
Chapter E
Ellipses

That Rip

73

EChapter

Optimizing Ellipse Drawing with a Draw List
for Each Octant
Do you believe in coincidence? You don’t have to, you know; there’s no rule that says
there has to be any such thing, and many people choose to believe otherwise. They
think that all events are interrelated; what appears to be coincidence actually reflects
deeper meaning in the universe. Personally, I prefer to believe in random coinci-
dence, because if coincidences are meaningful, the universe has been trying to send
me a very meaningful message lately—and while I can’t imagine what that message
could possibly be, I’m not sure I want to find out!
To wit: In the previous chapter, I began by telling you that I seemed to be encounter-
ing faster circle implementations almost daily, and I mentioned Hal Hardenbergh’s
extremely fast, 16-bit- integer-only circle-drawing approach. A few days after I wrote
the original article from which that chapter was derived, in what was either one hell
of a coincidence or a telegram from the Twilight Zone, an article by Tim Paterson in
the July, 1990 Dr. Dobb’s Journal crossed my desk. The topic of the article: drawing
circles. Fast. With no multiplies and no divides and plain old 16-bit integers.
Sound familiar?
Tim covers ground that we’ve already been over, but he looks at circle drawing from
a different and interesting perspective. Although the code is in C, you could convert
it to assembly language easily enough. The message? One (which pointedly includes

Chapter E74

that fellow I) should never be too sure that he or she has in fact nailed any topic for
all time, from all perspectives.
With that lesson firmly in mind, let’s draw some ellipses. Fast. Very fast, in fact. None-
theless, I’m sure there’s something faster yet; in my experience, there always is.

Ellipses, Continued
Last time, we learned how to draw ellipses without using any multiplies, divides, or
floating-point numbers, thanks to an integer-only incremental algorithm. This time,
I’ll better attune that code to the hardware of the EGA and VGA by eliminating the
separate calculation of the screen address for each and every point. Instead, I’ll gen-
erate a draw list for an octant, that is, a set of commands to either advance or not
advance along the minor axis each time drawing advances one pixel along the major
axis. Then I’ll draw the four symmetries of that draw list (the four octants which
share the same major axis—that is, advance more rapidly along the same axis) one at
a time, using specialized code that calculates the bit mask and offset for each pixel as
a function of the last pixel, thereby eliminating all multiplications and multi-bit rota-
tions. I’ll then repeat the process for the four octants in which the other coordinate
is the major axis. Finally, I’ll rewrite in assembly language the code that generates
draw lists, and I’ll do the same for the code that draws octants from draw lists.

Ellipse Drawing Made Fast
Without further ado, let’s get to the code. Listing E.1 is C ellipse-drawing code, dif-
fering from Listing D.4 in that Listing E.1 generates a draw list and draws the four
symmetries of that list, then does the whole thing again for the other axis, as de-
scribed above. That change produces a performance improvement of about 35
percent, as shown in Table E.1. Listing E.2 is a sample C program that can call any of
the ellipse-drawing functions in this chapter and the last; Listing E.2 was used for
timing the various implementations. (Because this chapter brings together a lot of
familiar stuff, I made the sample program a little more interesting than the standard
concentric ellipses. It’s not a big deal—it’s kind of a circle with pointy ears—but it
gives you an idea of the sorts of shapes that are easily created with sets of ellipses; run
it yourself and see.)

LISTING E.1 LE-1.C
/*
 * Draws an ellipse of the specified X and Y axis radii and color,
 * using a fast integer-only & square-root-free approach, and
 * generating the arc for one octant into a buffer, drawing four
 * symmetries from that buffer, then doing the same for the other
 * axis.
 * Compiles with either Borland or Microsoft.
 * VGA or EGA.
 */
#include <dos.h>

Ellipses That Rip 75

/* Handle differences between Borland and Microsoft. Note that Borland accepts
 outp as a synonym for outportb, but not outpw for outport */
#ifdef __TURBOC__
#define outpw outport
#endif

#define SCREEN_WIDTH_IN_BYTES 80 /* # of bytes across one scan
 line in mode 12h */

#define SCREEN_SEGMENT 0xA000 /* mode 12h display memory seg */
#define GC_INDEX 0x3CE /* Graphics Controller port */
#define SET_RESET_INDEX 0 /* Set/Reset reg index in GC */
#define SET_RESET_ENABLE_INDEX 1 /* Set/Reset Enable reg index
 in GC */
#define BIT_MASK_INDEX 8 /* Bit Mask reg index in GC */

unsigned char PixList[SCREEN_WIDTH_IN_BYTES*8/2];
/* maximum major axis length is
 1/2 screen width, because we're
 assuming no clipping is needed */

/* Draws the arc for an octant in which Y is the major axis. (X,Y) is the
 starting point of the arc. HorizontalMoveDirection selects whether the
 arc advances to the left or right horizontally (0=left, 1=right).
 RowOffset contains the offset in bytes from one scan line to the next,
 controlling whether the arc is drawn up or down. Length is the
 vertical length in pixels of the arc, and DrawList is a list
 containing 0 for each point if the next point is vertically aligned,
 and 1 if the next point is 1 pixel diagonally to the left or right. */
void DrawVOctant(int X, int Y, int Length, int RowOffset,
 int HorizontalMoveDirection, unsigned char *DrawList)
{
 unsigned char far *ScreenPtr, BitMask;

 /* Point to the byte the initial pixel is in. */
#ifdef __TURBOC__
 ScreenPtr = MK_FP(SCREEN_SEGMENT,
 (Y * SCREEN_WIDTH_IN_BYTES) + (X / 8));
#else
 FP_SEG(ScreenPtr) = SCREEN_SEGMENT;
 FP_OFF(ScreenPtr) =(Y * SCREEN_WIDTH_IN_BYTES) + (X / 8);
#endif
 /* Set the initial bit mask */
 BitMask = 0x80 >> (X & 0x07);

 /* Draw all points in DrawList */
 while (Length--) {
 /* Set the bit mask for the pixel */
 outp(GC_INDEX + 1, BitMask);
 /* Draw the pixel. ORed to force read/write to load latches.
 Data written doesn't matter, because set/reset is enabled
 for all planes. Note: don't OR with 0; MSC optimizes that
 statement to no operation */
 *ScreenPtr |= 0xFE;
 /* Now advance to the next pixel based on DrawList. */
 if (*DrawList++) {
 /* Advance horizontally to produce a diagonal move. Rotate
 the bit mask, advancing one byte horizontally if the bit
 mask wraps */
 if (HorizontalMoveDirection == 1) {
 /* Move right */

Chapter E76

 if ((BitMask >>= 1) == 0) {
 BitMask = 0x80; /* wrap the mask */
 ScreenPtr++; /* advance 1 byte to the right */
 }
 } else {
 /* Move left */
 if ((BitMask <<= 1) == 0) {
 BitMask = 0x01; /* wrap the mask */
 ScreenPtr--; /* advance 1 byte to the left */
 }
 }
 }
 ScreenPtr += RowOffset; /* advance to the next scan line */
 }
}

/* Draws the arc for an octant in which X is the major axis. (X,Y) is the
 starting point of the arc. HorizontalMoveDirection selects whether the
 arc advances to the left or right horizontally (0=left, 1=right).
 RowOffset contains the offset in bytes from one scan line to the next,
 controlling whether the arc is drawn up or down. Length is the
 horizontal length in pixels of the arc, and DrawList is a list
 containing 0 for each point if the next point is horizontally aligned,
 and 1 if the next point is 1 pixel above or below diagonally. */
void DrawHOctant(int X, int Y, int Length, int RowOffset,
 int HorizontalMoveDirection, unsigned char *DrawList)
{
 unsigned char far *ScreenPtr, BitMask;

 /* Point to the byte the initial pixel is in */
#ifdef __TURBOC__
 ScreenPtr = MK_FP(SCREEN_SEGMENT,
 (Y * SCREEN_WIDTH_IN_BYTES) + (X / 8));
#else
 FP_SEG(ScreenPtr) = SCREEN_SEGMENT;
 FP_OFF(ScreenPtr) =(Y * SCREEN_WIDTH_IN_BYTES) + (X / 8);
#endif
 /* Set the initial bit mask */
 BitMask = 0x80 >> (X & 0x07);

 /* Draw all points in DrawList */
 while (Length--) {
 /* Set the bit mask for the pixel */
 outp(GC_INDEX + 1, BitMask);
 /* Draw the pixel (see comments above for details) */
 *ScreenPtr |= 0xFE;
 /* Now advance to the next pixel based on DrawList */
 if (*DrawList++) {
 /* Advance vertically to produce a diagonal move */
 ScreenPtr += RowOffset; /* advance to the next scan line */
 }
 /* Advance horizontally. Rotate the bit mask, advancing one
 byte horizontally if the bit mask wraps */
 if (HorizontalMoveDirection == 1) {
 /* Move right */
 if ((BitMask >>= 1) == 0) {
 BitMask = 0x80; /* wrap the mask */
 ScreenPtr++; /* advance 1 byte to the right */
 }
 } else {

Ellipses That Rip 77

 /* Move left */
 if ((BitMask <<= 1) == 0) {
 BitMask = 0x01; /* wrap the mask */
 ScreenPtr--; /* advance 1 byte to the left */
 }
 }
 }
}

/* Draws an ellipse of X axis radius A and Y axis radius B in
 * color Color centered at screen coordinate (X,Y). Radii must
 * both be non-zero. */
void DrawEllipse(int X, int Y, int A, int B, int Color) {
 int WorkingX, WorkingY;
 long Threshold;
 long ASquared = (long) A * A;
 long BSquared = (long) B * B;
 long XAdjust, YAdjust;
 unsigned char *PixListPtr;

 /* Set drawing color via set/reset */
 outpw(GC_INDEX, (0x0F << 8) | SET_RESET_ENABLE_INDEX);
 /* enable set/reset for all planes */
 outpw(GC_INDEX, (Color << 8) | SET_RESET_INDEX);
 /* set set/reset (drawing) color */
 outp(GC_INDEX, BIT_MASK_INDEX); /* leave the GC Index reg pointing
 to the Bit Mask reg */

 /* Draw the four symmetric arcs for which X advances faster (that is,
 for which X is the major axis) */

 /* Draw the four arcs; set draw parameters for initial point (0,B) */
 /* Calculate all points along an arc of 1/8th of the ellipse and
 store that info in PixList for later drawing */
 PixListPtr = PixList;
 WorkingX = 0;
 XAdjust = 0;
 YAdjust = ASquared * 2 * B;
 Threshold = ASquared / 4 - ASquared * B;

 for (;;) {
 /* Advance the threshold to the value for the next X point
 to be drawn */
 Threshold += XAdjust + BSquared;

 /* If the threshold has passed 0, then the Y coordinate has
 advanced more than halfway to the next pixel and it's time
 to advance the Y coordinate by 1 and set the next threshold
 accordingly */
 if (Threshold >= 0) {
 YAdjust -= ASquared * 2;
 Threshold -= YAdjust;
 PixListPtr++ = 1; / advance along both axes */
 } else {
 PixListPtr++ = 0; / advance only along the X axis */
 }

 /* Advance the X coordinate by 1 */
 XAdjust += BSquared * 2;
 WorkingX++;

Chapter E78

 /* Stop if X is no longer the major axis (the arc has passed the
 45-degree point) */
 if (XAdjust >= YAdjust)
 break;
 }

 /* Now draw each of 4 symmetries of the octant in turn, the
 octants for which X is the major axis. Adjust every other arc
 so that there's no overlap. */
 DrawHOctant(X,Y-B,WorkingX,SCREEN_WIDTH_IN_BYTES,0,PixList);
 DrawHOctant(X+1,Y-B+(*PixList),WorkingX-1,SCREEN_WIDTH_IN_BYTES,1,
 PixList+1);
 DrawHOctant(X,Y+B,WorkingX,-SCREEN_WIDTH_IN_BYTES,0,PixList);
 DrawHOctant(X+1,Y+B-(*PixList),WorkingX-1,-SCREEN_WIDTH_IN_BYTES,1,
 PixList+1);

 /* Draw the four symmetric arcs for which X advances faster (that is,
 for which Y is the major axis) */

 /* Draw the four arcs; set draw parameters for initial point (A,0) */
 /* Calculate all points along an arc of 1/8th of the ellipse and
 store that info in PixList for later drawing */
 PixListPtr = PixList;
 WorkingY = 0;
 XAdjust = BSquared * 2 * A;
 YAdjust = 0;
 Threshold = BSquared / 4 - BSquared * A;

 for (;;) {
 /* Advance the threshold to the value for the next Y point
 to be drawn */
 Threshold += YAdjust + ASquared;

 /* If the threshold has passed 0, then the X coordinate has
 advanced more than halfway to the next pixel and it's time
 to advance the X coordinate by 1 and set the next threhold
 accordingly */
 if (Threshold >= 0) {
 XAdjust -= BSquared * 2;
 Threshold = Threshold - XAdjust;
 PixListPtr++ = 1; / advance along both axes */
 } else {
 PixListPtr++ = 0; / advance only along the X axis */
 }

 /* Advance the Y coordinate by 1 */
 YAdjust += ASquared * 2;
 WorkingY++;

 /* Stop if Y is no longer the major axis (the arc has passed the
 45-degree point) */
 if (YAdjust > XAdjust)
 break;
 }

 /* Now draw each of 4 symmetries of the octant in turn, the
 octants for which Y is the major axis. Adjust every other arc
 so that there's no overlap. */
 DrawVOctant(X-A,Y,WorkingY,-SCREEN_WIDTH_IN_BYTES,1,PixList);
 DrawVOctant(X-A+(*PixList),Y+1,WorkingY-1,SCREEN_WIDTH_IN_BYTES,1,
 PixList+1);

Ellipses That Rip 79

 DrawVOctant(X+A,Y,WorkingY,-SCREEN_WIDTH_IN_BYTES,0,PixList);
 DrawVOctant(X+A-(*PixList),Y+1,WorkingY-1,SCREEN_WIDTH_IN_BYTES,0,
 PixList+1);

 /* Reset the Bit Mask register to normal */
 outp(GC_INDEX + 1, 0xFF);
 /* Turn off set/reset enable */
 outpw(GC_INDEX, (0x00 << 8) | SET_RESET_ENABLE_INDEX);
}

LISTING E.2 LE-2.C
/*
 * Draws ellipses of varying eccentricities in the VGA's hi-res mode,
 * mode 12h.
 * For VGA only.
 * Compile and link (using Borland C++) with listing LE-X.C (where X is 1 or 4)
 * with:
 * bcc -ms LE-X.C LE-2.C
 *
 */

#include <dos.h>
#include <stdio.h>

main() {
 int XRadius, YRadius, Temp, Color, i;
 union REGS Regs;

 /* Select VGA's hi-res 640x480 graphics mode, mode 12h */
 Regs.x.ax = 0x0012;
 int86(0x10, &Regs, &Regs);

 /* Repeat 10 times */
 for (i = 0; i < 10; i++) {
 /* Draw nested ellipses */
 for (XRadius = 319, YRadius = 1, Color = 7; YRadius < 240;
 XRadius -= 1, YRadius += 2) {
 DrawEllipse(640/2, 480/2, XRadius, YRadius, Color);
 Color = (Color + 1) & 0x0F; /* cycle through 16 colors */
 }
 }

 /* Wait for a key, restore text mode, and done */
 scanf("%c", &Temp);
 Regs.x.ax = 0x0003;
 int86(0x10, &Regs, &Regs);
}

I am well aware that Listing E.1 is not fully optimized; for one thing, it doesn’t take
advantage of the write mode 3 and pixel-accumulation techniques used by the as-
sembly code in Listing E.4. Listing E.1 is intended as an illustrative bridge between
the standard ellipse-drawing code of the previous chapter and the fast but hard to
understand code in Listing E.4, so I’ve leaned toward comprehension rather than
maximum speed in Listing E.1. To my mind, it’s wasted effort to spend time squeez-
ing cycles out of Listing E.1 when Listings E.3 and E.4 will always be faster no matter
how well-optimized Listing E.1 is.

Chapter E80

Listing E.3 is the C portion of the final and fastest ellipse-drawing routine. Listing
E.3 calls functions in the assembly language module shown in Listing E.4 in order to
perform the two critical aspects of ellipse drawing: draw list generation and the ac-
tual octant drawing.
Listings E.3 and E.4 together are about twice as fast as Listing E.1. They are in the
range of 2.5 to 3.5 times faster than Listing 19.4. Lastly, they are 60 or so times faster
than the floating-point based implementation in Listing 19.1.
See what a little forethought and attention to detail can do?

LISTING E.3 LE-3.C
/*
 * Draws an ellipse of the specified X and Y axis radii and color,
 * using a fast integer-only & square-root-free approach, and
 * generating the arc for one octant into a buffer, drawing four
 * symmetries from that buffer, then doing the same for the other
 * axis. Uses assembly language for inner loops of octant generation
 * & drawing. Link to Listing E.4.
 *
 * Compiles with either Borland or Microsoft.
 * VGA or EGA.
 */
#define ISVGA 0 /* set to 1 to use VGA write mode 3*/
 /* keep synchronized with Listing 4 */
#include <dos.h>

/* Handle differences between Borland and Microsift. Note that Borland accepts
 outp as a synonym for outportb, but not outpw for outport */
#ifdef __TURBOC__
#define outpw outport
#endif

#define SCREEN_WIDTH_IN_BYTES 80 /* # of bytes across one scan
 line in mode 12h */

#define SCREEN_SEGMENT 0xA000 /* mode 12h display memory seg */
#define GC_INDEX 0x3CE /* Graphics Controller port */
#define SET_RESET_INDEX 0 /* Set/Reset reg index in GC */
#define SET_RESET_ENABLE_INDEX 1 /* Set/Reset Enable reg index

 in GC */
#define GC_MODE_INDEX 5 /* Graphics Mode reg index in GC */
#define COLOR_DONT_CARE 7 /* Color Don't Care reg index in GC */
#define BIT_MASK_INDEX 8 /* Bit Mask reg index in GC */

unsigned char PixList[SCREEN_WIDTH_IN_BYTES*8/2];
/* maximum major axis length is
 1/2 screen width, because we're
 assuming no clipping is needed */

/* Draws an ellipse of X axis radius A and Y axis radius B in
 * color Color centered at screen coordinate (X,Y). Radii must
 * both be non-zero. */
void DrawEllipse(int X, int Y, int A, int B, int Color) {
 int Length;
 long Threshold;
 long ASquared = (long) A * A;
 long BSquared = (long) B * B;
 long XAdjust, YAdjust;
 unsigned char *PixListPtr, OriginalGCMode;

Ellipses That Rip 81

 /* Set drawing color via set/reset */
 outpw(GC_INDEX, (0x0F << 8) | SET_RESET_ENABLE_INDEX);
 /* enable set/reset for all planes */
 outpw(GC_INDEX, (Color << 8) | SET_RESET_INDEX);
 /* set set/reset (drawing) color */
#if ISVGA
 /* Remember original read/write mode & select
 read mode 1/write mode 3, with Color Don't Care
 set to ignore all planes and therefore always return 0xFF */
 outp(GC_INDEX, GC_MODE_INDEX);
 OriginalGCMode = inp(GC_INDEX + 1);
 outp(GC_INDEX+1, OriginalGCMode | 0x0B);
 outpw(GC_INDEX, (0x00 << 8) | COLOR_DONT_CARE);
 outpw(GC_INDEX, (0xFF << 8) | BIT_MASK_INDEX);
#else
 outp(GC_INDEX, BIT_MASK_INDEX); /* leave the GC Index reg pointing
 to the Bit Mask reg */
#endif

 /* Draw the four symmetric arcs for which X advances faster (that is,
 for which X is the major axis) */
 /* Generate the draw list for 1 octant */
 Length = GenerateEOctant(PixList, (long) ASquared * 2 * B,
 (long) ASquared / 4 - ASquared * B, ASquared, BSquared);

 /* Now draw each of 4 symmetries of the octant in turn, the
 octants for which X is the major axis. Adjust every other arc
 so that there's no overlap. */
 DrawHOctant(X,Y-B,Length,SCREEN_WIDTH_IN_BYTES,0,PixList);
 DrawHOctant(X+1,Y-B+(*PixList),Length-1,SCREEN_WIDTH_IN_BYTES,1,
 PixList+1);
 DrawHOctant(X,Y+B,Length,-SCREEN_WIDTH_IN_BYTES,0,PixList);
 DrawHOctant(X+1,Y+B-(*PixList),Length-1,-SCREEN_WIDTH_IN_BYTES,1,
 PixList+1);

 /* Draw the four symmetric arcs for which Y advances faster (that is,
 for which Y is the major axis) */
 /* Generate the draw list for 1 octant */
 Length = GenerateEOctant(PixList, (long) BSquared * 2 * A,
 (long) BSquared / 4 - BSquared * A, BSquared, ASquared);

 /* Now draw each of 4 symmetries of the octant in turn, the
 octants for which X is the major axis. Adjust every other arc
 so that there's no overlap. */
 DrawVOctant(X-A,Y,Length,-SCREEN_WIDTH_IN_BYTES,1,PixList);
 DrawVOctant(X-A+(*PixList),Y+1,Length-1,SCREEN_WIDTH_IN_BYTES,1,
 PixList+1);
 DrawVOctant(X+A,Y,Length,-SCREEN_WIDTH_IN_BYTES,0,PixList);
 DrawVOctant(X+A-(*PixList),Y+1,Length-1,SCREEN_WIDTH_IN_BYTES,0,
 PixList+1);

#if ISVGA
 /* Restore original write mode */
 outpw(GC_INDEX, (OriginalGCMode << 8) | GC_MODE_INDEX);
 /* Restore normal Color Don't Care setting */
 outpw(GC_INDEX, (0x0F << 8) | COLOR_DONT_CARE);
#else
 /* Reset the Bit Mask register to normal */
 outp(GC_INDEX + 1, 0xFF);
#endif

Chapter E82

 /* Turn off set/reset enable */
 outpw(GC_INDEX, (0x00 << 8) | SET_RESET_ENABLE_INDEX);
}

LISTING E.4 LE-4.ASM
; Contains 3 C-callable routines: GenerateEOctant, DrawVOctant, and
; DrawHOctant. See individual routines for comments. Link to
; Listing E.3.
;
; Works with TASM or MASM
;
ISVGA equ 0 ;set to 1 to use VGA write mode 3
 ; keep synchronized with Listing 3
 .model small
 .code
;**
; Generates an octant of the specified ellipse, placing the results in
; PixList, with a 0 in PixList meaning draw pixel & move only along
; major axis, and a 1 in PixList meaning draw pixel & move along both
; axes.
; C near-callable as:
; int GenerateEOctant(unsigned char *PixList, long MinorAdjust,
; long Threshold, long MajorSquared, long MinorSquared);
;
; Return value = PixelCount (# of points)
;
; Passed parameters:
;
GenerateOctantParms struc
 dw ? ;pushed BP
 dw ? ;return address pushed by call
PixList dw ? ;pointer to list to store draw control data in
MinorAdjust dd ? ;initially MajorAxis**2 * 2 * MinorAxis, used
 ; to adjust threshold after minor axis move
Threshold dd ? ;initially MajorAxis**2 / 4 + MajorAxis**2 *
 ; MinorAxis, used to determine when to advance
 ; along the minor axis
MajorSquared dd ? ;MajorAxis**2
MinorSquared dd ? ;MinorAxis**2
GenerateOctantParms ends
;
; Local variables (offsets relative to BP in stack frame):
;
PixelCount equ -2 ;running major axis coordinate
 ; relative to center
MajorAdjust equ -6 ;used to adjust threshold after major
 ; axis move
MajorSquaredTimes2 equ -10 ;MajorSquared * 2
MinorSquaredTimes2 equ -14 ;MinorSquared * 2
;
 public _GenerateEOctant
_GenerateEOctant proc near
 push bp ;preserve caller's stack frame
 mov bp,sp ;point to our stack frame
 add sp,MinorSquaredTimes2
 ;allocate room for local vars
 push si ;preserve C register variables
 push di
;Initialize local variables.
 mov word ptr [bp+PixelCount],0 ;initialize count of pixels
 ; to zero

Ellipses That Rip 83

 mov ax,word ptr [bp+MajorSquared] ;set MajorSquaredTimes2
 shl ax,1 ;lower word times 2
 mov word ptr [bp+MajorSquaredTimes2],ax
 mov ax,word ptr [bp+MajorSquared+2]
 rcl ax,1 ;upper word times 2
 mov word ptr [bp+MajorSquaredTimes2+2],ax

 mov ax,word ptr [bp+MinorSquared] ;set MinorSquaredTimes2
 shl ax,1 ;lower word times 2
 mov word ptr [bp+MinorSquaredTimes2],ax
 mov ax,word ptr [bp+MinorSquared+2]
 rcl ax,1 ;upper word times 2
 mov word ptr [bp+MinorSquaredTimes2+2],ax
;Set up registers for loop.
 mov di,[PixList+bp] ;point DI to PixList
; Set MajorAdjust to 0.
 sub cx,cx
 mov si,cx ;SI:CX = MajorAdjust

 mov bx,word ptr [bp+Threshold] ;DX:BX = threshold
 mov dx,word ptr [bp+Threshold+2]
; At this point:
; DX:BX = threshold
; SI:CX = MajorAdjust
; DI = PixList pointer
GenLoop:
; Advance the threshold by MajorAdjust + MinorAxis**2.
 add bx,cx
 adc dx,si
 add bx,word ptr [bp+MinorSquared]
 adc dx,word ptr [bp+MinorSquared+2]
; If the threshold has passed 0, then the minor coordinate has
; advanced more than halfway to the next pixel and it's time to
; advance the minor coordinate by 1 and set the next threshold
; accordingly.
 mov byte ptr [di],0 ;assume we won't move along the
 ; minor axis
 js MoveMajor ;and, in fact, we won't move minor
; Minor coordinate has advanced.
; Adjust the minor axis adjust value.
 mov ax,word ptr [bp+MajorSquaredTimes2]
 sub word ptr [bp+MinorAdjust],ax
 mov ax,word ptr [bp+MajorSquaredTimes2+2]
 sbb word ptr [bp+MinorAdjust+2],ax
; Adjust the threshold for the minor axis move
 sub bx,word ptr [bp+MinorAdjust]
 sbb dx,word ptr [bp+MinorAdjust+2]
 mov byte ptr [di],1
MoveMajor:
 inc di
; Count this point.
 inc word ptr [bp+PixelCount]
; Adjust the major adjust for the new point.
 add cx,word ptr [bp+MinorSquaredTimes2]
 adc si,word ptr [bp+MinorSquaredTimes2+2]
; Stop if the major axis has switched (the arc has passed the
; 45-degree point).
 cmp si,word ptr [bp+MinorAdjust+2]
 ja Done
 jb GenLoop

Chapter E84

 cmp cx,word ptr [bp+MinorAdjust]
 jb GenLoop
Done:
 mov ax,[bp+PixelCount] ;return # of points
 pop di ;restore C register variables
 pop si
 mov sp,bp ;deallocate local vars
 pop bp ;restore caller's stack frame
 ret
_GenerateEOctant endp
;**
; Draws the arc for an octant in which Y is the major axis. (X,Y) is the
; starting point of the arc. HorizontalMoveDirection selects whether the
; arc advances to the left or right horizontally (0=left, 1=right).
; RowOffset contains the offset in bytes from one scan line to the next,
; controlling whether the arc is drawn up or down. DrawLength is the
; vertical length in pixels of the arc, and DrawList is a list
; containing 0 for each point if the next point is vertically aligned,
; and 1 if the next point is 1 pixel diagonally to the left or right.
;
; The Graphics Controller Index register must already point to the Bit
; Mask register.
;
; C near-callable as:
; void DrawVOctant(int X, int Y, int DrawLength, int RowOffset,
; int HorizontalMoveDirection, unsigned char *DrawList);
;
DrawParms struc
 dw ? ;pushed BP
 dw ? ;return address
X dw ? ;initial coordinates
Y dw ?
DrawLength dw ? ;vertical length
RowOffset dw ? ;distance from one scan line to the next
HorizontalMoveDirection dw ? ;1 to move right, 0 to move left
DrawList dw ? ;pointer to list containing 1 to draw
DrawParms ends ; diagonally, 0 to draw vertically for
 ; each point
SCREEN_SEGMENT equ 0a000h ;display memory segment in mode 12h
SCREEN_WIDTH_IN_BYTES equ 80 ;distance from one scan line to next
GC_INDEX equ 3ceh ;GC Index register address
;
 public _DrawVOctant
_DrawVOctant proc near
 push bp ;preserve caller's stack frame
 mov bp,sp ;point to our stack frame
 push si ;preserve C register variables
 push di
;Point ES:DI to the byte the initial pixel is in.
 mov ax,SCREEN_SEGMENT
 mov es,ax
 mov ax,SCREEN_WIDTH_IN_BYTES
 mul [bp+Y] ;Y*SCREEN_WIDTH_IN_BYTES
 mov di,[bp+X] ;X
 mov cx,di ;set X aside in CX
 shr di,1
 shr di,1
 shr di,1 ;X/8
 add di,ax ;screen offset = Y*SCREEN_WIDTH_IN_BYTES+X/8
 and cl,07h ;X modulo 8

Ellipses That Rip 85

if ISVGA ;--VGA--
 mov ah,80h ;keep VGA bit mask in AH
 shr ah,cl ;initial bit mask = 80h shr (X modulo 8);
 cld ;for LODSB, used below
else ;--EGA--
 mov al,80h ;keep EGA bit mask in AL
 shr al,cl ;initial bit mask = 80h shr (X modulo 8);
 mov dx,GC_INDEX+1 ;point DX to GC Data reg/bit mask
endif ;--------
 mov si,[bp+DrawList] ;SI points to list to draw from
 sub bx,bx ;so we have the constant 0 in a reg
 mov cx,[bp+DrawLength] ;CX=# of pixels to draw
 jcxz VDrawDone ;skip this if no pixels to draw
 cmp [bp+HorizontalMoveDirection],0 ;draw right or left
 mov bp,[bp+RowOffset] ;BP=offset to next row
 jz VGoLeft ;draw from right to left
VDrawRightLoop: ;draw from left to right
if ISVGA ;--VGA--
 and es:[di],ah ;AH becomes bit mask in write mode 3,
 ; set/reset provides color
 lodsb ;get next draw control byte
 and al,al ;move right?
 jz VAdvanceOneLineRight ;no move right
 ror ah,1 ;move right
else ;--EGA--
 out dx,al ;set the desired bit mask
 and es:[di],al ;data doesn't matter (set/reset provides
 ; color); just force read then write
 cmp [si],bl ;check draw control byte; move right?
 jz VAdvanceOneLineRight ;no move right
 ror al,1 ;move right
endif ;--------
 adc di,bx ;move one byte to the right if mask wrapped
VAdvanceOneLineRight:
ife ISVGA ;--EGA--
 inc si ;advance draw control list pointer
endif ;--------
 add di,bp ;move to the next scan line up or down
 loop VDrawRightLoop ;do next pixel, if any
 jmp short VDrawDone ;done
VGoLeft: ;draw from right to left
VDrawLeftLoop:
if ISVGA ;--VGA--
 and es:[di],ah ;AH becomes bit mask in write mode 3
 lodsb ;get next draw control byte
 and al,al ;move left?
 jz VAdvanceOneLineLeft ;no move left
 rol ah,1 ;move left
else ;--EGA--
 out dx,al ;set the desired bit mask
 and es:[di],al ;data doesn't matter; force read/write
 cmp [si],bl ;check draw control byte; move left?
 jz VAdvanceOneLineLeft ;no move left
 rol al,1 ;move left
endif ;--------
 sbb di,bx ;move one byte to the left if mask wrapped
VAdvanceOneLineLeft:
ife ISVGA ;--EGA--
 inc si ;advance draw control list pointer
endif ;--------

Chapter E86

 add di,bp ;move to the next scan line up or down
 loop VDrawLeftLoop ;do next pixel, if any
VDrawDone:
 pop di ;restore C register variables
 pop si
 pop bp
 ret
_DrawVOctant endp
;**
; Draws the arc for an octant in which X is the major axis. (X,Y) is the
; starting point of the arc. HorizontalMoveDirection selects whether the
; arc advances to the left or right horizontally (0=left, 1=right).
; RowOffset contains the offset in bytes from one scan line to the next,
; controlling whether the arc is drawn up or down. DrawLength is the
; horizontal length in pixels of the arc, and DrawList is a list
; containing 0 for each point if the next point is horizontally aligned,
; and 1 if the next point is 1 pixel above or below diagonally.
;
; Graphics Controller Index register must already point to the Bit Mask
; register.
;
; C near-callable as:
; void DrawHOctant(int X, int Y, int DrawLength, int RowOffset,
; int HorizontalMoveDirection, unsigned char *DrawList)
;
; Uses same parameter structure as DrawVOctant().
;
 public _DrawHOctant
_DrawHOctant proc near
 push bp ;preserve caller's stack frame
 mov bp,sp ;point to our stack frame
 push si ;preserve C register variables
 push di
;Point ES:DI to the byte the initial pixel is in.
 mov ax,SCREEN_SEGMENT
 mov es,ax
 mov ax,SCREEN_WIDTH_IN_BYTES
 mul [bp+Y] ;Y*SCREEN_WIDTH_IN_BYTES
 mov di,[bp+X] ;X
 mov cx,di ;set X aside in CX
 shr di,1
 shr di,1
 shr di,1 ;X/8
 add di,ax ;screen offset = Y*SCREEN_WIDTH_IN_BYTES+X/8
 and cl,07h ;X modulo 8
 mov bh,80h
 shr bh,cl ;initial bit mask = 80h shr (X modulo 8);
if ISVGA ;--VGA--
 cld ;for LODSB, used below
else ;--EGA--
 mov dx,GC_INDEX+1 ;point DX to GC Data reg/bit mask
endif ;--------
 mov si,[bp+DrawList] ;SI points to list to draw from
 sub bl,bl ;so we have the constant 0 in a reg
 mov cx,[bp+DrawLength] ;CX=# of pixels to draw
 jcxz HDrawDone ;skip this if no pixels to draw
if ISVGA ;--VGA--
 sub ah,ah ;clear bit mask accumulator
else ;--EGA--
 sub al,al ;clear bit mask accumulator
endif ;--------

Ellipses That Rip 87

 cmp [bp+HorizontalMoveDirection],0 ;draw right or left
 mov bp,[bp+RowOffset] ;BP=offset to next row
 jz HGoLeft ;draw from right to left
HDrawRightLoop: ;draw from left to right
if ISVGA ;--VGA--
 or ah,bh ;put this pixel in bit mask accumulator
 lodsb ;get next draw control byte
 and al,al ;move up/down?
else ;--EGA--
 or al,bh ;put this pixel in bit mask accumulator
 cmp [si],bl ;check draw control byte; move up/down?
endif ;--------
 jz HAdvanceOneLineRight ;no move up/down
 ;move up/down; first draw accumulated pixels
if ISVGA ;--VGA--
 and es:[di],ah ;AH becomes bit mask in write mode 3
 sub ah,ah ;clear bit mask accumulator
else ;--EGA--
 out dx,al ;set the desired bit mask
 and es:[di],al ;data doesn't matter; force read/write
 sub al,al ;clear bit mask accumulator
endif ;--------
 add di,bp ;move to the next scan line up or down
HAdvanceOneLineRight:
ife ISVGA ;--EGA--
 inc si ;advance draw control list pointer
endif ;--------
 ror bh,1 ;move to right; shift mask
 jnc HDrawLoopRightBottom ;didn't wrap to the next byte
 ;move to next byte; 1st draw accumulated pixels
if ISVGA ;--VGA--
 and es:[di],ah ;AH becomes bit mask in write mode 3
 sub ah,ah ;clear bit mask accumulator
else
 out dx,al ;set the desired bit mask
 and es:[di],al ;data doesn't matter; force read/write
 sub al,al ;clear bit mask accumulator
endif ;--------
 inc di ;move 1 byte to the right
HDrawLoopRightBottom:
 loop HDrawRightLoop ;draw next pixel, if any
 jmp short HDrawDone ;done
HGoLeft: ;draw from right to left
HDrawLeftLoop:
if ISVGA ;--VGA--
 or ah,bh ;put this pixel in bit mask accumulator
 lodsb ;get next draw control byte
 and al,al ;move up/down?
else ;--EGA--
 or al,bh ;put this pixel in bit mask accumulator
 cmp [si],bl ;check draw control byte; move up/down?
endif ;--------
 jz HAdvanceOneLineLeft ;no move up/down
 ;move up/down; first draw accumulated pixels
if ISVGA ;--VGA--
 and es:[di],ah ;AH becomes bit mask in write mode 3
 sub ah,ah ;clear bit mask accumulator
else ;--EGA--
 out dx,al ;set the desired bit mask
 and es:[di],al ;data doesn't matter; force read/write

Chapter E88

 sub al,al ;clear bit mask accumulator
endif ;--------
 add di,bp ;move to the next scan line up or down
HAdvanceOneLineLeft:
ife ISVGA ;--EGA--
 inc si ;advance draw control list pointer
endif ;--------
 rol bh,1 ;move to left; shift mask
 jnc HDrawLoopLeftBottom ;didn't wrap to next byte
 ;move to next byte; 1st draw accumulated pixels
if ISVGA ;--VGA--
 and es:[di],ah ;AH becomes bit mask in write mode 3
 sub ah,ah ;clear bit mask accumulator
else ;--EGA--
 out dx,al ;set the desired bit mask
 and es:[di],al ;data doesn't matter; force read/write
 sub al,al ;clear bit mask accumulator
endif ;--------
 dec di ;move 1 byte to the left
HDrawLoopLeftBottom:
 loop HDrawLeftLoop ;draw next pixel, if any
HDrawDone:
 ;draw any remaining accumulated pixels
if ISVGA ;--VGA--
 and es:[di],ah ;AH becomes bit mask in write mode 3
else ;--EGA--
 out dx,al ;set the desired bit mask
 and es:[di],al ;data doesn't matter; force read/write
endif ;--------
 pop di ;restore C register variables
 pop si
 pop bp
 ret
_DrawHOctant endp
 end

Notes on the Ellipse-Drawing Implementations
This chapter is truly a synthesis of what has come before. We spent the previous
chapter developing the incremental ellipse-drawing approach, and the chapter be-
fore that developing the draw-list approach for circles. In fact, not only is there nothing
particularly new, but there’s a bit of optimization overkill in Listing E.4.

I must in all honesty point out that it’s scarcely worth bothering with converting
the draw list generation code to assembly language at all. First, drawing from the
draw list is likely to take much longer than generating the draw list, because four
octants are drawn for each draw list generated and because drawing is usually
slowed considerably by video wait states. That means that draw list generation
doesn’t represent a very large fraction of total execution time, and therefore isn’t a
particularly fruitful place to expend optimization effort.

Second, draw list generation involves many 32-bit variables, too many to be able to keep
them all in the registers; when that’s the case, particularly in fairly straightforward
add-subtract-compare code like that used in draw list generation, I’ve found that

Ellipses That Rip 89

there’s not likely to be much difference between good assembly code and the code pro-
duced by a good C compiler. Sure, the assembly-language code is better, but again the
difference isn’t likely to translate into a sizable improvement in overall performance.
When you optimize code, it’s important to understand where in your code the effort
will pay off best. In Listings E.3 and E.4, optimization effort is better spent in trying
to draw octants from draw lists faster than in trying to generate the draw lists them-
selves faster.

Why Optimizing Isn’t a Science
There is one slightly tricky element to Listing E.4. If you look closely, you’ll note that
each draw list element is always set to 0. Later, that same element may be set again,
this time to 1, meaning that a single element may be set twice, incurring an extra
instruction and an extra memory access. Is this wise?
In this case, it probably is, although the truth of the matter is far from clear; the
question illustrates the hazards of optimizing in today’s multi-platform (286, 386,
486, and Pentium, with a variety of memory architectures) world. Presetting each
element to 0 allows us to branch and be done with it if there is no minor move,
although it also requires us to perform a second set for each element for which there
is a minor move. The alternative would be something like this:

js NoMoveMinor
<advance minor coordinate>
mov byte ptr [di],1
jmp short MoveMajor

NoMoveMinor:
mov byte ptr [di],0

MoveMajor:
inc di

This code only sets each draw list element once, but also requires a branch in the
case where the minor coordinate advances. That means that the latter approach
saves one MOV BYTE PTR [DI],0 when the minor coordinate advances, but adds
one JMP SHORT MoveMajor at the same time—not a good trade on any 80x86
processor. Although in actual use, instruction fetching can alter those cycle counts
somewhat; any variation is usually to the relative detriment of JMP, which empties the
prefetch queue.
Well, then, why not load 1 or 0 into a register and then store the register, eliminating
a memory access? That code would look like this:

sub al,al ;assume there's no minor move
js NoMoveMinor
<advance minor coordinate>
inc ax ;upper byte doesn't matter, but word INC

; is more efficient than byte INC
NoMoveMinor:

stosb

Chapter E90

This last approach might be faster—or it might not. It all depends on the processor
and the memory architecture. On an 8088, there’s no question that the last approach
is faster; the 8088 instruction set favors both string instructions like STOSB and
keeping values in registers. On a 386, however, MOV [DI],0 takes just 2 cycles, and
INC DI takes another 2; STOSB takes 4, so there’s no advantage to STOSB there.
(On a 486 and Pentium, STOSB is almost always a loser to MOV/INC.) However,
the latter approach requires not only STOSB but also SUB AL,AL and possibly INC
AX, so it’s actually 2 cycles slower on a 386 in both cases.
At this point we get into issues such as whether the system has a cache, and if so
whether the code is in the cache and whether it’s a write-back or write-through cache,
and if not whether we’ve hit a ready-to-go interleaved memory bank or the current
column in static-column RAM. In short, there’s no clear answer as to which code is
fastest here unless you know not only your target processor but also your target
memory architecture. The only thing that’s constant across all 80x86-family proces-
sors is that branching is slow, so all of the alternative approaches we’ve discussed are
faster than the obvious approach that we first discussed, the approach of not
preloading or presetting at all and branching in both cases.
I’d like to be able to pull a clear, simple lesson out of all this, but the life of an
optimizing PC programmer is neither simple nor clear. If there’s a moral here, it
would be: aim down the middle. That is, try to write code that provides good perfor-
mance (by assembly language standards) on every common 80x86 processor, and
terrible performance on none. In this particular example, that translates into not
branching any more than you absolutely must.

