The C-Callable

Zen Timer
Full Listings

Chapter

As explained toward the end of Chapter 3, the Zen timer was originally implemented
as an assembly language tool, but can be modified so as to be callable from C/C++
code. Instructions are given there for modifying the assembly listings for use with C
code. To avoid making Chapter 3 (which is already fairly large) completely unwieldy,
the full listings for the C-callable Zen timers have been moved here.

There are two versions of the Zen timer shown here. One, PCZTNEAR.ASM, is for
use with C code compiled for the Near code model. The other, PCZTFAR.ASM, (which
begins on page 427) is for use with C code compiled for the far code model. Note
that both of these versions of the Zen timer are the precision Zen timer; modifying
the long-period Zen timer for C code is left as an exercise for the reader.

No special assembly options are required to assemble either program shown here. You
should read Chapter 3 thoroughly before attempting to assemble and use this code!

Listing K.1 PCZTNEAR.ASM

; ****PCZTNEAR.ASM

; The C-near-callable version of the precision Zen timer
(PZTIMER.ASM)

; Note: use NOSMART with TASM (at least version 2.0) to keep
the assembler from turning far calls in the reference
timing code into PUSH CS/near call sequences, thereby
messing up the reference call times. This problem may
arise with other optimizing assemblers as well.

; Uses the 8253 timer to time the performance of code that takes
; less than about 54 ms to execute, with a resolution
; of better than 10 ms.

165

; By Michael Abrash
; Externally callable routines:
; ZTimerOn: Starts the Zen timer, with interrupts disabled.

; ZTimerOff: Stops the Zen timer, saves the timer count,
; times the overhead code, and restores interrupts to the
: state they were in when ZTimerOn was called.

; ZTimerReport: Prints the net time that passed between starting
; and stopping the timer.

; Note: If Tonger than about 54 ms passes between ZTimerOn and

H ZTimer0Off calls, the timer turns over and the count is

; inaccurate. When this happens, an error message is displayed
H instead of a count. The long-period Zen timer should be used
H in such cases.

; Note: Interrupts *MUST* be left off between calls to ZTimerOn
H and ZTimerOff for accurate timing and for detection of
H timer overflow.

; Note: These routines can introduce slight inaccuracies into the
H system clock count for each code section timed even if

H timer 0 doesn't overflow. If timer 0 does overflow, the

H system clock can become slow by virtually any amount of

; time, since the system clock can't advance while the

H precison timer is timing. Consequently, it's a good idea
H to reboot at the end of each timing session. (The

H battery-backed clock, if any, is not affected by the Zen
; timer.)

A1l registers, and all flags except the interrupt flag, are
preserved by all routines. Interrupts are enabled and then disabled
by ZTimerOn, and are restored by ZTimerOff to the state they were
in when ZTimerOn was called.

_TEXT segment word public 'CODE’
assume c¢s:_TEXT, ds:nothing
public _ZTimerOn, _ZTimerOff, _ZTimerReport

; Base address of the 8253 timer chip.

BASE_8253 equ 40h

; The address of the timer 0 count registers in the 8253.

TIMER_0_8253 equ BASE_8253 + 0

; The address of the mode register in the 8253.

MODE_8253 equ BASE 8253 + 3

; The address of Operation Command Word 3 in the 8259 Programmable
; Interrupt Controller (PIC) (write only, and writable only when

; bit 4 of the byte written to this address is 0 and bit 3 is 1)

166 Chapter K

0CW3 equ 20h

; The address of the Interrupt Request register in the 8259 PIC
; (read only, and readable only when bit 1 of OCW3 =1 and bit 0
; of OCW3 = 0).

IRR equ 20h

; Macro to emulate a POPF instruction in order to fix the bug in some
; 80286 chips which allows interrupts to occur during a POPF even when
; interrupts remain disabled.

MPOPF macro
Tocal pl, p2
jmp short p2

pl: iret ;jump to pushed address & pop flags
p2: push cs ;construct far return address to
call pl ; the next instruction
endm

; Macro to delay briefly to ensure that enough time has elapsed
; between successive I/0 accesses so that the device being accessed
; can respond to both accesses even on a very fast PC.

DELAY macro

jmp $+2
Jmp $+2
jmp $+2
endm
OriginalFlags db ? ;storage for upper byte of
; FLAGS register when
; ZTimerOn called
TimedCount dw ? ;timer 0 count when the timer
; is stopped
ReferenceCount dw ? ;number of counts required to
; execute timer overhead code
OverflowFlag db ? ;used to indicate whether the

; timer overflowed during the
; timing interval

; String printed to report results.

OQutputStr Tabel byte

db 'Timed count: ', 5 dup (?)
ASCIICountEnd Tabel byte

db ' microseconds', 0dh, Oah

db '$’

; String printed to report timer overflow.

OverflowStr Tabel byte
db 0dh, Oah
db ! '
db 0dh, Oah
db '* The timer overflowed, so the interval timed was *'
db 0dh, Oah
db '* too long for the precision timer to measure. *!
db 0dh, Oah

The C-Callable Zen Timer Full Listings

167

168

db '* Please perform the timing test again with the *
db 0dh, Oah
db '* Tong-period timer. *!
db 0dh, Oah
db ' '
db 0dh, Oah
db '$’

;* Routine called to start timing. *

_ZTimerOn proc near

; Save the context of the program being timed.

push ax
pushf
pop ax ;get flags so we can keep

; interrupts off when leaving

; this routine
mov cs:[OriginalFlags],ah ;remember the state of the
; Interrupt flag
;set pushed interrupt flag
; to 0

and ah,0fdh

push ax

Turn on interrupts, so the timer interrupt can occur if it's
pending.

sti

Set timer 0 of the 8253 to mode 2 (divide-by-N), to cause
Tinear counting rather than count-by-two counting. Also
Teaves the 8253 waiting for the initial timer 0 count to

be Toaded.
mov al,00110100b ;mode 2
out MODE_8253,al

Set the timer count to 0, so we know we won't get another

timer
Note:
clock

interrupt right away.
this introduces an inaccuracy of up to 54 ms in the system

count each time it is executed.
DELAY

sub al,al

out TIMER_0_8253,al ;1sb
DELAY

out TIMER_0_8253,al ;msb

Wait before clearing interrupts to allow the interrupt generated
when switching from mode 3 to mode 2 to be recognized. The delay
must be at least 210 ns long to allow time for that interrupt to

occur.

delay

Here, ten jumps are used for the delay to ensure that the
time will be more than long enough even on a very fast PC.
rept 10
Jmp $+2
endm

Chapter K

; Disable interrupts to get an accurate count.
cli

; Set the timer count to 0 again to start the timing interval.

mov al,00110100b ;set up to load initial
out MODE_8253,al ;timer count

DELAY

sub al,al

out TIMER 0 8253,al ;1oad count 1sb

DELAY

out TIMER 0 8253,al ;1oad count msb

; Restore the context and return.

MPOPF ;keeps interrupts off
pop ax
ret
_ZTimerOn endp
;* Routine called to stop timing and get count. *

_ZTimerOff proc near

; Save the context of the program being timed.

push ax
push CcX
pushf

; Latch the count.

mov al1,00000000b ;latch timer 0
out MODE_8253,al

; See if the timer has overflowed by checking the 8259 for a pending
; timer interrupt.

mov al,00001010b ;0CW3, set up to read
out 0CW3,al ; Interrupt Request register
DELAY
in al,IRR ;read Interrupt Request

; register
and al,1 ;set AL to 1 if IRQO (the

; timer interrupt) is pending
mov cs:[OverflowFlag],al ;store the timer overflow

; status

; Allow interrupts to happen again.
sti

; Read out the count we latched earlier.

The C-Callable Zen Timer Full Listings

169

in
DELAY
mov
in
xchg
neg

mov

al, TIMER_0_8253

ah,al

al, TIMER 0_8253
ah,al

ax

cs:[TimedCount],ax

;least significant byte

;most significant byte

;convert from countdown
; remaining to elapsed
; count

; Time a zero-length code fragment to get a reference for how
; much overhead this routine has. Time it 16 times and average it,

; for accuracy,

mov
mov
cli

ReflLoop:
call
call
Toop
sti
add
mov
shr

rounding the result.

cs:[ReferenceCount],0
cx,16

ReferenceZTimerOn
ReferenceZTimerQOff
RefLoop

cs:[ReferenceCount],8
cl,4
cs:[ReferenceCount],cl

; Restore original interrupt state.

pop
mov
and
and

or

push

ax
ch,cs:[0OriginalFlags]

ch,not 0fdh
ah,0fdh
ah,ch

ax

;interrupts off to allow a
; precise reference count

;total + (0.5 * 16)

;(total) / 16 + 0.5

;retrieve flags when called
;get back the original upper

; byte of the FLAGS register
;only care about original

; interrupt flag...

;...keep all other flags in

; their current condition
;make flags word with original
; interrupt flag

;prepare flags to be popped

; Restore the context of the program being timed and return to it.

MPOPF

pop
pop
ret

_ITimer0ff endp

CcX
ax

;restore the flags with the
; original interrupt state

; Called by ZTimerOff to start timer for overhead measurements.

ReferenceZTimerOn proc near

; Save the context of the program being timed.

push
pushf

170 Chapter K

ax

;interrupts are already off

; Set timer 0 of the 8253 to mode 2 (divide-by-N) to cause
; linear counting rather than count-by-two counting.

mov al,00110100b ;set up to load
out MODE_8253,al ; initial timer count
DELAY

; Set the timer count to 0.

sub al,al

out TIMER_0_8253,al ;load count 1sb
DELAY

out TIMER 0 8253,al ;load count msb

; Restore the context of the program being timed and return to it.

MPOPF

pop ax

ret
ReferenceZTimerOn endp

; Called by ZTimerOff to stop timer and add result to ReferenceCount
; for overhead measurements.

ReferenceZTimerOff proc near

; Save the context of the program being timed.

push ax
push cX
pushf

; Latch the count and read it.

mov al,00000000b ;latch timer 0

out MODE_8253,al

DELAY

in al, TIMER_0 8253 ;1sb

DELAY

mov ah,al

in al, TIMER_0 8253 ;msb

xchg ah,al

neg ax ;convert from countdown

; remaining to amount
; counted down
add cs:[ReferenceCount],ax
; Restore the context of the program being timed and return to it.

MPOPF

pop cX
pop ax
ret

ReferenceZTimerOff endp

The C-Callable Zen Timer Full Listings

171

172

;* Routine called to report timing results.

_ZTimerReport

PrintGoodCount:

CTSLoop:

Check

Convert count

pushf
push
push
push
push
push
push

push
pop
assume

proc near

ax
bx
cX
dx
si
ds

cs ;DOS functions require that DS point
ds ; to text to be displayed on the screen
ds:_TEXT

for timer 0 overflow.

cmp
jz

mov
mov
int
Jmp

mov
sub
mov

mov
mul
mov
div

[OverflowFlag],0
PrintGoodCount
dx,offset OverflowStr
ah,9

21h

short EndZTimerReport

; Convert net count to decimal ASCII in microseconds.

ax,[TimedCount]
ax,[ReferenceCount]
si,offset ASCIICountEnd - 1

to microseconds by multiplying by .8381.

dx, 8381

dx

bx,10000

bx ;* .8381 = * 8381 / 10000

Convert time in microseconds to five decimal ASCII digits.

Print

mov
mov

sub
div
add
mov
dec
Toop

bx,10
cx,b

dx,dx
bx
d1,'0"
[si],d1
si
CTSLoop

the results.

mov
mov
int

Chapter K

ah,9
dx,offset QutputStr
21h

EndZTimerReport:

pop ds
pop si
pop dx
pop cx
pop bx
pop ax
MPOPF

ret

_ITimerReport endp

_TEXT ends
end

Listing K.2 PCZTFAR.ASM

; ****PCZTFAR.ASM

; The C-far-callable version of the precision Zen timer
; (PZTIMER.ASM)

; Uses the 8253 timer to time the performance of code that takes
; less than about 54 milliseconds to execute, with a resolution
; of better than ten microseconds.

; By Michael Abrash
; Externally callable routines:
; ZTimerOn: Starts the Zen timer, with interrupts disabled.

; ZTimerOff: Stops the Zen timer, saves the timer count,
; times the overhead code, and restores interrupts to the
; state they were in when ZTimerOn was called.

; ZTimerReport: Prints the net time that passed between starting
; and stopping the timer.

; Note: If longer than about 54 ms passes between ZTimerOn and

; ZTimer0ff calls, the timer turns over and the count is

; inaccurate. When this happens, an error message is displayed
; instead of a count. The long-period Zen timer should be used
; in such cases.

; Note: Interrupts *MUST* be left off between calls to ZTimerOn
; and ZTimerOff for accurate timing and for detection of
; timer overflow.

; Note: These routines can introduce slight inaccuracies into the
H system clock count for each code section timed even if

H timer 0 doesn't overflow. If timer 0 does overflow, the

H system clock can become slow by virtually any amount of

; time since the system clock can't advance while the

H precison timer is timing. Consequently, it's a good idea
H to reboot at the end of each timing session. (The

H battery-backed clock, if any, is not affected by the Zen
; timer.)

; A1l registers, and all flags except the interrupt flag, are
; preserved by all routines. Interrupts are enabled and then disabled

The C-Callable Zen Timer Full Listings

173

174

; by ZTimerOn, and are restored by ZTimerOff to the state they were
; in when ZTimerOn was called.

PZTIMER _TEXT segment word public 'CODE'
assume cS:PZTIMER_TEXT, ds:nothing
public _ZTimerOn, _ZTimerOff, _ZTimerReport

; Base address of the 8253 timer chip.

BASE_8253 equ 40h

; The address of the timer 0 count registers in the 8253.

TIMER_0_8253 equ BASE_8253 + 0

; The address of the mode register in the 8253.

MODE_8253 equ BASE_8253 + 3

; The address of Operation Command Word 3 in the 8259 Programmable
; Interrupt Controller (PIC) (write only, and writable only when

; bit 4 of the byte written to this address is 0 and bit 3 is 1)

0CW3 equ 20h

; The address of the Interrupt Request register in the 8259 PIC
; (read only, and readable only when bit 1 of OCW3 =1 and bit 0
; of OCW3 = 0).

IRR equ 20h

; Macro to emulate a POPF instruction in order to fix the bug in some
; 80286 chips; this allows interrupts to occur during a POPF even when
; interrupts remain disabled.

MPOPF macro
Tocal pl, p2
jmp short p2

pl: iret ;jump to pushed address & pop flags
p2: push cs ;construct far return address to
call pl ; the next instruction
endm

; Macro to delay briefly to ensure that enough time has elapsed
; between successive I/0 accesses so that the device being accessed
; can respond to both accesses even on a very fast PC.

DELAY macro

Jmp $+2
Jmp $+2
Jmp $+2
endm
OriginalFTlags db ? ;storage for upper byte of

; FLAGS register when
; ZTimerOn called

Chapter K

TimedCount dw ?
ReferenceCount dw ?
OverflowFlag db ?

; String printed to report results.

OutputStr

Tabel byte

db 'Timed count:
ASCIICountEnd Tabel byte

db ' microseconds'

db '$’

;timer 0 count when the timer
; is stopped

;number of counts required to
; execute timer overhead code
;used to indicate whether the
; timer overflowed during the
; timing interval

', 5 dup (?)

0dh, 0Oah

; String printed to report timer overflow.

OverflowStr

Tabel byte

db 0dh, 0Oah
db ! !
db 0dh, 0Oah
db '* The timer overflowed, so the interval timed was *'
db 0dh, Oah
db '* too long for the precision timer to measure. *!
db 0dh, 0Oah
db '* Please perform the timing test again with the *!
db 0dh, Oah
db '* Tong-period timer. *!
db 0dh, Oah
db ! !
db 0dh, Oah
db '$’

: *

;* Routine called to start timing.

_ZTimerOn proc far

; Save the context of the program being
push ax
pushf
pop ax
mov cs:[0OriginalFlags],ah
and ah,0fdh
push ax

timed.

;get flags so we can keep

; interrupts off when leaving
; this routine

;remember the state of the

; Interrupt flag

;set pushed interrupt flag

; to 0

; Turn on interrupts, so the timer interrupt can occur if it's

; pending.

sti

The C-Callable Zen Timer Full Listings 175

176

; Set timer 0 of the 8253 to mode 2 (divide-by-N), to cause
; linear counting rather than count-by-two counting. Also

; leaves the 8253 waiting for the initial timer 0 count to
; be loaded.

mov al,00110100b ;mode 2
out MODE_8253,al

; Set the timer count to 0, so we know we won't get another

; timer interrupt right away.

; Note: this introduces an inaccuracy of up to 54 ms in the system
; clock count each time it is executed.

DELAY

sub al,al

out TIMER 0 8253,al ;1sb
DELAY

out TIMER 0 8253,al ;msb

Wait before clearing interrupts to allow the interrupt generated
when switching from mode 3 to mode 2 to be recognized. The delay
; must be at least 210 ns long to allow time for that interrupt to
occur. Here, 10 jumps are used for the delay to ensure that the

; delay time will be more than long enough, even on a very fast PC.

rept 10
Jmp $+2
endm

Disable interrupts to get an accurate count.

cli

Set the timer count to 0 again to start the timing interval.

mov al,00110100b ;set up to load initial
out MODE_8253,al ; timer count

DELAY

sub al,al

out TIMER_0_8253,al ;1oad count 1sb

DELAY

out TIMER_0_8253,al ;1oad count msb

; Restore the context and return.

MPOPF ;keeps interrupts off
pop ax
ret

_ZTimerOn endp

;* Routine called to stop timing and get count.

ZTimer0ff proc far

; Save the context of the program being timed.

Chapter K

push ax

push cX
pushf
; Latch the count.
mov al,00000000b

out MODE_8253,al

;latch timer 0

; See if the timer has overflowed by checking the 8259 for a pending

; timer dinterrupt.

mov al,00001010b

out 0CW3,al ;
DELAY

in al,IRR

and al,1

mov cs:[OverflowFlag],al

; Allow interrupts to happen again.
sti

; Read out the count we latched earlier.

in al, TIMER_0_8253
DELAY

mov ah,al

in al, TIMER_0_8253
xchg ah,al

neg ax

mov cs:[TimedCount],ax
; Time a zero-length code fragment to get
; much overhead this routine has. Time it
; for accuracy, rounding the result.

mov cs:[ReferenceCount],0
mov cx,16
cli
ReflLoop:
call far ptr ReferenceZTimerOn
call far ptr ReferenceZTimerOff
Toop ReflLoop
sti
add cs:[ReferenceCount],8
mov cl,4
shr cs:[ReferenceCount],cl

; Restore original interrupt state.
pop ax
mov ch,cs:[0OriginalFlags]

;O0CW3, set up to read

Interrupt Request register

;read Interrupt Request

register

;set AL to 1 if IRQO (the
; timer interrupt) is pending
;store the timer overflow

status

;least significant byte

;most significant byte

;convert from countdown

remaining to elapsed

; count

a reference for how
16 times and average it

;interrupts off to allow a

precise reference count

;total + (0.5 * 16)

;(total) / 16 + 0.5

;retrieve flags when called
;get back the original upper

; byte of the FLAGS register

and ch,not 0fdh

;only care about original

interrupt flag...

The C-Callable Zen Timer Full Listings

177

178

and ah,0fdh ;...keep all other flags in
; their current condition

or ah,ch ;make flags word with original
; interrupt flag
push ax ;prepare flags to be popped

; Restore the context of the program being timed and return to it.

MPOPF ;restore the flags with the
; original interrupt state

pop cX

pop ax

ret

_ZTimerOff endp

; Called by ZTimerOff to start timer for overhead measurements.

ReferenceZTimerOn proc far

; Save the context of the program being timed.

push ax
pushf ;interrupts are already off

; Set timer 0 of the 8253 to mode 2 (divide-by-N), to cause
; linear counting rather than count-by-two counting.

mov al,00110100b ;set up to load
out MODE_8253,al ; initial timer count
DELAY

; Set the timer count to 0.

sub al,al

out TIMER_0_8253,al ;load count 1sb
DELAY

out TIMER_0_8253,al ;load count msb

; Restore the context of the program being timed and return to it.

MPOPF

pop ax

ret
ReferenceZTimerOn endp

; Called by ZTimerOff to stop timer and add result to ReferenceCount
; for overhead measurements.

ReferenceZTimerOff proc far
; Save the context of the program being timed.

push ax
push CcX
pushf

Chapter K

Latch the count and read it.

mov
out
DELAY
in
DELAY
mov
in
xchg
neg

add

al,00000000b ;latch timer 0
MODE_8253,al

al, TIMER_0 8253 ;1sb

ah,al

al, TIMER_0_ 8253 ;msb

ah,al

ax ;convert from countdown

; remaining to amount

; counted down
cs:[ReferenceCount],ax

Restore the context of the program being timed and return to it.

MPOPF
pop
pop
ret

CX
ax

ReferenceZTimer0ff endp

;* Routine called to report timing results.

PrintGoodCount:

; Convert count to microseconds by multiplying by .8381.

_ZTimerReport

pushf
push
push
push
push
push
push

push
pop
assume

proc far

ax
bx
cX
dx
si
ds

cs ;DOS functions require that DS point
ds ; to text to be displayed on the screen

ds:PZTIMER_TEXT

Check for timer 0 overflow.

cmp
jz

mov
mov
int
Jmp

[OverflowFlag],0
PrintGoodCount
dx,offset OverflowStr
ah,9

21h

short EndZTimerReport

Convert net count to decimal ASCII in microseconds.

mov
sub
mov

ax,[TimedCount]
ax,[ReferenceCount]
si,offset ASCIICountEnd - 1

The C-Callable Zen Timer Full Listings 179

mov dx, 8381

mul dx
mov bx,10000
div bx ;* .8381 = * 8381 / 10000

; Convert time in microseconds to five decimal ASCII digits.

mov bx,10

mov cx,5
CTSLoop:

sub dx, dx

div bx

add d1,'0’

mov [si],dl

dec si

Toop CTSLoop

; Print the results.

mov ah,9
mov dx,offset OutputStr
int 21h
EndZTimerReport:
pop ds
pop si
pop dx
pop cX
pop bx
pop ax
MPOPF
ret

_ZTimerReport endp

PZTIMER _TEXT ends
end

180 Chapter K

