

Chapter

An Efficient Algorithm for Drawing Ellipses

First things first. The best circle-drawing routine I know of gets faster seemingly by
the day, so much so that I'm beginning to think that the ultimate circle-drawing
routine will consist of nothing more than a single NOP once we figure out how to
trim away all the superfluous‘instructions. Consider this:

Hal Hardenbergh'’s circle-drawing approach (presented in this space over the last
two chapters) drew circles faster than I would have thought was possible. Even so, in
the previous chapter I went to great pains to point out that I did not think that my
implementation of Hal’s approach was the fastest possible way to draw circles, but
rather just one good way among many. Good thing, too, because not long after I
wrote those words, I'chanced to talk once again with Hal. I mentioned that there was
really no need for even the few multiplications used in his algorithm; the squared
terms cancelled out right at the beginning, allowing circles to be drawn without a
single multiply or divide. Hal went home, thought about that for a while, and real-
ized that, given the elimination of the squared terms, we didn’t need 32-bit integers
any more; plain old 16-bit integers would do just fine. Whereupon he devised yet
another circle-drawing algorithm, this one using 16-bit integers and requiring less
than 10 instructions per point to generate a circle arc.

To put that in more readily understood terms, I suspect that Hal’s new algorithm can
be used to draw circles faster than the Bresenham’s line-drawing algorithm in Chap-
ter 35 draws lines!

55

I’'m not going to present Hal’s new circle-drawing algorithm here, for a couple of
reasons: I’ve probably overdosed you on circles by this point, and Hal may want to
publish his new findings himself. If you know what you’re doing, it should be easy
enough to apply the above information to my discussions in the last two chapters to
derive the new approach.

At any rate, the moral is clear. If you think your code is optimized to the limit, maybe
it is—but don’t bet your house on it.

And with thatin mind, let’s get on with learning how to draw ellipses pretty doggone fast.

A Quick Primer on Ellipses

An ellipse is an oval, which is to say a squished (or, possibly, non-squished) circle.
Ellipses are centered around two foci; the sum of the distances from the two foci to any
point on a given ellipse is a constant. A circle is actually a special case of ellipse for which
every point is equidistant from the center, where both foci reside atop one another.

A circle has a single radius that is the distance from the center to every point on the
circle. An ellipse has two basic radii, one that is the distance from the center of the
ellipse to the edge along the X axis, and one that is the distance along the Y axis, as
shown in Figure D.1. These two distances, which we’ll call the X radius (of length A)
and the Y radius (of length B), along with the center of the ellipse (the point at
which the X and Y radii meet) are the fundamental parameters with which we’ll
work; we won’t concern ourselves with the foci or distances from the foci from now
on. You might think of ellipses as being defined by the smallest rectangle that contains
them; however, for our purposes there’s an additional limitation that A and B must
be integers, so the encompassing rectangle must have even dimensions to allow the

/ Y Radius

\ \ (of length B)

(of length A) Center of ellipse

The geometry of an ellipse.
Figure D.1

56 Chapter D

center to fall squarely on a pixel. (It’s quite possible to support ellipses with
fractionally-located centers, butit’s generally not necessary and complicates matters,
so we’ll avoid it.)

Circles are certainly faster and easier to calculate than ellipses; whereas the equation
for a circle is

X2 + Y2 = R2
the equation for an ellipse is:
X2/A2 + Y2/B2 = 1

(Make A and B the same and you get a circle.) By the way, the equation above is for
non-tilted ellipses—that is, ellipses with horizontal and vertical axes, where the foci
share either a common X coordinate or a common Y coordinate—and that’s all we’ll
work with in this book. Tilted ellipses are both flexible and useful, but they’re also
slower, more complicated, and generally quite a different kettle of fish from non-
tilted ellipses.

Why Ellipses Matter

The question, as always, is how to get a PC to draw the object implied by the above
equation for a non-tilted ellipse as quickly as possible, and that’s what we’ll spend
this chapter and the next figuring out. It’s well worth knowing how to draw ellipses
quickly, for they’re extremely useful. Of course, it’s often necessary to draw ovals,
and ellipses are handy for that alone, but there’s more to it than that. You see, true
circles, of the sort we learned to draw in the previous two chapters, are useless on
displays with non-square pixels (that is, displays with aspect ratios other than 1:1).
On such displays, true circles, which space pixels evenly in both directions, appear as
ellipses. Examples of such displays are Hercules graphics, all CGA and EGA graphics
modes, and all standard VGA graphics modes except 640x480. In other words, you
can’t use a true circle-drawing algorithm to draw circles in any standard IBM mode
except one.

You can use ellipses to draw circles in all those modes, though; just adjust the ratio of
the X and Y radii of each ellipse to balance the aspect ratio of the display, and bingo;
you have a circle. For example, the aspect ratio of the mode 10H display is about 4:3
(4 pixels in the X direction covers the same physical distance on the screen as 3
pixels in the Y direction), so if you draw an ellipse with an eccentricity (A/B ratio) of
4/3, it will appear as a circle in mode 10H. We’ll see an example of this shortly. The
important point is that the capability to draw ellipses is not only useful for drawing
ovals but essential for drawing circles in many PC graphics modes.

Circles That Squish 57

Learning to Draw Ellipses Fast: Divide and Conquer

Now that we’ve established that ellipses are good stuff, how will we draw them fast?
The path we’ll take will be familiar to those of you who have followed the past two
chapters on circles. First, we’ll learn how to draw ellipses using the basic ellipse equa-
tion and floating-point arithmetic. Next, we’ll derive a far more efficient algorithm,
one which uses no non-integer arithmetic or square roots and requires no multiplies
or divides in the main loops, and implement it in C. That will take us to the end of
this chapter. In the next chapter, we’ll tune the C implementation to the quirks of
the EGA and VGA, and finally we’ll convert the critical code to assembly language.

So, let’s start learning how to draw ellipses. We’ll start by drawing them slowly, but
you can be sure that that will change.

Drawing an Ellipse the Easy—and Slow—Way

The straightforward way to draw an ellipse is implemented in Listing D.1. This listing
takes advantage of the four-way symmetry of non-tilted ellipses, shown in Figure D.2,
by generating one arc in which X is the major axis (that is, the X coordinate ad-
vances faster) and drawing all four symmetries at once via four calls to a dot-plot
function, then generating one arc in which Y is the major axis and drawing all four
symmetries the same way.

Arc generation is accomplished by starting at the point where the major axis is 0
relative to the center of the ellipse and the minor axis is the maximum distance from
the center, then stepping the major axis by 1 pixel each time and calculating the

X-major-axis symmetries
|
45 degree il ! 45 degree
lope N\ @ _--mTTTTTTT T TTTTeeal slope
slope \ - -~ / p
~ ~
' ~
// SN
O D \\\
/ \
1 L Y-major-axis symmefries — - -
!
\\ ,,
P a— L,
\\ //
S ,/
\\\ ‘/’
45 degree / "T‘ --------- T’ - \45 degree
slope : slope
X-major-axis symmetries

The symmetry of non-tilted ellipses.
Figure D.2

58 Chapter D

corresponding minor axis point via floating-point arithmetic according to the ellipse
equation I stated earlier. This continues until the arc reaches the point at which the
major axis changes, which is the point at which the slope of the arc reaches 45 degrees.

So, for example, when drawing an arc for which X is the major axis, the initial point
drawn would be (0,B). The next point drawn would be (1,y), where yis calculated as
follows:

X/A* + y?/B? =1

Y2/B? =1 - Xx?/A?
yZ = BZ - BZ*XZ/AZ

Therefore,
¥ = sqrt(B? - B¥*x2/A?)

is rounded to the nearest integer. The same calculation is repeated for each and
every x as x is incremented along the arc, with the calculated coordinates reflected
around the ellipse. (All x and y coordinates discussed are relative to the center of the
ellipse.) That’s easy enough, eh? The only trick is knowing when to stop, and that
happens when the y component of

X2/A* + y?/B% =1
is no longer the larger component, as detected by:
Y2/B? <= X?/A?

As you’d expect, the same thing is done for the arc where y advances faster, but with
xand y, A and B swapped in the calculations.

LISTING D.1 LD-1.C

/*

* Draws an ellipse of the specified X and Y axis radii and color,
* using floating-point calculations.

* Compiles with either Borland or Microsoft.

* VGA or EGA.

*/

f#include <math.h>
#include <dos.h>

/* Borland accepts outp for outportb, but not outpw for outport */
ffifdef __TURBOC__
ftdefine outpw outport

fendif
ftdefine SCREEN_WIDTH_IN_BYTES 80 /* # of bytes across one scan

lTine in modes 10h and 12h */
f#fdefine SCREEN_SEGMENT 0xA000 /* mode 10h/12h display memory seg */
ftdefine GC_INDEX 0x3CE /* Graphics Controller Index port */
jidefine SET_RESET_INDEX 0 /* Set/Reset reg index in GC */
J#fdefine SET_RESET_ENABLE_INDEX 1 /* Set/Reset Enable reg index in GC */
Jfdefine BIT_MASK_INDEX 8 /* Bit Mask reg index in GC */

Circles That Squish 59

/* Draws a pixel at screen coordinate (X,Y) */
void DrawDot(int X, int Y) {
unsigned char far *ScreenPtr;

/* Point to the byte the pixel is in */
fHifdef _ TURBOC__

ScreenPtr = MK_FP(SCREEN_SEGMENT, (Y*SCREEN_WIDTH_IN_BYTES) + (X/8));
felse

FP_SEG(ScreenPtr) = SCREEN_SEGMENT;

FP_OFF(ScreenPtr) (Y * SCREEN_WIDTH_IN_BYTES) + (X / 8);
fendif

/* Set the bit mask within the byte for the pixel */
outp(GC_INDEX + 1, 0x80 >> (X & 0x07));

/* Draw the pixel. ORed to force read/write to load latches.
Data written doesn't matter, because set/reset is enabled
for all planes. Note: don't OR with 0; MSC optimizes that
statement to no operation. */

*ScreenPtr |= OxFE;

}

/* Draws an ellipse of X axis radius A and Y axis radius B in
* color Color centered at screen coordinate (X,Y). Radii must
* both be non-zero. */

void DrawElTipse(int X, int Y, int A, int B, int Color) {

int WorkingX, WorkingY;

double ASquared = (double) A * A;
double BSquared = (double) B * B;
double Temp;

/* Set drawing color via set/reset */
outpw(GC_INDEX, (OxOF << 8) | SET_RESET_ENABLE_INDEX);
/* enable set/reset for all planes */
outpw(GC_INDEX, (Color << 8) | SET_RESET_INDEX);
/* set set/reset (drawing) color */
outp(GC_INDEX, BIT_MASK INDEX); /* leave the GC Index reg pointing
to the Bit Mask reg */

/* Draw the four symmetric arcs for which X advances faster (that is,
for which X is the major axis) */

/* Draw the initial top & bottom points */

DrawDot (X, Y+B);

DrawDot (X, Y-B);

/* Draw the four arcs */

for (WorkingX = 0; ;) {
/* Advance one pixel along the X axis */
WorkingX++;

/* Calculate the corresponding point along the Y axis. Guard
against floating-point roundoff making the intermediate term
less than 0 */

Temp = BSquared - (BSquared *

(double)WorkingX * (double)WorkingX / ASquared);
if (Temp >=0) {

WorkingY = sqrt(Temp) + 0.5;
} else {

WorkingY = 0;
}

60 Chapter D

/* Stop if X is no longer the major axis (the arc has passed the
45-degree point) */

if (((double)WorkingY/BSquared) <= ((double)WorkingX/ASquared))
break;

/* Draw the 4 symmetries of the current point */
DrawDot (X+WorkingX, Y-WorkingY);
DrawDot (X-WorkingX, Y-WorkingY);
DrawDot (X+WorkingX, Y+WorkingY);
DrawDot (X-WorkingX, Y+WorkingY);
}

/* Draw the four symmetric arcs for which Y advances faster (that is,
for which Y is the major axis) */

/* Draw the initial Teft & right points */

DrawDot (X+A, Y);

DrawDot(X-A, Y);

/* Draw the four arcs */

for (WorkingY = 0; ;) {
/* Advance one pixel along the Y axis */
WorkingY++;

/* Calculate the corresponding point along the X axis. Guard
against floating-point roundoff making the intermediate term
less than 0 */

Temp = ASquared - (ASquared *

(double)WorkingY * (double)WorkingY / BSquared);
if (Temp >= 0) {
WorkingX = sqrt(Temp) + 0.5;

} else {

WorkingX = 0; /* floating-point roundoff */

}

/* Stop if Y is no longer the major axis (the arc has passed the
45-degree point) */

if (((double)WorkingX/ASquared) < ((double)WorkingY/BSquared))
break;

/* Draw the 4 symmetries of the current point */
DrawDot (X+WorkingX, Y-WorkingY);
DrawDot (X-WorkingX, Y-WorkingY);
DrawDot (X+WorkingX, Y+WorkingY);
DrawDot(X-WorkingX, Y+WorkingY);

}

/* Reset the Bit Mask register to normal */
outp(GC_INDEX + 1, OxFF);

/* Turn off set/reset enable */
outpw(GC_INDEX, (0x00 << 8) | SET_RESET_ENABLE_INDEX);

LISTING D.2 LD-2.C

Draws a series of concentric ellipses that should appear to be
circles in the EGA's hi-res mode, mode 10h. (They may not appear
to be circles on monitors that don't display mode 10h with the
same aspect ratio as the Enhanced Color Display.)

For EGA or VGA.

Circles That Squish

61

* Compile and 1ink (using Borland C++) with 1D-X.c (where X is 1 or 4) with:
* bcc -ms -elLD-2X.EXE LD-2.C LD-X.C
*

*/
#include <dos.h>

main() {
int BaseRadius, Temp, Color;
union REGS Regs;

/* Select EGA's hi-res 640x350 graphics mode, mode 10h */
Regs.x.ax = 0x0010;
int86(0x10, &Regs, &Regs);

/* Draw concentric ellipses */

for (BaseRadius = 2, Color = 7; BaseRadius < 58; BaseRadius++) {
DrawE11ipse(640/2, 350/2, BaseRadius*4, BaseRadius*3, Color)
Color = (Color + 1) & OxOF; /* cycle through 16 colors */

}

/* Wait for a key, restore text mode, and done */
scanf("%c", &Temp);

Regs.x.ax = 0x0003;

int86(0x10, &Regs, &Regs);

LISTING D.3 LD-3.C

/*

* Draws nested ellipses of varying eccentricities in the VGA's

* hi-res mode, mode 12h.

* For VGA only.

* Compile and 1ink (using Borland C++) with 1D-X.c (where X is 1 or 4) with:
* bcc -ms -elLD-3X.EXE LD-3.C LD-X.C

*

*/
#include <dos.h>

main() {
int XRadius, YRadius, Temp, Color;
union REGS Regs;

/* Select VGA's hi-res 640x480 graphics mode, mode 12h */
Regs.x.ax = 0x0012;
int86(0x10, &Regs, &Regs);

/* Draw nested ellipses */
for (XRadius = 100, YRadius = 2, Color = 7; YRadius < 240;
XRadius++, YRadius += 2) {
DrawE11ipse(640/2, 480/2, XRadius, YRadius, Color)
Color = (Color + 1) & OxOF; /* cycle through 16 colors */
}

/* Wait for a key, restore text mode, and done */
scanf("%c", &Temp);

Regs.x.ax = 0x0003;

int86(0x10, &Regs, &Regs);

62 Chapter D

Link Listing D.1 to Listing D.2 to see ellipses drawn to appear as circles in mode
10H. Some multiscanning monitors don’t provide a 4:3 aspect ratio in mode 10H, so
the ellipses may not look all that circular. Trust me, they do have an eccentricity of
1.33. Link Listing D.1 to Listing D.3 to see ellipses drawn with a variety of eccentrici-
ties. When you run these listings, you will see that ellipses drawn by stepping the
major axis tend to look rather jagged; that’s the cost of performance, and the ap-
pearance of these ellipses is nonetheless perfectly acceptable. The alternative is
antialiased drawing, which can produce stunning results in 256-color and high-color
modes, but would be orders of magnitude slower than the step-based ellipse drawing
we’ll see shortly.

As you can see, drawing an ellipse is no great trick. However, drawing an ellipse with
reasonable performance requires a little more thought.

Ellipse Drawing: An Incremental Approach

Remember the incremental, integer-only algorithm we used to speed up circle draw-
ing two chapters back? I hope so, because fast ellipse drawing, as implemented in
Listing D.4, is strikingly similar, if slightly more complicated, and I’'m not going to
discuss the process in as much detail this time. Basically, instead of calculating the
minor axis coordinate from scratch for each pixel, the incremental approach calcu-
lates it as a delta from the last pixel.

LISTING D.4 LD-4.C

/*

* Draws an ellipse of the specified X and Y axis radii and color,
* using a fast integer-only & square-root-free approach.

* Compiles with either Borland or Microsoft.

* VGA or EGA.

*/

f#include <math.h>
#include <dos.h>

/* Borland accepts outp for outportb, but not outpw for outport */
ffifdef __TURBOC__
ftdefine outpw outport

fendif
ftdefine SCREEN_WIDTH_IN_BYTES 80 /* # of bytes across one scan

lTine in modes 10h and 12h */
f#fdefine SCREEN_SEGMENT 0xA000 /* mode 10h/12h display memory seg */
ftdefine GC_INDEX 0x3CE /* Graphics Controller Index port */
Jfdefine SET_RESET_INDEX 0 /* Set/Reset reg index in GC */
J#fdefine SET_RESET_ENABLE_INDEX 1 /* Set/Reset Enable reg index in GC */
Jfdefine BIT_MASK_INDEX 8 /* Bit Mask reg index in GC */

/* Draws a pixel at screen coordinate (X,Y) */
void DrawDot(int X, int Y) {
unsigned char far *ScreenPtr;

Circles That Squish 63

/* Point to the byte the pixel is in */
fHifdef _ TURBOC

ScreenPtr = MK_FP(SCREEN_SEGMENT, (Y*SCREEN_WIDTH_IN_BYTES) + (X/8));
felse

FP_SEG(ScreenPtr) = SCREEN_SEGMENT;

FP_OFF(ScreenPtr) (Y * SCREEN_WIDTH_IN_BYTES) + (X / 8);
fendif

/* Set the bit mask within the byte for the pixel */
outp(GC_INDEX + 1, 0x80 >> (X & 0x07));

/* Draw the pixel. ORed to force read/write to load latches.
Data written doesn't matter, because set/reset is enabled
for all planes. Note: don't OR with 0; MSC optimizes that
statement to no operation. */

*ScreenPtr |= OxFE;

}

/* Draws an ellipse of X axis radius A and Y axis radius B in
* color Color centered at screen coordinate (X,Y). Radii must
* both be non-zero. */

void DrawElTipse(int X, int Y, int A, int B, int Color) {

int WorkingX, WorkingY;

long Threshold;

long ASquared = (long) A * A;
long BSquared = (long) B * B;
Tong XAdjust, YAdjust;

/* Set drawing color via set/reset */
outpw(GC_INDEX, (OxOF << 8) | SET_RESET_ENABLE_INDEX);
/* enable set/reset for all planes */
outpw(GC_INDEX, (Color << 8) | SET_RESET_INDEX);
/* set set/reset (drawing) color */
outp(GC_INDEX, BIT_MASK INDEX); /* leave the GC Index reg pointing
to the Bit Mask reg */

/* Draw the four symmetric arcs for which X advances faster (that is,
for which X is the major axis) */

/* Draw the initial top & bottom points */

DrawDot (X, Y+B);

DrawDot (X, Y-B);

/* Draw the four arcs; set draw parameters for initial point (0,B) */
WorkingX = 0;
WorkingY = B;

XAdjust = 0;

YAdjust = ASquared * 2 * B;

Threshold = ASquared / 4 - ASquared * B;
for (;3) {

/* Advance the threshold to the value for the next X point
to be drawn */
Threshold += XAdjust + BSquared;

/* If the threshold has passed 0, then the Y coordinate has
advanced more than halfway to the next pixel and it's time
to advance the Y coordinate by 1 and set the next threhold
accordingly */

if (Threshold >= 0) {

YAdjust -= ASquared * 2;

64 Chapter D

Threshold -= YAdjust;
WorkingY--;
}

/* Advance the X coordinate by 1 */
XAdjust += BSquared * 2;
WorkingX++;

/* Stop if X is no longer the major axis (the arc has passed the
45-degree point) */

if (XAdjust >= YAdjust)
break;

/* Draw the 4 symmetries of the current point */
DrawDot (X+WorkingX, Y-WorkingY);
DrawDot (X-WorkingX, Y-WorkingY);
DrawDot (X+WorkingX, Y+WorkingY);
DrawDot (X-WorkingX, Y+WorkingY);
}

/* Draw the four symmetric arcs for which Y advances faster (that is,
for which Y is the major axis) */

/* Draw the initial Teft & right points */

DrawDot (X+A, Y);

DrawDot (X-A, Y);

/* Draw the four arcs; set draw parameters for initial point (A,0) */
WorkingX = A;
WorkingY = 0;
XAdjust = BSquared * 2 * A;
YAdjust = 0;
Threshold = BSquared / 4 - BSquared * A;
for (;3) {
/* Advance the threshold to the value for the next Y point
to be drawn */
Threshold += YAdjust + ASquared;

/* If the threshold has passed 0, then the X coordinate has
advanced more than halfway to the next pixel and it's time
to advance the X coordinate by 1 and set the next threhold
accordingly */

if (Threshold >= 0) {

XAdjust -= BSquared * 2;
Threshold = Threshold - XAdjust;
WorkingX--;

}

/* Advance the Y coordinate by 1 */
YAdjust += ASquared * 2;
WorkingY++;

/* Stop if Y is no longer the major axis (the arc has passed the
45-degree point) */

if (YAdjust > XAdjust)
break;

/* Draw the 4 symmetries of the current point */

DrawDot (X+WorkingX, Y-WorkingY);
DrawDot(X-WorkingX, Y-WorkingY);

Circles That Squish

65

DrawDot (X+WorkingX, Y+WorkingY);
DrawDot (X-WorkingX, Y+WorkingY);
}

/* Reset the Bit Mask register to normal */

outp(GC_INDEX + 1, OxFF);

/* Turn off set/reset enable */

outpw(GC_INDEX, (0x00 << 8) | SET_RESET_ENABLE_INDEX);
}

The tremendous advantage of the incremental approach is that all terms used can be
maintained as integers rather than floating-point values. Better yet, no multiplication or
division is required to advance from one point to the next (not counting multiplica-
tion by 2, which is really an add or shift). The incremental approach isn’t quite as fast for
ellipses as for circles, but it nonetheless makes ellipses nearly as fast as the circles
we’ve drawn in the last two chapters, and that’s remarkably fast.

That said, let’s take a quick trip through the math of the incremental ellipse-drawing
approach for those of you with a mind to do some tinkering on your own.

A Thumbnail Derivation of the Incremental Approach

As with the floating-point approach, the incremental approach draws ellipses by gen-
erating an arc for which X advances more rapidly and then drawing the four
symmetries, then doing the same for Y. Also like the floating-point approach, the
coordinate which advances more rapidly—the major axis for the arc being drawn—
is incremented by 1 each time, and the corresponding minor axis point is drawn.
The only difference between the two approaches lies in the way that the minor axis
coordinate is determined. Where the floating-point approach recalculates the mi-
nor axis coordinate, the incremental approach merely decides whether the minor
axis coordinate has changed from the previous point, and advances that coordinate
by 1 if that is the case.

The trick to the incremental approach, then, lies in deciding when it’s time to ad-
vance the minor axis coordinate. Here, in a nutshell, is how that works. The equation
for an ellipse is

X2/A2 + y2/B? = 1
which can be expressed as:
B2*x2 + Az*yz - A*B2 =

When drawing an arc for which x is the major axis, all we’ll do is evaluate the above
equation initially for x=0 and y= B - 0.5, which will give us a measure of how far off
x1s from the value at which ydoes equal B- 0.5 (B - 0.5 being the point at which y gets
closer to the next pixel and advances). Then, we’ll reevaluate the equation for x+1
each time xadvances one pixel. When the result becomes positive, we’ll have passed
the point at which y is closer to the next pixel, so we’ll decrement y and adjust the

66 Chapter D

equation for the new y value, then start looking in the same way for the next time y
advances. That’s really all there is to it.

So, when drawing an arc for which x advances faster, we’ll set the initial y to B - 0.5
and the initial x to 0, which, plugged into the equation, gives us

B#*02 + A (B-0.5)? - AZ%B2 = 0

which is to say (squaring B - 0.5)

0.25%A% - A™*B = 0

so the initial threshold is:

A2/4 - AP%B

This is easy enough to calculate with integer arithmetic. True, we’re ignoring a pos-
sible fractional term from A?/4, but that’s no problem; we’ll simply choose to advance

yif the threshold becomes exactly 0, thereby correctly handling the case where there’s
an implied fractional value.

Now that we have an initial threshold, we have to adjustit each time we advance xuntil it
becomes positive, indicating a change in y. That’s done by advancing the x-based
component of the threshold from

BZ*XZ

to

B2* (x+1)2

which can be expressed as
B2* (x2+2* x+1)

or:

B2*x2 + B2*2*x + B?

B**x* is already in the current threshold equation, so
Bo*2%x + B?

is added to the xbased term each time x advances, and that quantity can be main-
tained with integer arithmetic on an ongoing basis.

When the threshold is reached or exceeded, the y coordinate is decremented by 1,
and the threshold must be adjusted back down in preparation for the next advance.
This is done by adjusting the y component of the ellipse equation to

Be*(y-1)?

Circles That Squish 67

which is
B2k (y2-2% y+1)
or:

Bz*yz - BZ*Z*y + B2

Since B**y? is the value we’re adjusting from, the incremental portion of this equa-
tion is simply —-B*2%*y + B? and, like the x component above, that value is easily
maintained with integer arithmetic as y advances. (Note, however, that the y in the
above equation has a fractional component of 0.5 that ends up cancelling the B?
added at the end of the equation. See Chapter B for a more detailed discussion of
this phenomenon in the context of circles.)

Drawing stops when the 45 degree pointis reached. That condition is detected when
the minor axis adjustment equals or exceeds the major axis adjustment, thereby
becoming the dominant component in calculating the threshold and causing the
arc to advance more rapidly along the minor axis.

I’'ve gone fast here, because we covered this approach in detail when we discussed
circles, but everything you really need to know to understand how the incremental
approach works for ellipses is laid out above. If you had trouble following along, you
might refer back to the lengthier explanation of the incremental approach for circles
in Chapter B.

Or you might not. After all, what you really need to know is how to draw ellipses fast,
and Listing D.4 does that, with far better results yet to come in the next chapter.

Notes and Caveats on the Code

Unlike our circle-drawing code, the ellipse-drawing code in Listing D.4 won’t
handle radii as large as 32K; the limit varies depending on the radii combination,
but is never less than 1K. Given that 800 is the largest usable non-clipped radius on
the highest-resolution SuperVGA available, a limit of 1K shouldn’t pose any prob-
lem. If a greater range is needed, integers larger than 32 bits could be used, although
that’s more easily done in assembly language than in C. Along the same lines, calcu-
lations for smaller ellipses could potentially be performed using smaller integers. In
general, no particular attempt was made to optimize the code presented in this chap-
ter. In the next chapter we’ll worry about fine-tuning, which is pointless without the
foundation of a good algorithm such as the one we’ve developed here.

The incremental approach used in Listing D.4 is not Hal Hardenbergh’s ellipse-
drawing approach. Hal has come up with a fixed-point technique that is slightly less
precise due to fractional roundoff but looks to be faster than the approach I've pre-
sented. I derived the approach I've presented from the circle-drawing approach we’ve
already covered, because I prefer exact plotting when I can get it at little cost and

68 Chapter D

because I thought it would be easier for readers to understand an extension of what
we’ve already covered than something new.

Notwithstanding that this is not Hal’s approach, he patiently let me bounce it off
him and kept me from getting wildly off track, for which I am most grateful.

How Fast Is |2

The big question, of course, is: How much faster is the incremental approach? Plenty.
Listing D.2 runs about 20 times faster when linked to the version of DrawEllipse in
Listing D.4 than to the version in Listing D.1, and Listing D.3 produces similar re-
sults. A numeric coprocessor would help Listing D.1, but not tAat much; anyway, you
can’t count on every system having a coprocessor. And we’ve only begun to kick
ellipse drawing into high gear. In the next chapter we’ll tackle the two remaining
legs of the optimization sequence by tailoring the code to the EGA/VGA and con-
verting to assembler. Based on our experience with circle drawing, I'd expect a
performance improvement of an additional two to three times, with the tally for our
final code running at around 40 to 60 times faster than Listing D.1.

Circles That Squish 69

