
Abrash/Zen:    Chapter 11/

Chapter 11:    String Instruction Applications

Now that we've got a solid understanding of what the string
instructions do, let's look at a few applications to get a sense of what they're
particularly good for.    The applications we'll look at include copying arrays,
searching strings for characters, looking up entries in tables, comparing
strings, and animation.

There's a lot of meat in this chapter, and a lot of useful code.
The code isn't fully fleshed out, since I'm trying to illustrate basic principles
rather than providing you with a library from A to Z, but that's actually all to
the good.    You can build on this code to meet your specific needs or write
your own code from scratch once you understand the ins and outs of the
string instructions.    In either case, you'll be better off with code customized
to suit your purposes than you would be using any one-size-fits-all code I
could provide.

I'll frequently contrast the string instruction-based
implementations with versions built around non-string instructions.    This
should give you a greater appreciation for the string instructions, and may
shed new light on the non-string instructions as well.    I'll tell you ahead of
time how the comparisons will turn out:    in almost every case the string
instructions will prove to be vastly superior.    The lesson we learned in the
last chapter holds true:    use the string instructions to the hilt!    There's
nothing like them under the (8088) sun.

Abrash/Zen:    Chapter 11/

Contrasting string and non-string implementations also reinforces
an important point.    There are many, many ways to accomplish any given
task on the 8088.    It's knowing which approach to choose that separates the
journeyman programmer from the guru.

STRING HANDLING WITH lods AND stos

lods is an odd bird among string instructions, being the only
string instruction that doesn't benefit in the least from rep.    While rep does
work with lods, in that it causes lods to repeat multiple times, the
combination of the two is nonetheless totally impractical:    what good could
it possibly do to load AL twice (to say nothing of 64 K times)?    Without rep,
lods is still better than mov, but not that much better; lods certainly doesn't
generate the quantum jump in performance that rep stos and rep movs do.
So--when does lods really shine?

It turns out that lods is what might be called a "synergistic"
instruction, at its best when used with stos (or sometimes scas, or even
non-string instructions) in a loop. Together, lods and stos let you load an
array or string element into AL, test and/or modify it, and then write the
element back to either the original array or a new array, as shown in Figure
11-1.    You might think of the lods-process-stos combination as being a sort
of "meta-movs," whereby you can whip up customized memory-to-memory
moves as needed.    Of course, lods/stos is slower than movs (especially
rep movs), but by the same token lods/stos is far more flexible.    Besides,
lods/stos isn't that slow--all of the 8088's memory-accessing instructions

Abrash/Zen:    Chapter 11/

suffer by comparison with movs.    Placed inside a loop, the lods/stos

combination makes for fairly speedy array and string processing.
For example, Listing 11-1 copies a string to a new location,

converting all characters to uppercase in the process, by using a loop
containing lods and stos.    Listing 11-1 takes just 773 us to copy and
convert.    By contrast, Listing 11-2, which uses non- string instructions to
perform the same task, takes 921 us to perform the copy and conversion.

By the way, Listing 11-1 could just as easily have converted
SourceString to uppercase in place, rather than copying the converted text
to DestString.    This would be accomplished simply by loading both DS:SI
and ES:DI to point to SourceString, as shown in Listing 11-3, which changes
nothing else from Listing 11-1.

Why is this interesting?    It's interesting because two pointers--
DS:SI and ES:DI--are used to point to a single array. It's often faster to
maintain two pointers and use lods and stos than it is to use a single
pointer with non-string instructions, as in Listing 11-4.    Listing 11-3 runs in
771 us, about the same as Listing 11-1 (after all, they're virtually identical).
However, Listing 11-4 takes 838 us, even though it uses only one pointer to
point to the array being converted to uppercase. The lods/stos pair lies
somewhere between the repeated string instructions and the non-string
instructions in terms of performance and flexibility.    lods/stos isn't as fast
as any of the repeated string instructions, both because two instructions are
involved and because it can't be used with a rep prefix but must instead be
placed in a loop.    However, lods/stos is a good deal more flexible than any

Abrash/Zen:    Chapter 11/

repeated string instruction, since once a memory operand is loaded into AL
or AX it can be tested and manipulated easily (and often quickly as well,
thanks to the accumulator-specific instructions).

On the other hand, the lods/stos pair is certainly faster than non-
string instructions, as Listings 11-1 through 11-4 illustrate.    However,
lods/stos is not as flexible as the non- string instructions, since DS:SI and
ES:DI must be used as pointer registers and only the accumulator can be
loaded from and stored to memory.

On balance, the lods/stos pair overcomes some but not all of the
limitations of repeated string instructions, and does so at a substantial
performance cost vis-a-vis the repeated string instructions.    One thing that
lods/stos doesn't do particularly well is modify memory directly.    For
example, suppose that we want to set the high bit of every byte in a 1000-
byte array.    We could of course do this with lodsb and stosb, setting the
high bit of each word while it's loaded into AL.    Listing 11-5, which does
exactly that, takes 10.07 us per word.

However, we could also use a plain old or instruction working
directly with a memory operand to do the same thing, as shown in Listing 11-
6.    Listing 11-6 is just as fast as Listing 11-5 at 10.06 us per word, and it's
also considerably shorter at 13 rather than 21 bytes, with 1 less byte inside
the loop. lods/stos isn't disastrously worse in this case, but it certainly isn't
the preferred solution--and there are plenty of other situations in which
lods/stos is less than ideal.

For instance, when registers are tight, the extra pointer register

Abrash/Zen:    Chapter 11/

lods/stos takes can be sorely missed.    If the accumulator is reserved for
some specific purpose and can't be modified, lods/stos can't very well be
used.    If a pointer to far data is needed by other instructions in the same
routine, the limitation of stos to operating in the ES segment would become
a burden.    In other words, while the lods/stos pair is more flexible than the
repeated string instructions, its limitations are significant nonetheless.

The point is not simply that the lods/stos pair is not as flexible as
the non-string instructions.    The real point is that you shouldn't assume
you've come up with the best solution just because you've used string
instructions.    Yes, I know that I've been touting string instructions as the
greatest thing since sliced bread, and by and large that's true.    However,
because the string instructions have a sharply limited repertoire and often
require a good deal of preliminary set-up, you must consider your
alternatives before concluding that a string instruction-based implementation
is best.
BLOCK HANDLING WITH movs

Simply put, movs is the king of the block copy.    There's no other
8088 instruction that can hold a candle to movs when it comes to copying
blocks of data from one area of memory to another.    It does take several
instructions to set up for movs, so if you're only moving a few bytes and
DS:SI and ES:DI don't happen to be pointing to your source and destination,
you might want to use a regular mov.    Whenever you want to move more
than a few bytes, though, movs--or better yet rep movs--is the ticket.

Let's look at the archetypal application for movs, a subroutine

Abrash/Zen:    Chapter 11/

which copies a block of memory from one memory area to another.    What's
special about the subroutine we'll look at is that it handles copying a block
when the destination of the copy overlaps the source.    This is a bit tricky
because the direction in which the copy must proceed--from the start of the
block toward the end, or vice-versa--depends on the direction of overlap.

If the destination block overlaps the source block and starts at a
lower memory address than the source block, then the copy can proceed in
the normal direction, from lower to higher addresses, as shown in Figure 11-
2.    If the destination block overlaps the source block and starts at a higher
address, however, the block must be copied starting at its highest address
and proceeding toward the low end, as shown in Figure 11-3. Otherwise, the
first data copied to the destination block would wipe out source data that
had yet to be copied, resulting in a corrupted copy, as shown in Figure 11-4.
Finally, if the blocks don't overlap, the copy can proceed in either direction,
since the two blocks can't conflict.

The block-copy subroutine BlockCopyWithOverlap shown in
Listing 11-7 handles potential overlap problems exactly as described above.
In cases where the destination block starts at a higher address than the
source block, BlockCopyWithOverlap performs an std and uses movs to
copy the source block starting at the high end and proceeding to the low
end.    Otherwise, the source block is copied from the low end to the high end
with cld/movs.    BlockCopyWithOverlap is both remarkably compact and
very fast, clocking in at 5.57 ms for the cases tested in Listing 11-7.    The
subroutine could actually be more compact still, but I've chosen to improve

Abrash/Zen:    Chapter 11/

performance at the expense of a few bytes by copying as much of the block
as possible a word rather than a byte at a time.

There are two points of particular interest in Listing 11-7. First,
BlockCopyWithOverlap only handles blocks that reside in the same
segment, and then only if neither block wraps around the end of the
segment.    While it would certainly be possible to write a version of the
subroutine that properly handled both potentially overlapping copies
between different segments and segment wrapping, neither of those
features is usually necessary, and the additional code would reduce overall
performance.    If you need such a routine, write it, but as a general practice
don't write extra, slower code just to handle cases that you can readily avoid.

Second, BlockCopyWithOverlap nicely illustrates a nasty
aspect of the use of word-sized string instructions when the Direction flag is
set to 1.    The basic problem is this:    if you point to the last byte of a block of
memory and perform a word- sized operation, the byte after the end of the
memory block will be accessed along with the last byte of the block, rather
than the last two bytes of the block, as shown in Figure 11-5.

This problem of accessing the byte after the end of a memory
block can occur with all word-sized instructions, not just string instructions.
However, it's especially liable to happen with a word-sized string instruction
that's moving its pointer or pointers backward (with the Direction flag equal
to 1) because the temptation is to point to the end of the block, set the
Direction flag, and let the string instruction do its stuff in repeated word-
sized chunks for maximum performance.    To avoid this problem, you must

Abrash/Zen:    Chapter 11/

always be sure to point to the last word rather than byte when you point to
the last element in a memory block and then access memory with a word-
sized instruction.

Matters get even more dicey when byte- and word-sized string
instructions are mixed when the Direction flag is set to 1.    This is done in
Listing 11-7 in order to use rep movsw to move the largest possible portion
of odd-length memory blocks.    The problem here is that when a string
instruction moves its pointer or pointers from high addresses to low, the
address of the next byte that we want to access (with lodsb, for example)
and the address of the next word that we want to access (with lodsw, for
example) differ, as shown in Figure 11-6.    For a byte-sized string instruction
such as lodsb, we do want to point to the end of the array.    After that lodsb

has executed with the Direction flag equal to 1, though, where do the
pointers point?    To the address 1 byte--not 1 word--lower in memory.    Then
what happens when lodsw is executed as the next instruction, with the
intent of accessing the word just above the last byte of the array? Why, the
last byte of the array is incorrectly accessed again, as shown in Figure 11-7.

The solution, as shown in Listing 11-7, is fairly simple. We must
perform the initial movsb and then adjust the pointers to point 1 byte lower
in memory--to the start of the next word. Only then can we go ahead with a
movsw, as shown in Figure 11-8.

Mind you, all this only applies when the Direction Flag is 1.
When the Direction flag is 0, movsb and movsw can be mixed freely, since
the address of the next byte is the same as the address of the next word

Abrash/Zen:    Chapter 11/

when we're counting from low addresses to high, as shown in Figure 11-9.
Listing 11-7 reflects this, since the pointer adjustments are only made when
the Direction flag is 1.

Listing 11-8 contains a version of BlockCopyWithOverlap that
does exactly what the version in Listing 11-7 does, but does so without string
instructions.    While Listing 11-8 doesn't look all that much different from
Listing 11-7, it takes a full 15.16 ms to run--quite change from the time of
5.57 ms we measured for Listing 11-7.    Think about it:    Listing 11-7 is nearly
three times as fast as Listing 11-8, thanks to movs--and it's shorter too.

Enough said.

SEARCHING WITH scas

scas is often (but not always, as we shall see) the preferred way
to search for either a given value or the absence of a given value in any
array.    When scas is well-matched to the task at hand, it is the best choice
by a wide margin.    For example, suppose that we want to count the number
of times the letter 'A' appears in a text array.    Listing 11-9, which uses non-
string instructions, counts the number of occurrences of 'A' in the sample
array in 475 us.    Listing 11-10, which does exactly the same thing with
repnz scasb, finishes in just 203 us.    That, my friends, is an improvement
of 134%.    What's more, Listing 11- 10 is shorter than Listing 11-9.

Incidentally, Listing 11-10 illustrates the subtlety of the pitfalls
associated with forgetting that scas repeated zero times (with CX equal to
zero) doesn't alter the flags.    If the jcxz instruction in Listing 11-10 were to

Abrash/Zen:    Chapter 11/

be removed, the code would still work perfectly--except when the array being
scanned was exactly 64 K bytes long and every byte in the array matched
the byte being searched for.    In that one case, CX would be zero when
repnz scasb was restarted after the last match, causing repnz scasb to
drop through without altering the flags.    The Zero flag would be 0 as a result
of DX previously incrementing from 0FFFFh to 0, and so the jnz branch would
not be taken.    Instead, DX would be incremented again, causing a non-
existent match to be counted.    The result would be that 1 rather than 64 K
matches would be returned as the match count, an error of considerable
magnitude.

If you could be sure that no array longer than 64 K-1 bytes would
ever be passed to ByteCount, you could eliminate the jcxz and speed the
code considerably.    Trimming the fat from your code until it's matched
exactly to an application's needs is one key to performance.

scas AND ZERO-TERMINATED STRINGS

Clearly, then, when you want to find a given byte or word value in
a buffer, table, or array of a known fixed length, it's often best to load up the
registers and let a repeated scas do its stuff.    However, the same is not
always true of searching tasks that require multiple comparisons for each
byte or word, such as a loop that ends when either the letter 'A' or a zero
byte is found.    Alas, scas can perform just one comparison per memory
location, and repz or repnz can only terminate on the basis of the Zero flag
setting after that one comparison.    This is unfortunate because multiple

Abrash/Zen:    Chapter 11/

comparisons are exactly what we need to handle C-style strings, which are of
no fixed length and are terminated with zeros.    rep scas can still be used in
such situations, but its sheer power is diluted by the workarounds needed to
allow it to function more flexibly than it is normally capable of doing.    The
choice between repeated scas instructions and other approaches then must
be made on a case-by-by case basis, according to the balance between the
extra overhead needed to coax scas into doing what is needed and the
inherent speed of the instruction.

For example, suppose we need a subroutine that returns either
the offset in a string of the first instance of a selected byte value or the value
zero if a zero byte (marking the end of the string) is encountered before the
desired byte is found. There's no simple way to do this with scasb, for in this
application we have to compare each memory location first to the desired
byte value and then to zero.    scasb can perform one comparison or the
other, but not both.

Now, we could use rep scasb to find the zero byte at the end of
the string, so we'd know how long the string was, and then use rep scasb

again with CX set to the length of the string to search for the selected byte
value.    Unfortunately, that involves processing every byte in the string once
before even beginning the search.    On average, this double-search approach
would read every element of the string being searched once and would then
read one-half of the elements again, as shown in Figure 11-10. By contrast,
an approach that reads each byte and immediately compares it to both the
desired value and zero would read only one-half of the elements in the

Abrash/Zen:    Chapter 11/

string, as shown in Figure 11-11. Powerful as repeated scasb is, could it
possibly run fast enough to allow the double-search approach to outperform
an approach that accesses memory only one-third as many times?

The answer is yes...conditionally.    The double-search approach
actually is slightly faster than a lodsb-based single- search string-searching
approach for the average case.    The double-search approach performs
relatively more poorly if matches tend to occur most frequently in the first
half of the strings being searched, and relatively better if matches tend to
occur in the second half of the strings.    Also, the more flexible lodsb- based
approach rapidly becomes the solution of choice as the termination condition
becomes more complex, as when a case- insensitive search is desired.    The
same is true when modification as well as searching of the string is desired,
as when the string is converted to uppercase.

Listing 11-11 shows lodsb-based code that searches a zero-
terminated string for the character 'z'.    For the sample string, which has the
first match right in the middle of the string, Listing 11-11 takes 375 us to find
the match.    Listing 11-12 shows repnz scasb-based code that uses the
double-search approach.    For the same sample string as Listing 11-11,
Listing 11-12 takes just 340 us to find the match, despite having to perform
about three times as many memory accesses as Listing 11- 11--a tribute to
the raw power of repeated scas.    Finally, Listing 11-13, which performs the
same search using non-string instructions, takes 419 us to find the match.

It is apparent from Listings 11-11 and 11-12 that the performance
margin between scas-based string searching and other approaches is

Abrash/Zen:    Chapter 11/

considerably narrower than it was for array searching, due to the more
complex termination conditions.    Given a still more complex termination
condition, lods would likely become the preferred solution due to its greater
flexibility.    In fact, if we're willing to expend a few bytes, the greater
flexibility of lods can be translated into higher performance for Listing 11-11,
as follows.

Listing 11-14 shows an interesting variation on Listing 11- 11.
Here lodsw rather than lodsb is used, and AL and AH, respectively, are
checked for the termination conditions.    This technique uses a bit more
code, but the replacement of two lodsb instructions with a single lodsw and
the elimination of every other branch pays off handsomely, as Listing 11-14
runs in just 325 us, 15% faster than Listing 11-11 and 5% faster than Listing
11-12.    The key here is that lods allows us leeway in designing code to work
around the slow memory access and slow branching of the 8088, while scas

does not.    In truth, the flexibility of lods can make for better performance
still through in-line code...but that's a story for the next few chapters.

MORE ON scas AND ZERO-TERMINATED STRINGS

While repeated scas instructions aren't ideally suited to string
searches involving complex conditions, they do work nicely with strings
whenever brute force scanning comes into play.    One such application is
finding the offset of the last element of some sort in a string.    For example,
Listing 11-15, which finds the last non-blank element of a string by using
lodsw and remembering the offset of the most recent non-blank character

Abrash/Zen:    Chapter 11/

encountered, takes 907 us to find the last non-blank character of the sample
string, which has the last non-blank character in the middle of the string.
Listing 11-16, which does the same thing by using repnz scasb to find the
end of the string and then repz scasw with the Direction flag set to 1 to find
the first non- blank character scanning backward from the end of the string,
runs in just 386 us.

That's an amazing improvement given our earlier results
involving the relative speeds of lodsw and repeated scas in string
applications.    The reason that repeated scas outperforms lodsw by a
tremendous amount in this case but underperformed it earlier is simple.
The lodsw-based code always has to check every character in the string--
right up to the terminating zero-- when searching for the last non-blank
character, as shown in Figure 11-12.    While the scasb-base code also has to
access every character in the string, and then some, as shown in Figure 11-
13, the worst case is that Listing 11-16 accesses string elements no more
than twice as many times as Listing 11-15.    In our earlier example, the best
case was a two-to-one ratio.    The timing results for Listings 11-15 and 11-16
show that the superior speed, lack of prefetching, and lack of branching
associated with repeated scas far outweigh any performance loss resulting
from a memory-access ratio of less than two-to-one.

By the way, Listing 11-16 is an excellent example of the need to
correct for pointer overrun when using the string instructions.    No matter
which direction we scan in, it's necessary to undo the last advance of DI
performed by scas in order to point to the byte on which the comparison

Abrash/Zen:    Chapter 11/

ended.
Listing 11-16 also shows the use of jcxz to guard against the case

where CX is zero.    As you'll recall from the last chapter, repeated scas

doesn't alter the flags when started with CX equal to zero.    Consequently,
we must test for the case of CX equal to zero before performing repz scasw,
and we must treat that case if we had never found the terminating condition
(a non- blank character).    Otherwise, the leftover flags from an earlier
instruction might give us a false result following a repz scasw which doesn't
change the flags because it is repeated zero times. In Listing 11-21 we'll see
that we need to do the same with repeated cmps as well.

Bear in mind, however, that there are several ways to solve any
problem in assembler.    For example, in Listing 11-16 I've chosen to use jcxz

to guard against the case where CX is zero, thereby compensating for the
fact that scas repeated zero times doesn't change the flags.    Rather than
thinking defensively, however, we could actually take advantage of that
particular property of repeated scas.    How?    We could set the Zero flag to 1
(the "match" state) by placing sub dx,dx before repz scasw.    Then if repz

scasw is repeated zero times because CX is zero the following conditional
jump will reach the proper conclusion, that the desired non-match (a non-
blank character) wasn't found.

As it happens, sub dx,dx isn't particularly faster than jcxz, and
so there's not much to choose from between the two solutions.    With sub

dx,dx the code is 3 cycles faster when CX isn't zero but is the same number
of bytes in length, and is considerably slower when CX is zero.    (There's

Abrash/Zen:    Chapter 11/

really no reason to worry about performance here when CX is zero, however,
since that's a rare case that's always handled relatively quickly. Rather, our
focus should be on losing as little performance as possible to the test for CX
being zero in the more common case-- when CX isn't zero.)    In another
application, though, the desired Zero flag setting might fall out of the code
preceding the repeated cmps, and no extra code at all would be required for
the test for CX equal to zero.    Listing 11-24, which we'll come to shortly, is
such a case.

What's interesting here is that it's instinctive to use jcxz, which is
after all a specialized and fast instruction that is clearly present in the 8088's
instruction set for just such a purpose as protecting against repeating a
string comparison zero times.    The idea of presetting a flag and letting the
comparison drop through without changing the flag, on the other hand, is
anything but intuitive--but is just about as effective as jcxz, more so under
certain circumstances.

Don't let your mind be constrained by intentions of the designers
of the 8088.    Think in terms of what instructions do rather than what they
were intended to do.

USING REPEATED scasw ON BYTE-SIZED DATA

Listing 11-16 is also a fine example of how to use repeated
scasw on byte-sized data.    You'll recall that one of the rules of repeated
string instruction usage is that word-sized string instructions should be used
wherever possible, due to their faster overall speed.    It turns out, however,

Abrash/Zen:    Chapter 11/

that it's rather tricky to apply this rule to scas.
For starters, there's hardly ever any use for repnz scasw when

searching for a specific byte value in memory.    Why?    Well, while we could
load up both AH and AL with the byte we're looking for and then use repnz

scasw, we'd only find cases where the desired byte occurs at least twice in a
row, and then we'd only find such 2-byte cases that didn't span word
boundaries. Unfortunately, there's no way to use repnz scasw to check
whether either AH or AL--but not necessarily both--matched their respective
bytes.    With repnz scasw, if AX doesn't match all 16 bits of memory, the
search will continue, and individual byte matches will be missed.

On the other hand, we can use repz scasw to search for the first
non-match, as in Listing 11-16.    Why is it all right to search a word at a time
for non-matches but not matches?    Because if either byte of each word
compared with repz scasw doesn't match the byte of interest (which is
stored in both AH and AL), then repz scasw will stop, which is what we
want.    Of course, there's a bit of cleaning up to do in order to figure out
which of the 2 bytes was the first non-match, as illustrated by Listing 11-16.
Yes, it is a bit complex and does add a few bytes, but it also speeds things
up, and that's what we're after.

In short, repz scasw can be used to boost performance when
scanning for non-matching byte-sized data.    However, repnz scasw is
generally useless when scanning for matching byte-sized data.

scas AND LOOK-UP TABLES

Abrash/Zen:    Chapter 11/

One common application for table searching is to get an element
number or an offset into a table that can be used to look up related data or a
jump address in another table.    We saw look- up tables in Chapter 7, and
we'll see them again, for they're a potent performance tool.

scas is often excellent for look-up code, but the pointer and
counter overrun characteristic of all string instructions make it a bit of a
nuisance to calculate offsets and/or element numbers after repeated scas

instructions.    Listing 11-17 shows a subroutine that calculates the offset of a
match in a word-sized table in the process of jumping to the associated
routine from a jump table.    Notice that it's necessary to subtract the 2-byte
overrun from the difference between the final value of DI and the start of the
table.    The calculation would be the same for a byte-sized table scanned
with scasb, save that scasb has only a 1-byte overrun and so only 1 would
be subtracted from the difference between DI and the start of the table.

Finding the element number is a slightly different matter. After a
repeated scas, CX contains the number of elements that weren't scanned.
Since CX counts down just once each time scas is repeated, there's no
difference between scasw and scasb in this respect.

Well, if CX contains the number of elements that weren't
scanned, then subtracting CX from the table length in elements must yield
the number of elements that were scanned.    Subtracting 1 from that value
gives us the number of the last element scanned.    (The first element is
element number 0, the second element is element number 1, and so on.)
Listing 11-18 illustrates the calculation of the element number found in a

Abrash/Zen:    Chapter 11/

look-up table as a step in the process of jumping to the associated routine
from a jump table, much as in Listing 11-17.

CONSIDER YOUR OPTIONS

Don't assume that scas is the ideal choice even for all memory-
searching tasks in which the search length is known. Suppose that we simply
want to know if a given character is any of, say, four characters:    'A', 'Z', '3',
or '!'.    We could do this with repnz scasb, as shown in Listing 11-19.
Alternatively, however, we could simply do it with four comparisons and
conditional jumps, as shown in Listing 11-20.    Even with the prefetch queue
cycle-eater doing its worst, each compare and conditional jump pair takes no
more than 16 cycles when the jump isn't taken (the jump is taken at most
once, on a match), which stacks up pretty well against the 15 cycle per
comparison and 9 cycle set-up time of repnz scasb.    What's more, the
compare-and- jump approach requires no set-up instructions.    In other
words, the less sophisticated approach might well be better in this case.

The Zen timer bears this out.    Listing 11-19, which uses repnz

scasb, takes 183 us to perform five checks, while Listing 11-20, which uses
the compare-and-jump approach, takes just 119 us to perform the same five
checks.    Listing 11-20 is not only 54% faster than Listing 11-19 but is also 1
byte shorter.    (Don't forget to count the look-up table bytes in Listing 11-19.)

Of course, the compare-and-jump approach is less flexible than
the look-up approach, since the table length and contents can't be passed as
parameters or changed as the program runs. The compare-and-jump

Abrash/Zen:    Chapter 11/

approach also becomes unwieldy when more entries need to be checked,
since 4 bytes are needed for each additional compare-and-jump entry where
the repnz scasb approach needs just 1.    The compare-and-jump approach
finally falls apart when it's no longer possible to short-jump out of the
comparison/jump code and so jumps around jumps must be used, as in:

cmp al,'Z'
jnz $+5
jmp CharacterFound
cmp al,'3'

When jumps around jumps are used, the comparison time per character goes
from 16 to 24 cycles, and rep scasb emerges as the clear favorite.

Nonetheless, Listings 11-19 and 11-20 illustrate two important
points.    Point number 1:    the repeated string instructions tend to have a
greater advantage when they're repeated many times, allowing their speed
and compact size to offset the overhead in set-up time and code they
require.    Point number 2:    specialized as the string instructions are, there
are ways to program the 8088 that are more specialized still.    In certain
cases, those specialized approaches can even outperform the string
instructions.    Sure, the specialized approaches, such as the compare-and-
jump approach we just saw, are limited and inflexible--but when you don't
need the flexibility, why pay for it in lost performance?

COMPARING MEMORY TO MEMORY WITH cmps

When cmps does exactly what you need done it can't be beat,

Abrash/Zen:    Chapter 11/

although to an even greater extent than with scas the cases in which that is
true are relatively few.    cmps is used for applications in which byte-for-byte
or word-for-word comparisons between two memory blocks of a known
length are performed, most notably array comparisons and substring
searching.    Like scas, cmps is not flexible enough to work at full power on
other comparison tasks, such as case-insensitive substring searching or the
comparison of zero-terminated strings, although with a bit of thought cmps

can be made to serve adequately in some such applications.
cmps does just one thing, but it does far better than any other

8088 instruction or combination of instructions.    The one transcendent
ability of cmps is the direct comparison of two fixed-length blocks of
memory.    The obvious use of cmps is in determining whether two memory
arrays or blocks of memory are the same, and if not, where they differ.
Listing 11-21, which runs in 685 us, illustrates repz cmpsw in action.
Listing 11-22, which performs exactly the same task as Listing 11-21 but
uses lodsw and scasw instead of cmpsw, runs in 1298 us.    Finally, Listing
11-23, which uses non-string instructions, takes a leisurely 1798 us to
complete the task.    As you can see, cmps blows away not only non-string
instructions but also other string instructions under the right circumstances.
(As I've said before, there are many, many different sequences of assembler
code that will work for any given task.    It's the choice of implementation that
makes the difference between adequate code and great code.)

By the way, in Listings 11-21 though 11-23 I've used jcxz to make
sure the correct result is returned if zero-length arrays are compared.    If you

Abrash/Zen:    Chapter 11/

use this routine in your code and you can be sure that zero-length arrays will
never be passed as parameters, however, you can save a few bytes and
cycles by eliminating the jcxz check.    After all, what sense does it make to
compare zero-length arrays...and what sense does it make to waste precious
bytes and cycles guarding against a contingency that can never arise?

Make the comparison a bit more complex, however, and cmps

comes back to the pack.    Consider the comparison of two zero- terminated
strings, rather than two fixed-length arrays.    As with scas in the last section,
cmps can be made to work in this application by first performing a scasb

pass to determine one string length and then comparing the strings with
cmpsw, but the double pass negates much of the superior performance of
cmps. Listing 11-24 shows an implementation of this approach, which runs
in 364 us for the test strings.

We found earlier that lods works well for string searching when
multiple termination conditions must be dealt with.    That is true of string
comparison as well, particularly since there we can benefit from the
combination of scas and lods.    The lodsw/scasw approach, shown in
Listing 11-25, runs in just 306 us--19% faster than the rep scasb/repz

cmpsw-based Listing 11-24. For once, I won't bother with a non-string
instruction-based implementation, since it's perfectly obvious that replacing
lodsw and scasw with non-string sequences such as:

mov ax,[si]
inc si
inc si

Abrash/Zen:    Chapter 11/

and:

cmp [di],ax
:

inc di
inc di

can only reduce performance.
cmps and even scas become still less suitable if a highly

complex operation such as case-insensitive string comparison is required.
Since both source and destination must be converted to the same case
before being compared, both must be loaded into the registers for
manipulation, and only lods among the string instructions will do us any
good at all.    Listing 11-26 shows code that performs case-insensitive string
comparison.    Listing 11-26 takes 869 us to run, which is not very fast by
comparison with Listings 11-21 through 11-25.    That's to be expected,
though, given the flexibility required for this comparison.    The more
flexibility required for a given task, the less likely we are to be able to bring
the full power of the highly-specialized string instructions to bear on that
task.    That doesn't mean that we shouldn't try to do so, just that we won't
always succeed.

If we're willing to expend 200 extra bytes or so, we can speed
Listing 11-26 up considerably with a clever trick.    Making sure a character is
uppercase takes a considerable amount of time even when all calculations
are done in the registers, as is the case in Listing 11-26.    Fast as the
instructions in the macro TO_UPPER in Listing 11-26 are, two to five of them

Abrash/Zen:    Chapter 11/

are executed every time a byte is made uppercase, and a time-consuming
conditional jump may also be performed.

So what's better than two to five register-only instructions with at
most one jump?    A look-up table, that's what.    Listing 11-27 is a
modification of Listing 11-26 that looks up the uppercase version of each
character in ToUpperTable with a single instruction--and the extremely fast
and compact xlat instruction, at that.    (It's possible that mov could be used
instead of xlat to make an even faster version of Listing 11-27, since mov

can reference any general-purpose register while xlat can only load AL.    As
I've said, there are many ways to do anything in assembler.)    For most
characters there is no uppercase version, and the same character that we
started with is looked up in ToUpperTable.    For the 26 lowercase
characters, however, the character looked up is the uppercase equivalent.

You may well be thinking that it doesn't make much sense to try
to speed up code by adding a memory access, and normally you'd be right.
However, xlat is very fast--it's a 1-byte instruction that executes in 10
cycles--and it saves us the trouble of fetching the many instruction bytes of
TO_UPPER. (Remember, instruction fetches are memory accesses too.)
What's more, xlat eliminates the need for conditional jumps in the
uppercase-conversion process.

Sounds good in theory, doesn't it?    It works just as well in the
real world, too.    Listing 11-27 runs in just 638 us, a 36% improvement over
Listing 11-26.    Of course, Listing 11-27 is also a good deal larger than Listing
11-26, owing to the look-up table, and that's a dilemma the assembler

Abrash/Zen:    Chapter 11/

programmer faces frequently on the PC:    the choice between speed and
size.    More memory, in the form of look-up tables and in-line code, often
means better performance.    It's actually relatively easy to speed up most
code by throwing memory at it.    The hard part is knowing where to strike the
balance between performance and size.

Although both look-up tables and in-line code are discussed
elsewhere in this volume, a broad discussion of the issue of memory versus
performance will have to wait until Volume II of The Zen of Assembly
Language.    The mechanics of translating memory into performance--the
knowledge aspect, if you will--is quite simple, but understanding when that
tradeoff can and should be made is more complex and properly belongs in
the discussion of the flexible mind.

STRING SEARCHING

Perhaps the single finest application of cmps is in searching for a
sequence of bytes within a data buffer.    In particular, cmps is excellent for
finding a particular text sequence in a buffer full of text, as is the case when
implementing a find-string capability in a text editor.

One way to implement such a searching capability is by simply
starting repz cmps at each byte of the buffer until either a match is found or
the end of the buffer is reached, as shown in Figure 11-14.    Listing 11-28,
which employs this approach, runs in 2995 us for the sample search
sequence and buffer. That's not bad, but there's a better way to go.
Suppose we load the first byte of the search string into AL and use repnz

Abrash/Zen:    Chapter 11/

scasb to find the next candidate for the full repz cmps comparison, as
shown in Figure 11-15.    By so doing we could use a fast repeated string
instruction to disqualify most of the potential strings, rather than having to
loop and start up repz cmps at each and every byte in the buffer.    Would
that make a difference?

It would indeed!    Listing 11-29, which uses the hybrid repnz

scasb/repz cmps technique, runs in just 719 us for the same search
sequence and buffer as Listing 11-28.    Now, the margin between the two
techniques could vary considerably, depending on the contents of the buffer
and the search sequence.    Nonetheless, we've just seen an improvement of
more than 300% over already- fast string instruction-based code!    That
improvement is primarily due to the use of repnz scasb to eliminate most of
the instruction fetches and branches of Listing 11-28.

Even when you're using string instructions, stretch your mind to
think of still-better approaches...

As for non-string implementations, Listing 11-30, which performs
the same task as do Listings 11-28 and 11-29 but does so with non-string
instructions, takes a full 3812 us to run.    It should be very clear that non-
string instructions should be used in searching applications only when their
greater flexibility is absolutely required.

Make no mistake, there's more to searching performance than
simply using the right combination of string instructions.    The right choice of
algorithm is critical.    For a list of several thousand sorted items, a poorly-
coded binary search might well beat the pants off a slick repnz scasb/repz

Abrash/Zen:    Chapter 11/

cmps implementation. On the other hand, the repnz scasb/repz cmps

approach is excellent for searching free-form data of the sort that's found in
text buffers.

The key to searching performance lies in choosing a good
algorithm for your application and implementing it with the best possible
code.    Either the searching algorithm or the implementation may be the
factor that limits performance. Ideally, a searching algorithm would be
chosen with an eye toward using the strengths of the 8088--and that usually
means the string instructions.

cmps WITHOUT rep

In the last chapter I pointed out that scas and cmps are slower
but more flexible when they're not repeated.    Although repz and repnz only
allow termination according to the state of the Zero flag, scas and cmps

actually set all the status flags, and we can take advantage of that when
scas and cmps aren't repeated.    Of course, we should use repz or repnz

whenever we can, but non-repeated scas and cmps let us tap the power of
string instructions when repz and repnz simply won't do.

For instance, suppose that we're comparing two arrays that
contain signed 16-bit values representing signal measurements. Suppose
further that we want to find the first point at which the waves represented by
the arrays cross.    That is, if wave A starts out above wave B, we want to
know when wave A becomes less than or equal to wave B, as shown in Figure
11-16.    If wave B starts out above wave A, then we want to know when wave

Abrash/Zen:    Chapter 11/

B becomes less than or equal to wave A.
There's no way to perform this comparison with repeated cmps,

since greater-than/less-than comparisons aren't in the limited repertoire of
the rep prefix.    However, plain old non- repeated cmpsw is up to the task,
as shown in Listing 11-31, which runs in 1232 us.    As shown in Listing 11-31,
we must initially determine which array starts out on top, in order to set SI to
point to the initially-greater array and DI to point to the other array.    Once
that's done, all we need do is perform a cmpsw on each data point and
check whether that point is still greater with jg.    loop repeats the
comparison for however many data points there are--and that's the whole
routine in a very compact package!    The 3-instruction, 5-byte loop of Listing
11-31 is hard to beat for this fairly demanding task.

By contrast, Listing 11-32, which performs the same crossing
search but does so with non-string instructions, has 6 instructions and 13
bytes in the loop and takes considerably longer--1821 us--to complete the
sample crossing search. Although we were unable to use repeated cmps for
this particular task, we were nonetheless able to improve performance a
great deal by using the string instruction in its non-repeated form.
A NOTE ABOUT RETURNING VALUES

Throughout this chapter I've been returning "not found" statuses
by passing zero pointers (pointers set to zero) back to the calling routine.
This is a commonly used and very flexible means of returning such statuses,
since the same registers that are used to return pointers when searches are
successful can be used to return zero when searches are not successful.

Abrash/Zen:    Chapter 11/

The success or failure of a subroutine can then be tested with code like:

call FindCharInString
and si,si
jz CharNotFound

Returning failure statuses as zero pointers is particularly popular in high-level
languages such as C, although C returns pointers in either AX, DX:AX, or
memory, rather than in SI or DI.

However, there are many other ways of returning statuses in
assembler.    One particularly effective approach is that of returning success
or failure in either the Zero or Carry flag, so that the calling routine can
immediately jump conditionally upon return from the subroutine, without the
need for any anding, oring, or comparing of any sort.    This works out
especially well when the proper setting of a flag falls out of the normal
functioning of a subroutine.    For example, consider the following subroutine,
which returns the Zero flag set to 1 if the character in AL is whitespace:

Whitespace:
cmp al,' ' ;space
jz WhitespaceDone
cmp al,9 ;tab
jz WhitespaceDone
and al,al ;zero byte

WhitespaceDone:
ret

The key point here is that the Zero flag is automatically set by the
comparisons preceding the ret.    Any test for whitespace would have to

Abrash/Zen:    Chapter 11/

perform the same comparisons, so practically speaking we didn't have to
write a single extra line of code to return the subroutine's status in the Zero
flag.    Because the return status is in a flag rather than a register,
Whitespace could be called and the outcome handled with a very short
sequence of instructions, as follows:

mov al,[Char]
call Whitespace
jnz NotWhitespace

The particular example isn't important here.    What is important is
that you realize that in assembler (unlike high- level languages) there are
many ways to return statuses, and that it's possible to save a great deal of
code and/or time by taking advantage of that.    Now is not the time to pursue
the topic further, but we'll return to the issues of passing values and statuses
both to and from assembler subroutines in Volume II of The Zen of Assembly
Language.

PUTTING STRING INSTRUCTIONS TO WORK IN UNLIKELY PLACES

I've said several times that string instructions are so powerful
that you should try to use them even when they don't seem especially well-
matched to a particular application.    Now I'm going to back that up with an
unlikely application in which the string instructions have served me well over
the years: animation.

This section is actually a glimpse into the future.    Volume II of

Abrash/Zen:    Chapter 11/

The Zen of Assembly Language will take up the topic of animation in much
greater detail, since animation truly falls in the category of the flexible mind
rather than knowledge.    Still, animation is such a wonderful example of what
the string instructions can do that we'll spend a bit of time on it here and
now.    It'll be a whirlwind look, with few details and nothing more than a
quick glance at theory, for the focus isn't on animation per se.    What's
important is not that you understand how animation works, but rather that
you get a feel for the miracles string instructions can perform in places
where you wouldn't think they could serve at all.

ANIMATION BASICS

Animation involves erasing and redrawing one or more images
quickly enough to fool the eye into perceiving motion, as shown in Figure 11-
17.    Animation is a marginal application for the PC, by which I mean that the
8088 barely has enough horsepower to support decent animation under the
best of circumstances.    What that means is that the Zen of assembler is an
absolute must for PC animation.

Traditionally, microcomputer animation has been performed by
exclusive-oring images into display memory; that is, by drawing images by
inserting the bits that control their pixels into display memory with the xor

instruction.    When an image is first exclusive-ored into display memory at a
given location, the image becomes visible.    A second exclusive-oring of the
image at the same location then erases the image.    Why?    That's simply the
nature of the exclusive-or operation.

Abrash/Zen:    Chapter 11/

Consider this.    When you exclusive-or a 1 bit with another bit
once, the other bit is flipped.    When you exclusive-or the same 1 bit with
that other bit again, the other bit is again flipped--right back to its original
state, as shown in Figure 11- 18.    After all, a bit only has two possible states,
so a double flip must restore the bit back to the state in which it started.
Since exclusive-oring a 0 bit with another bit never affects the other bit,
exclusive-oring a target bit twice with either a 1 or a 0 bit always leaves the
target bit in its original state.

Why is exclusive-oring so popular for animation?    Simply because
no matter how many images overlap, the second exclusive- or of an image
always erases it without interfering with any other images.    In other words,
the perfect reversibility of the exclusive-or operation means that you could
exclusive-or each of 10 images once at the same location, drawing the
images right on top of each other, then exclusive-or them all again at the
same place--and they would all be erased.    With exclusive-oring, the
drawing or erasing of one image never interferes with the drawing or erasing
of other images it overlaps.

If you're catching all this, great.    If not, don't worry. I'm not going
to spend time explaining animation now--better we should wait until Volume
II, when we have the time to do it right.    The important point is that
exclusive-oring is a popular animation technique, primarily because it
eliminates the complications of drawing and erasing overlapping images.

Listing 11-33, which bounces 10 images around the screen,
illustrates animation based on exclusive-oring.    When run on an Enhanced

Abrash/Zen:    Chapter 11/

Graphics Adapter (EGA), Listing 11-33 takes 30.29 seconds to move and
redraw every image 500 times.    (Note that the long-period Zen timer was
used to time Listing 11-33, since we can't perform much animation within the
54 ms maximum period of the precision Zen timer.)

Listing 11-33 isn't a general-purpose animation program. I've kept
complications to a minimum in order to show basic exclusive-or animation.
Listing 11-33 allows us to observe the fundamental strengths and
weaknesses (primarily the latter) of the exclusive-or approach.

When you run Listing 11-33, you'll see why exclusive-oring is less
than ideal.    While overlapping images don't interfere with each other so far
as drawing and erasing go, they do produce some unattractive on-screen
effects.    In particular, unintended colors and patterns often result when
multiple images are exclusive-ored into the same bytes of display memory.
Another problem is that exclusive-ored images flicker because they're
constantly being erased and redrawn.    (Each image could instead be
redrawn at its new location before being erased at the old location, but the
overlap effects characteristic of exclusive- oring would still cause flicker.)
That's not all, though. There's a still more serious problem with exclusive-or
based animation...

Exclusive-oring is slow.
The problem isn't that the xor instruction itself is particular slow;

rather, it's that the xor instruction isn't a string instruction.    xor can't be
repeated with rep, it doesn't advance its pointers automatically, and it just
isn't as speedy as, say, movs.    Still, neither movs nor any other string

Abrash/Zen:    Chapter 11/

instruction can perform exclusive-or operations, so it would seem we're
stuck.

We're hardly stuck, though.    On the contrary, we're bound for
glory!

STRING INSTRUCTION-BASED ANIMATION

If string instructions can't perform exclusive-oring, then we'll just
have to figure out a way to animate without exclusive- oring.    As it turns out,
there's a very nice way to do this.    I learned this approach from Dan
Illowsky, who developed it before string instructions even existed, way back
in the early days of the Apple II.

First, we'll give each image a small blank fringe.    Then we'll make
it a rule never to move an image by more than the width of its fringe before
redrawing it.    Finally we'll draw images by simply copying them to display
memory, destroying whatever they overwrite, as shown in Figure 11-19.
Now, what does that do for us?

Amazing things.    For starters, each image will, as it is redrawn,
automatically erase its former incarnation.    That means that there's no
flicker, since images are never really erased, but only drawn over
themselves.    There are also no color effects when images overlap, since only
the image that was drawn most recently at any given pixel is visible.

In short, this sort of animation (which I'll call "block- move
animation") actually looks considerably better than animation based on
exclusive-oring.    That's just frosting on the cake, though--the big payoff is

Abrash/Zen:    Chapter 11/

speed.    With block-move animation we suddenly don't need to exclusive-or
anymore--in fact, rep movs will work beautifully to draw a whole line of an
image in a single instruction.    We also don't need to draw each image twice
per move--once to erase the image at its old location and once to draw it at
its new location--as we did with exclusive-oring, since the act of drawing the
image at a new location serves to erase the old image as well. But wait,
there's more!    xor accesses a given byte of memory twice per draw, once to
read the original byte and once to write the modified byte back to memory.
With block-move animation, on the other hand, we simply write each byte of
an image to memory once and we're done with that byte.    In other words,
between the elimination of a separate erasing step and the replacement of
read-xor-write with a single write, block-move animation accesses display
memory only about one-third as many times as exclusive-or animation.
(The ratio isn't quite 1 to 4 because the blank fringe makes block-move
animation images somewhat larger.)

Are alarm bells going off in your head?    They should be. Think
back to our journey beneath the programming interface. Think of the cycle-
eaters.    Ah, you've got it!    Exclusive-or animation loses about three times
as much performance to the display adapter cycle-eater as does block-move
animation.    What's more, block-move animation uses the blindingly fast
movs instruction.    To top it off, block-move animation loses almost nothing
to the prefetch queue cycle-eater or the 8088's slow branching speed,
thanks to the rep prefix.

Sounds almost too good to be true, doesn't it?    It is true, though:

Abrash/Zen:    Chapter 11/

block-move animation relies almost exclusively on one of the two most
powerful instructions of the 8088 (cmps being the other), and avoids the
gaping maws of the prefetch queue and display adapter cycle-eaters in the
process.    Which leaves only one question:

How fast is block-move animation? Remember, theory is fine, but
we don't trust any code until we've timed it.    Listing 11-34 performs the
same animation as Listing 11-34, but with block-move rather than exclusive-
or animation.    Happily, Listing 11-34 lives up to its advance billing, finishing
in just 10.35 seconds when run on an EGA. Block-move animation is close to
three times as fast as exclusive-oring in this application--and it looks better,
too. (You can slow down the animation in order to observe the differences
between the two sorts of animation more closely by setting DELAY to a
higher value in each listing.)

Let's not underplay the appearance issue just because the
performance advantage of block-move animation is so great.    If you possibly
can, enter and run Listings 11-33 and 11-34.    The visual impact of block-
move animation's flicker-free, high-speed animation is startling.    It's hard to
imagine that any programmer would go back to exclusive-oring after seeing
block-move animation in action.

That's not to say that block-move animation is perfect. Unlike
exclusive-oring, block-move animation wipes out the background unless the
background is explicitly redrawn after each image is moved.    Block-move
animation does produce flicker and fringe effects when images overlap.
Block-move animation also limits the maximum distance by which an image

Abrash/Zen:    Chapter 11/

can move before it's redrawn to the width of its fringe.
If block-move animation isn't perfect, however, it's much better

than exclusive-oring.    What's really noteworthy, however, is that we looked
at an application--animation--without preconceived ideas about the best
implementation, and came up with an approach that merged the
application's needs with one of the strengths of the PC--the string
instructions--while avoiding the cycle-eaters.    In the end, we not only
improved performance remarkably but also got better animation, in the
process turning a seeming minus--the limitations of the string instructions--
into a big plus.    All in all, what we've just done is the Zen of assembler
working on all levels:    knowledge, flexible mind, and implementation.

Try to use the string instructions for all your time- critical code,
even when you think they just don't fit. Sometimes they don't--but you can
never be sure unless you try...and if they can be made to fit, it will pay off
big.

NOTES ON THE ANIMATION IMPLEMENTATIONS

Spend as much time as you wish perusing Listings 11-33 and 11-
34, but do not worry if they don't make complete sense to you right now.
The point of this exercise was to illustrate the use of the string instructions in
an unusual application, not to get you started with animation.    In Volume II
of The Zen of Assembly Language we'll return to animation in a big way.

The animation listings are not full-featured, flexible
implementations, nor were they meant to be.    My intent in creating these

Abrash/Zen:    Chapter 11/

programs was to contrast the basic operation and raw performance of
exclusive-or and block-move animation. Consequently, I've structured the
two listings along much the same lines, and while the code is fast, I've
avoided further optimizations (notably the use of in-line code) that would
have complicated matters.    We'll see those additional optimizations in
Volume II.

One interesting point to be made about the animation listings is
that I've assumed in the drawing routines that images always start on even
rows of the screen and are always an even number of rows in height.    Many
people would consider the routines to be incomplete, since they lack the
extra code needed to handle the complications of odd start rows and odd
heights in 320x200 4-color graphics mode.    Of course, that extra code would
slow performance and increase program size, but would be deemed
necessary in any "full" animation implementation.

Is the handling of odd start rows and odd heights really
necessary, though?    Not if you can structure your application so that images
can always start on even rows and can always be of even heights, and that's
actually easy to do.    No one will ever notice whether images move 1 or 2
pixels at a time; the nature of animation is such that the motion of an image
appears just as smooth in either case.    And why should there be a need for
odd image heights?    If necessary, images of odd height could be padded out
with an extra line.    In fact, an extra line can often be used to improve the
appearance of an image.

In short, "full" animation implementations will not only run slower

Abrash/Zen:    Chapter 11/

than the implementation in Listings 11-33 and 11-34 but may not even yield
any noticeable benefits.    The lesson is this: only add features that slow your
code when you're sure you need them.    High-performance assembler
programming is partly an art of eliminating everything but the essentials.

By the way, Listings 11-33 and 11-34 move images a full 4 pixels
at a time horizontally, and that's a bit too far.    2 pixels is a far more visually
attractive distance by which to move animated images, especially those that
move slowly. However, because each byte of 320x200 4-color mode display
memory controls 4 pixels, alignment of images to start in columns that aren't
multiples of 4 is more difficult, although not really that hard once you get the
hang of it.    Since our goal in this section was to contrast block-move and
exclusive-or animation, I didn't add the extra code and complications
required to bit-align the images.    We will discuss bit-alignment of images at
length in Volume II, however.

A NOTE ON HANDLING BLOCKS LARGER THAN 64 K BYTES

All the string instruction-based code we've seen in this chapter
handles only blocks or strings that are 64 K bytes in length or shorter.
There's a very good reason for this, of course--the infernal segmented
architecture of the 8088--but there are nonetheless times when larger
memory blocks are needed.

I'm going to save the topic of handling blocks larger than 64 K
bytes for Volume II of The Zen of Assembly Language.    Why? Well, the trick
with code that handles larger memory blocks isn't getting it to work; that's

Abrash/Zen:    Chapter 11/

relatively easy if you're willing to perform 32-bit arithmetic and reload the
segment registers before each memory access.    No, the trick is getting code
that handles large memory blocks to work reasonably fast.

We've seen that a key to assembler programming lies in
converting difficult problems from approaches ill-suited to the 8088 to ones
that the 8088 can handle well, and this is no exception.    In this particular
application, we need to convert the task at hand from one of independently
addressing every byte in the 8088's 1-megabyte address space to one of
handling a series of blocks that are each no larger than 64 K bytes, so that
we can process up to 64 K bytes at a time very rapidly without touching the
segment registers.

The concept is simple, but the implementation is not so simple
and requires the flexible mind...and that's why the handling of memory
blocks larger than 64 K bytes will have to wait until Volume II.

CONCLUSION

This chapter had two objectives.    First, I wanted you to get a
sense of how and when the string instructions can best be applied.    Second,
I wanted you to heighten your regard for these instructions, which are the
best the 8088 has to offer.    With any luck, this chapter has both broadened
your horizons for string instruction applications and increased your respect
for these unique and uniquely powerful members of the 8088's instruction
set.

