
Abrash/Zen:    Chapter 4/

Chapter 4:    Things Mother Never Told You:
Under the Programming Interface

Over the last few chapters we've seen that programming has
many levels, ranging from the familiar (high-level languages, DOS calls, and
the like) to the esoteric (cycle-eaters).    In this chapter we're going to jump
right in at the lowest level by examining the cycle-eaters that live beneath
the programming interface.

Why start at the lowest level?    Simply because cycle-eaters
affect the performance of all assembler code, and yet are almost unknown to
most programmers.    A full understanding of virtually everything else we'll
discuss in The Zen of Assembly Language requires an understanding of
cycle-eaters and their implications. That's no simple task, and in fact it is in
precisely that area that most books and articles about assembler
programming fall short.

Nearly all literature on assembler programming discusses only
the programming interface:    the instruction set, the registers, the flags, and
the BIOS and DOS calls.    Those topics cover the functionality of assembler
programs most thoroughly-- but it's performance above all else that we're
after.    No one ever tells you about the raw stuff of performance, which lies
beneath the programming interface, in the dimly-seen realm-populated by
instruction prefetching, dynamic RAM refresh, and wait states--where
software meets hardware.    This area is the domain of hardware engineers,

Abrash/Zen:    Chapter 4/

and is almost never discussed as it relates to code performance.    And yet it
is only by understanding the mechanisms operating at this level that we can
fully understand and properly improve the performance of our code.

Which brings us to cycle-eaters.

CYCLE-EATERS REVISITED

You'll recall that cycle-eaters are gremlins that live on the bus or
in peripherals, slowing the performance of 8088 code so that it doesn't
execute at full speed.    Because cycle-eaters live outside the Execution Unit
of the 8088, they can only affect the 8088 when the 8088 performs a bus
access (a memory or I/O read or write).    Internally, the 8088 is a 16-bit
processor, capable of running at full speed at all times--unless external data
is required.    External data must traverse the 8088's external data bus and
the PC's data bus 1 byte at a time to and from peripherals, with cycle-eaters
lurking along every step of the way.    What's more, external data includes not
only memory operands but also instruction bytes, so even instructions with
no memory operands can suffer from cycle-eaters.    Since some of the
8088's fastest instructions are register-only instructions, that's important
indeed.

The major cycle-eaters are:
      _ The 8088's 8-bit external data bus.
      _ The prefetch queue.
      _ Dynamic RAM refresh.
      _ Wait states, notably display memory wait states and, in the AT and

Abrash/Zen:    Chapter 4/

80386 computers, system memory wait states.

The locations of these cycle-eaters in the PC are shown in Figure
4-1.    We'll cover each of the cycle-eaters in turn in this chapter.    The
material won't be easy, since cycle-eaters are among the most subtle
aspects of assembler programming.    By the same token, however, this will
be one of the most important and rewarding chapters in this book.    Don't
worry if you don't catch everything in this chapter, but do read it all even if
the going gets a bit tough.    Cycle-eaters play a key role in later chapters, so
some familiarity with them is highly desirable. Then, too, those later chapters
illustrate cycle-eaters in action, which should help clear up any aspects of
cycle-eaters about which you're uncertain.

THE 8-BIT BUS CYCLE-EATER

Look!    Down on the motherboard!    It's a 16-bit processor! It's an
8-bit processor!    It's...

...an 8088!
Fans of the 8088 call it a 16-bit processor.    Fans of other 16-bit

processors call the 8088 an 8-bit processor.    Unbiased as we are, we know
that the truth of the matter is that the 8088 is a 16-bit processor that often
performs like an 8-bit processor.

As we saw in Chapter 3, the 8088 is internally a full 16-bit
processor, equivalent to an 8086.    In terms of the instruction set, the 8088 is
clearly a 16-bit processor, capable of performing any given 16-bit operation--

Abrash/Zen:    Chapter 4/

addition, subtraction, even multiplication or division---with a single
instruction. Externally, however, the 8088 is unequivocally an 8-bit
processor, since the external data bus is only 8 bits wide.    In other words,
the programming interface is 16 bits wide, but the hardware interface is only
8 bits wide, as shown in Figure 4-2. The result of this mismatch is simple:
word-sized data can be transferred between the 8088 and memory or
peripherals at only one-half the maximum rate of the 8086, which is to say
one-half the maximum rate for which the Execution Unit of the 8088 was
designed.

As shown in Figure 4-1, the 8-bit bus cycle-eater lies squarely on
the 8088's external data bus.    Technically, it might be more accurate to
place this cycle-eater in the Bus Interface Unit, which breaks 16-bit memory
accesses into paired 8-bit accesses, but it is really the limited width of the
external data bus that constricts data flow into and out of the 8088.    True,
the PC's bus is also only 8 bits wide, but that's just to match the 8088's 8-bit
bus; even if the PC's bus were 16 bits wide, data could still pass into and out
of the 8088 only 1 byte at a time.

Each bus access by the 8088 takes 4 clock cycles, or 0.838 us in
the PC, and transfers 1 byte.    That means that the maximum rate at which
data can be transferred into and out of the 8088 is 1 byte every 0.838 us.
While 8086 bus accesses also take 4 clock cycles, each 8086 bus access can
transfer either 1 byte or 1 word, for a maximum transfer rate of 1 word every
0.838 us. Consequently, for word-sized memory accesses the 8086 has an
effective transfer rate of 1 byte every 0.419 us.    By contrast, every word-

Abrash/Zen:    Chapter 4/

sized access on the 8088 requires two 4-cycle-long bus accesses, one for the
high byte of the word and one for the low byte of the word.    As a result, the
8088 has an effective transfer rate for word-sized memory accesses of just 1
word every 1.676 us--and that, in a nutshell, is the 8-bit bus cycle-eater.

THE IMPACT OF THE 8-BIT BUS CYCLE-EATER

One obvious effect of the 8-bit bus cycle-eater is that word-sized
accesses to memory operands on the 8088 take 4 cycles longer than byte-
sized accesses.    That's why the instruction timings in Appendix A indicate
that for code running on an 8088 an additional 4 cycles are required for
every word-sized access to a memory operand.    For instance:

mov ax,word ptr [MemVar]

takes 4 cycles longer to read the word at address MemVar than:

mov al,byte ptr [MemVar]

takes to read the byte at address MemVar.    (Actually, the difference
between the two isn't very likely to be exactly 4 cycles, for reasons that will
become clear when we discuss the prefetch queue and dynamic RAM refresh
cycle-eaters later in this chapter.)

What's more, in some cases one instruction can perform multiple
word-sized accesses, incurring that 4-cycle penalty on each access.    For

Abrash/Zen:    Chapter 4/

example, adding a value to a word-sized memory variable requires 2 word-
sized accesses--one to read the destination operand from memory prior to
adding to it, and one to write the result of the addition back to the
destination operand--and thus incurs not one but two 4-cycle penalties.    As
a result:

add word ptr [MemVar],ax

takes about 8 cycles longer to execute than:

add byte ptr [MemVar],al

String instructions can suffer from the 8-bit bus cycle- eater to a
greater extent than other instructions.    Believe it or not, a single rep

movsw instruction can lose as much as:

524,280 cycles = 131,070 word-sized memory accesses x 4 cycles

to the 8-bit bus cycle-eater!    In other words, one 8088 instruction
(admittedly, an instruction that does a great deal) can take over one-tenth of
a second longer on an 8088 than on an 8086, simply because of the 8-bit
bus.    One-tenth of a second! That's a phenomenally long time in computer
terms; in one-tenth of a second, the 8088 can perform more than 50,000
additions and subtractions.

Abrash/Zen:    Chapter 4/

The upshot of all this is simply that the 8088 can transfer word-
sized data to and from memory at only half the speed of the 8086, which
inevitably causes performance problems when coupled with an Execution
Unit that can process word-sized data every bit as fast as an 8086.    These
problems show up with any code that uses word-sized memory operands.
More ominously, as we will see shortly, the 8-bit bus cycle-eater can cause
performance problems with other sorts of code as well.

WHAT TO DO ABOUT THE 8-BIT BUS CYCLE-EATER?

The obvious implication of the 8-bit bus cycle-eater is that byte-
sized memory variables should be used whenever possible. After all, the
8088 performs byte-sized memory accesses just as quickly as the 8086.    For
instance, Listing 4-1, which uses a byte-sized memory variable as a loop
counter, runs in 10.03 us per loop.    That's 20% faster than the 12.05 us per
loop execution time of Listing 4-2, which uses a word-sized counter.    Why
the difference in execution times?    Simply because each word-sized dec

performs 4 byte-sized memory accesses (2 to read the word- sized operand
and 2 to write the result back to memory), while each byte-sized dec

performs only 2 byte-sized memory accesses in all.
I'd like to make a brief aside concerning code optimization in the

listings in this book.    Throughout this book I've modelled the sample code
after working code so that the timing results are applicable to real-world
programming.    In Listings 4-1 and 4-2, for instance, I could have shown a
still greater advantage for byte-sized operands simply by performing 1000

Abrash/Zen:    Chapter 4/

dec instructions in a row, with no branching at all.    However, dec

instructions don't exist in a vacuum, so in the listings I used code that both
decremented the counter and tested the result.    The difference is that
between decrementing a memory location (simply an instruction) and using
a loop counter (a functional instruction sequence).    If you come across code
in The Zen of Assembly Language that seems less than optimal, my desire to
provide code that's relevant to real programming problems may be the
reason. On the other hand, optimal code is an elusive thing indeed; by no
means should you assume that the code in this book is ideal! Examine it,
question it, and improve upon it, for an inquisitive, skeptical mind is an
important part of the Zen of assembler.

Back to the 8-bit bus cycle-eater.    As I've said, you should strive
to use byte-sized memory variables whenever possible. That does not mean
that you should use 2 byte-sized memory accesses to manipulate a word-
sized memory variable in preference to 1 word-sized memory access, as, for
instance, with:

mov dl,byte ptr [MemVar]
mov dh,byte ptr [MemVar+1]

versus:

mov dx,word ptr [MemVar]

Abrash/Zen:    Chapter 4/

Recall that every access to a memory byte takes at least 4 cycles; that
limitation is built right into the 8088.    The 8088 is also built so that the
second byte-sized memory access to a 16-bit memory variable takes just
those 4 cycles and no more. There's no way you can manipulate the second
byte of a word-sized memory variable faster with a second separate byte-
sized instruction in less than 4 cycles.    As a matter of fact, you're bound to
access that second byte much more slowly with a separate instruction,
thanks to the overhead of instruction fetching and execution, address
calculation, and the like.

For example, consider Listing 4-3, which performs 1000 word-
sized reads from memory.    This code runs in 3.77 us per word read.    That's
45% faster than the 5.49 us per word read of Listing 4-4, which reads the
same 1000 words as Listing 4-3 but does so with 2000 byte-sized reads.
Both listings perform exactly the same number of memory accesses--2000
accesses, each byte-sized, as all 8088 memory accesses must be.
(Remember that the Bus Interface Unit must perform two byte-sized memory
accesses in order to handle a word-sized memory operand.) However, Listing
4-3 is considerably faster because it expends only 4 additional cycles to read
the second byte of each word, while Listing 4-4 performs a second lodsb,
requiring 13 cycles, to read the second byte of each word.

In short, if you must perform a 16-bit memory access, let the
8088 break the access into two byte-sized accesses for you. The 8088 is
more efficient at that task than your code can possibly be.

Chapter 9 has further examples of ways in which you can take

Abrash/Zen:    Chapter 4/

advantage of the 8088's relative speed at handling the second byte of a
word-sized memory operand to improve your code. However, that advantage
only exists relative to the time taken to access 2 byte-sized memory
operands; you're still better off using single byte-sized memory accesses
rather than word-sized accesses whenever possible.    Word-sized variables
should be stored in registers to the greatest feasible extent, since registers
are inside the 8088, where 16-bit operations are just as fast as 8-bit
operations because the 8-bit cycle-eater can't get at them.    In fact, it's a
good idea to keep as many variables of all sorts in registers as you can.
Instructions with register-only operands execute very rapidly, partially
because they avoid both the time-consuming memory accesses and the
lengthy address calculations associated with memory operands.

There is yet another reason why register operands are preferable
to memory operands, and it's an unexpected effect of the 8-bit bus cycle-
eater.    Instructions with only register operands tend to be shorter (in terms
of bytes) than instructions with memory operands, and when it comes to
performance, shorter is usually better.    In order to explain why that is true
and how it relates to the 8-bit bus cycle-eater, I must diverge for a moment.

For the last few pages, you may well have been thinking that the
8-bit bus cycle-eater, while a nuisance, doesn't seem particularly subtle or
difficult to quantify.    After all, Appendix A tells us exactly how many cycles
each instruction loses to the 8-bit bus cycle-eater, doesn't it?

Yes and no.    It's true that in general we know approximately how
much longer a given instruction will take to execute with a word-sized

Abrash/Zen:    Chapter 4/

memory operand than with a byte-sized operand, although the dynamic RAM
refresh and wait state cycle-eaters can raise the cost of the 8-bit bus cycle-
eater considerably, as we'll see later in this chapter.    However, all word-
sized memory accesses lose 4 cycles to the 8-bit bus cycle-eater, and there's
one sort of word-sized memory access we haven't discussed yet: instruction
fetching.    The ugliest manifestation of the 8-bit bus cycle-eater is in fact the
prefetch queue cycle-eater.

THE PREFETCH QUEUE CYCLE-EATER Simply put, here's the prefetch
queue cycle-eater:    the 8088's 8-bit external data bus keeps the Bus
Interface Unit from fetching instruction bytes as fast as the 16-bit Execution
Unit can execute them, so the Execution Unit often lies idle while waiting for
the next instruction byte to be fetched.

Exactly why does this happen?    Recall that the 8088 is an 8086
internally, but accesses word-sized memory data at only one- half the
maximum rate of the 8086 due to the 8088's 8-bit external data bus.
Unfortunately, instructions are among the word-sized data the 8086 fetches,
meaning that the 8088 can fetch instructions at only one-half the speed of
the 8086.    On the other hand, the 8086-equivalent Execution Unit of the
8088 can execute instructions every bit as fast as the 8086.    The net result
is that the Execution Unit burns up instruction bytes much faster than the
Bus Interface Unit can fetch them, and ends up idling while waiting for
instructions bytes to arrive.

The BIU can fetch instruction bytes at a maximum rate of one

Abrash/Zen:    Chapter 4/

byte every 4 cycles--and that 4-cycle per instruction byte rate is the ultimate
limit on overall instruction execution time, regardless of EU speed.    While
the EU may execute a given instruction that's already in the prefetch queue
in less than 4 cycles per byte, over time the EU can't execute instructions
any faster than they can arrive--and they can't arrive faster than 1 byte
every 4 cycles.

Clearly, then, the prefetch queue cycle-eater is nothing more
than one aspect of the 8-bit bus cycle-eater.    8088 code often runs at less
than the Execution Unit's maximum speed because the 8-bit data bus can't
keep up with the demand for instruction bytes.    That's straightforward
enough--so why all the fuss about the prefetch queue cycle-eater?

What makes the prefetch queue cycle-eater tricky is that it's
undocumented and unpredictable.    That is, with a word-sized memory
access, such as:

mov [bx],ax

it's well-documented that an extra 4 cycles will always be required to write
the upper byte of AX to memory.    Not so with the prefetch queue.    For
instance, the instructions:

shr ax,1
shr ax,1
shr ax,1
shr ax,1
shr ax,1

Abrash/Zen:    Chapter 4/

should execute in 10 cycles, according to the specifications in Appendix A,
since each shr takes 2 cycles to execute.    Those specifications contain
Intel's official instruction execution times, but in this case--and in many
others--the specifications are drastically wrong.    Why?    Because they
describe execution time once an instruction reaches the prefetch queue.
They say nothing about whether a given instruction will be in the prefetch
queue when it's time for that instruction to run, or how long it will take that
instruction to reach the prefetch queue if it's not there already.    Thanks to
the low performance of the 8088's external data bus, that's a glaring
omission--but, alas, an unavoidable one.    Let's look at why the official
execution times are wrong, and why that can't be helped.

OFFICIAL EXECUTION TIMES ARE ONLY PART OF THE STORY

The sequence of 5 shr instructions in the last example is 10 bytes
long.    That means that it can never execute in less than 24 cycles even if
the 4-byte prefetch queue is full when it starts, since 6 instruction bytes
would still remain to be fetched, at 4 cycles per fetch.    If the prefetch queue
is empty at the start, the sequence could take 40 cycles.    In short, thanks to
instruction fetching the code won't run at its documented speed, and could
take up to 4 times as long as it is supposed to.

Why does Intel document Execution Unit execution time rather
than overall instruction execution time, which includes both instruction fetch
time and Execution Unit execution time?    As described in Chapter 3,

Abrash/Zen:    Chapter 4/

instruction fetching isn't performed as part of instruction execution by the
Execution Unit, but instead is carried on in parallel by the Bus Interface Unit
whenever the external data bus isn't in use or whenever the EU runs out of
instruction bytes to execute.    Sometimes the BIU is able to use spare bus
cycles to prefetch instruction bytes before the EU needs them, so instruction
fetching takes no time at all, practically speaking.    At other times the EU
executes instructions faster than the BIU can fetch them and instruction
fetching becomes a significant part of overall execution time. As a result, the
effective fetch time for a given instruction varies greatly depending on the
code mix preceding that instruction.    Similarly, the state in which a given
instruction leaves the prefetch queue affects the overall execution time of
the following instructions.

In other words, while the execution time for a given instruction is
constant, the fetch time for that instruction depends on the context in which
the instruction is executing--the amount of prefetching the preceding
instructions allowed--and can vary from a full 4 cycles per instruction byte to
no time at all. As we'll see later, other cycle-eaters, such as DRAM refresh
and display memory wait states, can cause prefetching variations even
during different executions of the same code sequence.    Given that, it's
meaningless to talk about the prefetch time of a given instruction except in
the context of a specific code sequence.

So now you know why the official instruction execution times are
often wrong, and why Intel can't provide better specifications.    You also
know now why it is that you must time your code if you want to know how

Abrash/Zen:    Chapter 4/

fast it really is.

THERE IS NO SUCH BEAST AS A TRUE INSTRUCTION EXECUTION TIME

The effect of the code preceding an instruction on the execution
time of that instruction makes the Zen timer trickier to use than you might
expect, and complicates the interpretation of the results reported by the Zen
timer.    For one thing, the Zen timer is best used to time code sequences that
are more than a few instructions long; below 10 us or so, prefetch queue
effects and the limited resolution of the clock driving the timer can cause
problems.

Some slight prefetch queue-induced inaccuracy usually exists
even when the Zen timer is used to time longer code sequences, since the
calls to the Zen timer usually alter the code's prefetch queue from its normal
state.    (As we'll see in Chapter 12, branches--jumps, calls, returns and the
like--empty the prefetch queue.)    Ideally, the Zen timer is used to measure
the performance of an entire subroutine, so the prefetch queue effects of the
branches at the start and end of the subroutine are similar to the effects of
the calls to the Zen timer when you're measuring the subroutine's
performance.

Another way in which the prefetch queue cycle-eater complicates
the use of the Zen timer involves the practice of timing the performance of a
few instructions over and over.    I'll often repeat one or two instructions 100
or 1000 times in a row in listings in this book in order to get timing intervals
that are long enough to provide reliable measurements.    However, as we

Abrash/Zen:    Chapter 4/

just learned, the actual performance of any 8088 instruction depends on the
code mix preceding any given use of that instruction, which in turns affects
the state of the prefetch queue when the instruction starts executing.    Alas,
the execution time of an instruction preceded by dozens of identical
instructions reflects just one of many possible prefetch states (and not a very
likely state at that), and some of the other prefetch states may well produce
distinctly different results.

For example, consider the code in Listings 4-5 and 4-6. Listing 4-5
shows our familiar shr case.    Here, because the prefetch queue is always
empty, execution time should work out to about 4 cycles per byte, or 8
cycles per shr, as shown in Figure 4-3.    (Figure 4-3 illustrates the
relationship between instruction fetching and execution in a simplified way,
and is not intended to show the exact timings of 8088 operations.) That's
quite a contrast to the official 2-cycle execution time of shr.    In fact, the Zen
timer reports that Listing 4-5 executes in 1.81 us per byte, or slightly more
than 4 cycles per byte.    (The extra time is the result of the dynamic RAM
refresh cycle-eater, which we'll discuss shortly.)    Going strictly by Listing 4-5,
we would conclude that the "true" execution time of shr is 8.64 cycles.

Now let's examine Listing 4-6.    Here each shr follows a mul

instruction.    Since mul instructions take so long to execute that the prefetch
queue is always full when they finish, each shr should be ready and waiting
in the prefetch queue when the preceding mul ends.    As a result, we'd
expect that each shr would execute in 2 cycles; together with the 118 cycle
execution time of multiplying 0 times 0, the total execution time should

Abrash/Zen:    Chapter 4/

come to 120 cycles per shr/mul pair, as shown in Figure 4-4.    And, by God,
when we run Listing 4-6 we get an execution time of 25.14 us per shr/mul

pair, or exactly 120 cycles!    According to these results, the "true" execution
time of shr would seem to be 2 cycles, quite a change from the conclusion
we drew from Listing 4-5.

The key point is this:    we've seen one code sequence in which
shr took 8-plus cycles to execute, and another in which it took only 2 cycles.
Are we talking about two different forms of shr here?    Of course not--the
difference is purely a reflection of the differing states in which the preceding
code left the prefetch queue.    In Listing 4-5, each shr after the first few
follows a slew of other shr instructions which have sucked the prefetch
queue dry, so overall performance reflects instruction fetch time.    By
contrast, each shr in Listing 4-6 follows a mul instruction which leaves the
prefetch queue full, so overall performance reflects Execution Unit execution
time.

Clearly, either instruction fetch time or Execution Unit execution
time--or even a mix of the two, if an instruction is partially prefetched--can
determine code performance.    Some people operate under a rule of thumb
by which they assume that the execution time of each instruction is 4 cycles
times the number of bytes in the instruction.    While that's often true for
register-only code, it frequently doesn't hold for code that accesses memory.
For one thing, the rule should be 4 cycles times the number of memory
accesses, not instruction bytes, since all accesses take 4 cycles.    For
another, memory-accessing instructions often have slower Execution Unit

Abrash/Zen:    Chapter 4/

execution times than the 4 cycles per memory access rule would dictate,
because the 8088 isn't very fast at calculating memory addresses, as we'll
see in Chapter 7.    Also, the 4 cycles per instruction byte rule isn't true for
register-only instructions that are already in the prefetch queue when the
preceding instruction ends.

The truth is that it never hurts performance to reduce either the
cycle count or the byte count of a given bit of code, but there's no guarantee
that one or the other will improve performance either.    For example,
consider Listing 4-7, which consists of a series of 4-cycle, 2-byte mov al,0

instructions, and which executes at the rate of 1.81 us per instruction.    Now
consider Listing 4-8, which replaces the 4-cycle mov al,0 with the 3-cycle
(but still 2-byte) sub al,al.    Despite its 1-cycle- per-instruction advantage,
Listing 4-8 runs at exactly the same speed as Listing 4-7.    The reason:    both
instructions are 2 bytes long, and in both cases it is the 8-cycle instruction
fetch time, not the 3- or 4-cycle Execution Unit execution time, that limits
performance.

As you can see, it's easy to be drawn into thinking you're saving
cycles when you're not.    You can only improve the performance of a specific
bit of code by reducing the factor-- either instruction fetch time or execution
time, or sometimes a mix of the two--that's limiting the performance of that
code.

In case you missed it in all the excitement, the variability of
prefetching means that our method of testing performance by executing
1000 instructions in a row by no means produces "true" instruction execution

Abrash/Zen:    Chapter 4/

times, any more than the official execution times in Appendix A are "true"
times.    The fact of the matter is that a given instruction takes at least as
long to execute as the time given for it in Appendix A, but may take as much
as 4 cycles per byte longer, depending on the state of the prefetch queue
when the preceding instruction ends.    The only true execution time for an
instruction is a time measured in a certain context, and that time is
meaningful only in that context.

Look at it this way.    We've firmly established that there's no
number you can attach to a given instruction that's always that instruction's
true execution time.    In fact, as we'll see in the rest of this chapter and in
the next, there are other cycle- eaters that can work with the prefetch queue
cycle-eater to cause the execution time of an instruction to vary to an even
greater extent than we've seen so far.    That's okay, though, because the
execution time of a single instruction is not what we're really after.

What we really want is to know how long useful working code
takes to run, not how long a single instruction takes, and the Zen timer gives
us the tool we need to gather that information. Granted, it would be easier if
we could just add up neatly documented instruction execution times--but
that's not going to happen.    Without actually measuring the performance of
a given code sequence, you simply don't know how fast it is.    For crying out
loud, even the people who designed the 8088 at Intel couldn't tell you
exactly how quickly a given 8088 code sequence executes on the PC just by
looking at it!    Get used to the idea that execution times are only meaningful
in context, learn the rules of thumb in this book, and use the Zen timer to

Abrash/Zen:    Chapter 4/

measure your code.

APPROXIMATING OVERALL EXECUTION TIMES

Don't think that because overall instruction execution time is
determined by both instruction fetch time and Execution Unit execution time,
the two times should be added together when estimating performance.    For
example, practically speaking, each shr in Listing 4-5 does not take 8 cycles
of instruction fetch time plus 2 cycles of Execution Unit execution time to
execute. Figure 4-3 shows that while a given shr is executing, the fetch of
the next shr is starting, and since the two operations are overlapped for 2
cycles, there's no sense in charging the time to both instructions.    You could
think of the extra instruction fetch time for shr in Listing 4-5 as being 6
cycles, which yields an overall execution time of 8 cycles when added to the
2 cycles of Execution Unit execution time.

Alternatively, you could think of each shr in Listing 4-5 as taking
8 cycles to fetch, and then executing in effectively 0 cycles while the next
shr is being fetched.    Whichever perspective you prefer is fine.    The
important point is that the time during which the execution of one instruction
and the fetching of the next instruction overlap should only be counted
toward the overall execution time of one of the instructions. For all intents
and purposes, one of the two instructions runs at no performance cost
whatsoever while the overlap exists.

As a working definition, we'll consider the execution time of a
given instruction in a particular context to start when the first byte of the

Abrash/Zen:    Chapter 4/

instruction is sent to the Execution Unit and end when the first byte of the
next instruction is sent to the EU.    We'll discuss this further in Chapter 5.

WHAT TO DO ABOUT THE PREFETCH QUEUE CYCLE-EATER?

Reducing the impact of the prefetch queue cycle-eater is one of
the overriding principles of high-performance assembler code. How can you
do this?    One effective technique is to minimize access to memory
operands, since such accesses compete with instruction fetching for precious
memory accesses.    You can also greatly reduce instruction fetch time simply
by your choice of instructions:    keep your instructions short.    Less time is
required to fetch instructions that are 1 or 2 bytes long than instructions that
are 5 or 6 bytes long.    Reduced instruction fetching lowers minimum
execution time (minimum execution time is 4 cycles times the number of
instruction bytes) and often leads to faster overall execution.

While short instructions minimize overall prefetch time, they
ironically actually often suffer relatively more from the prefetch queue
bottleneck than do long instructions.    Short instructions generally have such
fast execution times that they drain the prefetch queue despite their small
size.    For example, consider the shr of Listing 4-5, which runs at only 25% of
its Execution Unit execution time even though it's only 2 bytes long, thanks
to the prefetch queue bottleneck.    Short instructions are nonetheless
generally faster than long instructions, thanks to the combination of fewer
instruction bytes and faster Execution Unit execution times, and should be
used as much as possible-- just don't expect them to run at their

Abrash/Zen:    Chapter 4/

documented speeds.
More than anything, the above rules mean using the registers as

heavily as possible, both because register-only instructions are short and
because they don't perform memory accesses to read or write operands.
(Using the registers is a topic we'll return to repeatedly in The Zen of
Assembly Language.)    However, using the registers is a rule of thumb, not a
commandment.    In some circumstances, it may actually be faster to access
memory.    (The look-up table technique, which we'll encounter in Chapter 7,
is one such case.)    What's more, the performance of the prefetch queue
(and hence the performance of each instruction) differs from one code
sequence to the next, and can even differ during different executions of the
same code sequence.

All in all, writing good assembler code is as much an art as a
science.    As a result, you should follow the rules of thumb described in The
Zen of Assembly Language--and then time your code to see how fast it really
is.    You should experiment freely, but always remember that actual,
measured performance is the bottom line.

The prefetch queue cycle-eater looms over the performance of all
8088 code.    We'll encounter it again and again in this book, and in every
case it will make our code slower than it would otherwise be.    An
understanding of the prefetch queue cycle-eater provides deep insight into
what makes some 8088 code much faster than other, seemingly similar 8088
code, and is a key to good assembler programming.    You'll never conquer
this cycle-eater, but with experience and the Zen timer you can surely gain

Abrash/Zen:    Chapter 4/

the advantage.

HOLDING UP THE 8088

Over the last two chapters I've taken you further and further into
the depths of the PC, telling you again and again that you must understand
the computer at the lowest possible level in order to write good code.    At
this point, you may well wonder, "Have we gotten low enough?"

Not quite yet.    The 8-bit bus and prefetch queue cycle- eaters are
low-level indeed, but we've one level yet to go. Dynamic RAM refresh and
wait states--our next topics--together form the lowest level at which the
hardware of the PC affects code performance.    Below this level, the PC is of
interest only to hardware engineers.

Before we begin our discussion of dynamic RAM refresh, let's step
back for a moment to take an overall look at this lowest level of cycle-eaters.
In truth, the distinctions between wait states and dynamic RAM refresh don't
much matter to a programmer. What is important is that you understand
this:    under certain circumstances devices on the PC bus can stop the 8088
for 1 or more cycles, making your code run more slowly than it seemingly
should.

Unlike all the cycle-eaters we've encountered so far, wait states
and dynamic RAM refresh are strictly external to the 8088, as shown in Figure
4-1.    Adapters on the PC's bus, such as video and memory cards, can insert
wait states on any 8088 bus access, the idea being that they won't be able to
complete the access properly unless the access is stretched out.    Likewise,

Abrash/Zen:    Chapter 4/

the channel of the DMA controller dedicated to dynamic RAM refresh can
request control of the bus at any time, although the 8088 must relinquish the
bus before the DMA controller can take over. This means that your code can't
directly control wait states or dynamic RAM refresh.    However, code can
sometimes be designed to minimize the effects of these cycle-eaters, and
even when the cycle-eaters slow your code without there being a thing in the
world you can do about it, you're still better off understanding that you're
losing performance and knowing why your code doesn't run as fast as it's
supposed to than you were programming in ignorance.

Let's start with DRAM refresh, which affects the performance of
every program that runs on the PC.

DYNAMIC RAM REFRESH:    THE INVISIBLE HAND

Dynamic RAM (DRAM) refresh is sort of an act of God.    By that I
mean that DRAM refresh invisibly and inexorably steals up to 8.33% of all
available memory access time from your programs. While you could stop
DRAM refresh, you wouldn't want to, since that would be a sure prescription
for crashing your computer.    In the end, thanks to DRAM refresh, almost all
code runs a bit slower on the PC than it otherwise would, and that's that.

A bit of background:    a static RAM (SRAM) chip is a memory chip
which retains its contents indefinitely so long as power is maintained.    By
contrast, each of several blocks of bits in a dynamic RAM (DRAM) chip retains
its contents for only a short time after it's accessed for a read or write.    In
order to get a DRAM chip to store data for an extended period, each of the

Abrash/Zen:    Chapter 4/

blocks of bits in that chip must be accessed regularly, so that the chip's
stored data is kept refreshed and valid.    So long as this is done often
enough, a DRAM chip will retain its contents indefinitely.

All of the PC's system memory consists of DRAM chips.    (Some
PC-compatible computers are built with SRAM chips, but IBM PCs, XTs, and
ATs use only DRAM chips for system memory.)    Each DRAM chip in the PC
must be completely refreshed once every 4 ms (give or take a little) in order
to ensure the integrity of the data it stores.    Obviously, it's highly desirable
that the memory in the PC retain the correct data indefinitely, so each DRAM
chip in the PC must always be refreshed within 4 ms of the last refresh. Since
there's no guarantee that a given program will access each and every DRAM
once every 4 ms, the PC contains special circuitry and programming for
providing DRAM refresh.
HOW DRAM REFRESH WORKS IN THE PC

Timer 1 of the 8253 timer chip is programmed at power-up to
generate a signal once every 72 cycles, or once every 15.08 us. That signal
goes to channel 0 of the 8237 DMA controller, which requests the bus from
the 8088 upon receiving the signal.    (DMA stands for direct memory access,
the ability of a device other than the 8088 to control the bus and access
memory directly, without any help from the 8088.)    As soon as the 8088 is
between memory accesses, it gives control of the bus to the 8237, which in
conjunction with special circuitry on the PC's motherboard then performs a
single 4-cycle read access to 1 of 256 possible addresses, advancing to the
next address on each successive access.    (The read access is only for the

Abrash/Zen:    Chapter 4/

purpose of refreshing the DRAM; the data read isn't used.)
The 256 addresses accessed by the refresh DMA accesses are

arranged so that taken together they properly refresh all the memory in the
PC.    By accessing one of the 256 addresses every 15.08 us, all of the PC's
DRAM is refreshed in:

3.86 ms = 256 x 15.08 us

just about the desired 4 ms time I mentioned earlier.    (Only the first 640 Kb
of memory is refreshed; video adapters and other adapters above 640 Kb
containing memory that requires refreshing must provide their own DRAM
refresh.) Don't sweat the details here.    The important point is this: for at
least 4 out of every 72 cycles, the PC's bus is given over to DRAM refresh and
is not available to the 8088, as shown in Figure 4-5.    That means that as
much as 5.56% of the PC's already inadequate bus capacity is lost.
However, DRAM refresh doesn't necessarily stop the 8088 for 4 cycles.    The
Execution Unit of the 8088 can keep processing while DRAM refresh is
occurring, unless the EU needs to access memory.    Consequently, DRAM
refresh can slow code performance anywhere from 0% to 5.56% (and
actually a bit more, as we'll see shortly), depending on the extent to which
DRAM refresh occupies cycles during which the 8088 would otherwise be
accessing memory.

THE IMPACT OF DRAM REFRESH

Abrash/Zen:    Chapter 4/

Let's look at examples from opposite ends of the spectrum in
terms of the impact of DRAM refresh on code performance.    First, consider
the series of mul instructions in Listing 4-9.    Since a 16-bit mul executes in
between 118 and 133 cycles and is only 2 bytes long, there should be plenty
of time for the prefetch queue to fill after each instruction, even after DRAM
refresh has taken its slice of memory access time.    Consequently, the
prefetch queue should be able to keep the Execution Unit well-supplied with
instruction bytes at all times.    Since Listing 4-9 uses no memory operands,
the Execution Unit should never have to wait for data from memory, and
DRAM refresh should have no impact on performance.    (Remember that the
Execution Unit can operate normally during DRAM refreshes so long as it
doesn't need to request a memory access from the Bus Interface Unit.)

Running Listing 4-9, we find that each mul executes in 24.72 us,
or exactly 118 cycles.    Since that's the shortest time in which mul can
execute, we can see that no performance is lost to DRAM refresh.    Listing 4-
9 clearly illustrates that DRAM refresh only affects code performance when a
DRAM refresh forces the Execution Unit of the 8088 to wait for a memory
access.

Now let's look at the series of shr instructions shown in Listing 4-
10.    Since shr executes in 2 cycles but is 2 bytes long, the prefetch queue
should be empty while Listing 4-10 executes, with the 8088 prefetching
instruction bytes non-stop. As a result, the time per instruction of Listing 4-
10 should precisely reflect the time required to fetch the instruction bytes.

Since 4 cycles are required to read each instruction byte, we'd

Abrash/Zen:    Chapter 4/

expect each shr to execute in 8 cycles, or 1.676 us, if there were no DRAM
refresh.    In fact, each shr in Listing 4-10 executes in 1.81 us, indicating that
DRAM refresh is taking 7.4% of the program's execution time.    That's nearly
2% more than our worst-case estimate of the loss to DRAM refresh overhead!
In fact, the result indicates that DRAM refresh is stealing not 4 but 5.33
cycles out of every 72 cycles.    How can this be?

The answer is that a given DRAM refresh can actually hold up CPU
memory accesses for as many as 6 cycles, depending on the timing of the
DRAM refresh's DMA request relative to the 8088's internal instruction
execution state.    When the code in Listing 4-10 runs, each DRAM refresh
holds up the CPU for either 5 or 6 cycles, depending on where the 8088 is in
executing the current shr instruction when the refresh request occurs.    Now
we see that things can get even worse than we thought:    DRAM refresh can
steal as much as 8.33% of available memory access time--6 out of every 72
cycles--from the 8088.

Which of the two cases we've examined reflects reality? While
either can happen, the latter case--significant performance reduction,
ranging as high as 8.33%--is far more likely to occur. This is especially true
for high-performance assembler code, which uses fast instructions that tend
to cause non-stop instruction fetching.

WHAT TO DO ABOUT THE DRAM REFRESH CYCLE-EATER?

Hmmm.    When we discovered the prefetch queue cycle-eater, we
learned to use short instructions.    When we discovered the 8-bit bus cycle-

Abrash/Zen:    Chapter 4/

eater, we learned to use byte-sized memory operands whenever possible,
and to keep word-sized variables in registers. What can we do to work
around the DRAM refresh cycle-eater?

Nothing.
As I've said before, DRAM refresh is an act of God.    DRAM refresh

is a fundamental, unchanging part of the PC's operation, and there's nothing
you or I can do about it.    If refresh were any less frequent, the reliability of
the PC would be compromised, so tinkering with either timer 1 or DMA
channel 0 to reduce DRAM refresh overhead is out.    Nor is there any way to
structure code to minimize the impact of DRAM refresh.    Sure, some
instructions are affected less by DRAM refresh than others, but how many
multiplies and divides in a row can you really use? I suppose that code could
conceivably be structured to leave a free memory access every 72 cycles, so
DRAM refresh wouldn't have any effect.    In the old days when code size was
measured in bytes, not K bytes, and processors were less powerful--and
complex--programmers did in fact use similar tricks to eke every last bit of
performance from their code.    When programming the PC, however, the
prefetch queue cycle-eater would make such careful code synchronization a
difficult task indeed, and any modest performance improvement that did
result could never justify the increase in programming complexity and the
limits on creative programming that such an approach would entail.    There's
no way around it:    useful code accesses memory frequently and at irregular
intervals, and over the long haul DRAM refresh always exacts its price.

If you're still harboring thoughts of reducing the overhead of

Abrash/Zen:    Chapter 4/

DRAM refresh, consider this.    Instructions that tend not to suffer very much
from DRAM refresh are those that have a high ratio of execution time to
instruction fetch time, and those aren't the fastest instructions of the PC.    It
certainly wouldn't make sense to use slower instructions just to reduce DRAM
refresh overhead, for it's total execution time--DRAM refresh, instruction
fetching, and all--that matters. The important thing to understand about
DRAM refresh is that it generally slows your code down, and that the extent
of that performance reduction can vary considerably and unpredictably,
depending on how the DRAM refreshes interact with your code's pattern of
memory accesses.    When you use the Zen timer and get a fractional cycle
count for the execution time of an instruction, that's often DRAM refresh at
work.    (The display adapter cycle- eater is another possible culprit.)
Whenever you get two timing results that differ less or more than they
seemingly should, that's usually DRAM refresh too.    Thanks to DRAM refresh,
variations of up to 8.33% in PC code performance are par for the course.

WAIT STATES

Wait states are cycles during which a bus access by the 8088 to a
device on the PC's bus is temporarily halted by that device while the device
gets ready to complete the read or write.    Wait states are well and truly the
lowest level of code performance. Everything we have discussed (and will
discuss)--even DMA accesses--can be affected by wait states.

Wait states exist because the 8088 must to be able to coexist
with any adapter, no matter how slow (within reason). The 8088 expects to

Abrash/Zen:    Chapter 4/

be able to complete each bus access--a memory or I/O read or write--in 4
cycles, but adapters can't always respond that quickly, for a number of
reasons.    For example, display adapters must split access to display memory
between the 8088 and the circuitry that generates the video signal based on
the contents of display memory, so they often can't immediately fulfill a
request by the 8088 for a display memory read or write. To resolve this
conflict, display adapters can tell the 8088 to wait during bus accesses by
inserting one or more wait states, as shown in Figure 4-6.    The 8088 simply
sits and idles as long as wait states are inserted, then completes the access
as soon as the display adapter indicates its readiness by no longer inserting
wait states.    The same would be true of any adapter that couldn't keep up
with the 8088.

Mind you, this is all transparent to the code running on the 8088.
An instruction that encounters wait states runs exactly as if there were no
wait states, but slower.    Wait states are nothing more or less than wasted
time as far as the 8088 and your program are concerned.

By understanding the circumstances in which wait states can
occur, you can avoid them when possible.    Even when it's not possible to
work around wait states, it's still to your advantage to understand how they
can cause your code to run more slowly.

First, let's learn a bit more about wait states by contrast with
DRAM refresh.    Unlike DRAM refresh, wait states do not occur on any
regularly scheduled basis, and are of no particular duration.    Wait states can
only occur when an instruction performs a memory or I/O read or write.

Abrash/Zen:    Chapter 4/

Both the presence of wait states and the number of wait states inserted on
any given bus access are entirely controlled by the device being accessed.
When it comes to wait states, the 8088 is passive, merely accepting
whatever wait states the accessed device chooses to insert during the
course of the access.    All of this makes perfect sense given that the whole
point of the wait state mechanism is to allow a device to stretch out any
access to itself for however much time it needs to perform the access.

Like DRAM refresh, wait states don't stop the 8088 completely.
The Execution Unit can continue processing while wait states are inserted, so
long as the EU doesn't need to perform a bus access.    However, in the PC
wait states most often occur when an instruction accesses a memory
operand, so in fact the Execution Unit usually is stopped by wait states.
(Instruction fetches rarely wait in a PC because system memory is zero-wait-
state.    AT memory routinely inserts 1 wait state, however, as we'll see in
Chapter 15.)

As it turns out, wait states pose a serious problem in just one area
in the PC.    While any adapter can insert wait states, in the PC only display
adapters do so to the extent that performance is seriously affected.

THE DISPLAY ADAPTER CYCLE-EATER

Display adapters must serve two masters, and that creates a
fundamental performance problem.    Master #1 is the circuitry that drives
the display screen.    This circuitry must constantly read display memory in
order to obtain the information used to draw the characters or dots displayed

Abrash/Zen:    Chapter 4/

on the screen.    Since the screen must be redrawn between 50 and 70 times
per second, and since each redraw of the screen can require as many as
36,000 reads of display memory (more in Super-VGA modes), master #1 is a
demanding master indeed.    No matter how demanding master #1 gets,
though, its needs must always be met--otherwise the quality of the picture
on the screen would suffer.

Master #2 is the 8088, which reads from and writes to display
memory in order to manipulate the bytes that the video circuitry reads to
form the picture on the screen.    Master #2 is less important than master #1,
since the 8088 affects display quality only indirectly.    In other words, if the
video circuitry has to wait for display memory accesses, the picture will
develop holes, snow, and the like, but if the 8088 has to wait for display
memory accesses, the program will just run a bit slower-- no big deal.

It matters a great deal which master is more important, for while
both the 8088 and the video circuitry must gain access to display memory,
only one of the two masters can read or write display memory at any one
time.    Potential conflicts are resolved by flat-out guaranteeing the video
circuitry however many accesses to display memory it needs, with the 8088
waiting for whatever display memory accesses are left over.

It turns out that the 8088 has to do a lot of waiting, for three
reasons.    First, the video circuitry can take as much as about 90% of the
available display memory access time, as shown in Figure 4-7, leaving as
little as about 10% of all display memory accesses for the 8088.    (These
percentages vary considerably among the many EGA and VGA clones.)

Abrash/Zen:    Chapter 4/

Second, because dots (or pixels, short for "picture elements")
must be drawn on the screen at a constant speed, display adapters can
provide memory accesses only at fixed intervals.    As a result, time can be
lost while the 8088 synchronizes with the start of the next display adapter
memory access, even if the video circuitry isn't accessing display memory at
that time, as shown in Figure 4-8.

Finally, the time it takes a display adapter to complete a memory
access is related to the speed of the clock which generates pixels on the
screen rather than to the memory access speed of the 8088.    Consequently,
the time taken for display memory to complete an 8088 read or write access
is often longer than the time taken for system memory to complete an
access, even if the 8088 lucks into hitting a free display memory access just
as it becomes available, again as shown in Figure 4-8.    Any or all of the three
factors I've described can result in wait states, slowing the 8088 and creating
the display adapter cycle- eater.

If some of this is Greek to you, don't worry.    The important point
is that display memory is not very fast compared to normal system memory.
How slow is it?    Incredibly slow.    Remember how slow the PCjr was?    In case
you've forgotten, I'll refresh your memory:    the PCjr was at best only half as
fast as the PC.    The PCjr had an 8088 running at 4.77 MHz, just like the PC--
why do you suppose it was so much slower?    I'll tell you why:    all the
memory in the PCjr was display memory.

Enough said.
All the memory in the PC is not display memory, however, and

Abrash/Zen:    Chapter 4/

unless you're thickheaded enough to put code in display memory, the PC
isn't going to run as slowly as a PCjr.    (Putting code or other non-video data
in unused areas of display memory sounds like a neat idea--until you
consider the effect on instruction prefetching of cutting the 8088's already-
poor memory access performance in half.    Running your code from display
memory is sort of like running on the hypothetical 8084--an 8086 with a 4 -
bit bus.    Not recommended!)    Given that your code and data reside in
normal system memory below the 640 K mark, how great an impact does the
display adapter cycle-eater have on performance?

The answer varies considerably depending on what display
adapter and what display mode we're talking about.    The display adapter
cycle-eater is worst with the Enhanced Graphics Adapter (EGA) and the Video
Graphics Array (VGA).    While the Color/Graphics Adapter (CGA),
Monochrome Display Adapter (MDA), and Hercules Graphics Card (HGC) all
suffer from the display adapter cycle-eater as well, they suffer to a lesser
degree. Since the EGA and particularly the VGA represent the standard for PC
graphics now and for the foreseeable future, and since those are the hardest
graphics adapter to wring performance from, we'll restrict our discussion to
the EGA and VGA for the remainder of this chapter.
THE IMPACT OF THE DISPLAY ADAPTER CYCLE-EATER

Even on the EGA and VGA, the effect of the display adapter cycle-
eater depends on the display mode selected.    In text mode, the display
adapter cycle-eater is rarely a major factor.    It's not that the cycle-eater isn't
present; however, a mere 4000 bytes control the entire text mode display,

Abrash/Zen:    Chapter 4/

and even with the display adapter cycle-eater it just doesn't take that long to
manipulate 4000 bytes.    Even if the display adapter cycle-eater were to
cause the 8088 to take as much as 5 us per display memory access--more
than ten times normal--it would still take only:

40 ms = 4000 x 2 x 5 us

to read and write every byte of display memory.    That's a lot of time as
measured in 8088 cycles, but it's less than the blink of an eye in human
time, and video performance only matters in human time.    After all, the
whole point of drawing graphics is to convey visual information, and if that
information can be presented faster than the eye can see, that is by
definition fast enough.

That's not to say that the display adapter cycle-eater can't matter
in text mode.    In Chapter 2 I recounted the story of a debate among letter-
writers to a magazine about exactly how quickly characters could be written
to display memory without causing snow.    The writers carefully added up
Intel's instruction cycle times to see how many writes to display memory
they could squeeze into a single horizontal retrace interval.    (On a CGA, it's
only during the short horizontal retrace interval and the longer vertical
retrace interval that display memory can be accessed in 80-column text
mode without causing snow.)    Of course, now we know that their cardinal sin
was to ignore the prefetch queue; even if there were no wait states, their
calculations would have been overly optimistic.    There are display memory

Abrash/Zen:    Chapter 4/

wait states as well, however, so the calculations were not just optimistic but
wildly optimistic.

Text mode situations such as the above notwithstanding, where
the display adapter cycle-eater really kicks in is in graphics mode, and most
especially in the high-resolution graphics modes of the EGA and VGA.    The
problem here is not that there are necessarily more wait states per access in
high- resolution graphics modes (that varies from adapter to adapter and
mode to mode).    Rather, the problem is simply that are many more bytes of
display memory per screen in these modes than in lower-resolution graphics
modes and in text modes, so many more display memory accesses--each
incurring its share of display memory wait states--are required in order to
draw an image of a given size.    When accessing the many thousands of
bytes used in the high-resolution graphics modes, the cumulative effects of
display memory wait states can seriously impact code performance, even as
measured in human time.

For example, if we assume the same 5 us per display memory
access for the EGA's high-res graphics mode that we assumed for text mode,
it would take:

260 ms = 26,000 x 2 x 5 us

to scroll the screen once in the EGA's hi-res graphics mode, mode 10h.
That's more than one-quarter of a second--noticeable by human standards,
an eternity by computer standards.

Abrash/Zen:    Chapter 4/

That sounds pretty serious, but we did make an unfounded
assumption about memory access speed.    Let's get some hard numbers.
Listing 4-11 accesses display memory at the 8088's maximum speed, by way
of a rep movsw with display memory as both source and destination.    The
code in Listing 4-11 executes in 3.18 us per access to display memory--not
as long as we had assumed, but a long time nonetheless.

For comparison, let's see how long the same code takes when
accessing normal system RAM instead of display memory.    The code in
Listing 4-12, which performs a rep movsw from the code segment to the
code segment, executes in 1.39 us per display memory access.    That means
that on average 1.79 us (more than 8 cycles!) are lost to the display adapter
cycle-eater on each access.    In other words, the display adapter cycle-eater
can more than double the execution time of 8088 code!

Bear in mind that we're talking about a worst case here; the
impact of the display adapter cycle-eater is proportional to the percent of
time a given code sequence spends accessing display memory.    A line-
drawing subroutine, which executes perhaps a dozen instructions for each
display memory access, generally loses less performance to the display
adapter cycle-eater than does a block-copy or scrolling subroutine that uses
rep movs instructions.    Scaled and three-dimensional graphics, which
spend a great deal of time performing calculations (often using very slow
floating-point arithmetic), tend to suffer still less.

In addition, code that accesses display memory infrequently
tends to suffer only about half of the maximum display memory wait states,

Abrash/Zen:    Chapter 4/

because on average such code will access display memory halfway between
one available display memory access slot and the next.    As a result, code
that accesses display memory less intensively than the code in Listing 4-11
will on average lose 4 or 5 rather than 8-plus cycles to the display adapter
cycle-eater on each memory access.

Nonetheless, the display adapter cycle-eater always takes its toll
on graphics code.    Interestingly, that toll becomes relatively much higher on
ATs and 80386 machines, because while those computers can execute many
more instructions per microsecond than can the PC, it takes just as long to
access display memory on those computers as on the PC.    Remember, the
limited speed of access to a graphics adapter is an inherent characteristic of
the adapter, so the fastest computer around can't access display memory
one iota faster than the adapter will allow.    We'll discuss this further in
Chapter 15.
WHAT TO DO ABOUT THE DISPLAY ADAPTER CYCLE-EATER?

What can we do about the display adapter cycle-eater?    Well, we
can minimize display memory accesses whenever possible.    In particular, we
can try to avoid read/modify/write display memory operations of the sort
used to mask individual pixels and clip images.    Why?    Because
read/modify/write operations require two display memory accesses (one read
and one write) each time display memory is manipulated.    Instead, we
should try to use writes of the sort that set all the pixels in a given byte of
display memory at once, since such writes don't require accompanying read
accesses.    The key here is that only half as many display memory accesses

Abrash/Zen:    Chapter 4/

are required to write a byte to display memory as are required to read a byte
from display memory, mask part of it off and alter the rest, and write the
byte back to display memory.    Half as many display memory accesses
means half as many display memory wait states.

Along the same line, the display adapter cycle-eater makes the
popular exclusive-or animation technique, which requires paired reads and
writes of display memory, less-than-ideal for the PC.    Exclusive-or animation
should be avoided in favor of simply writing images to display memory
whenever possible, as we'll see in Chapter 11.

Another principle for display adapter programming is to perform
multiple accesses to display memory very rapidly, in order to make use of as
many of the scarce accesses to display memory as possible.    This is
especially important when many large images need to be drawn quickly,
since only by using virtually every available display memory access can
many bytes be written to display memory in a short period of time.
Repeated string instructions are ideal for making maximum use of display
memory accesses; of course, repeated string instructions can only be used
on whole bytes, so this is another point in favor of modifying display memory
a byte at a time.

These concepts certainly need examples and clarification, along
with some working code; that's coming up in Volume II of The Zen of
Assembly Language.    Why not now?    Well, in Volume II we'll be able to
devote a whole chapter to display adapter programming, and by that point
we'll have the benefit of an understanding of the flexible mind, which is

Abrash/Zen:    Chapter 4/

certainly a plus for this complex topic.
For now, all you really need to know about the display adapter

cycle-eater is that you can lose more than 8 cycles of execution time on each
access to display memory.    For intensive access to display memory, the loss
really can be as high as 8- plus cycles, while for average graphics code the
loss is closer to 4 cycles; in either case, the impact on performance is
significant.    There is only one way to discover just how significant the impact
of the display adapter cycle-eater is for any particular graphics code, and
that is of course to measure the performance of that code.

If you're interested in the detailed operation of the display
adapter cycle-eater, I suggest you read my article, "The Display Adapter
Bottleneck," in the January, 1987 issue of PC Tech Journal.

CYCLE-EATERS:    A SUMMARY

We've covered a great deal of sophisticated material in this
chapter, so don't feel bad if you haven't understood everything you've read;
it will all become clear as you read on.    What's really important is that you
come away from this chapter understanding that:

      _ The 8-bit bus cycle-eater causes each access to a word-sized operand
to be 4 cycles longer than an equivalent access to a byte-sized
operand.

      _ The prefetch queue cycle-eater can cause instruction execution times
to be as much as four times longer than the times specified in

Abrash/Zen:    Chapter 4/

Appendix A.
      _ The DRAM refresh cycle-eater slows most PC code, with performance

reductions ranging as high as 8.33%.
      _ The display adapter cycle-eater typically doubles and can more than

triple the length of the standard 4-cycle access to display memory,
with intensive display memory access suffering most.

This basic knowledge about cycle-eaters puts you in a good
position to understand the results reported by the Zen timer, and that means
that you're well on your way to writing highperformance assembler code.
We will put this knowledge to work throughout the remainder of The Zen of
Assembly Language.

WHAT DOES IT ALL MEAN?

There you have it:    life under the programming interface. It's not
a particularly pretty picture, for the inhabitants of that strange realm where
hardware and software meet are little- known cycle-eaters that sap the
speed from your unsuspecting code.    Still, some of those cycle-eaters can be
minimized by keeping instructions short, using the registers, using byte-sized
memory operands, and accessing display memory as little as possible.
None of the cycle-eaters can be eliminated, and dynamic RAM refresh can
scarcely be addressed at all; still, aren't you better off knowing how fast your
code really runs--and why--than you were reading the official execution times
and guessing?

Abrash/Zen:    Chapter 4/

So far we've only examined cycle-eaters singly. Unfortunately,
cycle-eaters don't work alone, and together they're still more complex and
unpredictable than they are taken one at a time.    The intricate relationship
between the cycle- eaters is our next topic.

