
The C-Callable
Zen Timer

Full Listings

Chapter K

165

As explained toward the end of Chapter 3, the Zen timer was originally implemented
as an assembly language tool, but can be modified so as to be callable from C/C++
code. Instructions are given there for modifying the assembly listings for use with C
code. To avoid making Chapter 3 (which is already fairly large) completely unwieldy,
the full listings for the C-callable Zen timers have been moved here.
There are two versions of the Zen timer shown here. One, PCZTNEAR.ASM, is for
use with C code compiled for the Near code model. The other, PCZTFAR.ASM, (which
begins on page 427) is for use with C code compiled for the far code model. Note
that both of these versions of the Zen timer are the precision Zen timer; modifying
the long-period Zen timer for C code is left as an exercise for the reader.
No special assembly options are required to assemble either program shown here. You
should read Chapter 3 thoroughly before attempting to assemble and use this code!

Listing K.1 PCZTNEAR.ASM
; ****PCZTNEAR.ASM
; The C-near-callable version of the precision Zen timer
; (PZTIMER.ASM)
;
; Note: use NOSMART with TASM (at least version 2.0) to keep
; the assembler from turning far calls in the reference
; timing code into PUSH CS/near call sequences, thereby
; messing up the reference call times. This problem may
; arise with other optimizing assemblers as well.
;
; Uses the 8253 timer to time the performance of code that takes
; less than about 54 ms to execute, with a resolution
; of better than 10 ms.

KChapter

Chapter K166

;
; By Michael Abrash
;
; Externally callable routines:
;
; ZTimerOn: Starts the Zen timer, with interrupts disabled.
;
; ZTimerOff: Stops the Zen timer, saves the timer count,
; times the overhead code, and restores interrupts to the
; state they were in when ZTimerOn was called.
;
; ZTimerReport: Prints the net time that passed between starting
; and stopping the timer.
;
; Note: If longer than about 54 ms passes between ZTimerOn and
; ZTimerOff calls, the timer turns over and the count is
; inaccurate. When this happens, an error message is displayed
; instead of a count. The long-period Zen timer should be used
; in such cases.
;
; Note: Interrupts *MUST* be left off between calls to ZTimerOn
; and ZTimerOff for accurate timing and for detection of
; timer overflow.
;
; Note: These routines can introduce slight inaccuracies into the
; system clock count for each code section timed even if
; timer 0 doesn't overflow. If timer 0 does overflow, the
; system clock can become slow by virtually any amount of
; time, since the system clock can't advance while the
; precison timer is timing. Consequently, it's a good idea
; to reboot at the end of each timing session. (The
; battery-backed clock, if any, is not affected by the Zen
; timer.)
;
; All registers, and all flags except the interrupt flag, are
; preserved by all routines. Interrupts are enabled and then disabled
; by ZTimerOn, and are restored by ZTimerOff to the state they were
; in when ZTimerOn was called.
;

_TEXT segment word public 'CODE'
 assume cs:_TEXT, ds:nothing
 public _ZTimerOn, _ZTimerOff, _ZTimerReport

;
; Base address of the 8253 timer chip.
;
BASE_8253 equ 40h
;
; The address of the timer 0 count registers in the 8253.
;
TIMER_0_8253 equ BASE_8253 + 0
;
; The address of the mode register in the 8253.
;
MODE_8253 equ BASE_8253 + 3
;
; The address of Operation Command Word 3 in the 8259 Programmable
; Interrupt Controller (PIC) (write only, and writable only when
; bit 4 of the byte written to this address is 0 and bit 3 is 1).
;

The C-Callable Zen Timer Full Listings 167

OCW3 equ 20h
;
; The address of the Interrupt Request register in the 8259 PIC
; (read only, and readable only when bit 1 of OCW3 = 1 and bit 0
; of OCW3 = 0).
;
IRR equ 20h
;
; Macro to emulate a POPF instruction in order to fix the bug in some
; 80286 chips which allows interrupts to occur during a POPF even when
; interrupts remain disabled.
;
MPOPF macro
 local p1, p2
 jmp short p2
p1: iret ;jump to pushed address & pop flags
p2: push cs ;construct far return address to
 call p1 ; the next instruction
 endm

;
; Macro to delay briefly to ensure that enough time has elapsed
; between successive I/O accesses so that the device being accessed
; can respond to both accesses even on a very fast PC.
;
DELAY macro
 jmp $+2
 jmp $+2
 jmp $+2
 endm

OriginalFlags db ? ;storage for upper byte of
 ; FLAGS register when
 ; ZTimerOn called
TimedCount dw ? ;timer 0 count when the timer
 ; is stopped
ReferenceCount dw ? ;number of counts required to
 ; execute timer overhead code
OverflowFlag db ? ;used to indicate whether the
 ; timer overflowed during the
 ; timing interval
;
; String printed to report results.
;
OutputStr label byte
 db 'Timed count: ', 5 dup (?)
ASCIICountEnd label byte
 db ' microseconds', 0dh, 0ah
 db '$'
;
; String printed to report timer overflow.
;
OverflowStr label byte
 db 0dh, 0ah
 db '**'
 db 0dh, 0ah
 db '* The timer overflowed, so the interval timed was *'
 db 0dh, 0ah
 db '* too long for the precision timer to measure. *'
 db 0dh, 0ah

Chapter K168

 db '* Please perform the timing test again with the *'
 db 0dh, 0ah
 db '* long-period timer. *'
 db 0dh, 0ah
 db '**'
 db 0dh, 0ah
 db '$'

;**
;* Routine called to start timing. *
;**

_ZTimerOn proc near

;
; Save the context of the program being timed.
;
 push ax
 pushf
 pop ax ;get flags so we can keep
 ; interrupts off when leaving
 ; this routine
 mov cs:[OriginalFlags],ah ;remember the state of the
 ; Interrupt flag
 and ah,0fdh ;set pushed interrupt flag
 ; to 0
 push ax
;
; Turn on interrupts, so the timer interrupt can occur if it's
; pending.
;
 sti
;
; Set timer 0 of the 8253 to mode 2 (divide-by-N), to cause
; linear counting rather than count-by-two counting. Also
; leaves the 8253 waiting for the initial timer 0 count to
; be loaded.
;
 mov al,00110100b ;mode 2
 out MODE_8253,al
;
; Set the timer count to 0, so we know we won't get another
; timer interrupt right away.
; Note: this introduces an inaccuracy of up to 54 ms in the system
; clock count each time it is executed.
;
 DELAY
 sub al,al
 out TIMER_0_8253,al ;lsb
 DELAY
 out TIMER_0_8253,al ;msb
;
; Wait before clearing interrupts to allow the interrupt generated
; when switching from mode 3 to mode 2 to be recognized. The delay
; must be at least 210 ns long to allow time for that interrupt to
; occur. Here, ten jumps are used for the delay to ensure that the
; delay time will be more than long enough even on a very fast PC.
;
 rept 10
 jmp $+2
 endm

The C-Callable Zen Timer Full Listings 169

;
; Disable interrupts to get an accurate count.
;
 cli
;
; Set the timer count to 0 again to start the timing interval.
;
 mov al,00110100b ;set up to load initial
 out MODE_8253,al ;timer count
 DELAY
 sub al,al
 out TIMER_0_8253,al ;load count lsb
 DELAY
 out TIMER_0_8253,al ;load count msb
;
; Restore the context and return.
;
 MPOPF ;keeps interrupts off
 pop ax
 ret

_ZTimerOn endp

;**
;* Routine called to stop timing and get count. *
;**

_ZTimerOff proc near

;
; Save the context of the program being timed.
;
 push ax
 push cx
 pushf
;
; Latch the count.
;
 mov al,00000000b ;latch timer 0
 out MODE_8253,al
;
; See if the timer has overflowed by checking the 8259 for a pending
; timer interrupt.
;
 mov al,00001010b ;OCW3, set up to read
 out OCW3,al ; Interrupt Request register
 DELAY
 in al,IRR ;read Interrupt Request
 ; register
 and al,1 ;set AL to 1 if IRQ0 (the
 ; timer interrupt) is pending
 mov cs:[OverflowFlag],al ;store the timer overflow
 ; status
;
; Allow interrupts to happen again.
;
 sti
;
; Read out the count we latched earlier.
;

Chapter K170

 in al,TIMER_0_8253 ;least significant byte
 DELAY
 mov ah,al
 in al,TIMER_0_8253 ;most significant byte
 xchg ah,al
 neg ax ;convert from countdown
 ; remaining to elapsed
 ; count
 mov cs:[TimedCount],ax
; Time a zero-length code fragment to get a reference for how
; much overhead this routine has. Time it 16 times and average it,
; for accuracy, rounding the result.
;
 mov cs:[ReferenceCount],0
 mov cx,16
 cli ;interrupts off to allow a
 ; precise reference count
RefLoop:
 call ReferenceZTimerOn
 call ReferenceZTimerOff
 loop RefLoop
 sti
 add cs:[ReferenceCount],8 ;total + (0.5 * 16)
 mov cl,4
 shr cs:[ReferenceCount],cl ;(total) / 16 + 0.5
;
; Restore original interrupt state.
;
 pop ax ;retrieve flags when called
 mov ch,cs:[OriginalFlags] ;get back the original upper
 ; byte of the FLAGS register
 and ch,not 0fdh ;only care about original
 ; interrupt flag...
 and ah,0fdh ;...keep all other flags in
 ; their current condition
 or ah,ch ;make flags word with original
 ; interrupt flag
 push ax ;prepare flags to be popped
;
; Restore the context of the program being timed and return to it.
;
 MPOPF ;restore the flags with the
 ; original interrupt state
 pop cx
 pop ax
 ret

_ZTimerOff endp

;
; Called by ZTimerOff to start timer for overhead measurements.
;

ReferenceZTimerOn proc near
;
; Save the context of the program being timed.
;
 push ax
 pushf ;interrupts are already off
;

The C-Callable Zen Timer Full Listings 171

; Set timer 0 of the 8253 to mode 2 (divide-by-N) to cause
; linear counting rather than count-by-two counting.
;
 mov al,00110100b ;set up to load
 out MODE_8253,al ; initial timer count
 DELAY
;
; Set the timer count to 0.
;
 sub al,al
 out TIMER_0_8253,al ;load count lsb
 DELAY
 out TIMER_0_8253,al ;load count msb
;
; Restore the context of the program being timed and return to it.
;
 MPOPF
 pop ax
 ret

ReferenceZTimerOn endp

;
; Called by ZTimerOff to stop timer and add result to ReferenceCount
; for overhead measurements.
;

ReferenceZTimerOff proc near
;
; Save the context of the program being timed.
;
 push ax
 push cx
 pushf
;
; Latch the count and read it.
;
 mov al,00000000b ;latch timer 0
 out MODE_8253,al
 DELAY
 in al,TIMER_0_8253 ;lsb
 DELAY
 mov ah,al
 in al,TIMER_0_8253 ;msb
 xchg ah,al
 neg ax ;convert from countdown
 ; remaining to amount
 ; counted down
 add cs:[ReferenceCount],ax
;
; Restore the context of the program being timed and return to it.
;
 MPOPF
 pop cx
 pop ax
 ret

ReferenceZTimerOff endp

Chapter K172

;**
;* Routine called to report timing results. *
;**

_ZTimerReport proc near

 pushf
 push ax
 push bx
 push cx
 push dx
 push si
 push ds
;
 push cs ;DOS functions require that DS point
 pop ds ; to text to be displayed on the screen
 assume ds:_TEXT
;
; Check for timer 0 overflow.
;
 cmp [OverflowFlag],0
 jz PrintGoodCount
 mov dx,offset OverflowStr
 mov ah,9
 int 21h
 jmp short EndZTimerReport
;
; Convert net count to decimal ASCII in microseconds.
;
PrintGoodCount:
 mov ax,[TimedCount]
 sub ax,[ReferenceCount]
 mov si,offset ASCIICountEnd - 1
;
; Convert count to microseconds by multiplying by .8381.
;
 mov dx,8381
 mul dx
 mov bx,10000
 div bx ;* .8381 = * 8381 / 10000
;
; Convert time in microseconds to five decimal ASCII digits.
;
 mov bx,10
 mov cx,5
CTSLoop:
 sub dx,dx
 div bx
 add dl,'0'
 mov [si],dl
 dec si
 loop CTSLoop
;
; Print the results.
;
 mov ah,9
 mov dx,offset OutputStr
 int 21h
;

The C-Callable Zen Timer Full Listings 173

EndZTimerReport:
 pop ds
 pop si
 pop dx
 pop cx
 pop bx
 pop ax
 MPOPF
 ret

_ZTimerReport endp

_TEXT ends
 end

Listing K.2 PCZTFAR.ASM
; ****PCZTFAR.ASM
; The C-far-callable version of the precision Zen timer
; (PZTIMER.ASM)
;
; Uses the 8253 timer to time the performance of code that takes
; less than about 54 milliseconds to execute, with a resolution
; of better than ten microseconds.
;
; By Michael Abrash
;
; Externally callable routines:
;
; ZTimerOn: Starts the Zen timer, with interrupts disabled.
;
; ZTimerOff: Stops the Zen timer, saves the timer count,
; times the overhead code, and restores interrupts to the
; state they were in when ZTimerOn was called.
;
; ZTimerReport: Prints the net time that passed between starting
; and stopping the timer.
;
; Note: If longer than about 54 ms passes between ZTimerOn and
; ZTimerOff calls, the timer turns over and the count is
; inaccurate. When this happens, an error message is displayed
; instead of a count. The long-period Zen timer should be used
; in such cases.
;
; Note: Interrupts *MUST* be left off between calls to ZTimerOn
; and ZTimerOff for accurate timing and for detection of
; timer overflow.
;
; Note: These routines can introduce slight inaccuracies into the
; system clock count for each code section timed even if
; timer 0 doesn't overflow. If timer 0 does overflow, the
; system clock can become slow by virtually any amount of
; time since the system clock can't advance while the
; precison timer is timing. Consequently, it's a good idea
; to reboot at the end of each timing session. (The
; battery-backed clock, if any, is not affected by the Zen
; timer.)
;
; All registers, and all flags except the interrupt flag, are
; preserved by all routines. Interrupts are enabled and then disabled

Chapter K174

; by ZTimerOn, and are restored by ZTimerOff to the state they were
; in when ZTimerOn was called.
;

PZTIMER_TEXT segment word public 'CODE'
 assume cs:PZTIMER_TEXT, ds:nothing
 public _ZTimerOn, _ZTimerOff, _ZTimerReport

;
; Base address of the 8253 timer chip.
;
BASE_8253 equ 40h
;
; The address of the timer 0 count registers in the 8253.
;
TIMER_0_8253 equ BASE_8253 + 0
;
; The address of the mode register in the 8253.
;
MODE_8253 equ BASE_8253 + 3
;
; The address of Operation Command Word 3 in the 8259 Programmable
; Interrupt Controller (PIC) (write only, and writable only when
; bit 4 of the byte written to this address is 0 and bit 3 is 1).
;
OCW3 equ 20h
;
; The address of the Interrupt Request register in the 8259 PIC
; (read only, and readable only when bit 1 of OCW3 = 1 and bit 0
; of OCW3 = 0).
;
IRR equ 20h
;
; Macro to emulate a POPF instruction in order to fix the bug in some
; 80286 chips; this allows interrupts to occur during a POPF even when
; interrupts remain disabled.
;
MPOPF macro
 local p1, p2
 jmp short p2
p1: iret ;jump to pushed address & pop flags
p2: push cs ;construct far return address to
 call p1 ; the next instruction
 endm

;
; Macro to delay briefly to ensure that enough time has elapsed
; between successive I/O accesses so that the device being accessed
; can respond to both accesses even on a very fast PC.
;
DELAY macro
 jmp $+2
 jmp $+2
 jmp $+2
 endm

OriginalFlags db ? ;storage for upper byte of
 ; FLAGS register when
 ; ZTimerOn called

The C-Callable Zen Timer Full Listings 175

TimedCount dw ? ;timer 0 count when the timer
 ; is stopped
ReferenceCount dw ? ;number of counts required to
 ; execute timer overhead code
OverflowFlag db ? ;used to indicate whether the
 ; timer overflowed during the
 ; timing interval
;
; String printed to report results.
;
OutputStr label byte
 db 'Timed count: ', 5 dup (?)
ASCIICountEnd label byte
 db ' microseconds', 0dh, 0ah
 db '$'
;
; String printed to report timer overflow.
;
OverflowStr label byte
 db 0dh, 0ah
 db '**'
 db 0dh, 0ah
 db '* The timer overflowed, so the interval timed was *'
 db 0dh, 0ah
 db '* too long for the precision timer to measure. *'
 db 0dh, 0ah
 db '* Please perform the timing test again with the *'
 db 0dh, 0ah
 db '* long-period timer. *'
 db 0dh, 0ah
 db '**'
 db 0dh, 0ah
 db '$'

;**
;* Routine called to start timing. *
;**

_ZTimerOn proc far

;
; Save the context of the program being timed.
;
 push ax
 pushf
 pop ax ;get flags so we can keep
 ; interrupts off when leaving
 ; this routine
 mov cs:[OriginalFlags],ah ;remember the state of the
 ; Interrupt flag
 and ah,0fdh ;set pushed interrupt flag
 ; to 0
 push ax
;
; Turn on interrupts, so the timer interrupt can occur if it's
; pending.
;
 sti

Chapter K176

;
; Set timer 0 of the 8253 to mode 2 (divide-by-N), to cause
; linear counting rather than count-by-two counting. Also
; leaves the 8253 waiting for the initial timer 0 count to
; be loaded.
;
 mov al,00110100b ;mode 2
 out MODE_8253,al
;
; Set the timer count to 0, so we know we won't get another
; timer interrupt right away.
; Note: this introduces an inaccuracy of up to 54 ms in the system
; clock count each time it is executed.
;
 DELAY
 sub al,al
 out TIMER_0_8253,al ;lsb
 DELAY
 out TIMER_0_8253,al ;msb
;
; Wait before clearing interrupts to allow the interrupt generated
; when switching from mode 3 to mode 2 to be recognized. The delay
; must be at least 210 ns long to allow time for that interrupt to
; occur. Here, 10 jumps are used for the delay to ensure that the
; delay time will be more than long enough, even on a very fast PC.
;
 rept 10
 jmp $+2
 endm
;
; Disable interrupts to get an accurate count.
;
 cli
;
; Set the timer count to 0 again to start the timing interval.
;
 mov al,00110100b ;set up to load initial
 out MODE_8253,al ; timer count
 DELAY
 sub al,al
 out TIMER_0_8253,al ;load count lsb
 DELAY
 out TIMER_0_8253,al ;load count msb
;
; Restore the context and return.
;
 MPOPF ;keeps interrupts off
 pop ax
 ret

_ZTimerOn endp

;**
;* Routine called to stop timing and get count. *
;**

_ZTimerOff proc far

;
; Save the context of the program being timed.
;

The C-Callable Zen Timer Full Listings 177

 push ax
 push cx
 pushf
;
; Latch the count.
;
 mov al,00000000b ;latch timer 0
 out MODE_8253,al
;
; See if the timer has overflowed by checking the 8259 for a pending
; timer interrupt.
;
 mov al,00001010b ;OCW3, set up to read
 out OCW3,al ; Interrupt Request register
 DELAY
 in al,IRR ;read Interrupt Request
 ; register
 and al,1 ;set AL to 1 if IRQ0 (the
 ; timer interrupt) is pending
 mov cs:[OverflowFlag],al ;store the timer overflow
 ; status
;
; Allow interrupts to happen again.
;
 sti
;
; Read out the count we latched earlier.
;
 in al,TIMER_0_8253 ;least significant byte
 DELAY
 mov ah,al
 in al,TIMER_0_8253 ;most significant byte
 xchg ah,al
 neg ax ;convert from countdown
 ; remaining to elapsed
 ; count
 mov cs:[TimedCount],ax
; Time a zero-length code fragment to get a reference for how
; much overhead this routine has. Time it 16 times and average it
; for accuracy, rounding the result.
;
 mov cs:[ReferenceCount],0
 mov cx,16
 cli ;interrupts off to allow a
 ; precise reference count
RefLoop:
 call far ptr ReferenceZTimerOn
 call far ptr ReferenceZTimerOff
 loop RefLoop
 sti
 add cs:[ReferenceCount],8 ;total + (0.5 * 16)
 mov cl,4
 shr cs:[ReferenceCount],cl ;(total) / 16 + 0.5
;
; Restore original interrupt state.
;
 pop ax ;retrieve flags when called
 mov ch,cs:[OriginalFlags] ;get back the original upper
 ; byte of the FLAGS register
 and ch,not 0fdh ;only care about original
 ; interrupt flag...

Chapter K178

 and ah,0fdh ;...keep all other flags in
 ; their current condition
 or ah,ch ;make flags word with original
 ; interrupt flag
 push ax ;prepare flags to be popped
;
; Restore the context of the program being timed and return to it.
;
 MPOPF ;restore the flags with the
 ; original interrupt state
 pop cx
 pop ax
 ret

_ZTimerOff endp

;
; Called by ZTimerOff to start timer for overhead measurements.
;

ReferenceZTimerOn proc far
;
; Save the context of the program being timed.
;
 push ax
 pushf ;interrupts are already off
;
; Set timer 0 of the 8253 to mode 2 (divide-by-N), to cause
; linear counting rather than count-by-two counting.
;
 mov al,00110100b ;set up to load
 out MODE_8253,al ; initial timer count
 DELAY
;
; Set the timer count to 0.
;
 sub al,al
 out TIMER_0_8253,al ;load count lsb
 DELAY
 out TIMER_0_8253,al ;load count msb
;
; Restore the context of the program being timed and return to it.
;
 MPOPF
 pop ax
 ret

ReferenceZTimerOn endp

;
; Called by ZTimerOff to stop timer and add result to ReferenceCount
; for overhead measurements.
;

ReferenceZTimerOff proc far
;
; Save the context of the program being timed.
;
 push ax
 push cx
 pushf

The C-Callable Zen Timer Full Listings 179

;
; Latch the count and read it.
;
 mov al,00000000b ;latch timer 0
 out MODE_8253,al
 DELAY
 in al,TIMER_0_8253 ;lsb
 DELAY
 mov ah,al
 in al,TIMER_0_8253 ;msb
 xchg ah,al
 neg ax ;convert from countdown
 ; remaining to amount
 ; counted down
 add cs:[ReferenceCount],ax
;
; Restore the context of the program being timed and return to it.
;
 MPOPF
 pop cx
 pop ax
 ret

ReferenceZTimerOff endp

;**
;* Routine called to report timing results. *
;**

_ZTimerReport proc far

 pushf
 push ax
 push bx
 push cx
 push dx
 push si
 push ds
;
 push cs ;DOS functions require that DS point
 pop ds ; to text to be displayed on the screen
 assume ds:PZTIMER_TEXT
;
; Check for timer 0 overflow.
;
 cmp [OverflowFlag],0
 jz PrintGoodCount
 mov dx,offset OverflowStr
 mov ah,9
 int 21h
 jmp short EndZTimerReport
;
; Convert net count to decimal ASCII in microseconds.
;
PrintGoodCount:
 mov ax,[TimedCount]
 sub ax,[ReferenceCount]
 mov si,offset ASCIICountEnd - 1
;
; Convert count to microseconds by multiplying by .8381.
;

Chapter K180

 mov dx,8381
 mul dx
 mov bx,10000
 div bx ;* .8381 = * 8381 / 10000
;
; Convert time in microseconds to five decimal ASCII digits.
;
 mov bx,10
 mov cx,5
CTSLoop:
 sub dx,dx
 div bx
 add dl,'0'
 mov [si],dl
 dec si
 loop CTSLoop
;
; Print the results.
;
 mov ah,9
 mov dx,offset OutputStr
 int 21h
;
EndZTimerReport:
 pop ds
 pop si
 pop dx
 pop cx
 pop bx
 pop ax
 MPOPF
 ret

_ZTimerReport endp

PZTIMER_TEXT ends
 end

