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Chapter 11:    String Instruction Applications

Now  that  we've  got  a  solid  understanding  of  what  the  string
instructions do, let's look at a few applications to get a sense of what they're
particularly good for.    The applications we'll look at include copying arrays,
searching  strings  for  characters,  looking  up  entries  in  tables,  comparing
strings, and animation.

There's a lot of meat in this chapter, and a lot of useful code.
The code isn't fully fleshed out, since I'm trying to illustrate basic principles
rather than providing you with a library from A to Z, but that's actually all to
the good.    You can build on this code to meet your specific needs or write
your own code from scratch once you understand the ins and outs of the
string instructions.    In either case, you'll be better off with code customized
to suit your purposes than you would be using any one-size-fits-all code I
could provide.

I'll  frequently  contrast  the  string  instruction-based
implementations  with  versions  built  around non-string  instructions.      This
should give you a greater appreciation for the string instructions, and may
shed new light on the non-string instructions as well.    I'll tell you ahead of
time how the comparisons will  turn out:      in almost every case the string
instructions will prove to be vastly superior.    The lesson we learned in the
last chapter holds true:      use the string instructions to the hilt!      There's
nothing like them under the (8088) sun.
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Contrasting string and non-string implementations also reinforces
an important point.    There are many, many ways to accomplish any given
task on the 8088.    It's knowing which approach to choose that separates the
journeyman programmer from the guru.

STRING HANDLING WITH lods AND stos

lods is  an  odd  bird  among string  instructions,  being  the  only
string instruction that doesn't benefit in the least from rep.    While rep does
work  with  lods,  in  that  it  causes  lods to  repeat  multiple  times,  the
combination of the two is nonetheless totally impractical:    what good could
it possibly do to load AL twice (to say nothing of 64 K times)?    Without rep,
lods is still better than mov, but not that much better; lods certainly doesn't
generate the quantum jump in performance that rep stos and rep movs do.
So--when does lods really shine?

It  turns  out  that  lods is  what  might  be  called  a  "synergistic"
instruction, at its best when used with  stos (or sometimes  scas,  or even
non-string instructions) in a loop. Together,  lods and  stos let you load an
array or string element into AL, test and/or modify it,  and then write the
element back to either the original array or a new array, as shown in Figure
11-1.    You might think of the lods-process-stos combination as being a sort
of "meta-movs," whereby you can whip up customized memory-to-memory
moves as needed.     Of course,  lods/stos is slower than  movs (especially
rep movs), but by the same token lods/stos is far more flexible.    Besides,
lods/stos isn't  that slow--all of  the 8088's  memory-accessing instructions
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suffer  by  comparison  with  movs.      Placed  inside  a  loop,  the  lods/stos

combination makes for fairly speedy array and string processing.
For  example,  Listing  11-1  copies  a  string  to  a  new  location,

converting  all  characters  to  uppercase  in  the  process,  by  using  a  loop
containing  lods and  stos.      Listing  11-1  takes  just  773  us  to  copy  and
convert.      By contrast, Listing 11-2, which uses non- string instructions to
perform the same task, takes 921 us to perform the copy and conversion.

By  the  way,  Listing  11-1  could  just  as  easily  have  converted
SourceString to uppercase in place, rather than copying the converted text
to  DestString.    This would be accomplished simply by loading both DS:SI
and ES:DI to point to SourceString, as shown in Listing 11-3, which changes
nothing else from Listing 11-1.

Why is this interesting?    It's interesting because two pointers--
DS:SI  and  ES:DI--are  used  to  point  to  a  single  array.  It's  often  faster  to
maintain  two pointers  and  use  lods and  stos than it  is  to  use  a  single
pointer with non-string instructions, as in Listing 11-4.    Listing 11-3 runs in
771 us, about the same as Listing 11-1 (after all, they're virtually identical).
However, Listing 11-4 takes 838 us, even though it uses only one pointer to
point to the array being converted to uppercase. The  lods/stos pair lies
somewhere  between  the  repeated  string  instructions  and  the  non-string
instructions in terms of performance and flexibility.     lods/stos isn't as fast
as any of the repeated string instructions, both because two instructions are
involved and because it can't be used with a rep prefix but must instead be
placed in a loop.    However, lods/stos is a good deal more flexible than any
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repeated string instruction, since once a memory operand is loaded into AL
or AX it  can be tested and manipulated easily (and often quickly as well,
thanks to the accumulator-specific instructions).

On the other hand, the lods/stos pair is certainly faster than non-
string  instructions,  as  Listings  11-1  through  11-4  illustrate.      However,
lods/stos is not as flexible as the non- string instructions, since DS:SI and
ES:DI must be used as pointer registers and only the accumulator can be
loaded from and stored to memory.

On balance, the lods/stos pair overcomes some but not all of the
limitations  of  repeated  string  instructions,  and  does  so  at  a  substantial
performance cost vis-a-vis the repeated string instructions.    One thing that
lods/stos doesn't  do  particularly  well  is  modify  memory  directly.      For
example, suppose that we want to set the high bit of every byte in a 1000-
byte array.    We could of course do this with  lodsb and  stosb, setting the
high bit of each word while it's loaded into AL.      Listing 11-5, which does
exactly that, takes 10.07 us per word.

However,  we could also use a plain old  or instruction working
directly with a memory operand to do the same thing, as shown in Listing 11-
6.    Listing 11-6 is just as fast as Listing 11-5 at 10.06 us per word, and it's
also considerably shorter at 13 rather than 21 bytes, with 1 less byte inside
the loop. lods/stos isn't disastrously worse in this case, but it certainly isn't
the  preferred  solution--and  there  are  plenty  of  other  situations  in  which
lods/stos is less than ideal.

For instance, when registers are tight, the extra pointer register
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lods/stos takes can be sorely missed.    If the accumulator is reserved for
some specific purpose and can't be modified,  lods/stos can't very well be
used.    If a pointer to far data is needed by other instructions in the same
routine, the limitation of stos to operating in the ES segment would become
a burden.    In other words, while the lods/stos pair is more flexible than the
repeated string instructions, its limitations are significant nonetheless.

The point is not simply that the lods/stos pair is not as flexible as
the non-string instructions.      The real  point  is  that  you shouldn't  assume
you've  come  up  with  the  best  solution  just  because  you've  used  string
instructions.      Yes, I  know that I've been touting string instructions as the
greatest thing since sliced bread, and by and large that's true.    However,
because the string instructions have a sharply limited repertoire and often
require  a  good  deal  of  preliminary  set-up,  you  must  consider  your
alternatives before concluding that a string instruction-based implementation
is best. 
BLOCK HANDLING WITH movs

Simply put, movs is the king of the block copy.    There's no other
8088 instruction that can hold a candle to movs when it comes to copying
blocks of data from one area of memory to another.     It does take several
instructions to set up for  movs, so if you're only moving a few bytes and
DS:SI and ES:DI don't happen to be pointing to your source and destination,
you might want to use a regular mov.    Whenever you want to move more
than a few bytes, though, movs--or better yet rep movs--is the ticket.

Let's look at the archetypal application for  movs,  a subroutine
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which copies a block of memory from one memory area to another.    What's
special about the subroutine we'll look at is that it handles copying a block
when the destination of the copy overlaps the source.    This is a bit tricky
because the direction in which the copy must proceed--from the start of the
block toward the end, or vice-versa--depends on the direction of overlap.

If the destination block overlaps the source block and starts at a
lower memory address than the source block, then the copy can proceed in
the normal direction, from lower to higher addresses, as shown in Figure 11-
2.    If the destination block overlaps the source block and starts at a higher
address, however, the block must be copied starting at its highest address
and proceeding toward the low end, as shown in Figure 11-3. Otherwise, the
first data copied to the destination block would wipe out source data that
had yet to be copied, resulting in a corrupted copy, as shown in Figure 11-4.
Finally, if the blocks don't overlap, the copy can proceed in either direction,
since the two blocks can't conflict.

The  block-copy  subroutine  BlockCopyWithOverlap shown  in
Listing 11-7 handles potential overlap problems exactly as described above.
In  cases where the destination block starts  at  a higher address than the
source block,  BlockCopyWithOverlap performs an  std and uses  movs to
copy the source block starting at the high end and proceeding to the low
end.    Otherwise, the source block is copied from the low end to the high end
with cld/movs.     BlockCopyWithOverlap is both remarkably compact and
very fast, clocking in at 5.57 ms for the cases tested in Listing 11-7.    The
subroutine could actually be more compact still, but I've chosen to improve
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performance at the expense of a few bytes by copying as much of the block
as possible a word rather than a byte at a time.

There are two points of particular interest in Listing 11-7. First,
BlockCopyWithOverlap only  handles  blocks  that  reside  in  the  same
segment,  and  then  only  if  neither  block  wraps  around  the  end  of  the
segment.      While  it  would  certainly  be possible  to  write  a version of  the
subroutine  that  properly  handled  both  potentially  overlapping  copies
between  different  segments  and  segment  wrapping,  neither  of  those
features is usually necessary, and the additional code would reduce overall
performance.    If you need such a routine, write it, but as a general practice
don't write extra, slower code just to handle cases that you can readily avoid.

Second,  BlockCopyWithOverlap nicely  illustrates  a  nasty
aspect of the use of word-sized string instructions when the Direction flag is
set to 1.    The basic problem is this:    if you point to the last byte of a block of
memory and perform a word- sized operation, the byte after the end of the
memory block will be accessed along with the last byte of the block, rather
than the last two bytes of the block, as shown in Figure 11-5.

This problem of accessing the byte after the end of a memory
block can occur with all word-sized instructions, not just string instructions.
However, it's especially liable to happen with a word-sized string instruction
that's moving its pointer or pointers backward (with the Direction flag equal
to 1) because the temptation is to point to the end of the block, set the
Direction flag, and let the string instruction do its stuff in repeated word-
sized chunks for maximum performance.    To avoid this problem, you must
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always be sure to point to the last word rather than byte when you point to
the last element in a memory block and then access memory with a word-
sized instruction.

Matters get even more dicey when byte- and word-sized string
instructions are mixed when the Direction flag is set to 1.    This is done in
Listing 11-7 in order to use rep movsw to move the largest possible portion
of  odd-length  memory  blocks.      The  problem here  is  that  when  a  string
instruction moves its  pointer  or  pointers from high addresses to low,  the
address of the next byte that we want to access (with lodsb, for example)
and the address of the next word that we want to access (with  lodsw, for
example) differ, as shown in Figure 11-6.    For a byte-sized string instruction
such as lodsb, we do want to point to the end of the array.    After that lodsb

has  executed  with  the  Direction  flag  equal  to  1,  though,  where  do  the
pointers point?    To the address 1 byte--not 1 word--lower in memory.    Then
what  happens  when  lodsw is  executed as  the  next  instruction,  with  the
intent of accessing the word just above the last byte of the array? Why, the
last byte of the array is incorrectly accessed again, as shown in Figure 11-7.

The solution, as shown in Listing 11-7, is fairly simple. We must
perform the initial movsb and then adjust the pointers to point 1 byte lower
in memory--to the start of the next word. Only then can we go ahead with a
movsw, as shown in Figure 11-8.

Mind  you,  all  this  only applies  when  the  Direction  Flag  is  1.
When the Direction flag is 0, movsb and movsw can be mixed freely, since
the address of the next byte is the same as the address of the next word
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when we're counting from low addresses to high, as shown in Figure 11-9.
Listing 11-7 reflects this, since the pointer adjustments are only made when
the Direction flag is 1.

Listing 11-8 contains a version of  BlockCopyWithOverlap that
does exactly what the version in Listing 11-7 does, but does so without string
instructions.      While Listing 11-8 doesn't  look all  that much different from
Listing 11-7, it takes a full 15.16 ms to run--quite change from the time of
5.57 ms we measured for Listing 11-7.    Think about it:    Listing 11-7 is nearly
three times as fast as Listing 11-8, thanks to movs--and it's shorter too.

Enough said.

SEARCHING WITH scas

scas is often (but not always, as we shall see) the preferred way
to search for either a given value or the absence of a given value in any
array.    When scas is well-matched to the task at hand, it is the best choice
by a wide margin.    For example, suppose that we want to count the number
of times the letter 'A' appears in a text array.    Listing 11-9, which uses non-
string instructions, counts the number of occurrences of 'A' in the sample
array in 475 us.      Listing 11-10,  which does exactly the same thing with
repnz scasb, finishes in just 203 us.    That, my friends, is an improvement
of 134%.    What's more, Listing 11- 10 is shorter than Listing 11-9.

Incidentally,  Listing 11-10 illustrates the subtlety of  the pitfalls
associated with forgetting that  scas repeated zero times (with CX equal to
zero) doesn't alter the flags.    If the jcxz instruction in Listing 11-10 were to
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be removed, the code would still work perfectly--except when the array being
scanned was exactly 64 K bytes long and  every byte in the array matched
the byte being searched for.      In  that  one case,  CX would be zero when
repnz scasb was restarted after the last match, causing  repnz scasb to
drop through without altering the flags.    The Zero flag would be 0 as a result
of DX previously incrementing from 0FFFFh to 0, and so the jnz branch would
not  be taken.      Instead,  DX would  be incremented again,  causing a non-
existent match to be counted.    The result would be that 1 rather than 64 K
matches would be returned as the match count,  an error  of  considerable
magnitude.

If you could be sure that no array longer than 64 K-1 bytes would
ever be passed to ByteCount, you could eliminate the jcxz and speed the
code  considerably.      Trimming  the  fat  from  your  code  until  it's  matched
exactly to an application's needs is one key to performance.

scas AND ZERO-TERMINATED STRINGS

Clearly, then, when you want to find a given byte or word value in
a buffer, table, or array of a known fixed length, it's often best to load up the
registers and let a repeated  scas do its stuff.     However, the same is not
always true of searching tasks that require multiple comparisons for each
byte or word, such as a loop that ends when either the letter 'A'  or a zero
byte is found.      Alas,  scas can perform just one comparison per memory
location, and repz or repnz can only terminate on the basis of the Zero flag
setting after  that  one comparison.      This  is  unfortunate because multiple
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comparisons are exactly what we need to handle C-style strings, which are of
no fixed length and are terminated with zeros.    rep scas can still be used in
such situations, but its sheer power is diluted by the workarounds needed to
allow it to function more flexibly than it is normally capable of doing.    The
choice between repeated scas instructions and other approaches then must
be made on a case-by-by case basis, according to the balance between the
extra  overhead needed to  coax  scas into doing what  is  needed and the
inherent speed of the instruction.

For example, suppose we need a subroutine that returns either
the offset in a string of the first instance of a selected byte value or the value
zero if a zero byte (marking the end of the string) is encountered before the
desired byte is found. There's no simple way to do this with scasb, for in this
application we have to compare each memory location first to the desired
byte value and then to zero.      scasb can perform one comparison or the
other, but not both.

Now, we could use rep scasb to find the zero byte at the end of
the string, so we'd know how long the string was, and then use rep scasb

again with CX set to the length of the string to search for the selected byte
value.    Unfortunately, that involves processing every byte in the string once
before even beginning the search.    On average, this double-search approach
would read every element of the string being searched once and would then
read one-half of the elements again, as shown in Figure 11-10. By contrast,
an approach that reads each byte and immediately compares it to both the
desired  value  and zero  would  read  only  one-half  of  the  elements  in  the
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string,  as shown in Figure 11-11.  Powerful  as repeated  scasb is,  could it
possibly run fast enough to allow the double-search approach to outperform
an approach that accesses memory only one-third as many times?

The answer is yes...conditionally.      The double-search approach
actually is slightly faster than a lodsb-based single- search string-searching
approach  for  the  average  case.      The  double-search  approach  performs
relatively more poorly if matches tend to occur most frequently in the first
half of the strings being searched, and relatively better if matches tend to
occur in the second half of the strings.    Also, the more flexible lodsb- based
approach rapidly becomes the solution of choice as the termination condition
becomes more complex, as when a case- insensitive search is desired.    The
same is true when modification as well as searching of the string is desired,
as when the string is converted to uppercase.

Listing  11-11  shows  lodsb-based  code  that  searches  a  zero-
terminated string for the character 'z'.    For the sample string, which has the
first match right in the middle of the string, Listing 11-11 takes 375 us to find
the match.      Listing 11-12 shows  repnz scasb-based code that uses the
double-search  approach.      For  the  same  sample  string  as  Listing  11-11,
Listing 11-12 takes just 340 us to find the match, despite having to perform
about three times as many memory accesses as Listing 11- 11--a tribute to
the raw power of repeated scas.    Finally, Listing 11-13, which performs the
same search using non-string instructions, takes 419 us to find the match. 

It is apparent from Listings 11-11 and 11-12 that the performance
margin  between  scas-based  string  searching  and  other  approaches  is
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considerably  narrower  than  it  was  for  array  searching,  due  to  the  more
complex termination  conditions.      Given a  still  more complex termination
condition, lods would likely become the preferred solution due to its greater
flexibility.      In  fact,  if  we're  willing  to  expend  a  few  bytes,  the  greater
flexibility of lods can be translated into higher performance for Listing 11-11,
as follows.

Listing 11-14 shows an interesting variation  on Listing 11- 11.
Here  lodsw rather than  lodsb is  used,  and AL and AH, respectively,  are
checked for  the  termination  conditions.      This  technique uses  a  bit  more
code, but the replacement of two lodsb instructions with a single lodsw and
the elimination of every other branch pays off handsomely, as Listing 11-14
runs in just 325 us, 15% faster than Listing 11-11 and 5% faster than Listing
11-12.    The key here is that lods allows us leeway in designing code to work
around the slow memory access and slow branching of the 8088, while scas

does not.    In truth, the flexibility of  lods can make for better performance
still through in-line code...but that's a story for the next few chapters.

MORE ON scas AND ZERO-TERMINATED STRINGS

While  repeated  scas instructions aren't  ideally  suited to string
searches  involving  complex  conditions,  they  do work  nicely  with  strings
whenever brute force scanning comes into play.      One such application is
finding the offset of the last element of some sort in a string.    For example,
Listing 11-15, which finds the last non-blank element of a string by using
lodsw and remembering the offset of the most recent non-blank character
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encountered, takes 907 us to find the last non-blank character of the sample
string, which has the last non-blank character in the middle of the string.
Listing 11-16, which does the same thing by using repnz scasb to find the
end of the string and then repz scasw with the Direction flag set to 1 to find
the first non- blank character scanning backward from the end of the string,
runs in just 386 us.

That's  an  amazing improvement  given  our  earlier  results
involving  the  relative  speeds  of  lodsw and  repeated  scas in  string
applications.      The  reason  that  repeated  scas outperforms  lodsw by  a
tremendous  amount  in  this  case  but  underperformed it  earlier  is  simple.
The  lodsw-based code always has to check every character in the string--
right  up  to  the  terminating  zero-- when searching  for  the  last  non-blank
character, as shown in Figure 11-12.    While the scasb-base code also has to
access every character in the string, and then some, as shown in Figure 11-
13, the worst case is that Listing 11-16 accesses string elements no more
than twice as many times as Listing 11-15.    In our earlier example, the best
case was a two-to-one ratio.    The timing results for Listings 11-15 and 11-16
show that  the  superior  speed,  lack of  prefetching,  and lack of  branching
associated with repeated scas far outweigh any performance loss resulting
from a memory-access ratio of less than two-to-one.

By the way, Listing 11-16 is an excellent example of the need to
correct for pointer overrun when using the string instructions.     No matter
which direction we scan in, it's  necessary to undo the last advance of DI
performed by  scas in order to point to the byte on which the comparison
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ended.
Listing 11-16 also shows the use of jcxz to guard against the case

where CX is  zero.      As  you'll  recall  from the last  chapter,  repeated  scas

doesn't alter the flags when started with CX equal to zero.    Consequently,
we must test for the case of CX equal to zero before performing repz scasw,
and we must treat that case if we had never found the terminating condition
(a  non- blank  character).      Otherwise,  the  leftover  flags  from  an  earlier
instruction might give us a false result following a repz scasw which doesn't
change the flags because it is repeated zero times. In Listing 11-21 we'll see
that we need to do the same with repeated cmps as well.

Bear in mind, however, that there are several ways to solve any
problem in assembler.    For example, in Listing 11-16 I've chosen to use jcxz

to guard against the case where CX is zero, thereby compensating for the
fact that  scas repeated zero times doesn't change the flags.    Rather than
thinking  defensively,  however,  we  could  actually  take  advantage  of  that
particular property of repeated scas.    How?    We could set the Zero flag to 1
(the "match" state) by placing sub dx,dx before repz scasw.    Then if repz

scasw is repeated zero times because CX is zero the following conditional
jump will reach the proper conclusion, that the desired non-match (a non-
blank character) wasn't found.

As it happens,  sub dx,dx isn't particularly faster than jcxz, and
so there's not much to choose from between the two solutions.    With  sub

dx,dx the code is 3 cycles faster when CX isn't zero but is the same number
of bytes in length, and is considerably slower when CX is zero.      (There's
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really no reason to worry about performance here when CX is zero, however,
since that's a rare case that's always handled relatively quickly. Rather, our
focus should be on losing as little performance as possible to the test for CX
being zero in  the more common case-- when CX  isn't zero.)      In  another
application, though, the desired Zero flag setting might fall out of the code
preceding the repeated cmps, and no extra code at all would be required for
the test for CX equal to zero.    Listing 11-24, which we'll come to shortly, is
such a case.

What's interesting here is that it's instinctive to use jcxz, which is
after all a specialized and fast instruction that is clearly present in the 8088's
instruction  set  for  just  such a  purpose  as  protecting  against  repeating  a
string comparison zero times.    The idea of presetting a flag and letting the
comparison drop through without changing the flag, on the other hand, is
anything but intuitive--but is just about as effective as jcxz, more so under
certain circumstances.

Don't let your mind be constrained by intentions of the designers
of the 8088.    Think in terms of what instructions do rather than what they
were intended to do.

USING REPEATED scasw ON BYTE-SIZED DATA

Listing  11-16  is  also  a  fine  example  of  how  to  use  repeated
scasw on byte-sized data.     You'll  recall that one of the rules of repeated
string instruction usage is that word-sized string instructions should be used
wherever possible, due to their faster overall speed.    It turns out, however,
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that it's rather tricky to apply this rule to scas.
For starters, there's hardly ever any use for  repnz scasw when

searching for a specific byte value in memory.    Why?    Well, while we could
load up both AH and AL with the byte we're looking for and then use repnz

scasw, we'd only find cases where the desired byte occurs at least twice in a
row,  and  then  we'd  only  find  such  2-byte  cases  that  didn't  span  word
boundaries.  Unfortunately,  there's  no way to  use  repnz scasw to  check
whether either AH or AL--but not necessarily both--matched their respective
bytes.    With repnz scasw, if AX doesn't match all 16 bits of memory, the
search will continue, and individual byte matches will be missed.

On the other hand, we can use repz scasw to search for the first
non-match, as in Listing 11-16.    Why is it all right to search a word at a time
for  non-matches but  not  matches?      Because if  either byte of  each word
compared with  repz scasw doesn't  match the byte  of  interest  (which  is
stored in both AH and AL), then  repz scasw will  stop,  which is what we
want.     Of course, there's a bit of cleaning up to do in order to figure out
which of the 2 bytes was the first non-match, as illustrated by Listing 11-16.
Yes, it is a bit complex and does add a few bytes, but it also speeds things
up, and that's what we're after.

In short,  repz scasw can be used to boost performance when
scanning  for  non-matching  byte-sized  data.      However,  repnz  scasw is
generally useless when scanning for matching byte-sized data.

scas AND LOOK-UP TABLES
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One common application for table searching is to get an element
number or an offset into a table that can be used to look up related data or a
jump address in another table.    We saw look- up tables in Chapter 7, and
we'll see them again, for they're a potent performance tool.

scas is  often  excellent  for  look-up  code,  but  the  pointer  and
counter  overrun characteristic  of  all  string instructions make it  a bit  of  a
nuisance to calculate offsets and/or element numbers after repeated  scas

instructions.    Listing 11-17 shows a subroutine that calculates the offset of a
match in  a  word-sized table  in  the process  of  jumping to  the  associated
routine from a jump table.    Notice that it's necessary to subtract the 2-byte
overrun from the difference between the final value of DI and the start of the
table.      The calculation would be the same for a byte-sized table scanned
with scasb, save that scasb has only a 1-byte overrun and so only 1 would
be subtracted from the difference between DI and the start of the table.  

Finding the element number is a slightly different matter. After a
repeated  scas, CX contains the number of elements that weren't scanned.
Since  CX counts  down just  once  each time  scas is  repeated,  there's  no
difference between scasw and scasb in this respect.

Well,  if  CX  contains  the  number  of  elements  that  weren't
scanned, then subtracting CX from the table length in elements must yield
the number of elements that were scanned.    Subtracting 1 from that value
gives us the number of  the last element scanned.      (The first element is
element number 0, the second element is element number 1, and so on.)
Listing 11-18 illustrates the calculation of the element number found in a
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look-up table as a step in the process of jumping to the associated routine
from a jump table, much as in Listing 11-17.

CONSIDER YOUR OPTIONS

Don't assume that scas is the ideal choice even for all memory-
searching tasks in which the search length is known. Suppose that we simply
want to know if a given character is any of, say, four characters:    'A', 'Z', '3',
or  '!'.      We  could  do  this  with  repnz  scasb,  as  shown  in  Listing  11-19.
Alternatively,  however,  we could  simply  do  it  with  four  comparisons  and
conditional jumps, as shown in Listing 11-20.    Even with the prefetch queue
cycle-eater doing its worst, each compare and conditional jump pair takes no
more than 16 cycles when the jump isn't taken (the jump is taken at most
once,  on a match),  which stacks up pretty  well  against  the 15 cycle  per
comparison and 9 cycle set-up time of  repnz scasb.      What's  more,  the
compare-and- jump  approach  requires  no  set-up  instructions.      In  other
words, the less sophisticated approach might well be better in this case.

The Zen timer bears this out.    Listing 11-19, which uses  repnz

scasb, takes 183 us to perform five checks, while Listing 11-20, which uses
the compare-and-jump approach, takes just 119 us to perform the same five
checks.    Listing 11-20 is not only 54% faster than Listing 11-19 but is also 1
byte shorter.    (Don't forget to count the look-up table bytes in Listing 11-19.)

Of course, the compare-and-jump approach is less flexible than
the look-up approach, since the table length and contents can't be passed as
parameters  or  changed  as  the  program  runs.  The  compare-and-jump
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approach also becomes unwieldy when more entries need to be checked,
since 4 bytes are needed for each additional compare-and-jump entry where
the repnz scasb approach needs just 1.    The compare-and-jump approach
finally  falls  apart  when  it's  no  longer  possible  to  short-jump  out  of  the
comparison/jump code and so jumps around jumps must be used, as in:

cmp al,'Z'
jnz $+5
jmp CharacterFound
cmp al,'3'

When jumps around jumps are used, the comparison time per character goes
from 16 to 24 cycles, and rep scasb emerges as the clear favorite.

Nonetheless,  Listings  11-19 and 11-20 illustrate two important
points.      Point number 1:    the repeated string instructions tend to have a
greater advantage when they're repeated many times, allowing their speed
and  compact  size  to  offset  the  overhead  in  set-up  time  and  code  they
require.    Point number 2:    specialized as the string instructions are, there
are ways to program the 8088 that are more specialized still.      In certain
cases,  those  specialized  approaches  can  even  outperform  the  string
instructions.     Sure, the specialized approaches, such as the compare-and-
jump approach we just saw, are limited and inflexible--but when you don't
need the flexibility, why pay for it in lost performance?

COMPARING MEMORY TO MEMORY WITH cmps

When  cmps does exactly what you need done it can't be beat,
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although to an even greater extent than with scas the cases in which that is
true are relatively few.    cmps is used for applications in which byte-for-byte
or  word-for-word  comparisons  between  two  memory  blocks  of  a  known
length  are  performed,  most  notably  array  comparisons  and  substring
searching.    Like scas, cmps is not flexible enough to work at full power on
other comparison tasks, such as case-insensitive substring searching or the
comparison of zero-terminated strings, although with a bit of thought cmps

can be made to serve adequately in some such applications.
cmps does just one thing, but it does far better than any other

8088  instruction  or  combination  of  instructions.      The  one  transcendent
ability  of  cmps is  the  direct  comparison  of  two  fixed-length  blocks  of
memory.    The obvious use of cmps is in determining whether two memory
arrays  or  blocks  of  memory are the same,  and if  not,  where they differ.
Listing  11-21,  which  runs  in  685  us,  illustrates  repz  cmpsw in  action.
Listing 11-22, which performs exactly the same task as Listing 11-21 but
uses lodsw and scasw instead of cmpsw, runs in 1298 us.    Finally, Listing
11-23,  which  uses  non-string  instructions,  takes  a  leisurely  1798  us  to
complete the task.    As you can see, cmps blows away not only non-string
instructions but also other string instructions under the right circumstances.
(As I've said before, there are many, many different sequences of assembler
code that will work for any given task.    It's the choice of implementation that
makes the difference between adequate code and great code.)

By the way, in Listings 11-21 though 11-23 I've used jcxz to make
sure the correct result is returned if zero-length arrays are compared.    If you
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use this routine in your code and you can be sure that zero-length arrays will
never be passed as parameters, however,  you can save a few bytes and
cycles by eliminating the jcxz check.    After all, what sense does it make to
compare zero-length arrays...and what sense does it make to waste precious
bytes and cycles guarding against a contingency that can never arise?

Make the comparison a bit more complex, however, and  cmps

comes back to the pack.    Consider the comparison of two zero- terminated
strings, rather than two fixed-length arrays.    As with scas in the last section,
cmps can be made to work in this application by first performing a  scasb

pass to determine one string length and then comparing the strings with
cmpsw, but the double pass negates much of the superior performance of
cmps. Listing 11-24 shows an implementation of this approach, which runs
in 364 us for the test strings.

We found earlier that  lods works well for string searching when
multiple termination conditions must be dealt with.     That is true of string
comparison  as  well,  particularly  since  there  we  can  benefit  from  the
combination  of  scas and  lods.      The  lodsw/scasw approach,  shown  in
Listing  11-25,  runs  in  just  306  us--19% faster  than  the  rep  scasb/repz

cmpsw-based  Listing  11-24.  For  once,  I  won't  bother  with  a  non-string
instruction-based implementation, since it's perfectly obvious that replacing
lodsw and scasw with non-string sequences such as:

mov ax,[si]
inc si
inc si



Abrash/Zen:    Chapter 11/

and:

cmp [di],ax
:

inc di
inc di

can only reduce performance.
cmps and  even  scas become  still  less  suitable  if  a  highly

complex operation such as case-insensitive string comparison is  required.
Since  both  source  and  destination  must  be  converted  to  the  same case
before  being  compared,  both  must  be  loaded  into  the  registers  for
manipulation,  and only  lods among the string instructions will  do us any
good at all.    Listing 11-26 shows code that performs case-insensitive string
comparison.    Listing 11-26 takes 869 us to run, which is not very fast by
comparison  with  Listings  11-21  through  11-25.      That's  to  be  expected,
though,  given  the  flexibility  required  for  this  comparison.      The  more
flexibility required for a given task, the less likely we are to be able to bring
the full  power of  the highly-specialized string instructions to bear on that
task.    That doesn't mean that we shouldn't try to do so, just that we won't
always succeed.

If we're willing to expend 200 extra bytes or so, we can speed
Listing 11-26 up considerably with a clever trick.    Making sure a character is
uppercase takes a considerable amount of time even when all calculations
are  done  in  the  registers,  as  is  the  case  in  Listing  11-26.      Fast  as  the
instructions in the macro TO_UPPER in Listing 11-26 are, two to five of them
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are executed every time a byte is made uppercase, and a time-consuming
conditional jump may also be performed.

So what's better than two to five register-only instructions with at
most  one  jump?      A  look-up  table,  that's  what.      Listing  11-27  is  a
modification of Listing 11-26 that looks up the uppercase version of each
character in ToUpperTable with a single instruction--and the extremely fast
and compact xlat instruction, at that.    (It's possible that mov could be used
instead of  xlat to make an even faster version of Listing 11-27, since mov

can reference any general-purpose register while xlat can only load AL.    As
I've said,  there are many ways to do anything in  assembler.)      For  most
characters there is no uppercase version, and the same character that we
started  with  is  looked  up  in  ToUpperTable.      For  the  26  lowercase
characters, however, the character looked up is the uppercase equivalent. 

You may well be thinking that it doesn't make much sense to try
to speed up code by adding a memory access, and normally you'd be right.
However,  xlat is  very  fast--it's  a  1-byte  instruction  that  executes  in  10
cycles--and it saves us the trouble of fetching the many instruction bytes of
TO_UPPER.  (Remember,  instruction  fetches  are  memory  accesses  too.)
What's  more,  xlat eliminates  the  need  for  conditional  jumps  in  the
uppercase-conversion process.

Sounds good in theory, doesn't it?    It works just as well in the
real world, too.    Listing 11-27 runs in just 638 us, a 36% improvement over
Listing 11-26.    Of course, Listing 11-27 is also a good deal larger than Listing
11-26,  owing  to  the  look-up  table,  and  that's  a  dilemma  the  assembler
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programmer faces frequently on the PC:      the choice between speed and
size.      More memory, in the form of look-up tables and in-line code, often
means better performance.    It's actually relatively easy to speed up most
code by throwing memory at it.    The hard part is knowing where to strike the
balance between performance and size.

Although  both  look-up  tables  and  in-line  code  are  discussed
elsewhere in this volume, a broad discussion of the issue of memory versus
performance  will  have  to  wait  until  Volume  II  of  The  Zen  of  Assembly
Language.      The  mechanics  of  translating  memory  into  performance--the
knowledge aspect, if you will--is quite simple, but understanding when that
tradeoff can and should be made is more complex and properly belongs in
the discussion of the flexible mind.

STRING SEARCHING

Perhaps the single finest application of cmps is in searching for a
sequence of bytes within a data buffer.    In particular, cmps is excellent for
finding a particular text sequence in a buffer full of text, as is the case when
implementing a find-string capability in a text editor.

One way to implement such a searching capability is by simply
starting repz cmps at each byte of the buffer until either a match is found or
the end of the buffer is reached, as shown in Figure 11-14.    Listing 11-28,
which  employs  this  approach,  runs  in  2995  us  for  the  sample  search
sequence and buffer. That's  not  bad,  but  there's  a  better  way  to  go.
Suppose we load the first byte of the search string into AL and use  repnz
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scasb to  find the next candidate for  the full  repz cmps comparison,  as
shown in Figure 11-15.      By so doing we could use a fast repeated string
instruction to disqualify most of the potential strings, rather than having to
loop and start up repz cmps at each and every byte in the buffer.    Would
that make a difference?

It  would indeed!      Listing  11-29,  which  uses the hybrid  repnz

scasb/repz  cmps technique,  runs  in  just  719  us  for  the  same  search
sequence and buffer as Listing 11-28.    Now, the margin between the two
techniques could vary considerably, depending on the contents of the buffer
and the search sequence.    Nonetheless, we've just seen an improvement of
more  than  300% over  already- fast  string  instruction-based  code!      That
improvement is primarily due to the use of repnz scasb to eliminate most of
the instruction fetches and branches of Listing 11-28.

Even when you're using string instructions, stretch your mind to
think of still-better approaches...

As for non-string implementations, Listing 11-30, which performs
the same task as do Listings 11-28 and 11-29 but does so with non-string
instructions, takes a full 3812 us to run.    It should be very clear that non-
string instructions should be used in searching applications only when their
greater flexibility is absolutely required.

Make no mistake,  there's  more to searching performance than
simply using the right combination of string instructions.    The right choice of
algorithm is critical.    For a list of several thousand sorted items, a poorly-
coded binary search might well beat the pants off a slick repnz scasb/repz
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cmps implementation.  On  the  other  hand,  the  repnz  scasb/repz cmps

approach is excellent for searching free-form data of the sort that's found in
text buffers.

The  key  to  searching  performance  lies  in  choosing  a  good
algorithm for your application  and implementing it  with the best possible
code.      Either the searching algorithm or the implementation may be the
factor  that  limits  performance.  Ideally,  a  searching  algorithm  would  be
chosen with an eye toward using the strengths of the 8088--and that usually
means the string instructions.

cmps WITHOUT rep

In the last chapter I pointed out that scas and cmps are slower
but more flexible when they're not repeated.    Although repz and repnz only
allow termination according to the state of the Zero flag,  scas and  cmps

actually set all the status flags, and we can take advantage of that when
scas and cmps aren't repeated.    Of course, we should use repz or repnz

whenever we can, but non-repeated scas and cmps let us tap the power of
string instructions when repz and repnz simply won't do.

For  instance,  suppose  that  we're  comparing  two  arrays  that
contain  signed  16-bit  values  representing  signal  measurements.  Suppose
further that we want to find the first point at which the waves represented by
the arrays cross.    That is, if wave A starts out above wave B, we want to
know when wave A becomes less than or equal to wave B, as shown in Figure
11-16.    If wave B starts out above wave A, then we want to know when wave



Abrash/Zen:    Chapter 11/

B becomes less than or equal to wave A.
There's no way to perform this comparison with repeated cmps,

since greater-than/less-than comparisons aren't in the limited repertoire of
the rep prefix.    However, plain old non- repeated cmpsw is up to the task,
as shown in Listing 11-31, which runs in 1232 us.    As shown in Listing 11-31,
we must initially determine which array starts out on top, in order to set SI to
point to the initially-greater array and DI to point to the other array.    Once
that's done, all  we need do is perform a  cmpsw on each data point and
check  whether  that  point  is  still  greater  with  jg.      loop repeats  the
comparison for however many data points there are--and that's the whole
routine in a very compact package!    The 3-instruction, 5-byte loop of Listing
11-31 is hard to beat for this fairly demanding task.

By  contrast,  Listing  11-32,  which  performs  the  same  crossing
search but does so with non-string instructions, has 6 instructions and 13
bytes in the loop and takes considerably longer--1821 us--to complete the
sample crossing search. Although we were unable to use repeated cmps for
this  particular  task,  we were nonetheless  able  to improve performance a
great deal by using the string instruction in its non-repeated form. 
A NOTE ABOUT RETURNING VALUES

Throughout this chapter I've been returning "not found" statuses
by passing zero pointers (pointers set to zero) back to the calling routine.
This is a commonly used and very flexible means of returning such statuses,
since the same registers that are used to return pointers when searches are
successful  can be used to return zero when searches are not  successful.
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The success or failure of a subroutine can then be tested with code like:

call FindCharInString
and si,si
jz CharNotFound

Returning failure statuses as zero pointers is particularly popular in high-level
languages such as C, although C returns pointers in either AX, DX:AX, or
memory, rather than in SI or DI.

However,  there  are  many  other  ways  of  returning  statuses  in
assembler.    One particularly effective approach is that of returning success
or failure in either the Zero or Carry flag, so that the calling routine can
immediately jump conditionally upon return from the subroutine, without the
need  for  any  anding,  oring,  or  comparing  of  any  sort.      This  works  out
especially  well  when the  proper  setting of  a  flag falls  out  of  the  normal
functioning of a subroutine.    For example, consider the following subroutine,
which returns the Zero flag set to 1 if the character in AL is whitespace:

Whitespace:
cmp al,' ' ;space
jz WhitespaceDone
cmp al,9 ;tab
jz WhitespaceDone
and al,al ;zero byte

WhitespaceDone:
ret

The  key  point  here  is  that  the  Zero  flag  is  automatically  set  by  the
comparisons preceding the  ret.      Any test  for  whitespace would  have to
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perform the same comparisons, so practically speaking we didn't  have to
write a single extra line of code to return the subroutine's status in the Zero
flag.      Because  the  return  status  is  in  a  flag  rather  than  a  register,
Whitespace could be called and the outcome handled with a very short
sequence of instructions, as follows:

mov al,[Char]
call Whitespace
jnz NotWhitespace

The particular example isn't important here.    What is important is
that you realize that in assembler (unlike high- level languages) there are
many ways to return statuses, and that it's possible to save a great deal of
code and/or time by taking advantage of that.    Now is not the time to pursue
the topic further, but we'll return to the issues of passing values and statuses
both to and from assembler subroutines in Volume II of The Zen of Assembly
Language.

PUTTING STRING INSTRUCTIONS TO WORK IN UNLIKELY PLACES

I've said several  times that  string instructions  are so powerful
that you should try to use them even when they don't seem especially well-
matched to a particular application.    Now I'm going to back that up with an
unlikely application in which the string instructions have served me well over
the years: animation.

This section is actually a glimpse into the future.    Volume II of
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The Zen of Assembly Language will take up the topic of animation in much
greater detail, since animation truly falls in the category of the flexible mind
rather than knowledge.    Still, animation is such a wonderful example of what
the string instructions can do that we'll spend a bit of time on it here and
now.      It'll  be a whirlwind look, with few details and nothing more than a
quick glance at  theory,  for  the  focus isn't  on  animation  per  se.      What's
important is not that you understand how animation works, but rather that
you  get  a  feel  for  the  miracles  string  instructions  can  perform in  places
where you wouldn't think they could serve at all.

ANIMATION BASICS

Animation involves erasing and redrawing one or more images
quickly enough to fool the eye into perceiving motion, as shown in Figure 11-
17.    Animation is a marginal application for the PC, by which I mean that the
8088 barely has enough horsepower to support decent animation under the
best of circumstances.    What that means is that the Zen of assembler is an
absolute must for PC animation.

Traditionally,  microcomputer  animation  has been performed by
exclusive-oring images into display memory; that is, by drawing images by
inserting the bits that control their pixels into display memory with the xor

instruction.    When an image is first exclusive-ored into display memory at a
given location, the image becomes visible.    A second exclusive-oring of the
image at the same location then erases the image.    Why?    That's simply the
nature of the exclusive-or operation.
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Consider this.      When you exclusive-or a 1 bit with another bit
once, the other bit is flipped.    When you exclusive-or the same 1 bit with
that other bit again, the other bit is again flipped--right back to its original
state, as shown in Figure 11- 18.    After all, a bit only has two possible states,
so a double flip must restore the bit back to the state in which it started.
Since exclusive-oring a 0 bit  with another bit  never affects the other bit,
exclusive-oring a target bit twice with either a 1 or a 0 bit always leaves the
target bit in its original state.

Why is exclusive-oring so popular for animation?    Simply because
no matter how many images overlap, the second exclusive- or of an image
always erases it without interfering with any other images.    In other words,
the perfect reversibility of the exclusive-or operation means that you could
exclusive-or  each  of  10  images  once  at  the  same  location,  drawing  the
images right on top of each other, then exclusive-or them all again at the
same  place--and  they  would  all  be  erased.      With  exclusive-oring,  the
drawing or erasing of one image never interferes with the drawing or erasing
of other images it overlaps.

If you're catching all this, great.    If not, don't worry. I'm not going
to spend time explaining animation now--better we should wait until Volume
II,  when  we  have  the  time  to  do  it  right.      The  important  point  is  that
exclusive-oring  is  a  popular  animation  technique,  primarily  because  it
eliminates the complications of drawing and erasing overlapping images.

Listing  11-33,  which  bounces  10  images  around  the  screen,
illustrates animation based on exclusive-oring.    When run on an Enhanced
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Graphics  Adapter  (EGA),  Listing  11-33 takes  30.29 seconds  to  move and
redraw every image 500 times.    (Note that the long-period Zen timer was
used to time Listing 11-33, since we can't perform much animation within the
54 ms maximum period of the precision Zen timer.)

Listing 11-33 isn't a general-purpose animation program. I've kept
complications to a minimum in order to show basic exclusive-or animation.
Listing  11-33  allows  us  to  observe  the  fundamental  strengths  and
weaknesses (primarily the latter) of the exclusive-or approach.

When you run Listing 11-33, you'll see why exclusive-oring is less
than ideal.    While overlapping images don't interfere with each other so far
as drawing and erasing go, they do produce some unattractive on-screen
effects.      In  particular,  unintended  colors  and  patterns  often  result  when
multiple images are exclusive-ored into the same bytes of display memory.
Another  problem  is  that  exclusive-ored  images  flicker  because  they're
constantly  being  erased  and  redrawn.      (Each  image  could  instead  be
redrawn at its new location before being erased at the old location, but the
overlap effects  characteristic  of  exclusive- oring would  still  cause flicker.)
That's not all, though. There's a still more serious problem with exclusive-or
based animation...

Exclusive-oring is slow.
The problem isn't that the xor instruction itself is particular slow;

rather, it's that the  xor instruction isn't a string instruction.     xor can't be
repeated with rep, it doesn't advance its pointers automatically, and it just
isn't  as speedy as,  say,  movs.      Still,  neither  movs nor any other string
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instruction  can  perform  exclusive-or  operations,  so  it  would  seem  we're
stuck.

We're hardly stuck, though.      On the contrary, we're bound for
glory!

STRING INSTRUCTION-BASED ANIMATION

If string instructions can't perform exclusive-oring, then we'll just
have to figure out a way to animate without exclusive- oring.    As it turns out,
there's  a  very nice  way  to  do  this.      I  learned  this  approach  from Dan
Illowsky, who developed it before string instructions even existed, way back
in the early days of the Apple II.

First, we'll give each image a small blank fringe.    Then we'll make
it a rule never to move an image by more than the width of its fringe before
redrawing it.    Finally we'll draw images by simply copying them to display
memory,  destroying  whatever  they  overwrite,  as  shown  in  Figure  11-19.
Now, what does that do for us?

Amazing things.    For starters, each image will, as it is redrawn,
automatically  erase  its  former  incarnation.      That  means  that  there's  no
flicker,  since  images  are  never  really  erased,  but  only  drawn  over
themselves.    There are also no color effects when images overlap, since only
the image that was drawn most recently at any given pixel is visible.

In  short,  this  sort  of  animation  (which  I'll  call  "block- move
animation")  actually  looks  considerably  better  than  animation  based  on
exclusive-oring.    That's just frosting on the cake, though--the big payoff is
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speed.    With block-move animation we suddenly don't need to exclusive-or
anymore--in fact, rep movs will work beautifully to draw a whole line of an
image in a single instruction.    We also don't need to draw each image twice
per move--once to erase the image at its old location and once to draw it at
its new location--as we did with exclusive-oring, since the act of drawing the
image at a new location serves to erase the old image as well. But  wait,
there's more!    xor accesses a given byte of memory twice per draw, once to
read the original byte and once to write the modified byte back to memory.
With block-move animation, on the other hand, we simply write each byte of
an image to memory once and we're done with that byte.    In other words,
between the elimination of a separate erasing step and the replacement of
read-xor-write with a single write, block-move animation accesses display
memory  only  about  one-third  as  many  times  as  exclusive-or  animation.
(The ratio  isn't  quite  1  to  4  because the  blank fringe makes block-move
animation images somewhat larger.)

Are alarm bells going off in your head?    They should be. Think
back to our journey beneath the programming interface. Think of the cycle-
eaters.    Ah, you've got it!     Exclusive-or animation loses about three times
as much performance to the display adapter cycle-eater as does block-move
animation.      What's  more,  block-move  animation  uses  the  blindingly  fast
movs instruction.    To top it off, block-move animation loses almost nothing
to  the  prefetch  queue  cycle-eater  or  the  8088's  slow  branching  speed,
thanks to the rep prefix.

Sounds almost too good to be true, doesn't it?    It is true, though:
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block-move  animation  relies  almost  exclusively  on  one  of  the  two  most
powerful instructions of the 8088 (cmps being the other),  and avoids the
gaping maws of the prefetch queue and display adapter cycle-eaters in the
process.    Which leaves only one question:

How fast is block-move animation? Remember, theory is fine, but
we don't trust any code until we've timed it.      Listing 11-34 performs the
same animation as Listing 11-34, but with block-move rather than exclusive-
or animation.    Happily, Listing 11-34 lives up to its advance billing, finishing
in just 10.35 seconds when run on an EGA. Block-move animation is close to
three times as fast as exclusive-oring in this application--and it looks better,
too. (You can slow down the animation in order to observe the differences
between the two sorts  of  animation  more closely  by setting  DELAY to  a
higher value in each listing.)

Let's  not  underplay  the  appearance  issue  just  because  the
performance advantage of block-move animation is so great.    If you possibly
can, enter and run Listings 11-33 and 11-34.    The visual impact of block-
move animation's flicker-free, high-speed animation is startling.    It's hard to
imagine that any programmer would go back to exclusive-oring after seeing
block-move animation in action.

That's  not  to  say  that  block-move animation  is  perfect.  Unlike
exclusive-oring, block-move animation wipes out the background unless the
background is explicitly redrawn after each image is moved.     Block-move
animation  does  produce  flicker  and  fringe  effects  when  images  overlap.
Block-move animation also limits the maximum distance by which an image
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can move before it's redrawn to the width of its fringe.
If block-move animation isn't perfect, however, it's  much better

than exclusive-oring.    What's really noteworthy, however, is that we looked
at  an  application--animation--without  preconceived  ideas  about  the  best
implementation,  and  came  up  with  an  approach  that  merged  the
application's  needs  with  one  of  the  strengths  of  the  PC--the  string
instructions--while  avoiding  the  cycle-eaters.      In  the  end,  we  not  only
improved  performance  remarkably  but  also  got  better  animation,  in  the
process turning a seeming minus--the limitations of the string instructions--
into a big plus.      All  in all,  what we've just done is the Zen of assembler
working on all levels:    knowledge, flexible mind, and implementation.

Try to use the string instructions for all your time- critical code,
even when you think they just don't fit. Sometimes they don't--but you can
never be sure unless you try...and if they can be made to fit, it will pay off
big.

NOTES ON THE ANIMATION IMPLEMENTATIONS

Spend as much time as you wish perusing Listings 11-33 and 11-
34, but  do not worry if they don't make complete sense to you right now.
The point of this exercise was to illustrate the use of the string instructions in
an unusual application, not to get you started with animation.    In Volume II
of The Zen of Assembly Language we'll return to animation in a big way.

The  animation  listings  are  not  full-featured,  flexible
implementations, nor were they meant to be.    My intent in creating these
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programs  was  to  contrast  the  basic  operation  and  raw  performance  of
exclusive-or  and block-move animation.  Consequently,  I've  structured  the
two listings  along  much the  same lines,  and  while  the  code is  fast,  I've
avoided further optimizations (notably the use of  in-line code) that would
have  complicated  matters.      We'll  see  those  additional  optimizations  in
Volume II.

One interesting point to be made about the animation listings is
that I've assumed in the drawing routines that images always start on even
rows of the screen and are always an even number of rows in height.    Many
people would consider the routines to be incomplete,  since they lack the
extra code needed to handle the complications of odd start rows and odd
heights in 320x200 4-color graphics mode.    Of course, that extra code would
slow  performance  and  increase  program  size,  but  would  be  deemed
necessary in any "full" animation implementation.

Is  the  handling  of  odd  start  rows  and  odd  heights  really
necessary, though?    Not if you can structure your application so that images
can always start on even rows and can always be of even heights, and that's
actually easy to do.    No one will ever notice whether images move 1 or 2
pixels at a time; the nature of animation is such that the motion of an image
appears just as smooth in either case.    And why should there be a need for
odd image heights?    If necessary, images of odd height could be padded out
with an extra line.    In fact, an extra line can often be used to improve the
appearance of an image.

In short, "full" animation implementations will not only run slower
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than the implementation in Listings 11-33 and 11-34 but may not even yield
any noticeable benefits.    The lesson is this: only add features that slow your
code  when  you're  sure  you  need  them.      High-performance  assembler
programming is partly an art of eliminating everything but the essentials.

By the way, Listings 11-33 and 11-34 move images a full 4 pixels
at a time horizontally, and that's a bit too far.    2 pixels is a far more visually
attractive distance by which to move animated images, especially those that
move slowly. However, because each byte of 320x200 4-color mode display
memory controls 4 pixels, alignment of images to start in columns that aren't
multiples of 4 is more difficult, although not really that hard once you get the
hang of it.    Since our goal in this section was to contrast block-move and
exclusive-or  animation,  I  didn't  add  the  extra  code  and  complications
required to bit-align the images.    We will discuss bit-alignment of images at
length in Volume II, however.

A NOTE ON HANDLING BLOCKS LARGER THAN 64 K BYTES

All the string instruction-based code we've seen in this chapter
handles  only  blocks  or  strings  that  are  64  K  bytes  in  length  or  shorter.
There's  a  very  good  reason  for  this,  of  course--the  infernal  segmented
architecture  of  the  8088--but  there  are  nonetheless  times  when  larger
memory blocks are needed.

I'm going to save the topic of handling blocks larger than 64 K
bytes for Volume II of The Zen of Assembly Language.    Why? Well, the trick
with code that handles larger memory blocks isn't getting it to work; that's
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relatively easy if you're willing to perform 32-bit arithmetic and reload the
segment registers before each memory access.    No, the trick is getting code
that handles large memory blocks to work reasonably fast.

We've  seen  that  a  key  to  assembler  programming  lies  in
converting difficult problems from approaches ill-suited to the 8088 to ones
that the 8088 can handle well, and this is no exception.    In this particular
application, we need to convert the task at hand from one of independently
addressing every byte in the 8088's 1-megabyte address space to one of
handling a series of blocks that are each no larger than 64 K bytes, so that
we can process up to 64 K bytes at a time very rapidly without touching the
segment registers.

The concept is simple, but the implementation is not so simple
and  requires  the  flexible  mind...and  that's  why  the  handling  of  memory
blocks larger than 64 K bytes will have to wait until Volume II.

CONCLUSION

This chapter had two objectives.      First,  I  wanted you to get a
sense of how and when the string instructions can best be applied.    Second,
I wanted you to heighten your regard for these instructions, which are the
best the 8088 has to offer.    With any luck, this chapter has both broadened
your horizons for string instruction applications and increased your respect
for these unique and uniquely powerful members of the 8088's instruction
set.


