
gmp.info

gmp.info ii

COLLABORATORS

TITLE :

gmp.info

ACTION NAME DATE SIGNATURE

WRITTEN BY January 9, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

gmp.info iii

Contents

1 gmp.info 1

1.1 gmp.info . 1

1.2 gmp.info/Copying . 2

1.3 gmp.info/Intro . 2

1.4 gmp.info/Nomenclature . 3

1.5 gmp.info/Thanks . 4

1.6 gmp.info/Initialization . 4

1.7 gmp.info/Integer Functions . 5

1.8 gmp.info/Initializing Integers . 6

1.9 gmp.info/Assigning Integers . 7

1.10 gmp.info/Simultaneous Integer Init & Assign . 8

1.11 gmp.info/Converting Integers . 9

1.12 gmp.info/Integer Arithmetic . 9

1.13 gmp.info/Logic on Integers . 13

1.14 gmp.info/I-O of Integers . 13

1.15 gmp.info/Rational Number Functions . 14

1.16 gmp.info/Low-level Functions . 15

1.17 gmp.info/BSD Compatible Functions . 18

1.18 gmp.info/Miscellaneous Functions . 19

1.19 gmp.info/Custom Allocation . 20

1.20 gmp.info/Reporting Bugs . 21

1.21 gmp.info/References . 22

1.22 gmp.info/Concept Index . 22

1.23 gmp.info/Function Index . 23

gmp.info 1 / 29

Chapter 1

gmp.info

1.1 gmp.info

Copying
GMP Copying Conditions.

Intro
Introduction to GMP.

Nomenclature
Terminology and basic data types.

Initialization
Initialization of multi-precision number objects.

Integer Functions
Functions for arithmetic on signed integers.

Rational Number Functions
Functions for arithmetic on rational numbers.

Low-level Functions
Fast functions for natural numbers.

BSD Compatible Functions
All functions found in BSD MP (somewhat faster).

Miscellaneous Functions
Functions that do particular things.

Custom Allocation
How to customize the internal allocation.

Reporting Bugs
Help us to improve this library.

References

Concept Index

gmp.info 2 / 29

Function Index

1.2 gmp.info/Copying

GNU MP Copying Conditions

This library is free; this means that everyone is free to use it and
free to redistribute it on a free basis. The library is not in the
public domain; it is copyrighted and there are restrictions on its
distribution, but these restrictions are designed to permit everything
that a good cooperating citizen would want to do. What is not allowed
is to try to prevent others from further sharing any version of this
library that they might get from you.

Specifically, we want to make sure that you have the right to give
away copies of the library, that you receive source code or else can get
it if you want it, that you can change this library or use pieces of it
in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to
deprive anyone else of these rights. For example, if you distribute
copies of the GMP library, you must give the recipients all the rights
that you have. You must make sure that they, too, receive or can get
the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone
finds out that there is no warranty for the GMP library. If it is
modified by someone else and passed on, we want their recipients to
know that what they have is not what we distributed, so that any
problems introduced by others will not reflect on our reputation.

The precise conditions of the license for the GMP library are found
in the General Public License that accompany the source code.

1.3 gmp.info/Intro

Introduction to MP

GNU MP is a portable library for arbitrary precision integer and
rational number arithmetic.(1) It aims to provide the fastest possible
arithmetic for all applications that need more than two words of
integer precision.

Most often, applications tend to use just a few words of precision;
but some applications may need thousands of words. GNU MP is designed
to give good performance for both kinds of applications, by choosing
algorithms based on the sizes of the operands.

gmp.info 3 / 29

There are five groups of functions in the MP library:

1. Functions for signed integer arithmetic, with names beginning with
mpz_.

2. Functions for rational number arithmetic, with names beginning with
mpq_.

3. Functions compatible with Berkeley MP, such as itom, madd, and
mult.

4. Fast low-level functions that operate on natural numbers. These
are used by the functions in the preceding groups, and you can
also call them directly from very time-critical user programs.
These functions’ names begin with mpn_.

5. Miscellaneous functions.

As a general rule, all MP functions expect output arguments before
input arguments. This notation is based on an analogy with the
assignment operator. (The BSD MP compatibility functions disobey this
rule, having the output argument(s) last.) Multi-precision numbers,
whether output or input, are always passed as addresses to the declared
type.

Nomenclature

Thanks
---------- Footnotes ----------

(1) The limit of the precision is set by the available memory in
your computer.

1.4 gmp.info/Nomenclature

Nomenclature and Data Types
===========================

In this manual, integer means a multiple precision integer, as used
in the MP package. The C data type for such integers is MP_INT. For
example:

MP_INT sum;

struct foo { MP_INT x, y; };

MP_INT vec[20];

Rational number means a multiple precision fraction. The C data
type for these fractions is MP_RAT. For example:

gmp.info 4 / 29

MP_RAT quotient;

A limb means the part of a multi-precision number that fits in a
single word. (We chose this word because a limb of the human body is
analogous to a digit, only larger, and containing several digits.)
Normally a limb contains 32 bits.

1.5 gmp.info/Thanks

Thanks
======

I would like to thank Gunnar Sjoedin and Hans Riesel for their help
with mathematical problems, Richard Stallman for his help with design
issues and for revising this manual, Brian Beuning and Doug Lea for
their testing of various versions of the library, and Joachim Hollman
for his many valuable suggestions.

Special thanks to Brian Beuning, he has shaked out many bugs from
early versions of the code!

John Amanatides of York University in Canada contributed the function
mpz_probab_prime_p.

1.6 gmp.info/Initialization

Initialization

Before you can use a variable or object of type MP_INT or MP_RAT,
you must initialize it. This fills in the components that point to
dynamically allocated space for the limbs of the number.

When you are finished using the object, you should clear out the
object. This frees the dynamic space that it points to, so the space
can be used again.

Once you have initialized the object, you need not be concerned about
allocating additional space. The functions in the MP package
automatically allocate additional space when the object does not already
have enough space. They do not, however, reduce the space in use when a
smaller number is stored in the object. Most of the time, this policy
is best, since it avoids frequent re-allocation. If you want to reduce
the space in an object to the minimum needed, you can do _mpz_realloc
(&object, mpz_size (&object)).

The functions to initialize numbers are mpz_init (for MP_INT) and
mpq_init (for MP_RAT).

gmp.info 5 / 29

mpz_init allocates space for the limbs, and stores a pointer to that
space in the MP_INT object. It also stores the value 0 in the object.

In the same manner, mpq_init allocates space for the numerator and
denominator limbs, and stores pointers to these spaces in the MP_RAT
object.

To clear out a number object, use mpz_clear and mpq_clear,
respectively.

Here is an example of use:

{
MP_INT temp;
mpz_init (&temp);

... store and read values in temp zero or more times ...

mpz_clear (&temp):
}

You might be tempted to copy an integer from one object to another
like this:

MP_INT x, y;

x = y;

Although valid C, this is an error. Rather than copying the integer
value from y to x it will make the two variables share storage.
Subsequent assignments to one variable would change the other
mysteriously. And if you were to clear out both variables
subsequently, you would confuse malloc and cause your program to crash.

To copy the value properly, you must use the function mpz_set. (see

Assigning Integers
)

1.7 gmp.info/Integer Functions

Integer Functions

This chapter describes the MP functions for performing integer
arithmetic.

The integer functions use arguments and values of type
pointer-to-MP_INT (see

Nomenclature
). The type MP_INT is a

structure, but applications should not refer directly to its
components. Include the header gmp.h to get the definition of MP_INT.

gmp.info 6 / 29

Initializing Integers

Assigning Integers

Simultaneous Integer Init & Assign

Converting Integers

Integer Arithmetic

Logic on Integers

I-O of Integers

1.8 gmp.info/Initializing Integers

Initializing Integer Objects
============================

Most of the functions for integer arithmetic assume that the output
is stored in an object already initialized. For example, mpz_add
stores the result of addition (see

Integer Arithmetic
). Thus, you must

initialize the object before storing the first value in it. You can do
this separately by calling the function mpz_init.

- Function: void mpz_init (MP_INT *integer)
Initialize integer with limb space and set the initial numeric
value to 0. Each variable should normally only be initialized
once, or at least cleared out (using mpz_clear) between each
initialization.

Here is an example of using mpz_init:

{
MP_INT integ;
mpz_init (&integ);
...
mpz_add (&integ, ...);
...
mpz_sub (&integ, ...);

/* Unless you are now exiting the program, do ... */
mpz_clear (&integ);

}

As you can see, you can store new values any number of times, once an
object is initialized.

- Function: void mpz_clear (MP_INT *integer)

gmp.info 7 / 29

Free the limb space occupied by integer. Make sure to call this
function for all MP_INT variables when you are done with them.

- Function: void * _mpz_realloc (MP_INT *integer , mp_size new_alloc)
Change the limb space allocation to new_alloc limbs. This
function is not normally called from user code, but it can be used
to give memory back to the heap, or to increase the space of a
variable to avoid repeated automatic re-allocation.

- Function: void mpz_array_init (MP_INT integer_array [], size_t
array_size , mp_size fixed_num_limbs)

Allocate fixed limb space for all array_size integers in
integer_array. The fixed allocation for each integer in the array
is fixed_num_limbs. This function is useful for decreasing the
working set for some algorithms that use large integer arrays. If
the fixed space will be insufficient for storing the result of a
subsequent calculation, the result is unpredictable.

There is no way to de-allocate the storage allocated by this
function. Don’t call mpz_clear!

1.9 gmp.info/Assigning Integers

Integer Assignment Functions

These functions assign new values to already initialized integers
(see

Initializing Integers
).

- Function: void mpz_set (MP_INT *dest_integer , MP_INT *src_integer)
Assign dest_integer from src_integer.

- Function: void mpz_set_ui (MP_INT *integer , unsigned long int
initial_value)

Set the value of integer from initial_value.

- Function: void mpz_set_si (MP_INT *integer , signed long int
initial_value)

Set the value of integer from initial_value.

- Function: int mpz_set_str (MP_INT *integer , char *initial_value ,
int base)

Set the value of integer from initial_value, a ’\0’-terminated C
string in base base. White space is allowed in the string, and is
simply ignored. The base may vary from 2 to 36. If base is 0,
the actual base is determined from the leading characters: if the
first two characters are ‘0x’ or ‘0X’, hexadecimal is assumed,
otherwise if the first character is ‘0’, octal is assumed,
otherwise decimal is assumed.

This function returns 0 if the entire string up to the ’\0’ is a

gmp.info 8 / 29

valid number in base base. Otherwise it returns -1.

1.10 gmp.info/Simultaneous Integer Init & Assign

Combined Initialization and Assignment Functions
--

For your convenience, MP provides a parallel series of
initialize-and-set arithmetic functions which initialize the output and
then store the value there. These functions’ names have the form
mpz_init_set....

Here is an example of using one:

{
MP_INT integ;
mpz_init_set_str (&integ, "3141592653589793238462643383279502884", 10);
...
mpz_sub (&integ, ...);

mpz_clear (&integ);
}

Once the integer has been initialized by any of the mpz_init_set...
functions, it can be used as the source or destination operand for the
ordinary integer functions. Don’t use an initialize-and-set function
on a variable already initialized!

- Function: void mpz_init_set (MP_INT *dest_integer , MP_INT

*src_integer)
Initialize dest_integer with limb space and set the initial numeric
value from src_integer.

- Function: void mpz_init_set_ui (MP_INT *dest_integer , unsigned long
int src_ulong)

Initialize dest_integer with limb space and set the initial numeric
value from src_ulong.

- Function: void mpz_init_set_si (MP_INT *dest_integer , signed long
int src_slong)

Initialize dest_integer with limb space and set the initial numeric
value from src_slong.

- Function: int mpz_init_set_str (MP_INT *dest_integer , char

*src_cstring , int base)
Initialize dest_integer with limb space and set the initial
numeric value from src_cstring, a ’\0’-terminated C string in base
base. The base may vary from 2 to 36. There may be white space
in the string.

If the string is a correct base base number, the function returns
0; if an error occurs it returns -1. dest_integer is initialized
even if an error occurs. (I.e., you have to call mpz_clear for

gmp.info 9 / 29

it.)

1.11 gmp.info/Converting Integers

Conversion Functions
====================

- Function: unsigned long int mpz_get_ui (MP_INT *src_integer)
Return the least significant limb from src_integer. This function
together with
mpz_div_2exp(..., src_integer, CHAR_BIT*sizeof(unsigned long int))
can be used to extract the limbs of an integer efficiently.

- Function: signed long int mpz_get_si (MP_INT *src_integer)
If src_integer fits into a signed long int return the value of
src_integer. Otherwise return the least significant bits of
src_integer, with the same sign as src_integer.

- Function: char * mpz_get_str (char *string , int base , MP_INT

*integer)
Convert integer to a ’\0’-terminated C string in string, using
base base. The base may vary from 2 to 36. If string is NULL,
space for the string is allocated using the default allocation
function.

If string is not NULL, it should point to a block of storage
enough large for the result. To find out the right amount of
space to provide for string, use mpz_sizeinbase (integer, base) +
2. The "+ 2" is for a possible minus sign, and for the
terminating null character. (see

Miscellaneous Functions
).

This function returns a pointer to the result string.

1.12 gmp.info/Integer Arithmetic

Integer Arithmetic Functions
============================

- Function: void mpz_add (MP_INT *sum , MP_INT *addend1 , MP_INT

*addend2)

- Function: void mpz_add_ui (MP_INT *sum , MP_INT *addend1 , unsigned
long int addend2)

Set sum to addend1 + addend2.

- Function: void mpz_sub (MP_INT *difference , MP_INT *minuend ,
MP_INT *subtrahend)

gmp.info 10 / 29

- Function: void mpz_sub_ui (MP_INT *difference , MP_INT *minuend ,
unsigned long int subtrahend)

Set difference to minuend - subtrahend.

- Function: void mpz_mul (MP_INT *product , MP_INT *multiplicator ,
MP_INT *multiplicand)

- Function: void mpz_mul_ui (MP_INT *product , MP_INT *multiplicator ,
unsigned long int multiplicand)

Set product to multiplicator times multiplicand.

Division is undefined if the divisor is zero, and passing a zero
divisor to the divide or modulo functions, as well passing a zero mod
argument to the powm functions, will make these functions intentionally
divide by zero. This gives the user the possibility to handle
arithmetic exceptions in these functions in the same manner as other
arithmetic exceptions.

- Function: void mpz_div (MP_INT *quotient , MP_INT *dividend , MP_INT

*divisor)

- Function: void mpz_div_ui (MP_INT *quotient , MP_INT *dividend ,
unsigned long int divisor)

Set quotient to dividend / divisor. The quotient is rounded
towards 0.

- Function: void mpz_mod (MP_INT *remainder , MP_INT *divdend , MP_INT

*divisor)

- Function: void mpz_mod_ui (MP_INT *remainder , MP_INT *divdend ,
unsigned long int divisor)

Divide dividend and divisor and put the remainder in remainder.
The remainder has the same sign as the dividend, and its absolute
value is less than the absolute value of the divisor.

- Function: void mpz_divmod (MP_INT *quotient , MP_INT *remainder ,
MP_INT *dividend , MP_INT *divisor)

- Function: void mpz_divmod_ui (MP_INT *quotient , MP_INT *remainder ,
MP_INT *dividend , unsigned long int divisor)

Divide dividend and divisor and put the quotient in quotient and
the remainder in remainder. The quotient is rounded towards 0.
The remainder has the same sign as the dividend, and its absolute
value is less than the absolute value of the divisor.

If quotient and remainder are the same variable, the results are
not defined.

- Function: void mpz_mdiv (MP_INT *quotient , MP_INT *dividend ,
MP_INT *divisor)

- Function: void mpz_mdiv_ui (MP_INT *quotient , MP_INT *dividend ,
unsigned long int divisor)

Set quotient to dividend / divisor. The quotient is rounded
towards -infinity.

gmp.info 11 / 29

- Function: void mpz_mmod (MP_INT *remainder , MP_INT *divdend ,
MP_INT *divisor)

- Function: unsigned long int mpz_mmod_ui (MP_INT *remainder , MP_INT

*divdend , unsigned long int divisor)
Divide dividend and divisor and put the remainder in remainder.
The remainder is always positive, and its value is less than the
value of the divisor.

For mpz_mmod_ui the remainder is returned, and if remainder is not
NULL, also stored there.

- Function: void mpz_mdivmod (MP_INT *quotient , MP_INT *remainder ,
MP_INT *dividend , MP_INT *divisor)

- Function: unsigned long int mpz_mdivmod_ui (MP_INT *quotient ,
MP_INT *remainder , MP_INT *dividend , unsigned long int
divisor)

Divide dividend and divisor and put the quotient in quotient and
the remainder in remainder. The quotient is rounded towards
-infinity. The remainder is always positive, and its value is
less than the value of the divisor.

For mpz_mdivmod_ui the remainder is small enough to fit in an
unsigned long int, and is therefore returned. If remainder is not
NULL, the remainder is also stored there.

If quotient and remainder are the same variable, the results are
not defined.

- Function: void mpz_sqrt (MP_INT *root , MP_INT *operand)
Set root to the square root of operand. The result is rounded
towards zero.

- Function: void mpz_sqrtrem (MP_INT *root , MP_INT *remainder ,
MP_INT *operand)

Set root to the square root of operand, as with mpz_sqrt. Set
remainder to operand -root*root, (i.e. zero if operand is a
perfect square).

If root and remainder are the same variable, the results are not
defined.

- Function: int mpz_perfect_square_p (MP_INT *square)
Return non-zero if square is perfect, i.e. if the square root of
square is integral. Return zero otherwise.

- Function: int mpz_probab_prime_p (MP_INT *n , int reps)
An implementation of the probabilistic primality test found in
Knuth’s Seminumerical Algorithms book. If the function
mpz_probab_prime_p(n, reps) returns 0 then n is not prime. If it
returns 1, then n is ‘probably’ prime. The probability of a false
positive is (1/4)**reps, where reps is the number of internal
passes of the probabilistic algorithm. Knuth indicates that 25
passes are reasonable.

- Function: void mpz_powm (MP_INT *res , MP_INT *base , MP_INT *exp ,

gmp.info 12 / 29

MP_INT *mod)

- Function: void mpz_powm_ui (MP_INT *res , MP_INT *base , unsigned
long int exp , MP_INT *mod)

Set res to (base raised to exp) modulo mod. If exp is negative,
the result is undefined.

- Function: void mpz_pow_ui (MP_INT *res , MP_INT *base , unsigned
long int exp)

Set res to base raised to exp.

- Function: void mpz_fac_ui (MP_INT *res , unsigned long int n)
Set res n!, the factorial of n.

- Function: void mpz_gcd (MP_INT *res , MP_INT *operand1 , MP_INT

*operand2)
Set res to the greatest common divisor of operand1 and operand2.

- Function: void mpz_gcdext (MP_INT *g , MP_INT *s , MP_INT *t ,
MP_INT *a , MP_INT *b)

Compute g, s, and t, such that a s + b t = g = gcd (a, b). If t is
NULL, that argument is not computed.

- Function: void mpz_neg (MP_INT *negated_operand , MP_INT *operand)
Set negated_operand to -operand.

- Function: void mpz_abs (MP_INT *positive_operand , MP_INT

*signed_operand)
Set positive_operand to the absolute value of signed_operand.

- Function: int mpz_cmp (MP_INT *operand1 , MP_INT *operand2)

- Function: int mpz_cmp_ui (MP_INT *operand1 , unsigned long int
operand2)

- Function: int mpz_cmp_si (MP_INT *operand1 , signed long int
operand2)

Compare operand1 and operand2. Return a positive value if
operand1 > operand2, zero if operand1 = operand2, and a
negative value if operand1 < operand2.

- Function: void mpz_mul_2exp (MP_INT *product , MP_INT *multiplicator
, unsigned long int exponent_of_2)

Set product to multiplicator times 2 raised to exponent_of_2.
This operation can also be defined as a left shift, exponent_of_2
steps.

- Function: void mpz_div_2exp (MP_INT *quotient , MP_INT *dividend ,
unsigned long int exponent_of_2)

Set quotient to dividend divided by 2 raised to exponent_of_2.
This operation can also be defined as a right shift, exponent_of_2
steps, but unlike the >> operator in C, the result is rounded
towards 0.

- Function: void mpz_mod_2exp (MP_INT *remainder , MP_INT *dividend ,
unsigned long int exponent_of_2)

Set remainder to dividend mod (2 raised to exponent_of_2). The

gmp.info 13 / 29

sign of remainder will have the same sign as dividend.

This operation can also be defined as a masking of the
exponent_of_2 least significant bits.

1.13 gmp.info/Logic on Integers

Logical Functions
=================

- Function: void mpz_and (MP_INT *conjunction , MP_INT *operand1 ,
MP_INT *operand2)

Set conjunction to operand1 logical-and operand2.

- Function: void mpz_ior (MP_INT *disjunction , MP_INT *operand1 ,
MP_INT *operand2)

Set disjunction to operand1 inclusive-or operand2.

- Function: void mpz_xor (MP_INT *disjunction , MP_INT *operand1 ,
MP_INT *operand2)

Set disjunction to operand1 exclusive-or operand2.

This function is missing in the current release.

- Function: void mpz_com (MP_INT *complemented_operand , MP_INT

*operand)
Set complemented_operand to the one’s complement of operand.

1.14 gmp.info/I-O of Integers

Input and Output Functions
==========================

Functions that perform input from a standard I/O stream, and
functions for output conversion.

- Function: void mpz_inp_raw (MP_INT *integer , FILE *stream)
Input from standard I/O stream stream in the format written by
mpz_out_raw, and put the result in integer.

- Function: void mpz_inp_str (MP_INT *integer , FILE *stream , int
base)

Input a string in base base from standard I/O stream stream, and
put the read integer in integer. The base may vary from 2 to 36.
If base is 0, the actual base is determined from the leading
characters: if the first two characters are ‘0x’ or ‘0X’,
hexadecimal is assumed, otherwise if the first character is ‘0’,
octal is assumed, otherwise decimal is assumed.

- Function: void mpz_out_raw (FILE *stream , MP_INT *integer)

gmp.info 14 / 29

Output integer on standard I/O stream stream, in raw binary
format. The integer is written in a portable format, with 4 bytes
of size information, and that many bytes of limbs. Both the size
and the limbs are written in decreasing significance order.

- Function: void mpz_out_str (FILE *stream , int base , MP_INT

*integer)
Output integer on standard I/O stream stream, as a string of
digits in base base. The base may vary from 2 to 36.

1.15 gmp.info/Rational Number Functions

Rational Number Functions

All rational arithmetic functions canonicalize the result, so that
the denominator and the numerator have no common factors. Zero has the
unique representation 0/1.

The set of functions is quite small. Maybe it will be extended in a
future release.

- Function: void mpq_init (MP_RAT *dest_rational)
Initialize dest_rational with limb space and set the initial
numeric value to 0/1. Each variable should normally only be
initialized once, or at least cleared out (using the function
mpq_clear) between each initialization.

- Function: void mpq_clear (MP_RAT *rational_number)
Free the limb space occupied by rational_number. Make sure to
call this function for all MP_RAT variables when you are done with
them.

- Function: void mpq_set (MP_RAT *dest_rational , MP_RAT *src_rational
)

Assign dest_rational from src_rational.

- Function: void mpq_set_ui (MP_RAT *rational_number , unsigned long
int numerator , unsigned long int denominator)

Set the value of rational_number to numerator/denominator. If
numerator and denominator have common factors, they are divided
out before rational_number is assigned.

- Function: void mpq_set_si (MP_RAT *rational_number , signed long int
numerator , unsigned long int denominator)

Like mpq_set_ui, but numerator is signed.

- Function: void mpq_add (MP_RAT *sum , MP_RAT *addend1 , MP_RAT

*addend2)
Set sum to addend1 + addend2.

- Function: void mpq_sub (MP_RAT *difference , MP_RAT *minuend ,
MP_RAT *subtrahend)

Set difference to minuend - subtrahend.

gmp.info 15 / 29

- Function: void mpq_mul (MP_RAT *product , MP_RAT *multiplicator ,
MP_RAT *multiplicand)

Set product to multiplicator * multiplicand

- Function: void mpq_div (MP_RAT *quotient , MP_RAT *dividend , MP_RAT

*divisor)
Set quotient to dividend / divisor.

- Function: void mpq_neg (MP_RAT *negated_operand , MP_RAT *operand)
Set negated_operand to -operand.

- Function: int mpq_cmp (MP_RAT *operand1 , MP_RAT *operand2)
Compare operand1 and operand2. Return a positive value if
operand1 > operand2, zero if operand1 = operand2, and a
negative value if operand1 < operand2.

- Function: void mpq_inv (MP_RAT *inverted_number , MP_RAT *number)
Invert number by swapping the numerator and denominator. If the
new denominator becomes zero, this routine will divide by zero.

- Function: void mpq_set_num (MP_RAT *rational_number , MP_INT

*numerator)
Make numerator become the numerator of rational_number by copying.

- Function: void mpq_set_den (MP_RAT *rational_number , MP_INT

*denominator)
Make denominator become the denominator of rational_number by
copying. If denominator < 0 the denominator of rational_number is
set to the absolute value of denominator, and the sign of the
numerator of rational_number is changed.

- Function: void mpq_get_num (MP_INT *numerator , MP_RAT

*rational_number)
Copy the numerator of rational_number to the integer numerator, to
prepare for integer operations on the numerator.

- Function: void mpq_get_den (MP_INT *denominator , MP_RAT

*rational_number)
Copy the denominator of rational_number to the integer
denominator, to prepare for integer operations on the
denominator.

1.16 gmp.info/Low-level Functions

Low-level Functions

The next release of the GNU MP library (2.0) will include changes to
some mpn functions. Programs that use these functions according to the
descriptions below will therefore not work with the next release.

The low-level function layer is designed to be as fast as possible,
not to provide a coherent calling interface. The different functions

gmp.info 16 / 29

have similar interfaces, but there are variations that might be
confusing. These functions do as little as possible apart from the
real multiple precision computation, so that no time is spent on things
that not all callers need.

A source operand is specified by a pointer to the least significant
limb and a limb count. A destination operand is specified by just a
pointer. It is the responsability of the caller to ensure that the
destination has enough space for storing the result.

With this way of specifying source operands, it is possible to
perform computations on subranges of an argument, and store the result
into a subrange of a destination.

All these functions require that the operands are normalized in the
sense that the most significant limb must be non-zero. (A future
release of might drop this requirement.)

The low-level layer is the base for the implementation of the mpz_
and mpq_ layers.

The code below adds the number beginning at src1_ptr and the number
beginning at src2_ptr and writes the sum at dest_ptr. A constraint for
mpn_add is that src1_size must not be smaller that src2_size.

mpn_add (dest_ptr, src1_ptr, src1_size, src2_ptr, src2_size)

In the description below, a source operand is identified by the
pointer to the least significant limb, and the limb count in braces.

- Function: mp_size mpn_add (mp_ptr dest_ptr , mp_srcptr src1_ptr ,
mp_size src1_size , mp_srcptr src2_ptr , mp_size src2_size)

Add {src1_ptr, src1_size } and {src2_ptr, src2_size }, and write
the src1_size least significant limbs of the result to dest_ptr.
Carry-out, either 0 or 1, is returned.

This function requires that src1_size is greater than or equal to
src2_size.

- Function: mp_size mpn_sub (mp_ptr dest_ptr , mp_srcptr src1_ptr ,
mp_size src1_size , mp_srcptr src2_ptr , mp_size src2_size)

Subtarct {src2_ptr, src2_size } from {src1_ptr, src1_size }, and
write the result to dest_ptr.

Return 1 if the minuend < the subtrahend. Otherwise, return the
negative difference between the number of words in the result and
the minuend. I.e. return 0 if the result has src1_size words, -1
if it has src1_size - 1 words, etc.

This function requires that src1_size is greater than or equal to
src2_size.

- Function: mp_size mpn_mul (mp_ptr dest_ptr , mp_srcptr src1_ptr ,
mp_size src1_size , mp_srcptr src2_ptr , mp_size src2_size)

Multiply {src1_ptr, src1_size } and {src2_ptr, src2_size }, and
write the result to dest_ptr. The exact size of the result is
returned.

gmp.info 17 / 29

The destination has to have space for src1_size + src1_size limbs,
even if the result might be one limb smaller.

This function requires that src1_size is greater than or equal to
src2_size. The destination must be distinct from either input
operands.

- Function: mp_size mpn_div (mp_ptr dest_ptr , mp_ptr src1_ptr ,
mp_size src1_size , mp_srcptr src2_ptr , mp_size src2_size)

Divide {src1_ptr, src1_size } by {src2_ptr, src2_size }, and write
the quotient to dest_ptr, and the remainder to src1_ptr.

Return 0 if the quotient size is at most (src1_size - src2_size),
and 1 if the quotient size is at most (src1_size - src2_size + 1).
The caller has to check the most significant limb to find out the
exact size.

The most significant bit of the most significant limb of the
divisor has to be set.

This function requires that src1_size is greater than or equal to
src2_size. The quotient, pointed to by dest_ptr, must be distinct
from either input operands.

- Function: mp_limb mpn_lshift (mp_ptr dest_ptr , mp_srcptr src_ptr ,
mp_size src_size , unsigned long int count)

Shift {src_ptr, src_size } count bits to the left, and write the
src_size least significant limbs of the result to dest_ptr. count
might be in the range 1 to n - 1, on an n-bit machine. The limb
shifted out is returned.

Overlapping of the destination space and the source space is
allowed in this function, provdied dest_ptr >= src_ptr.

- Function: mp_size mpn_rshift (mp_ptr dest_ptr , mp_srcptr src_ptr ,
mp_size src_size , unsigned long int count)

Shift {src_ptr, src_size } count bits to the right, and write the
src_size least significant limbs of the result to dest_ptr. count
might be in the range 1 to n - 1, on an n-bit machine. The size of
the result is returned.

Overlaping of the destination space and the source space is
allowed in this function, provdied dest_ptr <= src_ptr.

- Function: mp_size mpn_rshiftci (mp_ptr dest_ptr , mp_srcptr src_ptr
, mp_size src_size , unsigned long int count , mp_limb inlimb
)

Like mpn_rshift, but use inlimb to feed the least significant end
of the destination.

- Function: int mpn_cmp (mp_srcptr src1_ptr , mp_srcptr src2_ptr ,
mp_size size)

Compare {src1_ptr, size } and {src2_ptr, size } and return a
positive value if src1 > src2, 0 of they are equal, and a negative
value if src1 < src2.

gmp.info 18 / 29

1.17 gmp.info/BSD Compatible Functions

Berkeley MP Compatible Functions

These functions are intended to be fully compatible with the
Berkeley MP library which is available on many BSD derived U*ix systems.

The original Berkeley MP library has a usage restriction: you cannot
use the same variable as both source and destination in a single
function call. The compatible functions in GNU MP do not share this
restriction--inputs and outputs may overlap.

It is not recommended that new programs are written using these
functions. Apart from the incomplete set of functions, the interface
for initializing MINT objects is more error prone, and the pow function
collides with pow in libm.a.

Include the header mp.h to get the definition of the necessary types
and functions. If you are on a BSD derived system, make sure to
include GNU mp.h if you are going to link the GNU libmp.a to you
program. This means that you probably need to give the -I<dir> option
to the compiler, where <dir> is the directory where you have GNU mp.h.

- Function: MINT * itom (signed short int initial_value)
Allocate an integer consisting of a MINT object and dynamic limb
space. Initialize the integer to initial_value. Return a pointer
to the MINT object.

- Function: MINT * xtom (char *initial_value)
Allocate an integer consisting of a MINT object and dynamic limb
space. Initialize the integer from initial_value, a hexadecimal,
’\0’-terminate C string. Return a pointer to the MINT object.

- Function: void move (MINT *src , MINT *dest)
Set dest to src by copying. Both variables must be previously
initialized.

- Function: void madd (MINT *src_1 , MINT *src_2 , MINT *destination)
Add src_1 and src_2 and put the sum in destination.

- Function: void msub (MINT *src_1 , MINT *src_2 , MINT *destination)
Subtract src_2 from src_1 and put the difference in destination.

- Function: void mult (MINT *src_1 , MINT *src_2 , MINT *destination)
Multiply src_1 and src_2 and put the product in destination.

- Function: void mdiv (MINT *dividend , MINT *divisor , MINT *quotient
, MINT *remainder)

- Function: void sdiv (MINT *dividend , signed short int divisor ,
MINT *quotient , signed short int *remainder)

Set quotient to dividend / divisor, and remainder to dividend mod

gmp.info 19 / 29

divisor. The quotient is rounded towards zero; the remainder has
the same sign as the dividend.

Some implementations of this function return a remainder whose
sign is inverted if the divisor is negative. Such a definition
makes little sense from a mathematical point of view. GNU MP
might be considered incompatible with the traditional MP in this
respect.

- Function: void msqrt (MINT *operand , MINT *root , MINT *remainder)
Set root to the square root of operand, as with mpz_sqrt. Set
remainder to operand-root*root, (i.e. zero if operand is a perfect
square).

- Function: void pow (MINT *base , MINT *exp , MINT *mod , MINT *dest)
Set dest to (base raised to exp) modulo mod.

- Function: void rpow (MINT *base , signed short int exp , MINT *dest)
Set dest to base raised to exp.

- Function: void gcd (MINT *operand1 , MINT *operand2 , MINT *res)
Set res to the greatest common divisor of operand1 and operand2.

- Function: int mcmp (MINT *operand1 , MINT *operand2)
Compare operand1 and operand2. Return a positive value if
operand1 > operand2, zero if operand1 = operand2, and a
negative value if operand1 < operand2.

- Function: void min (MINT *dest)
Input a decimal string from stdin, and put the read integer in
dest. SPC and TAB are allowed in the number string, and are
ignored.

- Function: void mout (MINT *src)
Output src to stdout, as a decimal string. Also output a newline.

- Function: char * mtox (MINT *operand)
Convert operand to a hexadecimal string, and return a pointer to
the string. The returned string is allocated using the default
memory allocation function, malloc by default. (See

Initialization
,

for an explanation of the memory allocation in MP).

- Function: void mfree (MINT *operand)
De-allocate, the space used by operand. This function should only
be passed a value returned by itom or xtom.

1.18 gmp.info/Miscellaneous Functions

Miscellaneous Functions

gmp.info 20 / 29

- Function: void mpz_random (MP_INT *random_integer , mp_size max_size
)

Generate a random integer of at most max_size limbs. The generated
random number doesn’t satisfy any particular requirements of
randomness.

- Function: void mpz_random2 (MP_INT *random_integer , mp_size
max_size)

Generate a random integer of at most max_size limbs, with long
strings of zeros and ones in the binary representation. Useful for
testing functions and algorithms, since this kind of random
numbers have proven to be more likely to trigger bugs.

- Function: size_t mpz_size (MP_INT *integer)
Return the size of integer measured in number of limbs. If
integer is zero, the returned value will be zero, if integer
has one limb, the returned value will be one, etc. (See

Nomenclature
, for an explanation of the concept limb.)

- Function: size_t mpz_sizeinbase (MP_INT *integer , int base)
Return the size of integer measured in number of digits in base
base. The base may vary from 2 to 36. The returned value will be
exact or 1 too big. If base is a power of 2, the returned value
will always be exact.

This function is useful in order to allocate the right amount of
space before converting integer to a string. The right amount of
allocation is normally two more than the value returned by
mpz_sizeinbase (one extra for a minus sign and one for the
terminating ’\0’).

1.19 gmp.info/Custom Allocation

Custom Allocation
=================

By default, the initialization functions use malloc, realloc, and
free to do their work. If malloc or realloc fails, the MP package
terminates execution after a printing fatal error message on standard
error.

In some applications, you may wish to allocate memory in other ways,
or you may not want to have a fatal error when there is no more memory
available. To accomplish this, you can specify alternative functions
for allocating and de-allocating memory. Use mp_set_memory_functions
to do this.

mp_set_memory_functions has three arguments, allocate_function,
reallocate_function, and deallocate_function, in that order. If an
argument is NULL, the corresponding default function is retained.

gmp.info 21 / 29

The functions you supply should fit the following declarations:

void * allocate_function (size_t alloc_size)
This function should return a pointer to newly allocated space
with at least alloc_size storage units.

void * reallocate_function (void *ptr, size_t old_size, size_t new_size)
This function should return a pointer to newly allocated space of
at least new_size storage units, after copying the first old_size
storage units from ptr. It should also de-allocate the space at
ptr.

You can assume that the space at ptr was formely returned from
allocate_function or reallocate_function, for a request for
old_size storage units.

void deallocate_function (void *ptr, size_t size)
De-allocate the space pointed to by ptr.

You can assume that the space at ptr was formely returned from
allocate_function or reallocate_function, for a request for size
storage units.

(A storage unit is the unit in which the sizeof operator returns the
size of an object, normally an 8 bit byte.)

NOTE: call mp_set_memory_functions only before calling any other MP
functions. Otherwise, the user-defined allocation functions may be
asked to re-allocate or de-allocate something previously allocated by
the default allocation functions.

1.20 gmp.info/Reporting Bugs

Reporting Bugs

If you think you have found a bug in the GNU MP library, please
investigate it and report it. We have made this library available to
you, and it is not to ask too much from you, to ask you to report the
bugs that you find.

Please make sure that the bug is really in the GNU MP library.

You have to send us a test case that makes it possible for us to
reproduce the bug.

You also have to explain what is wrong; if you get a crash, or if the
results printed are not good and in that case, in what way.

Make sure that the bug report includes all information you would
need to fix this kind of bug for someone else. Think twice.

If your bug report is good, we will do our best to help you to get a
corrected version of the library; if the bug report is poor, we won’t do

gmp.info 22 / 29

anything about it (aside of chiding you to send better bug reports).

Send your bug report to: tege@gnu.ai.mit.edu.

If you think something in this manual is unclear, or downright
incorrect, or if the language needs to be improved, please send a note
to the same address.

1.21 gmp.info/References

References

* Donald E. Knuth, "The Art of Computer Programming", vol 2,
"Seminumerical Algorithms", 2nd edition, Addison-Wesley, 1981.

* John D. Lipson, "Elements of Algebra and Algebraic Computing", The
Benjamin Cummins Publishing Company Inc, 1981.

* Richard M. Stallman, "Using and Porting GCC", Free Software
Foundation, 1993.

* Peter L. Montgomery, "Modular Multiplication Without Trial
Division", Mathematics of Computation, volume 44, number 170,
April 1985.

1.22 gmp.info/Concept Index

Concept Index

Arithmetic functions
Integer Arithmetic

BSD MP compatible functions
BSD Compatible Functions

Conditions for copying GNU MP
Copying

Conversion functions
Converting Integers

Copying conditions
Copying

I/O functions
I-O of Integers

gmp.info 23 / 29

Initialization and assignment functions, combined
Simultaneous Integer Init & Assign

Input and output functions
I-O of Integers

integer
Nomenclature

Integer arithmetic functions
Integer Arithmetic

Integer assignment functions
Assigning Integers

Integer functions
Integer Functions

Introduction
Intro

limb
Nomenclature

Logical functions
Logic on Integers

Low-level functions
Low-level Functions

Miscellaneous functions
Miscellaneous Functions

nomenclature
Nomenclature

Output functions
I-O of Integers

Overview
Intro

rational number
Nomenclature

Rational number functions
Rational Number Functions

Reporting bugs
Reporting Bugs

1.23 gmp.info/Function Index

gmp.info 24 / 29

Function and Type Index

MP_INT
Nomenclature

MP_RAT
Nomenclature

gcd
BSD Compatible Functions

itom
BSD Compatible Functions

madd
BSD Compatible Functions

mcmp
BSD Compatible Functions

mdiv
BSD Compatible Functions

mfree
BSD Compatible Functions

min
BSD Compatible Functions

mout
BSD Compatible Functions

move
BSD Compatible Functions

mpn_add
Low-level Functions

mpn_cmp
Low-level Functions

mpn_div
Low-level Functions

mpn_lshift
Low-level Functions

mpn_mul
Low-level Functions

mpn_rshift
Low-level Functions

gmp.info 25 / 29

mpn_rshiftci
Low-level Functions

mpn_sub
Low-level Functions

mpq_add
Rational Number Functions

mpq_clear
Rational Number Functions

mpq_cmp
Rational Number Functions

mpq_div
Rational Number Functions

mpq_get_den
Rational Number Functions

mpq_get_num
Rational Number Functions

mpq_init
Rational Number Functions

mpq_inv
Rational Number Functions

mpq_mul
Rational Number Functions

mpq_neg
Rational Number Functions

mpq_set
Rational Number Functions

mpq_set_den
Rational Number Functions

mpq_set_num
Rational Number Functions

mpq_set_si
Rational Number Functions

mpq_set_ui
Rational Number Functions

mpq_sub
Rational Number Functions

mpz_abs
Integer Arithmetic

gmp.info 26 / 29

mpz_add
Integer Arithmetic

mpz_add_ui
Integer Arithmetic

mpz_and
Logic on Integers

mpz_array_init
Initializing Integers

mpz_clear
Initializing Integers

mpz_cmp
Integer Arithmetic

mpz_cmp_si
Integer Arithmetic

mpz_cmp_ui
Integer Arithmetic

mpz_com
Logic on Integers

mpz_div
Integer Arithmetic

mpz_divmod
Integer Arithmetic

mpz_divmod_ui
Integer Arithmetic

mpz_div_2exp
Integer Arithmetic

mpz_div_ui
Integer Arithmetic

mpz_fac_ui
Integer Arithmetic

mpz_gcd
Integer Arithmetic

mpz_gcdext
Integer Arithmetic

mpz_get_si
Converting Integers

mpz_get_str
Converting Integers

gmp.info 27 / 29

mpz_get_ui
Converting Integers

mpz_init
Initializing Integers

mpz_init_set
Simultaneous Integer Init & Assign

mpz_init_set_si
Simultaneous Integer Init & Assign

mpz_init_set_str
Simultaneous Integer Init & Assign

mpz_init_set_ui
Simultaneous Integer Init & Assign

mpz_inp_raw
I-O of Integers

mpz_inp_str
I-O of Integers

mpz_ior
Logic on Integers

mpz_mdiv
Integer Arithmetic

mpz_mdivmod
Integer Arithmetic

mpz_mdivmod_ui
Integer Arithmetic

mpz_mdiv_ui
Integer Arithmetic

mpz_mmod
Integer Arithmetic

mpz_mmod_ui
Integer Arithmetic

mpz_mod
Integer Arithmetic

mpz_mod_2exp
Integer Arithmetic

mpz_mod_ui
Integer Arithmetic

mpz_mul
Integer Arithmetic

gmp.info 28 / 29

mpz_mul_2exp
Integer Arithmetic

mpz_mul_ui
Integer Arithmetic

mpz_neg
Integer Arithmetic

mpz_out_raw
I-O of Integers

mpz_out_str
I-O of Integers

mpz_perfect_square_p
Integer Arithmetic

mpz_powm
Integer Arithmetic

mpz_powm_ui
Integer Arithmetic

mpz_pow_ui
Integer Arithmetic

mpz_probab_prime_p
Integer Arithmetic

mpz_random
Miscellaneous Functions

mpz_random2
Miscellaneous Functions

mpz_set
Assigning Integers

mpz_set_si
Assigning Integers

mpz_set_str
Assigning Integers

mpz_set_ui
Assigning Integers

mpz_size
Miscellaneous Functions

mpz_sizeinbase
Miscellaneous Functions

mpz_sqrt
Integer Arithmetic

gmp.info 29 / 29

mpz_sqrtrem
Integer Arithmetic

mpz_sub
Integer Arithmetic

mpz_sub_ui
Integer Arithmetic

mpz_xor
Logic on Integers

mp_set_memory_functions
Custom Allocation

msqrt
BSD Compatible Functions

msub
BSD Compatible Functions

mtox
BSD Compatible Functions

mult
BSD Compatible Functions

pow
BSD Compatible Functions

rpow
BSD Compatible Functions

sdiv
BSD Compatible Functions

xtom
BSD Compatible Functions

_mpz_realloc
Initializing Integers

	gmp.info
	gmp.info
	gmp.info/Copying
	gmp.info/Intro
	gmp.info/Nomenclature
	gmp.info/Thanks
	gmp.info/Initialization
	gmp.info/Integer Functions
	gmp.info/Initializing Integers
	gmp.info/Assigning Integers
	gmp.info/Simultaneous Integer Init & Assign
	gmp.info/Converting Integers
	gmp.info/Integer Arithmetic
	gmp.info/Logic on Integers
	gmp.info/I-O of Integers
	gmp.info/Rational Number Functions
	gmp.info/Low-level Functions
	gmp.info/BSD Compatible Functions
	gmp.info/Miscellaneous Functions
	gmp.info/Custom Allocation
	gmp.info/Reporting Bugs
	gmp.info/References
	gmp.info/Concept Index
	gmp.info/Function Index

