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Chapter 3:    Context

One  of  my  favorite  stories--and  I  am  not  making  this  up--
concerns  a  C  programmer who wrote  a  function  to  clear  the  screen.  His
function consisted of just two statements:    a call to another function that
printed a space character, and a for statement that repeated that function
call  2000 times.      While this fellow's function cleared the screen perfectly
well,  it  didn't  do  it  particularly  quickly  or  attractively;  in  fact,  the  whole
process was perfectly visible to the naked eye, with the cursor racing from
the top to the bottom of the screen.      Nonetheless, the programmer was
incensed when someone commented that the function seemed rather slow.
How could it possibly be any faster, he wondered, when it was already the
irreducible minimum of two statements long?

Of  course,  the  function  wasn't  two  statements  long  in  any
meaningful sense; its true length would have to be measured in terms of all
the machine-language instructions generated by those two C statements, as
well as all the instructions executed by the function that printed the space
character.    By comparison with a single rep stosw instruction, which is the
preferred way to clear  the screen,  this  fellow's  screen clear function was
undoubtedly very long indeed.

The  programmer's  mistake  was  one  of  context.      While  his
solution  seemed optimal  by  the  standards  of  the  C  environment  he  was
programming in, it was considerably less ideal when applied to the PC, the
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environment in which the code actually had to run. While human-oriented
abstractions such as high-level languages and system software have their
virtues--most notably the ability to mask the complexities of processors and
hardware--speed is not necessarily among those virtues.

We certainly don't want to make the same mistake, so we'll begin
our  search  for  knowledge  by  establishing  a  context  for  assembler
programming, a usable framework within which to work for the remainder of
this book.    This is more challenging than it might at first glance seem, for
the  PC  looks  quite  different  to  an  assembler  programmer--especially  an
assembler programmer interested in performance--than it  does to a high-
level  language  programmer.      The  difference  is  that  a  good  assembler
programmer sees the PC as it really is--hardware, software, warts and all--a
perspective all too few programmers ever have the opportunity to enjoy.

FROM THE BOTTOM UP

In this volume, we're going to explore the knowledge needed for
top-notch  assembler  programming.      We'll  start  at  the  bottom,  with  the
hardware of the PC, and we'll work our way up through the 8088's registers,
memory addressing capabilities, and instruction set.    In Volume II of The Zen
of Assembly Language, we'll move on to putting that knowledge to work in
the context of higher-level optimization, algorithm implementation, program
design, and the like.    We're not going to spend time on topics, such as BIOS
and DOS calls, that are well documented elsewhere, for we've a great deal of
new ground to cover.
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The next three chapters,  which discuss  the ways in  which the
hardware of the PC affects performance, are the foundation for everything
that follows...and they also cover the most difficult material in  The Zen of
Assembly Language.     Don't worry if you don't understand everything you
read in  the upcoming chapters;  the same topics  will  come up again  and
again,  from  a  variety  of  perspectives,  throughout  The  Zen  of  Assembly
Language.      Read through Chapters  3  through 5 once now,  absorbing as
much as  you  can.      After  you've  finished  Volume I,  come back  to  these
chapters and read them again.

You'll  be  amazed  at  how much sense  they  make--and  at  how
much you've learned.

Let's begin our explorations.

THE TRADITIONAL MODEL

Figure 3-1 shows the traditional assembler programming model of
the  PC.      In  this  model,  the  assembler  program  is  separated  from  the
hardware by layers of system software, such as DOS, the BIOS, and device
drivers.      Although this model recognizes that it  is  possible for assembler
programs to make end runs around the layers to access any level of system
software  or  the  hardware  directly,  programs  are  supposed  to  request
services from the highest level that can fulfill  a given request (preferably
DOS),  thereby  gaining  hardware  independence,  which  brings  with  it
portability to other systems with different hardware but the same system
software.
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This model has many admirable qualities, and should be followed
whenever  possible.      For  example,  because  the  DOS  file  system  masks
incompatibilities between the dozens of disk and disk controller models on
the market, there's generally nothing to be gained and much to be lost by
programming a disk controller directly.    Similarly, the BIOS sometimes hides
differences between makes of keyboards, so keystrokes should not be taken
directly  from  the  hardware  unless  that's  absolutely  necessary.  Every
assembler programmer should be thoroughly aware of the services provided
by DOS and the BIOS, and should use them whenever they're good enough
for a given purpose.

A  moment's  thought  will  show,  however,  that  it's  not  always
desirable to follow the model of Figure 3-1.    Disk-backup software programs
the  disk  controller  directly  and  sells  handsomely,  while  keyboard  macro
programs and many pop-up programs read the keyboard directly.      Part of
your job as a programmer is knowing when to break the rules embodied by
Figure 3-1, and breaking the rules is tempting because this model has major
failings when it comes to performance.

One shortcoming of the model of Figure 3-1 is that DOS and the
BIOS provide inadequate services in some areas, and no services at all in
others.    For instance, the half-hearted support DOS and the BIOS provide for
serial  communications  is  an  insult  to  the  potential  of  the  PC's
communications hardware. Likewise, the graphics primitives offered by the
BIOS are so slow and limited as to be virtually useless.    While device drivers
can  extend  DOS's  capabilities  in  some  areas,  many  of  the  drivers  are
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themselves embarrassingly slow and limited.    As an example, the ANSI.SYS
driver, which provides extended screen control in text mode, is so sluggish
that a single screen update can take a second and more--quite a contrast
with the instant screen updates most text editors and word processors offer.

When you use a system service, you're accepting someone else's
solution to a problem; while it may be a good solution, you don't know that
unless you check.    After all, you may well be a better programmer than the
author of the system software, and you're bound to be better attuned to your
particular  needs  than  he  was.      In  short,  you  should  know  the  system
services well and use them fully, but you should also learn when it pays to
replace them with your own code.

CYCLE-EATERS

The second shortcoming of the model shown in Figure 3-1 is that
it makes the hardware seem to be just another system resource, and a rather
remote and uninteresting resource, at that.    Nothing could be further from
the truth!    After all, in order to be useful programs must ultimately perform
input from and output to the real world, and all input and output requires
interaction with the hardware.    True, DOS and the BIOS may handle much of
your I/O, but DOS and the BIOS themselves are nothing more than assembly-
language programs.

Also, programs access memory almost continuously, and memory
is of course part of the PC's hardware.    It's hard to write a code sequence of
more than a few dozen instructions in which memory isn't accessed at least
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once as either a stack operand or as a direct instruction operand.    I/O ports
are also accessed heavily in some applications.    Every single memory and
I/O access of any kind must interact with the hardware via the PC's data bus.

It's  easy  to  think  of  the  PC's  hardware  and  bus  as  being
transparent to programs; hardware appears to be available on demand, while
the bus seems to be nothing more than a path for data to take on the way to
and from the hardware.      Not  so.      While the PC bus is  in  fact generally
transparent to programs, the many demands on the bus and the relatively
low rate at which the bus,  the 8088, and the PC's  memory together can
support data transfers can have a significant effect on performance, as we'll
see shortly.    Moreover, there are a number of memory and I/O devices for
the PC that can't access data fast enough to keep up with the PC bus; to
compensate, they make the 8088 wait, sometimes for several cycles, while
they  catch  up.      Inevitably,  program  performance  suffers  from  these
characteristics of the hardware and bus.

For the remainder of this book, I'm going to refer to PC bus- and
hardware-resident gremlins that affect code performance as "cycle-eaters."
There  are  cycle-eaters  of  many  sorts,  of  which  the  prefetch  queue  and
display adapter cycle-eaters are perhaps the best-known; 8-bit cards in ATs
and dynamic RAM refresh are other examples.    Cycle-eaters are undeniably
difficult to pin down.    Once you've identified and understood them, though,
you'll be among the elite few who can deal with the most powerful--and least
understood--aspect of assembler programming.

Just how important are cycle-eaters?    Well, thanks to the display
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adapter cycle-eater, the code in Listing 3-1, which accesses memory on an
Enhanced Graphics  Adapter  (EGA),  runs  in  26.06 ms.      That's  more  than
twice as long as the 11.24 ms of Listing 3-2, which is identical to Listing 3-1
except that it accesses normal system memory rather than display memory.
That's a difference in performance as great as that between an 8-MHz AT and
a 16-MHz 80386 machine!    Clearly, cycle-eaters cannot be ignored, and in
the chapters to come we'll spend considerable time tracking them down and
devising ways to work around them.

Given  cycle-eaters  and  our  understanding  of  layered  system
software as simply another sort of code, the programming model shown in
Figure  3-2  is  more  appropriate  than  that  of  Figure  3-1.  All  system  and
application  software,  whether  generated  from  high- level  or  assembler
source code, ultimately becomes a series of machine-language instructions
for  the  8088.      The  8088  executes  each  of  those  instructions  in  turn,
accessing memory and devices as needed by way of the PC bus.    In this
three-level  structure,  the  8088  provides  software  with  a  programming
interface, and in turn rests on the PC's hardware.    Thanks to cycle-eaters,
the PC's hardware and bus emerge as important factors in performance.

The primary virtue of Figure 3-2 is that it moves us away from the
comfortable, human-oriented perspective of Figure 3-1 and forces us to view
program execution  at  a  level  closer  to  the  true  nature  of  the  beast,  as
consisting  of  nothing  more  than  the  performance  of  a  sequence  of
instructions  that  command  the  8088  to  perform actions;  in  some  cases,
those actions involve accessing memory and/or  devices over the PC bus.
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From the software side, we can now see that all code consists of machine-
language  instructions  in  the  end,  so  the  distinction  between  high-level
languages,  system software,  and assembler  vanishes.  From the hardware
side, we can see that the 8088 is not the lowest level, and we can begin to
appreciate  the  many  ways  in  which  hardware  can  directly  affect  code
performance.

We need to see still more of the beast, however, and the place
we'll start is with the equivalence of code and data.

CODE IS DATA

Code  is  nothing  more  than  data  that  the  8088  interprets  as
instructions.    The most obvious case of this is self-modifying code, where the
8088 treats its code as data in order to modify it, then executes those same
bytes as instructions.      There are many other examples, though--after all,
what  is  a compiler  but  a program that  transforms source code data into
machine-language data?    Both code and data consist of byte values stored
in system memory; the only thing that differentiates code from any other
sort of data is that the bytes that code is made of have a special meaning to
the 8088,  in  that  when fetched as  instructions  they instruct  the 8088 to
perform  a  series  of  (presumably  related)  actions.      In  other  words,  the
meaning  of  byte  values  as  code  rather  than  data  is  strictly  a  matter  of
context.

Why is this important?    It's important because the 8088 is really
two processors in one, and therein lies a tale.
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INSIDE THE 8088

Internally, the 8088 consists of two complementary processors:
the Bus Interface Unit (BIU) and the Execution Unit (EU), as shown in Figure
3-3.    The EU is what we normally think of as being a processor; it contains
the flags, the general- purpose registers, and the Arithmetic Logic Unit (ALU),
and executes instructions.    In fact, the EU performs just about every function
you could want from a processor--except one.    The one thing the EU does
not do is access memory or perform I/O.    That's the BIU's job, so whenever
the EU needs a memory or I/O access performed, it sends a request to the
BIU, which carries out the access, transferring the data according to the EU's
specifications.    The two units are capable of operating in parallel whenever
they've got  independent tasks  to perform; put  another way,  the BIU can
access  memory  or  I/O  at  the  same  time  that  the  EU  is  processing  an
instruction, so long as neither task is dependent on the other.

Each BIU memory access transfers 1 byte, since the 8088 has an
8-bit external data bus.      The 8088 is designed so that each byte access
takes a minimum of 4 cycles; given the PC's 4.77-MHz processor clock, which
results in a 209.5 ns cycle time, the 8088 supports a maximum data transfer
rate of 1 byte/838 ns, or about 1.2 bytes/us.    That's an important number,
and we'll come back to it shortly.

The EU is capable of  working with both 8- and 16-bit  memory
operands.      Because the 8088 can only access memory a byte at a time,
however, the BIU splits each of the EU's 16-bit memory requests into a pair
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of 8-bit accesses.    Since each 8-bit access requires a minimum of 4 cycles to
execute, each 16-bit memory request takes at least 8 cycles, or 1.676 us.
The instruction timings shown in Appendix A reflect the additional overhead
of word memory accesses by indicating that 4 additional cycles per memory
access should be added to the stated instruction execution times when word
rather than byte memory operands are used.

The  BIU  contains  all  the  memory-related  logic  of  the  8088,
including the segment registers and the Instruction Pointer, which points to
the next instruction to be executed.    Since code is just another sort of data,
it makes sense that the Instruction Pointer resides in the BIU; after all, code
bytes are read from memory just as data bytes are.    In fact, the BIU takes on
a bit of autonomy when it comes to fetching instructions.    Whenever the EU
isn't making any memory or I/O requests, the BIU uses the otherwise idle
time to fetch the bytes at the addresses immediately following the current
instruction,  on  the  reasonable  theory  that  those  addresses  are  likely  to
contain the next instructions that the EU will want.    The BIU of the 8088 can
store up to 4 potential instruction bytes in an internal prefetch queue, and
other 8086-family processors can store more bytes still.

Instruction prefetching isn't always advantageous.    In particular,
if the instruction the 8088 is currently executing results in a branch of any
sort, the bytes in the instruction queue are of no value, since they are the
bytes the 8088 would have executed had the branch  not been performed.
As a result, all the 8088 can do when a branch occurs is discard all the bytes
in the prefetch queue and start fetching instructions all over again.
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Nonetheless, the prefetching scheme often allows the BIU to have
the next instruction byte waiting when the EU comes calling for it.    Bear in
mind that the EU and BIU can operate at the same time; it's only when the
EU is waiting for the BIU to finish a memory or I/O operation for it that the EU
is held up.    The virtue of the 8088's internal architecture, then, is that the
EU  can  increase  its  effective  processing  time  because  the  BIU  often
coprocesses with it.    Since instruction fetches occur in a constant stream--
usually much more frequently than memory operand accesses--instruction
prefetching is the most important sort of coprocessing the BIU performs.

It's worth noting at this point that the execution time specified by
Intel for any given instruction running on the 8088 (as shown in Appendix A)
assumes that  the  BIU  has  already  prefetched that  instruction  and has  it
ready and waiting for the EU.    If the next instruction is not waiting for the EU
when the EU completes the current instruction, at least some of the time
required  to  fetch  the  next  instruction  must  be  added  to  its  specified
execution time in order to arrive at the actual execution time.

The  degree  to  which  the  EU  and  BIU  can  coprocess  during
instruction fetching is  not  uniform for  all  types of  code;  in  fact,  it  varies
considerably  depending  on  the  mix  of  instructions  being  executed.
Multiplication and division instructions are ideal for coprocessing, since the
BIU can prefetch until  the queue is full  while these very long instructions
execute.    Among other instructions, oddly enough, it is code that performs
many  memory  accesses  that  allows  the  EU  and  BIU  to  coprocess  most
effectively, because the 8088 is relatively slow at executing instructions that
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access memory (as we'll see in Chapter 7). While a single memory-accessing
instruction is being executed, the BIU can often prefetch 1 to 4 instruction
bytes (depending on the instruction being performed) and still leave time for
the memory access to occur.    Execution of a memory-accessing instruction
and  prefetching  of  the  next  instruction  can  generally  proceed
simultaneously, so such instructions often run at close to full speed.

Ironically,  code that  primarily  performs register-only  operations
and  rarely  accesses  memory  affords  little  opportunity  for  prefetching,
because register-only instructions execute so rapidly that the BIU can't fetch
instruction bytes nearly as rapidly as the EU can execute them.    To see why
this is so, recall that the 8088 can fetch 1 byte every 4 cycles, or 0.838 us.
The  shr instruction is 2 bytes long, so it takes 1.676 us to fetch each  shr

instruction.    However, the EU can execute a shr in just 2 cycles, or 0.419 us,
four times as rapidly as the BIU can fetch the same instruction.

The instruction queue can be depleted quickly by register- only
instructions.      Given  enough such  instructions  in  a  row,  the  overall  time
required  to  complete  a  series  of  register-only  instructions  is  determined
almost entirely by the time required to fetch the instructions from memory.
This  is  precisely  the  respect  in  which  Figure  3-2  fails  us;  because of  the
prefetch queue, the instructions the 8088 executes must be viewed as data,
stored along with other program data and accessed through the same PC bus
and BIU, as shown in Figure 3-4.    Seen in this light, it becomes apparent that
instruction  fetches  are  subject  to  the  same  cycle-eaters  as  are  memory
operand  accesses.      What's  more,  the  BIU  emerges  as  potentially  the
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greatest cycle-eater of all, as code and data bytes struggle to get through
the BIU fast enough to keep the EU busy, a phenomenon I'll refer to as the
prefetch queue cycle-eater from now on.    As we will see, designing code to
work  around  the  prefetch  queue  cycle-eater  and  keep  the  EU  busy  is  a
difficult but rewarding task.

STEPCHILD OF THE 8086

You might justifiably wonder why Intel would design a processor
with an EU that can execute instructions faster than the BIU can possibly
fetch them.    The answer is that they didn't; they designed the 8086, then
created the 8088 as a poor man's 8086.

The 8086 is completely software compatible with the 8088, and in
fact differs from the 8088 in only one important respect, the width of the
external data bus (the bus that goes off-chip to memory and peripherals);
where the 8088 has an 8-bit wide external data bus, the 8086 has a 16-bit
wide bus.    (The 8086 also has a 6- rather than 4-byte prefetch queue, which
gives it a bit of an advantage in keeping the EU busy.)    Both the 8086 and
8088 have 16-bit EUs and 16-bit internal data buses, but while the 8086's
BIU can fulfill most 16-bit memory requests with a single memory access, the
8088's  BIU  must  convert  16-bit  memory  requests  into  8-bit  memory
accesses.    Figure 3-5, which charts internal and external data bus sizes for
processors  from  the  8080  through  the  80386,  shows  that  the  8088  is
something of an aberration in that it is the only widely-used processor in the
8086  family  with  mismatched  internal  and  external  data  bus  sizes.  (The
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80386SX, which may well become a successful low-cost substitute for the
80386, also has mismatched internal and external bus sizes, and as a result
suffers from many of the same performance constraints as does the 8088.)

There is a significant price to be paid for the 8088's mismatched
bus sizes.      Why?      Well,  the 8086 was designed to support efficient and
balanced memory access, with the external data bus in general in use as
much as possible without that bus becoming a bottleneck.    In other words,
the 16-bit external data bus of the 8086 was designed to provide a memory
access rate roughly equal to the processing rate of which the 16-bit EU is
capable.    While the 8088 offers the same internal 16-bit architecture as the
8086, the 8-bit external data bus of the 8088 can provide at best only half
the memory access rate of the 8086, so the balance of the 8086 is lost.

The obvious effect of  the 8088's mismatched bus sizes is  that
accesses to word-sized memory operands take 4 cycles longer on an 8088
than on an 8086, but that's actually not the most significant fallout of the 8-
bit external data bus.     More significant is the prefetch queue cycle-eater,
which is the result of the inability of the 8088's BIU to fetch instructions and
operands over  the 8-bit  external  data bus  as  fast  as  the  16- bit  EU can
process  them,  thereby  limiting  the  performance  of  the  8088's  fastest
instructions.      By  contrast,  the  8086,  for  which  the  EU  was  originally
designed, has little trouble keeping the EU supplied with instructions and
data; the 8086's BIU fetches 2 instruction bytes in the same time it takes the
8088 to fetch a single byte, making the 8086 instruction fetching rate twice
that of the 8088.
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How significant is the performance impact of the 8088's 8- bit
external data bus?    While normal code is estimated to run only about one-
third faster on an 8086 than on an 8088, high- performance 8086 code can--
as we've already seen--run as much as four times more slowly on an 8088
once the prefetch queue empties, because code performance is limited by
the rate at which the BIU can transfer data a byte at a time.    In the case
where both the 8088 and 8086 prefetch queues are emptied, the 8086 runs
fast  assembler  code only  twice as fast  as the 8088,  but  the 8086 has a
bigger prefetch queue than the 8088 and fetches instructions twice as fast,
so the 8086 queue empties much more slowly--and in any case, twice as fast
is nothing to sniff at.

In  short,  the  8086  is  just  like  the  8088--except  that  it's
somewhere between 0% and 300% faster, depending on what code happens
to  be  executing,  with  a  typical  performance  advantage  of  somewhere
between 33% and 100% for high-performance assembler code.

Why  then  does  the  8088  exist,  and  why  has  it  become  so
popular?    An 8-bit-bus version of the 8086 (that is, the 8088) was desirable
in the late 1970s because at that time it was significantly more expensive to
build a computer with a 16-bit data bus than with an 8-bit data bus.    The
8088 allowed the construction of low-cost, low-performance computers that
would run 8086 software,  albeit  more slowly.      As  it  turned out,  the cost
advantage  of  an  8-bit  memory  data  bus  quickly  became  relatively
insignificant, and the 8088 might have vanished into obscurity had IBM not
selected  it  for  the  PC;  then  we  might  never  have  had  the  pleasure  of
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wrestling with the prefetch queue cycle- eater.    However, IBM did select the
8088 for the PC, and the rest is history.

Incidentally,  an  imbalance  between  processing  speed  and
memory access speed remains a factor today with the 80286-based IBM AT
and with many 80386-based computers.    The memory in those computers
often  does  not  run  at  the  speeds  the  processors  are  capable  of,  and
assembler  code  encounters  the  same  sorts  of  performance  losses  when
running on those computers as it does on the 8088.      We'll  return to that
topic in Chapter 15.

WHICH MODEL TO USE?

Each of the three programming models I've presented offers a
useful perspective on assembler programming for the PC.    However, it is the
model shown in Figure 3-4 that best reflects the true nature of the 8088;
consequently,  that model  is  the most useful  of  the three for  tapping the
unique potential of assembler. While we'll use elements of all three models in
The  Zen  of  Assembly  Language,  we'll  concentrate  on  the  perspective  of
Figure 3-4 as we explore high-performance assembler programming.

Keep the following concepts in mind as you read on:

      _ All code is machine language in the end:    don't assume that anyone
else's code, even system software, is best suited for your needs.

      _ 1.2 bytes/us:    at its best, the 8088's BIU can transfer data no faster
than this.
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      _ The 8088 is not the lowest level:     know how the PC's hardware and
bus affect memory access speed.

      _ Code is data:      when the BIU and the PC's hardware and bus affect
memory  access  speed,  they  affect  code  fetching  as  well  as  data
access, since code is just another sort of data in system memory.

Short and simple as the above list may seem, in it you will find
every one of the concepts that form the foundation of the Zen of assembler--
and with them the key to high-performance code.


