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Chapter 12:    Don't Jump!

Don't jump!
Sounds  crazy,  doesn't  it?      After  all,  a  computer  is  at  heart  a

decision-making machine that decides by branching, and any programmer
worth his salt knows that jumps, calls, interrupts, and loops are integral to
any program of substance.    I've led you into some mighty strange places,
including unlikely string instruction applications and implausible regions of
the 8088's  instruction  set,  to  say  nothing of  the  scarcely-comprehensible
cycle-eaters.    Is it possible that I've finally tipped over the edge into sheer
lunacy?

No such luck--I'm merely indulging in a bit of overstatement in a
good cause.    Of course you'll need to branch...but since branching is slow--
make that very slow--on the 8088, you'll want to branch as little as possible.
If you're clever, you can often manage to eliminate virtually all branching in
the most time- critical portions of your code.    Sometimes avoiding branching
is  merely a matter of  rearranging code,  and sometimes it  involves a few
extra bytes and some unusual code.    Either way, code that's branch-free (or
nearly so) is one key to high performance.

This business of avoiding branching--a term which covers jumps,
subroutine calls, subroutine returns, and interrupts--is as much a matter of
the flexible mind as of pure knowledge.    You may have noticed that in recent
chapters we've discussed ways to use instructions more effectively as much
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as we've discussed the instructions themselves.    For example, much of the
last  chapter  was  about  how  to  put  the  string  instructions  to  work  in
unorthodox but effective ways, not about how the string instructions work
per se.    It's inevitable that as we've accumulated a broad base of knowledge
about  the  8088  and  gained  a  better  sense  of  how  to  approach  high-
performance  coding,  we've  developed  an  itch  to  put  that  hard-won
knowledge to work in developing superior code.    That's the flexible mind,
and we'll see plenty of it over the next three chapters.     Ultimately, we're
building  toward  Volume  II,  which  will  focus  on  the  flexible  mind  and
implementation.

This  chapter  is  emphatically  not going to  be a  comprehensive
discussion of all the ways to branch on the 8088.    I started this book with
the assumption that you were already familiar with assembly language, and
we've spent many pages since then expanding your assembler knowledge.
Chapter  6  discussed  the  flags  that  are  tested  by  the  various  conditional
jumps,  and  the  last  chapter  used  branching  instructions  in  a  variety  of
situations.    By now I trust you know that jz branches if the zero flag is set to
1, and that call pushes the address of the next instruction on the stack and
branches to the specified destination.    If not, get a good reference book and
study the various branching instructions carefully.      There's nothing Zen in
their functionality--they do what they're advertised to do, and that's that.

On the other hand, there is  much Zen in the way the various
branching  instructions  perform.      In  Chapter  13  we'll  talk  about  ways  to
branch as little as possible, and in Chapter 14 we'll talk about ways to make
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branches perform as well as possible when you must use them.    Right now,
let's find out why it is that branching as little as possible is a desirable goal.

HOW SLOW IS IT?

We want to avoid branching for one simple reason:    it's slow.    It's
not  that there's  anything inherently  slow about  branching;  branching just
happens  to  suffer  from a  slow  implementation  on  the  8088.      Even  the
venerable Z80 branches about 50% faster than the 8088.

So how slow is branching on the 8088?    Well, the answer varies
from one type of branch to another, so let's pick a commonly-used jump--
say,  jmp--and see what we find.    The official execution time of  jmp is 15
cycles.      Listing  12-1,  which  measures  the  performance  of  1000  jmp

instructions in a row, reports that jmp actually takes 3.77 us (18 cycles) to
execute.    (Listing 12-1 actually uses jmp short rather than jmp, since the
jumps don't cover much distance.    We'll discuss the distinction between the
two in a little while.)

18 cycles is a long time in anybody's book...long enough to copy
a byte from one memory location to another and increment both SI and DI
with movsb, long enough to add two 32-bit values together, long enough to
increment a 16-bit register at least 4 times.    How could it possibly take the
8088 so long just to load a value into the Instruction Pointer?    (Think about
it--all a branch really consists of is setting IP, and sometimes CS as well, to
point to the desired instruction.)    Well, let's round up the usual suspects--the
cycle eaters--and figure out what's going on.      In the process, we'll  surely
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acquire  some knowledge  that  we  can  put  to  good  use  in  creating  high-
performance code.

BRANCHING AND CALCULATION OF THE TARGET ADDRESS

Of the 18 cycles  jmp takes to execute in Listing 12-1, 4 cycles
seem to  be  used  to  calculate  the  target  offset.      I  can't  state  this  with
absolute  certainty,  since  Intel  doesn't  make  the  inner  workings  of  its
instructions public, but it's most likely true.    You see, most of the 8088's jmp

instructions  don't  have  the  form "load  the  Instruction  Pointer  with  offset
xxxx," where the jmp instruction specifies the exact offset to branch to. (This
sort of jump is known as an absolute branch, since the destination offset is
specified as a fixed, or absolute offset in the code segment.     Figure 12-1
shows one of the few jump instructions that does use absolute branching.)
Rather, most of the 8088's jmp instructions have the form "add nnnn to the
contents of the Instruction Pointer," where the byte or word following the
jmp opcode specifies the distance from the current IP to the offset to branch
to, as shown in Figure 12-2.

Jumps that use displacements are known as  relative branches,
since the destination offset is specified relative to the offset of the current
instruction.      Relative  branches  are  actually  performed  by  adding  a
displacement to the value in the Instruction Pointer, and there's a bit of a
trick there.

By the time a relative branching instruction actually gets around
to branching, the IP points to the byte after the last byte of the instruction,
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since the IP has already been used to read in all the bytes of the branching
instruction and has advanced to point to the next instruction.    As shown in
Figure 12-2, relative branches work by adding a displacement to the IP after
it has advanced to point to the byte after the branching instruction,  not by
adding a displacement to the offset of the branching instruction itself.

So,  to  sum  up,  most  jmp instructions  contain  a  field  which
specifies a displacement from the current IP to the target address, rather
than a field which specifies the target address directly.     (Jumps that  don't
use relative branching include jmp reg16,  jmp mem16, and all far jumps.
All conditional jumps use relative branching.)

There are definite advantages to the use of relative rather than
absolute  branches.      First,  code  that  uses  relative  branching  will  work
properly  no  matter  where  in  memory  it  is  loaded,  since  relative  branch
destinations aren't tied to specific memory offsets.      If  a block of  code is
moved to another area of memory, the relative displacements between the
instructions remain the same, and so relative branching instructions will still
work properly.      This property makes relative branches useful in any code
that must be moved about in memory, although by and large such code isn't
needed very often.

Second (and more important), when relative branches are used,
any branch whose target is within -128 to +127 bytes of the byte after the
end of the branching instruction can be specified in a more compact form,
with a 1-byte rather than 1-word displacement,  as shown in  Figure 12-3.
The key, of course, is that -128 to +127 decimal is equivalent to 0FF80h to
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007Fh hexadecimal, which is the range of values that can be specified with a
single signed byte.    The short jumps to which I referred earlier are such 1-
byte-displacement short branches, in contrast to normal jumps, which use
full  2-byte  displacements.      The  smaller  displacement  allows  short  jump
instructions to squeeze into 2 bytes, 1 byte less than a normal jump.

By definition,  then, short  branches take 1 less instruction byte
than normal relative branches.    The tradeoff is that short jumps can only
reach offsets within the aforementioned 256- address range,  while the 1-
word displacement of normal branches allows them to reach any offset in the
current code segment.

Since  most  branches  are  in  fact  to  nearby  addresses,  the
availability of short (1 displacement byte) branches can produce significant
savings in code size.    In fact, the 8088's conditional jumps can only use 1-
byte  displacements,  and  while  that's  sometimes  a  nuisance  when  long
conditional jumps need to be made, it does indeed help to keep code size
down. There's  also  a  definite  disadvantage  to  the  use  of  relative
branches, and it's the usual drawback:     speed, or rather the lack thereof.
Adding a jump displacement to the Instruction Pointer is similar to adding a
constant value to a register, a task which takes the 8088 4 cycles.    By all
appearances,  it  takes  the  8088 about  the  same 4 cycles  to  add a  jump
displacement to the Instruction Pointer.    Indeed, although there's no way to
be sure exactly what's going on inside the 8088 during a jmp, it does make
sense that the 8088 would use the same internal logic to add a constant to a
register no matter whether the instruction causing the addition is a jmp or
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an add.
What's the evidence that the 8088 takes about 4 cycles to add a

displacement to IP?     Item 1:      jmp  reg16, an instruction which branches
directly to the offset (not displacement) stored in a register, executes in just
11  cycles,  4  cycles  faster  than  a  normal  jmp.      Item  2:      jmp

segment:offset,  the 8088's far jump that loads both CS and IP at once,
executes at the same 15- cycles-per-execution speed as  jmp.    While a far
jump  requires  that  CS  be  loaded,  it  doesn't  involve  any  displacement
arithmetic.      The  addition  of  the  displacement  to  IP  pretty  clearly  takes
longer than simply loading an offset into IP; otherwise it seems that a near
jump would have to be faster than a far jump, by virtue of not having to load
CS.

By the way, in this one instance it's acceptable to speculate on
the  basis  on  official  execution  times  rather  than  on  the  basis  of  times
reported by the Zen timer.     Why?    Because we're theorizing as to what's
going on inside the 8088, and that's most accurately reflected by the official
execution times, which ignore external data bus activity.    Actual execution
times include instruction fetching time, and since far jumps are 2 to 3 bytes
longer than near jumps, the prefetch queue cycle-eater would obscure the
comparison between the internal operations of near versus far jumps that
we're  trying to  make.      However,  when it  comes to  evaluating real  code
performance,  as  opposed  to  speculating  about  the  8088's  internal
operations, you should always measure with the Zen timer.

Near  subroutine  calls  (except  call  reg16)  also  use



Abrash/Zen:    Chapter 12/

displacements, and, like near jumps, near calls seem to spend several cycles
performing displacement arithmetic.    On the other hand, return instructions,
which pop into IP offsets previously pushed on the stack by calls,  do not
perform displacement arithmetic, nor do far calls.    Interrupts don't perform
displacement arithmetic either; as we will see, however, interrupts have their
own performance problems.

Displacement arithmetic accounts for about 4 of the 18 cycles
jmp takes to execute.      That leaves 14 cycles,  still  an awfully long time.
What else is jmp doing to keep itself busy?

BRANCHING AND THE PREFETCH QUEUE

Since the actual execution time of jmp in Listing 12-1 is 3 cycles
longer than its official execution time, one or more of the cycle-eaters must
be taking those cycles.    If past experience is any guide, it's a pretty good
bet that the prefetch queue cycle-eater is rearing its ugly head once again.
The DRAM refresh cycle-eater may also be taking some cycles (it  usually
does), but the 20% discrepancy between the official and actual execution
times is far too large to be explained by DRAM refresh alone.    In any case,
let's measure the execution time of jmp with imul instructions interspersed
so  that  the  prefetch  queue  is  full  when  it  comes  time  for  each  jmp to
execute.

First,  let's figure out the execution time of  imul when used to
calculate the 32-bit product of two 16-bit zero factors. Later, that will allow
us to determine how much of the combined execution time of imul and jmp
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is  due  to  imul alone.      (By  the  way,  we're  using  imul rather  than  mul

because when I tried mul and jmp together, overall execution synchronized
with DRAM refresh, distorting the results.    Each  mul/jmp pair executed in
exactly 144 cycles, with DRAM refresh adding 6 of those cycles by holding up
instruction fetching right after the jump.    Here we have yet another example
of why you should always time code in context--be careful about generalizing
from artificial tests like Listing 12-2!)    The Zen timer reports that the 1000
imul instructions  in  Listing  12-2  execute  in  26.82  ms,  or  26.82  us  (128
cycles) per imul.

Given that,  we can determine how long  jmp takes to execute
when started with the prefetch queue full.    Listing 12-3, which measures the
execution time of alternating  imul and  jmp instructions, runs in 31.18 ms.
That's 31.18 us (148.8 cycles) per imul/jmp pair, or 20.8 cycles per jmp.

Wait one minute!     jmp takes more than 2 cycles  longer when
started with the prefetch queue full in Listing 12-3 than it did in Listing 12-1.
Instructions don't slow down when the prefetch queue is allowed to fill before
they start--if anything, they speed up.    Yet a slowdown is just what we've
found.

What the heck is going on?

THE PREFETCH QUEUE EMPTIES WHEN YOU BRANCH

It's true that the prefetch queue is full when it comes time for
each jmp to start in Listing 12-3...but it's also true that the prefetch queue is
empty when   jmp   ends  .    To understand why that is and what the implications
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are, we must consider the nature of the prefetch queue.
We learned way back in Chapter 3 that the Bus Interface Unit of

the 8088 reads the bytes immediately following the current instruction into
the prefetch queue whenever the external data bus isn't otherwise in use.
This  is  done  in  an  attempt  to  anticipate  the  next  few  instruction-byte
requests that the Execution Unit will issue.    Every time that the EU requests
an instruction byte and the BIU has guessed right by prefetching that byte, 4
cycles are saved that would otherwise have to be expended on fetching the
requested byte while the EU waited, as shown in Figure 12-4.

What happens if  the BIU guesses wrong?      Nothing disastrous:
since  the  prefetched bytes  are  no  help  in  fulfilling  the  EU's  request,  the
requested instruction  byte  must  be  fetched from memory at  a  cost  of  4
cycles, just as if prefetching had never occurred.

That leaves us with an obvious question.      When does the BIU
guess wrong?    In one case and one case only:

Whenever a branch occurs.
Think  of  it  this  way.      The  BIU  prefetches  bytes  sequentially,

starting with the byte after the instruction being executed.    So long as no
branches occur, those prefetched bytes must be the bytes the EU will want
next, since the Instruction Pointer simply marches along from low addresses
to high addresses.

When a branch occurs, however, the bytes immediately following
the instruction bytes for the branch instruction are no longer necessarily the
next bytes the EU will want, as shown in Figure 12-5.    If they aren't, the BIU
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has no choice but to throw away those bytes and start fetching bytes again
at the location branched to.    In other words, if the BIU gambles that the EU
will request instruction bytes sequentially and loses that gamble because of
a branch, all pending prefetches of the instruction bytes following the branch
instruction in memory are wasted.

That doesn't make prefetching undesirable.    The BIU prefetches
only during idle times, so prefetching--even wasted prefetching--doesn't slow
execution down.      (At worst,  prefetching might slow things down a bit  by
postponing memory accesses by a cycle or two--but whether and how often
that happens, only Intel knows, since it's a function of the internal logic of
the  8088.  At  any  rate,  wasted  prefetching  shouldn't  greatly  affect
performance.)      All  that's lost when you branch is the performance bonus
obtained when the 8088 manages to coprocess by prefetching and executing
at the same time.

The 8088 could have been designed so that whenever a branch
occurs, any bytes in the prefetch queue that are still usable are kept, while
other,  now-useless bytes are discarded.      That would speed processing of
code like:

jz Skip
jmp DistantLabel

Skip:

in the case where jz jumps, since the instruction byte at the label Skip might
well be in the prefetch queue when the branch occurs.    The 8088 could also



Abrash/Zen:    Chapter 12/

have been designed to prefetch from both possible "next" instructions at a
branch, so that the prefetch queue wouldn't be empty no matter which way
the branch went.

The 8088 could have been designed to do all that and more-- but
it wasn't.    The BIU simply prefetches sequentially forward from the current
instruction byte.    Whenever a branch occurs, the prefetch queue is  always
emptied--even if the branched-to instruction is in the queue--and instruction
fetching is started again at the new location, as illustrated by Figure 12-5.
While that sounds innocent enough, it has far-reaching implications. After all,
what does an empty prefetch queue mean?    Right you are...

Branching always--and I do mean  always--awakens the prefetch
queue cycle-eater.

BRANCHING INSTRUCTIONS DO PREFETCH

Things aren't  quite as bad as they might  seem, however.      As
you'll recall, we decided back in Chapters 4 and 5 that the true execution
time of an instruction is the interval from the time when the first byte of the
instruction reaches the Execution Unit until the time when the first byte of
the  next  instruction  reaches  the  EU.      Since  branches  always  empty  the
prefetch queue, there obviously must be a 4-cycle delay from the time the
branch is completed until the time when the first byte of the branched- to
instruction  reaches  the  EU,  since  that  instruction  byte  must  always  be
fetched from memory.      In fact, the 8088 passes the first instruction byte
fetched after  a branch straight  through to the EU as quickly  as possible,
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since there's no question but what the EU is ready and waiting to execute
that byte.

The  designers  of  the  8088  seem  to  have  agreed  with  our
definition of "true" execution time.    I've previously pointed out that Intel's
official  execution  time  for  a  given  instruction  doesn't  include  the  time
required to fetch the bytes of that instruction.    That's not because Intel is
hiding anything, but rather because the fetch time for a given instruction can
vary considerably depending on the code preceding the instruction, as we've
seen time and again.     That's not quite the case with branching, however.
Whenever a branch occurs, we can be quite certain that the prefetch queue
will be emptied, and that at least one prefetch will occur before anything else
happens.

What that means is that the 4 cycles required to fetch the first
byte of the branched-to instruction can reliably be counted as part of the
execution time of a branch, and that's exactly what Intel does.    Although I've
never seen documentation that explicitly states as much, official execution
times that involve branches clearly include an extra 4 cycles for the fetching
of the first byte of the branched-to instruction.

What evidence is there for this phenomenon?    Well, Listing 12-1
is solid evidence.    Listing 12-1 shows that a branching instruction (jmp) with
an official execution time of 15 cycles actually executes in 18 cycles.    If the
official execution time didn't include the fetch time for the first byte of the
branched- to instruction, repeated jmp instructions would take a minimum of
19 cycles to execute, consisting of 15 cycles of EU execution time followed
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by 4 cycles of BIU fetch time for the first byte of the next jz.    In other words,
the 18-cycle time that we actually measured could not happen if the 15-cycle
execution  time  didn't  include  the  4  cycles  required  to  fetch  the  first
instruction byte at the branched-to location.

Ironically, branching instructions would superficially appear to be
excellent candidates to improve the state of the prefetch queue.    After all,
jmp takes 15 cycles to execute, but accesses memory just once, to fetch the
first  byte  of  the  branched-to  instruction.      Normally,  such  an  instruction
would allow 2 or 3 bytes to be prefetched, and, in fact, it's quite possible that
2 or 3 bytes are prefetched while jmp executes...but if that's true, then those
prefetches  are  wasted.  Any  bytes  that  are  prefetched  during  a  jmp are
thrown  away  at  the  end  of  the  instruction,  when  the  prefetch  queue  is
emptied and the first byte of the instruction at the branched-to address is
fetched.

So,  the  time  required  to  fetch  the  branched-to  instruction
accounts for 4 cycles of the unusually long time the 8088 requires to branch.
Once  again,  we've  fingered  the  prefetch  queue  cycle-eater  as  a  prime
contributor to poor performance. You might think that for once the 8-bit bus
isn't a factor; after all, the same emptying of the prefetch queue during each
branch would occur on an 8086, wouldn't it?

The prefetch queue would indeed be emptied on an 8086--but it
would refill much more rapidly.    Remember, instructions are fetched a word
at a time on the 16-bit 8086.    In particular, one- half of the time the 4 cycles
expended on the critical first fetch after a branch would fetch not 1 but 2
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bytes on an 8086 (1 byte if the address branched to is odd, 2 bytes if it is
even, since the 8086 can only read words that start at even addresses). By
contrast, the 8088 can only fetch 1 byte during the final 4 cycles of a branch,
and therein lies the answer to our mystery of how code could possibly slow
down when started with the prefetch queue full.

BRANCHING  AND  THE  SECOND BYTE  OF  THE  BRANCHED-TO

INSTRUCTION

Although the execution time of each branch includes the 4 cycles
required to fetch the first byte of the branched-to instruction, that's not the
end of  the impact  of  branching on instruction fetching.      When a branch
instruction  ends,  the  EU  is  just  starting  to  execute  the  first  byte  of  the
branched-to  instruction,  the  BIU  is  just  starting  to  fetch  the  following
instruction  byte...and  the  prefetch  queue  is  empty.      In  other  words,  the
single instruction fetch built into the execution time of each branch doesn't
fully account for the prefetch queue cycle-eater consequences of branching,
but merely defers them for one byte.     No matter how you look at it, the
prefetch queue is flat-out empty after every branch.

Now,  sometimes  the  prefetch  queue  doesn't  eat  a  single
additional  cycle after a branching instruction fetches the first byte of  the
branched-to  instruction.      That  happens  when  the  8088  doesn't  need  a
second  instruction  byte  for  at  least  4  cycles  after  the  branch  finishes,
thereby giving the BIU enough time to fetch the second instruction byte.    For
example, consider Listing 12-4, which shows jmp (actually,  jmp short, but
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we'll  just  use  "jmp"  for  simplicity)  instructions  alternating  with  push ax

instructions.
What's interesting about push ax is that it's a 1-byte instruction

that takes 15 cycles to execute but only accesses memory twice, using just 8
cycles in the process.    That means that after each branch, in the time during
which  push  ax executes,  there  are  7  cycles  free  for  prefetching  the
instruction bytes of the next jmp.    That's long enough to fetch the opcode
byte for  jmp,  and most of the displacement byte as well,  and when  jmp

starts to execute, the BIU can likely finish fetching the displacement byte
before  it's  needed.      In  Listing  12-4,  in  other  words,  the  prefetch  queue
should  never  be  empty  either  before  or  after  jmp is  executed,  and  that
should make for faster execution.

Incidentally, push is a good instruction to start a subroutine with,
in  light  of  the  beneficial  prefetch  queue effects  described above.      Why?
Because push allows the 8088 to recover partially from the emptying of the
prefetch  queue  caused  by  subroutine  calls.      By  happy  chance,  pushing
registers in order to preserve them is a common way to start a subroutine.

At any rate, let's try out our theories in the real world. Listing 12-
4 runs in 6704 ms, or 32 cycles per  push ax/jmp pair.  push ax officially
runs  in  15  cycles,  and  since  it's  a  "prefetch- positive"  instruction--the
prefetch queue tends to be more full when push ax finishes than when push

ax starts--15 cycles should prove to be the actual execution time as well.
Listing  12-5  confirms  this,  running  in  3142  microseconds,  or  exactly  15
cycles per push ax.



Abrash/Zen:    Chapter 12/

A quick subtraction reveals that each jmp in Listing 12-4 takes 17
cycles.    That's 1 cycle better than the execution time of jmp in Listing 12-1,
and more than 3 cycles better than the execution time of jmp in Listing 12-3,
confirming our speculations about post-branch prefetching.    It seems that
we have indeed found the answer to the mystery of how jmp can run slower
when the prefetch queue is allowed to fill before  jmp is started:    because
the  prefetch  queue  is  emptied  after  a  branch,  one  or  more  instructions
following a branch can suffer from reduced performance at the hands of the
prefetch queue cycle- eater.      The fetch time for the first instruction byte
after the branch is built into the branch, but not the fetch time for the second
byte, or the bytes after that.

So  exactly  what  happens  when  Listing  12-3  runs  to  slow
performance by 3-plus cycles relative to Listing 12-4?    I can only speculate,
but it seems likely that when the first byte of an imul instruction is fetched,
the EU is ready for the second byte of the imul--the mod-reg-rm byte--after
just  1  cycle,  as  shown in  Figure  12-6.      After  all,  the  EU  can't  do  much
processing of a multiplication until the source and destination are known, so
it  makes  sense  that  the  mod-reg-rm byte  would  be  needed  right  away.
Unfortunately, the branch preceding each  imul in Listing 12-3 empties the
prefetch queue, so the EU must wait for several cycles while the mod-reg-rm
byte is fetched from memory.

In Listing 12-4,  on the other hand, the first  byte fetched after
each branch is the instruction byte for push ax.    Since that's the only byte
of the instruction, the EU can proceed right through to completion of the
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instruction  without  requiring  additional  instruction  bytes,  affording  ample
time for the BIU to fetch at least the first byte of the next jmp, as shown in
Figure 12-7.      As a result,  the prefetch queue cycle-eater has little or no
impact on the performance of this code.

Finally, the code in Listing 12-1 falls somewhere between Listings
12-3 and 12-4 as regards post-branch prefetching. Presumably, the EU has a
more immediate need for the mod-reg-rm byte when executing imul than it
does for the displacement byte when executing jmp.

Each push ax/jmp pair in Listing 12-4 still takes 2 cycles longer
than it should according to the official execution times, so at least one cycle-
eater must still  be active.     Perhaps the prefetch queue cycle-eater is still
taking 2 cycles, or perhaps the DRAM refresh cycle-eater is taking 1 cycle
and the prefetch queue cycle-eater is taking another cycle.    There's really no
way to tell where those 2 cycles are going without getting out hardware and
watching the 8088 run--and it's not worth worrying about anyway.

In the grand scheme of things, it matters not a whit which cycle-
eater is taking what portion of the cycles in Listings 12- 1, 12-3, and 12-4.
Even if it did matter, there's no point to trying to understand exactly how the
prefetch queue behaves after branching.    The detailed behavior of the cycle-
eaters is highly variable in real code, and is extremely difficult to pin down
precisely.      Moreover,  that  behavior  depends  on  the  internal  logic  of  the
8088, which is forever hidden from our view.

What is important is that you understand that the true execution
times of  branching instructions are almost always longer than the official
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times because the prefetch queue is guaranteed to be empty after each and
every  branch.      True,  the  fetch  time for  the  first  instruction  byte  after  a
branch is accounted for in official branching execution times (making those
times very slow).    However, the prefetch queue is still empty after that first
byte is fetched and begins execution, and the time the Execution Unit usually
spends waiting for subsequent bytes to arrive is not accounted for in the
official execution times.

Sometimes,  as  in  Listing  12-4,  there  may  be  no  further
instruction-fetch penalty following a branch, but those circumstances are few
and  far  between,  since  they  require  that  a  branch  be  followed  by  an
instruction byte that causes the 8088 not to require another instruction byte
for  at  least 4 cycles.  The truth of  the matter  is  that  it  took me a bit  of
searching to find an instruction (push ax) that met that criterion.    In real
code, branching almost always incurs a delayed prefetch penalty.

It's this simple.    Branches empty the prefetch queue.    Many of
the 8088's fastest instructions run well below their maximum speed when
the prefetch queue is  empty,  and most instructions slow down at least a
little.     It stands to reason, then, that branches reduce the performance of
the branched-to code, with the reduction most severe for the sort of high-
performance code we're most interested in writing.
DON'T JUMP!

Slow as they seem from the official execution times, branches are
actually even slower than that, since they put the PC in just the right state
for the prefetch queue cycle-eater to do its worst.    Every time you branch,
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you expend at least 11 cycles, and usually more...and then you're left with
an empty prefetch queue.    Is that the sort of instruction you want mucking
up your time-critical code?    Hardly.    I'll say it again:

Don't jump!

NOW THAT WE KNOW WHY NOT TO BRANCH...

We've  accounted  for  11  of  the  18  cycles  that  jmp takes  to
execute in  Listing  12-1:      4  cycles  to perform displacement  arithmetic,  4
cycles  to  fetch  the  first  byte  of  the  next  jmp,  and  3  cycles  lost  to  the
prefetch queue cycle-eater after the branch empties the queue.    (Some of
that 3-cycle loss may be due to DRAM refresh as well.)

That  leaves  us  with  7  cycles  unaccounted  for.      One  of  those
cycles goes to decoding the instruction, but frankly I'm not certain where the
other 6 go.    The 8088 has to load the IP with the target address and empty
the prefetch queue, but I wouldn't expect that to take 6 cycles; more like 1
cycle, or 2 at most. Several additional cycles may go to calculating the 20-bit
address at which to fetch the first byte of the branched-to instruction.    In
fact, that's a pretty good bet:      the 8088 takes a minimum of 5 cycles to
perform effective address calculations, which would neatly account for most
of the remaining 6 cycles. However,  I  don't know for sure that that's the
case, and probably never will.

No matter.    We've established where the bulk of the time goes
when a jmp occurs, and in the process we've found that branches are slow
indeed--even slower than documented, thanks to the prefetch queue cycle-
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eater.    In other words, we've learned why it's desirable not to branch in high-
performance code.    Now it's time to find out how to go about that unusual
but essential task.


