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FChapter

The Sierra Hicolor DAC as the Means to
Antialiased Lines
Does anything evolve faster than PC hardware? Not so long ago, we thought that
juicing up the crystal in an AT from 6 to 8MHz was awesome. Now we take it for
granted when Intel triples the internal speed of a 33MHz CPU, and with the Pentium’s
superscalar execution and 90MHz clock speeds, the trend is, if anything, accelerat-
ing. An awful lot of the PC’s evolution has involved graphics adapters, and the next
chapter and Chapter 42 are about the first successful step away from the 256-color
SuperVGAs of the late 1980s, toward the Holy Grail of 24 bits per pixel.
In computer graphics, two display characteristics are paramount: color and resolu-
tion. In 1991, SuperVGAs had taken resolution up to 1024×768, but were still stuck
at the 256-color resolution that IBM had designed into the original VGA. The rule
for graphics is simple—the more colors the better—and the PC world was primed
for a color breakthrough. The only questions were how and when it would happen.
The first shot was fired by Edsun Laboratories, in the form of the Edsun Continuous
Edge Graphics (CEG) digital to analog converter (DAC, the chip that converts pixel
values from the VGA into analog signals for input to the monitor). The CEG DAC
was an ingenious bridge between SuperVGAs and higher color that required no
modification to VGA chips and no additional memory, yet achieved (with consider-
able software effort) stunning results. If you’re curious about ancient history, have a



Chapter F94

look at my “Graphics Programming” column in Dr. Dobb’s Journal for April and May
1991, where I discussed the CEG DAC in detail. If you do look up these columns,
you’ll also find that my record as a prophet has its blemishes—I thought the CEG
DAC was going to take off, but, alas, the CEG DAC’s programming model was more
than difficult and (far worse) delivery schedules slipped. Only a few Edsun-equippped
VGAs ever made it into the field, and the unique Edsun technology became a histori-
cal oddity, its potential unrealized.
Time and technology marched on, and later in 1991 the spotlight settled on another
new device, the Sierra Semiconductor Hicolor DAC, whose mission was much the
same as the CEG DAC, but with a more promising implementation. The Hicolor
DAC was and is easy to program, a simple extension of the 256-color programming
model; it’s also affordable and a simple drop-in replacement for the standard VGA
DAC. Best of all, it shipped in good order and worked as advertised right off the bat,
and, consequently, met with good success.
A fairly typical high-end SuperVGA card in late 1991 and early 1992 was built around
the Tseng Labs ET4000 VGA chip, 1MB of RAM, and the Hicolor DAC, a combina-
tion that enabled support of the then-unprecedented 800×600 and 640×480,
32,768-color modes. Other technologies have appeared to crowd the Hicolor DAC
off the cutting edge, but the chip is still used in low-end VGAs, and almost all new
video adapters these days support high-color modes much like the ones that the
Hicolor DAC pioneered. Besides, there are still lots of Hicolor DACs around in the
installed base, and the Hicolor programming model is still used by most new adapt-
ers, so the Hicolor DAC is well worth understanding as one of the keys to the
generation of graphics hardware that in the early 1990s swept far beyond the limits
set by the original VGA.

Unreal Color
To those of us who remembered buying IBM EGAs for $1000, it was kind of unreal to
see an 800×600 32K-color VGA for less than $200 back in 1991. Understand, now,
that I’m not talking about clever bitmap encoding or color look-up tables or other
tricky ways of boosting color here. This is the real, 15-bpp (bits per pixel), almost
true-color McCoy, beautifully suited to imaging, antialiasing, and virtually any sort of
high-color graphics you might imagine. The Hicolor DAC supports normal bitmaps
that are just like 256-color bitmaps, except that each pixel is composed of 15 bits
spread across 2 bytes. If you know how to program 800×600 256-color mode, you
should have no trouble at all programming the 800×600 32K-color mode; for the
most part, just double the horizontal byte counts. (Lower-resolution 32K-color modes,
such as 640×480, are also available.) The 32K-color banking schemes are the same as
in 256-color modes, except that there are half as many pixels in each bank. Even the
complexities of the DAC’s programmable palette go away in 32K-color mode, be-
cause there is no programmable palette.
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And therein lies the strength of the Hicolor DAC: It’s easy to program. Theoretically,
the Edsun CEG DAC could produce more precise images, with higher color content,
using less display memory than the Hicolor DAC, because with the CEG DAC color
resolutions of 24-bpp and even higher were possible. Practically speaking, however,
it was hard to write software—especially real-time software—that took full advantage
of the Edsun CEG DAC’s capabilities. On the other hand, it’s very easy to extend
existing 256-color SuperVGA code to support the Hicolor DAC, and although 32K
colors (15-bpp) is not the same as true color (24-bpp), it’s close enough for most
purposes, and astonishingly better than 256 colors. Digitized and rendered images
look terrific on the Hicolor DAC, just as they did on the Edsun CEG DAC—and it’s a
lot easier and much faster to generate such images for the Hicolor DAC.

The Gamma Correction Disadvantage
The Hicolor DAC has three disadvantages. First, it requires twice as much memory at
a given resolution as does an equivalent 256-color mode. This is no longer a signifi-
cant problem; memory is cheap, with 1MB essentially standard on SuperVGAs and
2MB becoming common. (The 1024×768 32K color mode that was impossible on a 1
MB SuperVGA is easy on a board with 2MB.) Second, graphics operations can take
considerably longer, simply because there are twice as many bytes of display memory
to be dealt with; however, the latest generation of SuperVGAs provides for such fast
memory access that 32K-color software runs faster than 256-color software did on
the first generation of SuperVGAs. Finally, the Hicolor DAC neither performs gamma
correction in hardware nor provides a built-in look-up table to allow programmable
gamma correction.
To refresh your memory, gamma correction is the process of compensating for the
nonlinear response of pixel brightness to input voltage. A pixel with a green value of
60 is much more than twice as bright as a pixel of value 30. The Hicolor DAC’s lack
of built-in gamma correction puts the burden on software to perform the correction
so that antialiasing will work properly, and so that images such as digitized photo-
graphs will display with the proper brightness. Software gamma correction is possible,
but it’s a time-consuming nuisance; it also decreases the effective color resolution of
the Hicolor DAC for bright colors because the bright colors supported by the Hicolor
DAC are spaced relatively farther apart than the dim colors.
The lack of gamma correction is, however, a manageable annoyance. On balance,
the Hicolor DAC is true to its heritage; a logical, inexpensive, and painless extension
of SuperVGA. The obvious next steps are 1024×768 in 32K colors (now common
enough, but very exotic in 1991), and 800×600 with 24 bpp; heck, 4MB of display
memory (eight 4-Megabit RAMS) would be enough for 1024×768 24-bpp with room
to spare, and, as I write this, that’s right around the corner. In short, the Hicolor
DAC is squarely in the mainstream of VGA evolution. (Note that although most of
the first generation of Hicolor boards were built around the Tseng ET4000, which
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quietly and for good reason became the preeminent SuperVGA chip of 1991 and
1992, the Hicolor DAC works with other VGA chips and can be found in SuperVGAs
of all sorts.)

Polygon Antialiasing
To my mind, the best thing about the Hicolor DAC is that it makes fast, general
antialiasing possible. You see, what I’ve been working toward in this book is real-time
3-D perspective drawing on a standard PC, without the assistance of any expensive
hardware. The object model I’ll be using is polygon-based; hence the fast polygon
fill code I presented in Chapters 38 and 39. With Mode X (320×240, 256 colors,
undocumented by IBM but covered in this book in Chapters 47–49), we now have a
fast, square-pixel, page-flipped, 256-color mode, the best that standard VGA has to
offer. In this mode, it’s possible to do not only real-time, polygon-based perspective
drawing and animation, but also relatively sophisticated effects such as lighting
sources, smooth shading, and hidden surface removal. That’s everything we need
for real-time 3-D—but things could still be better.
Pixels are so large in Mode X that polygons have very visibly jagged edges. These
jaggies are the result of aliasing ; that is, distortion of the true image that results from
undersampling at the low pixel rate of the screen. Jaggies are a serious problem; the
whole point of real-time 3-D is to create the illusion of reality, but jaggies quickly
destroy that illusion, particularly when they’re crawling along the edges of moving
objects. More frequent sampling (higher resolution) helps, but not as much as you’d
think. What’s really needed is the ability to blend colors arbitrarily within a single
pixel, the better to reflect the nature of the true image in the neighborhood of that
pixel—that is, antialiasing. The pixels are still as large as ever, but with the colors
blended properly, the eye processes the screen as a continuous image, rather than as
a collection of discrete pixels, and perceives the image at much higher resolution
than the display actually supports.

There are many ways to antialias, some of them fast enough for real-time processing,
and they can work wonders in improving image appearance—but they all require a
high degree of freedom in choosing colors. For many sorts of graphics, 256 simulta-
neous colors is fine, but it’s not enough for generally useful antialiasing (although
we will shortly see an interesting sort of special-case antialiasing with 256 colors).
Therefore, the one element lacking in standard SuperVGA for affordable real-time
3-D has been good antialiasing.

Sierra filled that gap. The Hicolor DAC provides plenty of colors (although I sure do
wish the software didn’t have to do gamma correction!) and makes them available in
a way that allows for efficient programming. In the next chapter, I’ll present
antialiasing code for the Hicolor DAC.
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256-Color Antialiasing
In the next chapter, I’ll explain how the Hicolor DAC actually works—how to detect
it, how to initialize it, the pixel format, banking, and so on—and then I’ll demon-
strate Hicolor antialiasing. For now, I’m going to demonstrate antialiasing on a
standard VGA, partly to introduce the uncomplicated but effective antialiasing tech-
nique that I’ll use in the next chapter, partly so you can see the improvement that
even quick and dirty antialiasing produces, and partly to show the sorts of interesting
things that can be done with the palette in 256-color mode.
I’m going to draw a cube in perspective. For reference, Listing F.1 draws the cube in
mode 13H (320×200, 256 colors) using the standard polygon fill routine that I devel-
oped in Chapters 38 and 39. No, the perspective calculations aren’t performed in
Listing F.1; I just got the polygon vertices out of some 3-D software that I’m develop-
ing and hardwired them into Listing F.1. Never fear, though; we’ll get to true 3-D
soon enough.
Some listings from previous chapters are required to build the executable files for
this chapter (including the edge-scanning code in Listing 39.2 and POLYGON.H),
but to lessen the confusion all of these are present in the Chapter F subdirectory on
the listings diskette.
Listing F.1 draws a serviceable cube, but the edges of the cube are very jagged. Imag-
ine the cube spinning, and the jaggies rippling along its edges, and you’ll see the full
dimensions of the problem.

LISTING F.1 LF-1.C
/* Demonstrates non-antialiased drawing in 256 color mode. Tested with
   Borland C++ in C mode in the small model. */

#include <conio.h>
#include <dos.h>
#include "polygon.h"

/* Draws the polygon described by the point list PointList in color
   Color with all vertices offset by (X,Y) */
#define DRAW_POLYGON(PointList,Color,X,Y)                   \
   Polygon.Length = sizeof(PointList)/sizeof(struct Point); \
   Polygon.PointPtr = PointList;                            \
   FillConvexPolygon(&Polygon, Color, X, Y);

void main(void);
extern int FillConvexPolygon(struct PointListHeader *, int, int, int);

/* Palette RGB settings to load the first four palette locations with
   black, pure blue, pure green, and pure red */
static char Palette[4*3] = {0, 0, 0,  0, 0, 63,  0, 63, 0,  63, 0, 0};

void main()
{
   struct PointListHeader Polygon;
   static struct Point Face0[] =
         {{198,138},{211,89},{169,44},{144,89}};
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   static struct Point Face1[] =
         {{153,150},{198,138},{144,89},{105,113}};
   static struct Point Face2[] =
         {{169,44},{133,73},{105,113},{144,89}};
   union REGS regset;
   struct SREGS sregs;

   /* Set the display to VGA mode 13h, 320x200 256-color mode */
   regset.x.ax = 0x0013; int86(0x10, &regset, &regset);

   /* Set color 0 to black, color 1 to pure blue, color 2 to pure
      green, and color 3 to pure red */
   regset.x.ax = 0x1012;   /* load palette block BIOS function */
   regset.x.bx = 0;        /* start with palette register 0 */
   regset.x.cx = 4;        /* set four palette registers */
   regset.x.dx = (unsigned int) Palette;
   segread(&sregs);
   sregs.es = sregs.ds;       /* point ES:DX to Palette */
   int86x(0x10, &regset, &regset, &sregs);

   /* Draw the cube */
   DRAW_POLYGON(Face0, 3, 0, 0);
   DRAW_POLYGON(Face1, 2, 0, 0);
   DRAW_POLYGON(Face2, 1, 0, 0);
   getch();    /* wait for a keypress */

   /* Return to text mode and exit */
   regset.x.ax = 0x0003;   /* AL = 3 selects 80x25 text mode */
   int86(0x10, &regset, &regset);
}

Listings F.2 and F.3 together draw the same cube, but with simple, unweighted
antialiasing. The results are much better than Listing F.1; there’s no question in my
mind as to which cube I’d rather see in my graphics software.

LISTING F.2 LF-2.C
/* Demonstrates unweighted antialiased drawing in 256 color mode.
   Tested with Borland C++ in C mode in the small model. */

#include <conio.h>
#include <dos.h>
#include <stdlib.h>
#include <string.h>
#include "polygon.h"

/* Draws the polygon described by the point list PointList in color
   Color, with all vertices offset by (X,Y), to ScanLineBuffer, at
   double horizontal and vertical resolution */
#define DRAW_POLYGON_DOUBLE_RES(PointList,Color,x,y)        \
   Polygon.Length = sizeof(PointList)/sizeof(struct Point); \
   Polygon.PointPtr = PointTemp;                            \
   /* Double all vertical & horizontal coordinates */       \
   for (k=0; k<sizeof(PointList)/sizeof(struct Point); k++) { \
      PointTemp[k].X = PointList[k].X * 2;                  \
      PointTemp[k].Y = PointList[k].Y * 2;                  \
   }                                                        \
   FillCnvxPolyDrvr(&Polygon, Color, x, y, DrawBandedList);
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#define SCREEN_WIDTH 320
#define SCREEN_HEIGHT 200
#define SCREEN_SEGMENT 0xA000
#define SCAN_BAND_WIDTH (SCREEN_WIDTH*2)  /* # of double-res pixels
                                             across scan band */
#define BUFFER_SIZE  (SCREEN_WIDTH*2*2)   /* enough space for one scan
                                           line scanned out at double
                                           resolution horz and vert */
void main(void);
void DrawPixel(int, int, char);
int ColorComponent(int, int);
extern int FillCnvxPolyDrvr(struct PointListHeader *, int, int, int,
   void (*)());
extern void DrawBandedList(struct HLineList *, int);

/* Pointer to buffer in which double-res scanned data will reside */
unsigned char *ScanLineBuffer;
int ScanBandStart, ScanBandEnd;  /* top & bottom of each double-res
                                  band we'll draw to ScanLineBuffer */
int ScanBandWidth = SCAN_BAND_WIDTH;  /* # pixels across scan band */
static char Palette[256*3];

void main()
{
   int i, j, k;
   struct PointListHeader Polygon;
   struct Point PointTemp[4];
   static struct Point Face0[] =
         {{198,138},{211,89},{169,44},{144,89}};
   static struct Point Face1[] =
         {{153,150},{198,138},{144,89},{105,113}};
   static struct Point Face2[] =
         {{169,44},{133,73},{105,113},{144,89}};
   unsigned char Megapixel;
   union REGS regset;
   struct SREGS sregs;

   if ((ScanLineBuffer = malloc(BUFFER_SIZE)) == NULL) {
      printf("Couldn't get memory\n");
      exit(0);
   }

   /* Set the display to VGA mode 13h, 320x200 256-color mode */
   regset.x.ax = 0x0013; int86(0x10, &regset, &regset);

   /* Stack the palette for the desired megapixel effect, with each
      2-bit field representing 1 of 4 double-res pixels in one of four
      colors */
   for (i=0; i<256; i++) {
      Palette[i*3] = ColorComponent(i, 3);   /* red component */
      Palette[i*3+1] = ColorComponent(i, 2); /* green component */
      Palette[i*3+2] = ColorComponent(i, 1); /* blue component */
   }
   regset.x.ax = 0x1012;   /* load palette block BIOS function */
   regset.x.bx = 0;        /* start with palette register 0 */
   regset.x.cx = 256;      /* set all 256 palette registers */
   regset.x.dx = (unsigned int) Palette;
   segread(&sregs);
   sregs.es = sregs.ds;       /* point ES:DX to Palette */
   int86x(0x10, &regset, &regset, &sregs);
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   /* Scan out the polygons at double resolution one screen scan line
      at a time (two double-res scan lines at a time) */
   for (i=0; i<SCREEN_HEIGHT; i++) {
      /* Set the band dimensions for this pass */
      ScanBandEnd = (ScanBandStart = i*2) + 1;
      /* Clear the drawing buffer */
      memset(ScanLineBuffer, 0, BUFFER_SIZE);
      /* Draw the current band of the cube to the scan line buffer */
      DRAW_POLYGON_DOUBLE_RES(Face0, 3, 0, 0);
      DRAW_POLYGON_DOUBLE_RES(Face1, 2, 0, 0);
      DRAW_POLYGON_DOUBLE_RES(Face2, 1, 0, 0);

      /* Coalesce the double-res pixels into normal screen pixels
         and draw them */
      for (j=0; j<SCREEN_WIDTH; j++) {
         Megapixel = (ScanLineBuffer[j*2] << 6) +
                     (ScanLineBuffer[j*2+1] << 4) +
                     (ScanLineBuffer[j*2+SCAN_BAND_WIDTH] << 2) +
                     (ScanLineBuffer[j*2+SCAN_BAND_WIDTH+1]);
         DrawPixel(j, i, Megapixel);
      }
   }

   getch();    /* wait for a keypress */

   /* Return to text mode and exit */
   regset.x.ax = 0x0003;   /* AL = 3 selects 80x25 text mode */
   int86(0x10, &regset, &regset);
}

/* Draws a pixel of color Color at (X,Y) in mode 13h */
void DrawPixel(int X, int Y, char Color)
{
   char far *ScreenPtr;

   ScreenPtr = (char far *)MK_FP(SCREEN_SEGMENT, Y*SCREEN_WIDTH+X);
   *ScreenPtr = Color;
}

/* Returns the gamma-corrected value representing the number of
   double-res pixels containing the specified color component in a
   megapixel with the specified value */
int ColorComponent(int Value, int Component)
{
   /* Palette settings for 0%, 25%, 50%, 75%, and 100% brightness,
      assuming a gamma value of 2.3 */
   static int GammaTable[] = {0, 34, 47, 56, 63};
   int i;

   /* Add up the number of double-res pixels of the specified color
      in a megapixel of this value */
   i = (((Value & 0x03) == Component) ? 1 : 0) +
       ((((Value >> 2) & 0x03) == Component) ? 1 : 0) +
       ((((Value >> 4) & 0x03) == Component) ? 1 : 0) +
       ((((Value >> 6) & 0x03) == Component) ? 1 : 0);
   /* Look up brightness of the specified color component in a
      megapixel of this value */
   return GammaTable[i];
}
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LISTING F.3 LF-3.C
/* Draws pixels from the list of horizontal lines passed in; drawing
   takes place only for scan lines between ScanBandStart and
   ScanBandEnd, inclusive; drawing goes to ScanLineBuffer, with
   the scan line at ScanBandStart mapping to the first scan line in
   ScanLineBuffer. Intended for use in unweighted antialiasing,
   whereby a polygon is scanned out into a buffer at a multiple of the
   screen's resolution, and then the scanned-out info in the buffer is
   grouped into megapixels that are mapped to the closest
   approximation the screen supports and drawn. Tested with Borland
   C++ in C mode in the small model */

#include <string.h>
#include <dos.h>
#include "polygon.h"

extern unsigned char *ScanLineBuffer;  /* drawing goes here */
extern int ScanBandStart, ScanBandEnd; /* limits of band to draw */
extern int ScanBandWidth;  /* # of pixels across scan band */

void DrawBandedList(struct HLineList * HLineListPtr, int Color)
{
   struct HLine *HLinePtr;
   int Length, Width, YStart = HLineListPtr->YStart;
   unsigned char *BufferPtr;

   /* Done if fully off the bottom or top of the band */
   if (YStart > ScanBandEnd) return;
   Length = HLineListPtr->Length;
   if ((YStart + Length) <= ScanBandStart) return;

   /* Point to the XStart/XEnd descriptor for the first (top)
      horizontal line */
   HLinePtr = HLineListPtr->HLinePtr;

   /* Confine drawing to the specified band */
   if (YStart < ScanBandStart) {
      /* Skip ahead to the start of the band */
      Length -= ScanBandStart - YStart;
      HLinePtr += ScanBandStart - YStart;
      YStart = ScanBandStart;
   }
   if (Length > (ScanBandEnd - YStart + 1))
      Length = ScanBandEnd - YStart + 1;

   /* Point to the start of the first scan line on which to draw */
   BufferPtr = ScanLineBuffer + (YStart - ScanBandStart) *
         ScanBandWidth;

   /* Draw each horizontal line within the band in turn, starting with
      the top one and advancing one line each time */
   while (Length-- > 0) {
      /* Draw the whole horizontal line if it has a positive width */
      if ((Width = HLinePtr->XEnd - HLinePtr->XStart + 1) > 0)
         memset(BufferPtr + HLinePtr->XStart, Color, Width);
      HLinePtr++;                /* point to next scan line X info */
      BufferPtr += ScanBandWidth; /* point to next scan line start */
   }
}
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The antialiasing technique used in Listing F.2 is straightforward. Each polygon is
scanned out in the usual way, but at twice the screen’s resolution both horizontally
and vertically (which I’ll call “double-resolution,” although it produces four times as
many pixels), with the double-resolution pixels drawn to a memory buffer, rather
than directly to the screen.
Then, after all the polygons have been drawn to the memory buffer, a second pass is
performed. This pass looks at the colors stored in each set of four double-resolution
pixels, and draws to the screen a single pixel that reflects the colors and intensities of
the four double-resolution pixels that make it up, as shown in Figure F.1. In other
words, Listing F.2 temporarily draws the polygons at double resolution, then uses the
extra information from the double-resolution bitmap to generate an image with an ef-
fective resolution considerably higher than the screen’s actual 320×200 capabilities.
Two interesting tricks are employed in Listing F.2. First, it would be best from the
standpoint of speed if the entire screen could be drawn to the double-resolution
intermediate buffer in a single pass. Unfortunately, a buffer capable of holding one
full 640×400 screen would be 256K bytes in size—too much memory for most pro-
grams to spare. Consequently, Listing F.2 instead scans out the image just two
double-resolution scan lines (corresponding to one screen scan line) at a time. That
is, the entire image is scanned once for every two double-resolution scan lines, and

Mapping double-resolution pixels to single screen pixels.
Figure F.1
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all information not concerning the two lines of current interest is thrown away. This
banding is implemented in Listing F.3, which accepts a full list of scan lines to draw,
but actually draws only those lines within the current scan line band. Listing F.3 also
draws to the intermediate buffer, rather than to the screen.
The polygon-scanning code from Chapter 38 was hard-wired to call the function
DrawHorizontalLineList, which drew to the display; this is the polygon-drawing code
called by Listing F.1. That was fine so long as there was only one possible drawing
target, but now we have two possible targets—the display (for nonantialiased draw-
ing), and the intermediate buffer (for antialiased drawing). It’s desirable to be able
to mix the two, even within a single screen, because antialiased drawing looks better
but nonantialiased is faster. Consequently, I have modified Listing 38.1 from Chap-
ter 38—the function FillConvexPolygon—to create FillCnvxPolyDrvr, which is the
same as FillConvexPolygon, except that it accepts as a parameter the name of the
function to be used to draw the scanned-out polygon. The modified file is shown in
its entirety in Listing F.4.

LISTING F.4 FILCNVX.C
/* Color-fills a convex polygon, using the passed-in driver to perform
   all drawing. All vertices are offset by (XOffset, YOffset).
   "Convex" means that every horizontal line drawn through the polygon
   at any point would cross exactly two active edges (neither
   horizontal lines nor zero-length edges count as active edges; both
   are acceptable anywhere in the polygon), and that the right & left
   edges never cross. (It's OK for them to touch, though, so long as
   the right edge never crosses over to the left of the left edge.)
   Nonconvex polygons won't be drawn properly. Returns 1 for success,
   0 if memory allocation failed. */

#include <stdio.h>
#include <math.h>
#ifdef __TURBOC__
#include <alloc.h>
#else    /* MSC */
#include <malloc.h>
#endif
#include "polygon.h"

/* Advances the index by one vertex forward through the vertex list,
   wrapping at the end of the list */
#define INDEX_FORWARD(Index) \
   Index = (Index + 1) % VertexList->Length;

/* Advances the index by one vertex backward through the vertex list,
   wrapping at the start of the list */
#define INDEX_BACKWARD(Index) \
   Index = (Index - 1 + VertexList->Length) % VertexList->Length;

/* Advances the index by one vertex either forward or backward through
   the vertex list, wrapping at either end of the list */
#define INDEX_MOVE(Index,Direction)                                  \
   if (Direction > 0)                                                \
      Index = (Index + 1) % VertexList->Length;                      \
   else                                                              \
      Index = (Index - 1 + VertexList->Length) % VertexList->Length;
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void ScanEdge(int, int, int, int, int, int, struct HLine **);

int FillCnvxPolyDrvr(struct PointListHeader * VertexList, int Color,
      int XOffset, int YOffset, void (*DrawListFunc)())
{
   int i, MinIndexL, MaxIndex, MinIndexR, SkipFirst, Temp;
   int MinPoint_Y, MaxPoint_Y, TopIsFlat, LeftEdgeDir;
   int NextIndex, CurrentIndex, PreviousIndex;
   int DeltaXN, DeltaYN, DeltaXP, DeltaYP;
   struct HLineList WorkingHLineList;
   struct HLine *EdgePointPtr;
   struct Point *VertexPtr;

   /* Point to the vertex list */
   VertexPtr = VertexList->PointPtr;

   /* Scan the list to find the top and bottom of the polygon */
   if (VertexList->Length == 0)
      return(1);  /* reject null polygons */
   MaxPoint_Y = MinPoint_Y = VertexPtr[MinIndexL = MaxIndex = 0].Y;
   for (i = 1; i < VertexList->Length; i++) {
      if (VertexPtr[i].Y < MinPoint_Y)
         MinPoint_Y = VertexPtr[MinIndexL = i].Y; /* new top */
      else if (VertexPtr[i].Y > MaxPoint_Y)
         MaxPoint_Y = VertexPtr[MaxIndex = i].Y; /* new bottom */
   }
   if (MinPoint_Y == MaxPoint_Y)
      return(1);  /* polygon is 0-height; avoid infinite loop below */

   /* Scan in ascending order to find the last top-edge point */
   MinIndexR = MinIndexL;
   while (VertexPtr[MinIndexR].Y == MinPoint_Y)
      INDEX_FORWARD(MinIndexR);
   INDEX_BACKWARD(MinIndexR); /* back up to last top-edge point */

   /* Now scan in descending order to find the first top-edge point. */
   while (VertexPtr[MinIndexL].Y == MinPoint_Y)
      INDEX_BACKWARD(MinIndexL);
   INDEX_FORWARD(MinIndexL); /* back up to first top-edge point */

   /* Figure out which direction through the vertex list from the top
      vertex is the left edge and which is the right */
   LeftEdgeDir = -1; /* assume left edge runs down thru vertex list */
   if ((TopIsFlat = (VertexPtr[MinIndexL].X !=
         VertexPtr[MinIndexR].X) ? 1 : 0) == 1) {
      /* If the top is flat, just see which of the ends is leftmost */
      if (VertexPtr[MinIndexL].X > VertexPtr[MinIndexR].X) {
         LeftEdgeDir = 1;  /* left edge runs up through vertex list */
         Temp = MinIndexL;       /* swap the indices so MinIndexL   */
         MinIndexL = MinIndexR;  /* points to the start of the left */
         MinIndexR = Temp;       /* edge, similarly for MinIndexR   */
      }
   } else {
      /* Point to the downward end of the first line of each of the
         two edges down from the top */
      NextIndex = MinIndexR;
      INDEX_FORWARD(NextIndex);
      PreviousIndex = MinIndexL;
      INDEX_BACKWARD(PreviousIndex);
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      /* Calculate X and Y lengths from the top vertex to the end of
         the first line down each edge; use those to compare slopes
         and see which line is leftmost */
      DeltaXN = VertexPtr[NextIndex].X - VertexPtr[MinIndexL].X;
      DeltaYN = VertexPtr[NextIndex].Y - VertexPtr[MinIndexL].Y;
      DeltaXP = VertexPtr[PreviousIndex].X - VertexPtr[MinIndexL].X;
      DeltaYP = VertexPtr[PreviousIndex].Y - VertexPtr[MinIndexL].Y;
      if (((long)DeltaXN * DeltaYP - (long)DeltaYN * DeltaXP) < 0L) {
         LeftEdgeDir = 1;  /* left edge runs up through vertex list */
         Temp = MinIndexL;       /* swap the indices so MinIndexL   */
         MinIndexL = MinIndexR;  /* points to the start of the left */
         MinIndexR = Temp;       /* edge, similarly for MinIndexR   */
      }
   }

   /* Set the # of scan lines in the polygon, skipping the bottom edge
      and also skipping the top vertex if the top isn't flat because
      in that case the top vertex has a right edge component, and set
      the top scan line to draw, which is likewise the second line of
      the polygon unless the top is flat. */
   if ((WorkingHLineList.Length =
         MaxPoint_Y - MinPoint_Y - 1 + TopIsFlat) <= 0)
      return(1);  /* there's nothing to draw, so we're done */
   WorkingHLineList.YStart = YOffset + MinPoint_Y + 1 - TopIsFlat;

   /* Get memory in which to store the line list we generate */
   if ((WorkingHLineList.HLinePtr =
         (struct HLine *) (malloc(sizeof(struct HLine) *
         WorkingHLineList.Length))) == NULL)
      return(0);  /* couldn't get memory for the line list */

   /* Scan the left edge and store the boundary points in the list */
   /* Initial pointer for storing scan converted left-edge coords */
   EdgePointPtr = WorkingHLineList.HLinePtr;
   /* Start from the top of the left edge */
   PreviousIndex = CurrentIndex = MinIndexL;
   /* Skip the first point of the first line unless the top is flat;
      if the top isn't flat, the top vertex is exactly on a right
      edge and isn't drawn */
   SkipFirst = TopIsFlat ? 0 : 1;
   /* Scan convert each line in the left edge from top to bottom */
   do {
      INDEX_MOVE(CurrentIndex,LeftEdgeDir);
      ScanEdge(VertexPtr[PreviousIndex].X + XOffset,
            VertexPtr[PreviousIndex].Y,
            VertexPtr[CurrentIndex].X + XOffset,
            VertexPtr[CurrentIndex].Y, 1, SkipFirst, &EdgePointPtr);
      PreviousIndex = CurrentIndex;
      SkipFirst = 0; /* scan convert the first point from now on */
   } while (CurrentIndex != MaxIndex);

   /* Scan the right edge and store the boundary points in the list */
   EdgePointPtr = WorkingHLineList.HLinePtr;
   PreviousIndex = CurrentIndex = MinIndexR;
   SkipFirst = TopIsFlat ? 0 : 1;
   /* Scan convert the right edge, top to bottom. X coordinates are
      adjusted 1 to the left, effectively causing scan conversion of
      the nearest points to the left of but not exactly on the edge */
   do {
      INDEX_MOVE(CurrentIndex,-LeftEdgeDir);
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      ScanEdge(VertexPtr[PreviousIndex].X + XOffset - 1,
            VertexPtr[PreviousIndex].Y,
            VertexPtr[CurrentIndex].X + XOffset - 1,
            VertexPtr[CurrentIndex].Y, 0, SkipFirst, &EdgePointPtr);
      PreviousIndex = CurrentIndex;
      SkipFirst = 0; /* scan convert the first point from now on */
   } while (CurrentIndex != MaxIndex);

   /* Draw the line list representing the scan converted polygon */
   (*DrawListFunc)(&WorkingHLineList, Color);

   /* Release the line list's memory and we're successfully done */
   free(WorkingHLineList.HLinePtr);
   return(1);
}

The second interesting trick in Listing F.2 is the way in which the palette is stacked to
allow unweighted antialiasing. Listing F.2 arranges the palette so that rather than
256 independent colors, we’ll work with four-way combinations within each pixel of
three independent colors (red, green, and blue), with each pixel accurately reflect-
ing the intensities of each of the four color components (double-resolution pixels)
that it contains. This allows fast and easy mapping from four double-resolution pix-
els to the single screen pixel to which they correspond. Figure F.2 illustrates the
mapping of subpixels (double-resolution pixels) through the palette to screen pix-
els. This palette organization converts mode 13H from a 256-color mode to a
three-color antialiasing mode.

From the double-resolution buffer to the screen.
Figure F.2
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It’s worth noting that many palette registers are set to identical values by Listing F.2,
because whereas the values of subpixels matter, arrangements of these values do not.
For example, the pixel values 0x01, 0x04, 0x10, and 0x40 all map to 25 percent blue.
By using a table look-up to map sets of four double-resolution pixels to screen pixel
values, more than half the palette could be freed up for drawing with other colors.

Unweighted Antialiasing: How Good?
Is the antialiasing used in Listing F.2 the finest possible antialiasing technique? It is
not. It is an unweighted antialiasing technique, meaning that no accounting is made
for how close to the center of a pixel a polygon edge might be. The edges are also
biased a half-pixel or so in some cases, so registration with the underlying image isn’t
perfect. Nonetheless, the technique used in Listing F.2 produces attractive results,
which is what really matters; keep in mind that all screen displays are approxima-
tions, and unweighted antialiasing is certainly good enough for PC animation
applications. Unweighted antialiasing can also support good performance, although
this is not the case in Listings F.2 and F.3, where I have opted for clarity rather than
performance. Increasing the number of lines drawn on each pass, or reducing the
area processed to the smallest possible bounding rectangle, would help improve
performance, as, of course, would the use of assembly language.
For further information on antialiasing, you might check out the standard refer-
ence: Computer Graphics: Principles and Practice, by Foley and Van Dam. Michael
Covington’s “Smooth Views,” in the May, 1990 Byte, provides a short but meaty dis-
cussion of unweighted line antialiasing.
As relatively good as it looks, Listing F.2 is still watered-down antialiasing, even of the
unweighted variety. For all our clever palette stacking, we have only five levels of
each primary color available; that’s a far cry from the 32 levels of the Hicolor DAC,
or the 256 levels of true color. The limitations of 256-color modes, even with the
palette, are showing through.
In the next chapter, we’ll take a look at how much better 15-bpp antialiasing can be.




