-eater always takes its toll
on graphics code.    Interestingly, that toll becomes relatively much higher on
ATs and 80386 machines, because while those computers can execute many
more instructions per microsecond than can the PC, it takes just as long to
access display memory on those computers as on the PC.    Remember, the
limited speed of access to a graphics adapter is an inherent characteristic of
the adapter, so the fastest computer around can't access display memory
one iota  faster  than the adapter  will  allow.      We'll  discuss  this  further  in
Chapter 15.
WHAT TO DO ABOUT THE DISPLAY ADAPTER CYCLE-EATER?

What can we do about the display adapter cycle-eater?    Well, we
can minimize display memory accesses whenever possible.    In particular, we
can try to avoid read/modify/write  display memory operations of  the sort
used  to  mask  individual  pixels  and  clip  images.      Why?      Because
read/modify/write operations require two display memory accesses (one read
and  one  write)  each  time display  memory  is  manipulated.      Instead,  we
should try to use writes of the sort that set all the pixels in a given byte of
display memory at once, since such writes don't require accompanying read
accesses.    The key here is that only half as many display memory accesses
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are required to write a byte to display memory as are required to read a byte
from display memory, mask part of it off and alter the rest, and write the
byte  back  to  display  memory.      Half  as  many  display  memory  accesses
means half as many display memory wait states.

Along the same line, the display adapter cycle-eater makes the
popular exclusive-or animation technique, which requires paired reads and
writes of display memory, less-than-ideal for the PC.    Exclusive-or animation
should  be  avoided  in  favor  of  simply  writing  images  to  display  memory
whenever possible, as we'll see in Chapter 11.

Another principle for display adapter programming is to perform
multiple accesses to display memory very rapidly, in order to make use of as
many  of  the  scarce  accesses  to  display  memory  as  possible.      This  is
especially  important  when many large images need to be drawn quickly,
since  only  by  using  virtually  every  available  display  memory  access  can
many  bytes  be  written  to  display  memory  in  a  short  period  of  time.
Repeated string instructions are ideal for making maximum use of display
memory accesses; of course, repeated string instructions can only be used
on whole bytes, so this is another point in favor of modifying display memory
a byte at a time.

These concepts certainly need examples and clarification, along
with  some  working  code;  that's  coming  up  in  Volume  II  of  The  Zen  of
Assembly Language.      Why not now?      Well,  in Volume II  we'll  be able to
devote a whole chapter to display adapter programming, and by that point
we'll  have the benefit  of  an understanding of  the flexible  mind,  which  is
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certainly a plus for this complex topic.
For now, all you really need to know about the display adapter

cycle-eater is that you can lose more than 8 cycles of execution time on each
access to display memory.    For intensive access to display memory, the loss
really can be as high as 8- plus cycles, while for average graphics code the
loss  is  closer  to  4  cycles;  in  either  case,  the  impact  on  performance  is
significant.    There is only one way to discover just how significant the impact
of the display adapter cycle-eater is for any particular graphics code, and
that is of course to measure the performance of that code.

If  you're  interested  in  the  detailed  operation  of  the  display
adapter  cycle-eater,  I  suggest  you  read my article,  "The Display  Adapter
Bottleneck," in the January, 1987 issue of PC Tech Journal.

CYCLE-EATERS:    A SUMMARY

We've  covered  a  great  deal  of  sophisticated  material  in  this
chapter, so don't feel bad if you haven't understood everything you've read;
it will all become clear as you read on.    What's really important is that you
come away from this chapter understanding that:

      _ The 8-bit bus cycle-eater causes each access to a word-sized operand
to  be  4  cycles  longer  than  an  equivalent  access  to  a  byte-sized
operand.

      _ The prefetch queue cycle-eater can cause instruction execution times
to  be  as  much  as  four  times  longer  than  the  times  specified  in
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Appendix A.
      _ The DRAM refresh cycle-eater slows most PC code, with performance

reductions ranging as high as 8.33%.
      _ The display adapter cycle-eater typically doubles and can more than

triple the length of  the standard 4-cycle access to display memory,
with intensive display memory access suffering most.

This  basic  knowledge  about  cycle-eaters  puts  you  in  a  good
position to understand the results reported by the Zen timer, and that means
that you're well  on your way to writing highperformance assembler code.
We will put this knowledge to work throughout the remainder of The Zen of
Assembly Language.

WHAT DOES IT ALL MEAN?

There you have it:    life under the programming interface. It's not
a particularly pretty picture, for the inhabitants of that strange realm where
hardware  and  software  meet  are  little- known  cycle-eaters  that  sap  the
speed from your unsuspecting code.    Still, some of those cycle-eaters can be
minimized by keeping instructions short, using the registers, using byte-sized
memory  operands,  and  accessing  display  memory  as  little  as  possible.
None of the cycle-eaters can be eliminated, and dynamic RAM refresh can
scarcely be addressed at all; still, aren't you better off knowing how fast your
code really runs--and why--than you were reading the official execution times
and guessing?
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So  far  we've  only  examined  cycle-eaters  singly.  Unfortunately,
cycle-eaters don't work alone, and together they're still more complex and
unpredictable than they are taken one at a time.    The intricate relationship
between the cycle- eaters is our next topic.


