
Chapter I
Quake’s

3-D Engine:
The Big Picture

141

IChapter

Understanding Quake’s Client/Server Architecture
from a Height
If you want to be a game programmer, or for that matter any sort of programmer at
all, here’s the secret to success in just two words: Ship it. Finish the product and get
it out the door, and you’ll be a hero. It sounds simple, but it’s a surprisingly rare skill,
and one that’s highly prized by software companies. Here’s why.
My friend David Stafford, co-founder of the game development company Cinematronics,
says that shipping software is an unnatural act, and he’s right. Most of the fun stuff in
a software project happens early on, when anything’s possible and there’s a ton of
new code to write. By the end of a project, the design is carved in stone, and most of
the work involves fixing bugs, or trying to figure out how to shoehorn in yet another
feature that was never planned for in the original design. All that is a lot less fun
than starting a project, and often very hard work—but it has to be done before the
project can ship. As a former manager of mine liked to say, “After you finish the first
90% of a project, you have to finish the other 90%.” It’s that second 90% that’s the
key to success.
This is true for even the most interesting projects. I spent a year and a half as one of
three programmers writing the game Quake at id Software, doing our best to push
the state of the art of multiplayer and 3-D game technology ahead of anything else
on the market, working on what was probably the most-anticipated game of all time.

Chapter I142

Exciting as it was, we hit the same rough patches toward the end as any other soft-
ware project. I am quite serious when I say that a month before shipping, we were
sick to death of working on Quake.
A lot of programmers get to that second 90%, get tired and bored and frustrated,
and change jobs, or lose focus, or find excuses to procrastinate. There are a million
ways not to finish a project, but there’s only one way to finish it: Put your head down
and grind it out until it’s done. Do that, and I promise you the programming world
will be yours.
It worked for Dave; Cinematronics became a successful company and was acquired
by Maxis. It worked for us at id, as well. DOOM was one of the most successful games
in history, and we wanted to top it. For the programmers, the goal was to set new
standards for 3-D and multiplayer—especially Internet—technology for the DOOM
genre, and Quake did just that. Let’s take a look at how it works.

Client/Server
DOOM had a synchronous peer-to-peer networking architecture, where each player’s
machine runs a parallel game engine, and the machines proceed in lockstep. This
works reasonably well for two-player modem games, but makes it hard to support lots
of players coming and going at will, and is less well suited to the Internet, so we went
with a different approach for Quake.
Quake is a client/server application, as shown in Figure I.1. All gameplay and simu-
lation are performed on the server, and all input and output take place on the client,
which is basically nothing more than a specialized terminal. Each client gathers up
keyboard, mouse, and joystick input for each frame and sends it off to the server; the
server receives the input from all clients, runs the game for a fixed timeslice, and
sends the results off to the clients; and the clients display the results during the next
frame after they’re received. This is true even in single-player mode, but here the
client and the server can’t actually be separate processes, because Quake has to run
on non-multitasking DOS; instead, during each frame the input portion of the client
is run, then the server executes, and finally the output portion of the client displays
the current frame, with all communications between the client and the server flow-
ing through the communications layer using memory buffers as the transport. In
multiplayer games, the client and server are separate processes, running on differ-
ent machines (except for the special case of listen servers, where both the multiplayer
server and one of the clients run in the same process on one machine).
Client/server has obvious benefits for multiplayer games, because it vastly simplifies
issues of synchronization between various players. Perhaps less obvious is that client/
server is useful even in single-player mode, because it enforces a modular design, and has
a single communications channel between client and server that simplifies debugging.
It’s also a big help to have identical code for single-player and multiplayer modes.

Quake’s 3-D Engine: The Big Picture 143

Quake’s architecture.
Figure I.1

Client

Input

Communications Layer

Communications Layer

Transport

Server

Keyboard
Mouse
Joystick

LAN/WAN/Internet
Modem
Direct serial connection
Memory buffers (single-player)

Timebase
Game state
AI
Movement
Physics
Quake-C

3-D rendering
2-D drawing
Sound

Output

Chapter I144

Communications
An interesting issue with the client/server architecture is Internet play. Quake was
designed from the start for multiplayer gaming, but Internet play, which hadn’t been
a major issue for earlier games, raised some interesting and unique issues, because
communications latencies are longer over the Internet than they are on a LAN, and
often even longer than directly connected modems, and because packet delivery is
less reliable.
In the early stages of development, Quake used reliable packet delivery for every-
thing. With this approach, packets are sent out and acknowledgment is sent back,
and if acknowledgment isn’t received, everything is brought to a halt until a resend
succeeds. This was necessary because the clients were sent only changes to the cur-
rent state, rather than the current state, in order to reduce the total amount of data
that needed to be sent, and when sending nothing but changes, it’s essential that
every change be received, or else the cumulative state will be incorrect.
The problem with reliable packet delivery is that if a packet gets dropped, it takes a
long time to find that out (at least one round trip from server to client), and then it
takes a long time to resend it (at least another round trip). If the ping time to the
client is 200 ms (about the best possible with a PPP connection), then a dropped
packet will result in a glitch of several hundred milliseconds—long enough to be
very noticeable and annoying.
Instead, Quake now uses reliable packet delivery only for information such as scores
and level changes. Current game state, such as the locations of players and objects, is
sent each timeslice not as changes, but in its entirety, compressed so it doesn’t take
up too much bandwidth. However, this information is not sent with reliable delivery;
there is no acknowledgment, and neither the server nor client knows nor cares
whether those packets arrive or not. Each update contains all state information rel-
evant to each client for that frame, so all a dropped packet means is a freezing of the
world for one server timeslice; server timeslices come in a constant stream at a rate
of 10 or 20 a second, so a dropped packet results in a glitch of no more than 100 ms,
which is quite acceptable.

Latency
Client/server imposes a potentially large latency between a player’s action, such as
pressing the jump key, and the player seeing the resulting action, such as his view-
point jumping into the air. The action has to make a round trip to the server and
back, so the latency can vary from close to no time at all, on a LAN, up to hundreds
of milliseconds, on the Internet. Longer latencies can make the game difficult to
play; by the time the player actually jumps, he might have moved many feet forward
and fallen into a pit. This problem raises the possibility of running some or all of the

Quake’s 3-D Engine: The Big Picture 145

game logic on the client in parallel with the server, or in parallel with other clients in
a peer-to-peer architecture, so the client can have faster response.
Faster response is all to the good, but there are some serious problems with simulating
on the client. For one thing, it makes communications and game logic much more
difficult, because instead of one central master simulation on the server, there are now
potentially a dozen or more simulations that need to be synchronized. Only one out-
come from any event can be allowed, so with client simulation there must be a mechanism
for determining whose decision wins in case of conflict, and undoing actions that
are overruled by another simulation. Worse, there are inevitably paradoxes, as, for
example, a player firing a rocket and seeing it hit an opponent—but then seeing the
opponent magically resurrect as the local client gets overruled. While Quake has lag,
it doesn’t have paradox, and that helps a lot in making the experience feel real.
Quake does use one shortcut to help with lag; if a player turns to look in another
direction, that happens immediately, without waiting for the server to process the
input and return the new state. There are no paradoxes or synchronization issues
associated with turning in Quake, and instant turning makes the game feel much
more responsive. (In QuakeWorld, a multiplayer-only follow-up currently in devel-
opment, we’ve gone a step further and simulated the movement of the player, but
nothing else, on the client, and we’ve found that this does improve the feel of Internet
play quite a bit, albeit at the cost of an occasional minor paradox.)

The Server
The Quake server maintains the game’s timebase and state, performs object move-
ment and physics, and runs monster AI. The most interesting aspect of the server is
the extent to which it’s data-driven. Each level (the current “world”) is completely
described by object locations and types, wall locations, and so on stored in a database
loaded from disk. The behavior of objects and monsters is likewise externally pro-
grammable, controlled by functions written in a built-in interpreted language,
Quake-C. Quake is controlled by its external database to the extent that not only
have people been able to make new levels, but they’ve also been able to add new
game elements, such as smart rockets that track people, planes that can be climbed
into and flown, and alerters that stick to players and screech, “Here I am!”—all with-
out writing a single line of C or assembly code. This flexibility not only makes Quake
a great platform for creativity, but also helped a great deal as we developed the game,
because it allowed us to try out changes without having to recompile the program.
Indeed, levels and Quake-C programs can be reloaded and tried out without even
exiting Quake.
If you’re curious, there’s lots of Quake-C code available on the Internet. One excel-
lent site is Quake Developer’s Pages (http://www.gamers.org/dEngine/quake/). You
can find information about making custom monsters and levels there, as well.

Chapter I146

The Client
The server and communications layer are crucial elements of Quake, but it’s the
client with which the player actually interacts, and it’s the client that has the glamour
component—the 3-D engine. The client also handles keyboard, mouse, and joystick
input, sound mixing, and 2-D drawing such as menus, the status bar, and text mes-
sages, but those are straightforward; 3-D is where the action is. The challenges with
Quake’s 3-D engine were twofold: allow true 3-D viewing in all directions (unlike
DOOM’s 2.5-D), and improve visual quality with lighting, more precise pixel place-
ment, or whatever else it took—all with good performance, of course.
As with the server, the 3-D engine is data-driven, with the drawing data falling into
two categories, the world and entities. Each level contains information about the
geometry of walls, floors, and so on, and also about the textures (bitmaps) painted
onto those faces. The Quake database also contains triangle meshes and textures
describing players, monsters, and other moving objects, called entities. Originally,
we planned to draw everything in Quake through a single rendering pipeline, but it
turned out that there was no way to get good performance for both huge walls and
monsters made of hundreds of tiny polygons out of a single pipeline, so the world
and entities are drawn by completely different code paths.
The world is stored as a data structure known as a Binary Space Partitioning (BSP)
tree, which I’ve explained in some detail in the printed portion of this book. For
Quake’s purposes, BSP trees do two very useful things: They make it easy to traverse
a set of polygons in front-to-back or back-to-front order, and they partition space
into convex volumes.
Back-to-front order is handy if you’re drawing complete polygons, because you can
draw all your polygons back-to-front and get correct occlusion, by a process known as
the painter’s algorithm. In Quake, however, we draw polygons front-to-back. To be precise,
we take all our polygons and put their edges into a global list; then we rasterize this list
and draw only the visible (front-most) portions. The big advantage of this approach
is that we draw each pixel in the world once and only once, saving precious drawing
time in complex scenes because we don’t overdraw polygons one atop another.
However, the edge list isn’t fast enough to handle the thousands of polygons that can
be in the view pyramid; if you put that many edges into an edge list, what you get is a
very slow frame rate, because there’s just too much data to process and sort. So we
limited the number of polygons that have to be considered by taking advantage of
the convex-partitioning property of BSP trees to calculate a potentially visible set
(PVS). When a level is processed into the Quake format (a separate preprocessing
step done once when a map is built, by a utility program), a BSP tree is built from the
level, and then, for each convex subspace (called a leaf) of the BSP tree, a visibility
calculation is performed.

Quake’s 3-D Engine: The Big Picture 147

For a given leaf, the utility calculates which other subspaces are visible from any-
where in that leaf, and that information is stored with the leaf in the BSP tree. In
other words, if no matter where you’re standing in the kitchen downstairs, you can’t
possibly see up the stairs into the bedroom, the bedroom polygons are omitted from
the kitchen leaf’s PVS; if you can see into the living room from the corner of the
kitchen, the kitchen leaf’s PVS remembers that living room polgyons are potentially
visible. We can be sure that the PVS for a leaf contains all the polygons we ever need
to consider if the player is standing anywhere in that leaf, so at rendering time, rather
than processing the thousands of polygons in a level, we only have to handle—clip,
transform, project, and insert in the edge list—the few hundred polygons in the
current leaf’s PVS. This reduces the polygon load to a level that the edge list can
handle, and the PVS and the edge list together make for fast, consistent perfor-
mance in a wide variety of scenes.
One point about the PVS: It can be quite expensive to calculate. PVS determination
can take 15 or 20 minutes to finish—on a four-processor Alpha system! Fortunately,
Pentium Pro systems are getting fast enough to handle the job well, and no doubt
the code can be made faster, but be aware that the power of the PVS comes at a price.
Once the edge list has finished processing all the edges, we’re left with a set of spans
that cover the screen exactly once. We pass this list to a rasterizer, which texture
maps the appropriate bitmap onto those spans, accounting for perspective (which
requires an expensive divide to get exactly right) by doing a divide every 16 pixels,
and interpolating linearly between those points. (This is the key step in allowing true
3-D viewing in any direction.)
Lighting involves true light sources and shadowing, unlike DOOM’s crude sector
lighting. This is performed by having a separate lighting map (basically a texture
map, but with light values instead of colors) for each polygon, with light samples on
a 16-pixel grid, and prelighting the texture for each polygon according to the grid as
the texture is drawn into a memory buffer; the actual texture mapping works from
these pre-lit textures, with no lighting occurring during the texture mapping itself.

Entities
DOOM used flat posters—sprites—for monsters and other moving objects, and one
of the big advances in Quake was switching to polygonal entities, which are true 3-D
objects. However, this raised a new concern; entities can contain hundreds of polygons,
and there can be a dozen of them visible at once, so drawing them fast was one of our
major challenges. Each entity consists of a set of vertices, and a mesh of triangles
across those vertices. All the vertices in an entity are transformed and projected as a
set, and then all the triangles are drawn, using affine (linear) rather than perspec-
tive-correct texture mapping; affine is faster, and entity polygons are typically so small
and far away that the imperfections of affine texture mapping aren’t noticeable.

Chapter I148

Also, the entity drawer is optimized for small triangles, rather than the long span
drawing that the world drawer is optimized for; in fact, there’s a special ultra-fast
drawer for distant entities, which I’ve described in the printed portion of this book.
The big difference, however, is that entities are drawn with z-buffering; that is, the dis-
tance of each pixel to be drawn is compared to the distance of the pixel being drawn
over (stored in a memory area called a z-buffer), and the new pixel is drawn only if
it’s closer. This lets entities sort seamlessly with the world and each other, no matter
where they move or what angle they’re viewed at. There’s a cost, to be sure; z-buffering is
slower than non-z-buffered drawing, and the z-buffer has to be initialized to match
the visible world pixels, at a cost of about 10% of Quake’s performance. That cost is,
however, more than repaid by the simplicity and accuracy of z-buffering, which saves
us from having to perform complex clipping and sorting operations in order to draw
entities properly, and gives us flawless drawing under all circumstances.
The PVS helps improve entity performance, because we only need to draw entities
that are in the PVS for the current leaf. Other entities don’t exist, so far as the client
is concerned; the server doesn’t even bother sending information about anything
outside the PVS, which not only helps reduce the drawing load, but also minimizes
the amount of information that has to be sent over modems or the Internet.
As a final effect, we wanted to have effects like smoke trails and huge explosions in
Quake, but couldn’t figure out how to do them fast and well with standard sprites
(although the cores of explosions are sprites) or with polygon models. The solution
was to use clouds of hundreds of square, colored, z-buffered rectangles that scale
with distance, called particles. A few hundred particles strewn behind a rocket looks
amazingly like a trail of flame and smoke, especially if they start out yellow and fade
to red and then to gray, and as a group they do an excellent job of convincing the eye
that they represent a true 3-D object.
Particles and unreliable packet delivery, along with dynamic lighting, which allows
explosions and muzzle flashes to light up the world, were among the last additions to
the Quake engine; these features made a well-rendered but somewhat sterile world
come alive. These, together with details such as menus, a ton of optimization, and a
healthy dose of bug fixing, were the “second 90%” that propelled Quake from being
a functional 3-D and multiplayer engine to a technological leap ahead.
Ah, if only we’d had time for a third 90%!

