
Abrash/Zen:    Chapter 13/

Chapter 13:    Not-Branching

Now we know why we don't want to branch, but we haven't a clue
as to how to manage that trick.    After all, decisions still have to be made,
loops still have to be iterated through, and so on.    Branching is the way
we've always performed those tasks, and it's certainly not obvious what the
alternatives are, or, for that matter, that alternatives even exist.

While alternatives to branching do indeed exist, they are anything
but obvious.    Programming without branches--not - branching , in Zen-speak--
is without question one of the stranger arts you must master in your growth
as a Zen programmer.

Strange--but most rewarding.    So let's get to it!

THINK FUNCTIONALLY

The key to not-branching lies in understanding each programming
task strictly in terms of what that task needs to do, not in terms of how the
task will ultimately be implemented.    Put another way, you should not
consider how you might implement a task, even in a general way, until you
have a clear picture of exactly what results the implementation must
produce.

Once you've separated the objective from the implementation,
you're free to bring all the capabilities of the 8088--in their limitless
combinations and permutations--to bear in designing the implementation,

Abrash/Zen:    Chapter 13/

rather than the limited subset of programming techniques you've grown
accustomed to using.    This is one of the areas in which assembler
programmers have a vast advantage over compilers, which can use only the
small and inflexible set of techniques their designers built in.    Compilers
operate by translating human-oriented languages to machine language
along a few fixed paths; there's no way such a rigid code-generation
mechanism can properly address the boundless possibilities of the 8088.

Of course, separating the objective and the implementation is
more easily said than done, especially given an instruction set in which
almost every instruction seems to have been designed for a specific purpose.
For example, it's hard not to think of the loop instruction when you need to
exclusive-or together all the bytes in a block of memory 64 bytes long, and
do so as quickly as possible.    (Such a cumulative exclusive-or might be used
as a check against corrupted data in a block of data about to be transmitted
or stored.    The speed at which the cumulative exclusive-or could be
generated might well determine the maximum error-checked transfer rate
supported by the program.)

In this case, as in many others, the objective--a fast cumulative
exclusive-or--and the implementation--64 loops by way of the loop

instruction, with each loop exclusive-oring 1 byte into the cumulative result--
are inseparable to the experienced non-Zen programmer.

Why?    Consider the solution shown in Listing 13-1.    Listing 13-1
is obviously well-matched to the task of generating the cumulative exclusive-
or for a block of 64 bytes.    In fact, it's so well-matched that few

Abrash/Zen:    Chapter 13/

programmers would even contemplate alternatives.    The code in Listing 13-
1 works, it's easy to write, and it runs in just 503 us.    Surely that's just about
as fast as the 8088 can manage to perform this task--after all, the loop
involves just three instructions:    one lodsb (string instructions are the
fastest around), one register-register xor (register-register instructions are
short and fast), and one loop (the 8088's special, fast looping instruction).
Who would ever think that performance could be nearly doubled by literally
duplicating the code inside the loop 64 times and executing that code
sequentially--thereby eliminating branching entirely?

Only a Zen programmer would even consider the possibility, for
not-branching simply has no counterpart in non-Zen programming.    Not-
branching just plain feels wrong at first to any programmer raised on high-
level languages.    Not-branching goes against the grain and intent of both
the 8088 instruction set and virtually all computer-science teachings and
high-level languages.    That's only to be expected; language designers and
computer-science teachers are concerned with the form of programs, for
they're most interested in making programming more amenable to people--
that is, matching implementations to the way people think.

By contrast, Zen programmers are concerned with the
functionality of programs.    Zen programmers focus on performance and/or
program size, and are most interested in matching implementations to the
way computers think.    The desired application is paramount, but the true
Zen comes in producing the necessary result (the functionality) in the best
possible way given the computer's resources.

Abrash/Zen:    Chapter 13/

Zen programmers understand that the objective in generating the
cumulative exclusive-or of 64 bytes actually has nothing whatsoever to do
with looping.    The objective is simply to exclusive-or together the 64 bytes
in whatever way the PC can most rapidly accomplish the task, and looping is
just one of many possible means to that end.    Most programmers have seen
and solved similar problems so many times, however, that they instinctively--
almost unconsciously--select the loop instruction from their bag of tricks the
moment they see the problem.    To these programmers, repetitive processing
and loop are synonymous.

Zen programmers have a bigger bag of tricks, however, and a
more flexible view of the world.    Listing 13-2 shows a Zen solution to the
array-sum problem.    Listing 13-2 performs no branches at all, thanks to the
use of in-line code, which we'll discuss in detail later in this chapter.

Functionally, there's not much difference between Listings 13-1
and 13-2.    Both listings leave the same cumulative result in AH, leave the
same value in SI, and even leave the flags set to the same values.    Listing
13-1 leaves CX set to zero, while Listing 13-2 doesn't touch CX, but that's
really a point in the favor of Listing 13-2, and could in any case be remedied
simply by placing a sub cx,cx at the start of Listing 13-2 if necessary.

No, there's not much to choose from between the two
listings...until you see them in action.    Listing 13-2 calculates the 64-byte
cumulative exclusive-or value in just 275 us--more than 82% faster than
Listing 13-1.    A 5% increase might not be worth worrying about, but we're
talking about nearly doubling the performance of a well-coded three-

Abrash/Zen:    Chapter 13/

instruction loop!    Clearly, there's something to this business of Zen
programming.

You may object that Listing 13-2 is many bytes longer than Listing
13-1, and indeed it is:    184 bytes, to be exact.    If you need speed, though, a
couple of hundred bytes is a small price to pay for nearly doubling
performance--certainly preferable to requiring a more powerful (and
expensive) processor, such as an 80286.    You may also object that Listing
13-2 can only handle blocks that are exactly 64 bytes in length, while the
loop in Listing 13-1 can be made to handle blocks of any size simply by
loading CX with different values.    That, too, is true...but you're missing the
point.

Listing 13-2 is constructed to meet a specific goal as well as
possible on the PC.    If the goal was different, then Listing 13-2 would be
different.    If blocks of different sizes were required, then we would modify
our approach accordingly, possibly by jumping into the series of exclusive-or
operations at the appropriate place.    If space was tight, perhaps we would
use partial in-line code (which we'll discuss later in this chapter), combining
the space-saving qualities of loops with the speed of in-line code.    If space
was at a premium and performance was not an issue, we might well decide
that loop was the best solution after all.    The point is that the Zen
programmer has a wide range of approaches to choose from, and in most
cases at least one of those choices will handily outperform any standard,
one-size- fits-all solution.

In the context of not-branching (which is after all how we got into

Abrash/Zen:    Chapter 13/

all this), Zen programming means replicating the functionality of branches
without branching.    That's certainly not a goal we'd want to achieve all the
time--in many cases branches really are the best (or only) choice--but you'll
be surprised at how often it's possible to find good substitutes for branches
in time-critical code.

For all their reputation as number-crunching machines, computers
typically spend most of their time moving data, scanning data, and
branching.    In the Chapters 10 and 11 we learned how to minimize the time
spent moving and scanning data. Now we're going to attack the other part of
the performance equation by learning how to minimize branching.

rep:    LOOPING WITHOUT BRANCHING

It's a popular misconception that loop is the 8088's fastest
instruction for looping.    Not so.    In truth, it's rep that supports far and away
the most powerful looping possible on the 8088.    In Chapters 10 and 11 we
saw again and again that repeated string instructions perform repetitive
tasks much, much faster than normal loops do.    Not only do repeated string
instructions not empty the prefetch queue on every repetition as loop and
other branching instructions do, but they actually eliminate the prefetch
queue cycle-eater altogether, since no instruction fetching at all is required
while a string instruction repeats.

As we saw in Chapter 9, shifts and rotates by CL also eliminate
the prefetch queue cycle-eater, although those instructions don't pack quite
the punch that repeated string instructions do, both because they perform

Abrash/Zen:    Chapter 13/

relatively specialized tasks and because there's not much point to repeating
a shift or rotate more than 16 times.

We've already discussed repeated string instructions and
repeated shifts and rotates in plenty of detail, so I'm not going to spend
much more time on them here.    However, I would like to offer one hint about
using shifts and rotates by CL.    As we found in Chapter 9, repeated shifts
and rotates are generally faster than individual shifts and rotates when a
shift or rotate of 3 or more bits is required.    Repeated shifts and rotates are
also much faster than shifting 1 bit at a time in a loop; the sequence:

BitShiftLoop:
shr ax,1
loop BitShiftLoop

is far inferior to shr ax,cl.
Nonetheless, repeated shifts and rotates still aren't fast-- instead,

you might think of them as less slow than the alternatives.    It's easy to think
that shifts and rotates by CL are so fast that they can be used with impunity,
since they avoid looping and prefetching, but that's just not true.    A
repeated shift or rotate takes 8 cycles just to start, and then takes 4 cycles
per bit shifted.    Even a 4-bit shift by CL takes 24 cycles, which is not
insignificant, and a 16-bit shift by CL takes a full 72 cycles.    Use shifts and
rotates by CL sparingly, and keep them out of loops whenever you can.
Look-up tables, our next topic, are often a faster alternative to multi-bit shifts
and rotates.

Abrash/Zen:    Chapter 13/

LOOK-UP TABLES:    CALCULATING WITHOUT BRANCHING

Like the use of repeated string instructions, the use of look-up
tables is a familiar technique that can help avoid branching.    Whenever
you're using branching code to perform a calculation, see if you can't use a
look-up table instead; tight as your branching code may be, look-up tables
are usually faster still.    Listings 11-26 and 11-27 pit a five-instruction
sequence that branches no more than once against an equivalent table look-
up; you can't get branching code that's much tighter than that, and yet the
table look-up is much faster.

In short, if you have a calculation to make--even a simple one--
see if it isn't faster to precalculate the answer at assembly time and just look
it up at run time.

TAKE THE BRANCH LESS TRAVELLED BY One of the best ways to avoid
branching is to arrange your code so that conditional jumps rarely jump.
Usually you can guess which way a given conditional test will most often go,
and if that's the case, you can save a good deal of branching simply by
arranging your code so that the conditional jump will fall through--that is, not
branch--in the more common case.    Sometimes the choice is made on the
basis of which case is most time- critical rather than which is most common,
but the principle remains the same.

Why is it that falling through conditional jumps is desirable?
Simple:    none of the horrendous speed loss associated with branching

Abrash/Zen:    Chapter 13/

applies to conditional jumps that fall through, because conditional jumps
don't branch when they fall through.

Let's look at the statistics.    It always takes a conditional jump at
least 16 cycles to branch, and the total cost in cycles is usually somewhat
greater because the prefetch queue is emptied.    On the other hand, it takes
a conditional jump a maximum of just 8 cycles not to jump, that being the
case if the prefetch queue is empty and both bytes of the instruction must be
fetched before they can be executed.    The official execution time of a
conditional jump that doesn't branch is just 4 cycles, so it is particularly fast
to fall through a conditional jump if both bytes of the instruction are waiting
in the prefetch queue when it comes time to execute them.

In other words, falling through a conditional jump can be
anywhere from 100% to 700% faster than branching, depending on the exact
state and behavior of the prefetch queue.    As you might imagine, it's worth
going out of your way to reap cycle savings of that magnitude...and that's
why you should arrange your conditional jumps so that they fall through as
often as possible.

For example, you'll recall that in Chapter 11--in Listing 11-20, to
be precise--we tested several characters for inclusion in a small set via
repeated cmp/jz instruction pairs.    We arranged the conditional jumps so
that a jump occurred only when a match was made, meaning that at most
one branch was performed during any given inclusion test.    Put another
way, we branched out of the main stream of the subroutine on the less
common condition.

Abrash/Zen:    Chapter 13/

You may not have thought much of it at the time, but the
arrangement of branches in Listing 11-20 was no accident.    Tests for four
potential matches are involved when testing for inclusion in a set of four
characters, and no more than one of those matches can occur during any
given test.    Given an even distribution of match characters, matching is
clearly less common than not matching.    If we jumped whenever we didn't
get a match (the more common condition), we'd end up branching as many
as three times during a single test, with significantly worse performance the
likely result.

Listing 13-3 shows Listing 11-20 modified to branch on non-
matches rather than matches.    The original branch-on-match version ran in
119 us, and, as predicted, that's faster than Listing 13-3, which runs in 133
us.    That's not the two- or three-times performance improvement we've
grown accustomed to seeing (my, how jaded we've become!), but it's
significant nonetheless, especially since we're talking about a very small
number of conditional jumps.    We'd see a more dramatic difference if we
were dealing with a long series of tests.

Another relevant point is that the worst-case performance of
Listing 13-3 is much worse than that of Listing 11-20.    Listing 13-3 actually
has a shorter best-case time than Listing 11-20, because no branches at all
are performed when the test character is 'A'.    On the other hand, Listing 13-
3 performs three branches when the test character is '!' or is not in the set,
and that's two branches more than Listing 11-20 ever performs.    When
you're trying to make sure that code always responds within a certain time,

Abrash/Zen:    Chapter 13/

worst-case performance can matter more than average performance.
Then, too, if the characters tested are often not in the set, as may

well be the case with such a small set, the branching-out approach of Listing
11-20 will far outperform the branch-branch-branch approach of Listing 13-3.
When Listing 11- 20 is modified so that none of the five test characters is in
the set, its overall execution time scarcely changes, rising by just 8 us, to
127 us.    When Listing 13-3 is modified similarly, however, its overall
execution time rises by a considerably greater amount--26 us--to 159 us.
This neatly illustrates the potential worst-case problem of repeated
branching that we just discussed. There are two lessons here.    The first
and obvious lesson is that you should arrange your conditional jumps so that
they fall through as often as possible.    The second lesson is that you must
understand the conditions under which your code will operate before you can
truly optimize it.

For instance, there's no way you can evaluate the relative merits
of the versions of CheckTestSetInclusion in Listings 11-20 and 13-3 until
you know the mix of characters that will be tested.    There's no such beast as
an absolute measure of code speed, only code speed in context.    You've
heard that before as it relates to instruction mix and the prefetch queue, but
here we're dealing with a different aspect of performance.    What I mean now
is that you must understand the typical and worst-case conditions under
which a block of code will run before you can get a handle on its
performance and consider possible alternatives.

Your ability to understand and respond to the circumstances

Abrash/Zen:    Chapter 13/

under which your assembler code will run gives you a big leg up on high-
level language compilers.    There's no way for a compiler to know the typical
and/or worst-case conditions under which code will run, let alone which of
those conditions is more important in your application.

For instance, suppose that we have one loop which repeats 10
times on average and another loop which repeats 10000 times on average,
with both loops executed a variable (not constant) number of times.    A C
compiler couldn't know that cycles saved in the second loop would have a
1000-times-greater payoff than cycles saved in the first loop, so it would
have to approach both loops in the same way, generating the same sort of
code in both cases.    What this means is that compiled code is designed for
reasonable performance under all conditions...hardly the ticket for greatness.

PUT THE LOAD ON THE UNIMPORTANT CASE

When arranging branching code to branch on the less critical
case, don't be afraid to heap the cycles on that case if that will help the more
critical case.

For example, suppose that you need to test whether CX is zero at
the start of a long subroutine and return if CX is in fact zero.    You'd normally
do that with something like:

LongSubroutine proc near
jcxz LongSubroutineEnd
:

; *** Body of subroutine ***
:

LongSubroutineEnd:

Abrash/Zen:    Chapter 13/

ret
LongSubroutine endp

Now, however, assume that the body of the subroutine is more than 127
bytes long.    In that case, the 1-byte displacement of jcxz can't reach
LongSubroutineEnd, so the last bit of code won't work.

Well, then, the obvious alternative is:

LongSubroutine proc near
and cx,cx
jnz DoLongSubroutine
jmp LongSubroutineEnd

DoLongSubroutine:
:

; *** Body of subroutine ***
:

LongSubroutineEnd:
ret

LongSubroutine endp

There's a problem here, though.    Every time CX isn't zero we end
up branching, and that's surely wrong.    The case where CX is zero is most
likely rare, and is probably of no real interest to us anyway, since it's a do-
nothing case for the subroutine.    (At any rate, for the purposes of this
example    we'll assume that the CX equal to 0 case is rare and
uninteresting.)    What's more, whether the CX equal to 0 case is rare or not,
the body of the subroutine is skipped when CX is 0, so that case is bound to
be much faster than the other cases.    That means that the CX equal to zero
case is not only unimportant, but also doesn't affect the worst-case
performance of the subroutine.    Yet here we are, adding an extra branch to
every single invocation of this subroutine simply to protect against the quick
and unimportant case of CX equal to zero.

Abrash/Zen:    Chapter 13/

The tail is wagging the dog.
Instead, let's heap the branches on the CX equal to zero case,

sparing the other, more important cases as much as possible.    One solution
is:

LongSubroutineExit proc near
ret

LongSubroutineExit endp
;
LongSubroutine proc near

jcxz LongSubroutineExit
:

; *** Body of subroutine ***
:

ret
LongSubroutine endp

This restores the code to its original, saner state, where the shortest possible
time--6 cycles for a single jcxz that falls through--is used to guard against
the case of CX equal to zero.

If you prefer that your subroutines be exited only from the end, as
is for example necessary when a stack frame must be deallocated, there's
another solution:

LongSubroutineExit proc near
jmp LongSubroutineEnd

LongSubroutineExit endp
;
LongSubroutine proc near

jcxz LongSubroutineExit
:

; *** Body of subroutine ***
:

LongSubroutineEnd:
ret

LongSubroutine endp

Now we've really put the load on the CX equal to zero case, for two branches

Abrash/Zen:    Chapter 13/

must be performed in that case.    So what?    As far as we're concerned, the
CX equal to zero case can take as long as it pleases, so long as it doesn't
slow down the real work of the subroutine, which is done when CX isn't equal
to zero.

YES, VIRGINIA, THERE IS A FASTER 32-BIT NEGATE!

In Chapter 9 we came across an extremely fast and compact way
to negate 32-bit values, as follows:

neg dx
neg ax
sbb dx,0

This very short sequence involves two register-only negations, one constant-
from-register subtraction--and no branches.    At the time, I told you that, fast
as that code was, at some later point we'd run across a still faster way to
negate a 32-bit value.

That time has come.    Incredibly, we're going to speed up 32- bit
negates by using a branching instruction.    Yes, I know that I've been telling
you to avoid branching like the plague, but there's a trick here:    we're not
really going to branch.    The branching instruction we're going to use is a
conditional jump, and we're going to fall through the jump almost every time.

There's a bit of history to this trick, and it's worth reviewing for
the lesson about the Zen of assembler it contains. The story goes as follows:

Having worked out to my satisfaction how the above 32-bit

Abrash/Zen:    Chapter 13/

negation worked, I (somewhat egotistically, I admit) asked Dan Illowsky if he
knew how to negate a 32-bit value in three instructions.

Well, it took him a while, but he did come up with a working
three-instruction solution.    Interestingly enough, it wasn't the solution I had
found.    Instead, he derived the second solution I mentioned in Chapter 9:

not dx
neg ax
sbb dx,-1

This solution is equivalent to the first solution in functionality, length, and
cycle count.

That's not the end of the tale, however.    Taken aback because
Dan had come up with a different and equally good solution (demonstrating
that my solution wasn't so profound after all), I commented that while he had
managed to match my solution, he surely could never surpass it.

Ha!
If there's one word that should set any Zen programmer off like a

rocket, it's "never."    The 8088 instruction set is so rich and varied that there
are dozens of ways to do just about anything.    For any but the simplest task
several of those approaches--and not necessarily the obvious ones--are
bound to be good.    Whenever you think that you've found the best possible
solution for anything more complex than incrementing a register, you're
most likely in for a humbling experience.

At any rate, "never" certainly set Dan off.    He got a thoughtful

Abrash/Zen:    Chapter 13/

look on his face, walked off, and came back five minutes later with a faster
implementation.    Here it is:

not dx
neg ax
jnc Negate32BitsCarry

Negate32BitsDone:
:

Negate32BitsIncDX:
inc dx
jmp short Negate32BitsDone

where the code at Negate32BitsCarry is somewhere--anywhere-- within a
1-byte displacement (+127 to -128 bytes) of the byte after the jnc

instruction.
It may not look like working 32-bit negation code, but working

code it is, believe me.    Brilliant working code.

HOW 32-BIT NEGATION WORKS

In order to understand the brilliance of Dan's code, we first need
to get a firm grasp on the mechanics of 32-bit negation.    The basic principle
of two's complement negation is that the value to be negated is first notted
(that is, all its bits are flipped, from 1 to 0 or 0 to 1), and then incremented.
For a 32-bit value stored in DX:AX, negation would ideally follow one of the
two sequences shown in Figure 13-1, with all operations performed 32 bits at
a time.

Unfortunately, the 8088 can only handle data 16 bits at a time, so
we must perform negation with a series of 16-bit operations like:

Abrash/Zen:    Chapter 13/

not dx
neg ax
sbb dx,-1

as shown in Figure 13-2.    The purpose of the first operation, notting DX with
the not instruction, is obvious enough:    flipping all the bits in the high word
of the value.    The purpose of the second operation, negating AX, is equally
obvious:    negating the low word of the value with the neg instruction, which
both nots AX and increments it all at once.

After two instructions, we've successfully notted the entire 32-bit
value in DX:AX, and we've incremented AX as well.    All that remains to be
done is to complete the full 32-bit increment by incrementing DX if
necessary.

When does DX need to be incremented?    In one case only--when
AX is originally 0, is notted to 0FFFFh, and is incremented back to 0, with a
carry out from bit 15 of AX indicating that AX has turned over to 0 and so the
notted value in DX must be incremented as well, as shown in Figure 13-3.    In
all other cases, incrementing the 32-bit notted value in DX:AX doesn't alter
DX at all, since incrementing AX doesn't cause a carry out of bit 15 unless AX
is 0FFFFh.

However, due to the way that neg sets the Carry flag (as if
subtraction from zero had occurred), the Carry flag is set by neg in all cases
except the one case in which DX needs to be incremented.    Consequently,
after neg ax we subtract -1 from DX with borrow, with the 1 value of the

Abrash/Zen:    Chapter 13/

Carry flag normally offsetting the -1, resulting in a subtraction of 0 from DX.
In other words, DX remains unchanged when neg ax sets the Carry flag to 1,
which is to say in all cases except when AX is originally zero.    That's just
what we want; in all those cases the 32-bit negation was actually complete
after the first two instructions, since the increment of the notted 32-bit value
doesn't affect DX, as shown in Figure 13-4.

In the case where AX is originally 0, on the other hand, neg ax

doesn't set the Carry flag.    This is the one case in which DX must be
incremented.    In this one case only, sbb dx,-1 succeeds in subtracting -1
from DX, since the Carry flag is 0.    Again, that's what we want; in this one
case DX is affected when the 32- bit value is incremented, and so
incrementing DX completes the 32-bit negation, as shown in Figure 13-5.

HOW FAST 32-BIT NEGATION WORKS

Now that we understand what our code has to do, we're in a
position to think about optimizations.    We'll do just what Dan did--look at
negation from a functional perspective, understanding exactly what needs to
be done and tailoring our code to do precisely that and nothing more.

The breakthrough in Dan's thinking was the realization that DX
only needs to be incremented when AX originally was 0, which normally
happens only once in a blue moon (once out of every 64 K evenly-distributed
values, to be exact).    For all other original values of AX, the bits in DX simply
flip in the process of 32-bit negation, and nothing more needs to be done to
DX after the initial not.    As we found above, the 32-bit negation is actually

Abrash/Zen:    Chapter 13/

complete after the first two instructions for 64 K-1 out of every 64 K possible
values to be negated, with the final sbb almost always leaving DX
unchanged.

Improving the code is easy once we've recognized that the first
two instructions usually complete the 32-bit negation.    The only question is
how to minimize the overhead taken to check for the rare case in which DX
needs to be incremented.    A once-in-64 K-times case is more than rare
enough to absorb a few extra cycles, so we'll branch out to increment DX in
the case where it needs to be adjusted.    The payoff for branching in that one
case is that in all other cases a 3-byte, 4-cycle sbb instruction is replaced by
a 2-byte, 4-cycle fall-through of jnc.    In tight code, the 1-byte difference will
usually translate into 4 cycles, thanks to the prefetch queue cycle-eater.

Essentially, jnc is a faster way of doing nothing in the 64 K-1
cases where DX:AX already contains the negated value than sbb dx,-1 is.
Granted, jnc is also a slower way of incrementing DX in the one case where
that's necessary, but that's so infrequent that we can readily trade those
extra cycles for the cycles we save on the other cases.

Let's try out the two 32-bit negates to see how they compare in
actual use.    Listing 13-4, which uses the original nonbranching 32-bit
negation code, runs in 2264 us.    Listing 13-5, which uses the branch-on-
zero-AX approach to 32-bit negation, runs in 2193 us.    A small improvement,
to be sure--but it is nonetheless an improvement, and since the test code's
100:1 ratio of zero to non-zero values is much less than the real world's ratio
of 64 K-1:1 (assuming evenly distributed values), the superiority of the

Abrash/Zen:    Chapter 13/

branch-on-zero-AX approach is somewhat greater than this test indicates.
By itself, speeding the negation of 32-bit values by a few cycles

isn't particularly noteworthy.    On the other hand, you must surely realize
that if it was possible to speed up even the three-instruction, non-branching
sequence that we started off with, then it must be possible to speed up just
about any code, and that perception is important indeed.

Code for almost any task can be implemented in many different
ways, and can in the process usually be made faster than it currently is.    It's
not always worth the cost in programming time and/or bytes to speed up
code--you must pick your spots carefully, concentrating on loops and other
time- critical code--but it can almost always be done.    The key to improved
performance lies in understanding exactly what the task at hand requires
and understanding the context in which the code performs, and then
matching that understanding to the resources of the PC.

My own experience is that no matter how many times I study a
time-critical sequence of, say, 20-100 instructions, I can always save at least
a few more cycles--and sometimes many more--by viewing the code
differently and reworking it to match the capabilities of the 8088 more
closely.    That's why way back in Chapter 2 I said that "optimize" was not a
word to be used lightly.    When programming in assembler for the PC, only
fools and geniuses consider their code optimized.    As for the rest of us...well,
we'll just have to keep working on our time-critical code, trying new
approaches and timing the results, with the attitude that our code is good
and getting better.

Abrash/Zen:    Chapter 13/

And have we finally found the fastest possible code for 32- bit
negation, never to be topped?    Lord knows I don't expect to come across
anything faster in the near future.    But never?

Don't bet on it.

ARRANGE YOUR CODE TO ELIMINATE BRANCHES

There are many, many ways to arrange your code to eliminate
branches.    I'm going to discuss a few here, but don't consider this to be
anything like an exhaustive list.    Whenever you use branching instructions
where performance matters, take it as a challenge to arrange those
instructions for maximum performance and minimum code size.

PRELOADING THE LESS COMMON CASE

One of my favorite ways to eliminate jumps comes up when a
register must be set to one of two values based on a test condition.    For
example, suppose that we want to set AL to 0 if DL is less than or equal to
10, and set AL to 1 if DL is greater than 10.

The obvious solution is:

cmp dl,10 ;is DL greater than 10?
ja DLGreaterThan10 ;yes, so set AL to 1
sub al,al ;DL is less than or equal to 10
jmp short DLCheckDone

DLGreaterThan10:
mov al,1 ;DL is greater than 10

DLCheckDone:

Here we either branch or don't branch to reach the code that sets AL to the

Abrash/Zen:    Chapter 13/

appropriate value; after setting AL, we rejoin the main flow of the code,
branching if necessary.    Whether DL is greater than 10 or not, a branch is
always performed.

Now let's try this out:

sub al,al ;assume DL will not be greater than 10
cmp dl,10 ;is DL greater than 10?
jbe DLCheckDone ;no, so AL is already correct
mov al,1 ;DL is greater than 10

DLCheckDone:

Here we've loaded AL with one of the two possible results before the test.    In
one of the two possible cases, we've guessed right and AL is already correct,
so a single branch ends the test-and- set code.    In the other possible case,
we've guessed wrong, so the conditional jump falls through and AL is set
properly.    (By the way, inc ax would be faster than and logically equivalent
to mov al,1 in the above code.    Right now, though, we're focusing on a
different sort of optimization, and I've opted for clarity rather than maximum
speed; I also want you to see that the preload approach is inherently faster,
whether or not tricks like inc ax are used.)

I'll admit that it's more than a little peculiar to go out of our way
to set AL twice in some cases; the previous example set AL just once per
test-and-set, and that would logically seem to be the faster approach.    While
we sometimes set AL an extra time with the preload approach, however, we
also avoid a good bit of branching, and that's more than enough to
compensate for the extra times AL is set.

Abrash/Zen:    Chapter 13/

Consider this.    If DL is less than or equal to 10, then the first
example (the "normal" test-and-branch code) performs a cmp dl,10 (4
cycles/2 bytes), a ja DLGreaterThan10 that falls through (4 cycles/2 bytes),
a sub al,al (3 cycles/2 bytes), and a jmp short DLCheckDone (15 cycles/2
bytes).    The grand total:    26 cycles, 8 instruction bytes and one branch, as
shown in Figure 13-6a.

On the other hand, the preload code of the second example
handles the same case with a sub al,al (3 cycles/2 bytes), a cmp dl,10 (4
cycles/2 bytes), and a jbe DLCheckDone that branches (16 cycles/2 bytes).
The total:    23 cycles, 6 instruction bytes and one branch, as shown in Figure
13-7a.    That's not much faster than the normal approach, but it is faster.

Now let's look at the case where DL is greater than 10. Here the
test-and-branch code of the first example performs a cmp dl,10 (4 cycles/2
bytes), a ja DLGreaterThan10 that branches (16 cycles/2 bytes), and a
mov al,1 (4 cycles/2 bytes), for a total of 24 cycles, 6 instruction bytes and
one branch, as shown in Figure 13-6b.

The preload code of the second example handles the same DL
greater than 10 case with a sub al,al (3 cycles/2 bytes), a cmp dl,10 (4
cycles/2 bytes), a jbe DLCheckDone that doesn't branch (4 cycles/2 bytes),
and a mov al,1 (4 cycles/2 bytes).    The total:    8 instruction bytes--2 bytes
more than the test-and- branch code--but just 15 cycles...and no branches,
as shown in Figure 13-7b.    The lack of a prefetch queue-flushing branch
should more than compensate for the two additional instruction bytes that
must be fetched.

Abrash/Zen:    Chapter 13/

In other words, the preload code is either 3 or 9 cycles faster than
the more familiar test-and-branch code, is 2 bytes shorter overall, and
sometimes branches less while never branching more.    That's a clean sweep
for the preload code--all because always performing one extra register load
made it possible to do away with a branch.

Let's run the two approaches through the Zen timer.    Listing 13-
6, which times the test-and-branch code when DL is 10 (causing AL to be set
to 0), runs in 10.06 us per test-and-branch.    By contrast, Listing 13-7, which
times the preload code for the same case, runs in just 8.62 us.

That's a healthy advantage for the preload code, but perhaps
things will change if we test a case where AL is set to 1, by altering Listings
13-6 and 13-7 to set DL to 11 rather than 10 prior to the tests.

Things do indeed change when DL is set to 11.    Listing 13-6
speeds up to 8.62 ms per test, matching the performance of Listing 13-7
when DL was 10.    When DL is 11, however, Listing 13- 7 speeds up to 8.15
us, again comfortably outperforming Listing 13-6.

In short, the preload approach is superior in every respect. While
it's counterintuitive to think that by loading a register an extra time we can
actually speed up code, it does work, and that sort of unorthodox but
effective technique is what the Zen of assembler is all about.

A final note on the preload approach:    arrange your preload code
so that the more common case is not preloaded.    Once again this is
counterintuitive, since it seems that we're going out of our way to guess
wrong about the outcome of the test.    Remember, however, that it's much

Abrash/Zen:    Chapter 13/

faster to fall through a conditional jump, and you'll see why preloading the
less common value makes sense.    It's actually faster to fall through the
conditional jump and load a value than it is just to branch at the conditional
jump, even if the correct value is already loaded.

The results from the two executions of Listing 13-7 confirm this.
The case where the value preloaded into AL is correct actually runs a good
bit more slowly than the case where the conditional jump falls through and a
new value must be loaded.

Think of your assembler programs not just in terms of their logic
but also in terms of how that logic can best be expressed- - in terms of cycles
and/or bytes--in the highly irregular language of the 8088.    The first example
in this section--the "normal" approach--seems at first glance to be the ideal
expression of the desired test-and-set sequence in 8088 assembler.
However, the poor performance of branching instructions renders the normal
approach inferior to the preload approach on the 8088, even though
preloading is counter to common sense and most programming experience.
In short, the best 8088 code can only be arrived at by thinking in terms of
the 8088; superior 8088 solutions often seem to be lunacy in other logic
systems.

Thinking in terms of the 8088 can be particularly difficult for
those of us used to high-level languages, in which programs are pure
abstractions far removed from the ugly details of the processor.    When
programming in a high-level language, it would seem to be faster to preload
the correct value and test than to preload an incorrect value, test, and load

Abrash/Zen:    Chapter 13/

the correct value.    In fact, in any high-level language it would seem most
efficient to use an if...then...else structure to handle a test-and-set case
such as the one above.

That's not the way it works on the 8088, though, because not all
tests are created equal--tests that branch are much slower than tests that
fall through.    When you're programming the 8088 in assembler, the
maddening and fascinating capabilities of the processor must become part of
your logic system, however illogical the paths down which that perspective
leads may seem at times to be.

USE THE CARRY FLAG TO REPLACE SOME BRANCHES

Unlike the other flags, the Carry flag can serve as a direct
operand to some arithmetic instructions, such as rcr and adc. This gives the
Carry flag a unique property--it can sometimes be used to alter the value in a
register conditionally without branching.

For instance, suppose that we want to count the number of
negative values in a 1000-word array, maintaining the count in DX.    One
way to do this is shown in Listing 13-8, which runs in 12.29 ms.    In this code,
each value is anded with itself.    The resulting setting of the Sign flag
indicates whether the value is positive or negative.    With the help of a
conditional jump, the Sign flag setting controls whether DX is incremented or
not.

Speedy and compact as it is, Listing 13-8 does involve a
conditional jump that branches about half the time...and by now you should

Abrash/Zen:    Chapter 13/

be developing a distinct dislike for branching.    By using the Carry flag to
eliminate branching entirely, we can speed things up quite a bit.

Listing 13-9 does just that, shifting the sign bit of each tested
value into the Carry flag and then adding it--along with zero, since adc

requires two source operands--to DX, as shown in Figure 13-8.    (Note that
the constant zero is stored in BX for speed, since adc dx,bx is 1 byte shorter
and 1 cycle faster than adc dx,0.)    The result is that DX is incremented only
when the sign bit of the value being tested is 1--that is, only when the value
being tested is negative, which is exactly what we want.

Listing 13-9 runs in 10.80 ms.    That's about 14% faster than
Listing 13-8, even though the instruction that increments DX in Listing 13-9
(adc dx,bx) is actually 1 byte longer and 1 cycle slower than its counterpart
in Listing 13-8 (inc dx).    The key to the improved performance is, once
again, avoiding branching.    In this case that's made possible by recognizing
that a Carry flag- based operation can accomplish a task that we'd usually
perform with a conditional jump.    You wouldn't normally think to substitute
shl/adc for and/jns/inc--they certainly don't look the least bit similar--but in
this particular context the two instruction sequences are equivalent.

The many and varied parts of the 8088's instruction set are
surprisingly interchangeable.    Don't hesitate to mix and match them in
unusual ways.

NEVER USE TWO JUMPS WHEN ONE WILL DO

Don't use a conditional jump followed by an unconditional jump

Abrash/Zen:    Chapter 13/

when the conditional jump can do the job by itself. Generally, a conditional
jump should only be paired with an unconditional jump when the 1-byte
displacement of the conditional jump can't reach the desired offset--that is,
when the offset to be branched to is more than -128 to +127 bytes away.

For example:

jz IsZero

works fine unless IsZero is more than -128 or +127 bytes away from the
first byte of the instruction immediately following the jz instruction.    (You'll
recall that we found in the last chapter that conditional jumps, like all jumps
that use displacements, actually branch relative to the offset of the start of
the following instruction.)    If, however, IsZero is more than -128 or +127
bytes away, the polarity of the conditional jump must be reversed, and the
conditional jump must be used to skip around the unconditional jump:

jnz NotZero
jmp IsZero

NotZero:

When the conditional jump falls through (in the case that resulted in a
branch in the first example), the 2-byte displacement of the unconditional
jump can be used to jump to IsZero no matter where in the code segment
IsZero may be.

Logically, the two examples we've just covered are equivalent,
branching in exactly the same cases.    There's an obvious difference in the

Abrash/Zen:    Chapter 13/

way the two examples run, though--the first example branches in only one of
the two cases, while the second example always branches, and is larger too.

In this case, it's pretty clear which is the code of choice (at least, I
hope it is!)--you'd only use a conditional jump around an unconditional jump
when a conditional jump alone can't reach the target label.    However, paired
jumps can also be eliminated in a number of less obvious situations.

For example, suppose that you want to scan a string until you
come to either a character that matches the character in AH or a zero byte,
whichever comes first.    You might conceptualize the solution as follows:

1) Get the next byte.
2) If the next byte matches the desired byte, we've got a
match and we're done.

3) If the next byte is zero, we're done without finding a match.
4) Repeat 1).

That sort of thinking is likely to produce code like that shown in
Listing 13-10, which is a faithful line-by-line reproduction of the above
sequence.

Listing 13-10 works perfectly well, finishing in 431 us. However,
the loop in Listing 13-10 ends with a conditional jump followed by an
unconditional jump.    With a little code rearrangement, the conditional jump
can be made to handle both the test-for-zero and repeat-loop functions, and
the unconditional jump can be done away with entirely.    All we need do is

Abrash/Zen:    Chapter 13/

put the "no-match" handling code right after the conditional jump and
change the polarity of the jump from jz to jnz, so that the one conditional
jump can either fall through if the terminating zero is found or repeat the
loop otherwise.

Back in Chapter 11 we saw Listing 11-11, which features just such
rearranged code.    (Listing 13-10 is actually Listing 11-11 modified to
illustrate the perils of using two jumps when one will do.)    Listing 11-11 runs
in just 375 us.    Not only is Listing 11-11 faster than Listing 13-10, it's also
shorter by two bytes--the length of the eliminated jump.

Look to streamline your code whenever you see a short
unconditional jump paired with a conditional jump.    Of course, it's not
always possible to eliminate paired jumps, but you'd be surprised at how
often loops can be compacted and speeded up with a little rearrangement.

JUMP TO THE LAND OF NO RETURN

It's not uncommon that the last action before returning at the end
of a subroutine is to call another subroutine, as follows:

call SaveNewSymbol
ret

PromptForSymbol endp

What's wrong with this picture?    That's easy:    there's a branch to a branch
here.    The ret that ends SaveNewSymbol branches directly to the ret that
follows the call to SaveNewSymbol at the end of PromptForSymbol.

Abrash/Zen:    Chapter 13/

Surely there's a better way!
Indeed there is a better way, and that is to end

PromptForSymbol by jumping to SaveNewSymbol rather than calling it.
To wit:

jmp SaveNewSymbol
PromptForSymbol endp

The ret at the end of SaveNewSymbol will serve perfectly well to return to
the code that called PromptForSymbol, and by doing this we'll save one
complete ret plus the performance difference between jmp and call--all
without changing the logic of the code in the least.

One caveat regarding jmp in the place of call/ret:    make sure
that the types--near or far--of the two subroutines match. If
SaveNewSymbol is near-callable but PromptForSymbol happens to be
far-callable, then the ret instructions at the ends of the two subroutines are
not equivalent, since near and far ret instructions perform distinctly different
actions.    Mismatch ret instructions in this way and you'll unbalance the
stack, in the process most likely crashing your program--so exercise caution
when replacing call/ret with jmp.

DON'T BE AFRAID TO DUPLICATE CODE

Whenever you use an unconditional jump, ask yourself, "Do I
really need that jump?"    Often the answer is yes...but not always.

Abrash/Zen:    Chapter 13/

What are unconditional jumps used for?    Generally, they're used
to allow a conditionally-executed section of code to rejoin the main flow of
program execution.    For example, consider the following:

;
; Subroutine to set AH to 1 if AL contains the
; character 'Y', AH to 0 otherwise.
;
; Input:
; AL = character to check
;
; Output;
; AH = 1 if AL contains 'Y', 0 otherwise
;
; Registers altered: AH
;
CheckY proc near

cmp al,'Y'
jnz CheckYNo
mov ah,1 ;it is indeed 'Y'
jmp short CheckYDone

CheckYNo:
sub ah,ah ;it's not 'Y'

CheckYDone:
ret

CheckY endp

(You'll instantly recognize that the whole subroutine could be speeded up
simply by preloading one of the values, as we learned a few sections back.
In this particular case, however, we have a still better option available.)
You'll notice that jmp short CheckYDone, the one unconditional jump in the
above subroutine, doesn't actually serve much purpose.    Sure, it rejoins the
rest of the code after handling the case where AL is 'Y', but all that happens
at that point is a return to the calling code.    Surely it doesn't make sense to
expend the time and 2 bytes required by a jmp short just to get to a ret

instruction.    Far better to simply replace the jmp short with a ret:

Abrash/Zen:    Chapter 13/

CheckY proc near
cmp al,'Y'
jnz CheckYNo
mov ah,1 ;it is indeed 'Y'
ret

CheckYNo:
sub ah,ah ;it's not 'Y'

CheckYDone:
ret

CheckY endp

The net effect:    the code is 1 byte shorter, the time required for a branch is
saved about half the time--and there is absolutely no change in the logic of
the code.    It's important that you understand that jmp short was basically a
nop instruction in the first example, since all it did was unconditionally
branch to another branching instruction, as shown in Figure 13-9.    We
removed the unconditional jump simply by replacing it with a copy of the
code that it branched to.

The basic principle here is that of duplicating code.    Many
unconditional jumps can be eliminated by replacing the jump with a copy of
the code at the jump destination.    (Unconditional jumps used for looping are
an exception.    As we found earlier, however, unconditional jumps used to
end loops can often be replaced by conditional jumps, improving both
performance and code size in the process.)    Often the destination code is
many bytes long, and in such cases code duplication doesn't pay.    However,
in many other cases, such as the example shown above, code duplication is
an unqualified winner, saving both cycles and bytes.

There are also cases where code duplication saves cycles but

Abrash/Zen:    Chapter 13/

costs bytes, and then you'll have to decide which of the two matters more on
a case-by-case basis.    For instance, suppose that the last example required
that AL be anded with 0DFh (not 20h) after the test for 'Y'.    The standard
code would be:

;
; Subroutine to set AH to 1 if AL contains the
; character 'Y', AH to 0 otherwise. AL is then forced to
; uppercase. (AL must be a letter.)
;
; Input:
; AL = character to check (must be a letter)
;
; Output;
; AH = 1 if AL contains 'Y', 0 otherwise
; AL = character to check forced to uppercase
;
; Registers altered: AX
;
CheckY proc near

cmp al,'Y'
jnz CheckYNo
mov ah,1 ;it is indeed 'Y'
jmp short CheckYDone

CheckYNo:
sub ah,ah ;it's not 'Y'

CheckYDone:
and al,not 20h ;make it uppercase
ret

CheckY endp

The duplicate-code implementation would be:

CheckY proc near
cmp al,'Y'
jnz CheckYNo
mov ah,1 ;it is indeed 'Y'
and al,not 20h ;make it uppercase
ret

CheckYNo:
sub ah,ah ;it's not 'Y'

CheckYDone:
and al,not 20h ;make it uppercase
ret

CheckY endp

with both and and ret duplicated at the end of each of the two possible

Abrash/Zen:    Chapter 13/

paths through the subroutine.
The decision as to which of the two above implementations is

preferable is by no means cut and dried.    The duplicated-code
implementation is certainly faster, since it still avoids a branch in half the
cases.    On the other hand, the duplicated-code implementation is also 1
byte longer, since a 2-byte jmp short is replaced with a 3-byte sequence of
and and ret.    Neither sequence is superior on all counts, so the choice
between the two depends on context and your own preferences.

Duplicated code is counter to all principles of structured
programming.    As we've learned, that's not inherently a bad thing--when
you need performance, it can be most useful to discard conventions and look
for fresh approaches.

Nonetheless, it's certainly possible to push the duplicated- code
approach too far.    As the code to be duplicated becomes longer and/or more
complex, the duplicated-code approach becomes less appealing.    In addition
to the bytes that duplicating longer code can cost, there's also the risk that
you'll modify the code at only one of the duplicated locations as you alter the
program. For this reason, duplicated code sequences longer than a ret and
perhaps one other instruction should be used only when performance is at an
absolute premium.

INSIDE LOOPS IS WHERE BRANCHES REALLY HURT

Branches always hurt performance, but where they really hurt is
inside loops.    There, the performance loss incurred by a single branching

Abrash/Zen:    Chapter 13/

instruction is magnified by the number of loop repetitions.    It's important
that you understand that not all branches are created equal, so that you can
focus on eliminating or at least reducing the branches that most affect
performance-- and those branches are usually inside loops.

How can we apply this knowledge?    By making every effort to
use techniques such as duplicated code, in-line code (which we'll see
shortly), and preloading values inside loops, and by simply moving decision-
making out of loops whenever we can.    Let's take a look at an example of
using duplicated code within a loop, in order to see how easily cycle-saving
inside a loop can pay off.

TWO LOOPS CAN BE BETTER THAN ONE

Suppose that we want to determine whether there are more
negative or non-negative values in an array of 8-bit signed values.    Listing
13-11 does that in 3.60 ms for the sample array by using a straightforward
and compact test-and-branch approach. There's nothing wrong with Listing
13-11, but there is an unconditional jump.    We'd just as soon do away with
that unconditional jump, especially since it's in a loop. Unfortunately, the
instruction the unconditional jump branches to isn't a simple ret--it's a loop

instruction, and we all know that loops must end in one place, at the loop
bottom.

Hmmmm.    Why must loops end in one place?    There's no
particular reason that I can think of, apart from habit, so let's try duplicating
some code and ending the loop in two places. Listing 13-12, which does

Abrash/Zen:    Chapter 13/

exactly that, runs in just 3.05 ms. That's an improvement of 18%--quite a
return for the 1 byte the duplicated-code approach adds.

It's evident that eliminating branching instructions inside loops
can result in handsome performance gains for relatively little effort.    That's
why I urge you to focus your optimization efforts on loops.    While we're on
this important topic, let's look at another way to eliminate branches inside
loops.

MAKE UP YOUR MIND ONCE AND FOR ALL

If you find yourself making a decision inside a loop, for heaven's
sake see if you can manage to make that decision before the loop.    Why
decide every time through the loop when you can decide just once at the
outset?

Consider Listing 13-13, in which the contents of DL are used to
decide whether to convert each character to uppercase while copying one
string to another string.    Listing 13-13, which runs in 3.03 ms for the sample
string, is representative of the situation in which a parameter passed to a
subroutine selects between different modes of operation.

The failing of Listing 13-13 is that the decision as to whether to
convert to uppercase is made over and over, once for each character.    We'd
be much better off if we could make the decision just once at the start of the
subroutine, moving the decision-making (particularly the branching) out of
the loop.

There are a number of ways to do this.    One is shown in Listing

Abrash/Zen:    Chapter 13/

13-14.    Here, a single branch outside the loop is used to force the test for
inclusion in the lowercase to function also as the test for whether conversion
is desired.    If conversion isn't desired, AH, which normally contains the start
of the lowercase range, is set to 0FFh.    This has the effect of causing the
lowercase test always to fail on the first conditional jump if conversion isn't
desired, just as was the case in Listing 13-13. Consequently, performance
stays just about the same when conversion to uppercase isn't desired.

However, when lowercase conversion is desired, Listing 13-14
performs one less test each time through the loop than does Listing 13-13,
because a separate test to find out whether conversion is desired is no
longer needed.    We've already performed the test for whether conversion is
desired at the start of the subroutine--outside the loop--so the code inside
the loop can sail through the copy-and-convert process at full speed.    The
result is that Listing 13-14 runs in 2.76 ms, significantly faster than Listing
13-13.

In Listing 13-14, we've really only moved the test as to whether
conversion is desired out of the loop in the case where conversion is indeed
desired.    When conversion isn't desired, a branch is still performed every
time through the loop, just as in Listing 13-13.    If we're willing to duplicate a
bit of code, we can also move the branch out of the loop when conversion
isn't desired, as shown in Listing 13-15.    There's a cost in size for this
optimization--7 bytes--but execution time is cut to just 2.35 us, a 29%
improvement over Listing 13-13.

Moreover, Listing 13-15 could easily be speeded up further by

Abrash/Zen:    Chapter 13/

using the word-at-a-time or scas/movs techniques we encountered in
Chapter 11.    Why is it easier to do this to Listing 13-15 than to Listing 13-
13?    It's easier because we've completely separated the instruction
sequences for the two modes of operation of the subroutine, so we have
fewer instructions and simpler code to optimize in whichever case we try to
speed up.

Remember, not all branches are created equal.    If you have a
choice between branching once before a loop and branching once every time
through the loop, it's really like choosing between one branch and dozens or
hundreds (however many times the loop is repeated) of branches.    Even
when it costs a few extra bytes, that's not a particularly hard choice to make,
is it?

DON'T COME CALLING

Jumps aren't the 8088's only branching instructions.    Calls,
returns, and interrupts branch as well.    Interrupts aren't usually repeated
unnecessarily inside loops, although you should try to handle data obtained
through DOS interrupts in large blocks, rather than a character at a time, as
we'll see in the next chapter.

By definition, returns can't be executed repeatedly inside loops,
since a return branches out of a loop back to the calling code.

That leaves calls...and calls in loops are in fact among the great
cycle-wasters of the 8088.

Consider what the call instruction does.    First it pushes the

Abrash/Zen:    Chapter 13/

Instruction Pointer onto the stack, and then it branches. That's like pairing a
push and a jmp--a gruesome prospect from a performance perspective.
Actually, things aren't that bad; the official execution time of call, at 23
cycles, is only 8 cycles longer than that of jmp.    Nonetheless, you should
cast a wary eye on any instruction that takes 23 cycles to execute and
empties the prefetch queue.

The cycles spent executing call aren't the end of the performance
loss associated with calling a subroutine, however. Once you're done with a
subroutine, you have to branch back to the calling code.    The instruction
that does that, ret, takes another 20 cycles and empties the prefetch queue
again.    On balance, then, a subroutine call expends 43 cycles on overhead
operations and empties the prefetch queue not once but twice!

Fine, you say, but what's the alternative?    After all, subroutines
are fundamental to good programming--we can't just do away with them
altogether.

By and large, that's true, but inside time-critical loops there's no
reason why we can't eliminate calls simply by moving the called code into
the loop.    Replacing the subroutine call with a macro is the simplest way to
do this.    For example, suppose that we have a subroutine called
IsPrintable, which tests whether the character in AL is a printable character
(in the range 20h to 7Eh).    Listing 13-16 shows a loop that calls this
subroutine in the process of copying only printable characters from one
string to another string.    Call and all, Listing 13-16 runs in 3.48 ms for the
test string.

Abrash/Zen:    Chapter 13/

Listing 13-17 is functionally identical to Listing 13-16. In Listing
13-17, however, the call to the subroutine IsPrintable has been converted
to the expansion of the macro IS_PRINTABLE, eliminating the call and ret

instructions.    How much difference does that change from call to macro
expansion make?    Listing 13- 17 runs in 2.21 ms, 57% faster than Listing 13-
16.    Listing 13 - 16 spends over one-third of its entire execution time simply
calling IsPrintable and returning from that subroutine!

While the superior performance of Listing 13-17 clearly illustrates
the price paid for subroutine calls, that listing by no means applies all of the
optimizations made possible by the elimination of the calls that plagued
Listing 13-16.    It's true that the macro IS_PRINTABLE eliminates the
subroutine call, but there are still internal branches in IS_PRINTABLE, and
there's still a cmp instruction that sets the Zero flag on success.    In other
words, Listing 13-17 hasn't taken full advantage of moving the code into the
loop; it has simply taken the call and return overhead out of determining
whether a character is printable.

Listing 13-18 does take full advantage of moving the test code
into the loop, by eliminating the macro and thereby eliminating the need to
place a return status in the Zero flag. Instead, Listing 13-18 branches directly
to NotPrintable if a character is found to be non-printable, eliminating the
intermediate conditional jump that Listing 13-17 performed.    It's also no
longer necessary to test the Zero flag to see whether the character is
printable before storing it in the destination array, since any character that
passes the two comparisons for inclusion in the printable range must be

Abrash/Zen:    Chapter 13/

printable.    The upshot is that Listing 13-18 runs in just 1.74 ms, 27% faster
than Listing 13-17 and 100% faster than Listing 13-16.

Listing 13-18 illustrates two useful optimizations in the case
where a character is found to be printable.    First, there's no need to branch
to the bottom of the loop just to branch back to the top of the loop, so Listing
13-18 just branches directly to the top of the loop after storing each printable
character. The same is done when a non-printable character greater than
7Eh is detected.      The point here is that it's fine to branch back to the top of
a loop from multiple places.    Second, there's no way that a printable
character can end a string (zero isn't a printable character), so we don't
bother testing for the terminating zero after storing a printable character;
again, the same is true for non-printable characters greater than 7Eh.    When
you duplicate code, it's not necessary to duplicate any portion of the code
that performs no useful function in the new location.

Whenever you use a subroutine or a macro, you're surrendering
some degree of control over your code in exchange for ease of programming.
In particular, the use of subroutines involves a direct trade-off of decreased
performance for reduced code size and greater modularity.    In general, ease
of programming, reduced code size, and modularity are highly desirable
attributes...but not in time-critical code.

Try to eliminate calls from your tight loops and time- critical code.
If the code called is large, that may not be possible, but then you have to ask
yourself what such a large subroutine is doing in your time-critical code in
the first place.    It may also be beneficial to eliminate macros in time- critical

Abrash/Zen:    Chapter 13/

code.    Whether or not that's the case depends on the nature of the macros,
but at least make sure you understand what code you're really writing.    In
this pursuit, it can be useful to generate a listing file in order to see the code
the assembler is actually generating.

As I mentioned above, there are three objections to moving
subroutines into loops:    size, modularity, and ease of programming.    Let's
quickly address each of these points.

Sure, code gets bigger when you move subroutines into loops:
performance is often a balancing of program size and performance. That's
why you should concentrate on applying the techniques in this chapter (and,
indeed, all the performance-enhancing techniques presented in The Zen of
Assembly Language) to time- critical code, where a few extra bytes can buy
a great many cycles.

On the other hand, code doesn't really have to be less modular
when subroutines are moved into loops.    Macros are just as modular as
subroutines, in the sense that in your code both are one-line entries that
perform a well-defined set of actions. In any case, in discussing moving
subroutine code into loops we're generally talking about moving relatively
few instructions into any given loop, since the call/return overhead becomes
proportionately less significant for longer subroutines (although never
insignificant, if you're really squeezed for cycles). Modularity shouldn't be a
big issue with short instruction sequences.

Finally, as to ease of programming:    if you want easy
programming, program in C or Pascal, or, better yet, COBOL. Assembler

Abrash/Zen:    Chapter 13/

subroutine and macro libraries are fine for run-of-the- mill code, but when it
comes to the high-performance, time- critical parts of your programs, it's
your ability to write the hard assembler code that will set you apart.
Assembler isn't easy, but any competent programmer can eventually get
almost any application to work in assembler.    The Zen of assembler lies not
in making an application work, but in making it work as well as it possibly
can, given the strengths and limitations of the PC.
SMALLER ISN'T ALWAYS BETTER

You've no doubt noticed that this chapter seems to have
repeatedly violated the rule that "smaller is better."    Not so, given the true
meaning of the rule.    "Smaller is better" applies to instruction prefetching,
where fewer bytes to be fetched means less time waiting for instruction
bytes.    Subroutine calls don't fall into this category, even though they
reduce overall program size.

Subroutines merely allow you to run the same instructions from
multiple places in a program.    That reduces program size, since the code
only needs to appear in one place, but there are no fewer bytes to be fetched
on any given call than if the code of the subroutine were to be placed directly
into the calling code.    In fact, instruction fetching becomes more of a
problem with subroutines, since the prefetch queue is emptied twice, and the
call and return instruction bytes must be fetched, as well.

In short, while subroutines are great for reducing program size
and have a host of other virtues as regards program design, modularity, and
maintenance, they don't come under the "smaller is better" rule, and are, in

Abrash/Zen:    Chapter 13/

fact, lousy for performance.    Much the same--smaller is slower--can be said
of branches of many sorts.    Of all the branching instructions, loops are
perhaps the worst "smaller is slower" offender.    We're going to close out this
chapter with a discussion of the potent in-line-code alternative to looping--
yet another way to trade a few bytes for a great many cycles.

loop MAY NOT BE BAD, BUT LORD KNOWS IT'S NOT GOOD:    IN-LINE

CODE

One of the great misconceptions of 8088 programming is that
loop is a good instruction for looping.    It's true that loop is designed
especially for looping.    It's also true that loop is the 8088's best looping
instruction.    But good?

No way.
You see, loop is a branching instruction, and not an especially

fast branching instruction, at that.    The official execution time of loop is 17
cycles, which makes it just 1 cycle faster than the similar construct dec

cx/jnz, although loop is also 1 byte shorter.    Like all branching instructions,
loop empties the prefetch queue, so it is effectively even slower than it
would appear to be.    I don't see how you can call an instruction that takes in
the neighborhood of 20 cycles just to repeat a loop good.    Better than the
obvious alternatives, sure, and pleasantly compact and easy to use if you
don't much care about speed--but not good.

Look at it this way.    Suppose you have a program containing a
loop that zeros the high bit of each byte in a 100-byte array, as shown in

Abrash/Zen:    Chapter 13/

Listing 13-19, which runs in 1023 us.    What percent of that overall execution
time do you suppose this program spends just decrementing CX and
branching back to the top of the loop-- that is, looping?    Ten percent?

No. Twenty percent?
No.
Thirty percent?
No, but you're getting warm...Listing 13-19 spends forty - five

percent of the total execution time looping.    (That figure was arrived at by
comparing the execution time of Listing 13-20, which uses no branches and
which we'll get to shortly, to the execution time of Listing 13-19.)    Yes, you
read that correctly-- in a loop which accesses memory twice and which
contains a second instruction in addition to the memory-accessing
instruction, loop manages to take nearly one-half of the total execution time.
Appalling?

You bet.
Still, while loop may not be much faster than other branching

instructions, it is nonetheless somewhat faster, and it's also more compact.
We know we're losing a great deal of performance to the 8088's abysmal
branching speed, but there doesn't seem to be much we can do about it.

But of course there is something we can do, as is almost always
the case with the 8088.    Let's look at exactly what loop is used for, and then
let's see if we can produce the same functionality in a different way.

Well, loop is used to repeat a given sequence of instructions
multiple times...and that's about all.    What can we do with that job

Abrash/Zen:    Chapter 13/

description?
Heck, that's easy.    We'll eliminate branching and loop counting

entirely by literally repeating the instructions, as shown in Figure 13-10.
Instead of using loop to execute the same code, say, 10 times, we'll just line
up 10 repetitions of the code inside the loop, and then execute the 10
repetitions one after another.    This is known as in-line code, because the
repetitions of the code are lined up in order rather than being separated by
branches.    (In-line code is sometimes used to refer to subroutine code that's
brought into the main code, eliminating a call, a technique we discussed in
the last section.    However, I'm going to use the phrase "in-line code" only to
refer to code that's repeated by assembling multiple instances and running
them back-to-back rather than in a loop.)
 Listing 13-20 shows in-line code used to speed up Listing 13-19.
The loop instruction is gone, replaced with a rept directive that creates 100
back-to-back instances of the code inside the loop of Listing 13-19.    The
performance improvement is dramatic:    Listing 13-20 runs in 557 us, more
than 83% faster than Listing 13-19.

Often-enormous improvement in performance is the good news
about in-line code.    Often-enormous increase in code size-- depending on
the number of repetitions and the amount of code in the loop--is the bad
news.    Listing 13-20 is nearly 300 bytes larger than Listing 13-19.    On the
other hand, we're talking about nearly doubling performance by adding
those extra bytes. Yes, once again we've encountered the trade-off between
bytes and cycles that pops up so often when we set out to improve

Abrash/Zen:    Chapter 13/

performance:    in-line code can be used to speed up just about any loop, but
the cost in bytes ranges from modest to prohibitively high.    Still, when you
need flat-out performance, in-line code is a tried and true way to get a
sizable performance boost.

In-line code has another benefit beside eliminating branching.
When in-line code is used, CX (or whatever register would otherwise have
been used as a loop counter) is freed up. An extra 16-bit register is always
welcome in high-performance code.

You may well object at this point that in-line code is fine when the
number of repetitions of a loop is known in advance and is always the same,
but how often is that the case?    Not all that often, I admit, but it does
happen.    For example, think back to our animation examples in Chapter 11.
The example that used exclusive-or-based animation looped once for each
word exclusive- ored into display memory, and always drew the same
number of words per line.    That sounds like an excellent candidate for in-
line code, and in fact it is.

Listing 13-21 shows the XorImage subroutine from Listing 11- 33
revised to use in-line code to draw each line without branching.    Instead, the
four instructions that draw the four words of the image are duplicated four
times, in order to draw a whole line at a time.    This frees up not only CX but
also BP, which in Listing 11-33 was used to reload the number of words per
line each time through the loop.    That has a ripple effect which lets us avoid
using BX, saving a push and a pop, and also allows us to store the offset
from odd lines to even lines in a register for added speed.

Abrash/Zen:    Chapter 13/

The net effect of the in-line code in Listing 13-21 is far from
trivial.    When this version of XorImage is substituted for the version in
Listing 11-33, execution time drops from 30.29 seconds to 24.21 seconds, a
25% improvement in overall performance.    Put another way, the loop

instructions in the two loops that draw the even and odd lines in Listing 11-
33 take up about one out of every five cycles that the entire program uses!
Bear in mind that we're not talking now about a program that zeros the high
bits of bytes in three-instruction loops; we're talking about a program that
performs complex animation and accesses display memory heavily...in other
words, a program that does many time-consuming things besides looping.

To drive the point home, let's modify Listing 11-34 to use in-line
code, as well.    Listing 11-34 uses rep movsw to draw each line, so there are
no branches to get rid of during line drawing, and consequently no way to
put in-line code to work there.    There is, however, a loop that's used to
repeat the drawing of each pair of rows in the image.    That's not nearly so
intensive a loop as the line-drawing loop was in Listing 11-33; instead of
being repeated once for every word that's drawn, it's repeated just once
every two lines, or 10 words.

Nonetheless, when the in-line version of BlockDrawImage

shown in Listing 13-22 is substituted for the version in Listing 11-34, overall
execution time drops from 10.35 seconds to 9.69 seconds, an improvement
of nearly 7%.    Not earthshaking--but in demanding applications such as
animation, where every cycle counts, it's certainly worth expending a few
hundred extra bytes to get that extra speed.

Abrash/Zen:    Chapter 13/

The 7% improvement we got with Listing 13-22 is more
impressive when you consider that the bulk of the work in Listing 11-34 is
done with rep movsw.    If you take a moment to contemplate the
knowledge that 7% of overall execution time in Listing 11-34 is used by just
20 dec dx/jnz pairs per image draw (and remember that cycle-eating
display memory is accessed 400 times for every 20 dec dx/jnz pairs
executed), you'll probably reach the conclusion that loop really isn't a very
good instruction for high-performance looping.

And you'll be right.

BRANCHED-TO IN-LINE CODE:    FLEXIBILITY NEEDED AND FOUND

What we've just seen is "pure" in-line code, where a loop that's
always repeated a fixed number of times is converted to in-line code by
simply repeating the contents of the loop however many times the loop was
repeated.    The above animation examples notwithstanding, pure in-line code
isn't used very often.    Why? Because loops rarely repeat a fixed number of
times, and pure in- line code isn't flexible enough to handle a variable
number of repetitions.    With pure in-line code, if you put five repetitions of a
loop in-line, you'll always get five repetitions, no more and no less.    Most
looping applications demand more flexibility than that.

As it turns out, however, it's no great trick to modify pure in-line
code to replace loops that repeat a variable number of times, so long as you
know the maximum number of times you'll ever want to repeat the loop.
The basic concept is shown in Figure 13-11.    The loop code is repeated in-

Abrash/Zen:    Chapter 13/

line as many times as the maximum possible number of loop repetitions.
Then the specified repetition count is used to jump right into the in- line code
at the distance from the end of the in-line code that will produce the desired
number of repetitions.    This mechanism, known as branched-to in-line code,
is almost startlingly simple, but powerful nonetheless.

Let's convert the in-line code example of Listing 13-20 to use
branched-to in-line code.    Listing 13-23 shows this implementation.    First,
in-line code to support up to the maximum possible number of repetitions (in
this case, 200) is created with rept.    Then the start offset in the in-line code
that will result in the desired number of repetitions is calculated, by
multiplying the number of instruction bytes per repetition by the desired
number of repetitions, and subtracting the result from the offset of the end of
the table.    As a result, Listing 13-23 can handle any number of repetitions
between 0 and 200, and does so with just one branch, the jmp cx that
branches into the in- line code.

The performance price for the flexibility of Listing 13-23 is small;
the code runs in 584 us, just 27 us slower than Listing 13-20.    Moreover,
Listing 13-23 could be speeded up a bit by multiplying by 3 with a shift-and-
add sequence rather than the notoriously slow mul instruction; I used mul in
order to illustrate the general case and because I didn't want to obscure the
workings of branched-to in-line code.

Branched-to in-line code retains almost all of the performance
advantages of in-line code, without the inflexibility.    Branched-to in-line code
does everything loop does, and does it without branching inside the loop.

Abrash/Zen:    Chapter 13/

Branched-to in-line code is sort of the poor man's rep, capable of repeating
any instruction or sequence of instructions without branching, just as rep

does for string instructions.    It's true that branched-to in-line code doesn't
really eliminate the prefetch- queue cycle-eater as rep does, since each
instruction byte in branched-to in-line code must still be fetched.    On the
other hand, it's also true that branched-to in-line code eliminates the
constant prefetch-queue flushing of loop, and that's all to the good.

In short, branched-to in-line code allows repetitive processing
based on non-string instructions to approach its performance limits on the
8088 by eliminating branching, thereby doing away with not only the time
required to branch but also the nasty prefetch-queue effects of branching.
When you need flat- out speed for repetitive tasks, branched-to in-line code
is often a good bet.

That's not to say that branched-to in-line code is perfect. The
hitch is that you must allow for the maximum number of repetitions when
setting up branched-to in-line code.    If you're performing checksums on data
blocks no larger than 64 bytes, the maximum size is no problem, but if you're
working with large arrays, the maximum size can easily be either unknown or
so large that the resulting in-line code would simply be too large to use. For
example, the in-line code in Listing 13-23 is 600 bytes long, and would swell
to 60,000 bytes long if the maximum number of repetitions were 20,000
rather than 200.    In-line code can also become too large to be practical after
just a few repetitions if the code to be repeated is lengthy.    Finally, lengthy
branched-to in-line code isn't well-suited for tasks such as scanning arrays,

Abrash/Zen:    Chapter 13/

since the in-line code can easily be too long to allow the 1-byte
displacements of conditional jumps to branch out of the in-line code when a
match is found.

Clearly, branched-to in-line code is not the ideal solution for all
situations.    Branched-to in-line code is great if both the maximum number of
repetitions and the code to be repeated are small, or if performance is so
important that you're willing to expend a great many bytes to speed up your
code.    For applications that don't fit within those parameters, however, a still
more flexible in-line solution is needed.

Which brings us to partial in-line code.

PARTIAL IN-LINE CODE

Partial in-line code is a hybrid of normal looping and pure in-line
code.    Partial in-line code performs a few repetitions back-to-back without
branching, as in-line code does, and then loops.    As such, partial in-line code
offers much of the performance improvement of in-line code, along with
much of the compactness of normal loops.    While partial in-line code isn't as
fast as pure or branched-to in-line code, it's still fast, and because it's
relatively compact, it overcomes most of the size- related objections to in-
line code.

Let's go back to our familiar example of zeroing the high bit of
each byte in an array to see partial in-line code in action.    In Listing 13-19
we saw this example implemented with a loop, in Listing 13-20 we saw it
implemented with pure in-line code, and in Listing 13-23 we saw it

Abrash/Zen:    Chapter 13/

implemented with branched-to in-line code.    Listing 13-24 shows yet another
version, this time using partial in-line code.

The key to Listing 13-24 is that it performs four in-line bit-clears,
then loops.    This means that Listing 13-24 loops just once for every four bits
cleared.    While that means that Listing 13-24 still branches 25 times, that's
75 times fewer than the loop-only version, Listing 13-19, certainly a vast
improvement. And while the ClearHighBits subroutine is 13 bytes larger in
Listing 13-24 than in Listing 13-19, it's nearly 300 bytes smaller than in the
pure in-line version, Listing 13-20.    If Listing 13-24 can run anywhere near as
fast as Listing 13-20, it'll be a winner.

Listing 13-24 is indeed a winner, running in 688 us.    That's
certainly slower than pure in-line code--Listing 13-20 is about 24% faster--but
it's a whole lot faster than pure looping. Listing 13-24 outperforms Listing 13-
19 by close to 50%--at a cost of just 13 bytes.    That's a terrific return for the
extra bytes expended, proportionally much better than the 83%
improvement Listing 13-20 brings at a cost of 295 bytes.    To put it another
way, in this example the performance improvement of partial in-line code
over pure looping is about 49%, at a cost of 13 bytes, while the improvement
of pure in-line code over partial in-line code is only 24%, at a cost of 282
bytes.

If you need absolute maximum speed, in-line code is the
ticket...but partial in-line code offers similar performance improvements in a
far more generally usable form.    If size is your driving concern, then loop is
the way to go.

Abrash/Zen:    Chapter 13/

As always, no one approach is perfect in all situations. The three
approaches to handling repetitive code that we've discussed--in-line code,
partial in-line code, and looping--give you a solid set of tools to use for
handling repetitive tasks, but it's up to you to evaluate the trade-offs
between performance, size, and program complexity and then select the
proper techniques for your particular applications.    There are no easy
answers in top-notch assembler programming--but at least now you have a
set of tools with which to craft good solutions.

There are many, many ways to use in-line code.    We've seen
some already, we'll see more over the remainder of this chapter, and you'll
surely discover others yourself.    Whenever you must loop in time-critical
code, take a moment to see if you can't use in-line code in one of its many
forms instead.

The rewards can be rich indeed.

PARTIAL IN-LINE CODE:    LIMITATIONS AND WORKAROUNDS

The partial in-line code implementation in Listing 13-24 is
somewhat more flexible than the pure in-line code implementation in Listing
13-20, but not by much.    The partial in-line code in Listing 13-24 is capable
of handling only repetition counts that happen to be multiples of four, since
four repetitions are performed each time through the loop.    That's fine for
repetitive tasks that always involve repetition counts that happen to be
multiples of four; unfortunately, such tasks are the exception rather than the
rule.    In order to be generally useful, partial in-line code must be able to

Abrash/Zen:    Chapter 13/

support any number of repetitions at all.
As it turns out, that's not a problem.    The flexibility of branched-

to in-line code can easily be coupled with the compact size of partial in-line
code.    As an example, let's modify the branched-to in-line code of Listing 13-
23 to use partial in-line code.

The basic principle when branching into partial in-line code is
similar to that for standard branched-to in-line code.    The key is still to
branch to the location in the in-line code from which the desired number of
repetitions will occur.    The difference with branched-to partial in-line code is
that the branching-to process only needs to handle any odd repetitions that
can't be handled by a full loop, as shown in Figure 13-12. In other words, if
partial in-line code performs n repetitions per loop and we want to perform m
repetitions, the branching-to process only needs to handle m modulo n
repetitions.

For example, if we want to perform 15 repetitions with partial in-
line code that performs 4 repetitions per loop, we need to branch so as to
perform the first 15 modulo 4 = 3 repetitions during the first, partial pass
through the loop. After that, 3 full passes through the loop will handle the
other 12 repetitions.

Listing 13-25, a branched-to partial in-line code version of our
familiar bit-clearing example, should help to make this clear.    The version of
ClearHighBits in Listing 13-25 first calculates the number of repetitions
modulo 4.    Since each pass through the loop performs 4 repetitions, the
number of repetitions modulo 4 is the number of repetitions to be performed

Abrash/Zen:    Chapter 13/

on the first, partial pass through the loop in order to handle repetition counts
that aren't multiples of 4.    Listing 13-25 then uses this value to calculate the
offset in the partial in-line code to branch to in order to cause the correct
number of repetitions to occur on that first pass.

Incidentally, multiplication by 3 in Listing 13-25 is performed not
with mul, but with a much faster shift-and-add sequence.    As we mentioned
earlier, the same could have been done in Listing 13-23, but mul was used
there in order to handle the general case and avoid obscuring the mechanics
of the branching- to process.    In the next chapter we'll see a jump-table-
based approach that does away with the calculation of the target offset in
the in-line code entirely, in favor of simply looking up the target address.

Next, Listing 13-25 divides the repetition count by 4, since 4
repetitions are performed each time through the loop.    That value must then
be incremented to account for the first pass through the loop--and that's it!
All we need do is branch to the correct location in the partial in-line code and
let it rip.    And rip it does, with Listing 13-25 running in just 713 us.    Yes, that
is indeed considerably slower than the 584 us time of the branched-to in-line
code of Listing 13-23, but it's much faster than the 1023 us of Listing 13-19.
Then, too, Listing 13-25 is only 32 bytes larger than Listing 13-19, while
Listing 13-23 is more than 600 bytes larger.

Listing 13-25, the branched-to partial in-line code, has an
additional advantage over Listing 13-23, the branched-to in-line code, and
that's the ability to handle an array of any size up to 64 K-1.    With in-line
code, the largest number of repetitions that can be handled is determined by

Abrash/Zen:    Chapter 13/

the number of times the code is physically repeated.    Partial in-line code
suffers from no such restriction, since it loops periodically.    In fact, branched-
to partial in-line code implementations can handle any case normal loops can
handle, tend to be only a little larger, and are much faster for all but very
small repetition counts. Listing 13-25 itself isn't quite equivalent to a
loop-based loop.    Given an initial count of zero, loop performs 64 K
repetitions, while Listing 13-25 performs 0 repetitions in the same case.
That's not necessarily a disadvantage; loop-based loops are often preceded
with jcxz in order to cause zero counts to produce 0 repetitions.    However,
Listing 13-25 can easily be modified to treat an initial count of zero as 64 K; I
chose to perform 0 repetitions given a zero count in Listing 13-25 only
because it made for code that was easier to explain and understand.    Listing
13-26 shows the ClearHighBits subroutine of Listing 13-25 modified to
perform 64 K repetitions given an initial count of zero.

It's worth noting that the inc ax in Listing 13-26 could be
eliminated if the line:

mov dx,offset InLineBitClearEnd

were changed to:

mov dx,offset InLineBitClearEnd-3

Abrash/Zen:    Chapter 13/

This change has no effect on overall functionality, because the net effect of
inc ax in Listing 13-26 is merely to subtract 3 from the offset of the end of
the partial in-line code.    I omitted this optimization in the interests of making
Listing 13- 26 comprehensible, but as a general practice arithmetic should be
performed at assembly time rather than at run time whenever possible.

By the way, there's nothing special about using 4 repetitions in
partial in-line code.    8 repetitions or even 16 could serve as well, and, in
fact, speed increases as the number of partial in-line repetitions increases.
However, size increases proportionately as well, offsetting part of the
advantage of using partial in-line code.    Partial in-line code using 4
repetitions strikes a nice balance between size and speed, eliminating 75%
of the branches without adding too many instruction bytes.

PARTIAL IN-LINE CODE AND STRINGS:    A GOOD MATCH

One case in which the poor repetition granularity of partial in-line
code (that is, the inability of partial in-line loops to deal unaided with
repetition counts that aren't exact multiples of the number of repetitions per
partial in-line loop) causes no trouble at all is in handling zero-terminated
strings.    Since there is no preset repetition count for processing such strings,
it doesn't matter in the least that the lengths of the strings won't always be
multiples of the number of repetitions in a single partial in-line loop.    When
handling zero-terminated strings, it doesn't matter if the terminating
condition occurs at the start of partial in-line code, the end, or somewhere in-
between, since a conditional jump will branch out equally well from

Abrash/Zen:    Chapter 13/

anywhere in partial in-line code.    As a result, there's no need to branch into
partial in-line code when handling zero- terminated strings.

As usual, an example is the best explanation.    Back in Listing 11-
25, we used lodsw and scasw inside a loop to find the first difference
between two zero-terminated strings.    We used word- rather than byte-sized
string instructions to speed processing; interestingly, much of the
improvement came not from accessing memory a word at a time but rather
from cutting the number of loops in half, since two bytes were processed per
loop. We're going to use partial in-line code to speed up Listing 11-25 further
by eliminating still more branches.

Listing 13-27 is our partial in-line version of Listing 11- 25.    I've
chosen a repetition granularity of 8 repetitions per loop both for speed and to
show you that granularities other than 4 can be used.    There's no need to
add code to branch into the partial in-line code, since there's no repetition
count for a zero-terminated string.    Note that I've separated the eighth
repetition of the partial in-line code from the first seven, so that the eighth
repetition can jump directly back to the top of the loop if it doesn't find the
terminating zero.    If I lumped all 8 repetitions together in a rept block, an
unconditional jump would have to follow the partial in-line code in order to
branch back to the top of the loop.    While that would work, it would result in
a conditional jump/unconditional jump pair...and well we know to steer clear
of those when we're striving for top performance. Listing 13-27 runs in
278 us, 10% faster than Listing 11-25. Considering how heavily optimized
Listing 11-25 already was, what with the use of word-sized string

Abrash/Zen:    Chapter 13/

instructions, that's a healthy improvement.    What's more, Listing 13-27 isn't
markedly more complicated than Listing 11-25; actually, the only difference
is that the contents of the loop are repeated 8 times rather than once.

As you can see, partial in-line code is ideal for the handling of
zero-terminated strings.    Once again, partial in-line code is a poor man's
rep; in fact, in string and similar applications, you might think of partial in-
line code as a substitute for the sorely-missed rep prefix for the flexible but
slow lods/stos and lods/scas instruction pairs.

LABELS AND IN-LINE CODE

That just about does it for our discussion of in-line code. However,
there's one more in-line code item we need to discuss, and that's the use of
labels in in-line code.

Suppose that for some reason you need to use a label somewhere
inside in-line code.    For example, consider the following:

rept 4
lodsb
cmp al,'a'
jb NotUppercase
cmp al,'z'
ja NotUppercase
and al,not 20h

NotUppercase:
stosb
endm

In this example, the label NotUppercase is inside in-line code used to
convert 4 characters in a row to uppercase.    While the code seems simple
enough, it nonetheless has one serious problem:

Abrash/Zen:    Chapter 13/

It won't assemble.
Why is that?    The problem is that the line defining the label is

inside a rept block, so it's literally assembled multiple times.    As it would at
any time, MASM complains when asked to define two labels with the same
name.

The solution should be straightforward:    declare the label local to
the rept block with the local directive, which exists for just such
emergencies.    For example, the following code should do the trick:

rept 4
local NotUppercase
lodsb
cmp al,'a'
jb NotUppercase
cmp al,'z'
ja NotUppercase
and al,not 20h

NotUppercase:
stosb
endm

It should--but it doesn't, at least not with MASM 5.0.    While the local

directive does indeed solve our problem when assembled with TASM, it just
doesn't work correctly when assembled with MASM 5.0.    There's no use
asking why--the bugs and quirks of MASM are just a fact of life in assembler
programming.

So, what's the solution to our local label problem when using
MASM?    One possibility is counting bytes and jumping relative to the
program counter, as in:

rept 4

Abrash/Zen:    Chapter 13/

lodsb
cmp al,'a'
jb $+8
cmp al,'z'
ja $+4
and al,not 20h
stosb
endm

It's not elegant, but it does work.    Another possibility is defining a macro
that contains the code in the rept block, since local does work in macros.
For example, the following assembles properly under MASM 5.0:

MAKE_UPPER macro
local NotUppercase
lodsb
cmp al,'a'
jb NotUppercase
cmp al,'z'
ja NotUppercase
and al,not 20h

NotUppercase:
stosb
endm
:

rept 4
MAKE_UPPER
endm

A NOTE ON SELF-MODIFYING CODE

Just so you won't think I've forgotten about it, let's briefly discuss
self-modifying code.    For those of you unfamiliar with this demon of modern
programming, self-modifying code is a once-popular coding technique
whereby a program modifies its own code--changes its own instruction
bytes--on the fly in order to alter its operation without the need for tests and
branches. (Remember how back in Chapter 3 we learned that code is just
one kind of data?    Self-modifying code is a logical extension of that concept.)

Abrash/Zen:    Chapter 13/

Nowadays, self-modifying code is strongly frowned- upon, on the grounds
that it makes for hard-to-follow, hard-to debug programs.

"Frowned upon, eh?" you think.    "Sounds like fertile ground for a
little Zen programming, doesn't it?"    Yes, it does. Nonetheless, I don't
recommend that you use self-modifying code, at least not self-modifying
code in the classic sense.    Not because it's frowned-upon, of course, but
rather because I haven't encountered any cases where in-line code, look-up
tables, jump vectors, jumping through a register or some other 8088
technique didn't serve just about as well as self-modifying code.

Granted, there may be a small advantage to, say, directly
modifying the displacement in a jmp instruction rather than jumping to the
address stored in a word-sized memory variable, but in-line code really is
hard to debug and follow, and is hard to write, as well (consider the
complexities of simply calculating a jump displacement).    I haven't seen
cases where in- line code brings the sort of significant performance
improvement that would justify its drawbacks.    That's not to say such cases
don't exist; I'm sure they do.    I just haven't encountered them.

Self-modifying code has an additional strike against it in the form
of the prefetch queue.    If you modify an instruction byte after it's been
fetched by the Bus Interface Unit, it's the original, unmodified byte that's
executed, since that's the byte that the 8088 read.    That's particularly
troublesome because the various members of the 8086 family have prefetch
queues of differing lengths, so self-modifying code that works on the PC
might not work at all on an AT or a Model 80.    A branch always empties the

Abrash/Zen:    Chapter 13/

prefetch queue and forces it to reload, but even that might not be true with
future 8086-family processors.

To sum up, my experience is that in the context of the 8086
family, self-modifying code offers at best small performance improvements,
coupled with significant risk and other drawbacks. That's not the case with
some other processors, especially those with less-rich instruction sets and no
prefetch queue.    However, The Zen of Assembly Language is concerned only
with the 8086 family, and in that context my final word on self-modifying
code of the sort we've been discussing is:

Why bother?
On the other hand, I've only been discussing self-modifying code

in the classic sense, where individual instructions are altered.    For instance,
the operand to cmp al,immed8 might be modified to change an inclusion
range; in such a case, why not just use cmp al,reg and load the new range
bound into the appropriate register?    It's simpler, easier to follow, and
actually slightly faster.

There's another sort of self-modifying code, however, that
operates on a grander scale.    Consider a program that uses code overlays.
Code is swapped in from disk to memory and then executed; obviously the
instruction bytes in the overlay region are changed, so that's self-modifying
code.    Or consider a program that builds custom code for a special, complex
purpose in a buffer and then executes the generated code; that's self-
modifying code as well.    Some programs are built out of loosely- coupled,
relocatable blocks of code residing in a heap under a memory manager, with

Abrash/Zen:    Chapter 13/

the blocks moved around memory and to and from disk as they're needed;
that's certainly self-modifying code, in the sense that the instructions stored
at particular memory locations change constantly.    Finally, loadable drivers,
such as graphics drivers for many windowing environments, are self-
modifying code of a sort, since they are loaded as data from the disk into
memory by the driver-based program and then executed.

My point is that you shouldn't think of code as immovable and
unchangeable.    I've found that it's not worth the trouble and risk to modify
individual instructions, but in large or complex programs it can be most
worthwhile to treat blocks of code as if they were data.    The topic is a large
one, and this is not the place to explore it, but always keep in mind that even
if self- modifying code in its classic sense isn't a great idea on the 8088, the
notion that code is just another sort of data is a powerful and perfectly valid
concept.

CONCLUSION

Who would have thought that not-branching could offer such
variety, to say nothing of such substantial performance improvements?
You'll find that not-branching is an excellent exercise for developing your
assembler skills, requiring as it does a complete understanding of what your
code needs to do, thorough knowledge of the 8088 instruction set, the ability
to approach programming problems in non-intuitive ways, knowledge as to
when the effort involved in not-branching is justified by the return, and a
balancing of relative importance of saving bytes and cycles in a given

Abrash/Zen:    Chapter 13/

application.
In other words, not-branching is a perfect Zen exercise. Practice it

often and well!

