
iostream.info

iostream.info ii

COLLABORATORS

TITLE :

iostream.info

ACTION NAME DATE SIGNATURE

WRITTEN BY January 9, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

iostream.info iii

Contents

1 iostream.info 1

1.1 iostream.info . 1

1.2 iostream.info/Introduction . 1

1.3 iostream.info/Copying . 2

1.4 iostream.info/Acknowledgements . 2

1.5 iostream.info/Operators . 3

1.6 iostream.info/Streams . 4

1.7 iostream.info/Ios . 5

1.8 iostream.info/States . 6

1.9 iostream.info/Format Control . 7

1.10 iostream.info/Manipulators . 10

1.11 iostream.info/Extending . 11

1.12 iostream.info/Synchronization . 12

1.13 iostream.info/Streambuf from Ios . 12

1.14 iostream.info/Ostream . 12

1.15 iostream.info/Writing . 13

1.16 iostream.info/Output Position . 14

1.17 iostream.info/Ostream Housekeeping . 14

1.18 iostream.info/Istream . 15

1.19 iostream.info/Char Input . 16

1.20 iostream.info/String Input . 16

1.21 iostream.info/Input Position . 18

1.22 iostream.info/Istream Housekeeping . 18

1.23 iostream.info/Iostream . 19

1.24 iostream.info/Files and Strings . 20

1.25 iostream.info/Files . 21

1.26 iostream.info/Strings . 23

1.27 iostream.info/Streambuf . 24

1.28 iostream.info/Areas . 24

1.29 iostream.info/Formatting . 25

iostream.info iv

1.30 iostream.info/Stdiobuf . 25

1.31 iostream.info/Backing Up . 26

1.32 iostream.info/Indirectbuf . 27

1.33 iostream.info/Stdio . 27

1.34 iostream.info/Index . 28

iostream.info 1 / 37

Chapter 1

iostream.info

1.1 iostream.info

The GNU C++ Iostream Library

This file provides reference information on the GNU C++ iostream
library (libio), version 0.50.

Introduction

Operators
Operators and default streams.

Streams
Stream classes.

Files and Strings
Classes for files and strings.

Streambuf
Using the streambuf layer.

Stdio
C input and output.

Index

1.2 iostream.info/Introduction

Introduction

The iostream classes implement most of the features of AT&T version
2.0 iostream library classes, and most of the features of the ANSI X3J16

iostream.info 2 / 37

library draft (which is based on the AT&T design).

This manual is meant as a reference; for tutorial material on
iostreams, see the corresponding section of any recent popular
introduction to C++.

Copying
Special GNU licensing terms for libio.

Acknowledgements
Contributors to GNU iostream.

1.3 iostream.info/Copying

Licensing terms for libio
=========================

Since the iostream classes are so fundamental to standard C++, the
Free Software Foundation has agreed to a special exception to its
standard license, when you link programs with libio.a:

As a special exception, if you link this library with files
compiled with a GNU compiler to produce an executable, this does
not cause the resulting executable to be covered by the GNU
General Public License. This exception does not however
invalidate any other reasons why the executable file might be
covered by the GNU General Public License.

The code is under the GNU General Public License (version 2) for all
other purposes than linking with this library; that means that you can
modify and redistribute the code as usual, but remember that if you do,
your modifications, and anything you link with the modified code, must
be available to others on the same terms.

These functions are also available as part of the libg++ library; if
you link with that library instead of libio, the GNU Library General
Public License applies.

1.4 iostream.info/Acknowledgements

Acknowledgements
================

Per Bothner wrote most of the iostream library, but some portions
have their origins elsewhere in the free software community. Heinz
Seidl wrote the IO manipulators. The floating-point conversion software
is by David M. Gay of AT&T. Some code was derived from parts of BSD

iostream.info 3 / 37

4.4, which was written at the University of California, Berkeley.

The iostream classes are found in the libio library. An early
version was originally distributed in libg++, and they are still
included there as well, for convenience if you need other libg++
classes. Doug Lea was the original author of libg++, and some of the
file-management code still in libio is his.

Various people found bugs or offered suggestions. Hongjiu Lu worked
hard to use the library as the default stdio implementation for Linux,
and has provided much stress-testing of the library.

1.5 iostream.info/Operators

Operators and Default Streams

The GNU iostream library, libio, implements the standard input and
output facilities for C++. These facilities are roughly analogous (in
their purpose and ubiquity, at least) with those defined by the C stdio
functions.

Although these definitions come from a library, rather than being
part of the "core language", they are sufficiently central to be
specified in the latest working papers for C++.

You can use two operators defined in this library for basic input and
output operations. They are familiar from any C++ introductory
textbook: << for output, and >> for input. (Think of data flowing in
the direction of the "arrows".)

These operators are often used in conjunction with three streams that
are open by default:

- Variable: ostream cout
The standard output stream, analogous to the C stdout.

- Variable: istream cin
The standard input stream, analogous to the C stdin.

- Variable: ostream cerr
An alternative output stream for errors, analogous to the C stderr.

For example, this bare-bones C++ version of the traditional "hello"
program uses << and cout:

#include <iostream.h>

int main(int argc, char **argv)
{

cout << "Well, hi there.\n";
return 0;

}

iostream.info 4 / 37

Casual use of these operators may be seductive, but--other than in
writing throwaway code for your own use--it is not necessarily simpler
than managing input and output in any other language. For example,
robust code should check the state of the input and output streams
between operations (for example, using the method good). See

Checking the state of a stream
. You may also need to adjust maximum

input or output field widths, using manipulators like setw or
setprecision.

- Operator on ostream: <<
Write output to an open output stream of class ostream. Defined
by this library on any object of a C++ primitive type, and on
other classes of the library. You can overload the definition for
any of your own applications’ classes.

Returns a reference to the implied argument *this (the open stream
it writes on), permitting statements like

cout << "The value of i is " << i << "\n";

- Operator on istream: >>
Read input from an open input stream of class istream. Defined by
this library on primitive numeric, pointer, and string types; you
can extend the definition for any of your own applications’
classes.

Returns a reference to the implied argument *this (the open stream
it reads), permitting multiple inputs in one statement.

1.6 iostream.info/Streams

Stream Classes

The previous chapter referred in passing to the classes ostream and
istream, for output and input respectively. These classes share
certain properties, captured in their base class ios.

Ios
Shared properties.

Ostream
Managing output streams.

Istream
Managing input streams.

Iostream
Input and output together.

iostream.info 5 / 37

1.7 iostream.info/Ios

Shared properties: class ios
============================

The base class ios provides methods to test and manage the state of
input or output streams.

ios delegates the job of actually reading and writing bytes to the
abstract class streambuf, which is designed to provide buffered streams
(compatible with C, in the GNU implementation). See

Using the streambuf layer
, for information on the facilities available

at the streambuf level.

- Constructor: ios::ios ([streambuf* sb [, ostream* tie])
The ios constructor by default initializes a new ios, and if you
supply a streambuf sb to associate with it, sets the state good in
the new ios object. It also sets the default properties of the
new object.

You can also supply an optional second argument tie to the
constructor: if present, it is an initial value for ios::tie, to
associate the new ios object with another stream.

- Destructor: ios::~ios ()
The ios destructor is virtual, permitting application-specific
behavior when a stream is closed--typically, the destructor frees
any storage associated with the stream and releases any other
associated objects.

States
Checking the state of a stream.

Format Control
Choices in formatting.

Manipulators
Convenient ways of changing stream properties.

Extending
Extended data fields.

Synchronization
Synchronizing related streams.

Streambuf from Ios
Reaching the underlying streambuf.

iostream.info 6 / 37

1.8 iostream.info/States

Checking the state of a stream

Use this collection of methods to test for (or signal) errors and
other exceptional conditions of streams:

- Method: ios::operator void* () const
You can do a quick check on the state of the most recent operation
on a stream by examining a pointer to the stream itself. The
pointer is arbitrary except for its truth value; it is true if no
failures have occurred (ios::fail is not true). For example, you
might ask for input on cin only if all prior output operations
succeeded:

if (cout)
{

// Everything OK so far
cin >> new_value;
...

}

- Method: ios::operator ! () const
In case it is more convenient to check whether something has
failed, the operator ! returns true if ios::fail is true (an
operation has failed). For example, you might issue an error
message if input failed:

if (!cin)
{

// Oops
cerr << "Eh?\n";

}

- Method: iostate ios::rdstate () const
Return the state flags for this stream. The value is from the
enumeration iostate. You can test for any combination of

goodbit
There are no indications of exceptional states on this stream.

eofbit
End of file.

failbit
An operation has failed on this stream; this usually
indicates bad format of input.

badbit
The stream is unusable.

- Method: void ios::setstate (iostate state)

iostream.info 7 / 37

Set the state flag for this stream to state in addition to any
state flags already set. Synonym (for upward compatibility):
ios::set.

See ios::clear to set the stream state without regard to existing
state flags. See ios::good, ios::eof, ios::fail, and ios::bad, to
test the state.

- Method: int ios::good () const
Test the state flags associated with this stream; true if no error
indicators are set.

- Method: int ios::bad () const
Test whether a stream is marked as unusable. (Whether ios::badbit
is set.)

- Method: int ios::eof () const
True if end of file was reached on this stream. (If ios::eofbit
is set.)

- Method: int ios::fail () const
Test for any kind of failure on this stream: either some operation
failed, or the stream is marked as bad. (If either ios::failbit
or ios::badbit is set.)

- Method: void ios::clear (iostate state)
Set the state indication for this stream to the argument state.
You may call ios::clear with no argument, in which case the state
is set to good (no errors pending).

See ios::good, ios::eof, ios::fail, and ios::bad, to test the
state; see ios::set or ios::setstate for an alternative way of
setting the state.

1.9 iostream.info/Format Control

Choices in formatting

These methods control (or report on) settings for some details of
controlling streams, primarily to do with formatting output:

- Method: char ios::fill () const
Report on the padding character in use.

- Method: char ios::fill (char padding)
Set the padding character. You can also use the manipulator
setfill. See

Changing stream properties in expressions
.

Default: blank.

- Method: int ios::precision () const

iostream.info 8 / 37

Report the number of significant digits currently in use for
output of floating point numbers.

Default: 6.

- Method: int ios::precision (int signif)
Set the number of significant digits (for input and output numeric
conversions) to signif.

You can also use the manipulator setprecision for this purpose.
See

Changing stream properties using manipulators
.

- Method: int ios::width () const
Report the current output field width setting (the number of
characters to write on the next << output operation).

Default: 0, which means to use as many characters as necessary.

- Method: int ios::width (int num)
Set the input field width setting to num. Return the previous
value for this stream.

This value resets to zero (the default) every time you use <<; it
is essentially an additional implicit argument to that operator.
You can also use the manipulator setw for this purpose. See

Changing stream properties using manipulators
.

- Method: fmtflags ios::flags () const
Return the current value of the complete collection of flags
controlling the format state. These are the flags and their
meanings when set:

ios::dec
ios::oct
ios::hex

What numeric base to use in converting integers from internal
to display representation, or vice versa: decimal, octal, or
hexadecimal, respectively. (You can change the base using
the manipulator setbase, or any of the manipulators dec, oct,
or hex; see

Changing stream properties in expressions
.)

On input, if none of these flags is set, read numeric
constants according to the prefix: decimal if no prefix (or a
. suffix), octal if a 0 prefix is present, hexadecimal if a
0x prefix is present.

Default: dec.

ios::fixed
Avoid scientific notation, and always show a fixed number of
digits after the decimal point, according to the output

iostream.info 9 / 37

precision in effect. Use ios::precision to set precision.

ios::left
ios::right
ios::internal

Where output is to appear in a fixed-width field;
left-justified, right-justified, or with padding in the
middle (e.g. between a numeric sign and the associated
value), respectively.

ios::scientific
Use scientific (exponential) notation to display numbers.

ios::showbase
Display the conventional prefix as a visual indicator of the
conversion base: no prefix for decimal, 0 for octal, 0x for
hexadecimal.

ios::showpoint
Display a decimal point and trailing zeros after it to fill
out numeric fields, even when redundant.

ios::showpos
Display a positive sign on display of positive numbers.

ios::skipws
Skip white space. (On by default).

ios::stdio
Flush the C stdio streams stdout and stderr after each output
operation (for programs that mix C and C++ output
conventions).

ios::unitbuf
Flush after each output operation.

ios::uppercase
Use upper-case characters for the non-numeral elements in
numeric displays; for instance, 0X7A rather than 0x7a, or
3.14E+09 rather than 3.14e+09.

- Method: fmtflags ios::flags (fmtflags value)
Set value as the complete collection of flags controlling the
format state. The flag values are described under ios::flags ().

Use ios::setf or ios::unsetf to change one property at a time.

- Method: fmtflags ios::setf (fmtflags flag)
Set one particular flag (of those described for ios::flags ();
return the complete collection of flags previously in effect.
(Use ios::unsetf to cancel.)

- Method: fmtflags ios::setf (fmtflags flag , fmtflags mask)
Clear the flag values indicated by mask, then set any of them that
are also in flag. (Flag values are described for ios::flags ().)
Return the complete collection of flags previously in effect.
(See ios::unsetf for another way of clearing flags.)

iostream.info 10 / 37

- Method: fmtflags ios::unsetf (fmtflags flag)
Make certain flag (a combination of flag values described for
ios::flags ()) is not set for this stream; converse of ios::setf.
Returns the old values of those flags.

1.10 iostream.info/Manipulators

Changing stream properties using manipulators

For convenience, manipulators provide a way to change certain
properties of streams, or otherwise affect them, in the middle of
expressions involving << or >>. For example, you might write

cout << "|" << setfill(’*’) << setw(5) << 234 << "|";

to produce |**234| as output.

- Manipulator: ws
Skip whitespace.

- Manipulator: flush
Flush an output stream. For example, cout << ... <<flush; has the
same effect as cout << ...; cout.flush();.

- Manipulator: endl
Write an end of line character \n, then flushes the output stream.

- Manipulator: ends
Write \0 (the string terminator character).

- Manipulator: setprecision (int signif)
You can change the value of ios::precision in << expressions with
the manipulator setprecision(signif); for example,

cout << setprecision(2) << 4.567;

prints 4.6. Requires #include <iomanip.h>.

- Manipulator: setw (int n)
You can change the value of ios::width in << expressions with the
manipulator setw(n); for example,

cout << setw(5) << 234;

prints 234 with two leading blanks. Requires #include
<iomanip.h>.

- Manipulator: setbase (int base)
Where base is one of 10 (decimal), 8 (octal), or 16 (hexadecimal),
change the base value for numeric representations. Requires
#include <iomanip.h>.

iostream.info 11 / 37

- Manipulator: dec
Select decimal base; equivalent to setbase(10).

- Manipulator: hex
Select hexadecimal base; equivalent to setbase(16).

- Manipulator: oct
Select octal base; equivalent to setbase(8).

- Manipulator: setfill (char padding)
Set the padding character, in the same way as ios::fill. Requires
#include <iomanip.h>.

1.11 iostream.info/Extending

Extended data fields

A related collection of methods allows you to extend this collection
of flags and parameters for your own applications, without risk of
conflict between them:

- Method: static fmtflags ios::bitalloc ()
Reserve a bit (the single bit on in the result) to use as a flag.
Using bitalloc guards against conflict between two packages that
use ios objects for different purposes.

This method is available for upward compatibility, but is not in
the ANSI working paper. The number of bits available is limited; a
return value of 0 means no bit is available.

- Method: static int ios::xalloc ()
Reserve space for a long integer or pointer parameter. The result
is a unique nonnegative integer. You can use it as an index to
ios::iword or ios::pword. Use xalloc to arrange for arbitrary
special-purpose data in your ios objects, without risk of conflict
between packages designed for different purposes.

- Method: long& ios::iword (int index)
Return a reference to arbitrary data, of long integer type, stored
in an ios instance. index, conventionally returned from
ios::xalloc, identifies what particular data you need.

- Method: long ios::iword (int index) const
Return the actual value of a long integer stored in an ios.

- Method: void*& ios::pword (int index)
Return a reference to an arbitrary pointer, stored in an ios
instance. index, originally returned from ios::xalloc, identifies
what particular pointer you need.

- Method: void* ios::pword (int index) const
Return the actual value of a pointer stored in an ios.

iostream.info 12 / 37

1.12 iostream.info/Synchronization

Synchronizing related streams

You can use these methods to synchronize related streams with one
another:

- Method: ostream* ios::tie () const
Report on what output stream, if any, is to be flushed before
accessing this one. A pointer value of 0 means no stream is tied.

- Method: ostream* ios::tie (ostream* assoc)
Declare that output stream assoc must be flushed before accessing
this stream.

- Method: int ios::sync_with_stdio ([int switch])
Unless iostreams and C stdio are designed to work together, you
may have to choose between efficient C++ streams output and output
compatible with C stdio. Use ios::sync_with_stdio() to select C
compatibility.

The argument switch is a GNU extension; use 0 as the argument to
choose output that is not necessarily compatible with C stdio.
The default value for switch is 1.

If you install the stdio implementation that comes with GNU libio,
there are compatible input/output facilities for both C and C++.
In that situation, this method is unnecessary--but you may still
want to write programs that call it, for portability.

1.13 iostream.info/Streambuf from Ios

Reaching the underlying streambuf

Finally, you can use this method to access the underlying object:

- Method: streambuf* ios::rdbuf () const
Return a pointer to the streambuf object that underlies this ios.

1.14 iostream.info/Ostream

Managing output streams: class ostream
======================================

iostream.info 13 / 37

Objects of class ostream inherit the generic methods from ios, and
in addition have the following methods available. Declarations for
this class come from iostream.h.

- Constructor: ostream::ostream ()
The simplest form of the constructor for an ostream simply
allocates a new ios object.

- Constructor: ostream::ostream (streambuf* sb [, ostream tie])
This alternative constructor requires a first argument sb of type
streambuf*, to use an existing open stream for output. It also
accepts an optional second argument tie, to specify a related
ostream* as the initial value for ios::tie.

If you give the ostream a streambuf explicitly, using this
constructor, the sb is not destroyed (or deleted or closed) when
the ostream is destroyed.

Writing
Writing on an ostream.

Output Position
Repositioning an ostream.

Ostream Housekeeping
Miscellaneous ostream utilities.

1.15 iostream.info/Writing

Writing on an ostream

These methods write on an ostream (you may also use the operator <<;
see

Operators and Default Streams
).

- Method: ostream& ostream::put (char c)
Write the single character c.

- Method: ostream& ostream::write (string , int length)
Write length characters of a string to this ostream, beginning at
the pointer string.

string may have any of these types: char*, unsigned char*, signed
char*.

- Method: ostream& ostream::form (const char *format , ...)
A GNU extension, similar to fprintf(file, format, ...).

format is a printf-style format control string, which is used to

iostream.info 14 / 37

format the (variable number of) arguments, printing the result on
this ostream. See ostream::vform for a version that uses an
argument list rather than a variable number of arguments.

- Method: ostream& ostream::vform (const char *format , va_list args)
A GNU extension, similar to vfprintf(file, format, args).

format is a printf-style format control string, which is used to
format the argument list args, printing the result on this
ostream. See ostream::form for a version that uses a variable
number of arguments rather than an argument list.

1.16 iostream.info/Output Position

Repositioning an ostream

You can control the output position (on output streams that actually
support positions, typically files) with these methods:

- Method: streampos ostream::tellp ()
Return the current write position in the stream.

- Method: ostream& ostream::seekp (streampos loc)
Reset the output position to loc (which is usually the result of a
previous call to ostream::tellp). loc specifies an absolute
position in the output stream.

- Method: ostream& ostream::seekp (streamoff loc , rel)
Reset the output position to loc, relative to the beginning, end,
or current output position in the stream, as indicated by rel (a
value from the enumeration ios::seekdir):

beg
Interpret loc as an absolute offset from the beginning of the
file.

cur
Interpret loc as an offset relative to the current output
position.

end
Interpret loc as an offset from the current end of the output
stream.

1.17 iostream.info/Ostream Housekeeping

Miscellaneous ostream utilities

iostream.info 15 / 37

You may need to use these ostream methods for housekeeping:

- Method: ostream& flush ()
Deliver any pending buffered output for this ostream.

- Method: int ostream::opfx ()
opfx is a prefix method for operations on ostream objects; it is
designed to be called before any further processing. See
ostream::osfx for the converse.

opfx tests that the stream is in state good, and if so flushes any
stream tied to this one.

The result is 1 when opfx succeeds; else (if the stream state is
not good), the result is 0.

- Method: void ostream::osfx ()
osfx is a suffix method for operations on ostream objects; it is
designed to be called at the conclusion of any processing. All
the ostream methods end by calling osfx. See ostream::opfx for
the converse.

If the unitbuf flag is set for this stream, osfx flushes any
buffered output for it.

If the stdio flag is set for this stream, osfx flushes any output
buffered for the C output streams stdout and stderr.

1.18 iostream.info/Istream

Managing input streams: class istream
=====================================

Class istream objects are specialized for input; as for ostream,
they are derived from ios, so you can use any of the general-purpose
methods from that base class. Declarations for this class also come
from iostream.h.

- Constructor: istream::istream ()
When used without arguments, the istream constructor simply
allocates a new ios object and initializes the input counter (the
value reported by istream::gcount) to 0.

- Constructor: istream::istream (streambuf *sb [, ostream tie])
You can also call the constructor with one or two arguments. The
first argument sb is a streambuf*; if you supply this pointer, the
constructor uses that streambuf for input. You can use the second
optional argument tie to specify a related output stream as the
initial value for ios::tie.

If you give the istream a streambuf explicitly, using this
constructor, the sb is not destroyed (or deleted or closed) when
the ostream is destroyed.

iostream.info 16 / 37

Char Input
Reading one character.

String Input
Reading strings.

Input Position
Repositioning an istream.

Istream Housekeeping
Miscellaneous istream utilities.

1.19 iostream.info/Char Input

Reading one character

Use these methods to read a single character from the input stream:

- Method: int istream::get ()
Read a single character (or EOF) from the input stream, returning
it (coerced to an unsigned char) as the result.

- Method: istream& istream::get (char& c)
Read a single character from the input stream, into &c.

- Method: int istream::peek ()
Return the next available input character, but without changing
the current input position.

1.20 iostream.info/String Input

Reading strings

Use these methods to read strings (for example, a line at a time)
from the input stream:

- Method: istream& istream::get (char* c , int len [, char delim])
Read a string from the input stream, into the array at c.

The remaining arguments limit how much to read: up to len-1
characters, or up to (but not including) the first occurrence in
the input of a particular delimiter character delim--newline (\n)
by default. (Naturally, if the stream reaches end of file first,
that too will terminate reading.)

iostream.info 17 / 37

If delim was present in the input, it remains available as if
unread; to discard it instead, see iostream::getline.

get writes \0 at the end of the string, regardless of which
condition terminates the read.

- Method: istream& istream::get (streambuf& sb [, char delim])
Read characters from the input stream and copy them on the
streambuf object sb. Copying ends either just before the next
instance of the delimiter character delim (newline \n by default),
or when either stream ends. If delim was present in the input,
it remains available as if unread.

- Method: istream& istream::getline (charptr , int len [, char delim
])

Read a line from the input stream, into the array at charptr.
charptr may be any of three kinds of pointer: char*, unsigned
char*, or signed char*.

The remaining arguments limit how much to read: up to (but not
including) the first occurrence in the input of a line delimiter
character delim--newline (\n) by default, or up to len-1
characters (or to end of file, if that happens sooner).

If getline succeeds in reading a "full line", it also discards the
trailing delimiter character from the input stream. (To preserve
it as available input, see the similar form of iostream::get.)

If delim was not found before len characters or end of file,
getline sets the ios::fail flag, as well as the ios::eof flag if
appropriate.

getline writes a null character at the end of the string,
regardless of which condition terminates the read.

- Method: istream& istream::read (pointer , int len)
Read len bytes into the location at pointer, unless the input ends
first.

pointer may be of type char*, void*, unsigned char*, or signed
char*.

If the istream ends before reading len bytes, read sets the
ios::fail flag.

- Method: istream& istream::gets (char **s [, char delim])
A GNU extension, to read an arbitrarily long string from the
current input position to the next instance of the delim character
(newline \n by default).

To permit reading a string of arbitrary length, gets allocates
whatever memory is required. Notice that the first argument s is
an address to record a character pointer, rather than the pointer
itself.

- Method: istream& istream::scan (const char *format ...)

iostream.info 18 / 37

A GNU extension, similar to fscanf(file, format, ...). The format
is a scanf-style format control string, which is used to read the
variables in the remainder of the argument list from the istream.

- Method: istream& istream::vscan (const char *format, va_list args)
Like istream::scan, but takes a single va_list argument.

1.21 iostream.info/Input Position

Repositioning an istream

Use these methods to control the current input position:

- Method: streampos istream::tellg ()
Return the current read position, so that you can save it and
return to it later with istream::seekg.

- Method: istream& istream::seekg (streampos p)
Reset the input pointer (if the input device permits it) to p,
usually the result of an earlier call to istream::tellg.

- Method: istream& istream::seekg (streamoff offset , ios::seek_dir
ref)

Reset the input pointer (if the input device permits it) to offset
characters from the beginning of the input, the current position,
or the end of input. Specify how to interpret offset with one of
these values for the second argument:

ios::beg
Interpret loc as an absolute offset from the beginning of the
file.

ios::cur
Interpret loc as an offset relative to the current output
position.

ios::end
Interpret loc as an offset from the current end of the output
stream.

1.22 iostream.info/Istream Housekeeping

Miscellaneous istream utilities

Use these methods for housekeeping on istream objects:

- Method: int istream::gcount ()
Report how many characters were read from this istream in the last

iostream.info 19 / 37

unformatted input operation.

- Method: int istream::ipfx (int keepwhite)
Ensure that the istream object is ready for reading; check for
errors and end of file and flush any tied stream. ipfx skips
whitespace if you specify 0 as the keepwhite argument, and
ios::skipws is set for this stream.

To avoid skipping whitespace (regardless of the skipws setting on
the stream), use 1 as the argument.

Call istream::ipfx to simplify writing your own methods for reading
istream objects.

- Method: void istream::isfx ()
A placeholder for compliance with the draft ANSI standard; this
method does nothing whatever.

If you wish to write portable standard-conforming code on istream
objects, call isfx after any operation that reads from an istream;
if istream::ipfx has any special effects that must be cancelled
when done, istream::isfx will cancel them.

- Method: istream& istream::ignore ([int n] [, int delim])
Discard some number of characters pending input. The first
optional argument n specifies how many characters to skip. The
second optional argument delim specifies a "boundary" character:
ignore returns immediately if this character appears in the input.

By default, delim is EOF; that is, if you do not specify a second
argument, only the count n restricts how much to ignore (while
input is still available).

If you do not specify how many characters to ignore, ignore
returns after discarding only one character.

- Method: istream& istream::putback (char ch)
Attempts to back up one character, replacing the character
backed-up over by ch. Returns EOF if this is not allowed. Putting
back the most recently read character is always allowed. (This
method corresponds to the C function ungetc.)

- Method: istream& istream::unget ()
Attempt to back up one character.

1.23 iostream.info/Iostream

Input and output together: class iostream
===

If you need to use the same stream for input and output, you can use
an object of the class iostream, which is derived from both istream and
ostream.

iostream.info 20 / 37

The constructors for iostream behave just like the constructors for
istream.

- Constructor: iostream::iostream ()
When used without arguments, the iostream constructor simply
allocates a new ios object, and initializes the input counter (the
value reported by istream::gcount) to 0.

- Constructor: iostream::iostream (streambuf* sb [, ostream* tie])
You can also call a constructor with one or two arguments. The
first argument sb is a streambuf*; if you supply this pointer, the
constructor uses that streambuf for input and output.

You can use the optional second argument tie (an ostream*) to
specify a related output stream as the initial value for ios::tie.

As for ostream and istream, iostream simply uses the ios destructor.
However, an iostream is not deleted by its destructor.

You can use all the istream, ostream, and ios methods with an
iostream object.

1.24 iostream.info/Files and Strings

Classes for Files and Strings

There are two very common special cases of input and output: using
files, and using strings in memory.

libio defines four specialized classes for these cases:

ifstream
Methods for reading files.

ofstream
Methods for writing files.

istrstream
Methods for reading strings from memory.

ostrstream
Methods for writing strings in memory.

Files
Reading and writing files.

Strings
Reading and writing strings in memory.

iostream.info 21 / 37

1.25 iostream.info/Files

Reading and writing files
=========================

These methods are declared in fstream.h.

You can read data from class ifstream with any operation from class
istream. There are also a few specialized facilities:

- Constructor: ifstream::ifstream ()
Make an ifstream associated with a new file for input. (If you
use this version of the constructor, you need to call
ifstream::open before actually reading anything)

- Constructor: ifstream::ifstream (int fd)
Make an ifstream for reading from a file that was already open,
using file descriptor fd. (This constructor is compatible with
other versions of iostreams for POSIX systems, but is not part of
the ANSI working paper.)

- Constructor: ifstream::ifstream (const char* fname [, int mode
[, int prot]])

Open a file *fname for this ifstream object.

By default, the file is opened for input (with ios::in as mode).
If you use this constructor, the file will be closed when the
ifstream is destroyed.

You can use the optional argument mode to specify how to open the
file, by combining these enumerated values (with | bitwise or).
(These values are actually defined in class ios, so that all
file-related streams may inherit them.) Only some of these modes
are defined in the latest draft ANSI specification; if portability
is important, you may wish to avoid the others.

ios::in
Open for input. (Included in ANSI draft.)

ios::out
Open for output. (Included in ANSI draft.)

ios::ate
Set the initial input (or output) position to the end of the
file.

ios::app
Seek to end of file before each write. (Included in ANSI
draft.)

ios::trunc
Guarantee a fresh file; discard any contents that were
previously associated with it.

ios::nocreate
Guarantee an existing file; fail if the specified file did

iostream.info 22 / 37

not already exist.

ios::noreplace
Guarantee a new file; fail if the specified file already
existed.

ios::bin
Open as a binary file (on systems where binary and text files
have different properties, typically how \n is mapped;
included in ANSI draft).

The last optional argument prot is specific to Unix-like systems;
it specifies the file protection (by default 644).

- Method: void ifstream::open (const char* fname [, int mode [, int
prot]])

Open a file explicitly after the associated ifstream object
already exists (for instance, after using the default
constructor). The arguments, options and defaults all have the
same meanings as in the fully specified ifstream constructor.

You can write data to class ofstream with any operation from class
ostream. There are also a few specialized facilities:

- Constructor: ofstream::ofstream ()
Make an ofstream associated with a new file for output.

- Constructor: ofstream::ofstream (int fd)
Make an ofstream for writing to a file that was already open,
using file descriptor fd.

- Constructor: ofstream::ofstream (const char* fname [, int mode
[, int prot]])

Open a file *fname for this ofstream object.

By default, the file is opened for output (with ios::out as mode).
You can use the optional argument mode to specify how to open the
file, just as described for ifstream::ifstream.

The last optional argument prot specifies the file protection (by
default 644).

- Destructor: ofstream::~ofstream ()
The files associated with ofstream objects are closed when the
corresponding object is destroyed.

- Method: void ofstream::open (const char* fname [, int mode [, int
prot]])

Open a file explicitly after the associated ofstream object
already exists (for instance, after using the default
constructor). The arguments, options and defaults all have the
same meanings as in the fully specified ofstream constructor.

The class fstream combines the facilities of ifstream and ofstream,
just as iostream combines istream and ostream.

The class fstreambase underlies both ifstream and ofstream. They

iostream.info 23 / 37

both inherit this additional method:

- Method: void fstreambase::close ()
Close the file associated with this object, and set ios::fail in
this object to mark the event.

1.26 iostream.info/Strings

Reading and writing in memory
=============================

The classes istrstream, ostrstream, and strstream provide some
additional features for reading and writing strings in memory--both
static strings, and dynamically allocated strings. The underlying
class strstreambase provides some features common to all three;
strstreambuf underlies that in turn.

- Constructor: istrstream::istrstream (const char* str [, int size])
Associate the new input string class istrstream with an existing
static string starting at str, of size size. If you do not
specify size, the string is treated as a NUL terminated string.

- Constructor: ostrstream::ostrstream ()
Create a new stream for output to a dynamically managed string,
which will grow as needed.

- Constructor: ostrstream::ostrstream (char* str , int size [,int
mode])

A new stream for output to a statically defined string of length
size, starting at str. You may optionally specify one of the
modes described for ifstream::ifstream; if you do not specify one,
the new stream is simply open for output, with mode ios::out.

- Method: int ostrstream::pcount ()
Report the current length of the string associated with this
ostrstream.

- Method: char* ostrstream::str ()
A pointer to the string managed by this ostrstream. Implies
ostrstream::freeze().

- Method: void ostrstream::freeze ([int n])
If n is nonzero (the default), declare that the string associated
with this ostrstream is not to change dynamically; while frozen,
it will not be reallocated if it needs more space, and it will not
be deallocated when the ostrstream is destroyed. Use freeze(1) if
you refer to the string as a pointer after creating it via
ostrstream facilities.

freeze(0) cancels this declaration, allowing a dynamically
allocated string to be freed when its ostrstream is destroyed.

If this ostrstream is already static--that is, if it was created
to manage an existing statically allocated string--freeze is

iostream.info 24 / 37

unnecessary, and has no effect.

- Method: int ostrstream::frozen ()
Test whether freeze(1) is in effect for this string.

- Method: strstreambuf* strstreambase::rdbuf ()
A pointer to the underlying strstreambuf.

1.27 iostream.info/Streambuf

Using the streambuf Layer

The istream and ostream classes are meant to handle conversion
between objects in your program and their textual representation.

By contrast, the underlying streambuf class is for transferring raw
bytes between your program, and input sources or output sinks.
Different streambuf subclasses connect to different kinds of sources
and sinks.

The GNU implementation of streambuf is still evolving; we describe
only some of the highlights.

Areas
Areas in a streambuf.

Formatting
C-style formatting for streambuf objects.

Stdiobuf
Wrappers for C stdio.

Backing Up
Marking and returning to a position.

Indirectbuf
Forwarding I/O activity.

1.28 iostream.info/Areas

Areas of a streambuf
====================

Streambuf buffer management is fairly sophisticated (this is a nice
way to say "complicated"). The standard protocol has the following
"areas":

iostream.info 25 / 37

* The put area contains characters waiting for output.

* The get area contains characters available for reading.

The GNU streambuf design extends this, but the details are still
evolving.

1.29 iostream.info/Formatting

C-style formatting for streambuf objects
==

The GNU streambuf class supports printf-like formatting and scanning.

- Method: int streambuf::vform (const char *format , ...)
Similar to fprintf(file, format, ...). The format is a
printf-style format control string, which is used to format
the (variable number of) arguments, printing the result on the
this streambuf. The result is the number of characters
printed.

- Method: int streambuf::vform (const char *format , va_list args)
Similar to vfprintf(file, format, args). The format is a
printf-style format control string, which is used to format
the argument list args, printing the result on the this streambuf.
The result is the number of characters printed.

- Method: int streambuf::scan (const char *format , ...)
Similar to fscanf(file, format, ...). The format is a scanf-style
format control string, which is used to read the (variable number
of) arguments from the this streambuf. The result is the number
of items assigned, or EOF in case of input failure before any
conversion.

- Method: int streambuf::vscan (const char *format , va_list args)
Like streambuf::scan, but takes a single va_list argument.

1.30 iostream.info/Stdiobuf

Wrappers for C stdio
====================

A stdiobuf is a streambuf object that points to a FILE object (as
defined by stdio.h). All streambuf operations on the stdiobuf are
forwarded to the FILE. Thus the stdiobuf object provides a wrapper
around a FILE, allowing use of streambuf operations on a FILE. This
can be useful when mixing C code with C++ code.

The pre-defined streams cin, cout, and cerr are normally implemented

iostream.info 26 / 37

as stdiobuf objects that point to respectively stdin, stdout, and
stderr. This is convenient, but it does cost some extra overhead.

If you set things up to use the implementation of stdio provided
with this library, then cin, cout, and cerr will be set up to to use
stdiobuf objects, since you get their benefits for free. See

C Input and Output
.

1.31 iostream.info/Backing Up

Backing up
==========

The GNU iostream library allows you to ask a streambuf to remember
the current position. This allows you to go back to this position
later, after reading further. You can back up arbitrary amounts, even
on unbuffered files or multiple buffers’ worth, as long as you tell the
library in advance. This unbounded backup is very useful for scanning
and parsing applications. This example shows a typical scenario:

// Read either "dog", "hound", or "hounddog".
// If "dog" is found, return 1.
// If "hound" is found, return 2.
// If "hounddog" is found, return 3.
// If none of these are found, return -1.
int my_scan(streambuf* sb)
{

streammarker fence(sb);
char buffer[20];
// Try reading "hounddog":
if (sb->sgetn(buffer, 8) == 8

&& strncmp(buffer, "hounddog", 8) == 0)
return 3;

// No, no "hounddog": Back up to ’fence’
sb->seekmark(fence); //
// ... and try reading "dog":
if (sb->sgetn(buffer, 3) == 3

&& strncmp(buffer, "dog", 3) == 0)
return 1;

// No, no "dog" either: Back up to ’fence’
sb->seekmark(fence); //
// ... and try reading "hound":
if (sb->sgetn(buffer, 5) == 5

&& strncmp(buffer, "hound", 5) == 0)
return 2;

// No, no "hound" either: Back up and signal failure.
sb->seekmark(fence); // Backup to ’fence’
return -1;

}

- Constructor: streammarker::streammarker (streambuf* sbuf)

iostream.info 27 / 37

Create a streammarker associated with sbuf that remembers the
current position of the get pointer.

- Method: int streammarker::delta (streammarker& mark2)
Return the difference between the get positions corresponding to

*this and mark2 (which must point into the same streambuffer as
this).

- Method: int streammarker::delta ()
Return the position relative to the streambuffer’s current get
position.

- Method: int streambuffer::seekmark (streammarker& mark)
Move the get pointer to where it (logically) was when mark was
constructed.

1.32 iostream.info/Indirectbuf

Forwarding I/O activity
=======================

An indirectbuf is one that forwards all of its I/O requests to
another streambuf.

An indirectbuf can be used to implement Common Lisp synonym-streams
and two-way-streams:

class synonymbuf : public indirectbuf {
Symbol *sym;
synonymbuf(Symbol *s) { sym = s; }
virtual streambuf *lookup_stream(int mode) {

return coerce_to_streambuf(lookup_value(sym)); }
};

1.33 iostream.info/Stdio

C Input and Output

libio is distributed with a complete implementation of the ANSI C
stdio facility. It is implemented using streambuf objects. See

Wrappers for C stdio
.

The stdio package is intended as a replacement for the whatever
stdio is in your C library. Since stdio works best when you build
libc to contain it, and that may be inconvenient, it is not installed
by default.

iostream.info 28 / 37

Extensions beyond ANSI:

* A stdio FILE is identical to a streambuf. Hence there is no need
to worry about synchronizing C and C++ input/output--they are by
definition always synchronized.

* If you create a new streambuf sub-class (in C++), you can use it
as a FILE from C. Thus the system is extensible using the standard
streambuf protocol.

* You can arbitrarily mix reading and writing, without having to seek
in between.

* Unbounded ungetc() buffer.

1.34 iostream.info/Index

Index

(
States

(
States

<< on ostream
Operators

>> on istream
Operators

iostream destructor
Iostream

badbit
States

beg
Output Position

cerr
Operators

cin
Operators

class fstreambase
Files

class fstream
Files

iostream.info 29 / 37

class ifstream
Files

class istrstream
Strings

class ostream
Files

class ostrstream
Strings

class strstreambase
Strings

class strstreambuf
Strings

class strstream
Strings

cout
Operators

cur
Output Position

dec
Manipulators

destructor for iostream
Iostream

end
Output Position

endl
Manipulators

ends
Manipulators

eofbit
States

failbit
States

flush
Manipulators

flush
Ostream Housekeeping

fstream
Files

iostream.info 30 / 37

fstreambase
Files

fstreambase::close
Files

get area
Areas

goodbit
States

hex
Manipulators

ifstream
Files

ifstream
Files and Strings

ifstream::ifstream
Files

ifstream::ifstream
Files

ifstream::ifstream
Files

ifstream::open
Files

ios::app
Files

ios::ate
Files

ios::bad
States

ios::beg
Input Position

ios::bin
Files

ios::bitalloc
Extending

ios::clear
States

ios::cur
Input Position

iostream.info 31 / 37

ios::dec
Format Control

ios::end
Input Position

ios::eof
States

ios::fail
States

ios::fill
Format Control

ios::fill
Format Control

ios::fixed
Format Control

ios::flags
Format Control

ios::flags
Format Control

ios::good
States

ios::hex
Format Control

ios::in
Files

ios::internal
Format Control

ios::ios
Ios

ios::iword
Extending

ios::iword
Extending

ios::left
Format Control

ios::nocreate
Files

ios::noreplace
Files

iostream.info 32 / 37

ios::oct
Format Control

ios::out
Files

ios::precision
Format Control

ios::precision
Format Control

ios::pword
Extending

ios::pword
Extending

ios::rdbuf
Streambuf from Ios

ios::rdstate
States

ios::right
Format Control

ios::scientific
Format Control

ios::seekdir
Output Position

ios::set
States

ios::setf
Format Control

ios::setf
Format Control

ios::setstate
States

ios::showbase
Format Control

ios::showpoint
Format Control

ios::showpos
Format Control

ios::skipws
Format Control

iostream.info 33 / 37

ios::stdio
Format Control

ios::sync_with_stdio
Synchronization

ios::tie
Synchronization

ios::tie
Synchronization

ios::trunc
Files

ios::unitbuf
Format Control

ios::unsetf
Format Control

ios::uppercase
Format Control

ios::width
Format Control

ios::width
Format Control

ios::xalloc
Extending

ios::~ios
Ios

iostream::iostream
Iostream

iostream::iostream
Iostream

istream::gcount
Istream Housekeeping

istream::get
String Input

istream::get
Char Input

istream::get
String Input

istream::get
Char Input

iostream.info 34 / 37

istream::getline
String Input

istream::gets
String Input

istream::ignore
Istream Housekeeping

istream::ipfx
Istream Housekeeping

istream::isfx
Istream Housekeeping

istream::istream
Istream

istream::istream
Istream

istream::peek
Char Input

istream::putback
Istream Housekeeping

istream::read
String Input

istream::scan
String Input

istream::seekg
Input Position

istream::seekg
Input Position

istream::tellg
Input Position

istream::unget
Istream Housekeeping

istream::vscan
String Input

istrstream
Files and Strings

istrstream
Strings

istrstream::istrstream
Strings

iostream.info 35 / 37

oct
Manipulators

ofstream
Files and Strings

ofstream::ofstream
Files

ofstream::ofstream
Files

ofstream::ofstream
Files

ofstream::open
Files

ofstream::~ofstream
Files

ostream
Files

ostream::form
Writing

ostream::opfx
Ostream Housekeeping

ostream::osfx
Ostream Housekeeping

ostream::ostream
Ostream

ostream::ostream
Ostream

ostream::put
Writing

ostream::seekp
Output Position

ostream::seekp
Output Position

ostream::tellp
Output Position

ostream::vform
Writing

ostream::write
Writing

iostream.info 36 / 37

ostrstream
Strings

ostrstream
Files and Strings

ostrstream::freeze
Strings

ostrstream::frozen
Strings

ostrstream::ostrstream
Strings

ostrstream::ostrstream
Strings

ostrstream::pcount
Strings

ostrstream::str
Strings

put area
Areas

setbase
Manipulators

setfill
Manipulators

setprecision
Format Control

setprecision
Manipulators

setting ios::precision
Format Control

setting ios::width
Format Control

setw
Manipulators

setw
Format Control

streambuf::scan
Formatting

streambuf::vform
Formatting

iostream.info 37 / 37

streambuf::vform
Formatting

streambuf::vscan
Formatting

streambuffer::seekmark
Backing Up

streammarker::delta
Backing Up

streammarker::delta
Backing Up

streammarker::streammarker
Backing Up

strstream
Strings

strstreambase
Strings

strstreambase::rdbuf
Strings

strstreambuf
Strings

ws
Manipulators

	iostream.info
	iostream.info
	iostream.info/Introduction
	iostream.info/Copying
	iostream.info/Acknowledgements
	iostream.info/Operators
	iostream.info/Streams
	iostream.info/Ios
	iostream.info/States
	iostream.info/Format Control
	iostream.info/Manipulators
	iostream.info/Extending
	iostream.info/Synchronization
	iostream.info/Streambuf from Ios
	iostream.info/Ostream
	iostream.info/Writing
	iostream.info/Output Position
	iostream.info/Ostream Housekeeping
	iostream.info/Istream
	iostream.info/Char Input
	iostream.info/String Input
	iostream.info/Input Position
	iostream.info/Istream Housekeeping
	iostream.info/Iostream
	iostream.info/Files and Strings
	iostream.info/Files
	iostream.info/Strings
	iostream.info/Streambuf
	iostream.info/Areas
	iostream.info/Formatting
	iostream.info/Stdiobuf
	iostream.info/Backing Up
	iostream.info/Indirectbuf
	iostream.info/Stdio
	iostream.info/Index

