Circling in
for the Kill







Chapter

Optimizing Hardenburgh’s Circle Algorithm
with a Vengeance

Two years back, I set out to write the fastest possible line-drawing code for the PC. I
took Bresenham’s algorithm.apart piece by piece until I understood it completely,
then unleashed all the assembly-language skills I had on the task of implementing
that algorithm. When I was done, I had boosted performance by about two times
over a standard Bresenham’s assembly-language implementation, and I couldn’t for
the life of me imagine how the code could be improved one iota. In other words, I
was confidentthat I had written just about the fastest possible code.

That was an incorrect conclusion—to put it mildly.

Over the years, it seems as though every graphics programmer I know has decided to
clue me in on his or her favorite way to draw lines. I've heard about state-machine
line drawing, run-based line drawing, fixed-point line drawing, and even a technique
that lets the floating-point processor perform a single division while the line-drawing
routine sets up, then uses the bits of the floating-point remainder to control line
drawing. Wildly different as these approaches are, they have one thing in common—
they’re all faster than my original “optimized” code.

Which brings us to this chapter. In the previous chapter, we learned how to draw
circles, then we vastly improved performance by switching from floating-point code
to Hal Hardenbergh’s integer-only algorithm that requires multiplication and division

33



only during the initial setup. That was step 1 of graphics optimization: selection of
algorithm. Steps 2 (matching the algorithm to the hardware) and 3 (conversion of
critical code to assembly language) are coming up next. When we’re done, we’ll
have circle-drawing code that’s more than 20 times as fast as the original implemen-
tation. Our final circle-drawing code will be more than 3 times as fast as the faster
routine we developed last time, even though both routines use exactly the same algorithm.
Clearly, there is more to performance than selecting the right algorithm, although
that is an essential starting point.

Fast as our final implementation will be, however, I wouldn’t dream of calling it
optimized. As I said in the opening to this chapter, it’s presumptuous indeed to
think you’ve come up with the best possible graphics code, and circle drawing is no
exception. In fact, the code could easily be speeded up by using unrolled loops to
draw multiple pixels without looping, and could possibly be made faster yet with
fixed-point arithmetic or by encoding the pixel list in a more readily usable format.
There are also many small improvements—simplified calculations, eliminated re-
dundancies, and the like—to be made throughout the code, although optimizing
outside the inner loops tends to be a waste of time and effort.

My point is this: Don’t take the code in this chapter as gospel. It’s fast, but it could be
at least a little faster—and maybe a /ot faster. Understand what I've done, then try to
come up with a way to do it better; one of the great things about PC graphics pro-
gramming is that it’s almost always possible to do exactly that.

Slimming Down the Main Loop

In order to be able to focus on specific optimizations in this chapter, I'm going to
assume that you’re familiar with circle drawing in general. If not, I suggest you read
the previous chapter, which discussed the fundamentals of circle drawing and de-
scribed in detail Hal Hardenburgh’s integer-only algorithm that we’ll use here.

The question at hand is this: How can we speed up the circle-drawing code we saw at
the end of the previous chapter, which used integer-only calculations and required
no multiplication or division inside the main loop? If you refer back to that code,
you’ll see that while the main loop is quite compact, it calls a separate routine to
draw each pixel, and it’s there that we can save a whole slew of processor cycles.

The pixel-drawing routine in the previous chapter was short, but it performed two
time-consuming and avoidable tasks. First, it calculated each pixel’s display memory
offset from scratch, requiring both a multiply and the construction of a far pointer.
Similarly, it generated each pixel’s bit mask from scratch with a little arithmetic and
a shift. As it turns out, neither of those actions is actually necessary, because with the
circle-drawing approach we were using (and will continue to use) the offset and
mask for each pixel can be calculated incrementally from the offset and mask for the
previous pixel.

34 Chapter C



In other words, once we’ve drawn pixel n, we can generate the bit mask for pixel n+1
with at most a single-bit rotation. Likewise, we can calculate the offset for pixel n+1
with at most an increment or decrement followed by an addition. Those simpler
calculations can save many cycles relative to calculating each pixel from scratch. We
can also save some cycles by moving the code that draws each pixel into the drawing
loop and eliminating the call to and return from the drawing function.

Reflecting Octants

There’s another, less obvious optimization we can make. Consider this: The process
of calculating adjacent points along one-eighth of a circle is nothing more than a
matter of deciding whether to move along both axes after each pixel or only along
the major axis; making these moves and drawing the corresponding pixels illumi-
nates precisely those pixels closest to the desired arc. Given that, it should be clear
that it’s possible to calculate the set of moves from one pixel to the next and store
that setin an array, then play back the array with varying major and minor axis direc-
tions eight times in order to draw the circle. Put another way, we could calculate and
store the information needed to determine when to advance along the minor axis
just once for a given circle, then play back that information eight times to draw the
eight symmetric arcs that make up the circle, interpreting the information slightly
differently each time.

What does that buy us? It lets us separate the arc calculation code from the arc draw-
ing code so that each can be better optimized. Truth to tell, that’s not such a big deal
in C; we could just calculate each point and draw all eight symmetries on the spot, as
we did in the last chapter, although that would require maintaining eight display
memory pointers and eight masks. When we get to assembly language, however, sepa-
ration of calculation and drawing will stand us in good stead; by reducing complexity
it will allow us to keep all variables in registers for the duration of both the calcula-
tion and drawing loops—and that will translate directly into better performance.

I don’t know whether the separation of calculation from drawing has a similarly
large advantage in C, or indeed any advantage at all. However, given that the major
purpose of the C code in this chapter is to prototype and illuminate the assembler
code, I’'ll use the same approach of separating calculation and drawing in the C code
that I'll use later in the assembly code.

Faster Circles in C

Listing C.1 shows a C circle-drawing function that uses the separate calculation and
drawing approach, along with the incremental offset and mask calculation technique
described earlier. Arcs with horizontal major axes are handled separately from arcs
with vertical major axes because the process of advancing across a scan line of EGA/
VGA memory is fundamentally different from that of advancing from one scan line

Circling in for the Kill 35



Compiler/Processor

Microsoft C 5.0 Turbo C 2.0
Listing 286 386 286 386
B.1 468 sec 175 sec 339 sec 127 sec
(C/floating point)
B.3 44 sec 16 sec 47 sec 18 sec
(C/integer)
C.1 (C/incremental 31 sec 12 sec 32 sec 13 sec
pixel addressing)
C.3/4 (ISVGA=0) 14 sec 7 sec 14 sec 7 sec
(ASM)
C.3/4 (ISVGA=1) 13 sec 5.5 sec 13 sec 5.5 sec
(ASM/write mode 3)

Notes: The execution times shown are for the various circle-drawing implementations in this
chapter and the last when linked to Listing C.2. Maximum optimization (/Ox for Microsoft
C, -G -O -Z -r for Turbo C) was used to compile all C code. Times in the columns labelled
“286" were recorded on a Video Seven VRAM VGA running on a 10-MHz 1-wait-state AT
clone (a monochrome adapter was also installed, making the VGA an 8-bit device); times
in the columns labelled “386” were recorded on a built-in Paradise VGA in a 20-MHz,
32K-0-wait-state-cache Toshiba 5200 (a monochrome adapter was also installed). No
floating-point processor was installed in either computer. Results could vary considerably on
different hardware.

Table C.1 Hardenburg Circles versus Optimized Hardenburgh Circles

to the next. When compiled and linked to Listing C.2, which repeats the drawing of
a set of circles 20 times for timing purposes, Listing C.1 is about 40 percent faster
than Listing B.3 in the previous chapter, which was our speed champ until now, as
shown in Table C.1. That’s nowhere near the improvement that Listing B.3 pro-
duced over Listing B.1, but it’s certainly significant.

LISTING C.1 LC-1.C

/*

* Draws a circle of the specified radius and color, using a fast
* integer-only & square-root-free approach, and generating the
arc for one octant into a buffer, then drawing all 8 symmetries
from that buffer.

Compiles with either Borland or Microsoft.

Will work on VGA or EGA, but will draw what appears to be an
ellipse in non-square-pixel modes.

/

* % ok ok

#include <dos.h>

36 Chapter C



/* Handle differences between Borland and Micrsoft. Note that Borland accepts
outp as a synonym for outportb, but not outpw for outport */

ffifdef __TURBOC__

ffdefine outpw outport

fendif
ftdefine SCREEN_WIDTH_IN_BYTES 80 /* # of bytes across one scan

line in mode 12h */
ftdefine SCREEN_SEGMENT 0xA000 /* mode 12h display memory seg */
ftdefine GC_INDEX 0x3CE /* Graphics Controller port */
jfdefine SET_RESET_INDEX 0 /* Set/Reset reg index in GC */
J#fdefine SET_RESET_ENABLE_INDEX 1 /* Set/Reset Enable reg index in GC */
Jfdefine BIT_MASK_INDEX 8 /* Bit Mask reg index in GC */

unsigned char PixList[SCREEN_WIDTH IN BYTES*8/2];
/* maximum major axis length is
1/2 screen width, because we're
assuming no clipping is needed */

/* Draws the arc for an octant in which Y is the major axis. (X,Y) is the
starting point of the arc. HorizontalMoveDirection selects whether the
arc advances to the left or right horizontally (0=left, 1=right).
RowOffset contains the offset in bytes from one scan line to the next,
controlling whether the arc is drawn up or down. Length is the
vertical length in pixels of the arc, and DrawlList is a list
containing 0 for each point if the next point is vertically aligned,
and 1 if the next point is 1 pixel diagonally to the left or right. */

void DrawVOctant(int X, int Y, int Length, int RowOffset,
int HorizontalMoveDirection, unsigned char *DrawlList)
{

unsigned char far *ScreenPtr, BitMask;

/* Point to the byte the initial pixel is in */
f#ifdef __TURBOC__

ScreenPtr = MK_FP(SCREEN_SEGMENT,

(Y * SCREEN_WIDTH_IN BYTES) + (X / 8));

felse

FP_SEG(ScreenPtr) = SCREEN_SEGMENT;

FP_OFF(ScreenPtr) =(Y * SCREEN_WIDTH_IN BYTES) + (X / 8);
ffendif

/* Set the initial bit mask */

BitMask = 0x80 >> (X & 0x07);

/* Draw all points in DrawlList */
while ( Length-- ) {

/* Set the bit mask for the pixel */

outp(GC_INDEX + 1, BitMask);

/* Draw the pixel. ORed to force read/write to lToad latches.
Data written doesn't matter, because set/reset is enabled
for all planes. Note: don't OR with 0; MSC optimizes that
statement to no operation. */

*ScreenPtr |= OxFE;

/* Now advance to the next pixel based on DrawlList. */

if ( *DrawList++ ) {

/* Advance horizontally to produce a diagonal move. Rotate
the bit mask, advancing one byte horizontally if the bit
mask wraps. */

if ( HorizontalMoveDirection == 1 ) {

/* Move right */

Circling in for the Kill 37



if ( (BitMask >>=1) == 0 ) {
BitMask = 0x80; /* wrap the mask */
ScreenPtr++; /* advance 1 byte to the right */
}
} else {
/* Move left */
if ( (BitMask <<=1) == 0 ) {
BitMask = 0x01; /* wrap the mask */
ScreenPtr--; /* advance 1 byte to the left */

}
}

ScreenPtr += RowOffset; /* advance to the next scan line */

}

/* Draws the arc for an octant in which X is the major axis. (X,Y) is the
starting point of the arc. HorizontalMoveDirection selects whether the
arc advances to the left or right horizontally (0=left, 1=right).
RowOffset contains the offset in bytes from one scan line to the next,
controlling whether the arc is drawn up or down. Length is the
horizontal Tength in pixels of the arc, and DrawlList is a Tlist
containing 0 for each point if the next point is horizontally aligned,
and 1 if the next point is 1 pixel above or below diagonally. */

void DrawHOctant(int X, int Y, int Length, int RowOffset,
int HorizontalMoveDirection, unsigned char *DrawlList)
{
unsigned char far *ScreenPtr, BitMask;

/* Point to the byte the initial pixel is in */
J#ifdef __ TURBOC__

ScreenPtr = MK_FP(SCREEN_SEGMENT,

(Y * SCREEN_WIDTH_IN_BYTES) + (X / 8));

felse

FP_SEG(ScreenPtr) = SCREEN_SEGMENT;

FP_OFF(ScreenPtr) =(Y * SCREEN_WIDTH_ IN BYTES) + (X / 8);
fendif

/* Set the initial bit mask */

BitMask = 0x80 >> (X & 0x07);

/* Draw all points in DrawlList */
while ( Length-- ) {
/* Set the bit mask for the pixel */
outp(GC_INDEX + 1, BitMask);
/* Draw the pixel (see comments above for details) */
*ScreenPtr |= OxFE;
/* Now advance to the next pixel based on DrawlList */
if ( *DrawList++ ) {
/* Advance vertically to produce a diagonal move */
ScreenPtr += RowOffset; /* advance to the next scan Tine */
}
/* Advance horizontally. Rotate the bit mask, advancing one
byte horizontally if the bit mask wraps */
if ( HorizontalMoveDirection == 1 ) {
/* Move right */
if ( (BitMask >>=1) == 0 ) {
BitMask = 0x80; /* wrap the mask */
ScreenPtr++; /* advance 1 byte to the right */

38 Chapter C



} else {
/* Move left */
if ( (BitMask <<=1) == 0 ) {
BitMask = 0x01; /* wrap the mask */
ScreenPtr--; /* advance 1 byte to the left */

}

/* Draws a circle of radius Radius in color Color centered at
screen coordinate (X,Y) */

void DrawCircle(int X, int Y, int Radius, int Color) {
int MajorAxis, MinorAxis;
unsigned long RadiusSgMinusMajorAxisSq, MinorAxisSquaredThreshold;
unsigned char *PixListPtr;

/* Set drawing color via set/reset */
outpw(GC_INDEX, (OxOF << 8) | SET_RESET_ENABLE_INDEX);
/* enable set/reset for all planes */
outpw(GC_INDEX, (Color << 8) | SET_RESET_INDEX);
/* set set/reset (drawing) color */
outp(GC_INDEX, BIT_MASK_INDEX); /* leave the GC Index reg pointing
to the Bit Mask reg */

/* Set up to draw the circle by setting the initial point to one
end of the 1/8th of a circle arc we'll draw */
MajorAxis = 0;
MinorAxis = Radius;
/* Set initial Radius**2 - MajorAxis**2 (MajorAxis is initially 0) */
RadiusSqMinusMajorAxisSq = (unsigned long) Radius * Radius;
/* Set threshold for minor axis movement at (MinorAxis - 0.5)**2 */
MinorAxisSquaredThreshold = (unsigned long) MinorAxis * MinorAxis -
MinorAxis;

/* Calculate all points along an arc of 1/8th of the circle and
store that info in PixList for later drawing */

PixListPtr = PixList;

do {

/* Advance (Radius**2 - MajorAxis**2); if it equals or passes
the MinorAxis**2 threshold, advance one pixel along both the
major and minor axes and set the next MinorAxis**2 threshold;
otherwise, advance one pixel only along the major axis. */

RadiusSqMinusMajorAxisSq -=
MajorAxis + MajorAxis + 1;

if ( RadiusSgMinusMajorAxisSq <= MinorAxisSquaredThreshold ) {
/* Advance 1 pixel along both the major and minor axes */

MinorAxis--;
MinorAxisSquaredThreshold -= MinorAxis + MinorAxis;
*PixListPtr++ = 1; /* advance along both axes */
} else {
*PixListPtr++ = 0; /* advance only along the major axis */

}
MajorAxis++; /* always advance one pixel along the major axis */
} while ( MajorAxis <= MinorAxis );

/* Now draw each of the 8 symmetries of the octant in turn */

/* Draw the octants for which Y is the major axis */
DrawVOctant(X-Radius,Y,MajorAxis,-SCREEN_WIDTH_IN_BYTES,1,PixList);

Circling in for the Kill 39



DrawVOctant(X-Radius,Y,MajorAxis,SCREEN_WIDTH_IN_BYTES,1,PixList);
DrawVOctant(X+Radius,Y,MajorAxis,-SCREEN_WIDTH_IN_BYTES,0,PixList);
DrawVOctant(X+Radius,Y,MajorAxis,SCREEN_WIDTH_IN_BYTES,0,PixList);

/* Draw the octants for which X is the major axis */
DrawHOctant(X,Y-Radius,MajorAxis,SCREEN_WIDTH IN BYTES,0,PixList);
DrawHOctant(X,Y-Radius,MajorAxis,SCREEN_WIDTH IN BYTES,1,PixList);
DrawHOctant (X,Y+Radius,MajorAxis,-SCREEN_WIDTH IN BYTES,0,PixList);
DrawHOctant (X,Y+Radius,MajorAxis,-SCREEN_WIDTH IN BYTES,1,PixList);

/* Reset the Bit Mask register to normal */

outp(GC_INDEX + 1, OxFF);

/* Turn off set/reset enable */

outpw(GC_INDEX, (0x00 << 8) | SET_RESET_ENABLE_INDEX);
}

It’s worth noting that Listings C.1 and B.3 both use the same integer-only algorithm
presented in the previous chapter. The performance difference between the two
listings comes from understanding the code the compiler generates for each and
the performance implications of that code. In particular, Listing C.1 virtually elimi-
nates multiplication, multi-bit shifts, and call and return instructions, all of which
are relatively slow on x86 processors.

LISTING C.2 LC-2.C

Draws a series of concentric circles.

For VGA only, because mode 12h is unique to VGA.

Compile and Tink using Borland C++ with accompanying listings as follows:
bcc -ms 1C-1 1C-2 (or)
bcc -ms 1C-3 1C-2 1C-4.asm

f#include <dos.h>

main() {
int Radius, Temp, Color, i;
union REGS Regs;

/* Select VGA's hi-res 640x480 graphics mode, mode 12h. */
Regs.x.ax = 0x0012;
int86(0x10, &Regs, &Regs);

/* Draw 20 sets of concentric circles for timing purposes. */
for (i = 0; 1 < 20; i++) {
for ( Radius = 10, Color = 7; Radius < 240; Radius += 2 ) {
DrawCircle(640/2, 480/2, Radius, Color)
Color = (Color + 1) & OxOF; /* cycle through 16 colors */

}
/* Wait for a key, restore text mode, and done. */
scanf("%c", &Temp);

Regs.x.ax = 0x0003;
int86(0x10, &Regs, &Regs);

40 Chapter C



Notes on the C Implementation

Listing C.1, like Listing B.3, uses long integers because the squared values used can
grow too large for short integers. The performance cost of long integers can be avoided
by special-casing circles with radii less than 256. In order for circles with radii less
than 256 to work with short integers, however, short unsigned integers must be used,
or comparisons may not work correctly when squared quantities exceed 32,767.

Listing C.1 (and, indeed, all the listings in this chapter and the previous one) as-
sumes that no clipping is needed. If that’s not the case, the approach of generating
a pixel list and then drawing the eight symmetries from the list would lend itself well
to clipping, because the drawing routine could use the list to skip quickly over any
initial portion of an octant that’s outside a clip region, and could terminate process-
ing immediately when the far edge of the clip region is reached. At the very least,
clipping from a pixel list is surely more manageable than attempting to draw and
clip all eight symmetries simultaneously, and is undoubtedly more efficient than cal-
culating and drawing the clipped arcs for each of the eight octants separately.

Circles to the Metal: Assembly Language

I believe that the critical code for graphics primitives should be written in assembly
language, and circle drawing is no exception. Listings C.3 and C.4 show a C/assem-
bly language hybrid circle-drawing routine that is a good deal faster yet than Listing
C.1; as Table C.1 shows, the code in Listings C.3 and C.4 is about twice as fast as
Listing C.1.

LISTING C.3 LC-3.C
/*
* Draws a circle of the specified radius and color, using a fast
* integer-only & square-root-free approach, and generating the
* arc for one octant into a buffer, then drawing all 8 symmetries
* from that buffer. Uses assembly language for inner loops of octant
* generation & drawing.
* Compiles with either Borland or Microsoft.
* Will work on VGA or EGA, but will draw what appears to be an
* ellipse in non-square-pixel modes.
*/
ffdefine ISVGA 0 /* set to 1 to use VGA write mode 3*/
/* keep synchronized with Listing 4 */
#include <dos.h>

/* Handle differences between Borland and Microsoft. Note that Borland accepts
outp as a synonym for outportb, but not outpw for outport. */

f#ifdef __TURBOC__

f#fdefine outpw outport

ffendif

ftdefine SCREEN_WIDTH_IN_BYTES 80 /* # of bytes across one scan
line in mode 12h */

Jfdefine SCREEN_SEGMENT 0xA000 /* mode 12h display memory seg */

ffdefine GC_INDEX 0x3CE /* Graphics Controller port */

Circling in for the Kill 41



ftdefine SET_RESET_INDEX
ftdefine SET_RESET_ENABLE_INDEX
ftdefine GC_MODE_INDEX

ftdefine COLOR_DONT_CARE
ftdefine BIT_MASK_INDEX

/* Set/Reset reg index in GC */

/* Set/Reset Enable reg index in GC */
/* Graphics Mode reg index in GC */

/* Color Don't Care reg index in GC */
/* Bit Mask reg index in GC */

0 N O = O

unsigned char PixList[SCREEN_WIDTH IN BYTES*8/2];
/* maximum major axis length is
1/2 screen width, because we're
assuming no clipping is needed */
/* Draws a circle of radius Radius in color Color centered at
* screen coordinate (X,Y) */
void DrawCircle(int X, int Y, int Radius, int Color) {
int MajorAxis, MinorAxis;
unsigned long RadiusSgMinusMajorAxisSq, MinorAxisSquaredThreshold;
unsigned char *PixListPtr, OriginalGCMode;

/* Set drawing color via set/reset */
outpw(GC_INDEX, (OxOF << 8) | SET_RESET_ENABLE_INDEX);
/* enable set/reset for all planes */
outpw(GC_INDEX, (Color << 8) | SET_RESET_INDEX);
/* set set/reset (drawing) color */
J#if ISVGA
/* Remember original read/write mode & select
read mode 1/write mode 3, with Color Don't Care
set to ignore all planes and therefore always return OxFF */
outp(GC_INDEX, GC_MODE_INDEX);
OriginalGCMode = inp(GC_INDEX + 1);
outp(GC_INDEX+1, OriginalGCMode | 0xO0B);
outpw(GC_INDEX, (0x00 << 8) | COLOR_DONT_CARE);
outpw(GC_INDEX, (OxFF << 8) | BIT_MASK_INDEX);
felse
outp(GC_INDEX, BIT _MASK INDEX); /* leave the GC Index reg pointing
to the Bit Mask reg */
ffendif

/* Set up to draw the circle by setting the initial point to one
end of the 1/8th of a circle arc we'll draw */
MajorAxis = 0;
MinorAxis = Radius;
/* Set initial Radius**2 - MajorAxis**2 (MajorAxis is initially 0) */
RadiusSqMinusMajorAxisSq = (unsigned long) Radius * Radius;
/* Set threshold for minor axis movement at (MinorAxis - 0.5)**2 */
MinorAxisSquaredThreshold = (unsigned long) MinorAxis * MinorAxis -
MinorAxis;

/* Calculate all points along an arc of 1/8th of the circle.
Results are placed in PixList */

MajorAxis = GenerateOctant(PixList, MajorAxis, MinorAxis,
RadiusSqMinusMajorAxisSq, MinorAxisSquaredThreshold);

/* Now draw each of the 8 symmetries of the octant in turn */

/* Draw the octants for which Y is the major axis */
DrawVOctant(X-Radius,Y,MajorAxis,-SCREEN_WIDTH_IN_BYTES,1,PixList);
DrawVOctant(X-Radius,Y,MajorAxis,SCREEN_WIDTH IN _BYTES,1,PixList);
DrawVOctant(X+Radius,Y,MajorAxis,-SCREEN_WIDTH_IN_BYTES,0,PixList);
DrawVOctant(X+Radius,Y,MajorAxis,SCREEN_WIDTH_ IN_BYTES,0,PixList);

/* Draw the octants for which X is the major axis */
DrawHOctant(X,Y-Radius,MajorAxis,SCREEN_WIDTH_ IN_BYTES,0,PixList);

42 Chapter C



DrawHOctant(X,Y-Radius,MajorAxis,SCREEN_WIDTH_IN_BYTES,1,PixList);
DrawHOctant(X,Y+Radius,MajorAxis,-SCREEN_WIDTH_IN_BYTES,0, PixList);
DrawHOctant(X,Y+Radius,MajorAxis,-SCREEN_WIDTH_IN_BYTES,1, PixList);

fHif ISVGA
/* Restore original write mode */
outpw(GC_INDEX, (OriginalGCMode << 8) | GC_MODE_INDEX);
/* Restore normal Color Don't Care setting */
outpw(GC_INDEX, (O0xOF << 8) | COLOR_DONT_CARE);
felse
/* Reset the Bit Mask register to normal */
outp(GC_INDEX + 1, OxFF);
fendif
/* Turn off set/reset enable */
outpw(GC_INDEX, (0x00 << 8) | SET_RESET_ENABLE_INDEX);
}

LISTING C.4 LC-4.ASM
; Contains 3 C-callable routines: GenerateOctant, DrawVOctant, and
; DrawHOctant. See individual routines for comments.

; Works with TASM or MASM

ISVGA  equ 0 ;set to 1 to use VGA write mode 3
; keep synchronized with Listing 3
.model small
.code

; Generates an octant of the specified circle, placing the results in
; PixList, with a 0 in PixList meaning draw pixel & move only along

; major axis, and a 1 in PixList meaning draw pixel & move along both
; axes.

; C near-callable as:

; int GenerateOctant(unsigned char *PixList, int MajorAxis,

; int MinorAxis, unsigned long RadiusSqMinusMajorAxisSq,

; unsigned long MinorAxisSquaredThreshold);

; Return value = MajorAxis

GenerateOctantParms struc

dw ? ;pushed BP

dw ? ;return address
PixList dw ? ;pointer to 1ist to store draw control data in
MajorAxis dw ? ;initial major/minor axis coords relative to

MinorAxis dw ? ; to the center of the circle
RadiusSqMinusMajorAxisSq dd ? ;initial Radius**2 - MajorAxis**2
MinorAxisSquaredThreshold dd ? ;initial threshhold for minor axis
GenerateOctantParms ends ; movement is MinorAxis**2 - MinorAxis

public _GenerateOctant

_GenerateOctant proc near
push bp ;preserve caller's stack frame
mov bp,sp ;point to our stack frame
push si ;preserve C register variables
push di
H ;get all parms into registers
mov di,[PixList+bp] ;point DI to PixList
mov ax,[MajorAxis+bp] ;AX=MajorAxis
mov bx,[MinorAxis+bp] ;BX=MinorAxis
mov cx,word ptr [RadiusSqgMinusMajorAxisSq+bp]

Circling in for the Kill 43



44

mov dx,word ptr [RadiusSgMinusMajorAxisSq+bp+2]
;DX:CX=RadiusSqMinusMajorAxisSq

mov si,word ptr [MinorAxisSquaredThreshold+bp]
mov bp,word ptr [MinorAxisSquaredThreshold+bp+2]
;BP:SI=MinorAxisSquaredThreshold
GenlLoop:
sub cx,1 ;subtract MajorAxis + MajorAxis + 1 from
sbb dx,0 ; RadiusSgMinusMajorAxisSq
sub CX,ax
sbb dx,0
sub CX,ax
sbb dx,0
cmp dx, bp ;if RadiusSgMinusMajorAxisSq <=
jb IsMinorMove ; MinorAxisSquaredThreshold, move along
ja NoMinorMove ; minor as well as major, otherwise move
cmp cX,si ; only along major
ja NoMinorMove
IsMinorMove: ;move along minor as well as major
dec bx ;decrement MinorAxis
sub si,bx ;subtract MinorAxis + MinorAxis from
sbb bp,0 ; MinorAxisSquaredThreshold
sub si,bx
sbb bp,0
mov byte ptr [di],1 ;enter 1 (move both axes) in PixList
inc di ;advance PixList pointer
inc ax ;increment MajorAxis
cmp ax,bx ;done if MajorAxis > MinorAxis, else
jbe GenLoop ; continue generating PixList entries
Jjmp short Done
NoMinorMove:
mov byte ptr [di],0 ;enter 0 (move only major) in PixList
inc di ;advance PixList pointer
inc ax ;increment MajorAxis
cmp ax,bx ;done if MajorAxis > MinorAxis, else
jbe GenLoop ; continue generating PixList entries
Done:
pop di ;restore C register variables
pop si
pop bp
ret

GenerateOctant endp

; Draws the arc for an octant in which Y is the major axis. (X,Y) is the
; starting point of the arc. HorizontalMoveDirection selects whether the
; arc advances to the left or right horizontally (0=left, l=right).

; RowOffset contains the offset in bytes from one scan line to the next,
; controlling whether the arc is drawn up or down. DrawlLength is the

; vertical length in pixels of the arc, and DrawlList is a list

; containing O for each point if the next point is vertically aligned,

; and 1 if the next point is 1 pixel diagonally to the left or right.

; The Graphics Controller Index register must already point to the Bit
; Mask register.

; C near-callable as:
;  void DrawVOctant(int X, int Y, int DrawlLength, int RowOffset,
; int HorizontalMoveDirection, unsigned char *DrawlList);

DrawParms struc
dw ? ;pushed BP
dw ? ;return address

Chapter C



X dw ?

Y dw ?

DrawLength dw ?

RowOffset dw ?
HorizontalMoveDirection dw ?
DrawList dw ?

DrawParms ends

SCREEN_SEGMENT equ 0a000h
SCREEN_WIDTH_IN_BYTES equ 80
GC_INDEX equ 3ceh

public _DrawVOctant

_DrawVOctant proc near
push bp
mov bp,sp
push si
push di

;Point ES:DI to the byte the initial

;initial coordinates

;vertical length

;distance from one scan line to the next
;1 to move right, 0 to move left
;pointer to list containing 1 to draw

; diagonally, 0 to draw vertically for

; each point

;display memory segment in mode 12h
;distance from one scan line to next

;GC Index register address

;preserve caller's stack frame
;point to our stack frame
;preserve C register variables

pixel is in.

mov ax,SCREEN_SEGMENT
mov es,ax
mov ax,SCREEN_WIDTH_IN_BYTES
mul [bp+Y] ;Y*SCREEN_WIDTH_IN_BYTES
mov di, [bp+X] ;X
mov cx,di ;set X aside in CX
shr di,1
shr di,1
shr di,1 ;X/8
add di,ax ;screen offset = Y*SCREEN_WIDTH_IN BYTES+X/8
and c1,07h ;X modulo 8
if ISVGA ;--VGA--
mov ah,80h ;keep VGA bit mask in AH
shr ah,cl ;initial bit mask = 80h shr (X modulo 8);
cld ;for LODSB, used below
else ;--EGA--
mov al,80h ;keep EGA bit mask in AL
shr al,cl ;initial bit mask = 80h shr (X modulo 8);
mov dx,GC_INDEX+1 ;point DX to GC Data reg/bit mask
endif R
mov si,[bptDrawlList] ;SI points to list to draw from
sub bx,bx ;$0 we have the constant 0 in a reg
mov cx,[bp+DrawLength] ;CX=# of pixels to draw
jexz VDrawDone ;skip this if no pixels to draw
cmp [bp+HorizontalMoveDirection],0 ;draw right or Teft
mov bp,[bptRowOffset] ;BP=offset to next row
jz VGolLeft ;draw from right to left
VDrawRightLoop: ;draw from left to right
if ISVGA ;--VGA--
and es:[di],ah ;AH becomes bit mask in write mode 3,
; set/reset provides color
Todsb ;get next draw control byte
and al,al ;move right?
jz VAdvanceOnelLineRight ;no move right
ror ah,1 ;move right
else ;--EGA--
out dx,al ;set the desired bit mask
and es:[dil,al ;data doesn't matter (set/reset provides
; color); just force read then write
cmp [sil,bl ;check draw control byte; move right?
jz VAdvanceOneLineRight ;no move right
ror al,1 ;move right
endif  y--------

Circling in for the Kill 45



46

adc di,bx ;move one byte to the right if mask wrapped
VAdvanceOnelLineRight:
ife ISVGA ;--EGA--
inc si ;advance draw control list pointer
endif i
add di,bp ;move to the next scan line up or down
Toop VDrawRightLoop ;do next pixel, if any
Jjmp short VDrawDone ;done
VGoLeft: ;draw from right to Teft
VDrawLeftLoop:
if ISVGA ;--VGA--
and es:[di],ah ;AH becomes bit mask in write mode 3
Todsb ;get next draw control byte
and al,al ;move left?
Jjz VAdvanceOnelLinelLeft ;no move Tleft
rol ah,1 ;move left
else ;- -EGA--
out dx,al ;set the desired bit mask
and es:[di],al ;data doesn't matter; force read/write
cmp [si],bl ;check draw control byte; move left?
jz VAdvanceOnelinelLeft ;no move left
rol al,1l ;move left
endif R
sbb di,bx ;move one byte to the left if mask wrapped
VAdvanceOnelinelLeft:
ife ISVGA ;- -EGA--
inc si ;advance draw control 1list pointer
endif R
add di,bp ;move to the next scan line up or down
Toop VDrawLeftLoop ;do next pixel, if any
VDrawDone:
pop di ;restore C register variables
pop si
pop bp
ret
endp

_DrawVOctant

; Draws the arc for an octant in which X is the major axis.

(X,Y) is the

; starting point of the arc. HorizontalMoveDirection selects whether the

; arc advances to the left or right horizontally (0=left,

1=right).

; RowOffset contains the offset in bytes from one scan line to the next,
; controlling whether the arc is drawn up or down. DrawlLength is the

; horizontal length in pixels of the arc,

and DrawlList is a Tist

; containing O for each point if the next point is horizontally aligned,

; and 1 if the next point is 1 pixel

above or below diagonally.

; Graphics Controller Index register must already point to the Bit Mask

; register.

; C near-callable as:

; void DrawHOctant(int X,
; int HorizontalMoveDirection,

; Uses same parameter structure

public _DrawHOctant

_DrawHOctant
push
mov
push
push

Chapter C

proc
bp
bp,sp
si
di

near

int Y,

int DrawlLength, int RowOffset,
unsigned char *DrawlList)

as DrawVOctant().

;preserve caller's stack frame
;point to our stack frame
;preserve C register variables



;Point ES:DI to the byte the initial pixel is in.

mov ax,SCREEN_SEGMENT
mov es,ax
mov ax,SCREEN_WIDTH_IN_BYTES
mul [bp+Y] ;Y*SCREEN_WIDTH_IN_BYTES
mov di,[bp+X] ;X
mov cx,di ;set X aside in CX
shr di,1
shr di,1
shr di,1 ;X/8
add di,ax ;screen offset = Y*SCREEN_WIDTH_IN BYTES+X/8
and c1,07h ;X modulo 8
mov bh,80h
shr bh,cl ;initial bit mask = 80h shr (X modulo 8);
if ISVGA ;--VGA--
cld ;for LODSB, used below
else ;- -EGA--
mov dx,GC_INDEX+1 ;point DX to GC Data reg/bit mask
endif HEE
mov si,[bp+tDrawlList] ;SI points to list to draw from
sub b1,b1 ;S0 we have the constant 0 in a reg
mov cx,[bp+DrawlLength] ;CX=# of pixels to draw
jexz HDrawDone ;skip this if no pixels to draw
if ISVGA ;--VGA--
sub ah,ah ;clear bit mask accumulator
else ;- -EGA--
sub al,al ;clear bit mask accumulator
endif R
cmp [bp+HorizontalMoveDirection],0 ;draw right or Teft
mov bp,[bptRowOffset] ;BP=offset to next row
jz HGolLeft ;draw from right to left
HDrawRightLoop: ;draw from left to right
if ISVGA ;--VGA--
or ah,bh ;put this pixel in bit mask accumulator
Todsb ;get next draw control byte
and al,al ;move up/down?
else ;- -EGA--
or al,bh ;put this pixel in bit mask accumulator
cmp [si],bl ;check draw control byte; move up/down?
endif R
jz HAdvanceOnelLineRight ;no move up/down
;move up/down; first draw accumulated pixels
if ISVGA ;--VGA--
and es:[di],ah ;AH becomes bit mask in write mode 3
sub ah,ah ;clear bit mask accumulator
else ;- -EGA--
out dx,al ;set the desired bit mask
and es:[di],al ;data doesn't matter; force read/write
sub al,al ;clear bit mask accumulator
endif R
add di,bp ;move to the next scan line up or down
HAdvanceOnelLineRight:
ife ISVGA ;- -EGA--
inc si ;advance draw control 1list pointer
endif i
ror bh,1 ;move to right; shift mask
jnc HDrawLoopRightBottom ;didn't wrap to the next byte
;move to next byte; 1st draw accumulated pixels
if ISVGA ;--VGA--
and es:[di],ah ;AH becomes bit mask in write mode 3
sub ah,ah ;clear bit mask accumulator

Circling in for the Kill 47



48

else

out dx,al ;set the desired bit mask
and es:[di],al ;data doesn't matter; force read/write
sub al,al ;clear bit mask accumulator
endif e
inc di ;move 1 byte to the right
HDrawLoopRightBottom:
Toop HDrawRightLoop ;draw next pixel, if any
Jjmp short HDrawDone ;done
HGoLeft: ;draw from right to left
HDrawLeftLoop:
if ISVGA ;--VGA--
or ah,bh ;put this pixel in bit mask accumulator
Todsb ;get next draw control byte
and al,al ;move up/down?
else ;- -EGA--
or al,bh ;put this pixel in bit mask accumulator
cmp [sil,bl ;check draw control byte; move up/down?
endif jommmm--
jz HAdvanceOnelLinelLeft ;no move up/down
;move up/down; first draw accumulated pixels
if ISVGA ;--VGA--
and es:[di],ah ;AH becomes bit mask in write mode 3
sub ah,ah ;clear bit mask accumulator
else ;- -EGA--
out dx,al ;set the desired bit mask
and es:[di],al ;data doesn't matter; force read/write
sub al,al ;clear bit mask accumulator
endif R
add di,bp ;move to the next scan line up or down
HAdvanceOnelLineLeft:
ife ISVGA ;- -EGA--
inc si ;advance draw control 1list pointer
endif R
rol bh,1 ;move to Teft; shift mask
jnc HDrawLooplLeftBottom ;didn't wrap to next byte
;move to next byte; 1st draw accumulated pixels
if ISVGA ;--VGA--
and es:[di],ah ;AH becomes bit mask in write mode 3
sub ah,ah ;clear bit mask accumulator
else ;- -EGA--
out dx,al ;set the desired bit mask
and es:[di],al ;data doesn't matter; force read/write
sub al,al ;clear bit mask accumulator
endif i
dec di ;move 1 byte to the left
HDrawLooplLeftBottom:
Toop HDrawLeftLoop ;draw next pixel, if any
HDrawDone:
;draw any remaining accumulated pixels
if ISVGA ;--VGA--
and es:[dil,ah ;AH becomes bit mask in write mode 3
else ;- -EGA--
out dx,al ;set the desired bit mask
and es:[dil,al ;data doesn't matter; force read/write
endif e
pop di ;restore C register variables
pop si
pop bp
ret
_DrawHOctant endp
end

Chapter C



Why didn’t I use pure assembly language? Primarily because it’s rarely worth using
assembly outside of heavily-used loops. The overall performance improvement re-
sulting from assembly language used anywhere else is generally imperceptible and
hard to justify; assembly is difficult to write and harder to read and change. Listings
C.3 and C.4 strike a good balance between performance, ease of coding and com-
prehension, and maintainability.

Listings C.3 and C.4 generally correspond directly to Listing C.1, although that may
be obscured by the considerable optimization performed in Listing C.4. Two aspects
of Listings C.3 and C.4 do not correspond to Listing C.1, however, and bear further
discussion.

When the major axis is horizontal, multiple horizontally adjacent pixels are often
drawn. Whenever multiple adjacent pixels are controlled by the same display memory
byte, it is possible to draw all the pixels that reside in that byte with a single display
memory read/write operation. This is highly desirable because display memory is
extremely slow relative to normal system memory, especially on 386 and later com-
puters. Consequently, Listing C.4 accumulates pixels that reside in the same byte
when drawing horizontal-major-axis arcs, and accesses display memory only when all
pixels that could possibly belong in a given byte have been processed. (See Chapter
35 for the application of this technique to straight-line drawing.) Pixel accumulation
is a good example of matching an algorithm to the hardware; the basic operation of
the algorithm is unchanged, but the code is fine-tuned so that the implementation
suffers less from the poor performance of display memory.

Supporting VGA Write Mode 3

Listings C.3 and C.4 contain another example of matching the circle-drawing algo-
rithm to the hardware: Optional support for write mode 3, which only the VGA
supports. When the ISVGA symbols in both Listing C.3 and Listing C.4 are set to 1
(make sure both symbols are the same at all times), write mode 3 is used to draw
pixels, improving overall performance by as much as 25 percent. ISVGA makes List-
ing C.4 in particular a little hard to follow—but I hope that you’ll agree that the
performance improvement and the exposure to a useful VGA-specific optimization
are worth the trouble.

The virtue of write mode 3 is that it ANDs the Bit Mask register with the byte written
by the CPU to form the working bit mask; that in turn means that there’s no need to
do an OUT when write mode 3 is used, thereby eliminating both an instruction and
the many wait states that occur during I/O to most VGAs. What’s more, by eliminat-
ing the need to perform OUTs we free up AL and DX for other purposes, in this case
making it possible to use LODSB. (Note, though, that LODSB is not as fast as

MOV AL,[SI]
INC SI

Circling in for the Kill 49



on 486 and Pentium computers.) See Chapter 26 for more information about write
mode 3.

In order for write mode 3 to work properly, the desired bit mask must be written to
memory. (The set/reset circuitry provides the pixel color.) First, however, display
memory must be read to latch the surrounding pixels, so that the bit mask can work
its magic. An efficient way to both read from and write to display memory is to do so
in a single instruction with AND, OR, or XCHG. (On 486s and Pentiums, using one
MOV to read display memory followed by another MOV to write to display memory
is a little faster than the single-instruction solutions, but it makes for more instruc-
tion bytes and destroys the contents of a register.) However, XCHG wipes out the
register containing the working copy of the bit mask, and AND with any value other
than OFFH or OR with any value other than 0 normally alters the value written to
memory so that it no longer sets the desired bit mask. (We just want to write the
desired bit mask straight from the register to display memory.) This is solved by
selecting read mode 1 (color compare mode) and setting the Color Don’t Care reg-
ister to 0, with the result that OFFH is always read from display memory. Once that is
done, we can AND the desired bit mask with display memory without altering either
the value written to memory or the register containing the working copy of the bit
mask. (See Chapter 28 for a discussion of this application of read mode 1.)

By the way, Listings C.3 and C.4 run just as well on VGAs as on EGAs if both ISVGA
symbols are set to zero—they just run more slowly than if compiled/assembled spe-
cifically for the VGA.

There’s no reason that the C code in Listing C.1 couldn’t be made faster by using
both the write mode 3/read mode 1 and pixel accumulation techniques we’ve ap-
plied in the assembler code. However, such approaches, which save an approximately
fixed number of cycles, have a greater percentage impact on overall performance
after all other aspects of the code have been streamlined, and so are most worth
using in high-performance assembler code.

When graphics code is truly streamlined across the board, as in Listing C.4, the char-
acteristics of the display adapter can affect performance significantly. For example,
the 286 timings in Table 1 were all performed in a 10-MHz AT with both a Video
Seven VRAM VGA and a monochrome adapter installed. It’s a little-known fact that
when a monochrome adapter is present, all VGAs must revert to being 8-bit memory
devices. When the monochrome adapter was removed from the test-unit AT, allow-
ing the VRAM VGA to become a 16-bit device, the time for the non-VGA specific
version of Listings C.3 and C.4 dropped from 14 seconds to 12.5 seconds—an im-
provement of more than 10 percent. This means that Listing C.4 has reached the
point where it is starting to bump up against the hardware’s inherent limits—a sure
sign of high-performance code, and an indication that perceptible performance varia-
tions from one make of VGA to the next are likely to occur.

50 Chapter C



Circles2 Done

In the last chapter and Chapter 37, we've seen performance improvements of as
much as 36 times from our initial circle-drawing implementation. Viewing this in
terms of the three optimization steps I described at the outset, that very roughly
breaks down as 5 to 10 times improvement from algorithm selection; 1.5 to 2.5 times
improvement from matching the algorithm to the hardware; and 1.5 to 2 times im-
provement from conversion to assembly.

The conclusions are two: 1) algorithm selection is indeed important, but processor-
and hardware-specific optimizations are important too, and 2) circles, not normally
considered to be one of the speedier graphics primitives, can be drawn surprisingly
rapidly, in the ballpark with if not quite so fast as lines.

Circles? Done. Now it’s on to ellipses.

Circling in for the Kill 51






