
gcc.info

gcc.info ii

COLLABORATORS

TITLE :

gcc.info

ACTION NAME DATE SIGNATURE

WRITTEN BY January 9, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

gcc.info iii

Contents

1 gcc.info 1

1.1 gcc.info . 1

1.2 gcc.info/Copying . 2

1.3 gcc.info/Contributors . 9

1.4 gcc.info/Boycott . 11

1.5 gcc.info/G++ and GCC . 13

1.6 gcc.info/Invoking GCC . 14

1.7 gcc.info/Option Summary . 16

1.8 gcc.info/Overall Options . 20

1.9 gcc.info/Invoking G++ . 22

1.10 gcc.info/C Dialect Options . 23

1.11 gcc.info/C++ Dialect Options . 27

1.12 gcc.info/Warning Options . 30

1.13 gcc.info/Debugging Options . 36

1.14 gcc.info/Optimize Options . 40

1.15 gcc.info/Preprocessor Options . 44

1.16 gcc.info/Assembler Options . 47

1.17 gcc.info/Link Options . 47

1.18 gcc.info/Directory Options . 49

1.19 gcc.info/Target Options . 51

1.20 gcc.info/Submodel Options . 52

1.21 gcc.info/M680x0 Options . 53

1.22 gcc.info/VAX Options . 55

1.23 gcc.info/SPARC Options . 55

1.24 gcc.info/Convex Options . 56

1.25 gcc.info/AMD29K Options . 57

1.26 gcc.info/M88K Options . 58

1.27 gcc.info/RS-6000 and PowerPC Options . 61

1.28 gcc.info/RT Options . 63

1.29 gcc.info/MIPS Options . 64

gcc.info iv

1.30 gcc.info/i386 Options . 66

1.31 gcc.info/HPPA Options . 67

1.32 gcc.info/Intel 960 Options . 68

1.33 gcc.info/DEC Alpha Options . 69

1.34 gcc.info/Clipper Options . 70

1.35 gcc.info/System V Options . 70

1.36 gcc.info/Code Gen Options . 70

1.37 gcc.info/Environment Variables . 74

1.38 gcc.info/Running Protoize . 75

1.39 gcc.info/Installation . 78

1.40 gcc.info/Other Dir . 92

1.41 gcc.info/Cross-Compiler . 93

1.42 gcc.info/Steps of Cross . 94

1.43 gcc.info/Configure Cross . 94

1.44 gcc.info/Tools and Libraries . 95

1.45 gcc.info/Cross Runtime . 96

1.46 gcc.info/Cross Headers . 97

1.47 gcc.info/Build Cross . 98

1.48 gcc.info/PA Install . 99

1.49 gcc.info/Sun Install . 100

1.50 gcc.info/3b1 Install . 101

1.51 gcc.info/Unos Install . 101

1.52 gcc.info/VMS Install . 102

1.53 gcc.info/WE32K Install . 105

1.54 gcc.info/MIPS Install . 106

1.55 gcc.info/Collect2 . 107

1.56 gcc.info/Header Dirs . 109

1.57 gcc.info/C Extensions . 109

1.58 gcc.info/Statement Exprs . 112

1.59 gcc.info/Local Labels . 113

1.60 gcc.info/Labels as Values . 114

1.61 gcc.info/Nested Functions . 115

1.62 gcc.info/Constructing Calls . 117

1.63 gcc.info/Naming Types . 117

1.64 gcc.info/Typeof . 118

1.65 gcc.info/Lvalues . 119

1.66 gcc.info/Conditionals . 120

1.67 gcc.info/Long Long . 121

1.68 gcc.info/Complex . 121

gcc.info v

1.69 gcc.info/Zero Length . 122

1.70 gcc.info/Variable Length . 123

1.71 gcc.info/Macro Varargs . 124

1.72 gcc.info/Subscripting . 125

1.73 gcc.info/Pointer Arith . 125

1.74 gcc.info/Initializers . 125

1.75 gcc.info/Constructors . 126

1.76 gcc.info/Labeled Elements . 127

1.77 gcc.info/Case Ranges . 128

1.78 gcc.info/Cast to Union . 129

1.79 gcc.info/Function Attributes . 129

1.80 gcc.info/Function Prototypes . 132

1.81 gcc.info/Dollar Signs . 133

1.82 gcc.info/Character Escapes . 133

1.83 gcc.info/Alignment . 133

1.84 gcc.info/Variable Attributes . 134

1.85 gcc.info/Inline . 135

1.86 gcc.info/Extended Asm . 137

1.87 gcc.info/Asm Labels . 141

1.88 gcc.info/Explicit Reg Vars . 141

1.89 gcc.info/Global Reg Vars . 142

1.90 gcc.info/Local Reg Vars . 143

1.91 gcc.info/Alternate Keywords . 144

1.92 gcc.info/Incomplete Enums . 145

1.93 gcc.info/Function Names . 145

1.94 gcc.info/C++ Extensions . 146

1.95 gcc.info/Naming Results . 146

1.96 gcc.info/Min and Max . 148

1.97 gcc.info/Destructors and Goto . 149

1.98 gcc.info/C++ Interface . 149

1.99 gcc.info/Trouble . 151

1.100gcc.info/Actual Bugs . 152

1.101gcc.info/Installation Problems . 152

1.102gcc.info/Cross-Compiler Problems . 158

1.103gcc.info/Interoperation . 158

1.104gcc.info/External Bugs . 164

1.105gcc.info/Incompatibilities . 165

1.106gcc.info/Fixed Headers . 168

1.107gcc.info/Disappointments . 169

gcc.info vi

1.108gcc.info/C++ Misunderstandings . 171

1.109gcc.info/Static Definitions . 171

1.110gcc.info/Temporaries . 172

1.111gcc.info/Protoize Caveats . 173

1.112gcc.info/Non-bugs . 174

1.113gcc.info/Warnings and Errors . 178

1.114gcc.info/Bugs . 179

1.115gcc.info/Bug Criteria . 179

1.116gcc.info/Bug Lists . 181

1.117gcc.info/Bug Reporting . 181

1.118gcc.info/Sending Patches . 186

1.119gcc.info/Service . 188

1.120gcc.info/VMS . 188

1.121gcc.info/Include Files and VMS . 188

1.122gcc.info/Global Declarations . 190

1.123gcc.info/VMS Misc . 192

1.124gcc.info/Portability . 193

1.125gcc.info/Interface . 194

1.126gcc.info/Passes . 196

1.127gcc.info/RTL . 202

1.128gcc.info/RTL Objects . 203

1.129gcc.info/Accessors . 204

1.130gcc.info/Flags . 207

1.131gcc.info/Machine Modes . 211

1.132gcc.info/Constants . 215

1.133gcc.info/Regs and Memory . 217

1.134gcc.info/Arithmetic . 221

1.135gcc.info/Comparisons . 224

1.136gcc.info/Bit Fields . 226

1.137gcc.info/Conversions . 226

1.138gcc.info/RTL Declarations . 228

1.139gcc.info/Side Effects . 228

1.140gcc.info/Incdec . 233

1.141gcc.info/Assembler . 234

1.142gcc.info/Insns . 234

1.143gcc.info/Calls . 242

1.144gcc.info/Sharing . 243

1.145gcc.info/Reading RTL . 245

1.146gcc.info/Machine Desc . 245

gcc.info vii

1.147gcc.info/Patterns . 246

1.148gcc.info/Example . 248

1.149gcc.info/RTL Template . 248

1.150gcc.info/Output Template . 253

1.151gcc.info/Output Statement . 254

1.152gcc.info/Constraints . 256

1.153gcc.info/Simple Constraints . 256

1.154gcc.info/Multi-Alternative . 261

1.155gcc.info/Class Preferences . 262

1.156gcc.info/Modifiers . 263

1.157gcc.info/Machine Constraints . 264

1.158gcc.info/No Constraints . 270

1.159gcc.info/Standard Names . 271

1.160gcc.info/Pattern Ordering . 282

1.161gcc.info/Dependent Patterns . 282

1.162gcc.info/Jump Patterns . 283

1.163gcc.info/Insn Canonicalizations . 285

1.164gcc.info/Peephole Definitions . 287

1.165gcc.info/Expander Definitions . 290

1.166gcc.info/Insn Splitting . 293

1.167gcc.info/Insn Attributes . 296

1.168gcc.info/Defining Attributes . 296

1.169gcc.info/Expressions . 297

1.170gcc.info/Tagging Insns . 300

1.171gcc.info/Attr Example . 302

1.172gcc.info/Insn Lengths . 303

1.173gcc.info/Constant Attributes . 304

1.174gcc.info/Delay Slots . 305

1.175gcc.info/Function Units . 306

1.176gcc.info/Target Macros . 308

1.177gcc.info/Driver . 310

1.178gcc.info/Run-time Target . 314

1.179gcc.info/Storage Layout . 316

1.180gcc.info/Type Layout . 322

1.181gcc.info/Registers . 325

1.182gcc.info/Register Basics . 325

1.183gcc.info/Allocation Order . 327

1.184gcc.info/Values in Registers . 328

1.185gcc.info/Leaf Functions . 329

gcc.info viii

1.186gcc.info/Stack Registers . 331

1.187gcc.info/Obsolete Register Macros . 331

1.188gcc.info/Register Classes . 332

1.189gcc.info/Stack and Calling . 338

1.190gcc.info/Frame Layout . 339

1.191gcc.info/Frame Registers . 340

1.192gcc.info/Elimination . 342

1.193gcc.info/Stack Arguments . 344

1.194gcc.info/Register Arguments . 346

1.195gcc.info/Scalar Return . 349

1.196gcc.info/Aggregate Return . 351

1.197gcc.info/Caller Saves . 352

1.198gcc.info/Function Entry . 353

1.199gcc.info/Profiling . 356

1.200gcc.info/Varargs . 357

1.201gcc.info/Trampolines . 359

1.202gcc.info/Library Calls . 362

1.203gcc.info/Addressing Modes . 365

1.204gcc.info/Condition Code . 368

1.205gcc.info/Costs . 370

1.206gcc.info/Sections . 373

1.207gcc.info/PIC . 375

1.208gcc.info/Assembler Format . 376

1.209gcc.info/File Framework . 377

1.210gcc.info/Data Output . 378

1.211gcc.info/Uninitialized Data . 380

1.212gcc.info/Label Output . 381

1.213gcc.info/Initialization . 384

1.214gcc.info/Macros for Initialization . 387

1.215gcc.info/Instruction Output . 388

1.216gcc.info/Dispatch Tables . 391

1.217gcc.info/Alignment Output . 392

1.218gcc.info/Debugging Info . 392

1.219gcc.info/All Debuggers . 393

1.220gcc.info/DBX Options . 394

1.221gcc.info/DBX Hooks . 396

1.222gcc.info/File Names and DBX . 397

1.223gcc.info/SDB and DWARF . 398

1.224gcc.info/Cross-compilation . 399

1.225gcc.info/Misc . 401

1.226gcc.info/Config . 407

1.227gcc.info/Index . 410

gcc.info 1 / 506

Chapter 1

gcc.info

1.1 gcc.info

Introduction

This manual documents how to run, install and port the GNU compiler,
as well as its new features and incompatibilities, and how to report
bugs. It corresponds to GNU CC version 2.5.

Copying
GNU General Public License says

how you can copy and share GNU CC.

Contributors
People who have contributed to GNU CC.

Boycott
Protect your freedom--fight "look and feel".

G++ and GCC
You can compile C or C++ programs.

Invoking GCC
Command options supported by gcc.

Installation
How to configure, compile and install GNU CC.

C Extensions
GNU extensions to the C language family.

C++ Extensions
GNU extensions to the C++ language.

Trouble
If you have trouble installing GNU CC.

gcc.info 2 / 506

Bugs
How, why and where to report bugs.

Service
How to find suppliers of support for GNU CC.

VMS
Using GNU CC on VMS.

Portability
Goals of GNU CC’s portability features.

Interface
Function-call interface of GNU CC output.

Passes
Order of passes, what they do, and what each file is ←↩

for.

RTL
The intermediate representation that most passes ←↩

work on.

Machine Desc
How to write machine description instruction patterns.

Target Macros
How to write the machine description C macros.

Config
Writing the xm-machine.h file.

Index
Index of concepts and symbol names.

1.2 gcc.info/Copying

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble
========

gcc.info 3 / 506

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software,
and (2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a
notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program",
below, refers to any such program or work, and a "work based on
the Program" means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or

gcc.info 4 / 506

translated into another language. (Hereinafter, translation is
included without limitation in the term "modification".) Each
licensee is addressed as "you".

Activities other than copying, distribution and modification are
not covered by this License; they are outside its scope. The act
of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on
the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of
this License along with the Program.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange
for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that
in whole or in part contains or is derived from the Program
or any part thereof, to be licensed as a whole at no charge
to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display
an announcement including an appropriate copyright notice and
a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the
program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program
itself is interactive but does not normally print such an
announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the
Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate
works. But when you distribute the same sections as part of a
whole which is a work based on the Program, the distribution of
the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each

gcc.info 5 / 506

and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or
contest your rights to work written entirely by you; rather, the
intent is to exercise the right to control the distribution of
derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the
Program with the Program (or with a work based on the Program) on
a volume of a storage or distribution medium does not bring the
other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms
of Sections 1 and 2 above provided that you also do one of the
following:

a. Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for
software interchange; or,

b. Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete
source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable.
However, as a special exception, the source code distributed need
not include anything that is normally distributed (in either
source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights,

gcc.info 6 / 506

from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify
or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work
based on the Program), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the rights
granted herein. You are not responsible for enforcing compliance
by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent
issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who
receive copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable
under any particular circumstance, the balance of the section is
intended to apply and the section as a whole is intended to apply
in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of
any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed
to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces,
the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation

gcc.info 7 / 506

excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of
this License.

9. The Free Software Foundation may publish revised and/or new
versions of the General Public License from time to time. Such
new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies a version number of this License which applies
to it and "any later version", you have the option of following
the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose
any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the
author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision
will be guided by the two goals of preserving the free status of
all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs
===

If you develop a new program, and you want it to be of the greatest

gcc.info 8 / 506

possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper
mail.

If the program is interactive, make it output a short notice like
this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the
appropriate parts of the General Public License. Of course, the
commands you use may be called something other than show w and show c;
they could even be mouse-clicks or menu items--whatever suits your
program.

You should also get your employer (if you work as a programmer) or
your school, if any, to sign a "copyright disclaimer" for the program,
if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary

gcc.info 9 / 506

applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

1.3 gcc.info/Contributors

Contributors to GNU CC

In addition to Richard Stallman, several people have written parts
of GNU CC.

* The idea of using RTL and some of the optimization ideas came from
the program PO written at the University of Arizona by Jack
Davidson and Christopher Fraser. See "Register Allocation and
Exhaustive Peephole Optimization", Software Practice and
Experience 14 (9), Sept. 1984, 857-866.

* Paul Rubin wrote most of the preprocessor.

* Leonard Tower wrote parts of the parser, RTL generator, and RTL
definitions, and of the Vax machine description.

* Ted Lemon wrote parts of the RTL reader and printer.

* Jim Wilson implemented loop strength reduction and some other loop
optimizations.

* Nobuyuki Hikichi of Software Research Associates, Tokyo,
contributed the support for the Sony NEWS machine.

* Charles LaBrec contributed the support for the Integrated Solutions
68020 system.

* Michael Tiemann of Cygnus Support wrote the front end for C++, as
well as the support for inline functions and instruction
scheduling. Also the descriptions of the National Semiconductor
32000 series cpu, the SPARC cpu and part of the Motorola 88000 cpu.

* Jan Stein of the Chalmers Computer Society provided support for
Genix, as well as part of the 32000 machine description.

* Randy Smith finished the Sun FPA support.

* Robert Brown implemented the support for Encore 32000 systems.

* David Kashtan of SRI adapted GNU CC to the Vomit-Making System
(VMS).

* Alex Crain provided changes for the 3b1.

* Greg Satz and Chris Hanson assisted in making GNU CC work on HP-UX
for the 9000 series 300.

* William Schelter did most of the work on the Intel 80386 support.

gcc.info 10 / 506

* Christopher Smith did the port for Convex machines.

* Paul Petersen wrote the machine description for the Alliant FX/8.

* Alain Lichnewsky ported GNU CC to the Mips cpu.

* Devon Bowen, Dale Wiles and Kevin Zachmann ported GNU CC to the
Tahoe.

* Jonathan Stone wrote the machine description for the Pyramid
computer.

* Gary Miller ported GNU CC to Charles River Data Systems machines.

* Richard Kenner of the New York University Ultracomputer Research
Laboratory wrote the machine descriptions for the AMD 29000, the
DEC Alpha, the IBM RT PC, and the IBM RS/6000 as well as the
support for instruction attributes. He also made changes to
better support RISC processors including changes to common
subexpression elimination, strength reduction, function calling
sequence handling, and condition code support, in addition to
generalizing the code for frame pointer elimination.

* Richard Kenner and Michael Tiemann jointly developed reorg.c, the
delay slot scheduler.

* Mike Meissner and Tom Wood of Data General finished the port to the
Motorola 88000.

* Masanobu Yuhara of Fujitsu Laboratories implemented the machine
description for the Tron architecture (specifically, the Gmicro).

* NeXT, Inc. donated the front end that supports the Objective C
language.

* James van Artsdalen wrote the code that makes efficient use of the
Intel 80387 register stack.

* Mike Meissner at the Open Software Foundation finished the port to
the MIPS cpu, including adding ECOFF debug support.

* Ron Guilmette implemented the protoize and unprotoize tools, the
support for Dwarf symbolic debugging information, and much of the
support for System V Release 4. He has also worked heavily on the
Intel 386 and 860 support.

* Torbjorn Granlund of the Swedish Institute of Computer Science
implemented multiply-by-constant optimization and better long long
support, and improved leaf function register allocation.

* Mike Stump implemented the support for Elxsi 64 bit CPU.

* John Wehle added the machine description for the Western Electric
32000 processor used in several 3b series machines (no relation to
the National Semiconductor 32000 processor).

gcc.info 11 / 506

* Holger Teutsch provided the support for the Clipper cpu.

* Kresten Krab Thorup wrote the run time support for the Objective C
language.

* Stephen Moshier contributed the floating point emulator that
assists in cross-compilation and permits support for floating
point numbers wider than 64 bits.

* David Edelsohn contributed the changes to RS/6000 port to make it
support the PowerPC and POWER2 architectures.

* Steve Chamberlain wrote the support for the Hitachi SH processor.

* Peter Schauer wrote the code to allow debugging to work on the
Alpha.

1.4 gcc.info/Boycott

Protect Your Freedom--Fight "Look And Feel"

This section is a political message from the League for Programming
Freedom to the users of GNU CC. It is included here as an
expression of support for the League on the part of the Free
Software Foundation.

Apple and Lotus are trying to create a new form of legal monopoly: a
copyright on a class of user interfaces. These monopolies would cause
serious problems for users and developers of computer software and
systems. Xerox, too, has tried to make a monopoly for itself on window
systems; their suit against Apple was thrown out on a technicality, but
Xerox has not said anything to indicate it wouldn’t try again.

Until a few years ago, the law seemed clear: no one could restrict
others from using a user interface; programmers were free to implement
any interface they chose. Imitating interfaces, sometimes with changes,
was standard practice in the computer field. The interfaces we know
evolved gradually in this way; for example, the Macintosh user interface
drew ideas from the Xerox interface, which in turn drew on work done at
Stanford and SRI. 1-2-3 imitated VisiCalc, and dBase imitated a
database program from JPL.

Most computer companies, and nearly all computer users, were happy
with this state of affairs. The companies that are suing say it does
not offer "enough incentive" to develop their products, but they must
have considered it "enough" when they made their decision to do so. It
seems they are not satisfied with the opportunity to continue to compete
in the marketplace--not even with a head start.

If companies like Xerox, Lotus, and Apple are permitted to make law
through the courts, the precedent will hobble the software industry:

* Gratuitous incompatibilities will burden users. Imagine if each

gcc.info 12 / 506

car manufacturer had to arrange the pedals in a different order.

* Software will become and remain more expensive. Users will be
"locked in" to proprietary interfaces, for which there is no real
competition.

* Large companies have an unfair advantage wherever lawsuits become
commonplace. Since they can easily afford to sue, they can
intimidate small companies with threats even when they don’t
really have a case.

* User interface improvements will come slower, since incremental
evolution through creative imitation will no longer be permitted.

* Even Apple, etc., will find it harder to make improvements if they
can no longer adapt the good ideas that others introduce, for fear
of weakening their own legal positions. Some users suggest that
this stagnation may already have started.

* If you use GNU software, you might find it of some concern that
user interface copyright will make it hard for the Free Software
Foundation to develop programs compatible with the interfaces that
you already know.

To protect our freedom from lawsuits like these, a group of
programmers and users have formed a new grass-roots political
organization, the League for Programming Freedom.

The purpose of the League is to oppose new monopolistic practices
such as user-interface copyright and software patents; it calls for a
return to the legal policies of the recent past, in which these
practices were not allowed. The League is not concerned with free
software as an issue, and not affiliated with the Free Software
Foundation.

The League’s membership rolls include John McCarthy, inventor of
Lisp, Marvin Minsky, founder of the Artificial Intelligence lab, Guy L.
Steele, Jr., author of well-known books on Lisp and C, as well as
Richard Stallman, the developer of GNU CC. Please join and add your
name to the list. Membership dues in the League are $42 per year for
programmers, managers and professionals; $10.50 for students; $21 for
others.

The League needs both activist members and members who only pay their
dues.

To join, or for more information, phone (617) 243-4091 or write to:

League for Programming Freedom
1 Kendall Square #143
P.O. Box 9171
Cambridge, MA 02139

You can also send electronic mail to league@prep.ai.mit.edu.

Here are some suggestions from the League for things you can do to
protect your freedom to write programs:

gcc.info 13 / 506

* Don’t buy from Xerox, Lotus or Apple. Buy from their competitors
or from the defendants they are suing.

* Don’t develop software to work with the systems made by these
companies.

* Port your existing software to competing systems, so that you
encourage users to switch.

* Write letters to company presidents to let them know their conduct
is unacceptable.

* Tell your friends and colleagues about this issue and how it
threatens to ruin the computer industry.

* Above all, don’t work for the look-and-feel plaintiffs, and don’t
accept contracts from them.

* Write to Congress to explain the importance of this issue.

House Subcommittee on Intellectual Property
2137 Rayburn Bldg
Washington, DC 20515

Senate Subcommittee on Patents, Trademarks and Copyrights
United States Senate
Washington, DC 20510

(These committees have received lots of mail already; let’s give
them even more.)

Express your opinion! You can make a difference.

1.5 gcc.info/G++ and GCC

Compile C, C++, or Objective C

The C, C++, and Objective C versions of the compiler are integrated;
the GNU C compiler can compile programs written in C, C++, or Objective
C.

"GCC" is a common shorthand term for the GNU C compiler. This is
both the most general name for the compiler, and the name used when the
emphasis is on compiling C programs.

When referring to C++ compilation, it is usual to call the compiler
"G++". Since there is only one compiler, it is also accurate to call
it "GCC" no matter what the language context; however, the term "G++"
is more useful when the emphasis is on compiling C++ programs.

G++ is a compiler, not merely a preprocessor. G++ builds object
code directly from your C++ program source. There is no intermediate C

gcc.info 14 / 506

version of the program. (By contrast, for example, some other
implementations use a program that generates a C program from your C++
source.) Avoiding an intermediate C representation of the program means
that you get better object code, and better debugging information. The
GNU debugger, GDB, works with this information in the object code to
give you comprehensive C++ source-level editing capabilities (see
C and C++).

1.6 gcc.info/Invoking GCC

GNU CC Command Options

When you invoke GNU CC, it normally does preprocessing, compilation,
assembly and linking. The "overall options" allow you to stop this
process at an intermediate stage. For example, the -c option says not
to run the linker. Then the output consists of object files output by
the assembler.

Other options are passed on to one stage of processing. Some options
control the preprocessor and others the compiler itself. Yet other
options control the assembler and linker; most of these are not
documented here, since you rarely need to use any of them.

Most of the command line options that you can use with GNU CC are
useful for C programs; when an option is only useful with another
language (usually C++), the explanation says so explicitly. If the
description for a particular option does not mention a source language,
you can use that option with all supported languages.

See
Compiling C++ Programs
, for a summary of special options for

compiling C++ programs.

The gcc program accepts options and file names as operands. Many
options have multiletter names; therefore multiple single-letter options
may not be grouped: -dr is very different from -d -r.

You can mix options and other arguments. For the most part, the
order you use doesn’t matter. Order does matter when you use several
options of the same kind; for example, if you specify -L more than once,
the directories are searched in the order specified.

Many options have long names starting with -f or with -W--for
example, -fforce-mem, -fstrength-reduce, -Wformat and so on. Most of
these have both positive and negative forms; the negative form of -ffoo
would be -fno-foo. This manual documents only one of these two forms,
whichever one is not the default.

Option Summary
Brief list of all options, without explanations.

gcc.info 15 / 506

Overall Options
Controlling the kind of output:

an executable, object files, assembler files,
or preprocessed source.

Invoking G++
Compiling C++ programs.

C Dialect Options
Controlling the variant of C language compiled.

C++ Dialect Options
Variations on C++.

Warning Options
How picky should the compiler be?

Debugging Options
Symbol tables, measurements, and debugging dumps.

Optimize Options
How much optimization?

Preprocessor Options
Controlling header files and macro definitions.

Also, getting dependency information for Make.

Assembler Options
Passing options to the assembler.

Link Options
Specifying libraries and so on.

Directory Options
Where to find header files and libraries.

Where to find the compiler executable files.

Target Options
Running a cross-compiler, or an old version of GNU CC.

Submodel Options
Specifying minor hardware or convention variations,

such as 68010 vs 68020.

Code Gen Options
Specifying conventions for function calls, data layout

and register usage.

Environment Variables
Env vars that affect GNU CC.

Running Protoize
Automatically adding or removing function prototypes.

gcc.info 16 / 506

1.7 gcc.info/Option Summary

Option Summary
==============

Here is a summary of all the options, grouped by type. Explanations
are in the following sections.

Overall Options
See

Options Controlling the Kind of Output
.

-c -S -E -o file -pipe -v -x language

C Language Options
See

Options Controlling C Dialect
.

-ansi -fcond-mismatch -fno-asm -fno-builtin
-fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char -fwritable-strings
-traditional -traditional-cpp -trigraphs

C++ Language Options
See

Options Controlling C++ Dialect
.

-fall-virtual -fdollars-in-identifiers
-felide-constructors -fenum-int-equiv
-fexternal-templates -fmemoize-lookups
-fno-strict-prototype -fnonnull-objects
-fthis-is-variable -nostdinc++

Warning Options
See

Options to Request or Suppress Warnings
.

-fsyntax-only -pedantic -pedantic-errors
-w -W -Wall -Waggregate-return -Wcast-align
-Wcast-qual -Wchar-subscript -Wcomment -Wconversion
-Wenum-clash -Werror -Wformat -Wid-clash-len
-Wimplicit -Wimport -Winline -Wmissing-prototypes
-Wnested-externs -Woverloaded-virtual -Wparentheses
-Wpointer-arith -Wredundant-decls -Wreturn-type
-Wshadow -Wstrict-prototypes -Wswitch
-Wtemplate-debugging -Wtraditional -Wtrigraphs
-Wuninitialized -Wunused -Wwrite-strings

Debugging Options
See

Options for Debugging Your Program or GCC
.

-a -dletters -fpretend-float
-g -glevel -ggdb -gdwarf -gdwarf+
-gstabs -gstabs+ -gcoff -gxcoff -gxcoff+
-p -pg -save-temps -print-libgcc-file-name

gcc.info 17 / 506

Optimization Options
See

Options that Control Optimization
.

-fcaller-saves -fcse-follow-jumps -fcse-skip-blocks
-fdelayed-branch -fexpensive-optimizations
-ffast-math -ffloat-store -fforce-addr -fforce-mem
-finline-functions -fkeep-inline-functions
-fno-default-inline -fno-defer-pop -fno-function-cse
-fno-inline -fno-peephole -fomit-frame-pointer
-frerun-cse-after-loop -fschedule-insns
-fschedule-insns2 -fstrength-reduce -fthread-jumps
-funroll-all-loops -funroll-loops
-O -O2

Preprocessor Options
See

Options Controlling the Preprocessor
.

-Aassertion -C -dD -dM -dN
-Dmacro [=defn] -E -H
-idirafter dir
-include file -imacros file
-iprefix file -iwithprefix dir
-iwithprefixbefore dir
-M -MD -MM -MMD -nostdinc -P -trigraphs -Umacro

Assembler Option
See

Passing Options to the Assembler
.

-Wa,option

Linker Options
See

Options for Linking
.

object-file-name
-llibrary -nostartfiles -nostdlib
-static -shared -symbolic
-Wl,option -Xlinker option
-u symbol

Directory Options
See

Options for Directory Search
.

-Bprefix -Idir -I- -Ldir

Target Options
See

Target Options
.

-b machine -V version

Machine Dependent Options

gcc.info 18 / 506

See
Hardware Models and Configurations
.

M680x0 Options
-m68000 -m68020 -m68020-40 -m68030 -m68040 -m68881
-mbitfield -mc68000 -mc68020 -mfpa -mnobitfield
-mrtd -mshort -msoft-float

VAX Options
-mg -mgnu -munix

SPARC Options
-mepilogue -mfpu -mhard-float
-mno-fpu -mno-epilogue -msoft-float
-msparclite -mv8

Convex Options
-mc1 -mc2 -mc32 -mc34 -mc38
-margcount -mnoargcount
-mlong32 -mlong64
-mbolatile-cache -mvolatile-nocache

AMD29K Options
-m29000 -m29050 -mbw -mdw -mkernel-registers
-mlarge -mnbw -mnodw -mnormal -msmall -mstack-check
-muser-registers

M88K Options
-m88000 -m88100 -m88110 -mbig-pic
-mcheck-zero-division -mhandle-large-shift
-midentify-revision -mno-check-zero-division
-mno-ocs-debug-info -mno-ocs-frame-position
-mno-optimize-arg-area -mno-serialize-volatile
-mno-underscores -mocs-debug-info
-mocs-frame-position -moptimize-arg-area
-mserialize-volatile -mshort-data-num -msvr3
-msvr4 -mtrap-large-shift -muse-div-instruction
-mversion-03.00 -mwarn-passed-structs

RS/6000 Options and PowerPC
-mcpu=cpu type
-mpower -mno-power -mpower2 -pno-power2
-mpowerpc -mno-powerpc -mpowerpcsqr -mno-powerpcsqr
-mpowerpc64 -mno-powerpc64
-mnew-mnemonics -mno-new-mnemonics
-mnormal-toc -mminimal-toc -mno-fop-in-toc

RT Options
-mcall-lib-mul -mfp-arg-in-fpregs -mfp-arg-in-gregs
-mfull-fp-blocks -mhc-struct-return -min-line-mul
-mminimum-fp-blocks -mnohc-struct-return

MIPS Options
-mcpu=cpu type -mips2 -mips3 -mint64
-mlong64 -mlonglong128 -mmips-as -mgas -mrnames
-mno-rnames -mgpopt -mno-gpopt -mstats -mno-stats
-mmemcpy -mno-memcpy -mno-mips-tfile -mmips-tfile

gcc.info 19 / 506

-msoft-float -mhard-float -mabicalls -mno-abicalls
-mhalf-pic -mno-half-pic -mlong-calls -mno-long-calls
-G num -nocpp

i386 Options
-m486 -mno-486 -msoft-float -msvr3-shlib -mieee-fp
-mno-fp-ret-in-387

HPPA Options
-mpa-risc-1-0
-mpa-risc-1-1
-mlong-calls
-mdisable-fpregs
-mdisable-indexing
-mtrailing-colon

Intel 960 Options
-mcpu type
-mnumerics -msoft-float
-mcode-align -mno-code-align
-mleaf-procedures -mno-leaf-procedures
-mtail-call -mno-tail-call
-mcomplex-addr -mno-complex-addr
-mclean-linkage -mno-clean-linkage
-mic-compat -mic2.0-compat -mic3.0-compat
-masm-compat -mintel-asm
-mstrict-align -mno-strict-align
-mold-align -mno-old-align

DEC Alpha Options
-mfp-regs -mno-fp-regs -mno-soft-float
-msoft-float

Clipper Options
-mc300 -mc400

System V Options
-G -Qy -Qn -YP,paths -Ym,dir

Code Generation Options
See

Options for Code Generation Conventions
.

-fcall-saved-reg -fcall-used-reg
-ffixed-reg -finhibit-size-directive
-fno-common -fno-ident
-fno-gnu-linker -fpcc-struct-return -fpic -fPIC
-freg-struct-return -fshared-data -fshort-enums
-fshort-double -fvolatile -fvolatile-global
-fverbose-asm

Overall Options
Controlling the kind of output:

an executable, object files, assembler files,
or preprocessed source.

gcc.info 20 / 506

C Dialect Options
Controlling the variant of C language compiled.

C++ Dialect Options
Variations on C++.

Warning Options
How picky should the compiler be?

Debugging Options
Symbol tables, measurements, and debugging dumps.

Optimize Options
How much optimization?

Preprocessor Options
Controlling header files and macro definitions.

Also, getting dependency information for Make.

Assembler Options
Passing options to the assembler.

Link Options
Specifying libraries and so on.

Directory Options
Where to find header files and libraries.

Where to find the compiler executable files.

Target Options
Running a cross-compiler, or an old version of GNU CC.

1.8 gcc.info/Overall Options

Options Controlling the Kind of Output
======================================

Compilation can involve up to four stages: preprocessing, compilation
proper, assembly and linking, always in that order. The first three
stages apply to an individual source file, and end by producing an
object file; linking combines all the object files (those newly
compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind
of compilation is done:

file.c
C source code which must be preprocessed.

file.i
C source code which should not be preprocessed.

gcc.info 21 / 506

file.ii
C++ source code which should not be preprocessed.

file.m
Objective-C source code. Note that you must link with the library
libobjc.a to make an Objective-C program work.

file.h
C header file (not to be compiled or linked).

file.cc
file.cxx
file.C

C++ source code which must be preprocessed. Note that in .cxx,
the last two letters must both be literally x. Likewise, .C
refers to a literal capital C.

file.s
Assembler code.

file.S
Assembler code which must be preprocessed.

other
An object file to be fed straight into linking. Any file name
with no recognized suffix is treated this way.

You can specify the input language explicitly with the -x option:

-x language
Specify explicitly the language for the following input files
(rather than letting the compiler choose a default based on the
file name suffix). This option applies to all following input
files until the next -x option. Possible values for language are:

c objective-c c++
c-header cpp-output c++-cpp-output
assembler assembler-with-cpp

-x none
Turn off any specification of a language, so that subsequent files
are handled according to their file name suffixes (as they are if
-x has not been used at all).

If you only want some of the stages of compilation, you can use -x
(or filename suffixes) to tell gcc where to start, and one of the
options -c, -S, or -E to say where gcc is to stop. Note that some
combinations (for example, -x cpp-output -E instruct gcc to do nothing
at all.

-c
Compile or assemble the source files, but do not link. The linking
stage simply is not done. The ultimate output is in the form of an
object file for each source file.

By default, the object file name for a source file is made by
replacing the suffix .c, .i, .s, etc., with .o.

gcc.info 22 / 506

Unrecognized input files, not requiring compilation or assembly,
are ignored.

-S
Stop after the stage of compilation proper; do not assemble. The
output is in the form of an assembler code file for each
non-assembler input file specified.

By default, the assembler file name for a source file is made by
replacing the suffix .c, .i, etc., with .s.

Input files that don’t require compilation are ignored.

-E
Stop after the preprocessing stage; do not run the compiler
proper. The output is in the form of preprocessed source code,
which is sent to the standard output.

Input files which don’t require preprocessing are ignored.

-o file
Place output in file file. This applies regardless to whatever
sort of output is being produced, whether it be an executable file,
an object file, an assembler file or preprocessed C code.

Since only one output file can be specified, it does not make
sense to use -o when compiling more than one input file, unless
you are producing an executable file as output.

If -o is not specified, the default is to put an executable file
in a.out, the object file for source.suffix in source.o, its
assembler file in source.s, and all preprocessed C source on
standard output.

-v
Print (on standard error output) the commands executed to run the
stages of compilation. Also print the version number of the
compiler driver program and of the preprocessor and the compiler
proper.

-pipe
Use pipes rather than temporary files for communication between the
various stages of compilation. This fails to work on some systems
where the assembler is unable to read from a pipe; but the GNU
assembler has no trouble.

1.9 gcc.info/Invoking G++

Compiling C++ Programs
======================

C++ source files conventionally use one of the suffixes .C, .cc, or
.cxx; preprocessed C++ files use the suffix .ii. GNU CC recognizes
files with these names and compiles them as C++ programs even if you

gcc.info 23 / 506

call the compiler the same way as for compiling C programs (usually
with the name gcc).

However, C++ programs often require class libraries as well as a
compiler that understands the C++ language--and under some
circumstances, you might want to compile programs from standard input,
or otherwise without a suffix that flags them as C++ programs. g++ is
a shell script that calls GNU CC with the default language set to C++,
and automatically specifies linking against the GNU class library
libg++. (1) On many systems, the script g++ is also installed with the
name c++.

When you compile C++ programs, you may specify many of the same
command-line options that you use for compiling programs in any
language; or command-line options meaningful for C and related
languages; or options that are meaningful only for C++ programs. See

Options Controlling C Dialect
, for explanations of options for

languages related to C. See
Options Controlling C++ Dialect
, for

explanations of options that are meaningful only for C++ programs.

---------- Footnotes ----------

(1) Prior to release 2 of the compiler, there was a separate g++
compiler. That version was based on GNU CC, but not integrated with
it. Versions of g++ with a 1.xx version number--for example, g++
version 1.37 or 1.42--are much less reliable than the versions
integrated with GCC 2. Moreover, combining G++ 1.xx with a version 2
GCC will simply not work.

1.10 gcc.info/C Dialect Options

Options Controlling C Dialect
=============================

The following options control the dialect of C (or languages derived
from C, such as C++ and Objective C) that the compiler accepts:

-ansi
Support all ANSI standard C programs.

This turns off certain features of GNU C that are incompatible
with ANSI C, such as the asm, inline and typeof keywords, and
predefined macros such as unix and vax that identify the type of
system you are using. It also enables the undesirable and rarely
used ANSI trigraph feature, and disallows $ as part of identifiers.

The alternate keywords __asm__, __extension__, __inline__ and
__typeof__ continue to work despite -ansi. You would not want to
use them in an ANSI C program, of course, but it useful to put

gcc.info 24 / 506

them in header files that might be included in compilations done
with -ansi. Alternate predefined macros such as __unix__ and
__vax__ are also available, with or without -ansi.

The -ansi option does not cause non-ANSI programs to be rejected
gratuitously. For that, -pedantic is required in addition to
-ansi. See

Warning Options
.

The macro __STRICT_ANSI__ is predefined when the -ansi option is
used. Some header files may notice this macro and refrain from
declaring certain functions or defining certain macros that the
ANSI standard doesn’t call for; this is to avoid interfering with
any programs that might use these names for other things.

The functions alloca, abort, exit, and _exit are not builtin
functions when -ansi is used.

-fno-asm
Do not recognize asm, inline or typeof as a keyword. These words
may then be used as identifiers. You can use the keywords
__asm__, __inline__ and __typeof__ instead. -ansi implies
-fno-asm.

-fno-builtin
Don’t recognize builtin functions that do not begin with two
leading underscores. Currently, the functions affected include
abort, abs, alloca, cos, exit, fabs, ffs, labs, memcmp, memcpy,
sin, sqrt, strcmp, strcpy, and strlen.

GCC normally generates special code to handle certain builtin
functions more efficiently; for instance, calls to alloca may
become single instructions that adjust the stack directly, and
calls to memcpy may become inline copy loops. The resulting code
is often both smaller and faster, but since the function calls no
longer appear as such, you cannot set a breakpoint on those calls,
nor can you change the behavior of the functions by linking with a
different library.

The -ansi option prevents alloca and ffs from being builtin
functions, since these functions do not have an ANSI standard
meaning.

-trigraphs
Support ANSI C trigraphs. You don’t want to know about this
brain-damage. The -ansi option implies -trigraphs.

-traditional
Attempt to support some aspects of traditional C compilers.
Specifically:

* All extern declarations take effect globally even if they are
written inside of a function definition. This includes
implicit declarations of functions.

* The newer keywords typeof, inline, signed, const and volatile

gcc.info 25 / 506

are not recognized. (You can still use the alternative
keywords such as __typeof__, __inline__, and so on.)

* Comparisons between pointers and integers are always allowed.

* Integer types unsigned short and unsigned char promote to
unsigned int.

* Out-of-range floating point literals are not an error.

* Certain constructs which ANSI regards as a single invalid
preprocessing number, such as 0xe-0xd, are treated as
expressions instead.

* String "constants" are not necessarily constant; they are
stored in writable space, and identical looking constants are
allocated separately. (This is the same as the effect of
-fwritable-strings.)

* All automatic variables not declared register are preserved by
longjmp. Ordinarily, GNU C follows ANSI C: automatic
variables not declared volatile may be clobbered.

* In the preprocessor, comments convert to nothing at all,
rather than to a space. This allows traditional token
concatenation.

* In the preprocessor, macro arguments are recognized within
string constants in a macro definition (and their values are
stringified, though without additional quote marks, when they
appear in such a context). The preprocessor always considers
a string constant to end at a newline.

* The predefined macro __STDC__ is not defined when you use
-traditional, but __GNUC__ is (since the GNU extensions which
__GNUC__ indicates are not affected by -traditional). If you
need to write header files that work differently depending on
whether -traditional is in use, by testing both of these
predefined macros you can distinguish four situations: GNU C,
traditional GNU C, other ANSI C compilers, and other old C
compilers. See Standard Predefined Macros, for more
discussion of these and other predefined macros.

* The preprocessor considers a string constant to end at a
newline (unless the newline is escaped with \). (Without
-traditional, string constants can contain the newline
character as typed.)

* The character escape sequences \x and \a evaluate as the
literal characters x and a respectively. Without
-traditional, \x is a prefix for the hexadecimal
representation of a character, and \a produces a bell.

* In C++ programs, assignment to this is permitted with
-traditional. (The option -fthis-is-variable also has this
effect.)

gcc.info 26 / 506

You may wish to use -fno-builtin as well as -traditional if your
program uses names that are normally GNU C builtin functions for
other purposes of its own.

-traditional-cpp
Attempt to support some aspects of traditional C preprocessors.
This includes the last three items in the table immediately above,
but none of the other effects of -traditional.

-fcond-mismatch
Allow conditional expressions with mismatched types in the second
and third arguments. The value of such an expression is void.

-funsigned-char
Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is
either like unsigned char by default or like signed char by
default.

Ideally, a portable program should always use signed char or
unsigned char when it depends on the signedness of an object. But
many programs have been written to use plain char and expect it to
be signed, or expect it to be unsigned, depending on the machines
they were written for. This option, and its inverse, let you make
such a program work with the opposite default.

The type char is always a distinct type from each of signed char
or unsigned char, even though its behavior is always just like one
of those two.

-fsigned-char
Let the type char be signed, like signed char.

Note that this is equivalent to -fno-unsigned-char, which is the
negative form of -funsigned-char. Likewise, the option
-fno-signed-char is equivalent to -funsigned-char.

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsigned-bitfields

These options control whether a bitfield is signed or unsigned,
when the declaration does not use either signed or unsigned. By
default, such a bitfield is signed, because this is consistent: the
basic integer types such as int are signed types.

However, when -traditional is used, bitfields are all unsigned no
matter what.

-fwritable-strings
Store string constants in the writable data segment and don’t
uniquize them. This is for compatibility with old programs which
assume they can write into string constants. The option
-traditional also has this effect.

Writing into string constants is a very bad idea; "constants"

gcc.info 27 / 506

should be constant.

-fallow-single-precision
Do not promote single precision math operations to double
precision, even when compiling with -traditional.

Traditional K&R C promotes all floating point operations to double
precision, regardless of the sizes of the operands. On the
architecture for which you are compiling, single precision may be
faster than double precision. If you must use -traditional, but
want to use single precision operations when the operands are
single precision, use this option. This option has no effect
when compiling with ANSI or GNU C conventions (the default).

1.11 gcc.info/C++ Dialect Options

Options Controlling C++ Dialect
===============================

This section describes the command-line options that are only
meaningful for C++ programs; but you can also use most of the GNU
compiler options regardless of what language your program is in. For
example, you might compile a file firstClass.C like this:

g++ -g -felide-constructors -O -c firstClass.C

In this example, only -felide-constructors is an option meant only for
C++ programs; you can use the other options with any language supported
by GNU CC.

Here is a list of options that are only for compiling C++ programs:

-fall-virtual
Treat all possible member functions as virtual, implicitly. All
member functions (except for constructor functions and new or
delete member operators) are treated as virtual functions of the
class where they appear.

This does not mean that all calls to these member functions will
be made through the internal table of virtual functions. Under
some circumstances, the compiler can determine that a call to a
given virtual function can be made directly; in these cases the
calls are direct in any case.

-fdollars-in-identifiers
Accept $ in identifiers. You can also explicitly prohibit use of
$ with the option -fno-dollars-in-identifiers. (GNU C++
allows $ by default on some target systems but not others.)
Traditional C allowed the character $ to form part of identifiers.
However, ANSI C and C++ forbid $ in identifiers.

-felide-constructors
Elide constructors when this seems plausible. With this option,

gcc.info 28 / 506

GNU C++ initializes y directly from the call to foo without going
through a temporary in the following code:

A foo ();
A y = foo ();

Without this option, GNU C++ (1) initializes y by calling the
appropriate constructor for type A; (2) assigns the result of foo
to a temporary; and, finally, (3) replaces the initial value of y
with the temporary.

The default behavior (-fno-elide-constructors) is specified by the
draft ANSI C++ standard. If your program’s constructors have side
effects, -felide-constructors can change your program’s behavior,
since some constructor calls may be omitted.

-fenum-int-equiv
Permit implicit conversion of int to enumeration types. Normally
GNU C++ allows conversion of enum to int, but not the other way
around.

-fexternal-templates
Produce smaller code for template declarations, by generating only
a single copy of each template function where it is defined. To
use this option successfully, you must also mark all files that
use templates with either #pragma implementation (the definition)
or #pragma interface (declarations). See

Declarations and Definitions in One Header
, for more discussion of

these pragmas.

When your code is compiled with -fexternal-templates, all template
instantiations are external. You must arrange for all necessary
instantiations to appear in the implementation file; you can do
this with a typedef that references each instantiation needed.
Conversely, when you compile using the default option
-fno-external-templates, all template instantiations are
explicitly internal.

You do not need to specify -fexternal-templates when compiling a
file that does not define and instantiate templates used in other
files, even if your file uses templates defined in other files
that are compiled with -fexternal-templates. The only side effect
is an increase in object size for each file that you compile
without -fexternal-templates.

-fmemoize-lookups
-fsave-memoized

Use heuristics to compile faster. These heuristics are not
enabled by default, since they are only effective for certain
input files. Other input files compile more slowly.

The first time the compiler must build a call to a member function
(or reference to a data member), it must (1) determine whether the
class implements member functions of that name; (2) resolve which
member function to call (which involves figuring out what sorts of

gcc.info 29 / 506

type conversions need to be made); and (3) check the visibility of
the member function to the caller. All of this adds up to slower
compilation. Normally, the second time a call is made to that
member function (or reference to that data member), it must go
through the same lengthy process again. This means that code like
this:

cout << "This " << p << " has " << n << " legs.\n";

makes six passes through all three steps. By using a software
cache, a "hit" significantly reduces this cost. Unfortunately,
using the cache introduces another layer of mechanisms which must
be implemented, and so incurs its own overhead. -fmemoize-lookups
enables the software cache.

Because access privileges (visibility) to members and member
functions may differ from one function context to the next, G++
may need to flush the cache. With the -fmemoize-lookups flag, the
cache is flushed after every function that is compiled. The
-fsave-memoized flag enables the same software cache, but when the
compiler determines that the context of the last function compiled
would yield the same access privileges of the next function to
compile, it preserves the cache. This is most helpful when
defining many member functions for the same class: with the
exception of member functions which are friends of other classes,
each member function has exactly the same access privileges as
every other, and the cache need not be flushed.

-fno-strict-prototype
Treat a function declaration with no arguments, such as int foo
();, as C would treat it--as saying nothing about the number
of arguments or their types. Normally, such a declaration in C++
means that the function foo takes no arguments.

-fnonnull-objects
Assume that objects reached through references are not null.

Normally, GNU C++ makes conservative assumptions about objects
reached through references. For example, the compiler must check
that a is not null in code like the following:

obj &a = g ();
a.f (2);

Checking that references of this sort have non-null values requires
extra code, however, and it is unnecessary for many programs. You
can use -fnonnull-objects to omit the checks for null, if your
program doesn’t require checking.

-fthis-is-variable
Permit assignment to this. The incorporation of user-defined free
store management into C++ has made assignment to this an
anachronism. Therefore, by default it is invalid to assign to
this within a class member function; that is, GNU C++ treats
the type of this in a member function of class X to be X *const.
However, for backwards compatibility, you can make it valid with
-fthis-is-variable.

gcc.info 30 / 506

-nostdinc++
Do not search for header files in the standard directories
specific to C++, but do still search the other standard
directories. (This option is used when building libg++.)

-traditional
For C++ programs (in addition to the effects that apply to both C
and C++), this has the same effect as -fthis-is-variable. See

Options Controlling C Dialect
.

In addition, these optimization, warning, and code generation options
have meanings only for C++ programs:

-fno-default-inline
Do not assume inline for functions defined inside a class scope.
See

Options That Control Optimization
.

-Wenum-clash
-Woverloaded-virtual
-Wtemplate-debugging

Warnings that apply only to C++ programs. See

Options to Request or Suppress Warnings
.

+en
Control how virtual function definitions are used, in a fashion
compatible with cfront 1.x. See

Options for Code Generation Conventions
.

1.12 gcc.info/Warning Options

Options to Request or Suppress Warnings
=======================================

Warnings are diagnostic messages that report constructions which are
not inherently erroneous but which are risky or suggest there may have
been an error.

You can request many specific warnings with options beginning -W,
for example -Wimplicit to request warnings on implicit declarations.
Each of these specific warning options also has a negative form
beginning -Wno- to turn off warnings; for example, -Wno-implicit. This
manual lists only one of the two forms, whichever is not the default.

These options control the amount and kinds of warnings produced by

gcc.info 31 / 506

GNU CC:

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond
that.

-w
Inhibit all warning messages.

-Wno-import
Inhibit warning messages about the use of #import.

-pedantic
Issue all the warnings demanded by strict ANSI standard C; reject
all programs that use forbidden extensions.

Valid ANSI standard C programs should compile properly with or
without this option (though a rare few will require -ansi).
However, without this option, certain GNU extensions and
traditional C features are supported as well. With this option,
they are rejected.

-pedantic does not cause warning messages for use of the alternate
keywords whose names begin and end with __. Pedantic warnings are
also disabled in the expression that follows __extension__.
However, only system header files should use these escape routes;
application programs should avoid them. See

Alternate Keywords
.

This option is not intended to be useful; it exists only to satisfy
pedants who would otherwise claim that GNU CC fails to support the
ANSI standard.

Some users try to use -pedantic to check programs for strict ANSI
C conformance. They soon find that it does not do quite what they
want: it finds some non-ANSI practices, but not all--only those
for which ANSI C requires a diagnostic.

A feature to report any failure to conform to ANSI C might be
useful in some instances, but would require considerable
additional work and would be quite different from -pedantic. We
recommend, rather, that users take advantage of the extensions of
GNU C and disregard the limitations of other compilers. Aside
from certain supercomputers and obsolete small machines, there is
less and less reason ever to use any other C compiler other than
for bootstrapping GNU CC.

-pedantic-errors
Like -pedantic, except that errors are produced rather than
warnings.

-W
Print extra warning messages for these events:

* A nonvolatile automatic variable might be changed by a call to
longjmp. These warnings as well are possible only in

gcc.info 32 / 506

optimizing compilation.

The compiler sees only the calls to setjmp. It cannot know
where longjmp will be called; in fact, a signal handler could
call it at any point in the code. As a result, you may get a
warning even when there is in fact no problem because longjmp
cannot in fact be called at the place which would cause a
problem.

* A function can return either with or without a value.
(Falling off the end of the function body is considered
returning without a value.) For example, this function would
evoke such a warning:

foo (a)
{

if (a > 0)
return a;

}

* An expression-statement contains no side effects.

* An unsigned value is compared against zero with > or <=.

* A comparison like x<=y<=z appears; this is equivalent to
(x<=y ? 1 : 0) <= z, which is a different interpretation from
that of ordinary mathematical notation.

* Storage-class specifiers like static are not the first things
in a declaration. According to the C Standard, this usage is
obsolescent.

* An aggregate has a partly bracketed initializer. For
example, the following code would evoke such a warning,
because braces are missing around the initializer for x.h:

struct s { int f, g; };
struct t { struct s h; int i; };
struct t x = { 1, 2, 3 };

-Wimplicit
Warn whenever a function or parameter is implicitly declared.

-Wreturn-type
Warn whenever a function is defined with a return-type that
defaults to int. Also warn about any return statement with no
return-value in a function whose return-type is not void.

-Wunused
Warn whenever a local variable is unused aside from its
declaration, whenever a function is declared static but never
defined, and whenever a statement computes a result that is
explicitly not used.

If you want to prevent a warning for a particular variable, you
can use this macro:

gcc.info 33 / 506

#define USE(var) \
static void * use_##var = (&use_##var, (void *) &var)

USE (string);

-Wswitch
Warn whenever a switch statement has an index of enumeral type and
lacks a case for one or more of the named codes of that
enumeration. (The presence of a default label prevents this
warning.) case labels outside the enumeration range also provoke
warnings when this option is used.

-Wcomment
Warn whenever a comment-start sequence /* appears in a comment.

-Wtrigraphs
Warn if any trigraphs are encountered (assuming they are enabled).

-Wformat
Check calls to printf and scanf, etc., to make sure that the
arguments supplied have types appropriate to the format string
specified.

-Wchar-subscripts
Warn if an array subscript has type char. This is a common cause
of error, as programmers often forget that this type is signed on
some machines.

-Wuninitialized
An automatic variable is used without first being initialized.

These warnings are possible only in optimizing compilation,
because they require data flow information that is computed only
when optimizing. If you don’t specify -O, you simply won’t get
these warnings.

These warnings occur only for variables that are candidates for
register allocation. Therefore, they do not occur for a variable
that is declared volatile, or whose address is taken, or whose size
is other than 1, 2, 4 or 8 bytes. Also, they do not occur for
structures, unions or arrays, even when they are in registers.

Note that there may be no warning about a variable that is used
only to compute a value that itself is never used, because such
computations may be deleted by data flow analysis before the
warnings are printed.

These warnings are made optional because GNU CC is not smart
enough to see all the reasons why the code might be correct
despite appearing to have an error. Here is one example of how
this can happen:

{
int x;
switch (y)

{
case 1: x = 1;

gcc.info 34 / 506

break;
case 2: x = 4;

break;
case 3: x = 5;
}

foo (x);
}

If the value of y is always 1, 2 or 3, then x is always
initialized, but GNU CC doesn’t know this. Here is another common
case:

{
int save_y;
if (change_y) save_y = y, y = new_y;
...
if (change_y) y = save_y;

}

This has no bug because save_y is used only if it is set.

Some spurious warnings can be avoided if you declare all the
functions you use that never return as volatile. See

Function Attributes
.

-Wparentheses
Warn if parentheses are omitted in certain contexts, such as when
there is an assignment in a context where a truth value is
expected, or when operators are nested whose precedence people
often get confused about.

-Wenum-clash
Warn about conversion between different enumeration types. (C++
only).

-Wtemplate-debugging
When using templates in a C++ program, warn if debugging is not yet
fully available (C++ only).

-Wall
All of the above -W options combined. These are all the options
which pertain to usage that we recommend avoiding and that we
believe is easy to avoid, even in conjunction with macros.

The remaining -W... options are not implied by -Wall because they
warn about constructions that we consider reasonable to use, on
occasion, in clean programs.

-Wtraditional
Warn about certain constructs that behave differently in
traditional and ANSI C.

* Macro arguments occurring within string constants in the
macro body. These would substitute the argument in
traditional C, but are part of the constant in ANSI C.

gcc.info 35 / 506

* A function declared external in one block and then used after
the end of the block.

* A switch statement has an operand of type long.

-Wshadow
Warn whenever a local variable shadows another local variable.

-Wid-clash-len
Warn whenever two distinct identifiers match in the first len
characters. This may help you prepare a program that will compile
with certain obsolete, brain-damaged compilers.

-Wpointer-arith
Warn about anything that depends on the "size of" a function type
or of void. GNU C assigns these types a size of 1, for
convenience in calculations with void * pointers and pointers to
functions.

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier
from the target type. For example, warn if a const char * is cast
to an ordinary char *.

-Wcast-align
Warn whenever a pointer is cast such that the required alignment
of the target is increased. For example, warn if a char * is cast
to an int * on machines where integers can only be accessed at
two- or four-byte boundaries.

-Wwrite-strings
Give string constants the type const char[length] so that copying
the address of one into a non-const char * pointer will get a
warning. These warnings will help you find at compile time code
that can try to write into a string constant, but only if you have
been very careful about using const in declarations and
prototypes. Otherwise, it will just be a nuisance; this is why we
did not make -Wall request these warnings.

-Wconversion
Warn if a prototype causes a type conversion that is different
from what would happen to the same argument in the absence of a
prototype. This includes conversions of fixed point to floating
and vice versa, and conversions changing the width or signedness
of a fixed point argument except when the same as the default
promotion.

Also, warn if a negative integer constant expression is implicitly
converted to an unsigned type. For example, warn about the
assignment x = -1 if x is unsigned. But do not warn about explicit
casts like (unsigned) -1.

-Waggregate-return
Warn if any functions that return structures or unions are defined
or called. (In languages where you can return an array, this also
elicits a warning.)

gcc.info 36 / 506

-Wstrict-prototypes
Warn if a function is declared or defined without specifying the
argument types. (An old-style function definition is permitted
without a warning if preceded by a declaration which specifies the
argument types.)

-Wmissing-prototypes
Warn if a global function is defined without a previous prototype
declaration. This warning is issued even if the definition itself
provides a prototype. The aim is to detect global functions that
fail to be declared in header files.

-Wredundant-decls
Warn if anything is declared more than once in the same scope,
even in cases where multiple declaration is valid and changes
nothing.

-Wnested-externs
Warn if an extern declaration is encountered within an function.

-Winline
Warn if a function can not be inlined, and either it was declared
as inline, or else the -finline-functions option was given.

-Woverloaded-virtual
Warn when a derived class function declaration may be an error in
defining a virtual function (C++ only). In a derived class, the
definitions of virtual functions must match the type signature of a
virtual function declared in the base class. With this option, the
compiler warns when you define a function with the same name as a
virtual function, but with a type signature that does not match any
declarations from the base class.

-Werror
Make all warnings into errors.

1.13 gcc.info/Debugging Options

Options for Debugging Your Program or GNU CC
==

GNU CC has various special options that are used for debugging
either your program or GCC:

-g
Produce debugging information in the operating system’s native
format (stabs, COFF, XCOFF, or DWARF). GDB can work with this
debugging information.

On most systems that use stabs format, -g enables use of extra
debugging information that only GDB can use; this extra information
makes debugging work better in GDB but will probably make other

gcc.info 37 / 506

debuggers crash or refuse to read the program. If you want to
control for certain whether to generate the extra information, use
-gstabs+, -gstabs, -gxcoff+, -gxcoff, -gdwarf+, or -gdwarf (see
below).

Unlike most other C compilers, GNU CC allows you to use -g with
-O. The shortcuts taken by optimized code may occasionally
produce surprising results: some variables you declared may not
exist at all; flow of control may briefly move where you did not
expect it; some statements may not be executed because they
compute constant results or their values were already at hand;
some statements may execute in different places because they were
moved out of loops.

Nevertheless it proves possible to debug optimized output. This
makes it reasonable to use the optimizer for programs that might
have bugs.

The following options are useful when GNU CC is generated with the
capability for more than one debugging format.

-ggdb
Produce debugging information in the native format (if that is
supported), including GDB extensions if at all possible.

-gstabs
Produce debugging information in stabs format (if that is
supported), without GDB extensions. This is the format used by
DBX on most BSD systems. On MIPS and Alpha systems this option
produces embedded stabs debugging output which is not understood
by DBX.

-gstabs+
Produce debugging information in stabs format (if that is
supported), using GNU extensions understood only by the GNU
debugger (GDB). The use of these extensions is likely to make
other debuggers crash or refuse to read the program.

-gcoff
Produce debugging information in COFF format (if that is
supported). This is the format used by SDB on most System V
systems prior to System V Release 4.

-gxcoff
Produce debugging information in XCOFF format (if that is
supported). This is the format used by the DBX debugger on IBM
RS/6000 systems.

-gxcoff+
Produce debugging information in XCOFF format (if that is
supported), using GNU extensions understood only by the GNU
debugger (GDB). The use of these extensions is likely to make
other debuggers crash or refuse to read the program.

-gdwarf
Produce debugging information in DWARF format (if that is
supported). This is the format used by SDB on most System V

gcc.info 38 / 506

Release 4 systems.

-gdwarf+
Produce debugging information in DWARF format (if that is
supported), using GNU extensions understood only by the GNU
debugger (GDB). The use of these extensions is likely to make
other debuggers crash or refuse to read the program.

-glevel
-ggdblevel
-gstabslevel
-gcofflevel
-gxcofflevel
-gdwarflevel

Request debugging information and also use level to specify how
much information. The default level is 2.

Level 1 produces minimal information, enough for making backtraces
in parts of the program that you don’t plan to debug. This
includes descriptions of functions and external variables, but no
information about local variables and no line numbers.

Level 3 includes extra information, such as all the macro
definitions present in the program. Some debuggers support macro
expansion when you use -g3.

-p
Generate extra code to write profile information suitable for the
analysis program prof. You must use this option when compiling
the source files you want data about, and you must also use it when
linking.

-pg
Generate extra code to write profile information suitable for the
analysis program gprof. You must use this option when compiling
the source files you want data about, and you must also use it when
linking.

-a
Generate extra code to write profile information for basic blocks,
which will record the number of times each basic block is
executed, the basic block start address, and the function name
containing the basic block. If -g is used, the line number and
filename of the start of the basic block will also be recorded.
If not overridden by the machine description, the default action is
to append to the text file bb.out.

This data could be analyzed by a program like tcov. Note,
however, that the format of the data is not what tcov expects.
Eventually GNU gprof should be extended to process this data.

-dletters
Says to make debugging dumps during compilation at times specified
by letters. This is used for debugging the compiler. The file
names for most of the dumps are made by appending a word to the
source file name (e.g. foo.c.rtl or foo.c.jump). Here are the
possible letters for use in letters, and their meanings:

gcc.info 39 / 506

M
Dump all macro definitions, at the end of preprocessing, and
write no output.

N
Dump all macro names, at the end of preprocessing.

D
Dump all macro definitions, at the end of preprocessing, in
addition to normal output.

y
Dump debugging information during parsing, to standard error.

r
Dump after RTL generation, to file.rtl.

x
Just generate RTL for a function instead of compiling it.
Usually used with r.

j
Dump after first jump optimization, to file.jump.

s
Dump after CSE (including the jump optimization that sometimes
follows CSE), to file.cse.

L
Dump after loop optimization, to file.loop.

t
Dump after the second CSE pass (including the jump
optimization that sometimes follows CSE), to file.cse2.

f
Dump after flow analysis, to file.flow.

c
Dump after instruction combination, to the file file.combine.

S
Dump after the first instruction scheduling pass, to
file.sched.

l
Dump after local register allocation, to file.lreg.

g
Dump after global register allocation, to file.greg.

R
Dump after the second instruction scheduling pass, to
file.sched2.

J

gcc.info 40 / 506

Dump after last jump optimization, to file.jump2.

d
Dump after delayed branch scheduling, to file.dbr.

k
Dump after conversion from registers to stack, to file.stack.

a
Produce all the dumps listed above.

m
Print statistics on memory usage, at the end of the run, to
standard error.

p
Annotate the assembler output with a comment indicating which
pattern and alternative was used.

-fpretend-float
When running a cross-compiler, pretend that the target machine
uses the same floating point format as the host machine. This
causes incorrect output of the actual floating constants, but the
actual instruction sequence will probably be the same as GNU CC
would make when running on the target machine.

-save-temps
Store the usual "temporary" intermediate files permanently; place
them in the current directory and name them based on the source
file. Thus, compiling foo.c with -c -save-temps would produce
files foo.i and foo.s, as well as foo.o.

-print-libgcc-file-name
Print the full absolute name of the library file libgcc.a that
would be used when linking--and don’t do anything else. With this
option, GNU CC does not compile or link anything; it just prints
the file name.

This is useful when you use -nostdlib but you do want to link with
libgcc.a. You can do

gcc -nostdlib files ... ‘gcc -print-libgcc-file-name‘

1.14 gcc.info/Optimize Options

Options That Control Optimization
=================================

These options control various sorts of optimizations:

-O
-O1

Optimize. Optimizing compilation takes somewhat more time, and a
lot more memory for a large function.

gcc.info 41 / 506

Without -O, the compiler’s goal is to reduce the cost of
compilation and to make debugging produce the expected results.
Statements are independent: if you stop the program with a
breakpoint between statements, you can then assign a new value to
any variable or change the program counter to any other statement
in the function and get exactly the results you would expect from
the source code.

Without -O, only variables declared register are allocated in
registers. The resulting compiled code is a little worse than
produced by PCC without -O.

With -O, the compiler tries to reduce code size and execution time.

When -O is specified, the two options -fthread-jumps and
-fdelayed-branch are turned on. On some machines other flags may
also be turned on.

-O2
Optimize even more. Nearly all supported optimizations that do not
involve a space-speed tradeoff are performed. As compared to -O,
this option increases both compilation time and the performance of
the generated code.

-O2 turns on all optional optimizations except for loop unrolling
and frame pointer elimination.

-O0
Do not optimize.

If you use multiple -O options, with or without level numbers, the
last such option is the one that is effective.

Options of the form -fflag specify machine-independent flags. Most
flags have both positive and negative forms; the negative form of -ffoo
would be -fno-foo. In the table below, only one of the forms is
listed--the one which is not the default. You can figure out the other
form by either removing no- or adding it.

-ffloat-store
Do not store floating point variables in registers, and inhibit
other options that might change whether a floating point value is
taken from a register or memory.

This option prevents undesirable excess precision on machines such
as the 68000 where the floating registers (of the 68881) keep more
precision than a double is supposed to have. For most programs,
the excess precision does only good, but a few programs rely on the
precise definition of IEEE floating point. Use -ffloat-store for
such programs.

-fno-default-inline
Do not make member functions inline by default merely because they
are defined inside the class scope (C++ only). Otherwise, when
you specify -O, member functions defined inside class scope are
compiled inline by default; i.e., you don’t need to add inline in

gcc.info 42 / 506

front of the member function name.

-fno-defer-pop
Always pop the arguments to each function call as soon as that
function returns. For machines which must pop arguments after a
function call, the compiler normally lets arguments accumulate on
the stack for several function calls and pops them all at once.

-fforce-mem
Force memory operands to be copied into registers before doing
arithmetic on them. This may produce better code by making all
memory references potential common subexpressions. When they are
not common subexpressions, instruction combination should
eliminate the separate register-load. I am interested in hearing
about the difference this makes.

-fforce-addr
Force memory address constants to be copied into registers before
doing arithmetic on them. This may produce better code just as
-fforce-mem may. I am interested in hearing about the difference
this makes.

-fomit-frame-pointer
Don’t keep the frame pointer in a register for functions that
don’t need one. This avoids the instructions to save, set up and
restore frame pointers; it also makes an extra register available
in many functions. It also makes debugging impossible on some
machines.

On some machines, such as the Vax, this flag has no effect, because
the standard calling sequence automatically handles the frame
pointer and nothing is saved by pretending it doesn’t exist. The
machine-description macro FRAME_POINTER_REQUIRED controls whether
a target machine supports this flag. See

Registers
.

-fno-inline
Don’t pay attention to the inline keyword. Normally this option
is used to keep the compiler from expanding any functions inline.
Note that if you are not optimizing, no functions can be expanded
inline.

-finline-functions
Integrate all simple functions into their callers. The compiler
heuristically decides which functions are simple enough to be worth
integrating in this way.

If all calls to a given function are integrated, and the function
is declared static, then the function is normally not output as
assembler code in its own right.

-fkeep-inline-functions
Even if all calls to a given function are integrated, and the
function is declared static, nevertheless output a separate
run-time callable version of the function.

gcc.info 43 / 506

-fno-function-cse
Do not put function addresses in registers; make each instruction
that calls a constant function contain the function’s address
explicitly.

This option results in less efficient code, but some strange hacks
that alter the assembler output may be confused by the
optimizations performed when this option is not used.

-ffast-math
This option allows GCC to violate some ANSI or IEEE rules and/or
specifications in the interest of optimizing code for speed. For
example, it allows the compiler to assume arguments to the sqrt
function are non-negative numbers.

This option should never be turned on by any -O option since it
can result in incorrect output for programs which depend on an
exact implementation of IEEE or ANSI rules/specifications for math
functions.

The following options control specific optimizations. The -O2
option turns on all of these optimizations except -funroll-loops and
-funroll-all-loops. On most machines, the -O option turns on the
-fthread-jumps and -fdelayed-branch options, but specific machines may
handle it differently.

You can use the following flags in the rare cases when "fine-tuning"
of optimizations to be performed is desired.

-fstrength-reduce
Perform the optimizations of loop strength reduction and
elimination of iteration variables.

-fthread-jumps
Perform optimizations where we check to see if a jump branches to a
location where another comparison subsumed by the first is found.
If so, the first branch is redirected to either the destination of
the second branch or a point immediately following it, depending
on whether the condition is known to be true or false.

-fcse-follow-jumps
In common subexpression elimination, scan through jump instructions
when the target of the jump is not reached by any other path. For
example, when CSE encounters an if statement with an else clause,
CSE will follow the jump when the condition tested is false.

-fcse-skip-blocks
This is similar to -fcse-follow-jumps, but causes CSE to follow
jumps which conditionally skip over blocks. When CSE encounters a
simple if statement with no else clause, -fcse-skip-blocks causes
CSE to follow the jump around the body of the if.

-frerun-cse-after-loop
Re-run common subexpression elimination after loop optimizations
has been performed.

-fexpensive-optimizations

gcc.info 44 / 506

Perform a number of minor optimizations that are relatively
expensive.

-fdelayed-branch
If supported for the target machine, attempt to reorder
instructions to exploit instruction slots available after delayed
branch instructions.

-fschedule-insns
If supported for the target machine, attempt to reorder
instructions to eliminate execution stalls due to required data
being unavailable. This helps machines that have slow floating
point or memory load instructions by allowing other instructions
to be issued until the result of the load or floating point
instruction is required.

-fschedule-insns2
Similar to -fschedule-insns, but requests an additional pass of
instruction scheduling after register allocation has been done.
This is especially useful on machines with a relatively small
number of registers and where memory load instructions take more
than one cycle.

-fcaller-saves
Enable values to be allocated in registers that will be clobbered
by function calls, by emitting extra instructions to save and
restore the registers around such calls. Such allocation is done
only when it seems to result in better code than would otherwise
be produced.

This option is enabled by default on certain machines, usually
those which have no call-preserved registers to use instead.

-funroll-loops
Perform the optimization of loop unrolling. This is only done for
loops whose number of iterations can be determined at compile time
or run time. -funroll-loop implies both -fstrength-reduce and
-frerun-cse-after-loop.

-funroll-all-loops
Perform the optimization of loop unrolling. This is done for all
loops and usually makes programs run more slowly.
-funroll-all-loops implies -fstrength-reduce as well as
-frerun-cse-after-loop.

-fno-peephole
Disable any machine-specific peephole optimizations.

1.15 gcc.info/Preprocessor Options

Options Controlling the Preprocessor
====================================

gcc.info 45 / 506

These options control the C preprocessor, which is run on each C
source file before actual compilation.

If you use the -E option, nothing is done except preprocessing.
Some of these options make sense only together with -E because they
cause the preprocessor output to be unsuitable for actual compilation.

-include file
Process file as input before processing the regular input file.
In effect, the contents of file are compiled first. Any -D and -U
options on the command line are always processed before -include
file, regardless of the order in which they are written. All the
-include and -imacros options are processed in the order in which
they are written.

-imacros file
Process file as input, discarding the resulting output, before
processing the regular input file. Because the output generated
from file is discarded, the only effect of -imacros file is to
make the macros defined in file available for use in the main
input.

Any -D and -U options on the command line are always processed
before -imacros file, regardless of the order in which they are
written. All the -include and -imacros options are processed in
the order in which they are written.

-idirafter dir
Add the directory dir to the second include path. The directories
on the second include path are searched when a header file is not
found in any of the directories in the main include path (the one
that -I adds to).

-iprefix prefix
Specify prefix as the prefix for subsequent -iwithprefix options.

-iwithprefix dir
Add a directory to the second include path. The directory’s name
is made by concatenating prefix and dir, where prefix was
specified previously with -iprefix. If you have not specified a
prefix yet, the directory containing the installed passes of the
compiler is used as the default.

-iwithprefixbefore dir
Add a directory to the main include path. The directory’s name is
made by concatenating prefix and dir, as in the case of
-iwithprefix.

-nostdinc
Do not search the standard system directories for header files.
Only the directories you have specified with -I options (and the
current directory, if appropriate) are searched. See

Directory Options
, for information on -I.

By using both -nostdinc and -I-, you can limit the include-file

gcc.info 46 / 506

search path to only those directories you specify explicitly.

-undef
Do not predefine any nonstandard macros. (Including architecture
flags).

-E
Run only the C preprocessor. Preprocess all the C source files
specified and output the results to standard output or to the
specified output file.

-C
Tell the preprocessor not to discard comments. Used with the -E
option.

-P
Tell the preprocessor not to generate #line commands. Used with
the -E option.

-M
Tell the preprocessor to output a rule suitable for make
describing the dependencies of each object file. For each source
file, the preprocessor outputs one make-rule whose target is the
object file name for that source file and whose dependencies are
all the #include header files it uses. This rule may be a single
line or may be continued with \ -newline if it is long. The list
of rules is printed on standard output instead of the preprocessed
C program.

-M implies -E.

Another way to specify output of a make rule is by setting the
environment variable DEPENDENCIES_OUTPUT (see

Environment Variables
).

-MM
Like -M but the output mentions only the user header files
included with #include "file". System header files included with
#include <file> are omitted.

-MD
Like -M but the dependency information is written to files with
names made by replacing .o with .d at the end of the output file
names. This is in addition to compiling the input files as
specified---MD does not inhibit ordinary compilation the way -M
does.

The Mach utility md can be used to merge the .d files into a
single dependency file suitable for using with the make command.

-MMD
Like -MD except mention only user header files, not system header
files.

-H

gcc.info 47 / 506

Print the name of each header file used, in addition to other
normal activities.

-Aquestion(answer)
Assert the answer answer for question, in case it is tested with a
preprocessor conditional such as #if #question(answer). -A-
disables the standard assertions that normally describe the target
machine.

-Dmacro
Define macro macro with the string 1 as its definition.

-Dmacro=defn
Define macro macro as defn. All instances of -D on the command
line are processed before any -U options.

-Umacro
Undefine macro macro. -U options are evaluated after all -D
options, but before any -include and -imacros options.

-dM
Tell the preprocessor to output only a list of the macro
definitions that are in effect at the end of preprocessing. Used
with the -E option.

-dD
Tell the preprocessing to pass all macro definitions into the
output, in their proper sequence in the rest of the output.

-dN
Like -dD except that the macro arguments and contents are omitted.
Only #define name is included in the output.

-trigraphs
Support ANSI C trigraphs. You don’t want to know about this
brain-damage. The -ansi option also has this effect.

1.16 gcc.info/Assembler Options

Passing Options to the Assembler
================================

-Wa,option
Pass option as an option to the assembler. If option contains
commas, it is split into multiple options at the commas.

1.17 gcc.info/Link Options

gcc.info 48 / 506

Options for Linking
===================

These options come into play when the compiler links object files
into an executable output file. They are meaningless if the compiler is
not doing a link step.

object-file-name
A file name that does not end in a special recognized suffix is
considered to name an object file or library. (Object files are
distinguished from libraries by the linker according to the file
contents.) If linking is done, these object files are used as
input to the linker.

-c
-S
-E

If any of these options is used, then the linker is not run, and
object file names should not be used as arguments. See

Overall Options
.

-llibrary
Search the library named library when linking.

It makes a difference where in the command you write this option;
the linker searches processes libraries and object files in the
order they are specified. Thus, foo.o -lz bar.o searches library z
after file foo.o but before bar.o. If bar.o refers to functions
in z, those functions may not be loaded.

The linker searches a standard list of directories for the library,
which is actually a file named liblibrary.a. The linker then uses
this file as if it had been specified precisely by name.

The directories searched include several standard system
directories plus any that you specify with -L.

Normally the files found this way are library files--archive files
whose members are object files. The linker handles an archive
file by scanning through it for members which define symbols that
have so far been referenced but not defined. But if the file that
is found is an ordinary object file, it is linked in the usual
fashion. The only difference between using an -l option and
specifying a file name is that -l surrounds library with lib and .a
and searches several directories.

-lobjc
You need this special case of the -l option in order to link an
Objective C program.

-nostartfiles
Do not use the standard system startup files when linking. The
standard libraries are used normally.

gcc.info 49 / 506

-nostdlib
Don’t use the standard system libraries and startup files when
linking. Only the files you specify will be passed to the linker.

-static
On systems that support dynamic linking, this prevents linking
with the shared libraries. On other systems, this option has no
effect.

-shared
Produce a shared object which can then be linked with other
objects to form an executable. Only a few systems support this
option.

-symbolic
Bind references to global symbols when building a shared object.
Warn about any unresolved references (unless overridden by the
link editor option -Xlinker -z -Xlinker defs). Only a few systems
support this option.

-Xlinker option
Pass option as an option to the linker. You can use this to
supply system-specific linker options which GNU CC does not know
how to recognize.

If you want to pass an option that takes an argument, you must use
-Xlinker twice, once for the option and once for the argument.
For example, to pass -assert definitions, you must write -Xlinker
-assert -Xlinker definitions. It does not work to write -Xlinker
"-assert definitions", because this passes the entire string as a
single argument, which is not what the linker expects.

-Wl,option
Pass option as an option to the linker. If option contains
commas, it is split into multiple options at the commas.

-u symbol
Pretend the symbol symbol is undefined, to force linking of
library modules to define it. You can use -u multiple times with
different symbols to force loading of additional library modules.

1.18 gcc.info/Directory Options

Options for Directory Search
============================

These options specify directories to search for header files, for
libraries and for parts of the compiler:

-Idir
Append directory dir to the list of directories searched for
include files.

gcc.info 50 / 506

-I-
Any directories you specify with -I options before the -I- option
are searched only for the case of #include "file"; they are not
searched for #include <file>.

If additional directories are specified with -I options after the
-I-, these directories are searched for all #include directives.
(Ordinarily all -I directories are used this way.)

In addition, the -I- option inhibits the use of the current
directory (where the current input file came from) as the first
search directory for #include "file". There is no way to override
this effect of -I-. With -I. you can specify searching the
directory which was current when the compiler was invoked. That
is not exactly the same as what the preprocessor does by default,
but it is often satisfactory.

-I- does not inhibit the use of the standard system directories
for header files. Thus, -I- and -nostdinc are independent.

-Ldir
Add directory dir to the list of directories to be searched for -l.

-Bprefix
This option specifies where to find the executables, libraries and
data files of the compiler itself.

The compiler driver program runs one or more of the subprograms
cpp, cc1, as and ld. It tries prefix as a prefix for each
program it tries to run, both with and without machine/version/
(see

Target Options
).

For each subprogram to be run, the compiler driver first tries the
-B prefix, if any. If that name is not found, or if -B was not
specified, the driver tries two standard prefixes, which are
/usr/lib/gcc/ and /gnu/lib/gcc-lib/. If neither of those results
in a file name that is found, the unmodified program name is
searched for using the directories specified in your PATH
environment variable.

-B prefixes that effectively specify directory names also apply to
libraries in the linker, because the compiler translates these
options into -L options for the linker.

The run-time support file libgcc.a can also be searched for using
the -B prefix, if needed. If it is not found there, the two
standard prefixes above are tried, and that is all. The file is
left out of the link if it is not found by those means.

Another way to specify a prefix much like the -B prefix is to use
the environment variable GCC_EXEC_PREFIX. See

Environment Variables
.

gcc.info 51 / 506

1.19 gcc.info/Target Options

Specifying Target Machine and Compiler Version
==

By default, GNU CC compiles code for the same type of machine that
you are using. However, it can also be installed as a cross-compiler,
to compile for some other type of machine. In fact, several different
configurations of GNU CC, for different target machines, can be
installed side by side. Then you specify which one to use with the -b
option.

In addition, older and newer versions of GNU CC can be installed side
by side. One of them (probably the newest) will be the default, but
you may sometimes wish to use another.

-b machine
The argument machine specifies the target machine for compilation.
This is useful when you have installed GNU CC as a cross-compiler.

The value to use for machine is the same as was specified as the
machine type when configuring GNU CC as a cross-compiler. For
example, if a cross-compiler was configured with configure i386v,
meaning to compile for an 80386 running System V, then you would
specify -b i386v to run that cross compiler.

When you do not specify -b, it normally means to compile for the
same type of machine that you are using.

-V version
The argument version specifies which version of GNU CC to run.
This is useful when multiple versions are installed. For example,
version might be 2.0, meaning to run GNU CC version 2.0.

The default version, when you do not specify -V, is controlled by
the way GNU CC is installed. Normally, it will be a version that
is recommended for general use.

The -b and -V options actually work by controlling part of the file
name used for the executable files and libraries used for compilation.
A given version of GNU CC, for a given target machine, is normally kept
in the directory /gnu/lib/gcc-lib/machine/version.

Thus, sites can customize the effect of -b or -V either by changing
the names of these directories or adding alternate names (or symbolic
links). If in directory /gnu/lib/gcc-lib/ the file 80386 is a link to
the file i386v, then -b 80386 becomes an alias for -b i386v.

In one respect, the -b or -V do not completely change to a different
compiler: the top-level driver program gcc that you originally invoked
continues to run and invoke the other executables (preprocessor,
compiler per se, assembler and linker) that do the real work. However,
since no real work is done in the driver program, it usually does not

gcc.info 52 / 506

matter that the driver program in use is not the one for the specified
target and version.

The only way that the driver program depends on the target machine is
in the parsing and handling of special machine-specific options.
However, this is controlled by a file which is found, along with the
other executables, in the directory for the specified version and
target machine. As a result, a single installed driver program adapts
to any specified target machine and compiler version.

The driver program executable does control one significant thing,
however: the default version and target machine. Therefore, you can
install different instances of the driver program, compiled for
different targets or versions, under different names.

For example, if the driver for version 2.0 is installed as ogcc and
that for version 2.1 is installed as gcc, then the command gcc will use
version 2.1 by default, while ogcc will use 2.0 by default. However,
you can choose either version with either command with the -V option.

1.20 gcc.info/Submodel Options

Hardware Models and Configurations
==================================

Earlier we discussed the standard option -b which chooses among
different installed compilers for completely different target machines,
such as Vax vs. 68000 vs. 80386.

In addition, each of these target machine types can have its own
special options, starting with -m, to choose among various hardware
models or configurations--for example, 68010 vs 68020, floating
coprocessor or none. A single installed version of the compiler can
compile for any model or configuration, according to the options
specified.

Some configurations of the compiler also support additional special
options, usually for compatibility with other compilers on the same
platform.

These options are defined by the macro TARGET_SWITCHES in the
machine description. The default for the options is also defined by
that macro, which enables you to change the defaults.

M680x0 Options

VAX Options

SPARC Options

Convex Options

gcc.info 53 / 506

AMD29K Options

M88K Options

RS-6000 and PowerPC Options

RT Options

MIPS Options

i386 Options

HPPA Options

Intel 960 Options

DEC Alpha Options

Clipper Options

System V Options

1.21 gcc.info/M680x0 Options

M680x0 Options

These are the -m options defined for the 68000 series. The default
values for these options depends on which style of 68000 was selected
when the compiler was configured; the defaults for the most common
choices are given below.

-m68000
-mc68000

Generate output for a 68000. This is the default when the
compiler is configured for 68000-based systems.

-m68020
-mc68020

Generate output for a 68020. This is the default when the
compiler is configured for 68020-based systems.

-m68881
Generate output containing 68881 instructions for floating point.
This is the default for most 68020 systems unless -nfp was
specified when the compiler was configured.

-m68030
Generate output for a 68030. This is the default when the
compiler is configured for 68030-based systems.

-m68040
Generate output for a 68040. This is the default when the
compiler is configured for 68040-based systems.

gcc.info 54 / 506

This option inhibits the use of 68881/68882 instructions that have
to be emulated by software on the 68040. If your 68040 does not
have code to emulate those instructions, use -m68040.

-m68020-40
Generate output for a 68040, without using any of the new
instructions. This results in code which can run relatively
efficiently on either a 68020/68881 or a 68030 or a 68040. The
generated code does use the 68881 instructions that are emulated
on the 68040.

-mfpa
Generate output containing Sun FPA instructions for floating point.

-msoft-float
Generate output containing library calls for floating point.
Warning: the requisite libraries are not part of GNU CC. Normally
the facilities of the machine’s usual C compiler are used, but
this can’t be done directly in cross-compilation. You must make
your own arrangements to provide suitable library functions for
cross-compilation.

-mshort
Consider type int to be 16 bits wide, like short int.

-mnobitfield
Do not use the bit-field instructions. The -m68000 option implies
-mnobitfield.

-mbitfield
Do use the bit-field instructions. The -m68020 option implies
-mbitfield. This is the default if you use a configuration
designed for a 68020.

-mrtd
Use a different function-calling convention, in which functions
that take a fixed number of arguments return with the rtd
instruction, which pops their arguments while returning. This
saves one instruction in the caller since there is no need to pop
the arguments there.

This calling convention is incompatible with the one normally used
on Unix, so you cannot use it if you need to call libraries
compiled with the Unix compiler.

Also, you must provide function prototypes for all functions that
take variable numbers of arguments (including printf); otherwise
incorrect code will be generated for calls to those functions.

In addition, seriously incorrect code will result if you call a
function with too many arguments. (Normally, extra arguments are
harmlessly ignored.)

The rtd instruction is supported by the 68010 and 68020
processors, but not by the 68000.

gcc.info 55 / 506

1.22 gcc.info/VAX Options

VAX Options

These -m options are defined for the Vax:

-munix
Do not output certain jump instructions (aobleq and so on) that
the Unix assembler for the Vax cannot handle across long ranges.

-mgnu
Do output those jump instructions, on the assumption that you will
assemble with the GNU assembler.

-mg
Output code for g-format floating point numbers instead of
d-format.

1.23 gcc.info/SPARC Options

SPARC Options

These -m switches are supported on the SPARC:

-mfpu
-mhard-float

Generate output containing floating point instructions. This is
the default.

-mno-fpu
-msoft-float

Generate output containing library calls for floating point.
Warning: there is no GNU floating-point library for SPARC.
Normally the facilities of the machine’s usual C compiler are
used, but this cannot be done directly in cross-compilation. You
must make your own arrangements to provide suitable library
functions for cross-compilation.

-msoft-float changes the calling convention in the output file;
therefore, it is only useful if you compile all of a program with
this option. In particular, you need to compile libgcc.a, the
library that comes with GNU CC, with -msoft-float in order for
this to work.

-mno-epilogue
-mepilogue

With -mepilogue (the default), the compiler always emits code for

gcc.info 56 / 506

function exit at the end of each function. Any function exit in
the middle of the function (such as a return statement in C) will
generate a jump to the exit code at the end of the function.

With -mno-epilogue, the compiler tries to emit exit code inline at
every function exit.

-mv8
-msparclite

These two options select variations on the SPARC architecture.

By default (unless specifically configured for the Fujitsu
SPARClite), GCC generates code for the v7 variant of the SPARC
architecture.

-mv8 will give you SPARC v8 code. The only difference from v7
code is that the compiler emits the integer multiply and integer
divide instructions which exist in SPARC v8 but not in SPARC v7.

-msparclite will give you SPARClite code. This adds the integer
multiply, integer divide step and scan (ffs) instructions which
exist in SPARClite but not in SPARC v7.

1.24 gcc.info/Convex Options

Convex Options

These -m options are defined for Convex:

-mc1
Generate output for C1. The code will run on any Convex machine.
The preprocessor symbol __convex__c1__ is defined.

-mc2
Generate output for C2. Uses instructions not available on C1.
Scheduling and other optimizations are chosen for max performance
on C2. The preprocessor symbol __convex_c2__ is defined.

-mc32
Generate output for C32xx. Uses instructions not available on C1.
Scheduling and other optimizations are chosen for max performance
on C32. The preprocessor symbol __convex_c32__ is defined.

-mc34
Generate output for C34xx. Uses instructions not available on C1.
Scheduling and other optimizations are chosen for max performance
on C34. The preprocessor symbol __convex_c34__ is defined.

-mc38
Generate output for C38xx. Uses instructions not available on C1.
Scheduling and other optimizations are chosen for max performance
on C38. The preprocessor symbol __convex_c38__ is defined.

gcc.info 57 / 506

-margcount
Generate code which puts an argument count in the word preceding
each argument list. This is compatible with regular CC, and a few
programs may need the argument count word. GDB and other
source-level debuggers do not need it; this info is in the symbol
table.

-mnoargcount
Omit the argument count word. This is the default.

-mvolatile-cache
Allow volatile references to be cached. This is the default.

-mvolatile-nocache
Volatile references bypass the data cache, going all the way to
memory. This is only needed for multi-processor code that does
not use standard synchronization instructions. Making
non-volatile references to volatile locations will not necessarily
work.

-mlong32
Type long is 32 bits, the same as type int. This is the default.

-mlong64
Type long is 64 bits, the same as type long long. This option is
useless, because no library support exists for it.

1.25 gcc.info/AMD29K Options

AMD29K Options

These -m options are defined for the AMD Am29000:

-mdw
Generate code that assumes the DW bit is set, i.e., that byte and
halfword operations are directly supported by the hardware. This
is the default.

-mnodw
Generate code that assumes the DW bit is not set.

-mbw
Generate code that assumes the system supports byte and halfword
write operations. This is the default.

-mnbw
Generate code that assumes the systems does not support byte and
halfword write operations. -mnbw implies -mnodw.

-msmall
Use a small memory model that assumes that all function addresses
are either within a single 256 KB segment or at an absolute
address of less than 256k. This allows the call instruction to be

gcc.info 58 / 506

used instead of a const, consth, calli sequence.

-mnormal
Use the normal memory model: Generate call instructions only when
calling functions in the same file and calli instructions
otherwise. This works if each file occupies less than 256 KB but
allows the entire executable to be larger than 256 KB. This is
the default.

-mlarge
Always use calli instructions. Specify this option if you expect
a single file to compile into more than 256 KB of code.

-m29050
Generate code for the Am29050.

-m29000
Generate code for the Am29000. This is the default.

-mkernel-registers
Generate references to registers gr64-gr95 instead of to registers
gr96-gr127. This option can be used when compiling kernel code
that wants a set of global registers disjoint from that used by
user-mode code.

Note that when this option is used, register names in -f flags
must use the normal, user-mode, names.

-muser-registers
Use the normal set of global registers, gr96-gr127. This is the
default.

-mstack-check
Insert a call to __msp_check after each stack adjustment. This is
often used for kernel code.

1.26 gcc.info/M88K Options

M88K Options

These -m options are defined for Motorola 88k architectures:

-m88000
Generate code that works well on both the m88100 and the m88110.

-m88100
Generate code that works best for the m88100, but that also runs
on the m88110.

-m88110
Generate code that works best for the m88110, and may not run on
the m88100.

gcc.info 59 / 506

-mbig-pic
Obsolete option to be removed from the next revision. Use -fPIC.

-midentify-revision
Include an ident directive in the assembler output recording the
source file name, compiler name and version, timestamp, and
compilation flags used.

-mno-underscores
In assembler output, emit symbol names without adding an underscore
character at the beginning of each name. The default is to use an
underscore as prefix on each name.

-mocs-debug-info
-mno-ocs-debug-info

Include (or omit) additional debugging information (about
registers used in each stack frame) as specified in the 88open
Object Compatibility Standard, "OCS". This extra information
allows debugging of code that has had the frame pointer
eliminated. The default for DG/UX, SVr4, and Delta 88 SVr3.2 is
to include this information; other 88k configurations omit this
information by default.

-mocs-frame-position
When emitting COFF debugging information for automatic variables
and parameters stored on the stack, use the offset from the
canonical frame address, which is the stack pointer (register 31)
on entry to the function. The DG/UX, SVr4, Delta88 SVr3.2, and
BCS configurations use -mocs-frame-position; other 88k
configurations have the default -mno-ocs-frame-position.

-mno-ocs-frame-position
When emitting COFF debugging information for automatic variables
and parameters stored on the stack, use the offset from the frame
pointer register (register 30). When this option is in effect,
the frame pointer is not eliminated when debugging information is
selected by the -g switch.

-moptimize-arg-area
-mno-optimize-arg-area

Control how function arguments are stored in stack frames.
-moptimize-arg-area saves space by optimizing them, but this
conflicts with the 88open specifications. The opposite
alternative, -mno-optimize-arg-area, agrees with 88open standards.
By default GNU CC does not optimize the argument area.

-mshort-data-num
Generate smaller data references by making them relative to r0,
which allows loading a value using a single instruction (rather
than the usual two). You control which data references are
affected by specifying num with this option. For example, if you
specify -mshort-data-512, then the data references affected are
those involving displacements of less than 512 bytes.
-mshort-data-num is not effective for num greater than 64k.

-mserialize-volatile
-mno-serialize-volatile

gcc.info 60 / 506

Do, or do not, generate code to guarantee sequential consistency of
volatile memory references.

GNU CC always guarantees consistency by default.

The order of memory references made by the m88110 processor does
not always match the order of the instructions requesting those
references. In particular, a load instruction may execute before
a preceding store instruction. Such reordering violates
sequential consistency of volatile memory references, when there
are multiple processors.

The extra code generated to guarantee consistency may affect the
performance of your application. If you know that you can safely
forgo this guarantee, you may use the option
-mno-serialize-volatile.

-msvr4
-msvr3

Turn on (-msvr4) or off (-msvr3) compiler extensions related to
System V release 4 (SVr4). This controls the following:

1. Which variant of the assembler syntax to emit (which you can
select independently using -mversion-03.00).

2. -msvr4 makes the C preprocessor recognize #pragma weak
that is used on System V release 4.

3. -msvr4 makes GNU CC issue additional declaration
directives used in SVr4.

-msvr3 is the default for all m88k configurations except the SVr4
configuration.

-mversion-03.00
In the DG/UX configuration, there are two flavors of SVr4. This
option modifies -msvr4 to select whether the hybrid-COFF or
real-ELF flavor is used. All other configurations ignore this
option.

-mno-check-zero-division
-mcheck-zero-division

Early models of the 88k architecture had problems with division by
zero; in particular, many of them didn’t trap. Use these options
to avoid including (or to include explicitly) additional code to
detect division by zero and signal an exception. All GNU CC
configurations for the 88k use -mcheck-zero-division by default.

-muse-div-instruction
Do not emit code to check both the divisor and dividend when doing
signed integer division to see if either is negative, and adjust
the signs so the divide is done using non-negative numbers.
Instead, rely on the operating system to calculate the correct
value when the div instruction traps. This results in different
behavior when the most negative number is divided by -1, but is
useful when most or all signed integer divisions are done with
positive numbers.

gcc.info 61 / 506

-mtrap-large-shift
-mhandle-large-shift

Include code to detect bit-shifts of more than 31 bits;
respectively, trap such shifts or emit code to handle them
properly. By default GNU CC makes no special provision for large
bit shifts.

-mwarn-passed-structs
Warn when a function passes a struct as an argument or result.
Structure-passing conventions have changed during the evolution of
the C language, and are often the source of portability problems.
By default, GNU CC issues no such warning.

1.27 gcc.info/RS-6000 and PowerPC Options

IBM RS/6000 and PowerPC Options

These -m options are defined for the IBM RS/6000 and PowerPC:
-mpower
-mno-power
-mpower2
-mno-power2
-mpowerpc
-mno-powerpc
-mpowerpcsqr
-mno-powerpcsqr
-mpowerpc64
-mno-powerpc64

GNU CC supports two related instruction set architectures for the
RS/6000 and PowerPC. The POWER instruction set are those
instructions supported by the rios chip set used in the original
RS/6000 systems and the PowerPC instruction set is the
architecture of the Motorola MPC6xx microprocessors. The PowerPC
architecture defines 64-bit instructions, but they are not
supported by any current processors.

Neither architecture is a subset of the other. However there is a
large common subset of instructions supported by both. An MQ
register is included in processors supporting the POWER
architecture.

You use these options to specify which instructions are available
on the processor you are using. The default value of these
options is determined when configuring GNU CC. Specifying the
-mcpu=cpu_type overrides the specification of these options. We
recommend you use that option rather than these.

The -mpower option allows GNU CC to generate instructions that are
found only in the POWER architecture and to use the MQ register.
Specifying -mpower2 implies -power and also allows GNU CC to
generate instructions that are present in the POWER2 architecture
but not the original POWER architecture.

gcc.info 62 / 506

The -mpowerpc option allows GNU CC to generate instructions that
are found only in the 32-bit subset of the PowerPC architecture.
Specifying -mpowerpcsqr implies -mpowerpc and also allows GNU CC
to use the floating point square root instructions in the PowerPC
architecture but not in its first implementation. Likewise,
specifying -mpowerpc64 implies -mpowerpc and also allows GNU CC to
use the 64-bit instructions in the PowerPC architecture.

If you specify both -mno-power and -mno-powerpc, GNU CC will use
only the instructions in the common subset of both architectures
and will not use the MQ register. Specifying both -mpower and
-mpowerpc permits GNU CC to use any instruction from either
architecture and to allow use of the MQ register; specify this for
the Motorola MPC601.

-mnew-mnemonics
-mold-mnemonics

Select which mnemonics to use in the generated assembler code.
-mnew-mnemonics requests output that uses the assembler mnemonics
defined for the PowerPC architecture, while -mold-mnemonics
requests the assembler mnemonics defined for the POWER
architecture. Instructions defined in only one architecture have
only one mnemonic; GNU CC uses that mnemonic irrespective of which
of thse options is specified.

PowerPC assemblers support both the old and new mnemonics, as will
later POWER assemblers. Current POWER assemblers only support the
old mnemonics. Specify -mnew-mnemonics if you have an assembler
that supports them, otherwise specify -mold-mnemonics.

The default value of these options depends on how GNU CC was
configured. Specifing -mcpu=cpu_type sometimes overrides the
value of these option. Unless you are building a cross-compiled,
you should normally not specify either -mnew-mnemonics or
-mold-mnemonics, but should instead accept the default.

-mcpu=cpu_type
Set architecture type, register usage, choice of mnemonics, and
instruction scheduling parameters for machine type cpu_type. By
default, cpu_type is the target system defined when GNU CC was
configured. Supported values for cpu_type are rios1, rios2, rsc1,
601, 603, 604, 620 and all.

Specifying -mcpu=rios1 or -mcpu=rios2 enables the -mpower option
and disables the -mpowerpc option, -mcpu=601 enables both the
-mpower and -mpowerpc options, -mcpu=603 and -mcpu=604 enable the
-mpowerpc option and disables the -mpower option, and -mcpu=620
enables both the -mpowerpc and -mpowerpc64 options and also
disables the -mpower option.

To generate code that will operate on all members of the RS/6000
and PowerPC family, specify -mcpu=all. In that case, GNU CC will
only use instructions in the common subset and will not use the MQ
register. The instruction scheduling parameters and choice of
mnemonics are not affected.

gcc.info 63 / 506

Specifying -mcpu=601, -mcpu=603, -mcpu=604, or -mcpu=620 also
enables the new-mnemonics option.

-mnormal-toc
-mno-fp-in-toc
-mminimal-toc

Modify generation of the TOC (Table Of Contents), which is created
for every executable file. The -mnormal-toc option is selected by
default. In that case, GNU CC will allocate at least one TOC
entry for each unique non-automatic variable reference in your
program. GNU CC will also place floating-point constants in the
TOC. However, only 16K entries are available in the TOC.

If you receive a linker error message that says you have
overflowed the available TOC space, recompile your files with
either the -mno-fp-in-toc or -mminimal-toc options.
-mno-fp-in-toc prevents GNU CC from putting floating-point
constants in the TOC. -mminimal-toc causes GNU CC to make only
one TOC entry for every file. Using the -minimal-toc option
produces slightly slower and larger code than the -mnormal-toc or
-mno-fp-in-toc options. If you use floating-point, try the
-mno-fp-in-toc option before you specify -mminimal-toc.

1.28 gcc.info/RT Options

IBM RT Options

These -m options are defined for the IBM RT PC:

-min-line-mul
Use an in-line code sequence for integer multiplies. This is the
default.

-mcall-lib-mul
Call lmul$$ for integer multiples.

-mfull-fp-blocks
Generate full-size floating point data blocks, including the
minimum amount of scratch space recommended by IBM. This is the
default.

-mminimum-fp-blocks
Do not include extra scratch space in floating point data blocks.
This results in smaller code, but slower execution, since scratch
space must be allocated dynamically.

-mfp-arg-in-fpregs
Use a calling sequence incompatible with the IBM calling
convention in which floating point arguments are passed in
floating point registers. Note that varargs.h and stdargs.h will
not work with floating point operands if this option is specified.

-mfp-arg-in-gregs

gcc.info 64 / 506

Use the normal calling convention for floating point arguments.
This is the default.

-mhc-struct-return
Return structures of more than one word in memory, rather than in a
register. This provides compatibility with the MetaWare HighC (hc)
compiler. Use the option -fpcc-struct-return for compatibility
with the Portable C Compiler (pcc).

-mnohc-struct-return
Return some structures of more than one word in registers, when
convenient. This is the default. For compatibility with the
IBM-supplied compilers, use the option -fpcc-struct-return or the
option -mhc-struct-return.

1.29 gcc.info/MIPS Options

MIPS Options

These -m options are defined for the MIPS family of computers:

-mcpu=cpu type
Assume the defaults for the machine type cpu type when scheduling
instructions. The default cpu type is default, which picks the
longest cycles times for any of the machines, in order that the
code run at reasonable rates on all MIPS cpu’s. Other choices for
cpu type are r2000, r3000, r4000, and r6000. While picking a
specific cpu type will schedule things appropriately for that
particular chip, the compiler will not generate any code that does
not meet level 1 of the MIPS ISA (instruction set architecture)
without the -mips2 or -mips3 switches being used.

-mips2
Issue instructions from level 2 of the MIPS ISA (branch likely,
square root instructions). The -mcpu=r4000 or -mcpu=r6000 switch
must be used in conjunction with -mips2.

-mips3
Issue instructions from level 3 of the MIPS ISA (64 bit
instructions). You must use the -mcpu=r4000 switch along with
-mips3.

-mint64
-mlong64
-mlonglong128

These options don’t work at present.

-mmips-as
Generate code for the MIPS assembler, and invoke mips-tfile to add
normal debug information. This is the default for all platforms
except for the OSF/1 reference platform, using the OSF/rose object
format. If the either of the -gstabs or -gstabs+ switches are
used, the mips-tfile program will encapsulate the stabs within

gcc.info 65 / 506

MIPS ECOFF.

-mgas
Generate code for the GNU assembler. This is the default on the
OSF/1 reference platform, using the OSF/rose object format.

-mrnames
-mno-rnames

The -mrnames switch says to output code using the MIPS software
names for the registers, instead of the hardware names (ie, a0
instead of $4). The GNU assembler does not support the -mrnames
switch, and the MIPS assembler will be instructed to run the MIPS
C preprocessor over the source file. The -mno-rnames switch is
default.

-mgpopt
-mno-gpopt

The -mgpopt switch says to write all of the data declarations
before the instructions in the text section, this allows the MIPS
assembler to generate one word memory references instead of using
two words for short global or static data items. This is on by
default if optimization is selected.

-mstats
-mno-stats

For each non-inline function processed, the -mstats switch causes
the compiler to emit one line to the standard error file to print
statistics about the program (number of registers saved, stack
size, etc.).

-mmemcpy
-mno-memcpy

The -mmemcpy switch makes all block moves call the appropriate
string function (memcpy or bcopy) instead of possibly generating
inline code.

-mmips-tfile
-mno-mips-tfile

The -mno-mips-tfile switch causes the compiler not postprocess the
object file with the mips-tfile program, after the MIPS assembler
has generated it to add debug support. If mips-tfile is not run,
then no local variables will be available to the debugger. In
addition, stage2 and stage3 objects will have the temporary file
names passed to the assembler embedded in the object file, which
means the objects will not compare the same. The -mno-mips-tfile
switch should only be used when there are bugs in the mips-tfile
program that prevents compilation.

-msoft-float
Generate output containing library calls for floating point.
Warning: the requisite libraries are not part of GNU CC. Normally
the facilities of the machine’s usual C compiler are used, but
this can’t be done directly in cross-compilation. You must make
your own arrangements to provide suitable library functions for
cross-compilation.

-mhard-float

gcc.info 66 / 506

Generate output containing floating point instructions. This is
the default if you use the unmodified sources.

-mfp64
Assume that the FR bit in the status word is on, and that there
are 32 64-bit floating point registers, instead of 32 32-bit
floating point registers. You must also specify the -mcpu=r4000
and -mips3 switches.

-mfp32
Assume that there are 32 32-bit floating point registers. This is
the default.

-mabicalls
-mno-abicalls

Emit (or do not emit) the pseudo operations .abicalls, .cpload,
and .cprestore that some System V.4 ports use for position
independent code.

-mlong-calls
-mlong-calls

Do all calls with the JALR instruction, which requires loading up
a function’s address into a register before the call. You need to
use this switch, if you call outside of the current 512 megabyte
segment to functions that are not through pointers.

-mhalf-pic
-mno-half-pic

Put pointers to extern references into the data section and load
them up, rather than put the references in the text section.

-G num
Put global and static items less than or equal to num bytes into
the small data or bss sections instead of the normal data or bss
section. This allows the assembler to emit one word memory
reference instructions based on the global pointer (gp or $28),
instead of the normal two words used. By default, num is 8 when
the MIPS assembler is used, and 0 when the GNU assembler is used.
The -G num switch is also passed to the assembler and linker. All
modules should be compiled with the same -G num value.

-nocpp
Tell the MIPS assembler to not run it’s preprocessor over user
assembler files (with a .s suffix) when assembling them.

These options are defined by the macro TARGET_SWITCHES in the
machine description. The default for the options is also defined by
that macro, which enables you to change the defaults.

1.30 gcc.info/i386 Options

Intel 386 Options

gcc.info 67 / 506

These -m options are defined for the i386 family of computers:

-m486
-mno-486

Control whether or not code is optimized for a 486 instead of an
386. Code generated for an 486 will run on a 386 and vice versa.

-msoft-float
Generate output containing library calls for floating point.
Warning: the requisite libraries are not part of GNU CC. Normally
the facilities of the machine’s usual C compiler are used, but
this can’t be done directly in cross-compilation. You must make
your own arrangements to provide suitable library functions for
cross-compilation.

On machines where a function returns floating point results in the
80387 register stack, some floating point opcodes may be emitted
even if -msoft-float is used.

-mno-fp-ret-in-387
Do not use the FPU registers for return values of functions.

The usual calling convention has functions return values of types
float and double in an FPU register, even if there is no FPU. The
idea is that the operating system should emulate an FPU.

The option -mno-fp-ret-in-387 causes such values to be returned in
ordinary CPU registers instead.

1.31 gcc.info/HPPA Options

HPPA Options

These -m options are defined for the HPPA family of computers:

-mpa-risc-1-0
Generate code for a PA 1.0 processor.

-mpa-risc-1-1
Generate code for a PA 1.1 processor.

-mlong-calls
Generate code which allows calls to functions greater than 256k
away from the caller when the caller and callee are in the same
source file. Do not turn this option on unless code refuses to
link with "branch out of range errors" from the linker.

-mdisable-fpregs
Prevent floating point registers from being used in any manner.
This is necessary for compiling kernels which perform lazy context
switching of floating point registers. If you use this option and
attempt to perform floating point operations, the compiler will
abort.

gcc.info 68 / 506

-mdisable-indexing
Prevent the compiler from using indexing address modes. This
avoids some rather obscure problems when compiling MIG generated
code under MACH.

-mtrailing-colon
Add a colon to the end of label definitions (for ELF assemblers).

1.32 gcc.info/Intel 960 Options

Intel 960 Options

These -m options are defined for the Intel 960 implementations:

-mcpu type
Assume the defaults for the machine type cpu type for some of the
other options, including instruction scheduling, floating point
support, and addressing modes. The choices for cpu type are ka,
kb, mc, ca, cf, sa, and sb. The default is kb.

-mnumerics
-msoft-float

The -mnumerics option indicates that the processor does support
floating-point instructions. The -msoft-float option indicates
that floating-point support should not be assumed.

-mleaf-procedures
-mno-leaf-procedures

Do (or do not) attempt to alter leaf procedures to be callable
with the bal instruction as well as call. This will result in more
efficient code for explicit calls when the bal instruction can be
substituted by the assembler or linker, but less efficient code in
other cases, such as calls via function pointers, or using a
linker that doesn’t support this optimization.

-mtail-call
-mno-tail-call

Do (or do not) make additional attempts (beyond those of the
machine-independent portions of the compiler) to optimize
tail-recursive calls into branches. You may not want to do this
because the detection of cases where this is not valid is not
totally complete. The default is -mno-tail-call.

-mcomplex-addr
-mno-complex-addr

Assume (or do not assume) that the use of a complex addressing
mode is a win on this implementation of the i960. Complex
addressing modes may not be worthwhile on the K-series, but they
definitely are on the C-series. The default is currently
-mcomplex-addr for all processors except the CB and CC.

-mcode-align

gcc.info 69 / 506

-mno-code-align
Align code to 8-byte boundaries for faster fetching (or don’t
bother). Currently turned on by default for C-series
implementations only.

-mic-compat
-mic2.0-compat
-mic3.0-compat

Enable compatibility with iC960 v2.0 or v3.0.

-masm-compat
-mintel-asm

Enable compatibility with the iC960 assembler.

-mstrict-align
-mno-strict-align

Do not permit (do permit) unaligned accesses.

-mold-align
Enable structure-alignment compatibility with Intel’s gcc release
version 1.3 (based on gcc 1.37). Currently this is buggy in that
#pragma align 1 is always assumed as well, and cannot be turned
off.

1.33 gcc.info/DEC Alpha Options

DEC Alpha Options

These -m options are defined for the DEC Alpha implementations:

-mno-soft-float
-msoft-float

Use (do not use) the hardware floating-point instructions for
floating-point operations. When -msoft-float is specified,
functions in libgcc1.c will be used to perform floating-point
operations. Unless they are replaced by routines that emulate the
floating-point operations, or compiled in such a way as to call
such emulations routines, these routines will issue floating-point
operations. If you are compiling for an Alpha without
floating-point operations, you must ensure that the library is
built so as not to call them.

Note that Alpha implementations without floating-point operations
are required to have floating-point registers.

-mfp-reg
-mno-fp-regs

Generate code that uses (does not use) the floating-point register
set. -mno-fp-regs implies -msoft-float. If the floating-point
register set is not used, floating point operands are passed in
integer registers as if they were integers and floating-point
results are passed in $0 instead of $f0. This is a non-standard
calling sequence, so any function with a floating-point argument

gcc.info 70 / 506

or return value called by code compiled with -mno-fp-regs must
also be compiled with that option.

A typical use of this option is building a kernel that does not
use, and hence need not save and restore, any floating-point
registers.

1.34 gcc.info/Clipper Options

Clipper Options

These -m options are defined for the Clipper implementations:

-mc300
Produce code for a C300 Clipper processor. This is the default.

-mc400
Produce code for a C400 Clipper processor i.e. use floting point
registers f8..f15.

1.35 gcc.info/System V Options

Options for System V

These additional options are available on System V Release 4 for
compatibility with other compilers on those systems:

-Qy
Identify the versions of each tool used by the compiler, in a
.ident assembler directive in the output.

-Qn
Refrain from adding .ident directives to the output file (this is
the default).

-YP,dirs
Search the directories dirs, and no others, for libraries
specified with -l.

-Ym,dir
Look in the directory dir to find the M4 preprocessor. The
assembler uses this option.

1.36 gcc.info/Code Gen Options

gcc.info 71 / 506

Options for Code Generation Conventions
=======================================

These machine-independent options control the interface conventions
used in code generation.

Most of them have both positive and negative forms; the negative form
of -ffoo would be -fno-foo. In the table below, only one of the forms
is listed--the one which is not the default. You can figure out the
other form by either removing no- or adding it.

-fpcc-struct-return
Return "short" struct and union values in memory like longer ones,
rather than in registers. This convention is less efficient, but
it has the advantage of allowing intercallability between GNU
CC-compiled files and files compiled with other compilers.

The precise convention for returning structures in memory depends
on the target configuration macros.

Short structures and unions are those whose size and alignment
match that of some integer type.

-freg-struct-return
Use the convention that struct and union values are returned in
registers when possible. This is more efficient for small
structures than -fpcc-struct-return.

If you specify neither -fpcc-struct-return nor its contrary
-freg-struct-return, GNU CC defaults to whichever convention is
standard for the target. If there is no standard convention, GNU
CC defaults to -fpcc-struct-return, except on targets where GNU CC
is the principal compiler. In those cases, we can choose the
standard, and we chose the more efficient register return
alternative.

-fshort-enums
Allocate to an enum type only as many bytes as it needs for the
declared range of possible values. Specifically, the enum type
will be equivalent to the smallest integer type which has enough
room.

-fshort-double
Use the same size for double as for float.

-fshared-data
Requests that the data and non-const variables of this compilation
be shared data rather than private data. The distinction makes
sense only on certain operating systems, where shared data is
shared between processes running the same program, while private
data exists in one copy per process.

-fno-common
Allocate even uninitialized global variables in the bss section of
the object file, rather than generating them as common blocks.
This has the effect that if the same variable is declared (without

gcc.info 72 / 506

extern) in two different compilations, you will get an error when
you link them. The only reason this might be useful is if you
wish to verify that the program will work on other systems which
always work this way.

-fno-ident
Ignore the #ident directive.

-fno-gnu-linker
Do not output global initializations (such as C++ constructors and
destructors) in the form used by the GNU linker (on systems where
the GNU linker is the standard method of handling them). Use this
option when you want to use a non-GNU linker, which also requires
using the collect2 program to make sure the system linker includes
constructors and destructors. (collect2 is included in the GNU CC
distribution.) For systems which must use collect2, the compiler
driver gcc is configured to do this automatically.

-finhibit-size-directive
Don’t output a .size assembler directive, or anything else that
would cause trouble if the function is split in the middle, and the
two halves are placed at locations far apart in memory. This
option is used when compiling crtstuff.c; you should not need to
use it for anything else.

-fverbose-asm
Put extra commentary information in the generated assembly code to
make it more readable. This option is generally only of use to
those who actually need to read the generated assembly code
(perhaps while debugging the compiler itself).

-fvolatile
Consider all memory references through pointers to be volatile.

-fvolatile-global
Consider all memory references to extern and global data items to
be volatile.

-fpic
Generate position-independent code (PIC) suitable for use in a
shared library, if supported for the target machine. Such code
accesses all constant addresses through a global offset table
(GOT). If the GOT size for the linked executable exceeds a
machine-specific maximum size, you get an error message from the
linker indicating that -fpic does not work; in that case,
recompile with -fPIC instead. (These maximums are 16k on the
m88k, 8k on the Sparc, and 32k on the m68k and RS/6000. The 386
has no such limit.)

Position-independent code requires special support, and therefore
works only on certain machines. For the 386, GNU CC supports PIC
for System V but not for the Sun 386i. Code generated for the IBM
RS/6000 is always position-independent.

The GNU assembler does not fully support PIC. Currently, you must
use some other assembler in order for PIC to work. We would
welcome volunteers to upgrade GAS to handle this; the first part

gcc.info 73 / 506

of the job is to figure out what the assembler must do differently.

-fPIC
If supported for the target machine, emit position-independent
code, suitable for dynamic linking and avoiding any limit on the
size of the global offset table. This option makes a difference
on the m68k, m88k and the Sparc.

Position-independent code requires special support, and therefore
works only on certain machines.

-ffixed-reg
Treat the register named reg as a fixed register; generated code
should never refer to it (except perhaps as a stack pointer, frame
pointer or in some other fixed role).

reg must be the name of a register. The register names accepted
are machine-specific and are defined in the REGISTER_NAMES macro
in the machine description macro file.

This flag does not have a negative form, because it specifies a
three-way choice.

-fcall-used-reg
Treat the register named reg as an allocatable register that is
clobbered by function calls. It may be allocated for temporaries
or variables that do not live across a call. Functions compiled
this way will not save and restore the register reg.

Use of this flag for a register that has a fixed pervasive role in
the machine’s execution model, such as the stack pointer or frame
pointer, will produce disastrous results.

This flag does not have a negative form, because it specifies a
three-way choice.

-fcall-saved-reg
Treat the register named reg as an allocatable register saved by
functions. It may be allocated even for temporaries or variables
that live across a call. Functions compiled this way will save
and restore the register reg if they use it.

Use of this flag for a register that has a fixed pervasive role in
the machine’s execution model, such as the stack pointer or frame
pointer, will produce disastrous results.

A different sort of disaster will result from the use of this flag
for a register in which function values may be returned.

This flag does not have a negative form, because it specifies a
three-way choice.

+e0
+e1

Control whether virtual function definitions in classes are used to
generate code, or only to define interfaces for their callers.
(C++ only).

gcc.info 74 / 506

These options are provided for compatibility with cfront 1.x
usage; the recommended alternative GNU C++ usage is in flux. See

Declarations and Definitions in One Header
.

With +e0, virtual function definitions in classes are declared
extern; the declaration is used only as an interface
specification, not to generate code for the virtual functions (in
this compilation).

With +e1, G++ actually generates the code implementing virtual
functions defined in the code, and makes them publicly visible.

1.37 gcc.info/Environment Variables

Environment Variables Affecting GNU CC
======================================

This section describes several environment variables that affect how
GNU CC operates. They work by specifying directories or prefixes to use
when searching for various kinds of files.

Note that you can also specify places to search using options such as
-B, -I and -L (see

Directory Options
). These take precedence over

places specified using environment variables, which in turn take
precedence over those specified by the configuration of GNU CC. See

Driver
.

TMPDIR
If TMPDIR is set, it specifies the directory to use for temporary
files. GNU CC uses temporary files to hold the output of one
stage of compilation which is to be used as input to the next
stage: for example, the output of the preprocessor, which is the
input to the compiler proper.

GCC_EXEC_PREFIX
If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the
names of the subprograms executed by the compiler. No slash is
added when this prefix is combined with the name of a subprogram,
but you can specify a prefix that ends with a slash if you wish.

If GNU CC cannot find the subprogram using the specified prefix, it
tries looking in the usual places for the subprogram.

Other prefixes specified with -B take precedence over this prefix.

This prefix is also used for finding files such as crt0.o that are

gcc.info 75 / 506

used for linking.

In addition, the prefix is used in an unusual way in finding the
directories to search for header files. For each of the standard
directories whose name normally begins with /gnu/lib/gcc-lib (more
precisely, with the value of GCC_INCLUDE_DIR), GNU CC tries
replacing that beginning with the specified prefix to produce an
alternate directory name. Thus, with -Bfoo/, GNU CC will search
foo/bar where it would normally search /gnu/lib/bar. These
alternate directories are searched first; the standard directories
come next.

COMPILER_PATH
The value of COMPILER_PATH is a colon-separated list of
directories, much like PATH. GNU CC tries the directories thus
specified when searching for subprograms, if it can’t find the
subprograms using GCC_EXEC_PREFIX.

LIBRARY_PATH
The value of LIBRARY_PATH is a colon-separated list of
directories, much like PATH. GNU CC tries the directories thus
specified when searching for special linker files, if it can’t
find them using GCC_EXEC_PREFIX. Linking using GNU CC also uses
these directories when searching for ordinary libraries for the -l
option (but directories specified with -L come first).

C_INCLUDE_PATH
CPLUS_INCLUDE_PATH
OBJC_INCLUDE_PATH

These environment variables pertain to particular languages. Each
variable’s value is a colon-separated list of directories, much
like PATH. When GNU CC searches for header files, it tries the
directories listed in the variable for the language you are using,
after the directories specified with -I but before the standard
header file directories.

DEPENDENCIES_OUTPUT
If this variable is set, its value specifies how to output
dependencies for Make based on the header files processed by the
compiler. This output looks much like the output from the -M
option (see

Preprocessor Options
), but it goes to a separate file,

and is in addition to the usual results of compilation.

The value of DEPENDENCIES_OUTPUT can be just a file name, in which
case the Make rules are written to that file, guessing the target
name from the source file name. Or the value can have the form
file target, in which case the rules are written to file file
using target as the target name.

1.38 gcc.info/Running Protoize

gcc.info 76 / 506

Running Protoize
================

The program protoize is an optional part of GNU C. You can use it
to add prototypes to a program, thus converting the program to ANSI C
in one respect. The companion program unprotoize does the reverse: it
removes argument types from any prototypes that are found.

When you run these programs, you must specify a set of source files
as command line arguments. The conversion programs start out by
compiling these files to see what functions they define. The
information gathered about a file foo is saved in a file named foo.X.

After scanning comes actual conversion. The specified files are all
eligible to be converted; any files they include (whether sources or
just headers) are eligible as well.

But not all the eligible files are converted. By default, protoize
and unprotoize convert only source and header files in the current
directory. You can specify additional directories whose files should
be converted with the -d directory option. You can also specify
particular files to exclude with the -x file option. A file is
converted if it is eligible, its directory name matches one of the
specified directory names, and its name within the directory has not
been excluded.

Basic conversion with protoize consists of rewriting most function
definitions and function declarations to specify the types of the
arguments. The only ones not rewritten are those for varargs functions.

protoize optionally inserts prototype declarations at the beginning
of the source file, to make them available for any calls that precede
the function’s definition. Or it can insert prototype declarations
with block scope in the blocks where undeclared functions are called.

Basic conversion with unprotoize consists of rewriting most function
declarations to remove any argument types, and rewriting function
definitions to the old-style pre-ANSI form.

Both conversion programs print a warning for any function
declaration or definition that they can’t convert. You can suppress
these warnings with -q.

The output from protoize or unprotoize replaces the original source
file. The original file is renamed to a name ending with .save. If
the .save file already exists, then the source file is simply discarded.

protoize and unprotoize both depend on GNU CC itself to scan the
program and collect information about the functions it uses. So
neither of these programs will work until GNU CC is installed.

Here is a table of the options you can use with protoize and
unprotoize. Each option works with both programs unless otherwise
stated.

-B directory

gcc.info 77 / 506

Look for the file SYSCALLS.c.X in directory, instead of the usual
directory (normally /gnu/lib). This file contains prototype
information about standard system functions. This option applies
only to protoize.

-c compilation-options
Use compilation-options as the options when running gcc to
produce the .X files. The special option -aux-info is always
passed in addition, to tell gcc to write a .X file.

Note that the compilation options must be given as a single
argument to protoize or unprotoize. If you want to specify several
gcc options, you must quote the entire set of compilation options
to make them a single word in the shell.

There are certain gcc arguments that you cannot use, because they
would produce the wrong kind of output. These include -g, -O, -c,
-S, and -o If you include these in the compilation-options, they
are ignored.

-C
Rename files to end in .C instead of .c. This is convenient if
you are converting a C program to C++. This option applies only
to protoize.

-g
Add explicit global declarations. This means inserting explicit
declarations at the beginning of each source file for each function
that is called in the file and was not declared. These
declarations precede the first function definition that contains a
call to an undeclared function. This option applies only to
protoize.

-i string
Indent old-style parameter declarations with the string string.
This option applies only to protoize.

unprotoize converts prototyped function definitions to old-style
function definitions, where the arguments are declared between the
argument list and the initial {. By default, unprotoize uses five
spaces as the indentation. If you want to indent with just one
space instead, use -i " ".

-k
Keep the .X files. Normally, they are deleted after conversion is
finished.

-l
Add explicit local declarations. protoize with -l inserts a
prototype declaration for each function in each block which calls
the function without any declaration. This option applies only to
protoize.

-n
Make no real changes. This mode just prints information about the
conversions that would have been done without -n.

gcc.info 78 / 506

-N
Make no .save files. The original files are simply deleted. Use
this option with caution.

-p program
Use the program program as the compiler. Normally, the name gcc
is used.

-q
Work quietly. Most warnings are suppressed.

-v
Print the version number, just like -v for gcc.

If you need special compiler options to compile one of your program’s
source files, then you should generate that file’s .X file specially,
by running gcc on that source file with the appropriate options and the
option -aux-info. Then run protoize on the entire set of files.
protoize will use the existing .X file because it is newer than the
source file. For example:

gcc -Dfoo=bar file1.c -aux-info
protoize *.c

You need to include the special files along with the rest in the
protoize command, even though their .X files already exist, because
otherwise they won’t get converted.

See
Protoize Caveats
, for more information on how to use protoize

successfully.

1.39 gcc.info/Installation

Installing GNU CC

Here is the procedure for installing GNU CC on a Unix system.

Other Dir
Compiling in a separate directory (not where the source is).

Cross-Compiler
Building and installing a cross-compiler.

PA Install
See below for installation on the HP Precision Architecture.

Sun Install
See below for installation on the Sun.

gcc.info 79 / 506

3b1 Install
See below for installation on the 3b1.

Unos Install
See below for installation on Unos (from CRDS).

VMS Install
See below for installation on VMS.

WE32K Install
See below for installation on the 3b* aside from the 3b1.

MIPS Install
See below for installation on the MIPS Architecture.

Collect2
How collect2 works; how it finds ld.

Header Dirs
Understanding the standard header file directories.

You cannot install GNU C by itself on MSDOS; it will not compile
under any MSDOS compiler except itself. You need to get the complete
compilation package DJGPP, which includes binaries as well as sources,
and includes all the necessary compilation tools and libraries.

1. If you have built GNU CC previously in the same directory for a
different target machine, do make distclean to delete all files
that might be invalid. One of the files this deletes is Makefile;
if make distclean complains that Makefile does not exist, it
probably means that the directory is already suitably clean.

2. On a System V release 4 system, make sure /usr/bin precedes
/usr/ucb in PATH. The cc command in /usr/ucb uses libraries which
have bugs.

3. Specify the host and target machine configurations. You do this by
running the file configure with appropriate arguments.

If you are building a compiler to produce code for the machine it
runs on, specify just one machine type, with the -target option;
the host type will default to be the same as the target. (For
information on building a cross-compiler, see

Cross-Compiler
.)

Here is an example:

configure --target=sparc-sun-sunos4.1

If you run configure without specifying configuration arguments,
configure tries to guess the type of host you are on, and uses
that configuration type for both host and target. So you don’t
need to specify a configuration, for building a native compiler,
unless configure cannot figure out what your configuration is.

A configuration name may be canonical or it may be more or less

gcc.info 80 / 506

abbreviated.

A canonical configuration name has three parts, separated by
dashes. It looks like this: cpu-company-system. (The three parts
may themselves contain dashes; configure can figure out which
dashes serve which purpose.) For example, m68k-sun-sunos4.1
specifies a Sun 3.

You can also replace parts of the configuration by nicknames or
aliases. For example, sun3 stands for m68k-sun, so sun3-sunos4.1
is another way to specify a Sun 3. You can also use simply
sun3-sunos, since the version of SunOS is assumed by default to be
version 4. sun3-bsd also works, since configure knows that the
only BSD variant on a Sun 3 is SunOS.

You can specify a version number after any of the system types,
and some of the CPU types. In most cases, the version is
irrelevant, and will be ignored. So you might as well specify the
version if you know it.

Here are the possible CPU types:

a29k, alpha, arm, cn, clipper, elxsi, h8300, hppa1.0, hppa1.1,
i370, i386, i486, i860, i960, m68000, m68k, m88k, mips,
ns32k, pyramid, romp, rs6000, sh, sparc, sparclite, vax,
we32k.

Here are the recognized company names. As you can see, customary
abbreviations are used rather than the longer official names.

alliant, altos, apollo, att, bull, cbm, convergent, convex,
crds, dec, dg, dolphin, elxsi, encore, harris, hitachi, hp,
ibm, intergraph, isi, mips, motorola, ncr, next, ns, omron,
plexus, sequent, sgi, sony, sun, tti, unicom.

The company name is meaningful only to disambiguate when the rest
of the information supplied is insufficient. You can omit it,
writing just cpu-system, if it is not needed. For example,
vax-ultrix4.2 is equivalent to vax-dec-ultrix4.2.

Here is a list of system types:

aix, acis, aos, bsd, clix, ctix, dgux, dynix, genix, hpux,
isc, linux, luna, lynxos, mach, minix, newsos, osf, osfrose,
riscos, sco, solaris, sunos, sysv, ultrix, unos, vms.

You can omit the system type; then configure guesses the operating
system from the CPU and company.

You can add a version number to the system type; this may or may
not make a difference. For example, you can write bsd4.3 or
bsd4.4 to distinguish versions of BSD. In practice, the
version number is most needed for sysv3 and sysv4, which are often
treated differently.

If you specify an impossible combination such as i860-dg-vms, then
you may get an error message from configure, or it may ignore part

gcc.info 81 / 506

of the information and do the best it can with the rest.
configure always prints the canonical name for the alternative
that it used.

Often a particular model of machine has a name. Many machine
names are recognized as aliases for CPU/company combinations.
Thus, the machine name sun3, mentioned above, is an alias for
m68k-sun. Sometimes we accept a company name as a machine name,
when the name is popularly used for a particular machine. Here is
a table of the known machine names:

3300, 3b1, 3bn, 7300, altos3068, altos, apollo68, att-7300,
balance, convex-cn, crds, decstation-3100, decstation, delta,
encore, fx2800, gmicro, hp7nn, hp8nn, hp9k2nn, hp9k3nn, hp9k7nn,
hp9k8nn, iris4d, iris, isi68, m3230, magnum, merlin,
miniframe, mmax, news-3600, news800, news, next, pbd, pc532,
pmax, ps2, risc-news, rtpc, sun2, sun386i, sun386, sun3,
sun4, symmetry, tower-32, tower.

Remember that a machine name specifies both the cpu type and the
company name.

There are four additional options you can specify independently to
describe variant hardware and software configurations. These are
-with-gnu-as, -with-gnu-ld, -with-stabs and -nfp.

-with-gnu-as
If you will use GNU CC with the GNU assembler (GAS), you
should declare this by using the -with-gnu-as option when you
run configure.

Using this option does not install GAS. It only modifies the
output of GNU CC to work with GAS. Building and installing
GAS is up to you.

Conversely, if you do not wish to use GAS and do not specify
-with-gnu-as when building GNU CC, it is up to you to make
sure that GAS is not installed. GNU CC searches for a
program named as in various directories; if the program it
finds is GAS, then it runs GAS. If you are not sure where
GNU CC finds the assembler it is using, try specifying -v
when you run it.

The systems where it makes a difference whether you use GAS
are
hppa1.0-any-any, hppa1.1-any-any, i386-any-sysv, i386-any-isc,
i860-any-bsd, m68k-bull-sysv, m68k-hp-hpux, m68k-sony-bsd,
m68k-altos-sysv, m68000-hp-hpux, m68000-att-sysv, and
mips-any). On any other system, -with-gnu-as
has no effect.

On the systems listed above (except for the HP-PA and for ISC
on the 386), if you use GAS, you should also use the GNU
linker (and specify -with-gnu-ld).

-with-gnu-ld
Specify the option -with-gnu-ld if you plan to use the GNU

gcc.info 82 / 506

linker with GNU CC.

This option does not cause the GNU linker to be installed; it
just modifies the behavior of GNU CC to work with the GNU
linker. Specifically, it inhibits the installation of
collect2, a program which otherwise serves as a front-end for
the system’s linker on most configurations.

-with-stabs
On MIPS based systems and on Alphas, you must specify whether
you want GNU CC to create the normal ECOFF debugging format,
or to use BSD-style stabs passed through the ECOFF symbol
table. The normal ECOFF debug format cannot fully handle
languages other than C. BSD stabs format can handle other
languages, but it only works with the GNU debugger GDB.

Normally, GNU CC uses the ECOFF debugging format by default;
if you prefer BSD stabs, specify -with-stabs when you
configure GNU CC.

No matter which default you choose when you configure GNU CC,
the user can use the -gcoff and -gstabs+ options to specify
explicitly the debug format for a particular compilation.

-with-stabs is meaningful on the ISC system on the 386, also,
if -with-gas is used. It selects use of stabs debugging
information embedded in COFF output. This kind of debugging
information supports C++ well; ordinary COFF debugging
information does not.

-nfp
On certain systems, you must specify whether the machine has
a floating point unit. These systems include m68k-sun-sunosn
and m68k-isi-bsd. On any other system, -nfp currently has no
effect, though perhaps there are other systems where it could
usefully make a difference.

If you want to install your own homemade configuration files, you
can use local as the company name to access them. If you use
configuration cpu-local, the configuration name without the cpu
prefix is used to form the configuration file names.

Thus, if you specify m68k-local, configuration uses files
local.md, local.h, local.c, xm-local.h, t-local, and x-local,
all in the directory config/m68k.

Here is a list of configurations that have special treatment or
special things you must know:

alpha-*-osf1
Systems using processors that implement the DEC Alpha
architecture and are running the OSF/1 operating system, for
example the DEC Alpha AXP systems. (VMS on the Alpha is not
currently supported by GNU CC.)

Objective C and C++ do not yet work on the Alpha. We hope to
support C++ in version 2.6.

gcc.info 83 / 506

GNU CC writes a .verstamp directive to the assembler output
file unless it is built as a cross-compiler. It gets the
version to use from the system header file
/usr/include/stamp.h. If you install a new version of OSF/1,
you should rebuild GCC to pick up the new version stamp.

Note that since the Alpha is a 64-bit architecture,
cross-compilers from 32-bit machines will not generate as
efficient code as that generated when the compiler is running
on a 64-bit machine because many optimizations that depend on
being able to represent a word on the target in an integral
value on the host cannot be performed. Building
cross-compilers on the Alpha for 32-bit machines has only
been tested in a few cases and may not work properly.

make compare may fail on some versions of OSF/1 unless you add
-save-temps to CFLAGS. The same problem occurs on Irix
version 5.1.1. On these systems, the name of the assembler
input file is stored in the object file, and that makes
comparison fail if it differs between the stage1 and stage2
compilations. The option -save-temps forces a fixed name to
be used for the assembler input file, instead of a randomly
chosen name in /tmp.

GNU CC now supports both the native (ECOFF) debugging format
used by DBX and GDB and an encapsulated STABS format for use
only with GDB. See the discussion of the -with-stabs option
of configure above for more information on these formats and
how to select them.

There is a bug in DEC’s assembler that produces incorrect
line numbers for ECOFF format when the .align directive is
used. To work around this problem, GNU CC will not emit such
alignment directives even if optimization is being performed
if it is writing ECOFF format debugging information.
Unfortunately, this has the very undesirable side-effect that
code addresses when -O is specified are different depending
on whether or not -g is also specified.

To avoid this behavior, specify -gstabs+ and use GDB instead
of DBX. DEC is now aware of this problem with the assembler
and hopes to provide a fix shortly.

a29k
AMD Am29k-family processors. These are normally used in
embedded applications. There are no standard Unix
configurations. This configuration corresponds to AMD’s
standard calling sequence and binary interface and is
compatible with other 29k tools.

You may need to make a variant of the file a29k.h for your
particular configuration.

a29k-*-bsd
AMD Am29050 used in a system running a variant of BSD Unix.

gcc.info 84 / 506

elxsi-elxsi-bsd
The Elxsi’s C compiler has known limitations that prevent it
from compiling GNU C. Please contact mrs@cygnus.com for more
details.

hppa*-*-*
Using GAS is highly recommended for all HP-PA configurations.
See

PA Install
for the special procedures needed to compile

GNU CC for the HP-PA.

i386-*-sco
Compilation with RCC is recommended. Also, it may be a good
idea to link with GNU malloc instead of the malloc that comes
with the system.

i386-*-sco3.2.4
Use this configuration for SCO release 3.2 version 4.

i386-*-isc
It may be good idea to link with GNU malloc instead of the
malloc that comes with the system.

i386-*-esix
It may be good idea to link with GNU malloc instead of the
malloc that comes with the system.

i386-ibm-aix
You need to use GAS version 2.1 or later, and and LD from GNU
binutils version 2.2 or later.

i386-sequent
Go to the Berkeley universe before compiling. In addition,
you probably need to create a file named string.h containing
just one line: #include <strings.h>.

i386-sun-sunos4
You may find that you need another version of GNU CC to begin
bootstrapping with, since the current version when built with
the system’s own compiler seems to get an infinite loop
compiling part of libgcc2.c. GNU CC version 2 compiled with
GNU CC (any version) seems not to have this problem.

i860-intel-osf1
This is the Paragon. If you have version 1.0 of the
operating system, see

Installation Problems
, for special

things you need to do to compensate for peculiarities in the
system.

m68000-att
AT&T 3b1, a.k.a. 7300 PC. Special procedures are needed to
compile GNU CC with this machine’s standard C compiler, due
to bugs in that compiler. See

3b1 Install

gcc.info 85 / 506

. You can
bootstrap it more easily with previous versions of GNU CC if
you have them.

m68000-hp-bsd
HP 9000 series 200 running BSD. Note that the C compiler
that comes with this system cannot compile GNU CC; contact
law@cs.utah.edu to get binaries of GNU CC for bootstrapping.

m68k-altos
Altos 3068. You must use the GNU assembler, linker and
debugger. Also, you must fix a kernel bug. Details in the
file README.ALTOS.

m68k-bull-sysv
Bull DPX/2 series 200 and 300 with BOS-2.00.45 up to
BOS-2.01. GNU CC works either with native assembler or GNU
assembler. You can use GNU assembler with native coff
generation by providing -gas to the configure script or use
GNU assembler with dbx-in-coff encapsulation by providing
-gas -stabs. For any problem with native assembler or for
availability of the DPX/2 port of GAS, contact
F.Pierresteguy@frcl.bull.fr.

m68k-hp-hpux
HP 9000 series 300 or 400 running HP-UX. HP-UX version 8.0
has a bug in the assembler that prevents compilation of GNU
CC. To fix it, get patch PHCO_0800 from HP.

In addition, -gas does not currently work with this
configuration. Changes in HP-UX have broken the library
conversion tool and the linker.

m68k-sun
Sun 3. We do not provide a configuration file to use the Sun
FPA by default, because programs that establish signal
handlers for floating point traps inherently cannot work with
the FPA.

m88k-*-svr3
Motorola m88k running the AT&T/Unisoft/Motorola V.3 reference
port. These systems tend to use the Green Hills C, revision
1.8.5, as the standard C compiler. There are apparently bugs
in this compiler that result in object files differences
between stage 2 and stage 3. If this happens, make the stage
4 compiler and compare it to the stage 3 compiler. If the
stage 3 and stage 4 object files are identical, this suggests
you encountered a problem with the standard C compiler; the
stage 3 and 4 compilers may be usable.

It is best, however, to use an older version of GNU CC for
bootstrapping if you have one.

m88k-*-dgux
Motorola m88k running DG/UX. To build native or cross
compilers on DG/UX, you must first change to the 88open BCS
software development environment. This is done by issuing

gcc.info 86 / 506

this command:

eval ‘sde-target m88kbcs‘

m88k-tektronix-sysv3
Tektronix XD88 running UTekV 3.2e. Do not turn on
optimization while building stage1 if you bootstrap with the
buggy Green Hills compiler. Also, The bundled LAI System V
NFS is buggy so if you build in an NFS mounted directory,
start from a fresh reboot, or avoid NFS all together.
Otherwise you may have trouble getting clean comparisons
between stages.

mips-mips-bsd
MIPS machines running the MIPS operating system in BSD mode.
It’s possible that some old versions of the system lack the
functions memcpy, memcmp, and memset. If your system lacks
these, you must remove or undo the definition of
TARGET_MEM_FUNCTIONS in mips-bsd.h.

mips-sgi-*
Silicon Graphics MIPS machines running IRIX. In order to
compile GCC on an SGI the "c.hdr.lib" option must be
installed from the CD-ROM supplied from Silicon Graphics.
This is found on the 2nd CD in release 4.0.1.

mips-sony-sysv
Sony MIPS NEWS. This works in NEWSOS 5.0.1, but not in 5.0.2
(which uses ELF instead of COFF). Support for 5.0.2 will
probably be provided soon by volunteers. In particular, the
linker does not like the code generated by GCC when shared
libraries are linked in.

ns32k-encore
Encore ns32000 system. Encore systems are supported only
under BSD.

ns32k-*-genix
National Semiconductor ns32000 system. Genix has bugs in
alloca and malloc; you must get the compiled versions of
these from GNU Emacs.

ns32k-sequent
Go to the Berkeley universe before compiling. In addition,
you probably need to create a file named string.h containing
just one line: #include <strings.h>.

ns32k-utek
UTEK ns32000 system ("merlin"). The C compiler that comes
with this system cannot compile GNU CC; contact
tektronix!reed!mason to get binaries of GNU CC for
bootstrapping.

romp-*-aos
romp-*-mach

The only operating systems supported for the IBM RT PC are
AOS and MACH. GNU CC does not support AIX running on the RT.

gcc.info 87 / 506

We recommend you compile GNU CC with an earlier version of
itself; if you compile GNU CC with hc, the Metaware compiler,
it will work, but you will get mismatches between the stage 2
and stage 3 compilers in various files. These errors are
minor differences in some floating-point constants and can be
safely ignored; the stage 3 compiler is correct.

rs6000-*-aix
Read the file README.RS6000 for information on how to get a
fix for problems in the IBM assembler that interfere with GNU
CC. You must either obtain the new assembler or avoid using
the -g switch. Note that Makefile.in uses -g by default when
compiling libgcc2.c.

The PowerPC and POWER2 architectures are now supported, but
have not been extensively tested due to lack of appropriate
systems. Only AIX is supported on the PowerPC.

Objective C does not work on this architecture.

XLC version 1.3.0.0 will miscompile jump.c. XLC version
1.3.0.1 or later fixes this problem. We do not yet have a
PTF number for this fix.

vax-dec-ultrix
Don’t try compiling with Vax C (vcc). It produces incorrect
code in some cases (for example, when alloca is used).

Meanwhile, compiling cp-parse.c with pcc does not work
because of an internal table size limitation in that
compiler. To avoid this problem, compile just the GNU C
compiler first, and use it to recompile building all the
languages that you want to run.

Here we spell out what files will be set up by configure. Normally
you need not be concerned with these files.

* A symbolic link named config.h is made to the top-level config
file for the machine you will run the compiler on (see

Config
). This file is responsible for defining information

about the host machine. It includes tm.h.

The top-level config file is located in the subdirectory
config. Its name is always xm-something.h; usually
xm-machine.h, but there are some exceptions.

If your system does not support symbolic links, you might
want to set up config.h to contain a #include command which
refers to the appropriate file.

* A symbolic link named tconfig.h is made to the top-level
config file for your target machine. This is used for
compiling certain programs to run on that machine.

* A symbolic link named tm.h is made to the machine-description

gcc.info 88 / 506

macro file for your target machine. It should be in the
subdirectory config and its name is often machine.h.

* A symbolic link named md will be made to the machine
description pattern file. It should be in the config
subdirectory and its name should be machine.md; but machine
is often not the same as the name used in the tm.h file
because the md files are more general.

* A symbolic link named aux-output.c will be made to the output
subroutine file for your machine. It should be in the config
subdirectory and its name should be machine.c.

* The command file configure also constructs the file Makefile
by adding some text to the template file Makefile.in. The
additional text comes from files in the config directory,
named t-target and x-host. If these files do not exist, it
means nothing needs to be added for a given target or host.

4. The standard directory for installing GNU CC is /gnu/lib. If you
want to install its files somewhere else, specify -prefix=dir when
you run configure. Here dir is a directory name to use instead of
/gnu for all purposes with one exception: the directory
/gnu/include is searched for header files no matter where you
install the compiler.

5. Specify -local-prefix=dir if you want the compiler to search
directory dir/include for header files instead of /gnu/include.
(This is for systems that have different conventions for where to
put site-specific things.)

Unless you have a convention other than /gnu for site-specific
files, it is a bad idea to specify -local-prefix.

6. Make sure the Bison parser generator is installed. (This is
unnecessary if the Bison output files c-parse.c and cexp.c are
more recent than c-parse.y and cexp.y and you do not plan to
change the .y files.)

Bison versions older than Sept 8, 1988 will produce incorrect
output for c-parse.c.

7. If you have chosen a configuration for GNU CC which requires other
GNU tools (such as GAS or the GNU linker) instead of the standard
system tools, install the required tools in the build directory
under the names as, ld or whatever is appropriate. This will
enable the compiler to find the proper tools for compilation of
the program enquire.

Alternatively, you can do subsequent compilation using a value of
the PATH environment variable such that the necessary GNU tools
come before the standard system tools.

8. Build the compiler. Just type make LANGUAGES=c in the compiler
directory.

LANGUAGES=c specifies that only the C compiler should be compiled.

gcc.info 89 / 506

The makefile normally builds compilers for all the supported
languages; currently, C, C++ and Objective C. However, C is the
only language that is sure to work when you build with other
non-GNU C compilers. In addition, building anything but C at this
stage is a waste of time.

In general, you can specify the languages to build by typing the
argument LANGUAGES="list", where list is one or more words from
the list c, c++, and objective-c.

Ignore any warnings you may see about "statement not reached" in
insn-emit.c; they are normal. Also, warnings about "unknown
escape sequence" are normal in genopinit.c and perhaps some other
files. Any other compilation errors may represent bugs in the
port to your machine or operating system, and should be
investigated and reported (see

Bugs
).

Some commercial compilers fail to compile GNU CC because they have
bugs or limitations. For example, the Microsoft compiler is said
to run out of macro space. Some Ultrix compilers run out of
expression space; then you need to break up the statement where
the problem happens.

If you are building with a previous GNU C compiler, do not use
CC=gcc on the make command or by editing the Makefile. Instead,
use a full pathname to specify the compiler, such as
CC=/gnu/bin/gcc. This is because make might execute the gcc in
the current directory before all of the compiler components have
been built.

9. If you are building a cross-compiler, stop here. See

Cross-Compiler
.

10. Move the first-stage object files and executables into a
subdirectory with this command:

make stage1

The files are moved into a subdirectory named stage1. Once
installation is complete, you may wish to delete these files with
rm -r stage1.

11. If you have chosen a configuration for GNU CC which requires other
GNU tools (such as GAS or the GNU linker) instead of the standard
system tools, install the required tools in the stage1 subdirectory
under the names as, ld or whatever is appropriate. This will
enable the stage 1 compiler to find the proper tools in the
following stage.

Alternatively, you can do subsequent compilation using a value of
the PATH environment variable such that the necessary GNU tools
come before the standard system tools.

gcc.info 90 / 506

12. Recompile the compiler with itself, with this command:

make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O"

This is called making the stage 2 compiler.

The command shown above builds compilers for all the supported
languages. If you don’t want them all, you can specify the
languages to build by typing the argument LANGUAGES="list". list
should contain one or more words from the list c, c++,
objective-c, and proto. Separate the words with spaces.
proto stands for the programs protoize and unprotoize; they
are not a separate language, but you use LANGUAGES to enable or
disable their installation.

If you are going to build the stage 3 compiler, then you might
want to build only the C language in stage 2.

Once you have built the stage 2 compiler, if you are short of disk
space, you can delete the subdirectory stage1.

On a 68000 or 68020 system lacking floating point hardware, unless
you have selected a tm.h file that expects by default that there
is no such hardware, do this instead:

make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O -msoft-float"

13. If you wish to test the compiler by compiling it with itself one
more time, install any other necessary GNU tools (such as GAS or
the GNU linker) in the stage2 subdirectory as you did in the
stage1 subdirectory, then do this:

make stage2
make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O"

This is called making the stage 3 compiler. Aside from the -B
option, the compiler options should be the same as when you made
the stage 2 compiler. But the LANGUAGES option need not be the
same. The command shown above builds compilers for all the
supported languages; if you don’t want them all, you can specify
the languages to build by typing the argument LANGUAGES="list", as
described above.

Then compare the latest object files with the stage 2 object
files--they ought to be identical, aside from time stamps (if any).

On some systems, meaningful comparison of object files is
impossible; they always appear "different." This is currently
true on Solaris and probably on all systems that use ELF object
file format. Some other systems where this is so are listed below.

Use this command to compare the files:

make compare

This will mention any object files that differ between stage 2 and
stage 3. Any difference, no matter how innocuous, indicates that

gcc.info 91 / 506

the stage 2 compiler has compiled GNU CC incorrectly, and is
therefore a potentially serious bug which you should investigate
and report (see

Bugs
).

If your system does not put time stamps in the object files, then
this is a faster way to compare them (using the Bourne shell):

for file in *.o; do
cmp $file stage2/$file
done

If you have built the compiler with the -mno-mips-tfile option on
MIPS machines, you will not be able to compare the files.

The Alpha stores file names of internal temporary files in the
object files and make compare does not know how to ignore them, so
normally you cannot compare on the Alpha. However, if you use the
-save-temps option when compiling both stage 2 and stage 3, this
causes the same file names to be used in both stages; then you can
do the comparison.

14. Build the Objective C library (if you have built the Objective C
compiler). Here is the command to do this:

make objc-runtime CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O"

15. Install the compiler driver, the compiler’s passes and run-time
support with make install. Use the same value for CC, CFLAGS and
LANGUAGES that you used when compiling the files that are being
installed. One reason this is necessary is that some versions of
Make have bugs and recompile files gratuitously when you do this
step. If you use the same variable values, those files will be
recompiled properly.

For example, if you have built the stage 2 compiler, you can use
the following command:

make install CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O" LANGUAGES="list"

This copies the files cc1, cpp and libgcc.a to files cc1, cpp and
libgcc.a in the directory /gnu/lib/gcc-lib/target/version, which
is where the compiler driver program looks for them. Here target
is the target machine type specified when you ran configure, and
version is the version number of GNU CC. This naming scheme
permits various versions and/or cross-compilers to coexist.

This also copies the driver program xgcc into /gnu/bin/gcc, so
that it appears in typical execution search paths.

On some systems, this command causes recompilation of some files.
This is usually due to bugs in make. You should either ignore this
problem, or use GNU Make.

Warning: there is a bug in alloca in the Sun library. To avoid
this bug, be sure to install the executables of GNU CC that were

gcc.info 92 / 506

compiled by GNU CC. (That is, the executables from stage 2 or 3,
not stage 1.) They use alloca as a built-in function and never the
one in the library.

(It is usually better to install GNU CC executables from stage 2
or 3, since they usually run faster than the ones compiled with
some other compiler.)

16. Install the Objective C library (if you are installing the
Objective C compiler). Here is the command to do this:

make install-libobjc CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O"

17. If you’re going to use C++, it’s likely that you need to also
install the libg++ distribution. It should be available from the
same place where you got the GNU C distribution. Just as GNU C
does not distribute a C runtime library, it also does not include
a C++ run-time library. All I/O functionality, special class
libraries, etc., are available in the libg++ distribution.

1.40 gcc.info/Other Dir

Compilation in a Separate Directory
===================================

If you wish to build the object files and executables in a directory
other than the one containing the source files, here is what you must
do differently:

1. Make sure you have a version of Make that supports the VPATH
feature. (GNU Make supports it, as do Make versions on most BSD
systems.)

2. If you have ever run configure in the source directory, you must
undo the configuration. Do this by running:

make distclean

3. Go to the directory in which you want to build the compiler before
running configure:

mkdir gcc-sun3
cd gcc-sun3

On systems that do not support symbolic links, this directory must
be on the same file system as the source code directory.

4. Specify where to find configure when you run it:

../gcc/configure ...

This also tells configure where to find the compiler sources;
configure takes the directory from the file name that was used to

gcc.info 93 / 506

invoke it. But if you want to be sure, you can specify the source
directory with the -srcdir option, like this:

../gcc/configure --srcdir=../gcc sun3

The directory you specify with -srcdir need not be the same as the
one that configure is found in.

Now, you can run make in that directory. You need not repeat the
configuration steps shown above, when ordinary source files change. You
must, however, run configure again when the configuration files change,
if your system does not support symbolic links.

1.41 gcc.info/Cross-Compiler

Building and Installing a Cross-Compiler
==

GNU CC can function as a cross-compiler for many machines, but not
all.

* Cross-compilers for the Mips as target using the Mips assembler
currently do not work, because the auxiliary programs mips-tdump.c
and mips-tfile.c can’t be compiled on anything but a Mips. It
does work to cross compile for a Mips if you use the GNU assembler
and linker.

* Cross-compilers between machines with different floating point
formats have not all been made to work. GNU CC now has a floating
point emulator with which these can work, but each target machine
description needs to be updated to take advantage of it.

* Cross-compilation between machines of different word sizes has not
really been addressed yet.

Since GNU CC generates assembler code, you probably need a
cross-assembler that GNU CC can run, in order to produce object files.
If you want to link on other than the target machine, you need a
cross-linker as well. You also need header files and libraries suitable
for the target machine that you can install on the host machine.

Steps of Cross
Using a cross-compiler involves several steps

that may be carried out on different machines.

Configure Cross
Configuring a cross-compiler.

Tools and Libraries
Where to put the linker and assembler, and the C library.

Cross Headers

gcc.info 94 / 506

Finding and installing header files
for a cross-compiler.

Cross Runtime
Supplying arithmetic runtime routines (libgcc1.a).

Build Cross
Actually compiling the cross-compiler.

1.42 gcc.info/Steps of Cross

Steps of Cross-Compilation

To compile and run a program using a cross-compiler involves several
steps:

* Run the cross-compiler on the host machine to produce assembler
files for the target machine. This requires header files for the
target machine.

* Assemble the files produced by the cross-compiler. You can do this
either with an assembler on the target machine, or with a
cross-assembler on the host machine.

* Link those files to make an executable. You can do this either
with a linker on the target machine, or with a cross-linker on the
host machine. Whichever machine you use, you need libraries and
certain startup files (typically crt....o) for the target machine.

It is most convenient to do all of these steps on the same host
machine, since then you can do it all with a single invocation of GNU
CC. This requires a suitable cross-assembler and cross-linker. For
some targets, the GNU assembler and linker are available.

1.43 gcc.info/Configure Cross

Configuring a Cross-Compiler

To build GNU CC as a cross-compiler, you start out by running
configure. You must specify two different configurations, the host and
the target. Use the -host=host option for the host and -target=target
to specify the target type. For example, here is how to configure for
a cross-compiler that runs on a hypothetical Intel 386 system and
produces code for an HP 68030 system running BSD:

configure --target=m68k-hp-bsd4.3 --host=i386-bozotheclone-bsd4.3

gcc.info 95 / 506

1.44 gcc.info/Tools and Libraries

Tools and Libraries for a Cross-Compiler
--

If you have a cross-assembler and cross-linker available, you should
install them now. Put them in the directory /gnu/target/bin. Here is
a table of the tools you should put in this directory:

as
This should be the cross-assembler.

ld
This should be the cross-linker.

ar
This should be the cross-archiver: a program which can manipulate
archive files (linker libraries) in the target machine’s format.

ranlib
This should be a program to construct a symbol table in an archive
file.

The installation of GNU CC will find these programs in that
directory, and copy or link them to the proper place to for the
cross-compiler to find them when run later.

The easiest way to provide these files is to build the Binutils
package and GAS. Configure them with the same -host and -target
options that you use for configuring GNU CC, then build and install
them. They install their executables automatically into the proper
directory. Alas, they do not support all the targets that GNU CC
supports.

If you want to install libraries to use with the cross-compiler,
such as a standard C library, put them in the directory
/gnu/target/lib; installation of GNU CC copies all all the
files in that subdirectory into the proper place for GNU CC to find
them and link with them. Here’s an example of copying some libraries
from a target machine:

ftp target-machine
lcd /gnu/target/lib
cd /lib
get libc.a
cd /usr/lib
get libg.a
get libm.a
quit

The precise set of libraries you’ll need, and their locations on the
target machine, vary depending on its operating system.

Many targets require "start files" such as crt0.o and crtn.o which
are linked into each executable; these too should be placed in
/gnu/target/lib. There may be several alternatives for crt0.o, for

gcc.info 96 / 506

use with profiling or other compilation options. Check your target’s
definition of STARTFILE_SPEC to find out what start files it uses.
Here’s an example of copying these files from a target machine:

ftp target-machine
lcd /gnu/target/lib
prompt
cd /lib
mget *crt*.o
cd /usr/lib
mget *crt*.o
quit

1.45 gcc.info/Cross Runtime

libgcc.a and Cross-Compilers

Code compiled by GNU CC uses certain runtime support functions
implicitly. Some of these functions can be compiled successfully with
GNU CC itself, but a few cannot be. These problem functions are in the
source file libgcc1.c; the library made from them is called libgcc1.a.

When you build a native compiler, these functions are compiled with
some other compiler-the one that you use for bootstrapping GNU CC.
Presumably it knows how to open code these operations, or else knows how
to call the run-time emulation facilities that the machine comes with.
But this approach doesn’t work for building a cross-compiler. The
compiler that you use for building knows about the host system, not the
target system.

So, when you build a cross-compiler you have to supply a suitable
library libgcc1.a that does the job it is expected to do.

To compile libgcc1.c with the cross-compiler itself does not work.
The functions in this file are supposed to implement arithmetic
operations that GNU CC does not know how to open code, for your target
machine. If these functions are compiled with GNU CC itself, they will
compile into infinite recursion.

On any given target, most of these functions are not needed. If GNU
CC can open code an arithmetic operation, it will not call these
functions to perform the operation. It is possible that on your target
machine, none of these functions is needed. If so, you can supply an
empty library as libgcc1.a.

Many targets need library support only for multiplication and
division. If you are linking with a library that contains functions for
multiplication and division, you can tell GNU CC to call them directly
by defining the macros MULSI3_LIBCALL, and the like. These macros need
to be defined in the target description macro file. For some targets,
they are defined already. This may be sufficient to avoid the need for
libgcc1.a; if so, you can supply an empty library.

gcc.info 97 / 506

Some targets do not have floating point instructions; they need other
functions in libgcc1.a, which do floating arithmetic. Recent versions
of GNU CC have a file which emulates floating point. With a certain
amount of work, you should be able to construct a floating point
emulator that can be used as libgcc1.a. Perhaps future versions will
contain code to do this automatically and conveniently. That depends
on whether someone wants to implement it.

If your target system has another C compiler, you can configure GNU
CC as a native compiler on that machine, build just libgcc1.a with make
libgcc1.a on that machine, and use the resulting file with the
cross-compiler. To do this, execute the following on the target
machine:

cd target-build-dir
configure --host=sparc --target=sun3
make libgcc1.a

And then this on the host machine:

ftp target-machine
binary
cd target-build-dir
get libgcc1.a
quit

Another way to provide the functions you need in libgcc1.a is to
define the appropriate perform_... macros for those functions. If
these definitions do not use the C arithmetic operators that they are
meant to implement, you should be able to compile them with the
cross-compiler you are building. (If these definitions already exist
for your target file, then you are all set.)

To build libgcc1.a using the perform macros, use LIBGCC1=libgcc1.a
OLDCC=./xgcc when building the compiler. Otherwise, you should place
your replacement library under the name libgcc1.a in the directory in
which you will build the cross-compiler, before you run make.

1.46 gcc.info/Cross Headers

Cross-Compilers and Header Files

If you are cross-compiling a standalone program or a program for an
embedded system, then you may not need any header files except the few
that are part of GNU CC (and those of your program). However, if you
intend to link your program with a standard C library such as libc.a,
then you probably need to compile with the header files that go with
the library you use.

The GNU C compiler does not come with these files, because (1) they
are system-specific, and (2) they belong in a C library, not in a
compiler.

gcc.info 98 / 506

If the GNU C library supports your target machine, then you can get
the header files from there (assuming you actually use the GNU library
when you link your program).

If your target machine comes with a C compiler, it probably comes
with suitable header files also. If you make these files accessible
from the host machine, the cross-compiler can use them also.

Otherwise, you’re on your own in finding header files to use when
cross-compiling.

When you have found suitable header files, put them in
/gnu/target/include, before building the cross compiler. Then
installation will run fixincludes properly and install the corrected
versions of the header files where the compiler will use them.

Provide the header files before you build the cross-compiler, because
the build stage actually runs the cross-compiler to produce parts of
libgcc.a. (These are the parts that can be compiled with GNU CC.)
Some of them need suitable header files.

Here’s an example showing how to copy the header files from a target
machine. On the target machine, do this:

(cd /usr/include; tar cf - .) > tarfile

Then, on the host machine, do this:

ftp target-machine
lcd /gnu/target/include
get tarfile
quit
tar xf tarfile

1.47 gcc.info/Build Cross

Actually Building the Cross-Compiler

Now you can proceed just as for compiling a single-machine compiler
through the step of building stage 1. If you have not provided some
sort of libgcc1.a, then compilation will give up at the point where it
needs that file, printing a suitable error message. If you do provide
libgcc1.a, then building the compiler will automatically compile and
link a test program called cross-test; if you get errors in the
linking, it means that not all of the necessary routines in libgcc1.a
are available.

If you are making a cross-compiler for an embedded system, and there
is no stdio.h header for it, then the compilation of enquire will
probably fail. The job of enquire is to run on the target machine and
figure out by experiment the nature of its floating point
representation. enquire records its findings in the header file
float.h. If you can’t produce this file by running enquire on the

gcc.info 99 / 506

target machine, then you will need to come up with a suitable float.h
in some other way (or else, avoid using it in your programs).

Do not try to build stage 2 for a cross-compiler. It doesn’t work to
rebuild GNU CC as a cross-compiler using the cross-compiler, because
that would produce a program that runs on the target machine, not on the
host. For example, if you compile a 386-to-68030 cross-compiler with
itself, the result will not be right either for the 386 (because it was
compiled into 68030 code) or for the 68030 (because it was configured
for a 386 as the host). If you want to compile GNU CC into 68030 code,
whether you compile it on a 68030 or with a cross-compiler on a 386, you
must specify a 68030 as the host when you configure it.

To install the cross-compiler, use make install, as usual.

1.48 gcc.info/PA Install

Installing on the HP Precision Architecture
===

There are two variants of this CPU, called 1.0 and 1.1, which have
different machine descriptions. You must use the right one for your
machine. All 7nn machines and 8n7 machines use 1.1, while all other
8nn machines use 1.0.

The easiest way to handle this problem is to use configure hpnnn or
configure hpnnn-hpux, where nnn is the model number of the machine.
Then configure will figure out if the machine is a 1.0 or 1.1. Use
uname -a to find out the model number of your machine.

-g does not work on HP-UX, since that system uses a peculiar
debugging format which GNU CC does not know about. There are
preliminary versions of GAS and GDB for the HP-PA which do work with
GNU CC for debugging. You can get them by anonymous ftp from
jaguar.cs.utah.edu dist subdirectory. You would need to install GAS in
the file

/gnu/lib/gcc-lib/configuration/gccversion/as

where configuration is the configuration name (perhaps hpnnn-hpux) and
gccversion is the GNU CC version number. Do this before starting the
build process, otherwise you will get errors from the HPUX assembler
while building libgcc2.a. The command

make install-dir

will create the necessary directory hierarchy so you can install GAS
before building GCC.

If you obtained GAS before October 6, 1992 it is highly recommended
you get a new one to avoid several bugs which have been discovered
recently.

To enable debugging, configure GNU CC with the -gas option before

gcc.info 100 / 506

building.

It has been reported that GNU CC produces invalid assembly code for
1.1 machines running HP-UX 8.02 when using the HP assembler. Typically
the errors look like this:

as: bug.s @line#15 [err#1060]
Argument 0 or 2 in FARG upper

- lookahead = ARGW1=FR,RTNVAL=GR
as: foo.s @line#28 [err#1060]

Argument 0 or 2 in FARG upper
- lookahead = ARGW1=FR

You can check the version of HP-UX you are running by executing the
command uname -r. If you are indeed running HP-UX 8.02 on a PA and
using the HP assembler then configure GCC with "hpnnn-hpux8.02".

1.49 gcc.info/Sun Install

Installing GNU CC on the Sun
============================

On Solaris (version 2.1), do not use the linker or other tools in
/usr/ucb to build GNU CC. Use /usr/ccs/bin.

Make sure the environment variable FLOAT_OPTION is not set when you
compile libgcc.a. If this option were set to f68881 when libgcc.a is
compiled, the resulting code would demand to be linked with a special
startup file and would not link properly without special pains.

The GNU compiler does not really support the Super SPARC processor
that is used in SPARC Station 10 and similar class machines. You can
get code that runs by specifying sparc as the cpu type; however, its
performance is not very good, and may vary widely according to the
compiler version and optimization options used. This is because the
instruction scheduling parameters designed for the Sparc are not correct
for the Super SPARC. Implementing scheduling parameters for the Super
SPARC might be a good project for someone who is willing to learn a
great deal about instruction scheduling in GNU CC.

There is a bug in alloca in certain versions of the Sun library. To
avoid this bug, install the binaries of GNU CC that were compiled by
GNU CC. They use alloca as a built-in function and never the one in
the library.

Some versions of the Sun compiler crash when compiling GNU CC. The
problem is a segmentation fault in cpp. This problem seems to be due to
the bulk of data in the environment variables. You may be able to avoid
it by using the following command to compile GNU CC with Sun CC:

make CC="TERMCAP=x OBJS=x LIBFUNCS=x STAGESTUFF=x cc"

gcc.info 101 / 506

1.50 gcc.info/3b1 Install

Installing GNU CC on the 3b1
============================

Installing GNU CC on the 3b1 is difficult if you do not already have
GNU CC running, due to bugs in the installed C compiler. However, the
following procedure might work. We are unable to test it.

1. Comment out the #include "config.h" line on line 37 of cccp.c and
do make cpp. This makes a preliminary version of GNU cpp.

2. Save the old /lib/cpp and copy the preliminary GNU cpp to that
file name.

3. Undo your change in cccp.c, or reinstall the original version, and
do make cpp again.

4. Copy this final version of GNU cpp into /lib/cpp.

5. Replace every occurrence of obstack_free in the file tree.c with
_obstack_free.

6. Run make to get the first-stage GNU CC.

7. Reinstall the original version of /lib/cpp.

8. Now you can compile GNU CC with itself and install it in the normal
fashion.

1.51 gcc.info/Unos Install

Installing GNU CC on Unos
=========================

Use configure unos for building on Unos.

The Unos assembler is named casm instead of as. For some strange
reason linking /bin/as to /bin/casm changes the behavior, and does not
work. So, when installing GNU CC, you should install the following
script as as in the subdirectory where the passes of GCC are installed:

#!/bin/sh
casm $*

The default Unos library is named libunos.a instead of libc.a. To
allow GNU CC to function, either change all references to -lc in gcc.c
to -lunos or link /lib/libc.a to /lib/libunos.a.

When compiling GNU CC with the standard compiler, to overcome bugs in
the support of alloca, do not use -O when making stage 2. Then use the
stage 2 compiler with -O to make the stage 3 compiler. This compiler
will have the same characteristics as the usual stage 2 compiler on

gcc.info 102 / 506

other systems. Use it to make a stage 4 compiler and compare that with
stage 3 to verify proper compilation.

(Perhaps simply defining ALLOCA in x-crds as described in the
comments there will make the above paragraph superfluous. Please
inform us of whether this works.)

Unos uses memory segmentation instead of demand paging, so you will
need a lot of memory. 5 Mb is barely enough if no other tasks are
running. If linking cc1 fails, try putting the object files into a
library and linking from that library.

1.52 gcc.info/VMS Install

Installing GNU CC on VMS
========================

The VMS version of GNU CC is distributed in a backup saveset
containing both source code and precompiled binaries.

To install the gcc command so you can use the compiler easily, in
the same manner as you use the VMS C compiler, you must install the VMS
CLD file for GNU CC as follows:

1. Define the VMS logical names GNU_CC and GNU_CC_INCLUDE to point to
the directories where the GNU CC executables (gcc-cpp.exe,
gcc-cc1.exe, etc.) and the C include files are kept respectively.
This should be done with the commands:

$ assign /system /translation=concealed -
disk:[gcc.] gnu_cc

$ assign /system /translation=concealed -
disk:[gcc.include.] gnu_cc_include

with the appropriate disk and directory names. These commands can
be placed in your system startup file so they will be executed
whenever the machine is rebooted. You may, if you choose, do this
via the GCC_INSTALL.COM script in the [GCC] directory.

2. Install the GCC command with the command line:

$ set command /table=sys$common:[syslib]dcltables -
/output=sys$common:[syslib]dcltables gnu_cc:[000000]gcc

$ install replace sys$common:[syslib]dcltables

3. To install the help file, do the following:

$ library/help sys$library:helplib.hlb gcc.hlp

Now you can invoke the compiler with a command like gcc /verbose
file.c, which is equivalent to the command gcc -v -c file.c in
Unix.

If you wish to use GNU C++ you must first install GNU CC, and then

gcc.info 103 / 506

perform the following steps:

1. Define the VMS logical name GNU_GXX_INCLUDE to point to the
directory where the preprocessor will search for the C++ header
files. This can be done with the command:

$ assign /system /translation=concealed -
disk:[gcc.gxx_include.] gnu_gxx_include

with the appropriate disk and directory name. If you are going to
be using libg++, this is where the libg++ install procedure will
install the libg++ header files.

2. Obtain the file gcc-cc1plus.exe, and place this in the same
directory that gcc-cc1.exe is kept.

The GNU C++ compiler can be invoked with a command like gcc /plus
/verbose file.cc, which is equivalent to the command g++ -v -c
file.cc in Unix.

We try to put corresponding binaries and sources on the VMS
distribution tape. But sometimes the binaries will be from an older
version than the sources, because we don’t always have time to update
them. (Use the /version option to determine the version number of the
binaries and compare it with the source file version.c to tell whether
this is so.) In this case, you should use the binaries you get to
recompile the sources. If you must recompile, here is how:

1. Execute the command procedure vmsconfig.com to set up the files
tm.h, config.h, aux-output.c, and md., and to create files
tconfig.h and hconfig.h. This procedure also creates several
linker option files used by make-cc1.com and a data file used by
make-l2.com.

$ @vmsconfig.com

2. Setup the logical names and command tables as defined above. In
addition, define the VMS logical name GNU_BISON to point at the to
the directories where the Bison executable is kept. This should be
done with the command:

$ assign /system /translation=concealed -
disk:[bison.] gnu_bison

You may, if you choose, use the INSTALL_BISON.COM script in the
[BISON] directory.

3. Install the BISON command with the command line:

$ set command /table=sys$common:[syslib]dcltables -
/output=sys$common:[syslib]dcltables -
gnu_bison:[000000]bison

$ install replace sys$common:[syslib]dcltables

4. Type @make-gcc to recompile everything (alternatively, submit the
file make-gcc.com to a batch queue). If you wish to build the GNU
C++ compiler as well as the GNU CC compiler, you must first edit

gcc.info 104 / 506

make-gcc.com and follow the instructions that appear in the
comments.

5. In order to use GCC, you need a library of functions which GCC
compiled code will call to perform certain tasks, and these
functions are defined in the file libgcc2.c. To compile this you
should use the command procedure make-l2.com, which will generate
the library libgcc2.olb. libgcc2.olb should be built using the
compiler built from the same distribution that libgcc2.c came
from, and make-gcc.com will automatically do all of this for you.

To install the library, use the following commands:

$ library gnu_cc:[000000]gcclib/delete=(new,eprintf)
$ library gnu_cc:[000000]gcclib/delete=L_*
$ library libgcc2/extract=*/output=libgcc2.obj
$ library gnu_cc:[000000]gcclib libgcc2.obj

The first command simply removes old modules that will be replaced
with modules from libgcc2 under different module names. The
modules new and eprintf may not actually be present in your
gcclib.olb--if the VMS librarian complains about those modules not
being present, simply ignore the message and continue on with the
next command. The second command removes the modules that came
from the previous version of the library libgcc2.c.

Whenever you update the compiler on your system, you should also
update the library with the above procedure.

6. You may wish to build GCC in such a way that no files are written
to the directory where the source files reside. An example would
be the when the source files are on a read-only disk. In these
cases, execute the following DCL commands (substituting your
actual path names):

$ assign dua0:[gcc.build_dir.]/translation=concealed, -
dua1:[gcc.source_dir.]/translation=concealed gcc_build

$ set default gcc_build:[000000]

where the directory dua1:[gcc.source_dir] contains the source
code, and the directory dua0:[gcc.build_dir] is meant to contain
all of the generated object files and executables. Once you have
done this, you can proceed building GCC as described above. (Keep
in mind that gcc_build is a rooted logical name, and thus the
device names in each element of the search list must be an actual
physical device name rather than another rooted logical name).

7. If you are building GNU CC with a previous version of GNU CC,
you also should check to see that you have the newest version of
the assembler. In particular, GNU CC version 2 treats global
constant variables slightly differently from GNU CC version 1, and
GAS version 1.38.1 does not have the patches required to work with
GCC version 2. If you use GAS 1.38.1, then extern const variables
will not have the read-only bit set, and the linker will generate
warning messages about mismatched psect attributes for these
variables. These warning messages are merely a nuisance, and can
safely be ignored.

gcc.info 105 / 506

If you are compiling with a version of GNU CC older than 1.33,
specify /DEFINE=("inline=") as an option in all the compilations.
This requires editing all the gcc commands in make-cc1.com. (The
older versions had problems supporting inline.) Once you have a
working 1.33 or newer GNU CC, you can change this file back.

8. If you want to build GNU CC with the VAX C compiler, you will need
to make minor changes in make-cccp.com and make-cc1.com to choose
alternate definitions of CC, CFLAGS, and LIBS. See comments in
those files. However, you must also have a working version of the
GNU assembler (GNU as, aka GAS) as it is used as the back-end for
GNU CC to produce binary object modules and is not included in the
GNU CC sources. GAS is also needed to compile libgcc2 in order to
build gcclib (see above); make-l2.com expects to be able to find
it operational in gnu_cc:[000000]gnu-as.exe.

To use GNU CC on VMS, you need the VMS driver programs gcc.exe,
gcc.com, and gcc.cld. They are distributed with the VMS binaries
(gcc-vms) rather than the GNU CC sources. GAS is also
included in gcc-vms, as is Bison.

Once you have successfully built GNU CC with VAX C, you should use
the resulting compiler to rebuild itself. Before doing this, be
sure to restore the CC, CFLAGS, and LIBS definitions in
make-cccp.com and make-cc1.com. The second generation compiler
will be able to take advantage of many optimizations that must be
suppressed when building with other compilers.

Under previous versions of GNU CC, the generated code would
occasionally give strange results when linked with the sharable VAXCRTL
library. Now this should work.

Even with this version, however, GNU CC itself should not be linked
with the sharable VAXCRTL. The version of qsort in VAXCRTL has a bug
(known to be present in VMS versions V4.6 through V5.5) which causes
the compiler to fail.

The executables are generated by make-cc1.com and make-cccp.com use
the object library version of VAXCRTL in order to make use of the qsort
routine in gcclib.olb. If you wish to link the compiler executables
with the shareable image version of VAXCRTL, you should edit the file
tm.h (created by vmsconfig.com) to define the macro QSORT_WORKAROUND.

QSORT_WORKAROUND is always defined when GNU CC is compiled with VAX
C, to avoid a problem in case gcclib.olb is not yet available.

1.53 gcc.info/WE32K Install

Installing GNU CC on the WE32K
==============================

These computers are also known as the 3b2, 3b5, 3b20 and other
similar names. (However, the 3b1 is actually a 68000; see

gcc.info 106 / 506

3b1 Install
.)

Don’t use -g when compiling with the system’s compiler. The
system’s linker seems to be unable to handle such a large program with
debugging information.

The system’s compiler runs out of capacity when compiling stmt.c in
GNU CC. You can work around this by building cpp in GNU CC first, then
use that instead of the system’s preprocessor with the system’s C
compiler to compile stmt.c. Here is how:

mv /lib/cpp /lib/cpp.att
cp cpp /lib/cpp.gnu
echo ’/lib/cpp.gnu -traditional ${1+"$@"}’ > /lib/cpp
chmod +x /lib/cpp

The system’s compiler produces bad code for some of the GNU CC
optimization files. So you must build the stage 2 compiler without
optimization. Then build a stage 3 compiler with optimization. That
executable should work. Here are the necessary commands:

make LANGUAGES=c CC=stage1/xgcc CFLAGS="-Bstage1/ -g"
make stage2
make CC=stage2/xgcc CFLAGS="-Bstage2/ -g -O"

You may need to raise the ULIMIT setting to build a C++ compiler, as
the file cc1plus is larger than one megabyte.

1.54 gcc.info/MIPS Install

Installing GNU CC on the MIPS
=============================

See
Installation
about whether to use either of the options

-with-stabs or -with-gnu-as.

The MIPS C compiler needs to be told to increase its table size for
switch statements with the -Wf,-XNg1500 option in order to compile
cp-parse.c. If you use the -O2 optimization option, you also need to
use -Olimit 3000. Both of these options are automatically generated in
the Makefile that the shell script configure builds. If you override
the CC make variable and use the MIPS compilers, you may need to add
-Wf,-XNg1500 -Olimit 3000.

MIPS computers running RISC-OS can support four different
personalities: default, BSD 4.3, System V.3, and System V.4 (older
versions of RISC-OS don’t support V.4). To configure GCC for these
platforms use the following configurations:

mips-mips-riscosrev

gcc.info 107 / 506

Default configuration for RISC-OS, revision rev.

mips-mips-riscosrevbsd
BSD 4.3 configuration for RISC-OS, revision rev.

mips-mips-riscosrevsysv4
System V.4 configuration for RISC-OS, revision rev.

mips-mips-riscosrevsysv
System V.3 configuration for RISC-OS, revision rev.

The revision rev mentioned above is the revision of RISC-OS to use.
You must reconfigure GCC when going from a RISC-OS revision 4 to
RISC-OS revision 5. This has the effect of avoiding a linker bug (see

Installation Problems
for more details).

DECstations can support three different personalities: Ultrix, DEC
OSF/1, and OSF/rose. To configure GCC for these platforms use the
following configurations:

decstation-ultrix
Ultrix configuration.

decstation-osf1
Dec’s version of OSF/1.

decstation-osfrose
Open Software Foundation reference port of OSF/1 which uses the
OSF/rose object file format instead of ECOFF. Normally, you would
not select this configuration.

On Irix version 4.0.5F, and perhaps on some other versions as well,
there is an assembler bug that reorders instructions incorrectly. To
work around it, specify the target configuration mips-sgi-irix4loser.
This configuration inhibits assembler optimization.

You can turn off assembler optimization in a compiler configured with
target mips-sgi-irix4 using the -noasmopt option. This compiler option
passes the option -O0 to the assembler, to inhibit reordering.

The -noasmopt option can be useful for testing whether a problem is
due to erroneous assembler reordering. Even if a problem does not go
away with -noasmopt, it may still be due to assembler
reordering--perhaps GNU CC itself was miscompiled as a result.

We know this is inconvenient, but it’s the best that can be done at
the last minute.

1.55 gcc.info/Collect2

gcc.info 108 / 506

collect2
========

Many target systems do not have support in the assembler and linker
for "constructors"--initialization functions to be called before the
official "start" of main. On such systems, GNU CC uses a utility
called collect2 to arrange to call these functions at start time.

The program collect2 works by linking the program once and looking
through the linker output file for symbols with particular names
indicating they are constructor functions. If it finds any, it creates
a new temporary .c file containing a table of them, compiles it, and
links the program a second time including that file.

The actual calls to the constructors are carried out by a subroutine
called __main, which is called (automatically) at the beginning of the
body of main (provided main was compiled with GNU CC).

The program collect2 is installed as ld in the directory where the
passes of the compiler are installed. When collect2 needs to find the
real ld, it tries the following file names:

* gld in the directories listed in the compiler’s search
directories.

* gld in the directories listed in the environment variable PATH.

* real-ld in the compiler’s search directories.

* real-ld in PATH.

* ld in PATH.

"The compiler’s search directories" means all the directories where
gcc searches for passes of the compiler. This includes directories
that you specify with -B.

Cross-compilers search a little differently:

* gld in the compiler’s search directories.

* target-gld in PATH.

* real-ld in the compiler’s search directories.

* target-real-ld in PATH.

* target-ld in PATH.

collect2 does not search for ld using the compiler’s search
directories, because if it did, it would find itself--not the real
ld--and this could lead to infinite recursion. However, the
directory where collect2 is installed might happen to be in PATH. That
could lead collect2 to invoke itself anyway. when looking for ld.

To prevent this, collect2 explicitly avoids running ld using the
file name under which collect2 itself was invoked. In fact, it

gcc.info 109 / 506

remembers up to two such names--in case one copy of collect2 finds
another copy (or version) of collect2 installed as ld in a second place
in the search path.

If two file names to avoid are not sufficient, you may still
encounter an infinite recursion of collect2 processes. When this
happens. check all the files installed as ld in any of the directories
searched, and straighten out the situation.

(In a future version, we will probably change collect2 to avoid any
reinvocation of a file from which any parent collect2 was run.)

1.56 gcc.info/Header Dirs

Standard Header File Directories
================================

GCC_INCLUDE_DIR means the same thing for native and cross. It is
where GNU CC stores its private include files, and also where GNU CC
stores the fixed include files. A cross compiled GNU CC runs
fixincludes on the header files in $(tooldir)/include. (If the cross
compilation header files need to be fixed, they must be installed
before GNU CC is built. If the cross compilation header files are
already suitable for ANSI C and GNU CC, nothing special need be done).

GPLUS_INCLUDE_DIR means the same thing for native and cross. It is
where g++ looks first for header files. libg++ installs only target
independent header files in that directory.

LOCAL_INCLUDE_DIR is used only for a native compiler. It is
normally /gnu/include. GNU CC searches this directory so that users
can install header files in /gnu/include.

CROSS_INCLUDE_DIR is used only for a cross compiler. GNU CC doesn’t
install anything there.

TOOL_INCLUDE_DIR is used for both native and cross compilers. It is
the place for other packages to install header files that GNU CC will
use. For a cross-compiler, this is the equivalent of /usr/include.
When you build a cross-compiler, fixincludes processes any header files
in this directory.

1.57 gcc.info/C Extensions

Extensions to the C Language Family

GNU C provides several language features not found in ANSI standard
C. (The -pedantic option directs GNU CC to print a warning message if
any of these features is used.) To test for the availability of these

gcc.info 110 / 506

features in conditional compilation, check for a predefined macro
__GNUC__, which is always defined under GNU CC.

These extensions are available in C and in the languages derived from
it, C++ and Objective C. See

Extensions to the C++ Language
, for

extensions that apply only to C++.

Statement Exprs
Putting statements and declarations inside expressions.

Local Labels
Labels local to a statement-expression.

Labels as Values
Getting pointers to labels, and computed gotos.

Nested Functions
As in Algol and Pascal, lexical scoping of functions.

Constructing Calls
Dispatching a call to another function.

Naming Types
Giving a name to the type of some expression.

Typeof
typeof: referring to the type of an expression.

Lvalues
Using ?:, , and casts in lvalues.

Conditionals
Omitting the middle operand of a ?: expression.

Long Long
Double-word integers--long long int.

Complex
Data types for complex numbers.

Zero Length
Zero-length arrays.

Variable Length
Arrays whose length is computed at run time.

Macro Varargs
Macros with variable number of arguments.

Subscripting
Any array can be subscripted, even if not an lvalue.

Pointer Arith

gcc.info 111 / 506

Arithmetic on void-pointers and function pointers.

Initializers
Non-constant initializers.

Constructors
Constructor expressions give structures, unions
or arrays as values.

Labeled Elements
Labeling elements of initializers.

Cast to Union
Casting to union type from any member of the union.

Case Ranges
‘case 1 ... 9’ and such.

Function Attributes
Declaring that functions have no side effects,

or that they can never return.

Function Prototypes
Prototype declarations and old-style definitions.

Dollar Signs
Dollar sign is allowed in identifiers.

Character Escapes
\e stands for the character ESC.

Variable Attributes
Specifying attributes of variables.

Alignment
Inquiring about the alignment of a type or variable.

Inline
Defining inline functions (as fast as macros).

Extended Asm
Assembler instructions with C expressions as operands.
(With them you can define "built-in" functions.)

Asm Labels
Specifying the assembler name to use for a C symbol.

Explicit Reg Vars
Defining variables residing in specified registers.

Alternate Keywords
__const__, __asm__, etc., for header files.

Incomplete Enums
enum foo;, with details to follow.

Function Names

gcc.info 112 / 506

Printable strings which are the name of the current
function.

1.58 gcc.info/Statement Exprs

Statements and Declarations in Expressions
==

A compound statement enclosed in parentheses may appear as an
expression in GNU C. This allows you to use loops, switches, and local
variables within an expression.

Recall that a compound statement is a sequence of statements
surrounded by braces; in this construct, parentheses go around the
braces. For example:

({ int y = foo (); int z;
if (y > 0) z = y;
else z = - y;
z; })

is a valid (though slightly more complex than necessary) expression for
the absolute value of foo ().

The last thing in the compound statement should be an expression
followed by a semicolon; the value of this subexpression serves as the
value of the entire construct. (If you use some other kind of statement
last within the braces, the construct has type void, and thus
effectively no value.)

This feature is especially useful in making macro definitions "safe"
(so that they evaluate each operand exactly once). For example, the
"maximum" function is commonly defined as a macro in standard C as
follows:

#define max(a,b) ((a) > (b) ? (a) : (b))

But this definition computes either a or b twice, with bad results if
the operand has side effects. In GNU C, if you know the type of the
operands (here let’s assume int), you can define the macro safely as
follows:

#define maxint(a,b) \
({int _a = (a), _b = (b); _a > _b ? _a : _b; })

Embedded statements are not allowed in constant expressions, such as
the value of an enumeration constant, the width of a bit field, or the
initial value of a static variable.

If you don’t know the type of the operand, you can still do this,
but you must use typeof (see

Typeof
) or type naming (see

gcc.info 113 / 506

Naming Types
).

1.59 gcc.info/Local Labels

Locally Declared Labels
=======================

Each statement expression is a scope in which local labels can be
declared. A local label is simply an identifier; you can jump to it
with an ordinary goto statement, but only from within the statement
expression it belongs to.

A local label declaration looks like this:

__label__ label;

or

__label__ label1, label2, ...;

Local label declarations must come at the beginning of the statement
expression, right after the ({, before any ordinary declarations.

The label declaration defines the label name, but does not define
the label itself. You must do this in the usual way, with label:,
within the statements of the statement expression.

The local label feature is useful because statement expressions are
often used in macros. If the macro contains nested loops, a goto can
be useful for breaking out of them. However, an ordinary label whose
scope is the whole function cannot be used: if the macro can be
expanded several times in one function, the label will be multiply
defined in that function. A local label avoids this problem. For
example:

#define SEARCH(array, target) \
({ \

__label__ found; \
typeof (target) _SEARCH_target = (target); \
typeof (*(array)) *_SEARCH_array = (array); \
int i, j; \
int value; \
for (i = 0; i < max; i++) \

for (j = 0; j < max; j++) \
if (_SEARCH_array[i][j] == _SEARCH_target) \

{ value = i; goto found; } \
value = -1; \

found: \
value; \

})

gcc.info 114 / 506

1.60 gcc.info/Labels as Values

Labels as Values
================

You can get the address of a label defined in the current function
(or a containing function) with the unary operator &&. The value has
type void *. This value is a constant and can be used wherever a
constant of that type is valid. For example:

void *ptr;
...
ptr = &&foo;

To use these values, you need to be able to jump to one. This is
done with the computed goto statement(1), goto *exp;. For example,

goto *ptr;

Any expression of type void * is allowed.

One way of using these constants is in initializing a static array
that will serve as a jump table:

static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:

goto *array[i];

Note that this does not check whether the subscript is in bounds--array
indexing in C never does that.

Such an array of label values serves a purpose much like that of the
switch statement. The switch statement is cleaner, so use that rather
than an array unless the problem does not fit a switch statement very
well.

Another use of label values is in an interpreter for threaded code.
The labels within the interpreter function can be stored in the
threaded code for super-fast dispatching.

You can use this mechanism to jump to code in a different function.
If you do that, totally unpredictable things will happen. The best way
to avoid this is to store the label address only in automatic variables
and never pass it as an argument.

---------- Footnotes ----------

(1) The analogous feature in Fortran is called an assigned goto,
but that name seems inappropriate in C, where one can do more than
simply store label addresses in label variables.

gcc.info 115 / 506

1.61 gcc.info/Nested Functions

Nested Functions
================

A nested function is a function defined inside another function.
(Nested functions are not supported for GNU C++.) The nested function’s
name is local to the block where it is defined. For example, here we
define a nested function named square, and call it twice:

foo (double a, double b)
{

double square (double z) { return z * z; }

return square (a) + square (b);
}

The nested function can access all the variables of the containing
function that are visible at the point of its definition. This is
called lexical scoping. For example, here we show a nested function
which uses an inherited variable named offset:

bar (int *array, int offset, int size)
{

int access (int *array, int index)
{ return array[index + offset]; }

int i;
...
for (i = 0; i < size; i++)

... access (array, i) ...
}

Nested function definitions are permitted within functions in the
places where variable definitions are allowed; that is, in any block,
before the first statement in the block.

It is possible to call the nested function from outside the scope of
its name by storing its address or passing the address to another
function:

hack (int *array, int size)
{

void store (int index, int value)
{ array[index] = value; }

intermediate (store, size);
}

Here, the function intermediate receives the address of store as an
argument. If intermediate calls store, the arguments given to store
are used to store into array. But this technique works only so long as
the containing function (hack, in this example) does not exit.

If you try to call the nested function through its address after the
containing function has exited, all hell will break loose. If you try
to call it after a containing scope level has exited, and if it refers

gcc.info 116 / 506

to some of the variables that are no longer in scope, you may be lucky,
but it’s not wise to take the risk. If, however, the nested function
does not refer to anything that has gone out of scope, you should be
safe.

GNU CC implements taking the address of a nested function using a
technique called trampolines. A paper describing them is available
from maya.idiap.ch in directory pub/tmb, file usenix88-lexic.ps.Z.

A nested function can jump to a label inherited from a containing
function, provided the label was explicitly declared in the containing
function (see

Local Labels
). Such a jump returns instantly to the

containing function, exiting the nested function which did the goto and
any intermediate functions as well. Here is an example:

bar (int *array, int offset, int size)
{

__label__ failure;
int access (int *array, int index)

{
if (index > size)

goto failure;
return array[index + offset];

}
int i;
...
for (i = 0; i < size; i++)

... access (array, i) ...
...
return 0;

/* Control comes here from access
if it detects an error. */

failure:
return -1;

}

A nested function always has internal linkage. Declaring one with
extern is erroneous. If you need to declare the nested function before
its definition, use auto (which is otherwise meaningless for function
declarations).

bar (int *array, int offset, int size)
{

__label__ failure;
auto int access (int *, int);
...
int access (int *array, int index)

{
if (index > size)

goto failure;
return array[index + offset];

}
...

}

gcc.info 117 / 506

1.62 gcc.info/Constructing Calls

Constructing Function Calls
===========================

Using the built-in functions described below, you can record the
arguments a function received, and call another function with the same
arguments, without knowing the number or types of the arguments.

You can also record the return value of that function call, and
later return that value, without knowing what data type the function
tried to return (as long as your caller expects that data type).

__builtin_apply_args ()
This built-in function returns a pointer of type void * to data
describing how to perform a call with the same arguments as were
passed to the current function.

The function saves the arg pointer register, structure value
address, and all registers that might be used to pass arguments to
a function into a block of memory allocated on the stack. Then it
returns the address of that block.

__builtin_apply (function, arguments, size)
This built-in function invokes function (type void (*)()) with a
copy of the parameters described by arguments (type void *) and
size (type int).

The value of arguments should be the value returned by
__builtin_apply_args. The argument size specifies the size of the
stack argument data, in bytes.

This function returns a pointer of type void * to data describing
how to return whatever value was returned by function. The data
is saved in a block of memory allocated on the stack.

It is not always simple to compute the proper value for size. The
value is used by __builtin_apply to compute the amount of data
that should be pushed on the stack and copied from the incoming
argument area.

__builtin_return (result)
This built-in function returns the value described by result from
the containing function. You should specify, for result, a value
returned by __builtin_apply.

1.63 gcc.info/Naming Types

gcc.info 118 / 506

Naming an Expression’s Type
===========================

You can give a name to the type of an expression using a typedef
declaration with an initializer. Here is how to define name as a type
name for the type of exp:

typedef name = exp;

This is useful in conjunction with the statements-within-expressions
feature. Here is how the two together can be used to define a safe
"maximum" macro that operates on any arithmetic type:

#define max(a,b) \
({typedef _ta = (a), _tb = (b); \

_ta _a = (a); _tb _b = (b); \
_a > _b ? _a : _b; })

The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within
the expressions that are substituted for a and b. Eventually we hope
to design a new form of declaration syntax that allows you to declare
variables whose scopes start only after their initializers; this will
be a more reliable way to prevent such conflicts.

1.64 gcc.info/Typeof

Referring to a Type with typeof
===============================

Another way to refer to the type of an expression is with typeof.
The syntax of using of this keyword looks like sizeof, but the
construct acts semantically like a type name defined with typedef.

There are two ways of writing the argument to typeof: with an
expression or with a type. Here is an example with an expression:

typeof (x[0](1))

This assumes that x is an array of functions; the type described is
that of the values of the functions.

Here is an example with a typename as the argument:

typeof (int *)

Here the type described is that of pointers to int.

If you are writing a header file that must work when included in
ANSI C programs, write __typeof__ instead of typeof. See

Alternate Keywords
.

gcc.info 119 / 506

A typeof-construct can be used anywhere a typedef name could be
used. For example, you can use it in a declaration, in a cast, or
inside of sizeof or typeof.

* This declares y with the type of what x points to.

typeof (*x) y;

* This declares y as an array of such values.

typeof (*x) y[4];

* This declares y as an array of pointers to characters:

typeof (typeof (char *)[4]) y;

It is equivalent to the following traditional C declaration:

char *y[4];

To see the meaning of the declaration using typeof, and why it
might be a useful way to write, let’s rewrite it with these macros:

#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])

Now the declaration can be rewritten this way:

array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of 4
pointers to char.

1.65 gcc.info/Lvalues

Generalized Lvalues
===================

Compound expressions, conditional expressions and casts are allowed
as lvalues provided their operands are lvalues. This means that you
can take their addresses or store values into them.

For example, a compound expression can be assigned, provided the last
expression in the sequence is an lvalue. These two expressions are
equivalent:

(a, b) += 5
a, (b += 5)

Similarly, the address of the compound expression can be taken.
These two expressions are equivalent:

gcc.info 120 / 506

&(a, b)
a, &b

A conditional expression is a valid lvalue if its type is not void
and the true and false branches are both valid lvalues. For example,
these two expressions are equivalent:

(a ? b : c) = 5
(a ? b = 5 : (c = 5))

A cast is a valid lvalue if its operand is an lvalue. A simple
assignment whose left-hand side is a cast works by converting the
right-hand side first to the specified type, then to the type of the
inner left-hand side expression. After this is stored, the value is
converted back to the specified type to become the value of the
assignment. Thus, if a has type char *, the following two expressions
are equivalent:

(int)a = 5
(int)(a = (char *)(int)5)

An assignment-with-arithmetic operation such as += applied to a cast
performs the arithmetic using the type resulting from the cast, and then
continues as in the previous case. Therefore, these two expressions are
equivalent:

(int)a += 5
(int)(a = (char *)(int) ((int)a + 5))

You cannot take the address of an lvalue cast, because the use of its
address would not work out coherently. Suppose that &(int)f were
permitted, where f has type float. Then the following statement would
try to store an integer bit-pattern where a floating point number
belongs:

*&(int)f = 1;

This is quite different from what (int)f = 1 would do--that would
convert 1 to floating point and store it. Rather than cause this
inconsistency, we think it is better to prohibit use of & on a cast.

If you really do want an int * pointer with the address of f, you
can simply write (int *)&f.

1.66 gcc.info/Conditionals

Conditionals with Omitted Operands
==================================

The middle operand in a conditional expression may be omitted. Then
if the first operand is nonzero, its value is the value of the
conditional expression.

Therefore, the expression

gcc.info 121 / 506

x ? : y

has the value of x if that is nonzero; otherwise, the value of y.

This example is perfectly equivalent to

x ? x : y

In this simple case, the ability to omit the middle operand is not
especially useful. When it becomes useful is when the first operand
does, or may (if it is a macro argument), contain a side effect. Then
repeating the operand in the middle would perform the side effect
twice. Omitting the middle operand uses the value already computed
without the undesirable effects of recomputing it.

1.67 gcc.info/Long Long

Double-Word Integers
====================

GNU C supports data types for integers that are twice as long as
long int. Simply write long long int for a signed integer, or unsigned
long long int for an unsigned integer. To make an integer constant of
type long long int, add the suffix LL to the integer. To make an
integer constant of type unsigned long long int, add the suffix ULL to
the integer.

You can use these types in arithmetic like any other integer types.
Addition, subtraction, and bitwise boolean operations on these types
are open-coded on all types of machines. Multiplication is open-coded
if the machine supports fullword-to-doubleword a widening multiply
instruction. Division and shifts are open-coded only on machines that
provide special support. The operations that are not open-coded use
special library routines that come with GNU CC.

There may be pitfalls when you use long long types for function
arguments, unless you declare function prototypes. If a function
expects type int for its argument, and you pass a value of type long
long int, confusion will result because the caller and the subroutine
will disagree about the number of bytes for the argument. Likewise, if
the function expects long long int and you pass int. The best way to
avoid such problems is to use prototypes.

1.68 gcc.info/Complex

Complex Numbers
===============

GNU C supports complex data types. You can declare both complex

gcc.info 122 / 506

integer types and complex floating types, using the keyword __complex__.

For example, __complex__ double x; declares x as a variable whose
real part and imaginary part are both of type double. __complex__
short int y; declares y to have real and imaginary parts of type short
int; this is not likely to be useful, but it shows that the set of
complex types is complete.

To write a constant with a complex data type, use the suffix i or j
(either one; they are equivalent). For example, 2.5fi has type
__complex__ float and 3i has type __complex__ int. Such a constant
always has a pure imaginary value, but you can form any complex value
you like by adding one to a real constant.

To extract the real part of a complex-valued expression exp, write
__real__ exp. Likewise, use __imag__ to extract the imaginary part.

The operator ~ performs complex conjugation when used on a value
with a complex type.

GNU CC can allocate complex automatic variables in a noncontiguous
fashion; it’s even possible for the real part to be in a register while
the imaginary part is on the stack (or vice-versa). None of the
supported debugging info formats has a way to represent noncontiguous
allocation like this, so GNU CC describes a noncontiguous complex
variable as if it were two separate variables of noncomplex type. If
the variable’s actual name is foo, the two fictitious variables are
named foo$real and foo$imag. You can examine and set these two
fictitious variables with your debugger.

A future version of GDB will know how to recognize such pairs and
treat them as a single variable with a complex type.

1.69 gcc.info/Zero Length

Arrays of Length Zero
=====================

Zero-length arrays are allowed in GNU C. They are very useful as
the last element of a structure which is really a header for a
variable-length object:

struct line {
int length;
char contents[0];

};

{
struct line *thisline = (struct line *)
malloc (sizeof (struct line) + this_length);

thisline->length = this_length;
}

In standard C, you would have to give contents a length of 1, which

gcc.info 123 / 506

means either you waste space or complicate the argument to malloc.

1.70 gcc.info/Variable Length

Arrays of Variable Length
=========================

Variable-length automatic arrays are allowed in GNU C. These arrays
are declared like any other automatic arrays, but with a length that is
not a constant expression. The storage is allocated at the point of
declaration and deallocated when the brace-level is exited. For
example:

FILE *
concat_fopen (char *s1, char *s2, char *mode)
{

char str[strlen (s1) + strlen (s2) + 1];
strcpy (str, s1);
strcat (str, s2);
return fopen (str, mode);

}

Jumping or breaking out of the scope of the array name deallocates
the storage. Jumping into the scope is not allowed; you get an error
message for it.

You can use the function alloca to get an effect much like
variable-length arrays. The function alloca is available in many other
C implementations (but not in all). On the other hand, variable-length
arrays are more elegant.

There are other differences between these two methods. Space
allocated with alloca exists until the containing function returns.
The space for a variable-length array is deallocated as soon as the
array name’s scope ends. (If you use both variable-length arrays and
alloca in the same function, deallocation of a variable-length array
will also deallocate anything more recently allocated with alloca.)

You can also use variable-length arrays as arguments to functions:

struct entry
tester (int len, char data[len][len])
{

...
}

The length of an array is computed once when the storage is allocated
and is remembered for the scope of the array in case you access it with
sizeof.

If you want to pass the array first and the length afterward, you can
use a forward declaration in the parameter list--another GNU extension.

struct entry

gcc.info 124 / 506

tester (int len; char data[len][len], int len)
{

...
}

The int len before the semicolon is a parameter forward declaration,
and it serves the purpose of making the name len known when the
declaration of data is parsed.

You can write any number of such parameter forward declarations in
the parameter list. They can be separated by commas or semicolons, but
the last one must end with a semicolon, which is followed by the "real"
parameter declarations. Each forward declaration must match a "real"
declaration in parameter name and data type.

1.71 gcc.info/Macro Varargs

Macros with Variable Numbers of Arguments
===

In GNU C, a macro can accept a variable number of arguments, much as
a function can. The syntax for defining the macro looks much like that
used for a function. Here is an example:

#define eprintf(format, args...) \
fprintf (stderr, format , ## args)

Here args is a rest argument: it takes in zero or more arguments, as
many as the call contains. All of them plus the commas between them
form the value of args, which is substituted into the macro body where
args is used. Thus, we have this expansion:

eprintf ("%s:%d: ", input_file_name, line_number)
==>
fprintf (stderr, "%s:%d: " , input_file_name, line_number)

Note that the comma after the string constant comes from the definition
of eprintf, whereas the last comma comes from the value of args.

The reason for using ## is to handle the case when args matches no
arguments at all. In this case, args has an empty value. In this
case, the second comma in the definition becomes an embarrassment: if
it got through to the expansion of the macro, we would get something
like this:

fprintf (stderr, "success!\n" ,)

which is invalid C syntax. ## gets rid of the comma, so we get the
following instead:

fprintf (stderr, "success!\n")

This is a special feature of the GNU C preprocessor: ## before a
rest argument that is empty discards the preceding sequence of

gcc.info 125 / 506

non-whitespace characters from the macro definition. (If another macro
argument precedes, none of it is discarded.)

It might be better to discard the last preprocessor token instead of
the last preceding sequence of non-whitespace characters; in fact, we
may someday change this feature to do so. We advise you to write the
macro definition so that the preceding sequence of non-whitespace
characters is just a single token, so that the meaning will not change
if we change the definition of this feature.

1.72 gcc.info/Subscripting

Non-Lvalue Arrays May Have Subscripts
=====================================

Subscripting is allowed on arrays that are not lvalues, even though
the unary & operator is not. For example, this is valid in GNU C though
not valid in other C dialects:

struct foo {int a[4];};

struct foo f();

bar (int index)
{

return f().a[index];
}

1.73 gcc.info/Pointer Arith

Arithmetic on void- and Function-Pointers
===

In GNU C, addition and subtraction operations are supported on
pointers to void and on pointers to functions. This is done by
treating the size of a void or of a function as 1.

A consequence of this is that sizeof is also allowed on void and on
function types, and returns 1.

The option -Wpointer-arith requests a warning if these extensions
are used.

1.74 gcc.info/Initializers

gcc.info 126 / 506

Non-Constant Initializers
=========================

The elements of an aggregate initializer for an automatic variable
are not required to be constant expressions in GNU C. Here is an
example of an initializer with run-time varying elements:

foo (float f, float g)
{

float beat_freqs[2] = { f-g, f+g };
...

}

1.75 gcc.info/Constructors

Constructor Expressions
=======================

GNU C supports constructor expressions. A constructor looks like a
cast containing an initializer. Its value is an object of the type
specified in the cast, containing the elements specified in the
initializer.

Usually, the specified type is a structure. Assume that struct foo
and structure are declared as shown:

struct foo {int a; char b[2];} structure;

Here is an example of constructing a struct foo with a constructor:

structure = ((struct foo) {x + y, ’a’, 0});

This is equivalent to writing the following:

{
struct foo temp = {x + y, ’a’, 0};
structure = temp;

}

You can also construct an array. If all the elements of the
constructor are (made up of) simple constant expressions, suitable for
use in initializers, then the constructor is an lvalue and can be
coerced to a pointer to its first element, as shown here:

char **foo = (char *[]) { "x", "y", "z" };

Array constructors whose elements are not simple constants are not
very useful, because the constructor is not an lvalue. There are only
two valid ways to use it: to subscript it, or initialize an array
variable with it. The former is probably slower than a switch
statement, while the latter does the same thing an ordinary C
initializer would do. Here is an example of subscripting an array
constructor:

gcc.info 127 / 506

output = ((int[]) { 2, x, 28 }) [input];

Constructor expressions for scalar types and union types are is also
allowed, but then the constructor expression is equivalent to a cast.

1.76 gcc.info/Labeled Elements

Labeled Elements in Initializers
================================

Standard C requires the elements of an initializer to appear in a
fixed order, the same as the order of the elements in the array or
structure being initialized.

In GNU C you can give the elements in any order, specifying the array
indices or structure field names they apply to.

To specify an array index, write [index] = before the element
value. For example,

int a[6] = { [4] = 29, [2] = 15 };

is equivalent to

int a[6] = { 0, 0, 15, 0, 29, 0 };

The index values must be constant expressions, even if the array being
initialized is automatic.

In a structure initializer, specify the name of a field to initialize
with fieldname: before the element value. For example, given the
following structure,

struct point { int x, y; };

the following initialization

struct point p = { y: yvalue, x: xvalue };

is equivalent to

struct point p = { xvalue, yvalue };

Another syntax which has the same meaning is .fieldname =., as
shown here:

struct point p = { .y = yvalue, .x = xvalue };

You can also use an element label (with either the colon syntax or
the period-equal syntax) when initializing a union, to specify which
element of the union should be used. For example,

union foo { int i; double d; };

gcc.info 128 / 506

union foo f = { d: 4 };

will convert 4 to a double to store it in the union using the second
element. By contrast, casting 4 to type union foo would store it into
the union as the integer i, since it is an integer. (See

Cast to Union
.)

You can combine this technique of naming elements with ordinary C
initialization of successive elements. Each initializer element that
does not have a label applies to the next consecutive element of the
array or structure. For example,

int a[6] = { [1] = v1, v2, [4] = v4 };

is equivalent to

int a[6] = { 0, v1, v2, 0, v4, 0 };

Labeling the elements of an array initializer is especially useful
when the indices are characters or belong to an enum type. For example:

int whitespace[256]
= { [’ ’] = 1, [’\t’] = 1, [’\h’] = 1,

[’\f’] = 1, [’\n’] = 1, [’\r’] = 1 };

1.77 gcc.info/Case Ranges

Case Ranges
===========

You can specify a range of consecutive values in a single case label,
like this:

case low ... high:

This has the same effect as the proper number of individual case
labels, one for each integer value from low to high, inclusive.

This feature is especially useful for ranges of ASCII character
codes:

case ’A’ ... ’Z’:

Be careful: Write spaces around the ..., for otherwise it may be
parsed wrong when you use it with integer values. For example, write
this:

case 1 ... 5:

rather than this:

gcc.info 129 / 506

case 1...5:

Warning to C++ users: When compiling C++, you must write two dots
.. rather than three to specify a range in case statements, thus:

case ’A’ .. ’Z’:

This is an anachronism in the GNU C++ front end, and will be
rectified in a future release.

1.78 gcc.info/Cast to Union

Cast to a Union Type
====================

A cast to union type is similar to other casts, except that the type
specified is a union type. You can specify the type either with union
tag or with a typedef name. A cast to union is actually a constructor
though, not a cast, and hence does not yield an lvalue like normal
casts. (See

Constructors
.)

The types that may be cast to the union type are those of the members
of the union. Thus, given the following union and variables:

union foo { int i; double d; };
int x;
double y;

both x and y can be cast to type union foo.

Using the cast as the right-hand side of an assignment to a variable
of union type is equivalent to storing in a member of the union:

union foo u;
...
u = (union foo) x == u.i = x
u = (union foo) y == u.d = y

You can also use the union cast as a function argument:

void hack (union foo);
...
hack ((union foo) x);

1.79 gcc.info/Function Attributes

gcc.info 130 / 506

Declaring Attributes of Functions
=================================

In GNU C, you declare certain things about functions called in your
program which help the compiler optimize function calls and check your
code more carefully.

The keyword __attribute__ allows you to specify special attributes
when making a declaration. This keyword is followed by an attribute
specification inside double parentheses. Three attributes, noreturn,
const and format, are currently defined for functions. Others are
implemented for variables and structure fields (see

Variable Attributes
).

noreturn
A few standard library functions, such as abort and exit, cannot
return. GNU CC knows this automatically. Some programs define
their own functions that never return. You can declare them
noreturn to tell the compiler this fact. For example,

void fatal () __attribute__ ((noreturn));

void
fatal (...)
{

... /* Print error message. */ ...
exit (1);

}

The noreturn keyword tells the compiler to assume that fatal
cannot return. It can then optimize without regard to what would
happen if fatal ever did return. This makes slightly better code.
More importantly, it helps avoid spurious warnings of
uninitialized variables.

Do not assume that registers saved by the calling function are
restored before calling the noreturn function.

It does not make sense for a noreturn function to have a return
type other than void.

The attribute noreturn is not implemented in GNU C versions
earlier than 2.5. An alternative way to declare that a function
does not return, which works in the current version and in some
older versions, is as follows:

typedef void voidfn ();

volatile voidfn fatal;

const
Many functions do not examine any values except their arguments,
and have no effects except the return value. Such a function can
be subject to common subexpression elimination and loop

gcc.info 131 / 506

optimization just as an arithmetic operator would be. These
functions should be declared with the attribute const. For
example,

int square (int) __attribute__ ((const));

says that the hypothetical function square is safe to call fewer
times than the program says.

The attribute const is not implemented in GNU C versions earlier
than 2.5. An alternative way to declare that a function has no
side effects, which works in the current version and in some older
versions, is as follows:

typedef int intfn ();

extern const intfn square;

Note that a function that has pointer arguments and examines the
data pointed to must not be declared const. Likewise, a function
that calls a non-const function usually must not be const. It
does not make sense for a const function to return void.

format (archetype, string-index, first-to-check)
The format attribute specifies that a function takes printf or
scanf style arguments which should be type-checked against a
format string. For example, the declaration:

extern int
my_printf (void *my_object, const char *my_format, ...)

__attribute__ ((format (printf, 2, 3)));

causes the compiler to check the arguments in calls to my_printf
for consistency with the printf style format string argument
my_format.

The parameter archetype determines how the format string is
interpreted, and should be either printf or scanf. The parameter
string-index specifies which argument is the format string
argument (starting from 1), while first-to-check is the number of
the first argument to check against the format string. For
functions where the arguments are not available to be checked
(such as vprintf), specify the third parameter as zero. In this
case the compiler only checks the format string for consistency.

In the example above, the format string (my_format) is the second
argument of the function my_print, and the arguments to check
start with the third argument, so the correct parameters for the
format attribute are 2 and 3.

The format attribute allows you to identify your own functions
which take format strings as arguments, so that GNU CC can check
the calls to these functions for errors. The compiler always
checks formats for the ANSI library functions printf, fprintf,
sprintf, scanf, fscanf, sscanf, vprintf, vfprintf and vsprintf
whenever such warnings are requested (using -Wformat), so there is
no need to modify the header file stdio.h.

gcc.info 132 / 506

You can specify multiple attributes in a declaration by separating
them by commas within the double parentheses. Currently it is never
useful to do this for a function, but it can be useful for a variable.

Some people object to the __attribute__ feature, suggesting that
ANSI C’s #pragma should be used instead. There are two reasons for not
doing this.

1. It is impossible to generate #pragma commands from a macro.

2. There is no telling what the same #pragma might mean in another
compiler.

These two reasons apply to almost any application that might be
proposed for #pragma. It is basically a mistake to use #pragma for
anything.

1.80 gcc.info/Function Prototypes

Prototypes and Old-Style Function Definitions
===

GNU C extends ANSI C to allow a function prototype to override a
later old-style non-prototype definition. Consider the following
example:

/* Use prototypes unless the compiler is old-fashioned. */
#if __STDC__
#define P(x) x
#else
#define P(x) ()
#endif

/* Prototype function declaration. */
int isroot P((uid_t));

/* Old-style function definition. */
int
isroot (x) /* ??? lossage here ??? */

uid_t x;
{

return x == 0;
}

Suppose the type uid_t happens to be short. ANSI C does not allow
this example, because subword arguments in old-style non-prototype
definitions are promoted. Therefore in this example the function
definition’s argument is really an int, which does not match the
prototype argument type of short.

This restriction of ANSI C makes it hard to write code that is
portable to traditional C compilers, because the programmer does not

gcc.info 133 / 506

know whether the uid_t type is short, int, or long. Therefore, in
cases like these GNU C allows a prototype to override a later old-style
definition. More precisely, in GNU C, a function prototype argument
type overrides the argument type specified by a later old-style
definition if the former type is the same as the latter type before
promotion. Thus in GNU C the above example is equivalent to the
following:

int isroot (uid_t);

int
isroot (uid_t x)
{

return x == 0;
}

1.81 gcc.info/Dollar Signs

Dollar Signs in Identifier Names
================================

In GNU C, you may use dollar signs in identifier names. This is
because many traditional C implementations allow such identifiers.

On some machines, dollar signs are allowed in identifiers if you
specify -traditional. On a few systems they are allowed by default,
even if you do not use -traditional. But they are never allowed if you
specify -ansi.

There are certain ANSI C programs (obscure, to be sure) that would
compile incorrectly if dollar signs were permitted in identifiers. For
example:

#define foo(a) #a
#define lose(b) foo (b)
#define test$
lose (test)

1.82 gcc.info/Character Escapes

The Character ESC in Constants
==============================

You can use the sequence \e in a string or character constant to
stand for the ASCII character ESC.

1.83 gcc.info/Alignment

gcc.info 134 / 506

Inquiring on Alignment of Types or Variables
==

The keyword __alignof__ allows you to inquire about how an object is
aligned, or the minimum alignment usually required by a type. Its
syntax is just like sizeof.

For example, if the target machine requires a double value to be
aligned on an 8-byte boundary, then __alignof__ (double) is 8. This is
true on many RISC machines. On more traditional machine designs,
__alignof__ (double) is 4 or even 2.

Some machines never actually require alignment; they allow reference
to any data type even at an odd addresses. For these machines,
__alignof__ reports the recommended alignment of a type.

When the operand of __alignof__ is an lvalue rather than a type, the
value is the largest alignment that the lvalue is known to have. It may
have this alignment as a result of its data type, or because it is part
of a structure and inherits alignment from that structure. For
example, after this declaration:

struct foo { int x; char y; } foo1;

the value of __alignof__ (foo1.y) is probably 2 or 4, the same as
__alignof__ (int), even though the data type of foo1.y does not itself
demand any alignment.

A related feature which lets you specify the alignment of an object
is __attribute__ ((aligned (alignment))); see the following section.

1.84 gcc.info/Variable Attributes

Specifying Attributes of Variables
==================================

The keyword __attribute__ allows you to specify special attributes
of variables or structure fields. This keyword is followed by an
attribute specification inside double parentheses. Four attributes are
currently defined: aligned, format, mode and packed. format is used
for functions, and thus not documented here; see

Function Attributes
.

aligned (alignment)
This attribute specifies a minimum alignment for the variable or
structure field, measured in bytes. For example, the declaration:

int x __attribute__ ((aligned (16))) = 0;

causes the compiler to allocate the global variable x on a 16-byte
boundary. On a 68040, this could be used in conjunction with an
asm expression to access the move16 instruction which requires

gcc.info 135 / 506

16-byte aligned operands.

You can also specify the alignment of structure fields. For
example, to create a double-word aligned int pair, you could write:

struct foo { int x[2] __attribute__ ((aligned (8))); };

This is an alternative to creating a union with a double member
that forces the union to be double-word aligned.

It is not possible to specify the alignment of functions; the
alignment of functions is determined by the machine’s requirements
and cannot be changed. You cannot specify alignment for a typedef
name because such a name is just an alias, not a distinct type.

The aligned attribute can only increase the alignment; but you can
decrease it by specifying packed as well. See below.

The linker of your operating system imposes a maximum alignment.
If the linker aligns each object file on a four byte boundary,
then it is beyond the compiler’s power to cause anything to be
aligned to a larger boundary than that. For example, if the
linker happens to put this object file at address 136 (eight more
than a multiple of 64), then the compiler cannot guarantee an
alignment of more than 8 just by aligning variables in the object
file.

mode (mode)
This attribute specifies the data type for the
declaration--whichever type corresponds to the mode mode. This in
effect lets you request an integer or floating point type
according to its width.

packed
The packed attribute specifies that a variable or structure field
should have the smallest possible alignment--one byte for a
variable, and one bit for a field, unless you specify a larger
value with the aligned attribute.

To specify multiple attributes, separate them by commas within the
double parentheses: for example, __attribute__ ((aligned (16), packed)).

1.85 gcc.info/Inline

An Inline Function is As Fast As a Macro
==

By declaring a function inline, you can direct GNU CC to integrate
that function’s code into the code for its callers. This makes
execution faster by eliminating the function-call overhead; in
addition, if any of the actual argument values are constant, their known
values may permit simplifications at compile time so that not all of the
inline function’s code needs to be included. The effect on code size is

gcc.info 136 / 506

less predictable; object code may be larger or smaller with function
inlining, depending on the particular case. Inlining of functions is an
optimization and it really "works" only in optimizing compilation. If
you don’t use -O, no function is really inline.

To declare a function inline, use the inline keyword in its
declaration, like this:

inline int
inc (int *a)
{

(*a)++;
}

(If you are writing a header file to be included in ANSI C programs,
write __inline__ instead of inline. See

Alternate Keywords
.)

You can also make all "simple enough" functions inline with the
option -finline-functions. Note that certain usages in a function
definition can make it unsuitable for inline substitution.

For C++ programs, GNU CC automatically inlines member functions even
if they are not explicitly declared inline. (You can override this
with -fno-default-inline; see

Options Controlling C++ Dialect
.)

When a function is both inline and static, if all calls to the
function are integrated into the caller, and the function’s address is
never used, then the function’s own assembler code is never referenced.
In this case, GNU CC does not actually output assembler code for the
function, unless you specify the option -fkeep-inline-functions. Some
calls cannot be integrated for various reasons (in particular, calls
that precede the function’s definition cannot be integrated, and
neither can recursive calls within the definition). If there is a
nonintegrated call, then the function is compiled to assembler code as
usual. The function must also be compiled as usual if the program
refers to its address, because that can’t be inlined.

When an inline function is not static, then the compiler must assume
that there may be calls from other source files; since a global symbol
can be defined only once in any program, the function must not be
defined in the other source files, so the calls therein cannot be
integrated. Therefore, a non-static inline function is always compiled
on its own in the usual fashion.

If you specify both inline and extern in the function definition,
then the definition is used only for inlining. In no case is the
function compiled on its own, not even if you refer to its address
explicitly. Such an address becomes an external reference, as if you
had only declared the function, and had not defined it.

This combination of inline and extern has almost the effect of a
macro. The way to use it is to put a function definition in a header
file with these keywords, and put another copy of the definition

gcc.info 137 / 506

(lacking inline and extern) in a library file. The definition in the
header file will cause most calls to the function to be inlined. If
any uses of the function remain, they will refer to the single copy in
the library.

GNU C does not inline any functions when not optimizing. It is not
clear whether it is better to inline or not, in this case, but we found
that a correct implementation when not optimizing was difficult. So we
did the easy thing, and turned it off.

1.86 gcc.info/Extended Asm

Assembler Instructions with C Expression Operands
===

In an assembler instruction using asm, you can now specify the
operands of the instruction using C expressions. This means no more
guessing which registers or memory locations will contain the data you
want to use.

You must specify an assembler instruction template much like what
appears in a machine description, plus an operand constraint string for
each operand.

For example, here is how to use the 68881’s fsinx instruction:

asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

Here angle is the C expression for the input operand while result is
that of the output operand. Each has "f" as its operand constraint,
saying that a floating point register is required. The = in =f
indicates that the operand is an output; all output operands’
constraints must use =. The constraints use the same language used in
the machine description (see

Constraints
).

Each operand is described by an operand-constraint string followed
by the C expression in parentheses. A colon separates the assembler
template from the first output operand, and another separates the last
output operand from the first input, if any. Commas separate output
operands and separate inputs. The total number of operands is limited
to ten or to the maximum number of operands in any instruction pattern
in the machine description, whichever is greater.

If there are no output operands, and there are input operands, then
there must be two consecutive colons surrounding the place where the
output operands would go.

Output operand expressions must be lvalues; the compiler can check
this. The input operands need not be lvalues. The compiler cannot
check whether the operands have data types that are reasonable for the
instruction being executed. It does not parse the assembler

gcc.info 138 / 506

instruction template and does not know what it means, or whether it is
valid assembler input. The extended asm feature is most often used for
machine instructions that the compiler itself does not know exist.

The output operands must be write-only; GNU CC will assume that the
values in these operands before the instruction are dead and need not be
generated. Extended asm does not support input-output or read-write
operands. For this reason, the constraint character +, which indicates
such an operand, may not be used.

When the assembler instruction has a read-write operand, or an
operand in which only some of the bits are to be changed, you must
logically split its function into two separate operands, one input
operand and one write-only output operand. The connection between them
is expressed by constraints which say they need to be in the same
location when the instruction executes. You can use the same C
expression for both operands, or different expressions. For example,
here we write the (fictitious) combine instruction with bar as its
read-only source operand and foo as its read-write destination:

asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));

The constraint "0" for operand 1 says that it must occupy the same
location as operand 0. A digit in constraint is allowed only in an
input operand, and it must refer to an output operand.

Only a digit in the constraint can guarantee that one operand will
be in the same place as another. The mere fact that foo is the value of
both operands is not enough to guarantee that they will be in the same
place in the generated assembler code. The following would not work:

asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));

Various optimizations or reloading could cause operands 0 and 1 to
be in different registers; GNU CC knows no reason not to do so. For
example, the compiler might find a copy of the value of foo in one
register and use it for operand 1, but generate the output operand 0 in
a different register (copying it afterward to foo’s own address). Of
course, since the register for operand 1 is not even mentioned in the
assembler code, the result will not work, but GNU CC can’t tell that.

Some instructions clobber specific hard registers. To describe
this, write a third colon after the input operands, followed by the
names of the clobbered hard registers (given as strings). Here is a
realistic example for the Vax:

asm volatile ("movc3 %0,%1,%2"
: /* no outputs */
: "g" (from), "g" (to), "g" (count)
: "r0", "r1", "r2", "r3", "r4", "r5");

If you refer to a particular hardware register from the assembler
code, then you will probably have to list the register after the third
colon to tell the compiler that the register’s value is modified. In
many assemblers, the register names begin with %; to produce one % in
the assembler code, you must write %% in the input.

gcc.info 139 / 506

If your assembler instruction can alter the condition code register,
add cc to the list of clobbered registers. GNU CC on some machines
represents the condition codes as a specific hardware register; cc
serves to name this register. On other machines, the condition code is
handled differently, and specifying cc has no effect. But it is valid
no matter what the machine.

If your assembler instruction modifies memory in an unpredictable
fashion, add memory to the list of clobbered registers. This will
cause GNU CC to not keep memory values cached in registers across the
assembler instruction.

You can put multiple assembler instructions together in a single asm
template, separated either with newlines (written as \n) or with
semicolons if the assembler allows such semicolons. The GNU assembler
allows semicolons and all Unix assemblers seem to do so. The input
operands are guaranteed not to use any of the clobbered registers, and
neither will the output operands’ addresses, so you can read and write
the clobbered registers as many times as you like. Here is an example
of multiple instructions in a template; it assumes that the subroutine
_foo accepts arguments in registers 9 and 10:

asm ("movl %0,r9;movl %1,r10;call _foo"
: /* no outputs */
: "g" (from), "g" (to)
: "r9", "r10");

Unless an output operand has the & constraint modifier, GNU CC may
allocate it in the same register as an unrelated input operand, on the
assumption that the inputs are consumed before the outputs are produced.
This assumption may be false if the assembler code actually consists of
more than one instruction. In such a case, use & for each output
operand that may not overlap an input. See

Modifiers
.

If you want to test the condition code produced by an assembler
instruction, you must include a branch and a label in the asm
construct, as follows:

asm ("clr %0;frob %1;beq 0f;mov #1,%0;0:"
: "g" (result)
: "g" (input));

This assumes your assembler supports local labels, as the GNU assembler
and most Unix assemblers do.

Speaking of labels, jumps from one asm to another are not supported.
The compiler’s optimizers do not know about these jumps, and therefore
they cannot take account of them when deciding how to optimize.

Usually the most convenient way to use these asm instructions is to
encapsulate them in macros that look like functions. For example,

#define sin(x) \
({ double __value, __arg = (x); \

asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \

gcc.info 140 / 506

__value; })

Here the variable __arg is used to make sure that the instruction
operates on a proper double value, and to accept only those arguments x
which can convert automatically to a double.

Another way to make sure the instruction operates on the correct
data type is to use a cast in the asm. This is different from using a
variable __arg in that it converts more different types. For example,
if the desired type were int, casting the argument to int would accept
a pointer with no complaint, while assigning the argument to an int
variable named __arg would warn about using a pointer unless the caller
explicitly casts it.

If an asm has output operands, GNU CC assumes for optimization
purposes that the instruction has no side effects except to change the
output operands. This does not mean that instructions with a side
effect cannot be used, but you must be careful, because the compiler
may eliminate them if the output operands aren’t used, or move them out
of loops, or replace two with one if they constitute a common
subexpression. Also, if your instruction does have a side effect on a
variable that otherwise appears not to change, the old value of the
variable may be reused later if it happens to be found in a register.

You can prevent an asm instruction from being deleted, moved
significantly, or combined, by writing the keyword volatile after the
asm. For example:

#define set_priority(x) \
asm volatile ("set_priority %0": /* no outputs */ : "g" (x))

An instruction without output operands will not be deleted or moved
significantly, regardless, unless it is unreachable.

Note that even a volatile asm instruction can be moved in ways that
appear insignificant to the compiler, such as across jump instructions.
You can’t expect a sequence of volatile asm instructions to remain
perfectly consecutive. If you want consecutive output, use a single
asm.

It is a natural idea to look for a way to give access to the
condition code left by the assembler instruction. However, when we
attempted to implement this, we found no way to make it work reliably.
The problem is that output operands might need reloading, which would
result in additional following "store" instructions. On most machines,
these instructions would alter the condition code before there was time
to test it. This problem doesn’t arise for ordinary "test" and
"compare" instructions because they don’t have any output operands.

If you are writing a header file that should be includable in ANSI C
programs, write __asm__ instead of asm. See

Alternate Keywords
.

gcc.info 141 / 506

1.87 gcc.info/Asm Labels

Controlling Names Used in Assembler Code
==

You can specify the name to be used in the assembler code for a C
function or variable by writing the asm (or __asm__) keyword after the
declarator as follows:

int foo asm ("myfoo") = 2;

This specifies that the name to be used for the variable foo in the
assembler code should be myfoo rather than the usual _foo.

On systems where an underscore is normally prepended to the name of
a C function or variable, this feature allows you to define names for
the linker that do not start with an underscore.

You cannot use asm in this way in a function definition; but you can
get the same effect by writing a declaration for the function before
its definition and putting asm there, like this:

extern func () asm ("FUNC");

func (x, y)
int x, y;

...

It is up to you to make sure that the assembler names you choose do
not conflict with any other assembler symbols. Also, you must not use a
register name; that would produce completely invalid assembler code.
GNU CC does not as yet have the ability to store static variables in
registers. Perhaps that will be added.

1.88 gcc.info/Explicit Reg Vars

Variables in Specified Registers
================================

GNU C allows you to put a few global variables into specified
hardware registers. You can also specify the register in which an
ordinary register variable should be allocated.

* Global register variables reserve registers throughout the program.
This may be useful in programs such as programming language
interpreters which have a couple of global variables that are
accessed very often.

* Local register variables in specific registers do not reserve the
registers. The compiler’s data flow analysis is capable of
determining where the specified registers contain live values, and
where they are available for other uses.

gcc.info 142 / 506

These local variables are sometimes convenient for use with the
extended asm feature (see

Extended Asm
), if you want to write one

output of the assembler instruction directly into a particular
register. (This will work provided the register you specify fits
the constraints specified for that operand in the asm.)

Global Reg Vars

Local Reg Vars

1.89 gcc.info/Global Reg Vars

Defining Global Register Variables

You can define a global register variable in GNU C like this:

register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Choose a
register which is normally saved and restored by function calls on your
machine, so that library routines will not clobber it.

Naturally the register name is cpu-dependent, so you would need to
conditionalize your program according to cpu type. The register a5
would be a good choice on a 68000 for a variable of pointer type. On
machines with register windows, be sure to choose a "global" register
that is not affected magically by the function call mechanism.

In addition, operating systems on one type of cpu may differ in how
they name the registers; then you would need additional conditionals.
For example, some 68000 operating systems call this register %a5.

Eventually there may be a way of asking the compiler to choose a
register automatically, but first we need to figure out how it should
choose and how to enable you to guide the choice. No solution is
evident.

Defining a global register variable in a certain register reserves
that register entirely for this use, at least within the current
compilation. The register will not be allocated for any other purpose
in the functions in the current compilation. The register will not be
saved and restored by these functions. Stores into this register are
never deleted even if they would appear to be dead, but references may
be deleted or moved or simplified.

It is not safe to access the global register variables from signal
handlers, or from more than one thread of control, because the system
library routines may temporarily use the register for other things
(unless you recompile them specially for the task at hand).

gcc.info 143 / 506

It is not safe for one function that uses a global register variable
to call another such function foo by way of a third function lose that
was compiled without knowledge of this variable (i.e. in a different
source file in which the variable wasn’t declared). This is because
lose might save the register and put some other value there. For
example, you can’t expect a global register variable to be available in
the comparison-function that you pass to qsort, since qsort might have
put something else in that register. (If you are prepared to recompile
qsort with the same global register variable, you can solve this
problem.)

If you want to recompile qsort or other source files which do not
actually use your global register variable, so that they will not use
that register for any other purpose, then it suffices to specify the
compiler option -ffixed-reg. You need not actually add a global
register declaration to their source code.

A function which can alter the value of a global register variable
cannot safely be called from a function compiled without this variable,
because it could clobber the value the caller expects to find there on
return. Therefore, the function which is the entry point into the part
of the program that uses the global register variable must explicitly
save and restore the value which belongs to its caller.

On most machines, longjmp will restore to each global register
variable the value it had at the time of the setjmp. On some machines,
however, longjmp will not change the value of global register
variables. To be portable, the function that called setjmp should make
other arrangements to save the values of the global register variables,
and to restore them in a longjmp. This way, the same thing will happen
regardless of what longjmp does.

All global register variable declarations must precede all function
definitions. If such a declaration could appear after function
definitions, the declaration would be too late to prevent the register
from being used for other purposes in the preceding functions.

Global register variables may not have initial values, because an
executable file has no means to supply initial contents for a register.

On the Sparc, there are reports that g3 ... g7 are suitable
registers, but certain library functions, such as getwd, as well as the
subroutines for division and remainder, modify g3 and g4. g1 and g2
are local temporaries.

On the 68000, a2 ... a5 should be suitable, as should d2 ... d7. Of
course, it will not do to use more than a few of those.

1.90 gcc.info/Local Reg Vars

Specifying Registers for Local Variables
--

gcc.info 144 / 506

You can define a local register variable with a specified register
like this:

register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Note that
this is the same syntax used for defining global register variables,
but for a local variable it would appear within a function.

Naturally the register name is cpu-dependent, but this is not a
problem, since specific registers are most often useful with explicit
assembler instructions (see

Extended Asm
). Both of these things

generally require that you conditionalize your program according to cpu
type.

In addition, operating systems on one type of cpu may differ in how
they name the registers; then you would need additional conditionals.
For example, some 68000 operating systems call this register %a5.

Eventually there may be a way of asking the compiler to choose a
register automatically, but first we need to figure out how it should
choose and how to enable you to guide the choice. No solution is
evident.

Defining such a register variable does not reserve the register; it
remains available for other uses in places where flow control determines
the variable’s value is not live. However, these registers are made
unavailable for use in the reload pass. I would not be surprised if
excessive use of this feature leaves the compiler too few available
registers to compile certain functions.

1.91 gcc.info/Alternate Keywords

Alternate Keywords
==================

The option -traditional disables certain keywords; -ansi disables
certain others. This causes trouble when you want to use GNU C
extensions, or ANSI C features, in a general-purpose header file that
should be usable by all programs, including ANSI C programs and
traditional ones. The keywords asm, typeof and inline cannot be used
since they won’t work in a program compiled with -ansi, while the
keywords const, volatile, signed, typeof and inline won’t work in a
program compiled with -traditional.

The way to solve these problems is to put __ at the beginning and
end of each problematical keyword. For example, use __asm__ instead of
asm, __const__ instead of const, and __inline__ instead of inline.

Other C compilers won’t accept these alternative keywords; if you
want to compile with another compiler, you can define the alternate

gcc.info 145 / 506

keywords as macros to replace them with the customary keywords. It
looks like this:

#ifndef __GNUC__
#define __asm__ asm
#endif

-pedantic causes warnings for many GNU C extensions. You can
prevent such warnings within one expression by writing __extension__
before the expression. __extension__ has no effect aside from this.

1.92 gcc.info/Incomplete Enums

Incomplete enum Types
=====================

You can define an enum tag without specifying its possible values.
This results in an incomplete type, much like what you get if you write
struct foo without describing the elements. A later declaration which
does specify the possible values completes the type.

You can’t allocate variables or storage using the type while it is
incomplete. However, you can work with pointers to that type.

This extension may not be very useful, but it makes the handling of
enum more consistent with the way struct and union are handled.

1.93 gcc.info/Function Names

Function Names as Strings
=========================

GNU CC predefines two string variables to be the name of the current
function. The variable __FUNCTION__ is the name of the function as it
appears in the source. The variable __PRETTY_FUNCTION__ is the name of
the function pretty printed in a language specific fashion.

These names are always the same in a C function, but in a C++
function they may be different. For example, this program:

extern "C" {
extern int printf (char *, ...);
}

class a {
public:
sub (int i)

{
printf ("__FUNCTION__ = %s\n", __FUNCTION__);
printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);

gcc.info 146 / 506

}
};

int
main (void)
{

a ax;
ax.sub (0);
return 0;

}

gives this output:

__FUNCTION__ = sub
__PRETTY_FUNCTION__ = int a::sub (int)

1.94 gcc.info/C++ Extensions

Extensions to the C++ Language

The GNU compiler provides these extensions to the C++ language (and
you can also use most of the C language extensions in your C++
programs). If you want to write code that checks whether these
features are available, you can test for the GNU compiler the same way
as for C programs: check for a predefined macro __GNUC__. You can also
use __GNUG__ to test specifically for GNU C++ (see
Standard Predefined Macros).

Naming Results
Giving a name to C++ function return values.

Min and Max
C++ Minimum and maximum operators.

Destructors and Goto
Goto is safe to use in C++ even when destructors

are needed.

C++ Interface
You can use a single C++ header file for both
declarations and definitions.

1.95 gcc.info/Naming Results

Named Return Values in C++
==========================

gcc.info 147 / 506

GNU C++ extends the function-definition syntax to allow you to
specify a name for the result of a function outside the body of the
definition, in C++ programs:

type
functionname (args) return resultname;
{

...
body
...

}

You can use this feature to avoid an extra constructor call when a
function result has a class type. For example, consider a function m,
declared as X v = m ();, whose result is of class X:

X
m ()
{

X b;
b.a = 23;
return b;

}

Although m appears to have no arguments, in fact it has one implicit
argument: the address of the return value. At invocation, the address
of enough space to hold v is sent in as the implicit argument. Then b
is constructed and its a field is set to the value 23. Finally, a copy
constructor (a constructor of the form X(X&)) is applied to b, with the
(implicit) return value location as the target, so that v is now bound
to the return value.

But this is wasteful. The local b is declared just to hold
something that will be copied right out. While a compiler that
combined an "elision" algorithm with interprocedural data flow analysis
could conceivably eliminate all of this, it is much more practical to
allow you to assist the compiler in generating efficient code by
manipulating the return value explicitly, thus avoiding the local
variable and copy constructor altogether.

Using the extended GNU C++ function-definition syntax, you can avoid
the temporary allocation and copying by naming r as your return value
as the outset, and assigning to its a field directly:

X
m () return r;
{

r.a = 23;
}

The declaration of r is a standard, proper declaration, whose effects
are executed before any of the body of m.

Functions of this type impose no additional restrictions; in
particular, you can execute return statements, or return implicitly by
reaching the end of the function body ("falling off the edge"). Cases

gcc.info 148 / 506

like

X
m () return r (23);
{

return;
}

(or even X m () return r (23); { }) are unambiguous, since the return
value r has been initialized in either case. The following code may be
hard to read, but also works predictably:

X
m () return r;
{

X b;
return b;

}

The return value slot denoted by r is initialized at the outset, but
the statement return b; overrides this value. The compiler deals with
this by destroying r (calling the destructor if there is one, or doing
nothing if there is not), and then reinitializing r with b.

This extension is provided primarily to help people who use
overloaded operators, where there is a great need to control not just
the arguments, but the return values of functions. For classes where
the copy constructor incurs a heavy performance penalty (especially in
the common case where there is a quick default constructor), this is a
major savings. The disadvantage of this extension is that you do not
control when the default constructor for the return value is called: it
is always called at the beginning.

1.96 gcc.info/Min and Max

Minimum and Maximum Operators in C++
====================================

It is very convenient to have operators which return the "minimum"
or the "maximum" of two arguments. In GNU C++ (but not in GNU C),

a <? b
is the minimum, returning the smaller of the numeric values a and
b;

a >? b
is the maximum, returning the larger of the numeric values a and b.

These operations are not primitive in ordinary C++, since you can
use a macro to return the minimum of two things in C++, as in the
following example.

#define MIN(X,Y) ((X) < (Y) ? : (X) : (Y))

gcc.info 149 / 506

You might then use int min = MIN (i, j); to set min to the minimum
value of variables i and j.

However, side effects in X or Y may cause unintended behavior. For
example, MIN (i++, j++) will fail, incrementing the smaller counter
twice. A GNU C extension allows you to write safe macros that avoid
this kind of problem (see

Naming an Expression’s Type
). However,

writing MIN and MAX as macros also forces you to use function-call
notation notation for a fundamental arithmetic operation. Using GNU
C++ extensions, you can write int min = i <? j; instead.

Since <? and >? are built into the compiler, they properly handle
expressions with side-effects; int min = i++ <? j++; works correctly.

1.97 gcc.info/Destructors and Goto

goto and Destructors in GNU C++
===============================

In C++ programs, you can safely use the goto statement. When you
use it to exit a block which contains aggregates requiring destructors,
the destructors will run before the goto transfers control. (In ANSI
C++, goto is restricted to targets within the current block.)

The compiler still forbids using goto to enter a scope that requires
constructors.

1.98 gcc.info/C++ Interface

Declarations and Definitions in One Header
==

C++ object definitions can be quite complex. In principle, your
source code will need two kinds of things for each object that you use
across more than one source file. First, you need an interface
specification, describing its structure with type declarations and
function prototypes. Second, you need the implementation itself. It
can be tedious to maintain a separate interface description in a header
file, in parallel to the actual implementation. It is also dangerous,
since separate interface and implementation definitions may not remain
parallel.

With GNU C++, you can use a single header file for both purposes.

Warning: The mechanism to specify this is in transition. For the
nonce, you must use one of two #pragma commands; in a future
release of GNU C++, an alternative mechanism will make these

gcc.info 150 / 506

#pragma commands unnecessary.

The header file contains the full definitions, but is marked with
#pragma interface in the source code. This allows the compiler to use
the header file only as an interface specification when ordinary source
files incorporate it with #include. In the single source file where
the full implementation belongs, you can use either a naming convention
or #pragma implementation to indicate this alternate use of the header
file.

#pragma interface
Use this directive in header files that define object classes, to
save space in most of the object files that use those classes.
Normally, local copies of certain information (backup copies of
inline member functions, debugging information, and the internal
tables that implement virtual functions) must be kept in each
object file that includes class definitions. You can use this
pragma to avoid such duplication. When a header file containing
#pragma interface is included in a compilation, this auxiliary
information will not be generated (unless the main input source
file itself uses #pragma implementation). Instead, the object
files will contain references to be resolved at link time.

#pragma implementation
#pragma implementation "objects.h"

Use this pragma in a main input file, when you want full output
from included header files to be generated (and made globally
visible). The included header file, in turn, should use #pragma
interface. Backup copies of inline member functions, debugging
information, and the internal tables used to implement virtual
functions are all generated in implementation files.

#pragma implementation is implied whenever the basename(1) of your
source file matches the basename of a header file it includes.
There is no way to turn this off (other than using a different
name for one of the two files). In the same vein, if you use
#pragma implementation with no argument, it applies to an include
file with the same basename as your source file. For example, in
allclass.cc, #pragma implementation by itself is equivalent to
#pragma implementation "allclass.h"; but even if you do not say
#pragma implementation at all, allclass.h is treated as an
implementation file whenever you include it from allclass.cc.

If you use an explicit #pragma implementation, it must appear in
your source file before you include the affected header files.

Use the string argument if you want a single implementation file to
include code from multiple header files. (You must also use
#include to include the header file; #pragma implementation only
specifies how to use the file--it doesn’t actually include it.)

There is no way to split up the contents of a single header file
into multiple implementation files.

#pragma implementation and #pragma interface also have an effect on
function inlining.

gcc.info 151 / 506

If you define a class in a header file marked with #pragma
interface, the effect on a function defined in that class is
similar to an explicit extern declaration--the compiler emits no code at
all to define an independent version of the function. Its definition
is used only for inlining with its callers.

Conversely, when you include the same header file in a main source
file that declares it as #pragma implementation, the compiler emits
code for the function itself; this defines a version of the function
that can be found via pointers (or by callers compiled without
inlining).

---------- Footnotes ----------

(1) A file’s basename is the name stripped of all leading path
information and of trailing suffixes, such as .h or .C or .cc.

1.99 gcc.info/Trouble

Known Causes of Trouble with GNU CC

This section describes known problems that affect users of GNU CC.
Most of these are not GNU CC bugs per se--if they were, we would fix
them. But the result for a user may be like the result of a bug.

Some of these problems are due to bugs in other software, some are
missing features that are too much work to add, and some are places
where people’s opinions differ as to what is best.

Actual Bugs
Bugs we will fix later.

Installation Problems
Problems that manifest when you install GNU CC.

Cross-Compiler Problems
Common problems of cross compiling with GNU CC.

Interoperation
Problems using GNU CC with other compilers,

and with certain linkers, assemblers and debuggers.

External Bugs
Problems compiling certain programs.

Incompatibilities
GNU CC is incompatible with traditional C.

Fixed Headers
GNU C uses corrected versions of system header files.

This is necessary, but doesn’t always work smoothly.

gcc.info 152 / 506

Disappointments
Regrettable things we can’t change, but not quite bugs.

C++ Misunderstandings
Common misunderstandings with GNU C++.

Protoize Caveats
Things to watch out for when using protoize.

Non-bugs
Things we think are right, but some others disagree.

Warnings and Errors
Which problems in your code get warnings,

and which get errors.

1.100 gcc.info/Actual Bugs

Actual Bugs We Haven’t Fixed Yet
================================

* The fixincludes script interacts badly with automounters; if the
directory of system header files is automounted, it tends to be
unmounted while fixincludes is running. This would seem to be a
bug in the automounter. We don’t know any good way to work around
it.

* The fixproto script will sometimes add prototypes for the
sigsetjmp and siglongjmp functions that reference the jmp_buf
type before that type is defined. To work around this, edit the
offending file and place the typedef in front of the prototypes.

* Loop unrolling doesn’t work properly for certain C++ programs.
This is because of difficulty in updating the debugging
information within the loop being unrolled. We plan to revamp the
representation of debugging information so that this will work
properly, but we have not done this in version 2.5 because we
don’t want to delay it any further.

1.101 gcc.info/Installation Problems

Installation Problems
=====================

This is a list of problems (and some apparent problems which don’t
really mean anything is wrong) that show up during installation of GNU
CC.

gcc.info 153 / 506

* On certain systems, defining certain environment variables such as
CC can interfere with the functioning of make.

* If you encounter seemingly strange errors when trying to build the
compiler in a directory other than the source directory, it could be
because you have previously configured the compiler in the source
directory. Make sure you have done all the necessary preparations.
See

Other Dir
.

* If you build GNU CC on a BSD system using a directory stored in a
System V file system, problems may occur in running fixincludes if
the System V file system doesn’t support symbolic links. These
problems result in a failure to fix the declaration of size_t in
sys/types.h. If you find that size_t is a signed type and that
type mismatches occur, this could be the cause.

The solution is not to use such a directory for building GNU CC.

* In previous versions of GNU CC, the gcc driver program looked for
as and ld in various places; for example, in files beginning with
/gnu/lib/gcc-. GNU CC version 2 looks for them in the directory
/gnu/lib/gcc-lib/target/version.

Thus, to use a version of as or ld that is not the system default,
for example gas or GNU ld, you must put them in that directory (or
make links to them from that directory).

* Some commands executed when making the compiler may fail (return a
non-zero status) and be ignored by make. These failures, which
are often due to files that were not found, are expected, and can
safely be ignored.

* It is normal to have warnings in compiling certain files about
unreachable code and about enumeration type clashes. These files’
names begin with insn-. Also, real.c may get some warnings that
you can ignore.

* Sometimes make recompiles parts of the compiler when installing
the compiler. In one case, this was traced down to a bug in make.
Either ignore the problem or switch to GNU Make.

* If you have installed a program known as purify, you may find that
it causes errors while linking enquire, which is part of building
GNU CC. The fix is to get rid of the file real-ld which purify
installs--so that GNU CC won’t try to use it.

* On Linux SLS 1.01, there is a problem with libc.a: it does not
contain the obstack functions. However, GNU CC assumes that the
obstack functions are in libc.a when it is the GNU C library. To
work around this problem, change the __GNU_LIBRARY__ conditional
around line 31 to #if 1.

* On some 386 systems, building the compiler never finishes because
enquire hangs due to a hardware problem in the motherboard--it
reports floating point exceptions to the kernel incorrectly. You

gcc.info 154 / 506

can install GNU CC except for float.h by patching out the command
to run enquire. You may also be able to fix the problem for real
by getting a replacement motherboard. This problem was observed in
Revision E of the Micronics motherboard, and is fixed in Revision
F. It has also been observed in the MYLEX MXA-33 motherboard.

If you encounter this problem, you may also want to consider
removing the FPU from the socket during the compilation.
Alternatively, if you are running SCO Unix, you can reboot and
force the FPU to be ignored. To do this, type hd(40)unix auto
ignorefpu.

* On some 386 systems, GNU CC crashes trying to compile enquire.c.
This happens on machines that don’t have a 387 FPU chip. On 386
machines, the system kernel is supposed to emulate the 387 when you
don’t have one. The crash is due to a bug in the emulator.

One of these systems is the Unix from Interactive Systems: 386/ix.
On this system, an alternate emulator is provided, and it does
work. To use it, execute this command as super-user:

ln /etc/emulator.rel1 /etc/emulator

and then reboot the system. (The default emulator file remains
present under the name emulator.dflt.)

Try using /etc/emulator.att, if you have such a problem on the SCO
system.

Another system which has this problem is Esix. We don’t know
whether it has an alternate emulator that works.

On NetBSD 0.8, a similar problem manifests itself as these error
messages:

enquire.c: In function ‘fprop’:
enquire.c:2328: floating overflow

* On SCO systems, when compiling GNU CC with the system’s compiler,
do not use -O. Some versions of the system’s compiler miscompile
GNU CC with -O.

* Sometimes on a Sun 4 you may observe a crash in the program
genflags or genoutput while building GNU CC. This is said to be
due to a bug in sh. You can probably get around it by running
genflags or genoutput manually and then retrying the make.

* On Solaris 2, executables of GNU CC version 2.0.2 are commonly
available, but they have a bug that shows up when compiling current
versions of GNU CC: undefined symbol errors occur during assembly
if you use -g.

The solution is to compile the current version of GNU CC without
-g. That makes a working compiler which you can use to
recompile with -g.

* Solaris 2 comes with a number of optional OS packages. Some of

gcc.info 155 / 506

these packages are needed to use GNU CC fully. If you did not
install all optional packages when installing Solaris, you will
need to verify that the packages that GNU CC needs are installed.

To check whether an optional package is installed, use the pkginfo
command. To add an optional package, use the pkgadd command. For
further details, see the Solaris documentation.

For Solaris 2.0 and 2.1, GNU CC needs six packages: SUNWarc,
SUNWbtool, SUNWesu, SUNWhea, SUNWlibm, and SUNWtoo.

For Solaris 2.2, GNU CC needs an additional seventh package:
SUNWsprot.

* On Solaris 2, trying to use the linker and other tools in /usr/ucb
to install GNU CC has been observed to cause trouble. For
example, the linker may hang indefinitely. The fix is to remove
/usr/ucb from your PATH.

* If you use the 1.31 version of the MIPS assembler (such as was
shipped with Ultrix 3.1), you will need to use the
-fno-delayed-branch switch when optimizing floating point code.
Otherwise, the assembler will complain when the GCC compiler fills
a branch delay slot with a floating point instruction, such as
add.d.

* If on a MIPS system you get an error message saying "does not have
gp sections for all it’s [sic] sectons [sic]", don’t worry about
it. This happens whenever you use GAS with the MIPS linker, but
there is not really anything wrong, and it is okay to use the
output file. You can stop such warnings by installing the GNU
linker.

It would be nice to extend GAS to produce the gp tables, but they
are optional, and there should not be a warning about their
absence.

* In Ultrix 4.0 on the MIPS machine, stdio.h does not work with GNU
CC at all unless it has been fixed with fixincludes. This causes
problems in building GNU CC. Once GNU CC is installed, the
problems go away.

To work around this problem, when making the stage 1 compiler,
specify this option to Make:

GCC_FOR_TARGET="./xgcc -B./ -I./include"

When making stage 2 and stage 3, specify this option:

CFLAGS="-g -I./include"

* Users have reported some problems with version 2.0 of the MIPS
compiler tools that were shipped with Ultrix 4.1. Version 2.10
which came with Ultrix 4.2 seems to work fine.

* Some versions of the MIPS linker will issue an assertion failure
when linking code that uses alloca against shared libraries on

gcc.info 156 / 506

RISC-OS 5.0, and DEC’s OSF/1 systems. This is a bug in the
linker, that is supposed to be fixed in future revisions. To
protect against this, GNU CC passes -non_shared to the linker
unless you pass an explicit -shared or -call_shared switch.

* On System V release 3, you may get this error message while
linking:

ld fatal: failed to write symbol name something
in strings table for file whatever

This probably indicates that the disk is full or your ULIMIT won’t
allow the file to be as large as it needs to be.

This problem can also result because the kernel parameter MAXUMEM
is too small. If so, you must regenerate the kernel and make the
value much larger. The default value is reported to be 1024; a
value of 32768 is said to work. Smaller values may also work.

* On System V, if you get an error like this,

/gnu/lib/bison.simple: In function ‘yyparse’:
/gnu/lib/bison.simple:625: virtual memory exhausted

that too indicates a problem with disk space, ULIMIT, or MAXUMEM.

* Current GNU CC versions probably do not work on version 2 of the
NeXT operating system.

* On NeXTStep 3.0, the Objective C compiler does not work, due,
apparently, to a kernel bug that it happens to trigger. This
problem does not happen on 3.1.

* On the Tower models 4n0 and 6n0, by default a process is not
allowed to have more than one megabyte of memory. GNU CC cannot
compile itself (or many other programs) with -O in that much
memory.

To solve this problem, reconfigure the kernel adding the following
line to the configuration file:

MAXUMEM = 4096

* On HP 9000 series 300 or 400 running HP-UX release 8.0, there is a
bug in the assembler that must be fixed before GNU CC can be
built. This bug manifests itself during the first stage of
compilation, while building libgcc2.a:

_floatdisf
cc1: warning: ‘-g’ option not supported on this version of GCC
cc1: warning: ‘-g1’ option not supported on this version of GCC
./xgcc: Internal compiler error: program as got fatal signal 11

A patched version of the assembler is available by anonymous ftp
from altdorf.ai.mit.edu as the file
archive/cph/hpux-8.0-assembler. If you have HP software
support, the patch can also be obtained directly from HP, as

gcc.info 157 / 506

described in the following note:

This is the patched assembler, to patch SR#1653-010439, where
the assembler aborts on floating point constants.

The bug is not really in the assembler, but in the shared
library version of the function "cvtnum(3c)". The bug on
"cvtnum(3c)" is SR#4701-078451. Anyway, the attached
assembler uses the archive library version of "cvtnum(3c)"
and thus does not exhibit the bug.

This patch is also known as PHCO_0800.

* On HP-UX version 8.05, but not on 8.07 or more recent versions,
the fixproto shell script triggers a bug in the system shell. If
you encounter this problem, upgrade your operating system or use
BASH (the GNU shell) to run fixproto.

* Some versions of the Pyramid C compiler are reported to be unable
to compile GNU CC. You must use an older version of GNU CC for
bootstrapping. One indication of this problem is if you get a
crash when GNU CC compiles the function muldi3 in file libgcc2.c.

You may be able to succeed by getting GNU CC version 1, installing
it, and using it to compile GNU CC version 2. The bug in the
Pyramid C compiler does not seem to affect GNU CC version 1.

* There may be similar problems on System V Release 3.1 on 386
systems.

* On the Intel Paragon (an i860 machine), if you are using operating
system version 1.0, you will get warnings or errors about
redefinition of va_arg when you build GNU CC.

If this happens, then you need to link most programs with the
library iclib.a. You must also modify stdio.h as follows: before
the lines

#if defined(__i860__) && !defined(_VA_LIST)
#include <va_list.h>

insert the line

#if __PGC__

and after the lines

extern int vprintf(const char *, va_list);
extern int vsprintf(char *, const char *, va_list);
#endif

insert the line

#endif /* __PGC__ */

These problems don’t exist in operating system version 1.1.

gcc.info 158 / 506

* On the Altos 3068, programs compiled with GNU CC won’t work unless
you fix a kernel bug. This happens using system versions V.2.2
1.0gT1 and V.2.2 1.0e and perhaps later versions as well. See the
file README.ALTOS.

* You will get several sorts of compilation and linking errors on the
we32k if you don’t follow the special instructions. See

WE32K Install
.

1.102 gcc.info/Cross-Compiler Problems

Cross-Compiler Problems
=======================

You may run into problems with cross compilation on certain machines,
for several reasons.

* Cross compilation can run into trouble for certain machines because
some target machines’ assemblers require floating point numbers to
be written as integer constants in certain contexts.

The compiler writes these integer constants by examining the
floating point value as an integer and printing that integer,
because this is simple to write and independent of the details of
the floating point representation. But this does not work if the
compiler is running on a different machine with an incompatible
floating point format, or even a different byte-ordering.

In addition, correct constant folding of floating point values
requires representing them in the target machine’s format. (The C
standard does not quite require this, but in practice it is the
only way to win.)

It is now possible to overcome these problems by defining macros
such as REAL_VALUE_TYPE. But doing so is a substantial amount of
work for each target machine. See

Cross-compilation
.

* At present, the program mips-tfile which adds debug support to
object files on MIPS systems does not work in a cross compile
environment.

1.103 gcc.info/Interoperation

gcc.info 159 / 506

Interoperation
==============

This section lists various difficulties encountered in using GNU C or
GNU C++ together with other compilers or with the assemblers, linkers,
libraries and debuggers on certain systems.

* Objective C does not work on the RS/6000 or the Alpha.

* C++ does not work on the Alpha.

* GNU C++ does not do name mangling in the same way as other C++
compilers. This means that object files compiled with one compiler
cannot be used with another.

This effect is intentional, to protect you from more subtle
problems. Compilers differ as to many internal details of C++
implementation, including: how class instances are laid out, how
multiple inheritance is implemented, and how virtual function
calls are handled. If the name encoding were made the same, your
programs would link against libraries provided from other
compilers--but the programs would then crash when run.
Incompatible libraries are then detected at link time, rather than
at run time.

* Older GDB versions sometimes fail to read the output of GNU CC
version 2. If you have trouble, get GDB version 4.4 or later.

* DBX rejects some files produced by GNU CC, though it accepts
similar constructs in output from PCC. Until someone can supply a
coherent description of what is valid DBX input and what is not,
there is nothing I can do about these problems. You are on your
own.

* The GNU assembler (GAS) does not support PIC. To generate PIC
code, you must use some other assembler, such as /bin/as.

* On some BSD systems, including some versions of Ultrix, use of
profiling causes static variable destructors (currently used only
in C++) not to be run.

* Use of -I/usr/include may cause trouble.

Many systems come with header files that won’t work with GNU CC
unless corrected by fixincludes. The corrected header files go in
a new directory; GNU CC searches this directory before
/usr/include. If you use -I/usr/include, this tells GNU CC to
search /usr/include earlier on, before the corrected headers. The
result is that you get the uncorrected header files.

Instead, you should use these options (when compiling C programs):

-I/gnu/lib/gcc-lib/target/version/include -I/usr/include

For C++ programs, GNU CC also uses a special directory that
defines C++ interfaces to standard C subroutines. This directory

gcc.info 160 / 506

is meant to be searched before other standard include directories,
so that it takes precedence. If you are compiling C++ programs
and specifying include directories explicitly, use this option
first, then the two options above:

-I/gnu/lib/g++-include

* On some SGI systems, when you use -lgl_s as an option, it gets
translated magically to -lgl_s -lX11_s -lc_s. Naturally, this
does not happen when you use GNU CC. You must specify all three
options explicitly.

* On a Sparc, GNU CC aligns all values of type double on an 8-byte
boundary, and it expects every double to be so aligned. The Sun
compiler usually gives double values 8-byte alignment, with one
exception: function arguments of type double may not be aligned.

As a result, if a function compiled with Sun CC takes the address
of an argument of type double and passes this pointer of type
double * to a function compiled with GNU CC, dereferencing the
pointer may cause a fatal signal.

One way to solve this problem is to compile your entire program
with GNU CC. Another solution is to modify the function that is
compiled with Sun CC to copy the argument into a local variable;
local variables are always properly aligned. A third solution is
to modify the function that uses the pointer to dereference it via
the following function access_double instead of directly with *:

inline double
access_double (double *unaligned_ptr)
{

union d2i { double d; int i[2]; };

union d2i *p = (union d2i *) unaligned_ptr;
union d2i u;

u.i[0] = p->i[0];
u.i[1] = p->i[1];

return u.d;
}

Storing into the pointer can be done likewise with the same union.

* On Solaris, the malloc function in the libmalloc.a library may
allocate memory that is only 4 byte aligned. Since GNU CC on the
Sparc assumes that doubles are 8 byte aligned, this may result in a
fatal signal if doubles are stored in memory allocated by the
libmalloc.a library.

The solution is to not use the libmalloc.a library. Use instead
malloc and related functions from libc.a; they do not have this
problem.

* On a Sun, linking using GNU CC fails to find a shared library and
reports that the library doesn’t exist at all.

gcc.info 161 / 506

This happens if you are using the GNU linker, because it does only
static linking and looks only for unshared libraries. If you have
a shared library with no unshared counterpart, the GNU linker
won’t find anything.

We hope to make a linker which supports Sun shared libraries, but
please don’t ask when it will be finished--we don’t know.

* Sun forgot to include a static version of libdl.a with some
versions of SunOS (mainly 4.1). This results in undefined symbols
when linking static binaries (that is, if you use -static). If you
see undefined symbols _dlclose, _dlsym or _dlopen when linking,
compile and link against the file mit/util/misc/dlsym.c from the
MIT version of X windows.

* The 128-bit long double format that the Sparc port supports
currently works by using the architecturally defined quad-word
floating point instructions. Since there is no hardware that
supports these instructions they must be emulated by the operating
system. Long doubles do not work in Sun OS versions 4.0.3 and
earlier, because the kernel eumulator uses an obsolete and
incompatible format. Long doubles do not work in Sun OS versions
4.1.1 to 4.1.3 because of emululator bugs that cause random
unpredicatable failures. Long doubles appear to work in Sun OS 5.x
(Solaris 2.x).

A future implementation of the sparc long double support will use
functions calls to library routines instead of the quad-word
floating point instructions. This will allow long doubles to work
in more situtations, since one can then substitute a working
library if the kernel emulator is buggy.

* On HP-UX version 9.01 on the HP PA, the HP compiler cc does not
compile GNU CC correctly. We do not yet know why. However, GNU CC
compiled on earlier HP-UX versions works properly on HP-UX 9.01
and can compile itself properly on 9.01.

* On the HP PA machine, ADB sometimes fails to work on functions
compiled with GNU CC. Specifically, it fails to work on functions
that use alloca or variable-size arrays. This is because GNU CC
doesn’t generate HP-UX unwind descriptors for such functions. It
may even be impossible to generate them.

* Debugging (-g) is not supported on the HP PA machine, unless you
use the preliminary GNU tools (see

Installation
).

* Taking the address of a label may generate errors from the HP-UX
PA assembler. GAS for the PA does not have this problem.

* Using floating point parameters for indirect calls to static
functions will not work when using the HP assembler. There simply
is no way for GCC to specify what registers hold arguments for
static functions when using the HP assembler. GAS for the PA does
not have this problem.

gcc.info 162 / 506

* For some very large functions you may receive errors from the HP
linker complaining about an out of bounds unconditional branch
offset. Fixing this problem correctly requires fixing problems in
GNU CC and GAS. We hope to fix this in time for GNU CC 2.6.
Until then you can work around by making your function smaller,
and if you are using GAS, splitting the function into multiple
source files may be necessary.

* GNU CC compiled code sometimes emits warnings from the HP-UX
assembler of the form:

(warning) Use of GR3 when
frame >= 8192 may cause conflict.

These warnings are harmless and can be safely ignored.

* The current version of the assembler (/bin/as) for the RS/6000 has
certain problems that prevent the -g option in GCC from working.
Note that Makefile.in uses -g by default when compiling libgcc2.c.

IBM has produced a fixed version of the assembler. The upgraded
assembler unfortunately was not included in any of the AIX 3.2
update PTF releases (3.2.2, 3.2.3, or 3.2.3e). Users of AIX 3.1
should request PTF U403044 from IBM and users of AIX 3.2 should
request PTF U416277. See the file README.RS6000 for more details
on these updates.

You can test for the presense of a fixed assembler by using the
command

as -u < /dev/null

If the command exits normally, the assembler fix already is
installed. If the assembler complains that "-u" is an unknown
flag, you need to order the fix.

* On the IBM RS/6000, compiling code of the form

extern int foo;

... foo ...

static int foo;

will cause the linker to report an undefined symbol foo. Although
this behavior differs from most other systems, it is not a bug
because redefining an extern variable as static is undefined in
ANSI C.

* AIX on the RS/6000 provides support (NLS) for environments outside
of the United States. Compilers and assemblers use NLS to support
locale-specific representations of various objects including
floating-point numbers ("." vs "," for separating decimal
fractions). There have been problems reported where the library
linked with GCC does not produce the same floating-point formats
that the assembler accepts. If you have this problem, set the

gcc.info 163 / 506

LANG environment variable to "C" or "En_US".

* On the RS/6000, XLC version 1.3.0.0 will miscompile jump.c. XLC
version 1.3.0.1 or later fixes this problem. We do not yet have a
PTF number for this fix.

* There is an assembler bug in versions of DG/UX prior to 5.4.2.01
that occurs when the fldcr instruction is used. GNU CC uses fldcr
on the 88100 to serialize volatile memory references. Use the
option -mno-serialize-volatile if your version of the assembler
has this bug.

* On VMS, GAS versions 1.38.1 and earlier may cause spurious warning
messages from the linker. These warning messages complain of
mismatched psect attributes. You can ignore them. See

VMS Install
.

* On NewsOS version 3, if you include both of the files stddef.h and
sys/types.h, you get an error because there are two typedefs of
size_t. You should change sys/types.h by adding these lines
around the definition of size_t:

#ifndef _SIZE_T
#define _SIZE_T
actual typedef here
#endif

* On the Alliant, the system’s own convention for returning
structures and unions is unusual, and is not compatible with GNU
CC no matter what options are used.

* On the IBM RT PC, the MetaWare HighC compiler (hc) uses a different
convention for structure and union returning. Use the option
-mhc-struct-return to tell GNU CC to use a convention compatible
with it.

* On Ultrix, the Fortran compiler expects registers 2 through 5 to
be saved by function calls. However, the C compiler uses
conventions compatible with BSD Unix: registers 2 through 5 may be
clobbered by function calls.

GNU CC uses the same convention as the Ultrix C compiler. You can
use these options to produce code compatible with the Fortran
compiler:

-fcall-saved-r2 -fcall-saved-r3 -fcall-saved-r4 -fcall-saved-r5

* On the WE32k, you may find that programs compiled with GNU CC do
not work with the standard shared C ilbrary. You may need to link
with the ordinary C compiler. If you do so, you must specify the
following options:

-L/gnu/lib/gcc-lib/we32k-att-sysv/2.5 -lgcc -lc_s

The first specifies where to find the library libgcc.a specified

gcc.info 164 / 506

with the -lgcc option.

GNU CC does linking by invoking ld, just as cc does, and there is
no reason why it should matter which compilation program you use
to invoke ld. If someone tracks this problem down, it can
probably be fixed easily.

* On the Alpha, you may get assembler errors about invalid syntax as
a result of floating point constants. This is due to a bug in the
C library functions ecvt, fcvt and gcvt. Given valid floating
point numbers, they sometimes print NaN.

* On Irix 4.0.5F (and perhaps in some other versions), an assembler
bug sometimes reorders instructions incorrectly when optimization
is turned on. If you think this may be happening to you, try
using the GNU assembler; GAS version 2.1 supports ECOFF on Irix.

Or use the -noasmopt option when you compile GNU CC with itself,
and then again when you compile your program. (This is a temporary
kludge to turn off assembler optimization on Irix.) If this
proves to be what you need, edit the assembler spec in the file
specs so that it unconditionally passes -O0 to the assembler, and
never passes -O2 or -O3.

1.104 gcc.info/External Bugs

Problems Compiling Certain Programs
===================================

* Parse errors may occur compiling X11 on a Decstation running
Ultrix 4.2 because of problems in DEC’s versions of the X11 header
files X11/Xlib.h and X11/Xutil.h. People recommend adding
-I/usr/include/mit to use the MIT versions of the header files,
using the -traditional switch to turn off ANSI C, or fixing the
header files by adding this:

#ifdef __STDC__
#define NeedFunctionPrototypes 0
#endif

* If you have trouble compiling Perl on a SunOS 4 system, it may be
because Perl specifies -I/usr/ucbinclude. This accesses the
unfixed header files. Perl specifies the options

-traditional -Dvolatile=__volatile__
-I/usr/include/sun -I/usr/ucbinclude
-fpcc-struct-return

all of which are unnecessary with GCC 2.4.5 and newer versions.
You can make a properly working Perl by setting ccflags and
cppflags to empty values in config.sh, then typing ./doSH; make
depend; make.

gcc.info 165 / 506

* On various 386 Unix systems derived from System V, including SCO,
ISC, and ESIX, you may get error messages about running out of
virtual memory while compiling certain programs.

You can prevent this problem by linking GNU CC with the GNU malloc
(which thus replaces the malloc that comes with the system). GNU
malloc is available as a separate package, and also in the file
src/gmalloc.c in the GNU Emacs 19 distribution.

If you have installed GNU malloc as a separate library package,
use this option when you relink GNU CC:

MALLOC=/gnu/lib/libgmalloc.a

Alternatively, if you have compiled gmalloc.c from Emacs 19, copy
the object file to gmalloc.o and use this option when you relink
GNU CC:

MALLOC=gmalloc.o

1.105 gcc.info/Incompatibilities

Incompatibilities of GNU CC
===========================

There are several noteworthy incompatibilities between GNU C and most
existing (non-ANSI) versions of C. The -traditional option eliminates
many of these incompatibilities, but not all, by telling GNU C to
behave like the other C compilers.

* GNU CC normally makes string constants read-only. If several
identical-looking string constants are used, GNU CC stores only one
copy of the string.

One consequence is that you cannot call mktemp with a string
constant argument. The function mktemp always alters the string
its argument points to.

Another consequence is that sscanf does not work on some systems
when passed a string constant as its format control string or
input. This is because sscanf incorrectly tries to write into the
string constant. Likewise fscanf and scanf.

The best solution to these problems is to change the program to use
char-array variables with initialization strings for these
purposes instead of string constants. But if this is not possible,
you can use the -fwritable-strings flag, which directs GNU CC to
handle string constants the same way most C compilers do.
-traditional also has this effect, among others.

* -2147483648 is positive.

This is because 2147483648 cannot fit in the type int, so
(following the ANSI C rules) its data type is unsigned long int.

gcc.info 166 / 506

Negating this value yields 2147483648 again.

* GNU CC does not substitute macro arguments when they appear inside
of string constants. For example, the following macro in GNU CC

#define foo(a) "a"

will produce output "a" regardless of what the argument a is.

The -traditional option directs GNU CC to handle such cases (among
others) in the old-fashioned (non-ANSI) fashion.

* When you use setjmp and longjmp, the only automatic variables
guaranteed to remain valid are those declared volatile. This is a
consequence of automatic register allocation. Consider this
function:

jmp_buf j;

foo ()
{

int a, b;

a = fun1 ();
if (setjmp (j))

return a;

a = fun2 ();
/* longjmp (j) may occur in fun3. */
return a + fun3 ();

}

Here a may or may not be restored to its first value when the
longjmp occurs. If a is allocated in a register, then its first
value is restored; otherwise, it keeps the last value stored in it.

If you use the -W option with the -O option, you will get a
warning when GNU CC thinks such a problem might be possible.

The -traditional option directs GNU C to put variables in the
stack by default, rather than in registers, in functions that call
setjmp. This results in the behavior found in traditional C
compilers.

* Programs that use preprocessor directives in the middle of macro
arguments do not work with GNU CC. For example, a program like
this will not work:

foobar (
#define luser

hack)

ANSI C does not permit such a construct. It would make sense to
support it when -traditional is used, but it is too much work to
implement.

* Declarations of external variables and functions within a block

gcc.info 167 / 506

apply only to the block containing the declaration. In other
words, they have the same scope as any other declaration in the
same place.

In some other C compilers, a extern declaration affects all the
rest of the file even if it happens within a block.

The -traditional option directs GNU C to treat all extern
declarations as global, like traditional compilers.

* In traditional C, you can combine long, etc., with a typedef name,
as shown here:

typedef int foo;
typedef long foo bar;

In ANSI C, this is not allowed: long and other type modifiers
require an explicit int. Because this criterion is expressed by
Bison grammar rules rather than C code, the -traditional flag
cannot alter it.

* PCC allows typedef names to be used as function parameters. The
difficulty described immediately above applies here too.

* PCC allows whitespace in the middle of compound assignment
operators such as +=. GNU CC, following the ANSI standard, does
not allow this. The difficulty described immediately above
applies here too.

* GNU CC complains about unterminated character constants inside of
preprocessor conditionals that fail. Some programs have English
comments enclosed in conditionals that are guaranteed to fail; if
these comments contain apostrophes, GNU CC will probably report an
error. For example, this code would produce an error:

#if 0
You can’t expect this to work.
#endif

The best solution to such a problem is to put the text into an
actual C comment delimited by /*...*/. However, -traditional
suppresses these error messages.

* Many user programs contain the declaration long time ();. In the
past, the system header files on many systems did not actually
declare time, so it did not matter what type your program declared
it to return. But in systems with ANSI C headers, time is
declared to return time_t, and if that is not the same as long,
then long time (); is erroneous.

The solution is to change your program to use time_t as the return
type of time.

* When compiling functions that return float, PCC converts it to a
double. GNU CC actually returns a float. If you are concerned
with PCC compatibility, you should declare your functions to return
double; you might as well say what you mean.

gcc.info 168 / 506

* When compiling functions that return structures or unions, GNU CC
output code normally uses a method different from that used on most
versions of Unix. As a result, code compiled with GNU CC cannot
call a structure-returning function compiled with PCC, and vice
versa.

The method used by GNU CC is as follows: a structure or union
which is 1, 2, 4 or 8 bytes long is returned like a scalar. A
structure or union with any other size is stored into an address
supplied by the caller (usually in a special, fixed register, but
on some machines it is passed on the stack). The
machine-description macros STRUCT_VALUE and STRUCT_INCOMING_VALUE
tell GNU CC where to pass this address.

By contrast, PCC on most target machines returns structures and
unions of any size by copying the data into an area of static
storage, and then returning the address of that storage as if it
were a pointer value. The caller must copy the data from that
memory area to the place where the value is wanted. GNU CC does
not use this method because it is slower and nonreentrant.

On some newer machines, PCC uses a reentrant convention for all
structure and union returning. GNU CC on most of these machines
uses a compatible convention when returning structures and unions
in memory, but still returns small structures and unions in
registers.

You can tell GNU CC to use a compatible convention for all
structure and union returning with the option -fpcc-struct-return.

* GNU C complains about program fragments such as 0x74ae-0x4000
which appear to be two hexadecimal constants separated by the minus
operator. Actually, this string is a single preprocessing token.
Each such token must correspond to one token in C. Since this
does not, GNU C prints an error message. Although it may appear
obvious that what is meant is an operator and two values, the ANSI
C standard specifically requires that this be treated as erroneous.

A preprocessing token is a preprocessing number if it begins with
a digit and is followed by letters, underscores, digits, periods
and e+, e-, E+, or E- character sequences.

To make the above program fragment valid, place whitespace in
front of the minus sign. This whitespace will end the
preprocessing number.

1.106 gcc.info/Fixed Headers

Fixed Header Files
==================

GNU CC needs to install corrected versions of some system header
files. This is because most target systems have some header files that

gcc.info 169 / 506

won’t work with GNU CC unless they are changed. Some have bugs, some
are incompatible with ANSI C, and some depend on special features of
other compilers.

Installing GNU CC automatically creates and installs the fixed header
files, by running a program called fixincludes (or for certain targets
an alternative such as fixinc.svr4). Normally, you don’t need to pay
attention to this. But there are cases where it doesn’t do the right
thing automatically.

* If you update the system’s header files, such as by installing a
new system version, the fixed header files of GNU CC are not
automatically updated. The easiest way to update them is to
reinstall GNU CC. (If you want to be clever, look in the makefile
and you can find a shortcut.)

* On some systems, in particular SunOS 4, header file directories
contain machine-specific symbolic links in certain places. This
makes it possible to share most of the header files among hosts
running the same version of SunOS 4 on different machine models.

The programs that fix the header files do not understand this
special way of using symbolic links; therefore, the directory of
fixed header files is good only for the machine model used to
build it.

In SunOS 4, only programs that look inside the kernel will notice
the difference between machine models. Therefore, for most
purposes, you need not be concerned about this.

It is possible to make separate sets of fixed header files for the
different machine models, and arrange a structure of symbolic
links so as to use the proper set, but you’ll have to do this by
hand.

* On Lynxos, GNU CC by default does not fix the header files. This
is because bugs in the shell cause the fixincludes script to fail.

This means you will encounter problems due to bugs in the system
header files. It may be no comfort that they aren’t GNU CC’s
fault, but it does mean that there’s nothing for us to do about
them.

1.107 gcc.info/Disappointments

Disappointments and Misunderstandings
=====================================

These problems are perhaps regrettable, but we don’t know any
practical way around them.

* Certain local variables aren’t recognized by debuggers when you
compile with optimization.

gcc.info 170 / 506

This occurs because sometimes GNU CC optimizes the variable out of
existence. There is no way to tell the debugger how to compute the
value such a variable "would have had", and it is not clear that
would be desirable anyway. So GNU CC simply does not mention the
eliminated variable when it writes debugging information.

You have to expect a certain amount of disagreement between the
executable and your source code, when you use optimization.

* Users often think it is a bug when GNU CC reports an error for code
like this:

int foo (struct mumble *);

struct mumble { ... };

int foo (struct mumble *x)
{ ... }

This code really is erroneous, because the scope of struct mumble
in the prototype is limited to the argument list containing it.
It does not refer to the struct mumble defined with file scope
immediately below--they are two unrelated types with similar names
in different scopes.

But in the definition of foo, the file-scope type is used because
that is available to be inherited. Thus, the definition and the
prototype do not match, and you get an error.

This behavior may seem silly, but it’s what the ANSI standard
specifies. It is easy enough for you to make your code work by
moving the definition of struct mumble above the prototype. It’s
not worth being incompatible with ANSI C just to avoid an error
for the example shown above.

* Accesses to bitfields even in volatile objects works by accessing
larger objects, such as a byte or a word. You cannot rely on what
size of object is accessed in order to read or write the bitfield;
it may even vary for a given bitfield according to the precise
usage.

If you care about controlling the amount of memory that is
accessed, use volatile but do not use bitfields.

* GNU CC comes with shell scripts to fix certain known problems in
system header files. They install corrected copies of various
header files in a special directory where only GNU CC will
normally look for them. The scripts adapt to various systems by
searching all the system header files for the problem cases that
we know about.

If new system header files are installed, nothing automatically
arranges to update the corrected header files. You will have to
reinstall GNU CC to fix the new header files. More specifically,
go to the build directory and delete the files stmp-fixinc and
stmp-headers, and the subdirectory include; then do make install
again.

gcc.info 171 / 506

* On 68000 systems, you can get paradoxical results if you test the
precise values of floating point numbers. For example, you can
find that a floating point value which is not a NaN is not equal
to itself. This results from the fact that the the floating point
registers hold a few more bits of precision than fit in a double
in memory. Compiled code moves values between memory and floating
point registers at its convenience, and moving them into memory
truncates them.

You can partially avoid this problem by using the -ffloat-store
option (see

Optimize Options
).

* On the MIPS, variable argument functions using varargs.h cannot
have a floating point value for the first argument. The reason
for this is that in the absence of a prototype in scope, if the
first argument is a floating point, it is passed in a floating
point register, rather than an integer register.

If the code is rewritten to use the ANSI standard stdarg.h method
of variable arguments, and the prototype is in scope at the time
of the call, everything will work fine.

1.108 gcc.info/C++ Misunderstandings

Common Misunderstandings with GNU C++
=====================================

C++ is a complex language and an evolving one, and its standard
definition (the ANSI C++ draft standard) is also evolving. As a result,
your C++ compiler may occasionally surprise you, even when its behavior
is correct. This section discusses some areas that frequently give
rise to questions of this sort.

Static Definitions
Static member declarations are not definitions

Temporaries
Temporaries may vanish before you expect

1.109 gcc.info/Static Definitions

Declare and Define Static Members

gcc.info 172 / 506

When a class has static data members, it is not enough to declare
the static member; you must also define it. For example:

class Foo
{

...
void method();
static int bar;

};

This declaration only establishes that the class Foo has an int
named Foo::bar, and a member function named Foo::method. But you still
need to define both method and bar elsewhere. According to the draft
ANSI standard, you must supply an initializer in one (and only one)
source file, such as:

int Foo::bar = 0;

Other C++ compilers may not correctly implement the standard
behavior. As a result, when you switch to g++ from one of these
compilers, you may discover that a program that appeared to work
correctly in fact does not conform to the standard: g++ reports as
undefined symbols any static data members that lack definitions.

1.110 gcc.info/Temporaries

Temporaries May Vanish Before You Expect
--

It is dangerous to use pointers or references to portions of a
temporary object. The compiler may very well delete the object before
you expect it to, leaving a pointer to garbage. The most common place
where this problem crops up is in classes like the libg++ String class,
that define a conversion function to type char * or const char *.
However, any class that returns a pointer to some internal structure is
potentially subject to this problem.

For example, a program may use a function strfunc that returns
String objects, and another function charfunc that operates on
pointers to char:

String strfunc ();
void charfunc (const char *);

In this situation, it may seem natural to write charfunc (strfunc ());
based on the knowledge that class String has an explicit conversion to
char pointers. However, what really happens is akin to charfunc
(strfunc ().convert ());, where the convert method is a function to do
the same data conversion normally performed by a cast. Since the last
use of the temporary String object is the call to the conversion
function, the compiler may delete that object before actually calling
charfunc. The compiler has no way of knowing that deleting the String
object will invalidate the pointer. The pointer then points to

gcc.info 173 / 506

garbage, so that by the time charfunc is called, it gets an invalid
argument.

Code like this may run successfully under some other compilers,
especially those that delete temporaries relatively late. However, the
GNU C++ behavior is also standard-conformant, so if your program depends
on late destruction of temporaries it is not portable.

If you think this is surprising, you should be aware that the ANSI
C++ committee continues to debate the lifetime-of-temporaries problem.

For now, at least, the safe way to write such code is to give the
temporary a name, which forces it to remain until the end of the scope
of the name. For example:

String& tmp = strfunc ();
charfunc (tmp);

1.111 gcc.info/Protoize Caveats

Caveats of using protoize
=========================

The conversion programs protoize and unprotoize can sometimes change
a source file in a way that won’t work unless you rearrange it.

* protoize can insert references to a type name or type tag
before the definition, or in a file where they are not defined.

If this happens, compiler error messages should show you where the
new references are, so fixing the file by hand is straightforward.

* There are some C constructs which protoize cannot figure out. For
example, it can’t determine argument types for declaring a
pointer-to-function variable; this you must do by hand. protoize
inserts a comment containing ??? each time it finds such a
variable; so you can find all such variables by searching for this
string. ANSI C does not require declaring the argument types of
pointer-to-function types.

* Using unprotoize can easily introduce bugs. If the program relied
on prototypes to bring about conversion of arguments, these
conversions will not take place in the program without prototypes.
One case in which you can be sure unprotoize is safe is when you
are removing prototypes that were made with protoize; if the
program worked before without any prototypes, it will work again
without them.

You can find all the places where this problem might occur by
compiling the program with the -Wconversion option. It prints a
warning whenever an argument is converted.

* Both conversion programs can be confused if there are macro calls
in and around the text to be converted. In other words, the

gcc.info 174 / 506

standard syntax for a declaration or definition must not result
from expanding a macro. This problem is inherent in the design of
C and cannot be fixed. If only a few functions have confusing
macro calls, you can easily convert them manually.

* protoize cannot get the argument types for a function whose
definition was not actually compiled due to preprocessor
conditionals. When this happens, protoize changes nothing in
regard to such a function. protoize tries to detect such
instances and warn about them.

You can generally work around this problem by using protoize step
by step, each time specifying a different set of -D options for
compilation, until all of the functions have been converted.
There is no automatic way to verify that you have got them all,
however.

* Confusion may result if there is an occasion to convert a function
declaration or definition in a region of source code where there
is more than one formal parameter list present. Thus, attempts to
convert code containing multiple (conditionally compiled) versions
of a single function header (in the same vicinity) may not produce
the desired (or expected) results.

If you plan on converting source files which contain such code, it
is recommended that you first make sure that each conditionally
compiled region of source code which contains an alternative
function header also contains at least one additional follower
token (past the final right parenthesis of the function header).
This should circumvent the problem.

* unprotoize can become confused when trying to convert a
function definition or declaration which contains a declaration
for a pointer-to-function formal argument which has the same name
as the function being defined or declared. We recommand you avoid
such choices of formal parameter names.

* You might also want to correct some of the indentation by hand and
break long lines. (The conversion programs don’t write lines
longer than eighty characters in any case.)

1.112 gcc.info/Non-bugs

Certain Changes We Don’t Want to Make
=====================================

This section lists changes that people frequently request, but which
we do not make because we think GNU CC is better without them.

* Checking the number and type of arguments to a function which has
an old-fashioned definition and no prototype.

Such a feature would work only occasionally--only for calls that
appear in the same file as the called function, following the

gcc.info 175 / 506

definition. The only way to check all calls reliably is to add a
prototype for the function. But adding a prototype eliminates the
motivation for this feature. So the feature is not worthwhile.

* Warning about using an expression whose type is signed as a shift
count.

Shift count operands are probably signed more often than unsigned.
Warning about this would cause far more annoyance than good.

* Warning about assigning a signed value to an unsigned variable.

Such assignments must be very common; warning about them would
cause more annoyance than good.

* Warning about unreachable code.

It’s very common to have unreachable code in machine-generated
programs. For example, this happens normally in some files of GNU
C itself.

* Warning when a non-void function value is ignored.

Coming as I do from a Lisp background, I balk at the idea that
there is something dangerous about discarding a value. There are
functions that return values which some callers may find useful;
it makes no sense to clutter the program with a cast to void
whenever the value isn’t useful.

* Assuming (for optimization) that the address of an external symbol
is never zero.

This assumption is false on certain systems when #pragma weak is
used.

* Making -fshort-enums the default.

This would cause storage layout to be incompatible with most other
C compilers. And it doesn’t seem very important, given that you
can get the same result in other ways. The case where it matters
most is when the enumeration-valued object is inside a structure,
and in that case you can specify a field width explicitly.

* Making bitfields unsigned by default on particular machines where
"the ABI standard" says to do so.

The ANSI C standard leaves it up to the implementation whether a
bitfield declared plain int is signed or not. This in effect
creates two alternative dialects of C.

The GNU C compiler supports both dialects; you can specify the
signed dialect with -fsigned-bitfields and the unsigned dialect
with -funsigned-bitfields. However, this leaves open the question
of which dialect to use by default.

Currently, the preferred dialect makes plain bitfields signed,
because this is simplest. Since int is the same as signed int in

gcc.info 176 / 506

every other context, it is cleanest for them to be the same in
bitfields as well.

Some computer manufacturers have published Application Binary
Interface standards which specify that plain bitfields should be
unsigned. It is a mistake, however, to say anything about this
issue in an ABI. This is because the handling of plain bitfields
distinguishes two dialects of C. Both dialects are meaningful on
every type of machine. Whether a particular object file was
compiled using signed bitfields or unsigned is of no concern to
other object files, even if they access the same bitfields in the
same data structures.

A given program is written in one or the other of these two
dialects. The program stands a chance to work on most any machine
if it is compiled with the proper dialect. It is unlikely to work
at all if compiled with the wrong dialect.

Many users appreciate the GNU C compiler because it provides an
environment that is uniform across machines. These users would be
inconvenienced if the compiler treated plain bitfields differently
on certain machines.

Occasionally users write programs intended only for a particular
machine type. On these occasions, the users would benefit if the
GNU C compiler were to support by default the same dialect as the
other compilers on that machine. But such applications are rare.
And users writing a program to run on more than one type of
machine cannot possibly benefit from this kind of compatibility.

This is why GNU CC does and will treat plain bitfields in the same
fashion on all types of machines (by default).

There are some arguments for making bitfields unsigned by default
on all machines. If, for example, this becomes a universal de
facto standard, it would make sense for GNU CC to go along with
it. This is something to be considered in the future.

(Of course, users strongly concerned about portability should
indicate explicitly in each bitfield whether it is signed or not.
In this way, they write programs which have the same meaning in
both C dialects.)

* Undefining __STDC__ when -ansi is not used.

Currently, GNU CC defines __STDC__ as long as you don’t use
-traditional. This provides good results in practice.

Programmers normally use conditionals on __STDC__ to ask whether
it is safe to use certain features of ANSI C, such as function
prototypes or ANSI token concatenation. Since plain gcc supports
all the features of ANSI C, the correct answer to these questions
is "yes".

Some users try to use __STDC__ to check for the availability of
certain library facilities. This is actually incorrect usage in
an ANSI C program, because the ANSI C standard says that a

gcc.info 177 / 506

conforming freestanding implementation should define __STDC__ even
though it does not have the library facilities. gcc -ansi
-pedantic is a conforming freestanding implementation, and it is
therefore required to define __STDC__, even though it does not
come with an ANSI C library.

Sometimes people say that defining __STDC__ in a compiler that
does not completely conform to the ANSI C standard somehow
violates the standard. This is illogical. The standard is a
standard for compilers that claim to support ANSI C, such as gcc
-ansi--not for other compilers such as plain gcc. Whatever the
ANSI C standard says is relevant to the design of plain gcc
without -ansi only for pragmatic reasons, not as a requirement.

* Undefining __STDC__ in C++.

Programs written to compile with C++-to-C translators get the
value of __STDC__ that goes with the C compiler that is
subsequently used. These programs must test __STDC__ to determine
what kind of C preprocessor that compiler uses: whether they
should concatenate tokens in the ANSI C fashion or in the
traditional fashion.

These programs work properly with GNU C++ if __STDC__ is defined.
They would not work otherwise.

In addition, many header files are written to provide prototypes
in ANSI C but not in traditional C. Many of these header files
can work without change in C++ provided __STDC__ is defined. If
__STDC__ is not defined, they will all fail, and will all need to
be changed to test explicitly for C++ as well.

* Deleting "empty" loops.

GNU CC does not delete "empty" loops because the most likely reason
you would put one in a program is to have a delay. Deleting them
will not make real programs run any faster, so it would be
pointless.

It would be different if optimization of a nonempty loop could
produce an empty one. But this generally can’t happen.

* Making side effects happen in the same order as in some other
compiler.

It is never safe to depend on the order of evaluation of side
effects. For example, a function call like this may very well
behave differently from one compiler to another:

void func (int, int);

int i = 2;
func (i++, i++);

There is no guarantee (in either the C or the C++ standard language
definitions) that the increments will be evaluated in any
particular order. Either increment might happen first. func

gcc.info 178 / 506

might get the arguments 3, 4, or it might get 4, 3, or even 3, 3.

* Using the "canonical" form of the target configuration name as the
directory for installation.

This would be an improvement in some respects, but it would also
cause problems. For one thing, users might expect to use in the -b
option the same name specified at installation; if installation
used the canonical form, that would not work. What’s more, the
canonical name might be too long for certain file systems.

We suggest you make a link to the installation directory under the
canonical name, if you want to use that name in the -b option.

1.113 gcc.info/Warnings and Errors

Warning Messages and Error Messages
===================================

The GNU compiler can produce two kinds of diagnostics: errors and
warnings. Each kind has a different purpose:

Errors report problems that make it impossible to compile your
program. GNU CC reports errors with the source file name and line
number where the problem is apparent.

Warnings report other unusual conditions in your code that may
indicate a problem, although compilation can (and does) proceed.
Warning messages also report the source file name and line number,
but include the text warning: to distinguish them from error
messages.

Warnings may indicate danger points where you should check to make
sure that your program really does what you intend; or the use of
obsolete features; or the use of nonstandard features of GNU C or C++.
Many warnings are issued only if you ask for them, with one of the -W
options (for instance, -Wall requests a variety of useful warnings).

GNU CC always tries to compile your program if possible; it never
gratuituously rejects a program whose meaning is clear merely because
(for instance) it fails to conform to a standard. In some cases,
however, the C and C++ standards specify that certain extensions are
forbidden, and a diagnostic must be issued by a conforming compiler.
The -pedantic option tells GNU CC to issue warnings in such cases;
-pedantic-errors says to make them errors instead. This does not mean
that all non-ANSI constructs get warnings or errors.

See
Options to Request or Suppress Warnings
, for more detail on

these and related command-line options.

gcc.info 179 / 506

1.114 gcc.info/Bugs

Reporting Bugs

Your bug reports play an essential role in making GNU CC reliable.

When you encounter a problem, the first thing to do is to see if it
is already known. See

Trouble
. If it isn’t known, then you should

report the problem.

Reporting a bug may help you by bringing a solution to your problem,
or it may not. (If it does not, look in the service directory; see

Service
.) In any case, the principal function of a bug report is to

help the entire community by making the next version of GNU CC work
better. Bug reports are your contribution to the maintenance of GNU CC.

Since the maintainers are very overloaded, we cannot respond to every
bug report. However, if the bug has not been fixed, we are likely to
send you a patch and ask you to tell us whether it works.

In order for a bug report to serve its purpose, you must include the
information that makes for fixing the bug.

Criteria
Have you really found a bug?

Where
Where to send your bug report.

Reporting
How to report a bug effectively.

Patches
How to send a patch for GNU CC.

Known
Known problems.

Help
Where to ask for help.

1.115 gcc.info/Bug Criteria

Have You Found a Bug?
=====================

gcc.info 180 / 506

If you are not sure whether you have found a bug, here are some
guidelines:

* If the compiler gets a fatal signal, for any input whatever, that
is a compiler bug. Reliable compilers never crash.

* If the compiler produces invalid assembly code, for any input
whatever (except an asm statement), that is a compiler bug, unless
the compiler reports errors (not just warnings) which would
ordinarily prevent the assembler from being run.

* If the compiler produces valid assembly code that does not
correctly execute the input source code, that is a compiler bug.

However, you must double-check to make sure, because you may have
run into an incompatibility between GNU C and traditional C (see

Incompatibilities
). These incompatibilities might be considered

bugs, but they are inescapable consequences of valuable features.

Or you may have a program whose behavior is undefined, which
happened by chance to give the desired results with another C or
C++ compiler.

For example, in many nonoptimizing compilers, you can write x; at
the end of a function instead of return x;, with the same results.
But the value of the function is undefined if return is omitted;
it is not a bug when GNU CC produces different results.

Problems often result from expressions with two increment
operators, as in f (*p++, *p++). Your previous compiler might have
interpreted that expression the way you intended; GNU CC might
interpret it another way. Neither compiler is wrong. The bug is
in your code.

After you have localized the error to a single source line, it
should be easy to check for these things. If your program is
correct and well defined, you have found a compiler bug.

* If the compiler produces an error message for valid input, that is
a compiler bug.

* If the compiler does not produce an error message for invalid
input, that is a compiler bug. However, you should note that your
idea of "invalid input" might be my idea of "an extension" or
"support for traditional practice".

* If you are an experienced user of C or C++ compilers, your
suggestions for improvement of GNU CC or GNU C++ are welcome in
any case.

gcc.info 181 / 506

1.116 gcc.info/Bug Lists

Where to Report Bugs
====================

Send bug reports for GNU C to one of these addresses:

bug-gcc@prep.ai.mit.edu
{ucbvax|mit-eddie|uunet}!prep.ai.mit.edu!bug-gcc

Send bug reports for GNU C++ to one of these addresses:

bug-g++@prep.ai.mit.edu
{ucbvax|mit-eddie|uunet}!prep.ai.mit.edu!bug-g++

If your bug involves the C++ class library libg++, send mail to
bug-lib-g++@prep.ai.mit.edu. If you’re not sure, you can send the bug
report to both lists.

Do not send bug reports to the mailing list help-gcc, or to the
newsgroup gnu.gcc.help. Most users of GNU CC do not want to receive bug
reports. Those that do, have asked to be on bug-gcc and/or bug-g++.

The mailing lists bug-gcc and bug-g++ both have newsgroups which
serve as repeaters: gnu.gcc.bug and gnu.g++.bug. Each mailing list and
its newsgroup carry exactly the same messages.

Often people think of posting bug reports to the newsgroup instead of
mailing them. This appears to work, but it has one problem which can be
crucial: a newsgroup posting does not contain a mail path back to the
sender. Thus, if maintainers need more information, they may be unable
to reach you. For this reason, you should always send bug reports by
mail to the proper mailing list.

As a last resort, send bug reports on paper to:

GNU Compiler Bugs
Free Software Foundation
675 Mass Ave
Cambridge, MA 02139

1.117 gcc.info/Bug Reporting

How to Report Bugs
==================

The fundamental principle of reporting bugs usefully is this: report
all the facts. If you are not sure whether to state a fact or leave it
out, state it!

Often people omit facts because they think they know what causes the
problem and they conclude that some details don’t matter. Thus, you
might assume that the name of the variable you use in an example does

gcc.info 182 / 506

not matter. Well, probably it doesn’t, but one cannot be sure.
Perhaps the bug is a stray memory reference which happens to fetch from
the location where that name is stored in memory; perhaps, if the name
were different, the contents of that location would fool the compiler
into doing the right thing despite the bug. Play it safe and give a
specific, complete example. That is the easiest thing for you to do,
and the most helpful.

Keep in mind that the purpose of a bug report is to enable someone to
fix the bug if it is not known. It isn’t very important what happens if
the bug is already known. Therefore, always write your bug reports on
the assumption that the bug is not known.

Sometimes people give a few sketchy facts and ask, "Does this ring a
bell?" This cannot help us fix a bug, so it is basically useless. We
respond by asking for enough details to enable us to investigate. You
might as well expedite matters by sending them to begin with.

Try to make your bug report self-contained. If we have to ask you
for more information, it is best if you include all the previous
information in your response, as well as the information that was
missing.

To enable someone to investigate the bug, you should include all
these things:

* The version of GNU CC. You can get this by running it with the -v
option.

Without this, we won’t know whether there is any point in looking
for the bug in the current version of GNU CC.

* A complete input file that will reproduce the bug. If the bug is
in the C preprocessor, send a source file and any header files
that it requires. If the bug is in the compiler proper (cc1), run
your source file through the C preprocessor by doing gcc -E
sourcefile > outfile, then include the contents of outfile in the
bug report. (When you do this, use the same -I, -D or -U options
that you used in actual compilation.)

A single statement is not enough of an example. In order to
compile it, it must be embedded in a complete file of compiler
input; and the bug might depend on the details of how this is done.

Without a real example one can compile, all anyone can do about
your bug report is wish you luck. It would be futile to try to
guess how to provoke the bug. For example, bugs in register
allocation and reloading frequently depend on every little detail
of the function they happen in.

Even if the input file that fails comes from a GNU program, you
should still send the complete test case. Don’t ask the GNU CC
maintainers to do the extra work of obtaining the program in
question--they are all overworked as it is. Also, the problem may
depend on what is in the header files on your system; it is
unreliable for the GNU CC maintainers to try the problem with the
header files available to them. By sending CPP output, you can

gcc.info 183 / 506

eliminate this source of uncertainty and save us a certain
percentage of wild goose chases.

* The command arguments you gave GNU CC or GNU C++ to compile that
example and observe the bug. For example, did you use -O? To
guarantee you won’t omit something important, list all the options.

If we were to try to guess the arguments, we would probably guess
wrong and then we would not encounter the bug.

* The type of machine you are using, and the operating system name
and version number.

* The operands you gave to the configure command when you installed
the compiler.

* A complete list of any modifications you have made to the compiler
source. (We don’t promise to investigate the bug unless it
happens in an unmodified compiler. But if you’ve made
modifications and don’t tell us, then you are sending us on a wild
goose chase.)

Be precise about these changes. A description in English is not
enough--send a context diff for them.

Adding files of your own (such as a machine description for a
machine we don’t support) is a modification of the compiler source.

* Details of any other deviations from the standard procedure for
installing GNU CC.

* A description of what behavior you observe that you believe is
incorrect. For example, "The compiler gets a fatal signal," or,
"The assembler instruction at line 208 in the output is incorrect."

Of course, if the bug is that the compiler gets a fatal signal,
then one can’t miss it. But if the bug is incorrect output, the
maintainer might not notice unless it is glaringly wrong. None of
us has time to study all the assembler code from a 50-line C
program just on the chance that one instruction might be wrong.
We need you to do this part!

Even if the problem you experience is a fatal signal, you should
still say so explicitly. Suppose something strange is going on,
such as, your copy of the compiler is out of synch, or you have
encountered a bug in the C library on your system. (This has
happened!) Your copy might crash and the copy here would not. If
you said to expect a crash, then when the compiler here fails to
crash, we would know that the bug was not happening. If you don’t
say to expect a crash, then we would not know whether the bug was
happening. We would not be able to draw any conclusion from our
observations.

If the problem is a diagnostic when compiling GNU CC with some
other compiler, say whether it is a warning or an error.

Often the observed symptom is incorrect output when your program

gcc.info 184 / 506

is run. Sad to say, this is not enough information unless the
program is short and simple. None of us has time to study a large
program to figure out how it would work if compiled correctly,
much less which line of it was compiled wrong. So you will have
to do that. Tell us which source line it is, and what incorrect
result happens when that line is executed. A person who
understands the program can find this as easily as finding a bug
in the program itself.

* If you send examples of assembler code output from GNU CC or GNU
C++, please use -g when you make them. The debugging information
includes source line numbers which are essential for correlating
the output with the input.

* If you wish to mention something in the GNU CC source, refer to it
by context, not by line number.

The line numbers in the development sources don’t match those in
your sources. Your line numbers would convey no useful
information to the maintainers.

* Additional information from a debugger might enable someone to
find a problem on a machine which he does not have available.
However, you need to think when you collect this information if
you want it to have any chance of being useful.

For example, many people send just a backtrace, but that is never
useful by itself. A simple backtrace with arguments conveys little
about GNU CC because the compiler is largely data-driven; the same
functions are called over and over for different RTL insns, doing
different things depending on the details of the insn.

Most of the arguments listed in the backtrace are useless because
they are pointers to RTL list structure. The numeric values of the
pointers, which the debugger prints in the backtrace, have no
significance whatever; all that matters is the contents of the
objects they point to (and most of the contents are other such
pointers).

In addition, most compiler passes consist of one or more loops that
scan the RTL insn sequence. The most vital piece of information
about such a loop--which insn it has reached--is usually in a
local variable, not in an argument.

What you need to provide in addition to a backtrace are the values
of the local variables for several stack frames up. When a local
variable or an argument is an RTX, first print its value and then
use the GDB command pr to print the RTL expression that it points
to. (If GDB doesn’t run on your machine, use your debugger to call
the function debug_rtx with the RTX as an argument.) In general,
whenever a variable is a pointer, its value is no use without the
data it points to.

Here are some things that are not necessary:

* A description of the envelope of the bug.

gcc.info 185 / 506

Often people who encounter a bug spend a lot of time investigating
which changes to the input file will make the bug go away and which
changes will not affect it.

This is often time consuming and not very useful, because the way
we will find the bug is by running a single example under the
debugger with breakpoints, not by pure deduction from a series of
examples. You might as well save your time for something else.

Of course, if you can find a simpler example to report instead of
the original one, that is a convenience. Errors in the output
will be easier to spot, running under the debugger will take less
time, etc. Most GNU CC bugs involve just one function, so the
most straightforward way to simplify an example is to delete all
the function definitions except the one where the bug occurs.
Those earlier in the file may be replaced by external declarations
if the crucial function depends on them. (Exception: inline
functions may affect compilation of functions defined later in the
file.)

However, simplification is not vital; if you don’t want to do this,
report the bug anyway and send the entire test case you used.

* In particular, some people insert conditionals #ifdef BUG around a
statement which, if removed, makes the bug not happen. These are
just clutter; we won’t pay any attention to them anyway. Besides,
you should send us cpp output, and that can’t have conditionals.

* A patch for the bug.

A patch for the bug is useful if it is a good one. But don’t omit
the necessary information, such as the test case, on the
assumption that a patch is all we need. We might see problems
with your patch and decide to fix the problem another way, or we
might not understand it at all.

Sometimes with a program as complicated as GNU CC it is very hard
to construct an example that will make the program follow a
certain path through the code. If you don’t send the example, we
won’t be able to construct one, so we won’t be able to verify that
the bug is fixed.

And if we can’t understand what bug you are trying to fix, or why
your patch should be an improvement, we won’t install it. A test
case will help us to understand.

See
Sending Patches
, for guidelines on how to make it easy for us

to understand and install your patches.

* A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even I can’t guess right about
such things without first using the debugger to find the facts.

* A core dump file.

gcc.info 186 / 506

We have no way of examining a core dump for your type of machine
unless we have an identical system--and if we do have one, we
should be able to reproduce the crash ourselves.

1.118 gcc.info/Sending Patches

Sending Patches for GNU CC
==========================

If you would like to write bug fixes or improvements for the GNU C
compiler, that is very helpful. When you send your changes, please
follow these guidelines to avoid causing extra work for us in studying
the patches.

If you don’t follow these guidelines, your information might still be
useful, but using it will take extra work. Maintaining GNU C is a lot
of work in the best of circumstances, and we can’t keep up unless you do
your best to help.

* Send an explanation with your changes of what problem they fix or
what improvement they bring about. For a bug fix, just include a
copy of the bug report, and explain why the change fixes the bug.

(Referring to a bug report is not as good as including it, because
then we will have to look it up, and we have probably already
deleted it if we’ve already fixed the bug.)

* Always include a proper bug report for the problem you think you
have fixed. We need to convince ourselves that the change is
right before installing it. Even if it is right, we might have
trouble judging it if we don’t have a way to reproduce the problem.

* Include all the comments that are appropriate to help people
reading the source in the future understand why this change was
needed.

* Don’t mix together changes made for different reasons. Send them
individually.

If you make two changes for separate reasons, then we might not
want to install them both. We might want to install just one. If
you send them all jumbled together in a single set of diffs, we
have to do extra work to disentangle them--to figure out which
parts of the change serve which purpose. If we don’t have time
for this, we might have to ignore your changes entirely.

If you send each change as soon as you have written it, with its
own explanation, then the two changes never get tangled up, and we
can consider each one properly without any extra work to
disentangle them.

Ideally, each change you send should be impossible to subdivide

gcc.info 187 / 506

into parts that we might want to consider separately, because each
of its parts gets its motivation from the other parts.

* Send each change as soon as that change is finished. Sometimes
people think they are helping us by accumulating many changes to
send them all together. As explained above, this is absolutely
the worst thing you could do.

Since you should send each change separately, you might as well
send it right away. That gives us the option of installing it
immediately if it is important.

* Use diff -c to make your diffs. Diffs without context are hard
for us to install reliably. More than that, they make it hard for
us to study the diffs to decide whether we want to install them.
Unidiff format is better than contextless diffs, but not as easy
to read as -c format.

If you have GNU diff, use diff -cp, which shows the name of the
function that each change occurs in.

* Write the change log entries for your changes. We get lots of
changes, and we don’t have time to do all the change log writing
ourselves.

Read the ChangeLog file to see what sorts of information to put
in, and to learn the style that we use. The purpose of the change
log is to show people where to find what was changed. So you need
to be specific about what functions you changed; in large
functions, it’s often helpful to indicate where within the
function the change was.

On the other hand, once you have shown people where to find the
change, you need not explain its purpose. Thus, if you add a new
function, all you need to say about it is that it is new. If you
feel that the purpose needs explaining, it probably does--but the
explanation will be much more useful if you put it in comments in
the code.

If you would like your name to appear in the header line for who
made the change, send us the header line.

* When you write the fix, keep in mind that we can’t install a
change that would break other systems.

People often suggest fixing a problem by changing
machine-independent files such as toplev.c to do something special
that a particular system needs. Sometimes it is totally obvious
that such changes would break GNU CC for almost all users. We
can’t possibly make a change like that. At best it might tell us
how to write another patch that would solve the problem acceptably.

Sometimes people send fixes that might be an improvement in
general--but it is hard to be sure of this. It’s hard to install
such changes because we have to study them very carefully. Of
course, a good explanation of the reasoning by which you concluded
the change was correct can help convince us.

gcc.info 188 / 506

The safest changes are changes to the configuration files for a
particular machine. These are safe because they can’t create new
bugs on other machines.

Please help us keep up with the workload by designing the patch in
a form that is good to install.

1.119 gcc.info/Service

How To Get Help with GNU CC

If you need help installing, using or changing GNU CC, there are two
ways to find it:

* Send a message to a suitable network mailing list. First try
bug-gcc@prep.ai.mit.edu, and if that brings no response, try
help-gcc@prep.ai.mit.edu.

* Look in the service directory for someone who might help you for a
fee. The service directory is found in the file named SERVICE in
the GNU CC distribution.

1.120 gcc.info/VMS

Using GNU CC on VMS

Include Files and VMS
Where the preprocessor looks for the include files.

Global Declarations
How to do globaldef, globalref and globalvalue with

GNU CC.

VMS Misc
Misc information.

1.121 gcc.info/Include Files and VMS

Include Files and VMS
=====================

gcc.info 189 / 506

Due to the differences between the filesystems of Unix and VMS, GNU
CC attempts to translate file names in #include into names that VMS
will understand. The basic strategy is to prepend a prefix to the
specification of the include file, convert the whole filename to a VMS
filename, and then try to open the file. GNU CC tries various prefixes
one by one until one of them succeeds:

1. The first prefix is the GNU_CC_INCLUDE: logical name: this is
where GNU C header files are traditionally stored. If you wish to
store header files in non-standard locations, then you can assign
the logical GNU_CC_INCLUDE to be a search list, where each element
of the list is suitable for use with a rooted logical.

2. The next prefix tried is SYS$SYSROOT:[SYSLIB.]. This is where
VAX-C header files are traditionally stored.

3. If the include file specification by itself is a valid VMS
filename, the preprocessor then uses this name with no prefix in
an attempt to open the include file.

4. If the file specification is not a valid VMS filename (i.e. does
not contain a device or a directory specifier, and contains a /
character), the preprocessor tries to convert it from Unix syntax
to VMS syntax.

Conversion works like this: the first directory name becomes a
device, and the rest of the directories are converted into
VMS-format directory names. For example, the name X11/foobar.h is
translated to X11:[000000]foobar.h or X11:foobar.h, whichever one
can be opened. This strategy allows you to assign a logical name
to point to the actual location of the header files.

5. If none of these strategies succeeds, the #include fails.

Include directives of the form:

#include foobar

are a common source of incompatibility between VAX-C and GNU CC. VAX-C
treats this much like a standard #include <foobar.h> directive. That
is incompatible with the ANSI C behavior implemented by GNU CC: to
expand the name foobar as a macro. Macro expansion should eventually
yield one of the two standard formats for #include:

#include "file"
#include <file>

If you have this problem, the best solution is to modify the source
to convert the #include directives to one of the two standard forms.
That will work with either compiler. If you want a quick and dirty fix,
define the file names as macros with the proper expansion, like this:

#define stdio <stdio.h>

This will work, as long as the name doesn’t conflict with anything else
in the program.

gcc.info 190 / 506

Another source of incompatibility is that VAX-C assumes that:

#include "foobar"

is actually asking for the file foobar.h. GNU CC does not make this
assumption, and instead takes what you ask for literally; it tries to
read the file foobar. The best way to avoid this problem is to always
specify the desired file extension in your include directives.

GNU CC for VMS is distributed with a set of include files that is
sufficient to compile most general purpose programs. Even though the
GNU CC distribution does not contain header files to define constants
and structures for some VMS system-specific functions, there is no
reason why you cannot use GNU CC with any of these functions. You first
may have to generate or create header files, either by using the public
domain utility UNSDL (which can be found on a DECUS tape), or by
extracting the relevant modules from one of the system macro libraries,
and using an editor to construct a C header file.

A #include file name cannot contain a DECNET node name. The
preprocessor reports an I/O error if you attempt to use a node name,
whether explicitly, or implicitly via a logical name.

1.122 gcc.info/Global Declarations

Global Declarations and VMS
===========================

GNU CC does not provide the globalref, globaldef and globalvalue
keywords of VAX-C. You can get the same effect with an obscure feature
of GAS, the GNU assembler. (This requires GAS version 1.39 or later.)
The following macros allow you to use this feature in a fairly natural
way:

#ifdef __GNUC__
#define GLOBALREF(TYPE,NAME) \

TYPE NAME \
asm ("_$$PsectAttributes_GLOBALSYMBOL$$" #NAME)

#define GLOBALDEF(TYPE,NAME,VALUE) \
TYPE NAME \
asm ("_$$PsectAttributes_GLOBALSYMBOL$$" #NAME) \

= VALUE
#define GLOBALVALUEREF(TYPE,NAME) \

const TYPE NAME[1] \
asm ("_$$PsectAttributes_GLOBALVALUE$$" #NAME)

#define GLOBALVALUEDEF(TYPE,NAME,VALUE) \
const TYPE NAME[1] \
asm ("_$$PsectAttributes_GLOBALVALUE$$" #NAME) \

= {VALUE}
#else
#define GLOBALREF(TYPE,NAME) \

globalref TYPE NAME
#define GLOBALDEF(TYPE,NAME,VALUE) \

globaldef TYPE NAME = VALUE

gcc.info 191 / 506

#define GLOBALVALUEDEF(TYPE,NAME,VALUE) \
globalvalue TYPE NAME = VALUE

#define GLOBALVALUEREF(TYPE,NAME) \
globalvalue TYPE NAME

#endif

(The _$$PsectAttributes_GLOBALSYMBOL prefix at the start of the name is
removed by the assembler, after it has modified the attributes of the
symbol). These macros are provided in the VMS binaries distribution in
a header file GNU_HACKS.H. An example of the usage is:

GLOBALREF (int, ijk);
GLOBALDEF (int, jkl, 0);

The macros GLOBALREF and GLOBALDEF cannot be used straightforwardly
for arrays, since there is no way to insert the array dimension into
the declaration at the right place. However, you can declare an array
with these macros if you first define a typedef for the array type,
like this:

typedef int intvector[10];
GLOBALREF (intvector, foo);

Array and structure initializers will also break the macros; you can
define the initializer to be a macro of its own, or you can expand the
GLOBALDEF macro by hand. You may find a case where you wish to use the
GLOBALDEF macro with a large array, but you are not interested in
explicitly initializing each element of the array. In such cases you
can use an initializer like: {0,}, which will initialize the entire
array to 0.

A shortcoming of this implementation is that a variable declared with
GLOBALVALUEREF or GLOBALVALUEDEF is always an array. For example, the
declaration:

GLOBALVALUEREF(int, ijk);

declares the variable ijk as an array of type int [1]. This is done
because a globalvalue is actually a constant; its "value" is what the
linker would normally consider an address. That is not how an integer
value works in C, but it is how an array works. So treating the symbol
as an array name gives consistent results--with the exception that the
value seems to have the wrong type. Don’t try to access an element of
the array. It doesn’t have any elements. The array "address" may not
be the address of actual storage.

The fact that the symbol is an array may lead to warnings where the
variable is used. Insert type casts to avoid the warnings. Here is an
example; it takes advantage of the ANSI C feature allowing macros that
expand to use the same name as the macro itself.

GLOBALVALUEREF (int, ss$_normal);
GLOBALVALUEDEF (int, xyzzy,123);
#ifdef __GNUC__
#define ss$_normal ((int) ss$_normal)
#define xyzzy ((int) xyzzy)
#endif

gcc.info 192 / 506

Don’t use globaldef or globalref with a variable whose type is an
enumeration type; this is not implemented. Instead, make the variable
an integer, and use a globalvaluedef for each of the enumeration
values. An example of this would be:

#ifdef __GNUC__
GLOBALDEF (int, color, 0);
GLOBALVALUEDEF (int, RED, 0);
GLOBALVALUEDEF (int, BLUE, 1);
GLOBALVALUEDEF (int, GREEN, 3);
#else
enum globaldef color {RED, BLUE, GREEN = 3};
#endif

1.123 gcc.info/VMS Misc

Other VMS Issues
================

GNU CC automatically arranges for main to return 1 by default if you
fail to specify an explicit return value. This will be interpreted by
VMS as a status code indicating a normal successful completion.
Version 1 of GNU CC did not provide this default.

GNU CC on VMS works only with the GNU assembler, GAS. You need
version 1.37 or later of GAS in order to produce value debugging
information for the VMS debugger. Use the ordinary VMS linker with the
object files produced by GAS.

Under previous versions of GNU CC, the generated code would
occasionally give strange results when linked to the sharable VAXCRTL
library. Now this should work.

A caveat for use of const global variables: the const modifier must
be specified in every external declaration of the variable in all of
the source files that use that variable. Otherwise the linker will
issue warnings about conflicting attributes for the variable. Your
program will still work despite the warnings, but the variable will be
placed in writable storage.

Although the VMS linker does distinguish between upper and lower case
letters in global symbols, most VMS compilers convert all such symbols
into upper case and most run-time library routines also have upper case
names. To be able to reliably call such routines, GNU CC (by means of
the assembler GAS) converts global symbols into upper case like other
VMS compilers. However, since the usual practice in C is to distinguish
case, GNU CC (via GAS) tries to preserve usual C behavior by augmenting
each name that is not all lower case. This means truncating the name
to at most 23 characters and then adding more characters at the end
which encode the case pattern of those 23. Names which contain at
least one dollar sign are an exception; they are converted directly into
upper case without augmentation.

gcc.info 193 / 506

Name augmentation yields bad results for programs that use
precompiled libraries (such as Xlib) which were generated by another
compiler. You can use the compiler option /NOCASE_HACK to inhibit
augmentation; it makes external C functions and variables
case-independent as is usual on VMS. Alternatively, you could write
all references to the functions and variables in such libraries using
lower case; this will work on VMS, but is not portable to other
systems. The compiler option /NAMES also provides control over global
name handling.

Function and variable names are handled somewhat differently with GNU
C++. The GNU C++ compiler performs name mangling on function names,
which means that it adds information to the function name to describe
the data types of the arguments that the function takes. One result of
this is that the name of a function can become very long. Since the
VMS linker only recognizes the first 31 characters in a name, special
action is taken to ensure that each function and variable has a unique
name that can be represented in 31 characters.

If the name (plus a name augmentation, if required) is less than 32
characters in length, then no special action is performed. If the name
is longer than 31 characters, the assembler (GAS) will generate a hash
string based upon the function name, truncate the function name to 23
characters, and append the hash string to the truncated name. If the
/VERBOSE compiler option is used, the assembler will print both the
full and truncated names of each symbol that is truncated.

The /NOCASE_HACK compiler option should not be used when you are
compiling programs that use libg++. libg++ has several instances of
objects (i.e. Filebuf and filebuf) which become indistinguishable in a
case-insensitive environment. This leads to cases where you need to
inhibit augmentation selectively (if you were using libg++ and Xlib in
the same program, for example). There is no special feature for doing
this, but you can get the result by defining a macro for each mixed
case symbol for which you wish to inhibit augmentation. The macro
should expand into the lower case equivalent of itself. For example:

#define StuDlyCapS studlycaps

These macro definitions can be placed in a header file to minimize
the number of changes to your source code.

1.124 gcc.info/Portability

GNU CC and Portability

The main goal of GNU CC was to make a good, fast compiler for
machines in the class that the GNU system aims to run on: 32-bit
machines that address 8-bit bytes and have several general registers.
Elegance, theoretical power and simplicity are only secondary.

GNU CC gets most of the information about the target machine from a
machine description which gives an algebraic formula for each of the

gcc.info 194 / 506

machine’s instructions. This is a very clean way to describe the
target. But when the compiler needs information that is difficult to
express in this fashion, I have not hesitated to define an ad-hoc
parameter to the machine description. The purpose of portability is to
reduce the total work needed on the compiler; it was not of interest
for its own sake.

GNU CC does not contain machine dependent code, but it does contain
code that depends on machine parameters such as endianness (whether the
most significant byte has the highest or lowest address of the bytes in
a word) and the availability of autoincrement addressing. In the
RTL-generation pass, it is often necessary to have multiple strategies
for generating code for a particular kind of syntax tree, strategies
that are usable for different combinations of parameters. Often I have
not tried to address all possible cases, but only the common ones or
only the ones that I have encountered. As a result, a new target may
require additional strategies. You will know if this happens because
the compiler will call abort. Fortunately, the new strategies can be
added in a machine-independent fashion, and will affect only the target
machines that need them.

1.125 gcc.info/Interface

Interfacing to GNU CC Output

GNU CC is normally configured to use the same function calling
convention normally in use on the target system. This is done with the
machine-description macros described (see

Target Macros
).

However, returning of structure and union values is done differently
on some target machines. As a result, functions compiled with PCC
returning such types cannot be called from code compiled with GNU CC,
and vice versa. This does not cause trouble often because few Unix
library routines return structures or unions.

GNU CC code returns structures and unions that are 1, 2, 4 or 8 bytes
long in the same registers used for int or double return values. (GNU
CC typically allocates variables of such types in registers also.)
Structures and unions of other sizes are returned by storing them into
an address passed by the caller (usually in a register). The
machine-description macros STRUCT_VALUE and STRUCT_INCOMING_VALUE tell
GNU CC where to pass this address.

By contrast, PCC on most target machines returns structures and
unions of any size by copying the data into an area of static storage,
and then returning the address of that storage as if it were a pointer
value. The caller must copy the data from that memory area to the
place where the value is wanted. This is slower than the method used
by GNU CC, and fails to be reentrant.

On some target machines, such as RISC machines and the 80386, the

gcc.info 195 / 506

standard system convention is to pass to the subroutine the address of
where to return the value. On these machines, GNU CC has been
configured to be compatible with the standard compiler, when this method
is used. It may not be compatible for structures of 1, 2, 4 or 8 bytes.

GNU CC uses the system’s standard convention for passing arguments.
On some machines, the first few arguments are passed in registers; in
others, all are passed on the stack. It would be possible to use
registers for argument passing on any machine, and this would probably
result in a significant speedup. But the result would be complete
incompatibility with code that follows the standard convention. So this
change is practical only if you are switching to GNU CC as the sole C
compiler for the system. We may implement register argument passing on
certain machines once we have a complete GNU system so that we can
compile the libraries with GNU CC.

On some machines (particularly the Sparc), certain types of arguments
are passed "by invisible reference". This means that the value is
stored in memory, and the address of the memory location is passed to
the subroutine.

If you use longjmp, beware of automatic variables. ANSI C says that
automatic variables that are not declared volatile have undefined
values after a longjmp. And this is all GNU CC promises to do, because
it is very difficult to restore register variables correctly, and one
of GNU CC’s features is that it can put variables in registers without
your asking it to.

If you want a variable to be unaltered by longjmp, and you don’t
want to write volatile because old C compilers don’t accept it, just
take the address of the variable. If a variable’s address is ever
taken, even if just to compute it and ignore it, then the variable
cannot go in a register:

{
int careful;
&careful;
...

}

Code compiled with GNU CC may call certain library routines. Most of
them handle arithmetic for which there are no instructions. This
includes multiply and divide on some machines, and floating point
operations on any machine for which floating point support is disabled
with -msoft-float. Some standard parts of the C library, such as bcopy
or memcpy, are also called automatically. The usual function call
interface is used for calling the library routines.

These library routines should be defined in the library libgcc.a,
which GNU CC automatically searches whenever it links a program. On
machines that have multiply and divide instructions, if hardware
floating point is in use, normally libgcc.a is not needed, but it is
searched just in case.

Each arithmetic function is defined in libgcc1.c to use the
corresponding C arithmetic operator. As long as the file is compiled
with another C compiler, which supports all the C arithmetic operators,

gcc.info 196 / 506

this file will work portably. However, libgcc1.c does not work if
compiled with GNU CC, because each arithmetic function would compile
into a call to itself!

1.126 gcc.info/Passes

Passes and Files of the Compiler

The overall control structure of the compiler is in toplev.c. This
file is responsible for initialization, decoding arguments, opening and
closing files, and sequencing the passes.

The parsing pass is invoked only once, to parse the entire input.
The RTL intermediate code for a function is generated as the function
is parsed, a statement at a time. Each statement is read in as a
syntax tree and then converted to RTL; then the storage for the tree
for the statement is reclaimed. Storage for types (and the expressions
for their sizes), declarations, and a representation of the binding
contours and how they nest, remain until the function is finished being
compiled; these are all needed to output the debugging information.

Each time the parsing pass reads a complete function definition or
top-level declaration, it calls either the function
rest_of_compilation, or the function rest_of_decl_compilation in
toplev.c, which are responsible for all further processing necessary,
ending with output of the assembler language. All other compiler
passes run, in sequence, within rest_of_compilation. When that
function returns from compiling a function definition, the storage used
for that function definition’s compilation is entirely freed, unless it
is an inline function (see

An Inline Function is As Fast As a Macro
).

Here is a list of all the passes of the compiler and their source
files. Also included is a description of where debugging dumps can be
requested with -d options.

* Parsing. This pass reads the entire text of a function definition,
constructing partial syntax trees. This and RTL generation are no
longer truly separate passes (formerly they were), but it is
easier to think of them as separate.

The tree representation does not entirely follow C syntax, because
it is intended to support other languages as well.

Language-specific data type analysis is also done in this pass,
and every tree node that represents an expression has a data type
attached. Variables are represented as declaration nodes.

Constant folding and some arithmetic simplifications are also done
during this pass.

gcc.info 197 / 506

The language-independent source files for parsing are
stor-layout.c, fold-const.c, and tree.c. There are also
header files tree.h and tree.def which define the format of the
tree representation.

The source files to parse C are c-parse.in, c-decl.c, c-typeck.c,
c-aux-info.c, c-convert.c, and c-lang.c along with header files
c-lex.h, and c-tree.h.

The source files for parsing C++ are cp-parse.y, cp-class.c,
cp-cvt.c, cp-decl.c, cp-decl2.c, cp-dem.c, cp-except.c,
cp-expr.c, cp-init.c, cp-lex.c, cp-method.c, cp-ptree.c,
cp-search.c, cp-tree.c, cp-type2.c, and cp-typeck.c, along with
header files cp-tree.def, cp-tree.h, and cp-decl.h.

The special source files for parsing Objective C are objc-parse.y,
objc-actions.c, objc-tree.def, and objc-actions.h. Certain
C-specific files are used for this as well.

The file c-common.c is also used for all of the above languages.

* RTL generation. This is the conversion of syntax tree into RTL
code. It is actually done statement-by-statement during parsing,
but for most purposes it can be thought of as a separate pass.

This is where the bulk of target-parameter-dependent code is found,
since often it is necessary for strategies to apply only when
certain standard kinds of instructions are available. The purpose
of named instruction patterns is to provide this information to
the RTL generation pass.

Optimization is done in this pass for if-conditions that are
comparisons, boolean operations or conditional expressions. Tail
recursion is detected at this time also. Decisions are made about
how best to arrange loops and how to output switch statements.

The source files for RTL generation include stmt.c, calls.c,
expr.c, explow.c, expmed.c, function.c, optabs.c and
emit-rtl.c. Also, the file insn-emit.c, generated from the
machine description by the program genemit, is used in this pass.
The header file expr.h is used for communication within this pass.

The header files insn-flags.h and insn-codes.h, generated from the
machine description by the programs genflags and gencodes, tell
this pass which standard names are available for use and which
patterns correspond to them.

Aside from debugging information output, none of the following
passes refers to the tree structure representation of the function
(only part of which is saved).

The decision of whether the function can and should be expanded
inline in its subsequent callers is made at the end of rtl
generation. The function must meet certain criteria, currently
related to the size of the function and the types and number of
parameters it has. Note that this function may contain loops,
recursive calls to itself (tail-recursive functions can be

gcc.info 198 / 506

inlined!), gotos, in short, all constructs supported by GNU CC.
The file integrate.c contains the code to save a function’s rtl
for later inlining and to inline that rtl when the function is
called. The header file integrate.h is also used for this purpose.

The option -dr causes a debugging dump of the RTL code after this
pass. This dump file’s name is made by appending .rtl to the
input file name.

* Jump optimization. This pass simplifies jumps to the following
instruction, jumps across jumps, and jumps to jumps. It deletes
unreferenced labels and unreachable code, except that unreachable
code that contains a loop is not recognized as unreachable in this
pass. (Such loops are deleted later in the basic block analysis.)
It also converts some code originally written with jumps into
sequences of instructions that directly set values from the
results of comparisons, if the machine has such instructions.

Jump optimization is performed two or three times. The first time
is immediately following RTL generation. The second time is after
CSE, but only if CSE says repeated jump optimization is needed.
The last time is right before the final pass. That time,
cross-jumping and deletion of no-op move instructions are done
together with the optimizations described above.

The source file of this pass is jump.c.

The option -dj causes a debugging dump of the RTL code after this
pass is run for the first time. This dump file’s name is made by
appending .jump to the input file name.

* Register scan. This pass finds the first and last use of each
register, as a guide for common subexpression elimination. Its
source is in regclass.c.

* Jump threading. This pass detects a condition jump that branches
to an identical or inverse test. Such jumps can be threaded
through the second conditional test. The source code for this
pass is in jump.c. This optimization is only performed if
-fthread-jumps is enabled.

* Common subexpression elimination. This pass also does constant
propagation. Its source file is cse.c. If constant propagation
causes conditional jumps to become unconditional or to become
no-ops, jump optimization is run again when CSE is finished.

The option -ds causes a debugging dump of the RTL code after this
pass. This dump file’s name is made by appending .cse to the
input file name.

* Loop optimization. This pass moves constant expressions out of
loops, and optionally does strength-reduction and loop unrolling
as well. Its source files are loop.c and unroll.c, plus the header
loop.h used for communication between them. Loop unrolling uses
some functions in integrate.c and the header integrate.h.

The option -dL causes a debugging dump of the RTL code after this

gcc.info 199 / 506

pass. This dump file’s name is made by appending .loop to the
input file name.

* If -frerun-cse-after-loop was enabled, a second common
subexpression elimination pass is performed after the loop
optimization pass. Jump threading is also done again at this time
if it was specified.

The option -dt causes a debugging dump of the RTL code after this
pass. This dump file’s name is made by appending .cse2 to the
input file name.

* Stupid register allocation is performed at this point in a
nonoptimizing compilation. It does a little data flow analysis as
well. When stupid register allocation is in use, the next pass
executed is the reloading pass; the others in between are skipped.
The source file is stupid.c.

* Data flow analysis (flow.c). This pass divides the program into
basic blocks (and in the process deletes unreachable loops); then
it computes which pseudo-registers are live at each point in the
program, and makes the first instruction that uses a value point at
the instruction that computed the value.

This pass also deletes computations whose results are never used,
and combines memory references with add or subtract instructions
to make autoincrement or autodecrement addressing.

The option -df causes a debugging dump of the RTL code after this
pass. This dump file’s name is made by appending .flow to the
input file name. If stupid register allocation is in use, this
dump file reflects the full results of such allocation.

* Instruction combination (combine.c). This pass attempts to
combine groups of two or three instructions that are related by
data flow into single instructions. It combines the RTL
expressions for the instructions by substitution, simplifies the
result using algebra, and then attempts to match the result
against the machine description.

The option -dc causes a debugging dump of the RTL code after this
pass. This dump file’s name is made by appending .combine to the
input file name.

* Instruction scheduling (sched.c). This pass looks for
instructions whose output will not be available by the time that
it is used in subsequent instructions. (Memory loads and floating
point instructions often have this behavior on RISC machines). It
re-orders instructions within a basic block to try to separate the
definition and use of items that otherwise would cause pipeline
stalls.

Instruction scheduling is performed twice. The first time is
immediately after instruction combination and the second is
immediately after reload.

The option -dS causes a debugging dump of the RTL code after this

gcc.info 200 / 506

pass is run for the first time. The dump file’s name is made by
appending .sched to the input file name.

* Register class preferencing. The RTL code is scanned to find out
which register class is best for each pseudo register. The source
file is regclass.c.

* Local register allocation (local-alloc.c). This pass allocates
hard registers to pseudo registers that are used only within one
basic block. Because the basic block is linear, it can use fast
and powerful techniques to do a very good job.

The option -dl causes a debugging dump of the RTL code after this
pass. This dump file’s name is made by appending .lreg to the
input file name.

* Global register allocation (global.c). This pass allocates hard
registers for the remaining pseudo registers (those whose life
spans are not contained in one basic block).

* Reloading. This pass renumbers pseudo registers with the hardware
registers numbers they were allocated. Pseudo registers that did
not get hard registers are replaced with stack slots. Then it
finds instructions that are invalid because a value has failed to
end up in a register, or has ended up in a register of the wrong
kind. It fixes up these instructions by reloading the
problematical values temporarily into registers. Additional
instructions are generated to do the copying.

The reload pass also optionally eliminates the frame pointer and
inserts instructions to save and restore call-clobbered registers
around calls.

Source files are reload.c and reload1.c, plus the header reload.h
used for communication between them.

The option -dg causes a debugging dump of the RTL code after this
pass. This dump file’s name is made by appending .greg to the
input file name.

* Instruction scheduling is repeated here to try to avoid pipeline
stalls due to memory loads generated for spilled pseudo registers.

The option -dR causes a debugging dump of the RTL code after this
pass. This dump file’s name is made by appending .sched2 to the
input file name.

* Jump optimization is repeated, this time including cross-jumping
and deletion of no-op move instructions.

The option -dJ causes a debugging dump of the RTL code after this
pass. This dump file’s name is made by appending .jump2 to the
input file name.

* Delayed branch scheduling. This optional pass attempts to find
instructions that can go into the delay slots of other
instructions, usually jumps and calls. The source file name is

gcc.info 201 / 506

reorg.c.

The option -dd causes a debugging dump of the RTL code after this
pass. This dump file’s name is made by appending .dbr to the
input file name.

* Conversion from usage of some hard registers to usage of a register
stack may be done at this point. Currently, this is supported only
for the floating-point registers of the Intel 80387 coprocessor.
The source file name is reg-stack.c.

The options -dk causes a debugging dump of the RTL code after this
pass. This dump file’s name is made by appending .stack to the
input file name.

* Final. This pass outputs the assembler code for the function. It
is also responsible for identifying spurious test and compare
instructions. Machine-specific peephole optimizations are
performed at the same time. The function entry and exit sequences
are generated directly as assembler code in this pass; they never
exist as RTL.

The source files are final.c plus insn-output.c; the latter is
generated automatically from the machine description by the tool
genoutput. The header file conditions.h is used for communication
between these files.

* Debugging information output. This is run after final because it
must output the stack slot offsets for pseudo registers that did
not get hard registers. Source files are dbxout.c for DBX symbol
table format, sdbout.c for SDB symbol table format, and dwarfout.c
for DWARF symbol table format.

Some additional files are used by all or many passes:

* Every pass uses machmode.def and machmode.h which define the
machine modes.

* Several passes use real.h, which defines the default
representation of floating point constants and how to operate on
them.

* All the passes that work with RTL use the header files rtl.h and
rtl.def, and subroutines in file rtl.c. The tools gen* also use
these files to read and work with the machine description RTL.

* Several passes refer to the header file insn-config.h which
contains a few parameters (C macro definitions) generated
automatically from the machine description RTL by the tool
genconfig.

* Several passes use the instruction recognizer, which consists of
recog.c and recog.h, plus the files insn-recog.c and
insn-extract.c that are generated automatically from the
machine description by the tools genrecog and genextract.

* Several passes use the header files regs.h which defines the

gcc.info 202 / 506

information recorded about pseudo register usage, and basic-block.h
which defines the information recorded about basic blocks.

* hard-reg-set.h defines the type HARD_REG_SET, a bit-vector
with a bit for each hard register, and some macros to manipulate
it. This type is just int if the machine has few enough hard
registers; otherwise it is an array of int and some of the macros
expand into loops.

* Several passes use instruction attributes. A definition of the
attributes defined for a particular machine is in file
insn-attr.h, which is generated from the machine description by
the program genattr. The file insn-attrtab.c contains subroutines
to obtain the attribute values for insns. It is generated from
the machine description by the program genattrtab.

1.127 gcc.info/RTL

RTL Representation

Most of the work of the compiler is done on an intermediate
representation called register transfer language. In this language,
the instructions to be output are described, pretty much one by one, in
an algebraic form that describes what the instruction does.

RTL is inspired by Lisp lists. It has both an internal form, made
up of structures that point at other structures, and a textual form
that is used in the machine description and in printed debugging dumps.
The textual form uses nested parentheses to indicate the pointers in
the internal form.

RTL Objects
Expressions vs vectors vs strings vs integers.

Accessors
Macros to access expression operands or vector elts.

Flags
Other flags in an RTL expression.

Machine Modes
Describing the size and format of a datum.

Constants
Expressions with constant values.

Regs and Memory
Expressions representing register contents or memory.

Arithmetic

gcc.info 203 / 506

Expressions representing arithmetic on other expressions.

Comparisons
Expressions representing comparison of expressions.

Bit Fields
Expressions representing bitfields in memory or reg.

Conversions
Extending, truncating, floating or fixing.

RTL Declarations
Declaring volatility, constancy, etc.

Side Effects
Expressions for storing in registers, etc.

Incdec
Embedded side-effects for autoincrement addressing.

Assembler
Representing asm with operands.

Insns
Expression types for entire insns.

Calls
RTL representation of function call insns.

Sharing
Some expressions are unique; others *must* be copied.

Reading RTL
Reading textual RTL from a file.

1.128 gcc.info/RTL Objects

RTL Object Types
================

RTL uses five kinds of objects: expressions, integers, wide integers,
strings and vectors. Expressions are the most important ones. An RTL
expression ("RTX", for short) is a C structure, but it is usually
referred to with a pointer; a type that is given the typedef name rtx.

An integer is simply an int; their written form uses decimal digits.
A wide integer is an integral object whose type is HOST_WIDE_INT (see

Config
); their written form uses decimal digits.

A string is a sequence of characters. In core it is represented as a
char * in usual C fashion, and it is written in C syntax as well.

gcc.info 204 / 506

However, strings in RTL may never be null. If you write an empty
string in a machine description, it is represented in core as a null
pointer rather than as a pointer to a null character. In certain
contexts, these null pointers instead of strings are valid. Within RTL
code, strings are most commonly found inside symbol_ref expressions,
but they appear in other contexts in the RTL expressions that make up
machine descriptions.

A vector contains an arbitrary number of pointers to expressions.
The number of elements in the vector is explicitly present in the
vector. The written form of a vector consists of square brackets (
[...]) surrounding the elements, in sequence and with whitespace
separating them. Vectors of length zero are not created; null pointers
are used instead.

Expressions are classified by expression codes (also called RTX
codes). The expression code is a name defined in rtl.def, which is
also (in upper case) a C enumeration constant. The possible expression
codes and their meanings are machine-independent. The code of an RTX
can be extracted with the macro GET_CODE (x) and altered with PUT_CODE
(x, newcode).

The expression code determines how many operands the expression
contains, and what kinds of objects they are. In RTL, unlike Lisp, you
cannot tell by looking at an operand what kind of object it is.
Instead, you must know from its context--from the expression code of
the containing expression. For example, in an expression of code
subreg, the first operand is to be regarded as an expression and
the second operand as an integer. In an expression of code plus, there
are two operands, both of which are to be regarded as expressions. In
a symbol_ref expression, there is one operand, which is to be regarded
as a string.

Expressions are written as parentheses containing the name of the
expression type, its flags and machine mode if any, and then the
operands of the expression (separated by spaces).

Expression code names in the md file are written in lower case, but
when they appear in C code they are written in upper case. In this
manual, they are shown as follows: const_int.

In a few contexts a null pointer is valid where an expression is
normally wanted. The written form of this is (nil).

1.129 gcc.info/Accessors

Access to Operands
==================

For each expression type rtl.def specifies the number of contained
objects and their kinds, with four possibilities: e for expression
(actually a pointer to an expression), i for integer, w for wide
integer, s for string, and E for vector of expressions. The sequence

gcc.info 205 / 506

of letters for an expression code is called its format. Thus, the
format of subreg is ei.

A few other format characters are used occasionally:

u
u is equivalent to e except that it is printed differently in
debugging dumps. It is used for pointers to insns.

n
n is equivalent to i except that it is printed differently in
debugging dumps. It is used for the line number or code number of
a note insn.

S
S indicates a string which is optional. In the RTL objects in
core, S is equivalent to s, but when the object is read, from an
md file, the string value of this operand may be omitted. An
omitted string is taken to be the null string.

V
V indicates a vector which is optional. In the RTL objects in
core, V is equivalent to E, but when the object is read from an md
file, the vector value of this operand may be omitted. An omitted
vector is effectively the same as a vector of no elements.

0
0 means a slot whose contents do not fit any normal category. 0
slots are not printed at all in dumps, and are often used in
special ways by small parts of the compiler.

There are macros to get the number of operands, the format, and the
class of an expression code:

GET_RTX_LENGTH (code)
Number of operands of an RTX of code code.

GET_RTX_FORMAT (code)
The format of an RTX of code code, as a C string.

GET_RTX_CLASS (code)
A single character representing the type of RTX operation that code
code performs.

The following classes are defined:

o
An RTX code that represents an actual object, such as reg or
mem. subreg is not in this class.

<
An RTX code for a comparison. The codes in this class are
NE, EQ, LE, LT, GE, GT, LEU, LTU, GEU, GTU.

1
An RTX code for a unary arithmetic operation, such as neg.

gcc.info 206 / 506

c
An RTX code for a commutative binary operation, other than NE
and EQ (which have class <).

2
An RTX code for a noncommutative binary operation, such as
MINUS.

b
An RTX code for a bitfield operation, either ZERO_EXTRACT or
SIGN_EXTRACT.

3
An RTX code for other three input operations, such as
IF_THEN_ELSE.

i
An RTX code for a machine insn (INSN, JUMP_INSN, and
CALL_INSN).

m
An RTX code for something that matches in insns, such as
MATCH_DUP.

x
All other RTX codes.

Operands of expressions are accessed using the macros XEXP, XINT,
XWINT and XSTR. Each of these macros takes two arguments: an
expression-pointer (RTX) and an operand number (counting from zero).
Thus,

XEXP (x, 2)

accesses operand 2 of expression x, as an expression.

XINT (x, 2)

accesses the same operand as an integer. XSTR, used in the same
fashion, would access it as a string.

Any operand can be accessed as an integer, as an expression or as a
string. You must choose the correct method of access for the kind of
value actually stored in the operand. You would do this based on the
expression code of the containing expression. That is also how you
would know how many operands there are.

For example, if x is a subreg expression, you know that it has two
operands which can be correctly accessed as XEXP (x, 0) and XINT (x,
1). If you did XINT (x, 0), you would get the address of the
expression operand but cast as an integer; that might occasionally be
useful, but it would be cleaner to write (int) XEXP (x, 0). XEXP (x,
1) would also compile without error, and would return the second,
integer operand cast as an expression pointer, which would probably
result in a crash when accessed. Nothing stops you from writing XEXP
(x, 28) either, but this will access memory past the end of
the expression with unpredictable results.

gcc.info 207 / 506

Access to operands which are vectors is more complicated. You can
use the macro XVEC to get the vector-pointer itself, or the macros
XVECEXP and XVECLEN to access the elements and length of a vector.

XVEC (exp, idx)
Access the vector-pointer which is operand number idx in exp.

XVECLEN (exp, idx)
Access the length (number of elements) in the vector which is in
operand number idx in exp. This value is an int.

XVECEXP (exp, idx, eltnum)
Access element number eltnum in the vector which is in operand
number idx in exp. This value is an RTX.

It is up to you to make sure that eltnum is not negative and is
less than XVECLEN (exp, idx).

All the macros defined in this section expand into lvalues and
therefore can be used to assign the operands, lengths and vector
elements as well as to access them.

1.130 gcc.info/Flags

Flags in an RTL Expression
==========================

RTL expressions contain several flags (one-bit bitfields) that are
used in certain types of expression. Most often they are accessed with
the following macros:

MEM_VOLATILE_P (x)
In mem expressions, nonzero for volatile memory references.
Stored in the volatil field and printed as /v.

MEM_IN_STRUCT_P (x)
In mem expressions, nonzero for reference to an entire structure,
union or array, or to a component of one. Zero for references to
a scalar variable or through a pointer to a scalar. Stored in the
in_struct field and printed as /s.

REG_LOOP_TEST_P
In reg expressions, nonzero if this register’s entire life is
contained in the exit test code for some loop. Stored in the
in_struct field and printed as /s.

REG_USERVAR_P (x)
In a reg, nonzero if it corresponds to a variable present in the
user’s source code. Zero for temporaries generated internally by
the compiler. Stored in the volatil field and printed as /v.

REG_FUNCTION_VALUE_P (x)
Nonzero in a reg if it is the place in which this function’s value

gcc.info 208 / 506

is going to be returned. (This happens only in a hard register.)
Stored in the integrated field and printed as /i.

The same hard register may be used also for collecting the values
of functions called by this one, but REG_FUNCTION_VALUE_P is zero
in this kind of use.

SUBREG_PROMOTED_VAR_P
Nonzero in a subreg if it was made when accessing an object that
was promoted to a wider mode in accord with the PROMOTED_MODE
machine description macro (see

Storage Layout
). In this case, the

mode of the subreg is the declared mode of the object and the mode
of SUBREG_REG is the mode of the register that holds the object.
Promoted variables are always either sign- or zero-extended to the
wider mode on every assignment. Stored in the in_struct field and
printed as /s.

SUBREG_PROMOTED_UNSIGNED_P
Nonzero in a subreg that has SUBREG_PROMOTED_VAR_P nonzero if the
object being referenced is kept zero-extended and zero if it is
kept sign-extended. Stored in the unchanging field and printed as
/u.

RTX_UNCHANGING_P (x)
Nonzero in a reg or mem if the value is not changed. (This flag
is not set for memory references via pointers to constants. Such
pointers only guarantee that the object will not be changed
explicitly by the current function. The object might be changed by
other functions or by aliasing.) Stored in the unchanging field
and printed as /u.

RTX_INTEGRATED_P (insn)
Nonzero in an insn if it resulted from an in-line function call.
Stored in the integrated field and printed as /i. This may be
deleted; nothing currently depends on it.

SYMBOL_REF_USED (x)
In a symbol_ref, indicates that x has been used. This is normally
only used to ensure that x is only declared external once. Stored
in the used field.

SYMBOL_REF_FLAG (x)
In a symbol_ref, this is used as a flag for machine-specific
purposes. Stored in the volatil field and printed as /v.

LABEL_OUTSIDE_LOOP_P
In label_ref expressions, nonzero if this is a reference to a
label that is outside the innermost loop containing the reference
to the label. Stored in the in_struct field and printed as /s.

INSN_DELETED_P (insn)
In an insn, nonzero if the insn has been deleted. Stored in the
volatil field and printed as /v.

INSN_ANNULLED_BRANCH_P (insn)

gcc.info 209 / 506

In an insn in the delay slot of a branch insn, indicates that an
annulling branch should be used. See the discussion under
sequence below. Stored in the unchanging field and printed as
/u.

INSN_FROM_TARGET_P (insn)
In an insn in a delay slot of a branch, indicates that the insn is
from the target of the branch. If the branch insn has
INSN_ANNULLED_BRANCH_P set, this insn should only be executed if
the branch is taken. For annulled branches with this bit clear,
the insn should be executed only if the branch is not taken.
Stored in the in_struct field and printed as /s.

CONSTANT_POOL_ADDRESS_P (x)
Nonzero in a symbol_ref if it refers to part of the current
function’s "constants pool". These are addresses close to the
beginning of the function, and GNU CC assumes they can be addressed
directly (perhaps with the help of base registers). Stored in the
unchanging field and printed as /u.

CONST_CALL_P (x)
In a call_insn, indicates that the insn represents a call to a
const function. Stored in the unchanging field and printed as /u.

LABEL_PRESERVE_P (x)
In a code_label, indicates that the label can never be deleted.
Labels referenced by a non-local goto will have this bit set.
Stored in the in_struct field and printed as /s.

SCHED_GROUP_P (insn)
During instruction scheduling, in an insn, indicates that the
previous insn must be scheduled together with this insn. This is
used to ensure that certain groups of instructions will not be
split up by the instruction scheduling pass, for example, use
insns before a call_insn may not be separated from the call_insn.
Stored in the in_struct field and printed as /s.

These are the fields which the above macros refer to:

used
Normally, this flag is used only momentarily, at the end of RTL
generation for a function, to count the number of times an
expression appears in insns. Expressions that appear more than
once are copied, according to the rules for shared structure (see

Sharing
).

In a symbol_ref, it indicates that an external declaration for the
symbol has already been written.

In a reg, it is used by the leaf register renumbering code to
ensure that each register is only renumbered once.

volatil
This flag is used in mem, symbol_ref and reg expressions and in
insns. In RTL dump files, it is printed as /v.

gcc.info 210 / 506

In a mem expression, it is 1 if the memory reference is volatile.
Volatile memory references may not be deleted, reordered or
combined.

In a symbol_ref expression, it is used for machine-specific
purposes.

In a reg expression, it is 1 if the value is a user-level variable.
0 indicates an internal compiler temporary.

In an insn, 1 means the insn has been deleted.

in_struct
In mem expressions, it is 1 if the memory datum referred to is all
or part of a structure or array; 0 if it is (or might be) a scalar
variable. A reference through a C pointer has 0 because the
pointer might point to a scalar variable. This information allows
the compiler to determine something about possible cases of
aliasing.

In an insn in the delay slot of a branch, 1 means that this insn
is from the target of the branch.

During instruction scheduling, in an insn, 1 means that this insn
must be scheduled as part of a group together with the previous
insn.

In reg expressions, it is 1 if the register has its entire life
contained within the test expression of some loop.

In subreg expressions, 1 means that the subreg is accessing an
object that has had its mode promoted from a wider mode.

In label_ref expressions, 1 means that the referenced label is
outside the innermost loop containing the insn in which the
label_ref was found.

In code_label expressions, it is 1 if the label may never be
deleted. This is used for labels which are the target of
non-local gotos.

In an RTL dump, this flag is represented as /s.

unchanging
In reg and mem expressions, 1 means that the value of the
expression never changes.

In subreg expressions, it is 1 if the subreg references an
unsigned object whose mode has been promoted to a wider mode.

In an insn, 1 means that this is an annulling branch.

In a symbol_ref expression, 1 means that this symbol addresses
something in the per-function constants pool.

In a call_insn, 1 means that this instruction is a call to a const

gcc.info 211 / 506

function.

In an RTL dump, this flag is represented as /u.

integrated
In some kinds of expressions, including insns, this flag means the
rtl was produced by procedure integration.

In a reg expression, this flag indicates the register containing
the value to be returned by the current function. On machines
that pass parameters in registers, the same register number may be
used for parameters as well, but this flag is not set on such uses.

1.131 gcc.info/Machine Modes

Machine Modes
=============

A machine mode describes a size of data object and the
representation used for it. In the C code, machine modes are
represented by an enumeration type, enum machine_mode, defined in
machmode.def. Each RTL expression has room for a machine mode and so
do certain kinds of tree expressions (declarations and types, to be
precise).

In debugging dumps and machine descriptions, the machine mode of an
RTL expression is written after the expression code with a colon to
separate them. The letters mode which appear at the end of each
machine mode name are omitted. For example, (reg:SI 38) is a reg
expression with machine mode SImode. If the mode is VOIDmode, it is
not written at all.

Here is a table of machine modes. The term "byte" below refers to an
object of BITS_PER_UNIT bits (see

Storage Layout
).

QImode
"Quarter-Integer" mode represents a single byte treated as an
integer.

HImode
"Half-Integer" mode represents a two-byte integer.

PSImode
"Partial Single Integer" mode represents an integer which occupies
four bytes but which doesn’t really use all four. On some
machines, this is the right mode to use for pointers.

SImode
"Single Integer" mode represents a four-byte integer.

PDImode

gcc.info 212 / 506

"Partial Double Integer" mode represents an integer which occupies
eight bytes but which doesn’t really use all eight. On some
machines, this is the right mode to use for certain pointers.

DImode
"Double Integer" mode represents an eight-byte integer.

TImode
"Tetra Integer" (?) mode represents a sixteen-byte integer.

SFmode
"Single Floating" mode represents a single-precision (four byte)
floating point number.

DFmode
"Double Floating" mode represents a double-precision (eight byte)
floating point number.

XFmode
"Extended Floating" mode represents a triple-precision (twelve
byte) floating point number. This mode is used for IEEE extended
floating point.

TFmode
"Tetra Floating" mode represents a quadruple-precision (sixteen
byte) floating point number.

CCmode
"Condition Code" mode represents the value of a condition code,
which is a machine-specific set of bits used to represent the
result of a comparison operation. Other machine-specific modes
may also be used for the condition code. These modes are not used
on machines that use cc0 (see see

Condition Code
).

BLKmode
"Block" mode represents values that are aggregates to which none of
the other modes apply. In RTL, only memory references can have
this mode, and only if they appear in string-move or vector
instructions. On machines which have no such instructions,
BLKmode will not appear in RTL.

VOIDmode
Void mode means the absence of a mode or an unspecified mode. For
example, RTL expressions of code const_int have mode VOIDmode
because they can be taken to have whatever mode the context
requires. In debugging dumps of RTL, VOIDmode is expressed by the
absence of any mode.

SCmode, DCmode, XCmode, TCmode
These modes stand for a complex number represented as a pair of
floating point values. The floating point values are in SFmode,
DFmode, XFmode, and TFmode, respectively.

CQImode, CHImode, CSImode, CDImode, CTImode, COImode
These modes stand for a complex number represented as a pair of

gcc.info 213 / 506

integer values. The integer values are in QImode, HImode, SImode,
DImode, TImode, and OImode, respectively.

The machine description defines Pmode as a C macro which expands
into the machine mode used for addresses. Normally this is the mode
whose size is BITS_PER_WORD, SImode on 32-bit machines.

The only modes which a machine description must support are QImode,
and the modes corresponding to BITS_PER_WORD, FLOAT_TYPE_SIZE and
DOUBLE_TYPE_SIZE. The compiler will attempt to use DImode for 8-byte
structures and unions, but this can be prevented by overriding the
definition of MAX_FIXED_MODE_SIZE. Alternatively, you can have the
compiler use TImode for 16-byte structures and unions. Likewise, you
can arrange for the C type short int to avoid using HImode.

Very few explicit references to machine modes remain in the compiler
and these few references will soon be removed. Instead, the machine modes
are divided into mode classes. These are represented by the enumeration
type enum mode_class defined in machmode.h. The possible mode classes
are:

MODE_INT
Integer modes. By default these are QImode, HImode, SImode,
DImode, and TImode.

MODE_PARTIAL_INT
The "partial integer" modes, PSImode and PDImode.

MODE_FLOAT
floating point modes. By default these are SFmode, DFmode, XFmode
and TFmode.

MODE_COMPLEX_INT
Complex integer modes. (These are not currently implemented).

MODE_COMPLEX_FLOAT
Complex floating point modes. By default these are SCmode,
DCmode, XCmode, and TCmode.

MODE_FUNCTION
Algol or Pascal function variables including a static chain.
(These are not currently implemented).

MODE_CC
Modes representing condition code values. These are CCmode plus
any modes listed in the EXTRA_CC_MODES macro. See

Jump Patterns
,

also see
Condition Code
.

MODE_RANDOM
This is a catchall mode class for modes which don’t fit into the
above classes. Currently VOIDmode and BLKmode are in MODE_RANDOM.

Here are some C macros that relate to machine modes:

gcc.info 214 / 506

GET_MODE (x)
Returns the machine mode of the RTX x.

PUT_MODE (x, newmode)
Alters the machine mode of the RTX x to be newmode.

NUM_MACHINE_MODES
Stands for the number of machine modes available on the target
machine. This is one greater than the largest numeric value of any
machine mode.

GET_MODE_NAME (m)
Returns the name of mode m as a string.

GET_MODE_CLASS (m)
Returns the mode class of mode m.

GET_MODE_WIDER_MODE (m)
Returns the next wider natural mode. For example, the expression
GET_MODE_WIDER_MODE (QImode) returns HImode.

GET_MODE_SIZE (m)
Returns the size in bytes of a datum of mode m.

GET_MODE_BITSIZE (m)
Returns the size in bits of a datum of mode m.

GET_MODE_MASK (m)
Returns a bitmask containing 1 for all bits in a word that fit
within mode m. This macro can only be used for modes whose
bitsize is less than or equal to HOST_BITS_PER_INT.

GET_MODE_ALIGNMENT (m))
Return the required alignment, in bits, for an object of mode m.

GET_MODE_UNIT_SIZE (m)
Returns the size in bytes of the subunits of a datum of mode m.
This is the same as GET_MODE_SIZE except in the case of complex
modes. For them, the unit size is the size of the real or
imaginary part.

GET_MODE_NUNITS (m)
Returns the number of units contained in a mode, i.e.,
GET_MODE_SIZE divided by GET_MODE_UNIT_SIZE.

GET_CLASS_NARROWEST_MODE (c)
Returns the narrowest mode in mode class c.

The global variables byte_mode and word_mode contain modes whose
classes are MODE_INT and whose bitsizes are either BITS_PER_UNIT or
BITS_PER_WORD, respectively. On 32-bit machines, these are QImode and
SImode, respectively.

gcc.info 215 / 506

1.132 gcc.info/Constants

Constant Expression Types
=========================

The simplest RTL expressions are those that represent constant
values.

(const_int i)
This type of expression represents the integer value i. i is
customarily accessed with the macro INTVAL as in INTVAL (exp),
which is equivalent to XWINT (exp, 0).

There is only one expression object for the integer value zero; it
is the value of the variable const0_rtx. Likewise, the only
expression for integer value one is found in const1_rtx, the only
expression for integer value two is found in const2_rtx, and the
only expression for integer value negative one is found in
constm1_rtx. Any attempt to create an expression of code
const_int and value zero, one, two or negative one will return
const0_rtx, const1_rtx, const2_rtx or constm1_rtx as appropriate.

Similarly, there is only one object for the integer whose value is
STORE_FLAG_VALUE. It is found in const_true_rtx. If
STORE_FLAG_VALUE is one, const_true_rtx and const1_rtx will point
to the same object. If STORE_FLAG_VALUE is -1, const_true_rtx and
constm1_rtx will point to the same object.

(const_double:m addr i0 i1 ...)
Represents either a floating-point constant of mode m or an
integer constant too large to fit into HOST_BITS_PER_WIDE_INT bits
but small enough to fit within twice that number of bits (GNU CC
does not provide a mechanism to represent even larger constants).
In the latter case, m will be VOIDmode.

addr is used to contain the mem expression that corresponds to the
location in memory that at which the constant can be found. If it
has not been allocated a memory location, but is on the chain of
all const_double expressions in this compilation (maintained using
an undisplayed field), addr contains const0_rtx. If it is not on
the chain, addr contains cc0_rtx. addr is customarily accessed
with the macro CONST_DOUBLE_MEM and the chain field via
CONST_DOUBLE_CHAIN.

If m is VOIDmode, the bits of the value are stored in i0 and i1.
i0 is customarily accessed with the macro CONST_DOUBLE_LOW and i1
with CONST_DOUBLE_HIGH.

If the constant is floating point (regardless of its precision),
then the number of integers used to store the value depends on the
size of REAL_VALUE_TYPE (see

Cross-compilation
). The integers

represent a floating point number, but not precisely in the target
machine’s or host machine’s floating point format. To convert
them to the precise bit pattern used by the target machine, use

gcc.info 216 / 506

the macro REAL_VALUE_TO_TARGET_DOUBLE and friends (see

Data Output
).

The macro CONST0_RTX (mode) refers to an expression with value 0
in mode mode. If mode mode is of mode class MODE_INT, it returns
const0_rtx. Otherwise, it returns a CONST_DOUBLE expression in
mode mode. Similarly, the macro CONST1_RTX (mode) refers to an
expression with value 1 in mode mode and similarly for CONST2_RTX.

(const_string str)
Represents a constant string with value str. Currently this is
used only for insn attributes (see

Insn Attributes
) since constant

strings in C are placed in memory.

(symbol_ref:mode symbol)
Represents the value of an assembler label for data. symbol is a
string that describes the name of the assembler label. If it
starts with a *, the label is the rest of symbol not including the

*. Otherwise, the label is symbol, usually prefixed with _.

The symbol_ref contains a mode, which is usually Pmode. Usually
that is the only mode for which a symbol is directly valid.

(label_ref label)
Represents the value of an assembler label for code. It contains
one operand, an expression, which must be a code_label that appears
in the instruction sequence to identify the place where the label
should go.

The reason for using a distinct expression type for code label
references is so that jump optimization can distinguish them.

(const:m exp)
Represents a constant that is the result of an assembly-time
arithmetic computation. The operand, exp, is an expression that
contains only constants (const_int, symbol_ref and label_ref
expressions) combined with plus and minus. However, not all
combinations are valid, since the assembler cannot do arbitrary
arithmetic on relocatable symbols.

m should be Pmode.

(high:m exp)
Represents the high-order bits of exp, usually a symbol_ref. The
number of bits is machine-dependent and is normally the number of
bits specified in an instruction that initializes the high order
bits of a register. It is used with lo_sum to represent the
typical two-instruction sequence used in RISC machines to
reference a global memory location.

m should be Pmode.

gcc.info 217 / 506

1.133 gcc.info/Regs and Memory

Registers and Memory
====================

Here are the RTL expression types for describing access to machine
registers and to main memory.

(reg:m n)
For small values of the integer n (those that are less than
FIRST_PSEUDO_REGISTER), this stands for a reference to machine
register number n: a hard register. For larger values of n, it
stands for a temporary value or pseudo register. The compiler’s
strategy is to generate code assuming an unlimited number of such
pseudo registers, and later convert them into hard registers or
into memory references.

m is the machine mode of the reference. It is necessary because
machines can generally refer to each register in more than one
mode. For example, a register may contain a full word but there
may be instructions to refer to it as a half word or as a single
byte, as well as instructions to refer to it as a floating point
number of various precisions.

Even for a register that the machine can access in only one mode,
the mode must always be specified.

The symbol FIRST_PSEUDO_REGISTER is defined by the machine
description, since the number of hard registers on the machine is
an invariant characteristic of the machine. Note, however, that
not all of the machine registers must be general registers. All
the machine registers that can be used for storage of data are
given hard register numbers, even those that can be used only in
certain instructions or can hold only certain types of data.

A hard register may be accessed in various modes throughout one
function, but each pseudo register is given a natural mode and is
accessed only in that mode. When it is necessary to describe an
access to a pseudo register using a nonnatural mode, a subreg
expression is used.

A reg expression with a machine mode that specifies more than one
word of data may actually stand for several consecutive registers.
If in addition the register number specifies a hardware register,
then it actually represents several consecutive hardware registers
starting with the specified one.

Each pseudo register number used in a function’s RTL code is
represented by a unique reg expression.

Some pseudo register numbers, those within the range of
FIRST_VIRTUAL_REGISTER to LAST_VIRTUAL_REGISTER only appear during
the RTL generation phase and are eliminated before the

gcc.info 218 / 506

optimization phases. These represent locations in the stack frame
that cannot be determined until RTL generation for the function
has been completed. The following virtual register numbers are
defined:

VIRTUAL_INCOMING_ARGS_REGNUM
This points to the first word of the incoming arguments
passed on the stack. Normally these arguments are placed
there by the caller, but the callee may have pushed some
arguments that were previously passed in registers.

When RTL generation is complete, this virtual register is
replaced by the sum of the register given by
ARG_POINTER_REGNUM and the value of FIRST_PARM_OFFSET.

VIRTUAL_STACK_VARS_REGNUM
If FRAME_GROWS_DOWNWARD is defined, this points to immediately
above the first variable on the stack. Otherwise, it points
to the first variable on the stack.

VIRTUAL_STACK_VARS_REGNUM is replaced with the sum of the
register given by FRAME_POINTER_REGNUM and the value
STARTING_FRAME_OFFSET.

VIRTUAL_STACK_DYNAMIC_REGNUM
This points to the location of dynamically allocated memory
on the stack immediately after the stack pointer has been
adjusted by the amount of memory desired.

This virtual register is replaced by the sum of the register
given by STACK_POINTER_REGNUM and the value
STACK_DYNAMIC_OFFSET.

VIRTUAL_OUTGOING_ARGS_REGNUM
This points to the location in the stack at which outgoing
arguments should be written when the stack is pre-pushed
(arguments pushed using push insns should always use
STACK_POINTER_REGNUM).

This virtual register is replaced by the sum of the register
given by STACK_POINTER_REGNUM and the value
STACK_POINTER_OFFSET.

(subreg:m reg wordnum)
subreg expressions are used to refer to a register in a machine
mode other than its natural one, or to refer to one register of a
multi-word reg that actually refers to several registers.

Each pseudo-register has a natural mode. If it is necessary to
operate on it in a different mode--for example, to perform a
fullword move instruction on a pseudo-register that contains a
single byte--the pseudo-register must be enclosed in a subreg. In
such a case, wordnum is zero.

Usually m is at least as narrow as the mode of reg, in which case
it is restricting consideration to only the bits of reg that are
in m.

gcc.info 219 / 506

Sometimes m is wider than the mode of reg. These subreg
expressions are often called paradoxical. They are used in cases
where we want to refer to an object in a wider mode but do not
care what value the additional bits have. The reload pass ensures
that paradoxical references are only made to hard registers.

The other use of subreg is to extract the individual registers of
a multi-register value. Machine modes such as DImode and TImode
can indicate values longer than a word, values which usually
require two or more consecutive registers. To access one of the
registers, use a subreg with mode SImode and a wordnum that says
which register.

Storing in a non-paradoxical subreg has undefined results for bits
belonging to the same word as the subreg. This laxity makes it
easier to generate efficient code for such instructions. To
represent an instruction that preserves all the bits outside of
those in the subreg, use strict_low_part around the subreg.

The compilation parameter WORDS_BIG_ENDIAN, if set to 1, says that
word number zero is the most significant part; otherwise, it is
the least significant part.

Between the combiner pass and the reload pass, it is possible to
have a paradoxical subreg which contains a mem instead of a reg as
its first operand. After the reload pass, it is also possible to
have a non-paradoxical subreg which contains a mem; this usually
occurs when the mem is a stack slot which replaced a pseudo
register.

Note that it is not valid to access a DFmode value in SFmode using
a subreg. On some machines the most significant part of a DFmode
value does not have the same format as a single-precision floating
value.

It is also not valid to access a single word of a multi-word value
in a hard register when less registers can hold the value than
would be expected from its size. For example, some 32-bit
machines have floating-point registers that can hold an entire
DFmode value. If register 10 were such a register (subreg:SI
(reg:DF 10) 1) would be invalid because there is no way to convert
that reference to a single machine register. The reload pass
prevents subreg expressions such as these from being formed.

The first operand of a subreg expression is customarily accessed
with the SUBREG_REG macro and the second operand is customarily
accessed with the SUBREG_WORD macro.

(scratch:m)
This represents a scratch register that will be required for the
execution of a single instruction and not used subsequently. It is
converted into a reg by either the local register allocator or the
reload pass.

scratch is usually present inside a clobber operation (see

gcc.info 220 / 506

Side Effects
).

(cc0)
This refers to the machine’s condition code register. It has no
operands and may not have a machine mode. There are two ways to
use it:

* To stand for a complete set of condition code flags. This is
best on most machines, where each comparison sets the entire
series of flags.

With this technique, (cc0) may be validly used in only two
contexts: as the destination of an assignment (in test and
compare instructions) and in comparison operators comparing
against zero (const_int with value zero; that is to say,
const0_rtx).

* To stand for a single flag that is the result of a single
condition. This is useful on machines that have only a
single flag bit, and in which comparison instructions must
specify the condition to test.

With this technique, (cc0) may be validly used in only two
contexts: as the destination of an assignment (in test and
compare instructions) where the source is a comparison
operator, and as the first operand of if_then_else (in a
conditional branch).

There is only one expression object of code cc0; it is the value
of the variable cc0_rtx. Any attempt to create an expression of
code cc0 will return cc0_rtx.

Instructions can set the condition code implicitly. On many
machines, nearly all instructions set the condition code based on
the value that they compute or store. It is not necessary to
record these actions explicitly in the RTL because the machine
description includes a prescription for recognizing the
instructions that do so (by means of the macro NOTICE_UPDATE_CC).
See

Condition Code
. Only instructions whose sole purpose is to

set the condition code, and instructions that use the condition
code, need mention (cc0).

On some machines, the condition code register is given a register
number and a reg is used instead of (cc0). This is usually the
preferable approach if only a small subset of instructions modify
the condition code. Other machines store condition codes in
general registers; in such cases a pseudo register should be used.

Some machines, such as the Sparc and RS/6000, have two sets of
arithmetic instructions, one that sets and one that does not set
the condition code. This is best handled by normally generating
the instruction that does not set the condition code, and making a
pattern that both performs the arithmetic and sets the condition
code register (which would not be (cc0) in this case). For

gcc.info 221 / 506

examples, search for addcc and andcc in sparc.md.

(pc)
This represents the machine’s program counter. It has no operands
and may not have a machine mode. (pc) may be validly used only in
certain specific contexts in jump instructions.

There is only one expression object of code pc; it is the value of
the variable pc_rtx. Any attempt to create an expression of code
pc will return pc_rtx.

All instructions that do not jump alter the program counter
implicitly by incrementing it, but there is no need to mention
this in the RTL.

(mem:m addr)
This RTX represents a reference to main memory at an address
represented by the expression addr. m specifies how large a unit
of memory is accessed.

1.134 gcc.info/Arithmetic

RTL Expressions for Arithmetic
==============================

Unless otherwise specified, all the operands of arithmetic
expressions must be valid for mode m. An operand is valid for mode m
if it has mode m, or if it is a const_int or const_double and m is a
mode of class MODE_INT.

For commutative binary operations, constants should be placed in the
second operand.

(plus:m x y)
Represents the sum of the values represented by x and y carried
out in machine mode m.

(lo_sum:m x y)
Like plus, except that it represents that sum of x and the
low-order bits of y. The number of low order bits is
machine-dependent but is normally the number of bits in a Pmode
item minus the number of bits set by the high code (see

Constants
).

m should be Pmode.

(minus:m x y)
Like plus but represents subtraction.

(compare:m x y)
Represents the result of subtracting y from x for purposes of
comparison. The result is computed without overflow, as if with

gcc.info 222 / 506

infinite precision.

Of course, machines can’t really subtract with infinite precision.
However, they can pretend to do so when only the sign of the
result will be used, which is the case when the result is stored
in the condition code. And that is the only way this kind of
expression may validly be used: as a value to be stored in the
condition codes.

The mode m is not related to the modes of x and y, but instead is
the mode of the condition code value. If (cc0) is used, it is
VOIDmode. Otherwise it is some mode in class MODE_CC, often
CCmode. See

Condition Code
.

Normally, x and y must have the same mode. Otherwise, compare is
valid only if the mode of x is in class MODE_INT and y is a
const_int or const_double with mode VOIDmode. The mode of x
determines what mode the comparison is to be done in; thus it must
not be VOIDmode.

If one of the operands is a constant, it should be placed in the
second operand and the comparison code adjusted as appropriate.

A compare specifying two VOIDmode constants is not valid since
there is no way to know in what mode the comparison is to be
performed; the comparison must either be folded during the
compilation or the first operand must be loaded into a register
while its mode is still known.

(neg:m x)
Represents the negation (subtraction from zero) of the value
represented by x, carried out in mode m.

(mult:m x y)
Represents the signed product of the values represented by x and y
carried out in machine mode m.

Some machines support a multiplication that generates a product
wider than the operands. Write the pattern for this as

(mult:m (sign_extend:m x) (sign_extend:m y))

where m is wider than the modes of x and y, which need not be the
same.

Write patterns for unsigned widening multiplication similarly using
zero_extend.

(div:m x y)
Represents the quotient in signed division of x by y, carried out
in machine mode m. If m is a floating point mode, it represents
the exact quotient; otherwise, the integerized quotient.

Some machines have division instructions in which the operands and
quotient widths are not all the same; you should represent such

gcc.info 223 / 506

instructions using truncate and sign_extend as in,

(truncate:m1 (div:m2 x (sign_extend:m2 y)))

(udiv:m x y)
Like div but represents unsigned division.

(mod:m x y)
(umod:m x y)

Like div and udiv but represent the remainder instead of the
quotient.

(smin:m x y)
(smax:m x y)

Represents the smaller (for smin) or larger (for smax) of x and y,
interpreted as signed integers in mode m.

(umin:m x y)
(umax:m x y)

Like smin and smax, but the values are interpreted as unsigned
integers.

(not:m x)
Represents the bitwise complement of the value represented by x,
carried out in mode m, which must be a fixed-point machine mode.

(and:m x y)
Represents the bitwise logical-and of the values represented by x
and y, carried out in machine mode m, which must be a fixed-point
machine mode.

(ior:m x y)
Represents the bitwise inclusive-or of the values represented by x
and y, carried out in machine mode m, which must be a fixed-point
mode.

(xor:m x y)
Represents the bitwise exclusive-or of the values represented by x
and y, carried out in machine mode m, which must be a fixed-point
mode.

(ashift:m x c)
Represents the result of arithmetically shifting x left by c
places. x have mode m, a fixed-point machine mode. c be a
fixed-point mode or be a constant with mode VOIDmode; which mode
is determined by the mode called for in the machine description
entry for the left-shift instruction. For example, on the Vax,
the mode of c is QImode regardless of m.

(lshift:m x c)
Like ashift but for logical left shift. ashift and lshift are
identical operations; we customarily use ashift for both.

(lshiftrt:m x c)
(ashiftrt:m x c)

Like lshift and ashift but for right shift. Unlike the case for
left shift, these two operations are distinct.

gcc.info 224 / 506

(rotate:m x c)
(rotatert:m x c)

Similar but represent left and right rotate. If c is a constant,
use rotate.

(abs:m x)
Represents the absolute value of x, computed in mode m.

(sqrt:m x)
Represents the square root of x, computed in mode m. Most often m
will be a floating point mode.

(ffs:m x)
Represents one plus the index of the least significant 1-bit in x,
represented as an integer of mode m. (The value is zero if x is
zero.) The mode of x need not be m; depending on the target
machine, various mode combinations may be valid.

1.135 gcc.info/Comparisons

Comparison Operations
=====================

Comparison operators test a relation on two operands and are
considered to represent a machine-dependent nonzero value described by,
but not necessarily equal to, STORE_FLAG_VALUE (see

Misc
) if the

relation holds, or zero if it does not. The mode of the comparison
operation is independent of the mode of the data being compared. If
the comparison operation is being tested (e.g., the first operand of an
if_then_else), the mode must be VOIDmode. If the comparison operation
is producing data to be stored in some variable, the mode must be in
class MODE_INT. All comparison operations producing data must use the
same mode, which is machine-specific.

There are two ways that comparison operations may be used. The
comparison operators may be used to compare the condition codes (cc0)
against zero, as in (eq (cc0) (const_int 0)). Such a construct
actually refers to the result of the preceding instruction in which the
condition codes were set. The instructing setting the condition code
must be adjacent to the instruction using the condition code; only note
insns may separate them.

Alternatively, a comparison operation may directly compare two data
objects. The mode of the comparison is determined by the operands; they
must both be valid for a common machine mode. A comparison with both
operands constant would be invalid as the machine mode could not be
deduced from it, but such a comparison should never exist in RTL due to
constant folding.

In the example above, if (cc0) were last set to (compare x y), the

gcc.info 225 / 506

comparison operation is identical to (eq x y). Usually only one style
of comparisons is supported on a particular machine, but the combine
pass will try to merge the operations to produce the eq shown in case
it exists in the context of the particular insn involved.

Inequality comparisons come in two flavors, signed and unsigned.
Thus, there are distinct expression codes gt and gtu for signed and
unsigned greater-than. These can produce different results for the same
pair of integer values: for example, 1 is signed greater-than -1 but not
unsigned greater-than, because -1 when regarded as unsigned is actually
0xffffffff which is greater than 1.

The signed comparisons are also used for floating point values.
Floating point comparisons are distinguished by the machine modes of
the operands.

(eq:m x y)
1 if the values represented by x and y are equal, otherwise 0.

(ne:m x y)
1 if the values represented by x and y are not equal, otherwise 0.

(gt:m x y)
1 if the x is greater than y. If they are fixed-point, the
comparison is done in a signed sense.

(gtu:m x y)
Like gt but does unsigned comparison, on fixed-point numbers only.

(lt:m x y)
(ltu:m x y)

Like gt and gtu but test for "less than".

(ge:m x y)
(geu:m x y)

Like gt and gtu but test for "greater than or equal".

(le:m x y)
(leu:m x y)

Like gt and gtu but test for "less than or equal".

(if_then_else cond then else)
This is not a comparison operation but is listed here because it is
always used in conjunction with a comparison operation. To be
precise, cond is a comparison expression. This expression
represents a choice, according to cond, between the value
represented by then and the one represented by else.

On most machines, if_then_else expressions are valid only to
express conditional jumps.

(cond [test1 value1 test2 value2 ...] default)
Similar to if_then_else, but more general. Each of test1, test2,
... is performed in turn. The result of this expression is the
value corresponding to the first non-zero test, or default if none
of the tests are non-zero expressions.

gcc.info 226 / 506

This is currently not valid for instruction patterns and is
supported only for insn attributes. See

Insn Attributes
.

1.136 gcc.info/Bit Fields

Bit Fields
==========

Special expression codes exist to represent bitfield instructions.
These types of expressions are lvalues in RTL; they may appear on the
left side of an assignment, indicating insertion of a value into the
specified bit field.

(sign_extract:m loc size pos)
This represents a reference to a sign-extended bit field contained
or starting in loc (a memory or register reference). The bit field
is size bits wide and starts at bit pos. The compilation option
BITS_BIG_ENDIAN says which end of the memory unit pos counts from.

If loc is in memory, its mode must be a single-byte integer mode.
If loc is in a register, the mode to use is specified by the
operand of the insv or extv pattern (see

Standard Names
) and is

usually a full-word integer mode.

The mode of pos is machine-specific and is also specified in the
insv or extv pattern.

The mode m is the same as the mode that would be used for loc if
it were a register.

(zero_extract:m loc size pos)
Like sign_extract but refers to an unsigned or zero-extended bit
field. The same sequence of bits are extracted, but they are
filled to an entire word with zeros instead of by sign-extension.

1.137 gcc.info/Conversions

Conversions
===========

All conversions between machine modes must be represented by
explicit conversion operations. For example, an expression which is
the sum of a byte and a full word cannot be written as (plus:SI (reg:QI
34) (reg:SI 80)) because the plus operation requires two operands of

gcc.info 227 / 506

the same machine mode. Therefore, the byte-sized operand is enclosed
in a conversion operation, as in

(plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80))

The conversion operation is not a mere placeholder, because there
may be more than one way of converting from a given starting mode to
the desired final mode. The conversion operation code says how to do
it.

For all conversion operations, x must not be VOIDmode because the
mode in which to do the conversion would not be known. The conversion
must either be done at compile-time or x must be placed into a register.

(sign_extend:m x)
Represents the result of sign-extending the value x to machine
mode m. m must be a fixed-point mode and x a fixed-point value of
a mode narrower than m.

(zero_extend:m x)
Represents the result of zero-extending the value x to machine
mode m. m must be a fixed-point mode and x a fixed-point value of
a mode narrower than m.

(float_extend:m x)
Represents the result of extending the value x to machine mode m.
m must be a floating point mode and x a floating point value of a
mode narrower than m.

(truncate:m x)
Represents the result of truncating the value x to machine mode m.
m must be a fixed-point mode and x a fixed-point value of a mode
wider than m.

(float_truncate:m x)
Represents the result of truncating the value x to machine mode m.
m must be a floating point mode and x a floating point value of a mode
wider than m.

(float:m x)
Represents the result of converting fixed point value x, regarded
as signed, to floating point mode m.

(unsigned_float:m x)
Represents the result of converting fixed point value x, regarded
as unsigned, to floating point mode m.

(fix:m x)
When m is a fixed point mode, represents the result of converting
floating point value x to mode m, regarded as signed. How
rounding is done is not specified, so this operation may be used
validly in compiling C code only for integer-valued operands.

(unsigned_fix:m x)
Represents the result of converting floating point value x to
fixed point mode m, regarded as unsigned. How rounding is done is
not specified.

gcc.info 228 / 506

(fix:m x)
When m is a floating point mode, represents the result of
converting floating point value x (valid for mode m) to an
integer, still represented in floating point mode m, by rounding
towards zero.

1.138 gcc.info/RTL Declarations

Declarations
============

Declaration expression codes do not represent arithmetic operations
but rather state assertions about their operands.

(strict_low_part (subreg:m (reg:n r) 0))
This expression code is used in only one context: as the
destination operand of a set expression. In addition, the operand
of this expression must be a non-paradoxical subreg expression.

The presence of strict_low_part says that the part of the register
which is meaningful in mode n, but is not part of mode m, is not
to be altered. Normally, an assignment to such a subreg is
allowed to have undefined effects on the rest of the register when
m is less than a word.

1.139 gcc.info/Side Effects

Side Effect Expressions
=======================

The expression codes described so far represent values, not actions.
But machine instructions never produce values; they are meaningful only
for their side effects on the state of the machine. Special expression
codes are used to represent side effects.

The body of an instruction is always one of these side effect codes;
the codes described above, which represent values, appear only as the
operands of these.

(set lval x)
Represents the action of storing the value of x into the place
represented by lval. lval must be an expression representing a
place that can be stored in: reg (or subreg or strict_low_part),
mem, pc or cc0.

If lval is a reg, subreg or mem, it has a machine mode; then x
must be valid for that mode.

If lval is a reg whose machine mode is less than the full width of

gcc.info 229 / 506

the register, then it means that the part of the register
specified by the machine mode is given the specified value and the
rest of the register receives an undefined value. Likewise, if
lval is a subreg whose machine mode is narrower than the mode of
the register, the rest of the register can be changed in an
undefined way.

If lval is a strict_low_part of a subreg, then the part of the
register specified by the machine mode of the subreg is given the
value x and the rest of the register is not changed.

If lval is (cc0), it has no machine mode, and x may be either a
compare expression or a value that may have any mode. The latter
case represents a "test" instruction. The expression (set (cc0)
(reg:m n)) is equivalent to (set (cc0) (compare (reg:m n)
(const_int 0))). Use the former expression to save space during
the compilation.

If lval is (pc), we have a jump instruction, and the possibilities
for x are very limited. It may be a label_ref expression
(unconditional jump). It may be an if_then_else (conditional
jump), in which case either the second or the third operand must
be (pc) (for the case which does not jump) and the other of the
two must be a label_ref (for the case which does jump). x may
also be a mem or (plus:SI (pc) y), where y may be a reg or a mem;
these unusual patterns are used to represent jumps through branch
tables.

If lval is neither (cc0) nor (pc), the mode of lval must not be
VOIDmode and the mode of x must be valid for the mode of lval.

lval is customarily accessed with the SET_DEST macro and x with
the SET_SRC macro.

(return)
As the sole expression in a pattern, represents a return from the
current function, on machines where this can be done with one
instruction, such as Vaxes. On machines where a multi-instruction
"epilogue" must be executed in order to return from the function,
returning is done by jumping to a label which precedes the
epilogue, and the return expression code is never used.

Inside an if_then_else expression, represents the value to be
placed in pc to return to the caller.

Note that an insn pattern of (return) is logically equivalent to
(set (pc) (return)), but the latter form is never used.

(call function nargs)
Represents a function call. function is a mem expression whose
address is the address of the function to be called. nargs is an
expression which can be used for two purposes: on some machines it
represents the number of bytes of stack argument; on others, it
represents the number of argument registers.

Each machine has a standard machine mode which function must have.
The machine description defines macro FUNCTION_MODE to expand

gcc.info 230 / 506

into the requisite mode name. The purpose of this mode is to
specify what kind of addressing is allowed, on machines where the
allowed kinds of addressing depend on the machine mode being
addressed.

(clobber x)
Represents the storing or possible storing of an unpredictable,
undescribed value into x, which must be a reg, scratch or mem
expression.

One place this is used is in string instructions that store
standard values into particular hard registers. It may not be
worth the trouble to describe the values that are stored, but it
is essential to inform the compiler that the registers will be
altered, lest it attempt to keep data in them across the string
instruction.

If x is (mem:BLK (const_int 0)), it means that all memory
locations must be presumed clobbered.

Note that the machine description classifies certain hard
registers as "call-clobbered". All function call instructions are
assumed by default to clobber these registers, so there is no need
to use clobber expressions to indicate this fact. Also, each
function call is assumed to have the potential to alter any memory
location, unless the function is declared const.

If the last group of expressions in a parallel are each a clobber
expression whose arguments are reg or match_scratch (see

RTL Template
) expressions, the combiner phase can add the

appropriate clobber expressions to an insn it has constructed when
doing so will cause a pattern to be matched.

This feature can be used, for example, on a machine that whose
multiply and add instructions don’t use an MQ register but which
has an add-accumulate instruction that does clobber the MQ
register. Similarly, a combined instruction might require a
temporary register while the constituent instructions might not.

When a clobber expression for a register appears inside a parallel
with other side effects, the register allocator guarantees that
the register is unoccupied both before and after that insn.
However, the reload phase may allocate a register used for one of
the inputs unless the & constraint is specified for the selected
alternative (see

Modifiers
). You can clobber either a specific

hard register, a pseudo register, or a scratch expression; in the
latter two cases, GNU CC will allocate a hard register that is
available there for use as a temporary.

For instructions that require a temporary register, you should use
scratch instead of a pseudo-register because this will allow the
combiner phase to add the clobber when required. You do this by
coding (clobber (match_scratch ...)). If you do clobber a pseudo

gcc.info 231 / 506

register, use one which appears nowhere else--generate a new one
each time. Otherwise, you may confuse CSE.

There is one other known use for clobbering a pseudo register in a
parallel: when one of the input operands of the insn is also
clobbered by the insn. In this case, using the same pseudo
register in the clobber and elsewhere in the insn produces the
expected results.

(use x)
Represents the use of the value of x. It indicates that the value
in x at this point in the program is needed, even though it may
not be apparent why this is so. Therefore, the compiler will not
attempt to delete previous instructions whose only effect is to
store a value in x. x must be a reg expression.

During the delayed branch scheduling phase, x may be an insn.
This indicates that x previously was located at this place in the
code and its data dependencies need to be taken into account.
These use insns will be deleted before the delayed branch
scheduling phase exits.

(parallel [x0 x1 ...])
Represents several side effects performed in parallel. The square
brackets stand for a vector; the operand of parallel is a vector
of expressions. x0, x1 and so on are individual side effect
expressions--expressions of code set, call, return, clobber or use.

"In parallel" means that first all the values used in the
individual side-effects are computed, and second all the actual
side-effects are performed. For example,

(parallel [(set (reg:SI 1) (mem:SI (reg:SI 1)))
(set (mem:SI (reg:SI 1)) (reg:SI 1))])

says unambiguously that the values of hard register 1 and the
memory location addressed by it are interchanged. In both places
where (reg:SI 1) appears as a memory address it refers to the value
in register 1 before the execution of the insn.

It follows that it is incorrect to use parallel and expect the
result of one set to be available for the next one. For example,
people sometimes attempt to represent a jump-if-zero instruction
this way:

(parallel [(set (cc0) (reg:SI 34))
(set (pc) (if_then_else

(eq (cc0) (const_int 0))
(label_ref ...)
(pc)))])

But this is incorrect, because it says that the jump condition
depends on the condition code value before this instruction, not
on the new value that is set by this instruction.

Peephole optimization, which takes place together with final
assembly code output, can produce insns whose patterns consist of

gcc.info 232 / 506

a parallel whose elements are the operands needed to output the
resulting assembler code--often reg, mem or constant expressions.
This would not be well-formed RTL at any other stage in
compilation, but it is ok then because no further optimization
remains to be done. However, the definition of the macro
NOTICE_UPDATE_CC, if any, must deal with such insns if you define
any peephole optimizations.

(sequence [insns ...])
Represents a sequence of insns. Each of the insns that appears in
the vector is suitable for appearing in the chain of insns, so it
must be an insn, jump_insn, call_insn, code_label, barrier or note.

A sequence RTX is never placed in an actual insn during RTL
generation. It represents the sequence of insns that result from a
define_expand before those insns are passed to emit_insn to insert
them in the chain of insns. When actually inserted, the
individual sub-insns are separated out and the sequence is
forgotten.

After delay-slot scheduling is completed, an insn and all the
insns that reside in its delay slots are grouped together into a
sequence. The insn requiring the delay slot is the first insn in
the vector; subsequent insns are to be placed in the delay slot.

INSN_ANNULLED_BRANCH_P is set on an insn in a delay slot to
indicate that a branch insn should be used that will conditionally
annul the effect of the insns in the delay slots. In such a case,
INSN_FROM_TARGET_P indicates that the insn is from the target of
the branch and should be executed only if the branch is taken;
otherwise the insn should be executed only if the branch is not
taken. See

Delay Slots
.

These expression codes appear in place of a side effect, as the body
of an insn, though strictly speaking they do not always describe side
effects as such:

(asm_input s)
Represents literal assembler code as described by the string s.

(unspec [operands ...] index)
(unspec_volatile [operands ...] index)

Represents a machine-specific operation on operands. index
selects between multiple machine-specific operations.
unspec_volatile is used for volatile operations and operations
that may trap; unspec is used for other operations.

These codes may appear inside a pattern of an insn, inside a
parallel, or inside an expression.

(addr_vec:m [lr0 lr1 ...])
Represents a table of jump addresses. The vector elements lr0,
etc., are label_ref expressions. The mode m specifies how much
space is given to each address; normally m would be Pmode.

gcc.info 233 / 506

(addr_diff_vec:m base [lr0 lr1 ...])
Represents a table of jump addresses expressed as offsets from
base. The vector elements lr0, etc., are label_ref
expressions and so is base. The mode m specifies how much space
is given to each address-difference.

1.140 gcc.info/Incdec

Embedded Side-Effects on Addresses
==================================

Four special side-effect expression codes appear as memory addresses.

(pre_dec:m x)
Represents the side effect of decrementing x by a standard amount
and represents also the value that x has after being decremented.
x must be a reg or mem, but most machines allow only a reg. m
must be the machine mode for pointers on the machine in use. The
amount x is decremented by is the length in bytes of the machine
mode of the containing memory reference of which this expression
serves as the address. Here is an example of its use:

(mem:DF (pre_dec:SI (reg:SI 39)))

This says to decrement pseudo register 39 by the length of a DFmode
value and use the result to address a DFmode value.

(pre_inc:m x)
Similar, but specifies incrementing x instead of decrementing it.

(post_dec:m x)
Represents the same side effect as pre_dec but a different value.
The value represented here is the value x has before being
decremented.

(post_inc:m x)
Similar, but specifies incrementing x instead of decrementing it.

These embedded side effect expressions must be used with care.
Instruction patterns may not use them. Until the flow pass of the
compiler, they may occur only to represent pushes onto the stack. The
flow pass finds cases where registers are incremented or decremented in
one instruction and used as an address shortly before or after; these
cases are then transformed to use pre- or post-increment or -decrement.

If a register used as the operand of these expressions is used in
another address in an insn, the original value of the register is used.
Uses of the register outside of an address are not permitted within the
same insn as a use in an embedded side effect expression because such insns
behave differently on different machines and hence must be treated as
ambiguous and disallowed.

An instruction that can be represented with an embedded side effect

gcc.info 234 / 506

could also be represented using parallel containing an additional set
to describe how the address register is altered. This is not done
because machines that allow these operations at all typically allow
them wherever a memory address is called for. Describing them as
additional parallel stores would require doubling the number of entries
in the machine description.

1.141 gcc.info/Assembler

Assembler Instructions as Expressions
=====================================

The RTX code asm_operands represents a value produced by a
user-specified assembler instruction. It is used to represent an asm
statement with arguments. An asm statement with a single output
operand, like this:

asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (*z));

is represented using a single asm_operands RTX which represents the
value that is stored in outputvar:

(set rtx-for-outputvar
(asm_operands "foo %1,%2,%0" "a" 0

[rtx-for-addition-result rtx-for-*z]
[(asm_input:m1 "g")
(asm_input:m2 "di")]))

Here the operands of the asm_operands RTX are the assembler template
string, the output-operand’s constraint, the index-number of the output
operand among the output operands specified, a vector of input operand
RTX’s, and a vector of input-operand modes and constraints. The mode
m1 is the mode of the sum x+y; m2 is that of *z.

When an asm statement has multiple output values, its insn has
several such set RTX’s inside of a parallel. Each set contains a
asm_operands; all of these share the same assembler template and
vectors, but each contains the constraint for the respective output
operand. They are also distinguished by the output-operand index
number, which is 0, 1, ... for successive output operands.

1.142 gcc.info/Insns

Insns
=====

The RTL representation of the code for a function is a doubly-linked
chain of objects called insns. Insns are expressions with special
codes that are used for no other purpose. Some insns are actual
instructions; others represent dispatch tables for switch statements;

gcc.info 235 / 506

others represent labels to jump to or various sorts of declarative
information.

In addition to its own specific data, each insn must have a unique
id-number that distinguishes it from all other insns in the current
function (after delayed branch scheduling, copies of an insn with the
same id-number may be present in multiple places in a function, but
these copies will always be identical and will only appear inside a
sequence), and chain pointers to the preceding and following insns.
These three fields occupy the same position in every insn, independent
of the expression code of the insn. They could be accessed with XEXP
and XINT, but instead three special macros are always used:

INSN_UID (i)
Accesses the unique id of insn i.

PREV_INSN (i)
Accesses the chain pointer to the insn preceding i. If i is the
first insn, this is a null pointer.

NEXT_INSN (i)
Accesses the chain pointer to the insn following i. If i is the
last insn, this is a null pointer.

The first insn in the chain is obtained by calling get_insns; the
last insn is the result of calling get_last_insn. Within the chain
delimited by these insns, the NEXT_INSN and PREV_INSN pointers must
always correspond: if insn is not the first insn,

NEXT_INSN (PREV_INSN (insn)) == insn

is always true and if insn is not the last insn,

PREV_INSN (NEXT_INSN (insn)) == insn

is always true.

After delay slot scheduling, some of the insns in the chain might be
sequence expressions, which contain a vector of insns. The value of
NEXT_INSN in all but the last of these insns is the next insn in the
vector; the value of NEXT_INSN of the last insn in the vector is the
same as the value of NEXT_INSN for the sequence in which it is
contained. Similar rules apply for PREV_INSN.

This means that the above invariants are not necessarily true for
insns inside sequence expressions. Specifically, if insn is the first
insn in a sequence, NEXT_INSN (PREV_INSN (insn)) is the insn containing
the sequence expression, as is the value of PREV_INSN (NEXT_INSN
(insn)) is insn is the last insn in the sequence
expression. You can use these expressions to find the containing
sequence expression.

Every insn has one of the following six expression codes:

insn
The expression code insn is used for instructions that do not jump
and do not do function calls. sequence expressions are always

gcc.info 236 / 506

contained in insns with code insn even if one of those insns
should jump or do function calls.

Insns with code insn have four additional fields beyond the three
mandatory ones listed above. These four are described in a table
below.

jump_insn
The expression code jump_insn is used for instructions that may
jump (or, more generally, may contain label_ref expressions). If
there is an instruction to return from the current function, it is
recorded as a jump_insn.

jump_insn insns have the same extra fields as insn insns, accessed
in the same way and in addition contains a field JUMP_LABEL which
is defined once jump optimization has completed.

For simple conditional and unconditional jumps, this field
contains the code_label to which this insn will (possibly
conditionally) branch. In a more complex jump, JUMP_LABEL records
one of the labels that the insn refers to; the only way to find
the others is to scan the entire body of the insn.

Return insns count as jumps, but since they do not refer to any
labels, they have zero in the JUMP_LABEL field.

call_insn
The expression code call_insn is used for instructions that may do
function calls. It is important to distinguish these instructions
because they imply that certain registers and memory locations may
be altered unpredictably.

A call_insn insn may be preceded by insns that contain a single
use expression and be followed by insns the contain a single
clobber expression. If so, these use and clobber expressions are
treated as being part of the function call. There must not even
be a note between the call_insn and the use or clobber insns for
this special treatment to take place. This is somewhat of a
kludge and will be removed in a later version of GNU CC.

call_insn insns have the same extra fields as insn insns, accessed
in the same way.

code_label
A code_label insn represents a label that a jump insn can jump to.
It contains two special fields of data in addition to the three
standard ones. CODE_LABEL_NUMBER is used to hold the label
number, a number that identifies this label uniquely among
all the labels in the compilation (not just in the current
function). Ultimately, the label is represented in the assembler
output as an assembler label, usually of the form Ln where n is
the label number.

When a code_label appears in an RTL expression, it normally
appears within a label_ref which represents the address of the
label, as a number.

gcc.info 237 / 506

The field LABEL_NUSES is only defined once the jump optimization
phase is completed and contains the number of times this label is
referenced in the current function.

barrier
Barriers are placed in the instruction stream when control cannot
flow past them. They are placed after unconditional jump
instructions to indicate that the jumps are unconditional and
after calls to volatile functions, which do not return (e.g.,
exit). They contain no information beyond the three standard
fields.

note
note insns are used to represent additional debugging and
declarative information. They contain two nonstandard fields, an
integer which is accessed with the macro NOTE_LINE_NUMBER and a
string accessed with NOTE_SOURCE_FILE.

If NOTE_LINE_NUMBER is positive, the note represents the position
of a source line and NOTE_SOURCE_FILE is the source file name that
the line came from. These notes control generation of line number
data in the assembler output.

Otherwise, NOTE_LINE_NUMBER is not really a line number but a code
with one of the following values (and NOTE_SOURCE_FILE must
contain a null pointer):

NOTE_INSN_DELETED
Such a note is completely ignorable. Some passes of the
compiler delete insns by altering them into notes of this
kind.

NOTE_INSN_BLOCK_BEG
NOTE_INSN_BLOCK_END

These types of notes indicate the position of the beginning
and end of a level of scoping of variable names. They
control the output of debugging information.

NOTE_INSN_LOOP_BEG
NOTE_INSN_LOOP_END

These types of notes indicate the position of the beginning
and end of a while or for loop. They enable the loop
optimizer to find loops quickly.

NOTE_INSN_LOOP_CONT
Appears at the place in a loop that continue statements jump
to.

NOTE_INSN_LOOP_VTOP
This note indicates the place in a loop where the exit test
begins for those loops in which the exit test has been
duplicated. This position becomes another virtual start of
the loop when considering loop invariants.

NOTE_INSN_FUNCTION_END
Appears near the end of the function body, just before the
label that return statements jump to (on machine where a

gcc.info 238 / 506

single instruction does not suffice for returning). This
note may be deleted by jump optimization.

NOTE_INSN_SETJMP
Appears following each call to setjmp or a related function.

These codes are printed symbolically when they appear in debugging
dumps.

The machine mode of an insn is normally VOIDmode, but some phases
use the mode for various purposes; for example, the reload pass sets it
to HImode if the insn needs reloading but not register elimination and
QImode if both are required. The common subexpression elimination pass
sets the mode of an insn to QImode when it is the first insn in a block
that has already been processed.

Here is a table of the extra fields of insn, jump_insn and call_insn
insns:

PATTERN (i)
An expression for the side effect performed by this insn. This
must be one of the following codes: set, call, use, clobber,
return, asm_input, asm_output, addr_vec, addr_diff_vec,
trap_if, unspec, unspec_volatile, parallel, or sequence. If
it is a parallel, each element of the parallel must be one these
codes, except that parallel expressions cannot be nested and
addr_vec and addr_diff_vec are not permitted inside a parallel
expression.

INSN_CODE (i)
An integer that says which pattern in the machine description
matches this insn, or -1 if the matching has not yet been
attempted.

Such matching is never attempted and this field remains -1 on an
insn whose pattern consists of a single use, clobber, asm_input,
addr_vec or addr_diff_vec expression.

Matching is also never attempted on insns that result from an asm
statement. These contain at least one asm_operands expression.
The function asm_noperands returns a non-negative value for such
insns.

In the debugging output, this field is printed as a number
followed by a symbolic representation that locates the pattern in
the md file as some small positive or negative offset from a named
pattern.

LOG_LINKS (i)
A list (chain of insn_list expressions) giving information about
dependencies between instructions within a basic block. Neither a
jump nor a label may come between the related insns.

REG_NOTES (i)
A list (chain of expr_list and insn_list expressions) giving
miscellaneous information about the insn. It is often information
pertaining to the registers used in this insn.

gcc.info 239 / 506

The LOG_LINKS field of an insn is a chain of insn_list expressions.
Each of these has two operands: the first is an insn, and the second is
another insn_list expression (the next one in the chain). The last
insn_list in the chain has a null pointer as second operand. The
significant thing about the chain is which insns appear in it (as first
operands of insn_list expressions). Their order is not significant.

This list is originally set up by the flow analysis pass; it is a
null pointer until then. Flow only adds links for those data
dependencies which can be used for instruction combination. For each
insn, the flow analysis pass adds a link to insns which store into
registers values that are used for the first time in this insn. The
instruction scheduling pass adds extra links so that every dependence
will be represented. Links represent data dependencies,
antidependencies and output dependencies; the machine mode of the link
distinguishes these three types: antidependencies have mode
REG_DEP_ANTI, output dependencies have mode REG_DEP_OUTPUT, and
data dependencies have mode VOIDmode.

The REG_NOTES field of an insn is a chain similar to the LOG_LINKS
field but it includes expr_list expressions in addition to insn_list
expressions. There are several kinds of register notes, which are
distinguished by the machine mode, which in a register note is really
understood as being an enum reg_note. The first operand op of the note
is data whose meaning depends on the kind of note.

The macro REG_NOTE_KIND (x) returns the kind of register note. Its
counterpart, the macro PUT_REG_NOTE_KIND (x, newkind) sets the register
note type of x to be newkind.

Register notes are of three classes: They may say something about an
input to an insn, they may say something about an output of an insn, or
they may create a linkage between two insns. There are also a set of
values that are only used in LOG_LINKS.

These register notes annotate inputs to an insn:

REG_DEAD
The value in op dies in this insn; that is to say, altering the
value immediately after this insn would not affect the future
behavior of the program.

This does not necessarily mean that the register op has no useful
value after this insn since it may also be an output of the insn.
In such a case, however, a REG_DEAD note would be redundant and is
usually not present until after the reload pass, but no code
relies on this fact.

REG_INC
The register op is incremented (or decremented; at this level
there is no distinction) by an embedded side effect inside this
insn. This means it appears in a post_inc, pre_inc, post_dec or
pre_dec expression.

REG_NONNEG
The register op is known to have a nonnegative value when this

gcc.info 240 / 506

insn is reached. This is used so that decrement and branch until
zero instructions, such as the m68k dbra, can be matched.

The REG_NONNEG note is added to insns only if the machine
description has a decrement_and_branch_until_zero pattern.

REG_NO_CONFLICT
This insn does not cause a conflict between op and the item being
set by this insn even though it might appear that it does. In
other words, if the destination register and op could otherwise be
assigned the same register, this insn does not prevent that
assignment.

Insns with this note are usually part of a block that begins with a
clobber insn specifying a multi-word pseudo register (which will
be the output of the block), a group of insns that each set one
word of the value and have the REG_NO_CONFLICT note attached, and
a final insn that copies the output to itself with an attached
REG_EQUAL note giving the expression being computed. This block
is encapsulated with REG_LIBCALL and REG_RETVAL notes on the first
and last insns, respectively.

REG_LABEL
This insn uses op, a code_label, but is not a jump_insn. The
presence of this note allows jump optimization to be aware that op
is, in fact, being used.

The following notes describe attributes of outputs of an insn:

REG_EQUIV
REG_EQUAL

This note is only valid on an insn that sets only one register and
indicates that that register will be equal to op at run time; the
scope of this equivalence differs between the two types of notes.
The value which the insn explicitly copies into the register may
look different from op, but they will be equal at run time. If the
output of the single set is a strict_low_part expression, the note
refers to the register that is contained in SUBREG_REG of the
subreg expression.

For REG_EQUIV, the register is equivalent to op throughout the
entire function, and could validly be replaced in all its
occurrences by op. ("Validly" here refers to the data flow of the
program; simple replacement may make some insns invalid.) For
example, when a constant is loaded into a register that is never
assigned any other value, this kind of note is used.

When a parameter is copied into a pseudo-register at entry to a
function, a note of this kind records that the register is
equivalent to the stack slot where the parameter was passed.
Although in this case the register may be set by other insns, it
is still valid to replace the register by the stack slot
throughout the function.

In the case of REG_EQUAL, the register that is set by this insn
will be equal to op at run time at the end of this insn but not
necessarily elsewhere in the function. In this case, op is

gcc.info 241 / 506

typically an arithmetic expression. For example, when a sequence
of insns such as a library call is used to perform an arithmetic
operation, this kind of note is attached to the insn that produces
or copies the final value.

These two notes are used in different ways by the compiler passes.
REG_EQUAL is used by passes prior to register allocation (such as
common subexpression elimination and loop optimization) to tell
them how to think of that value. REG_EQUIV notes are used by
register allocation to indicate that there is an available
substitute expression (either a constant or a mem expression for
the location of a parameter on the stack) that may be used in
place of a register if insufficient registers are available.

Except for stack homes for parameters, which are indicated by a
REG_EQUIV note and are not useful to the early optimization passes
and pseudo registers that are equivalent to a memory location
throughout there entire life, which is not detected until later in
the compilation, all equivalences are initially indicated by an
attached REG_EQUAL note. In the early stages of register
allocation, a REG_EQUAL note is changed into a REG_EQUIV note if
op is a constant and the insn represents the only set of its
destination register.

Thus, compiler passes prior to register allocation need only check
for REG_EQUAL notes and passes subsequent to register allocation
need only check for REG_EQUIV notes.

REG_UNUSED
The register op being set by this insn will not be used in a
subsequent insn. This differs from a REG_DEAD note, which
indicates that the value in an input will not be used subsequently.
These two notes are independent; both may be present for the same
register.

REG_WAS_0
The single output of this insn contained zero before this insn.
op is the insn that set it to zero. You can rely on this note
if it is present and op has not been deleted or turned into a note;
its absence implies nothing.

These notes describe linkages between insns. They occur in pairs:
one insn has one of a pair of notes that points to a second insn, which
has the inverse note pointing back to the first insn.

REG_RETVAL
This insn copies the value of a multi-insn sequence (for example, a
library call), and op is the first insn of the sequence (for a
library call, the first insn that was generated to set up the
arguments for the library call).

Loop optimization uses this note to treat such a sequence as a
single operation for code motion purposes and flow analysis uses
this note to delete such sequences whose results are dead.

A REG_EQUAL note will also usually be attached to this insn to
provide the expression being computed by the sequence.

gcc.info 242 / 506

REG_LIBCALL
This is the inverse of REG_RETVAL: it is placed on the first insn
of a multi-insn sequence, and it points to the last one.

REG_CC_SETTER
REG_CC_USER

On machines that use cc0, the insns which set and use cc0 set and
use cc0 are adjacent. However, when branch delay slot filling is
done, this may no longer be true. In this case a REG_CC_USER note
will be placed on the insn setting cc0 to point to the insn using
cc0 and a REG_CC_SETTER note will be placed on the insn using cc0
to point to the insn setting cc0.

These values are only used in the LOG_LINKS field, and indicate the
type of dependency that each link represents. Links which indicate a
data dependence (a read after write dependence) do not use any code,
they simply have mode VOIDmode, and are printed without any descriptive
text.

REG_DEP_ANTI
This indicates an anti dependence (a write after read dependence).

REG_DEP_OUTPUT
This indicates an output dependence (a write after write
dependence).

For convenience, the machine mode in an insn_list or expr_list is
printed using these symbolic codes in debugging dumps.

The only difference between the expression codes insn_list and
expr_list is that the first operand of an insn_list is assumed to be an
insn and is printed in debugging dumps as the insn’s unique id; the
first operand of an expr_list is printed in the ordinary way as an
expression.

1.143 gcc.info/Calls

RTL Representation of Function-Call Insns
===

Insns that call subroutines have the RTL expression code call_insn.
These insns must satisfy special rules, and their bodies must use a
special RTL expression code, call.

A call expression has two operands, as follows:

(call (mem:fm addr) nbytes)

Here nbytes is an operand that represents the number of bytes of
argument data being passed to the subroutine, fm is a machine mode
(which must equal as the definition of the FUNCTION_MODE macro in the
machine description) and addr represents the address of the subroutine.

gcc.info 243 / 506

For a subroutine that returns no value, the call expression as shown
above is the entire body of the insn, except that the insn might also
contain use or clobber expressions.

For a subroutine that returns a value whose mode is not BLKmode, the
value is returned in a hard register. If this register’s number is r,
then the body of the call insn looks like this:

(set (reg:m r)
(call (mem:fm addr) nbytes))

This RTL expression makes it clear (to the optimizer passes) that the
appropriate register receives a useful value in this insn.

When a subroutine returns a BLKmode value, it is handled by passing
to the subroutine the address of a place to store the value. So the
call insn itself does not "return" any value, and it has the same RTL
form as a call that returns nothing.

On some machines, the call instruction itself clobbers some register,
for example to contain the return address. call_insn insns on these
machines should have a body which is a parallel that contains both the
call expression and clobber expressions that indicate which registers
are destroyed. Similarly, if the call instruction requires some
register other than the stack pointer that is not explicitly mentioned
it its RTL, a use subexpression should mention that register.

Functions that are called are assumed to modify all registers listed
in the configuration macro CALL_USED_REGISTERS (see

Register Basics
)

and, with the exception of const functions and library calls, to modify
all of memory.

Insns containing just use expressions directly precede the call_insn
insn to indicate which registers contain inputs to the function.
Similarly, if registers other than those in CALL_USED_REGISTERS are
clobbered by the called function, insns containing a single clobber
follow immediately after the call to indicate which registers.

1.144 gcc.info/Sharing

Structure Sharing Assumptions
=============================

The compiler assumes that certain kinds of RTL expressions are
unique; there do not exist two distinct objects representing the same
value. In other cases, it makes an opposite assumption: that no RTL
expression object of a certain kind appears in more than one place in
the containing structure.

These assumptions refer to a single function; except for the RTL
objects that describe global variables and external functions, and a

gcc.info 244 / 506

few standard objects such as small integer constants, no RTL objects
are common to two functions.

* Each pseudo-register has only a single reg object to represent it,
and therefore only a single machine mode.

* For any symbolic label, there is only one symbol_ref object
referring to it.

* There is only one const_int expression with value 0, only one with
value 1, and only one with value -1. Some other integer values
are also stored uniquely.

* There is only one pc expression.

* There is only one cc0 expression.

* There is only one const_double expression with value 0 for each
floating point mode. Likewise for values 1 and 2.

* No label_ref or scratch appears in more than one place in the RTL
structure; in other words, it is safe to do a tree-walk of all the
insns in the function and assume that each time a label_ref or
scratch is seen it is distinct from all others that are seen.

* Only one mem object is normally created for each static variable
or stack slot, so these objects are frequently shared in all the
places they appear. However, separate but equal objects for these
variables are occasionally made.

* When a single asm statement has multiple output operands, a
distinct asm_operands expression is made for each output operand.
However, these all share the vector which contains the sequence of
input operands. This sharing is used later on to test whether two
asm_operands expressions come from the same statement, so all
optimizations must carefully preserve the sharing if they copy the
vector at all.

* No RTL object appears in more than one place in the RTL structure
except as described above. Many passes of the compiler rely on
this by assuming that they can modify RTL objects in place without
unwanted side-effects on other insns.

* During initial RTL generation, shared structure is freely
introduced. After all the RTL for a function has been generated,
all shared structure is copied by unshare_all_rtl in emit-rtl.c,
after which the above rules are guaranteed to be followed.

* During the combiner pass, shared structure within an insn can exist
temporarily. However, the shared structure is copied before the
combiner is finished with the insn. This is done by calling
copy_rtx_if_shared, which is a subroutine of unshare_all_rtl.

gcc.info 245 / 506

1.145 gcc.info/Reading RTL

Reading RTL
===========

To read an RTL object from a file, call read_rtx. It takes one
argument, a stdio stream, and returns a single RTL object.

Reading RTL from a file is very slow. This is no currently not a
problem because reading RTL occurs only as part of building the
compiler.

People frequently have the idea of using RTL stored as text in a
file as an interface between a language front end and the bulk of GNU
CC. This idea is not feasible.

GNU CC was designed to use RTL internally only. Correct RTL for a
given program is very dependent on the particular target machine. And
the RTL does not contain all the information about the program.

The proper way to interface GNU CC to a new language front end is
with the "tree" data structure. There is no manual for this data
structure, but it is described in the files tree.h and tree.def.

1.146 gcc.info/Machine Desc

Machine Descriptions

A machine description has two parts: a file of instruction patterns
(.md file) and a C header file of macro definitions.

The .md file for a target machine contains a pattern for each
instruction that the target machine supports (or at least each
instruction that is worth telling the compiler about). It may also
contain comments. A semicolon causes the rest of the line to be a
comment, unless the semicolon is inside a quoted string.

See the next chapter for information on the C header file.

Patterns
How to write instruction patterns.

Example
An explained example of a define_insn pattern.

RTL Template
The RTL template defines what insns match a pattern.

Output Template
The output template says how to make assembler code

gcc.info 246 / 506

from such an insn.

Output Statement
For more generality, write C code to output

the assembler code.

Constraints
When not all operands are general operands.

Standard Names
Names mark patterns to use for code generation.

Pattern Ordering
When the order of patterns makes a difference.

Dependent Patterns
Having one pattern may make you need another.

Jump Patterns
Special considerations for patterns for jump insns.

Insn Canonicalizations
Canonicalization of Instructions

Peephole Definitions
Defining machine-specific peephole optimizations.

Expander Definitions
Generating a sequence of several RTL insns

for a standard operation.

Insn Splitting
Splitting Instructions into Multiple Instructions

Insn Attributes
Specifying the value of attributes for generated insns.

1.147 gcc.info/Patterns

Everything about Instruction Patterns
=====================================

Each instruction pattern contains an incomplete RTL expression, with
pieces to be filled in later, operand constraints that restrict how the
pieces can be filled in, and an output pattern or C code to generate
the assembler output, all wrapped up in a define_insn expression.

A define_insn is an RTL expression containing four or five operands:

1. An optional name. The presence of a name indicate that this
instruction pattern can perform a certain standard job for the
RTL-generation pass of the compiler. This pass knows certain
names and will use the instruction patterns with those names, if

gcc.info 247 / 506

the names are defined in the machine description.

The absence of a name is indicated by writing an empty string
where the name should go. Nameless instruction patterns are never
used for generating RTL code, but they may permit several simpler
insns to be combined later on.

Names that are not thus known and used in RTL-generation have no
effect; they are equivalent to no name at all.

2. The RTL template (see
RTL Template
) is a vector of incomplete RTL

expressions which show what the instruction should look like. It
is incomplete because it may contain match_operand,
match_operator, and match_dup expressions that stand for
operands of the instruction.

If the vector has only one element, that element is the template
for the instruction pattern. If the vector has multiple elements,
then the instruction pattern is a parallel expression containing
the elements described.

3. A condition. This is a string which contains a C expression that
is the final test to decide whether an insn body matches this
pattern.

For a named pattern, the condition (if present) may not depend on
the data in the insn being matched, but only the
target-machine-type flags. The compiler needs to test these
conditions during initialization in order to learn exactly which
named instructions are available in a particular run.

For nameless patterns, the condition is applied only when matching
an individual insn, and only after the insn has matched the
pattern’s recognition template. The insn’s operands may be found
in the vector operands.

4. The output template: a string that says how to output matching
insns as assembler code. % in this string specifies where to
substitute the value of an operand. See

Output Template
.

When simple substitution isn’t general enough, you can specify a
piece of C code to compute the output. See

Output Statement
.

5. Optionally, a vector containing the values of attributes for insns
matching this pattern. See

Insn Attributes
.

gcc.info 248 / 506

1.148 gcc.info/Example

Example of define_insn
======================

Here is an actual example of an instruction pattern, for the
68000/68020.

(define_insn "tstsi"
[(set (cc0)

(match_operand:SI 0 "general_operand" "rm"))]
""
"*

{ if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
return \"tstl %0\";

return \"cmpl #0,%0\"; }")

This is an instruction that sets the condition codes based on the
value of a general operand. It has no condition, so any insn whose RTL
description has the form shown may be handled according to this
pattern. The name tstsi means "test a SImode value" and tells the RTL
generation pass that, when it is necessary to test such a value, an
insn to do so can be constructed using this pattern.

The output control string is a piece of C code which chooses which
output template to return based on the kind of operand and the specific
type of CPU for which code is being generated.

"rm" is an operand constraint. Its meaning is explained below.

1.149 gcc.info/RTL Template

RTL Template
============

The RTL template is used to define which insns match the particular
pattern and how to find their operands. For named patterns, the RTL
template also says how to construct an insn from specified operands.

Construction involves substituting specified operands into a copy of
the template. Matching involves determining the values that serve as
the operands in the insn being matched. Both of these activities are
controlled by special expression types that direct matching and
substitution of the operands.

(match_operand:m n predicate constraint)
This expression is a placeholder for operand number n of the insn.
When constructing an insn, operand number n will be substituted
at this point. When matching an insn, whatever appears at this
position in the insn will be taken as operand number n; but it
must satisfy predicate or this instruction pattern will not match
at all.

gcc.info 249 / 506

Operand numbers must be chosen consecutively counting from zero in
each instruction pattern. There may be only one match_operand
expression in the pattern for each operand number. Usually
operands are numbered in the order of appearance in match_operand
expressions.

predicate is a string that is the name of a C function that
accepts two arguments, an expression and a machine mode. During
matching, the function will be called with the putative operand as
the expression and m as the mode argument (if m is not specified,
VOIDmode will be used, which normally causes predicate to accept
any mode). If it returns zero, this instruction pattern fails to
match. predicate may be an empty string; then it means no test is
to be done on the operand, so anything which occurs in this
position is valid.

Most of the time, predicate will reject modes other than m--but
not always. For example, the predicate address_operand uses m as
the mode of memory ref that the address should be valid for. Many
predicates accept const_int nodes even though their mode is
VOIDmode.

constraint controls reloading and the choice of the best register
class to use for a value, as explained later (see

Constraints
).

People are often unclear on the difference between the constraint
and the predicate. The predicate helps decide whether a given
insn matches the pattern. The constraint plays no role in this
decision; instead, it controls various decisions in the case of an
insn which does match.

On CISC machines, the most common predicate is "general_operand".
This function checks that the putative operand is either a
constant, a register or a memory reference, and that it is valid
for mode m.

For an operand that must be a register, predicate should be
"register_operand". Using "general_operand" would be valid, since
the reload pass would copy any non-register operands through
registers, but this would make GNU CC do extra work, it would
prevent invariant operands (such as constant) from being removed
from loops, and it would prevent the register allocator from doing
the best possible job. On RISC machines, it is usually most
efficient to allow predicate to accept only objects that the
constraints allow.

For an operand that must be a constant, you must be sure to either
use "immediate_operand" for predicate, or make the instruction
pattern’s extra condition require a constant, or both. You cannot
expect the constraints to do this work! If the constraints allow
only constants, but the predicate allows something else, the
compiler will crash when that case arises.

(match_scratch:m n constraint)
This expression is also a placeholder for operand number n and

gcc.info 250 / 506

indicates that operand must be a scratch or reg expression.

When matching patterns, this is completely equivalent to

(match_operand:m n "scratch_operand" pred)

but, when generating RTL, it produces a (scratch:m) expression.

If the last few expressions in a parallel are clobber expressions
whose operands are either a hard register or match_scratch, the
combiner can add them when necessary. See

Side Effects
.

(match_dup n)
This expression is also a placeholder for operand number n. It is
used when the operand needs to appear more than once in the insn.

In construction, match_dup acts just like match_operand: the
operand is substituted into the insn being constructed. But in
matching, match_dup behaves differently. It assumes that operand
number n has already been determined by a match_operand appearing
earlier in the recognition template, and it matches only an
identical-looking expression.

(match_operator:m n predicate [operands ...])
This pattern is a kind of placeholder for a variable RTL expression
code.

When constructing an insn, it stands for an RTL expression whose
expression code is taken from that of operand n, and whose
operands are constructed from the patterns operands.

When matching an expression, it matches an expression if the
function predicate returns nonzero on that expression and the
patterns operands match the operands of the expression.

Suppose that the function commutative_operator is defined as
follows, to match any expression whose operator is one of the
commutative arithmetic operators of RTL and whose mode is mode:

int
commutative_operator (x, mode)

rtx x;
enum machine_mode mode;

{
enum rtx_code code = GET_CODE (x);
if (GET_MODE (x) != mode)

return 0;
return (GET_RTX_CLASS (code) == ’c’

|| code == EQ || code == NE);
}

Then the following pattern will match any RTL expression consisting
of a commutative operator applied to two general operands:

(match_operator:SI 3 "commutative_operator"

gcc.info 251 / 506

[(match_operand:SI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g")])

Here the vector [operands ...] contains two patterns because the
expressions to be matched all contain two operands.

When this pattern does match, the two operands of the commutative
operator are recorded as operands 1 and 2 of the insn. (This is
done by the two instances of match_operand.) Operand 3 of the insn
will be the entire commutative expression: use GET_CODE
(operands[3]) to see which commutative operator was used.

The machine mode m of match_operator works like that of
match_operand: it is passed as the second argument to the
predicate function, and that function is solely responsible for
deciding whether the expression to be matched "has" that mode.

When constructing an insn, argument 3 of the gen-function will
specify the operation (i.e. the expression code) for the
expression to be made. It should be an RTL expression, whose
expression code is copied into a new expression whose operands are
arguments 1 and 2 of the gen-function. The subexpressions of
argument 3 are not used; only its expression code matters.

When match_operator is used in a pattern for matching an insn, it
usually best if the operand number of the match_operator is higher
than that of the actual operands of the insn. This improves
register allocation because the register allocator often looks at
operands 1 and 2 of insns to see if it can do register tying.

There is no way to specify constraints in match_operator. The
operand of the insn which corresponds to the match_operator never
has any constraints because it is never reloaded as a whole.
However, if parts of its operands are matched by match_operand
patterns, those parts may have constraints of their own.

(match_op_dup:m n[operands ...])
Like match_dup, except that it applies to operators instead of
operands. When constructing an insn, operand number n will be
substituted at this point. But in matching, match_op_dup behaves
differently. It assumes that operand number n has already been
determined by a match_operator appearing earlier in the
recognition template, and it matches only an identical-looking
expression.

(match_parallel n predicate [subpat ...])
This pattern is a placeholder for an insn that consists of a
parallel expression with a variable number of elements. This
expression should only appear at the top level of an insn pattern.

When constructing an insn, operand number n will be substituted at
this point. When matching an insn, it matches if the body of the
insn is a parallel expression with at least as many elements as the
vector of subpat expressions in the match_parallel, if each subpat
matches the corresponding element of the parallel, and the
function predicate returns nonzero on the parallel that is the
body of the insn. It is the responsibility of the predicate to

gcc.info 252 / 506

validate elements of the parallel beyond those listed in the
match_parallel.

A typical use of match_parallel is to match load and store
multiple expressions, which can contains a variable number of
elements in a parallel. For example,

(define_insn ""
[(match_parallel 0 "load_multiple_operation"

[(set (match_operand:SI 1 "gpc_reg_operand" "=r")
(match_operand:SI 2 "memory_operand" "m"))

(use (reg:SI 179))
(clobber (reg:SI 179))])]

""
"loadm 0,0,%1,%2")

This example comes from a29k.md. The function
load_multiple_operations is defined in a29k.c and checks that
subsequent elements in the parallel are the same as the set in the
pattern, except that they are referencing subsequent registers and
memory locations.

An insn that matches this pattern might look like:

(parallel
[(set (reg:SI 20) (mem:SI (reg:SI 100)))
(use (reg:SI 179))
(clobber (reg:SI 179))
(set (reg:SI 21)

(mem:SI (plus:SI (reg:SI 100)
(const_int 4))))

(set (reg:SI 22)
(mem:SI (plus:SI (reg:SI 100)

(const_int 8))))])

(match_par_dup n [subpat ...])
Like match_op_dup, but for match_parallel instead of
match_operator.

(address (match_operand:m n "address_operand" ""))
This complex of expressions is a placeholder for an operand number
n in a "load address" instruction: an operand which specifies a
memory location in the usual way, but for which the actual operand
value used is the address of the location, not the contents of the
location.

address expressions never appear in RTL code, only in machine
descriptions. And they are used only in machine descriptions that
do not use the operand constraint feature. When operand
constraints are in use, the letter p in the constraint serves this
purpose.

m is the machine mode of the memory location being addressed, not
the machine mode of the address itself. That mode is always the
same on a given target machine (it is Pmode, which normally is
SImode), so there is no point in mentioning it; thus, no machine
mode is written in the address expression. If some day support is

gcc.info 253 / 506

added for machines in which addresses of different kinds of
objects appear differently or are used differently (such as the
PDP-10), different formats would perhaps need different machine
modes and these modes might be written in the address expression.

1.150 gcc.info/Output Template

Output Templates and Operand Substitution
===

The output template is a string which specifies how to output the
assembler code for an instruction pattern. Most of the template is a
fixed string which is output literally. The character % is used to
specify where to substitute an operand; it can also be used to identify
places where different variants of the assembler require different
syntax.

In the simplest case, a % followed by a digit n says to output
operand n at that point in the string.

% followed by a letter and a digit says to output an operand in an
alternate fashion. Four letters have standard, built-in meanings
described below. The machine description macro PRINT_OPERAND can define
additional letters with nonstandard meanings.

%cdigit can be used to substitute an operand that is a constant
value without the syntax that normally indicates an immediate operand.

%ndigit is like %cdigit except that the value of the constant is
negated before printing.

%adigit can be used to substitute an operand as if it were a memory
reference, with the actual operand treated as the address. This may be
useful when outputting a "load address" instruction, because often the
assembler syntax for such an instruction requires you to write the
operand as if it were a memory reference.

%ldigit is used to substitute a label_ref into a jump instruction.

%= outputs a number which is unique to each instruction in the
entire compilation. This is useful for making local labels to be
referred to more than once in a single template that generates multiple
assembler instructions.

% followed by a punctuation character specifies a substitution that
does not use an operand. Only one case is standard: %% outputs a %
into the assembler code. Other nonstandard cases can be defined in the
PRINT_OPERAND macro. You must also define which punctuation characters
are valid with the PRINT_OPERAND_PUNCT_VALID_P macro.

The template may generate multiple assembler instructions. Write
the text for the instructions, with \; between them.

gcc.info 254 / 506

When the RTL contains two operands which are required by constraint
to match each other, the output template must refer only to the
lower-numbered operand. Matching operands are not always identical,
and the rest of the compiler arranges to put the proper RTL expression
for printing into the lower-numbered operand.

One use of nonstandard letters or punctuation following % is to
distinguish between different assembler languages for the same machine;
for example, Motorola syntax versus MIT syntax for the 68000. Motorola
syntax requires periods in most opcode names, while MIT syntax does
not. For example, the opcode movel in MIT syntax is move.l in Motorola
syntax. The same file of patterns is used for both kinds of output
syntax, but the character sequence %. is used in each place where
Motorola syntax wants a period. The PRINT_OPERAND macro for Motorola
syntax defines the sequence to output a period; the macro for MIT
syntax defines it to do nothing.

As a special case, a template consisting of the single character #
instructs the compiler to first split the insn, and then output the
resulting instructions separately. This helps eliminate redundancy in
the output templates. If you have a define_insn that needs to emit
multiple assembler instructions, and there is an matching define_split
already defined, then you can simply use # as the output template
instead of writing an output template that emits the multiple assembler
instructions.

If ASSEMBLER_DIALECT is defined, you can use
{option0|option1|option2} constructs in the templates. These describe
multiple variants of assembler language syntax. See

Instruction Output
.

1.151 gcc.info/Output Statement

C Statements for Assembler Output
=================================

Often a single fixed template string cannot produce correct and
efficient assembler code for all the cases that are recognized by a
single instruction pattern. For example, the opcodes may depend on the
kinds of operands; or some unfortunate combinations of operands may
require extra machine instructions.

If the output control string starts with a @, then it is actually a
series of templates, each on a separate line. (Blank lines and leading
spaces and tabs are ignored.) The templates correspond to the
pattern’s constraint alternatives (see

Multi-Alternative
). For example,

if a target machine has a two-address add instruction addr to add into
a register and another addm to add a register to memory, you might
write this pattern:

gcc.info 255 / 506

(define_insn "addsi3"
[(set (match_operand:SI 0 "general_operand" "=r,m")

(plus:SI (match_operand:SI 1 "general_operand" "0,0")
(match_operand:SI 2 "general_operand" "g,r")))]

""
"@
addr %2,%0
addm %2,%0")

If the output control string starts with a *, then it is not an
output template but rather a piece of C program that should compute a
template. It should execute a return statement to return the
template-string you want. Most such templates use C string literals,
which require doublequote characters to delimit them. To include these
doublequote characters in the string, prefix each one with \ .

The operands may be found in the array operands, whose C data type
is rtx [].

It is very common to select different ways of generating assembler
code based on whether an immediate operand is within a certain range.
Be careful when doing this, because the result of INTVAL is an integer
on the host machine. If the host machine has more bits in an int than
the target machine has in the mode in which the constant will be used,
then some of the bits you get from INTVAL will be superfluous. For
proper results, you must carefully disregard the values of those bits.

It is possible to output an assembler instruction and then go on to
output or compute more of them, using the subroutine output_asm_insn.
This receives two arguments: a template-string and a vector of
operands. The vector may be operands, or it may be another array of rtx
that you declare locally and initialize yourself.

When an insn pattern has multiple alternatives in its constraints,
often the appearance of the assembler code is determined mostly by
which alternative was matched. When this is so, the C code can test
the variable which_alternative, which is the ordinal number of the
alternative that was actually satisfied (0 for the first, 1 for the
second alternative, etc.).

For example, suppose there are two opcodes for storing zero, clrreg
for registers and clrmem for memory locations. Here is how a pattern
could use which_alternative to choose between them:

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r,m")

(const_int 0))]
""
"*
return (which_alternative == 0

? \"clrreg %0\" : \"clrmem %0\");
")

The example above, where the assembler code to generate was solely
determined by the alternative, could also have been specified as
follows, having the output control string start with a @:

gcc.info 256 / 506

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r,m")

(const_int 0))]
""
"@
clrreg %0
clrmem %0")

1.152 gcc.info/Constraints

Operand Constraints
===================

Each match_operand in an instruction pattern can specify a
constraint for the type of operands allowed. Constraints can say
whether an operand may be in a register, and which kinds of register;
whether the operand can be a memory reference, and which kinds of
address; whether the operand may be an immediate constant, and which
possible values it may have. Constraints can also require two operands
to match.

Simple Constraints
Basic use of constraints.

Multi-Alternative
When an insn has two alternative constraint-patterns.

Class Preferences
Constraints guide which hard register to put things in.

Modifiers
More precise control over effects of constraints.

Machine Constraints
Existing constraints for some particular machines.

No Constraints
Describing a clean machine without constraints.

1.153 gcc.info/Simple Constraints

Simple Constraints

The simplest kind of constraint is a string full of letters, each of
which describes one kind of operand that is permitted. Here are the

gcc.info 257 / 506

letters that are allowed:

m
A memory operand is allowed, with any kind of address that the
machine supports in general.

o
A memory operand is allowed, but only if the address is
offsettable. This means that adding a small integer (actually,
the width in bytes of the operand, as determined by its machine
mode) may be added to the address and the result is also a valid
memory address.

For example, an address which is constant is offsettable; so is an
address that is the sum of a register and a constant (as long as a
slightly larger constant is also within the range of
address-offsets supported by the machine); but an autoincrement or
autodecrement address is not offsettable. More complicated
indirect/indexed addresses may or may not be offsettable depending
on the other addressing modes that the machine supports.

Note that in an output operand which can be matched by another
operand, the constraint letter o is valid only when accompanied by
both < (if the target machine has predecrement addressing) and >
(if the target machine has preincrement addressing).

V
A memory operand that is not offsettable. In other words,
anything that would fit the m constraint but not the o constraint.

<
A memory operand with autodecrement addressing (either
predecrement or postdecrement) is allowed.

>
A memory operand with autoincrement addressing (either
preincrement or postincrement) is allowed.

r
A register operand is allowed provided that it is in a general
register.

d, a, f, ...
Other letters can be defined in machine-dependent fashion to stand
for particular classes of registers. d, a and f are defined on
the 68000/68020 to stand for data, address and floating point
registers.

i
An immediate integer operand (one with constant value) is allowed.
This includes symbolic constants whose values will be known only at
assembly time.

n
An immediate integer operand with a known numeric value is allowed.
Many systems cannot support assembly-time constants for operands
less than a word wide. Constraints for these operands should use n

gcc.info 258 / 506

rather than i.

I, J, K, ... P
Other letters in the range I through P may be defined in a
machine-dependent fashion to permit immediate integer operands with
explicit integer values in specified ranges. For example, on the
68000, I is defined to stand for the range of values 1 to 8. This
is the range permitted as a shift count in the shift instructions.

E
An immediate floating operand (expression code const_double) is
allowed, but only if the target floating point format is the same
as that of the host machine (on which the compiler is running).

F
An immediate floating operand (expression code const_double) is
allowed.

G, H
G and H may be defined in a machine-dependent fashion to permit
immediate floating operands in particular ranges of values.

s
An immediate integer operand whose value is not an explicit
integer is allowed.

This might appear strange; if an insn allows a constant operand
with a value not known at compile time, it certainly must allow
any known value. So why use s instead of i? Sometimes it allows
better code to be generated.

For example, on the 68000 in a fullword instruction it is possible
to use an immediate operand; but if the immediate value is between
-128 and 127, better code results from loading the value into a
register and using the register. This is because the load into
the register can be done with a moveq instruction. We arrange for
this to happen by defining the letter K to mean "any integer
outside the range -128 to 127", and then specifying Ks in the
operand constraints.

g
Any register, memory or immediate integer operand is allowed,
except for registers that are not general registers.

X
Any operand whatsoever is allowed, even if it does not satisfy
general_operand. This is normally used in the constraint of a
match_scratch when certain alternatives will not actually require
a scratch register.

0, 1, 2, ... 9
An operand that matches the specified operand number is allowed.
If a digit is used together with letters within the same
alternative, the digit should come last.

This is called a matching constraint and what it really means is
that the assembler has only a single operand that fills two roles

gcc.info 259 / 506

considered separate in the RTL insn. For example, an add insn has
two input operands and one output operand in the RTL, but on most
CISC machines an add instruction really has only two operands, one
of them an input-output operand:

addl #35,r12

Matching constraints are used in these circumstances. More
precisely, the two operands that match must include one input-only
operand and one output-only operand. Moreover, the digit must be a
smaller number than the number of the operand that uses it in the
constraint.

For operands to match in a particular case usually means that they
are identical-looking RTL expressions. But in a few special cases
specific kinds of dissimilarity are allowed. For example, *x as
an input operand will match *x++ as an output operand. For proper
results in such cases, the output template should always use the
output-operand’s number when printing the operand.

p
An operand that is a valid memory address is allowed. This is for
"load address" and "push address" instructions.

p in the constraint must be accompanied by address_operand as the
predicate in the match_operand. This predicate interprets the
mode specified in the match_operand as the mode of the memory
reference for which the address would be valid.

Q, R, S, ... U
Letters in the range Q through U may be defined in a
machine-dependent fashion to stand for arbitrary operand types.
The machine description macro EXTRA_CONSTRAINT is passed the
operand as its first argument and the constraint letter as its
second operand.

A typical use for this would be to distinguish certain types of
memory references that affect other insn operands.

Do not define these constraint letters to accept register
references (reg); the reload pass does not expect this and would
not handle it properly.

In order to have valid assembler code, each operand must satisfy its
constraint. But a failure to do so does not prevent the pattern from
applying to an insn. Instead, it directs the compiler to modify the
code so that the constraint will be satisfied. Usually this is done by
copying an operand into a register.

Contrast, therefore, the two instruction patterns that follow:

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r")

(plus:SI (match_dup 0)
(match_operand:SI 1 "general_operand" "r")))]

""
"...")

gcc.info 260 / 506

which has two operands, one of which must appear in two places, and

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r")

(plus:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "r")))]

""
"...")

which has three operands, two of which are required by a constraint to
be identical. If we are considering an insn of the form

(insn n prev next
(set (reg:SI 3)

(plus:SI (reg:SI 6) (reg:SI 109)))
...)

the first pattern would not apply at all, because this insn does not
contain two identical subexpressions in the right place. The pattern
would say, "That does not look like an add instruction; try other
patterns." The second pattern would say, "Yes, that’s an add
instruction, but there is something wrong with it." It would direct
the reload pass of the compiler to generate additional insns to make
the constraint true. The results might look like this:

(insn n2 prev n
(set (reg:SI 3) (reg:SI 6))
...)

(insn n n2 next
(set (reg:SI 3)

(plus:SI (reg:SI 3) (reg:SI 109)))
...)

It is up to you to make sure that each operand, in each pattern, has
constraints that can handle any RTL expression that could be present for
that operand. (When multiple alternatives are in use, each pattern
must, for each possible combination of operand expressions, have at
least one alternative which can handle that combination of operands.)
The constraints don’t need to allow any possible operand--when this is
the case, they do not constrain--but they must at least point the way to
reloading any possible operand so that it will fit.

* If the constraint accepts whatever operands the predicate permits,
there is no problem: reloading is never necessary for this operand.

For example, an operand whose constraints permit everything except
registers is safe provided its predicate rejects registers.

An operand whose predicate accepts only constant values is safe
provided its constraints include the letter i. If any possible
constant value is accepted, then nothing less than i will do; if
the predicate is more selective, then the constraints may also be
more selective.

* Any operand expression can be reloaded by copying it into a

gcc.info 261 / 506

register. So if an operand’s constraints allow some kind of
register, it is certain to be safe. It need not permit all
classes of registers; the compiler knows how to copy a register
into another register of the proper class in order to make an
instruction valid.

* A nonoffsettable memory reference can be reloaded by copying the
address into a register. So if the constraint uses the letter o,
all memory references are taken care of.

* A constant operand can be reloaded by allocating space in memory to
hold it as preinitialized data. Then the memory reference can be
used in place of the constant. So if the constraint uses the
letters o or m, constant operands are not a problem.

* If the constraint permits a constant and a pseudo register used in
an insn was not allocated to a hard register and is equivalent to
a constant, the register will be replaced with the constant. If
the predicate does not permit a constant and the insn is
re-recognized for some reason, the compiler will crash. Thus the
predicate must always recognize any objects allowed by the
constraint.

If the operand’s predicate can recognize registers, but the
constraint does not permit them, it can make the compiler crash. When
this operand happens to be a register, the reload pass will be stymied,
because it does not know how to copy a register temporarily into memory.

1.154 gcc.info/Multi-Alternative

Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of
possible operands. For example, on the 68000, a logical-or instruction
can combine register or an immediate value into memory, or it can
combine any kind of operand into a register; but it cannot combine one
memory location into another.

These constraints are represented as multiple alternatives. An
alternative can be described by a series of letters for each operand.
The overall constraint for an operand is made from the letters for this
operand from the first alternative, a comma, the letters for this
operand from the second alternative, a comma, and so on until the last
alternative. Here is how it is done for fullword logical-or on the
68000:

(define_insn "iorsi3"
[(set (match_operand:SI 0 "general_operand" "=m,d")

(ior:SI (match_operand:SI 1 "general_operand" "%0,0")
(match_operand:SI 2 "general_operand" "dKs,dmKs")))]

...)

The first alternative has m (memory) for operand 0, 0 for operand 1

gcc.info 262 / 506

(meaning it must match operand 0), and dKs for operand 2. The second
alternative has d (data register) for operand 0, 0 for operand 1, and
dmKs for operand 2. The = and % in the constraints apply to all the
alternatives; their meaning is explained in the next section (see

Class Preferences
).

If all the operands fit any one alternative, the instruction is
valid. Otherwise, for each alternative, the compiler counts how many
instructions must be added to copy the operands so that that
alternative applies. The alternative requiring the least copying is
chosen. If two alternatives need the same amount of copying, the one
that comes first is chosen. These choices can be altered with the ?
and ! characters:

?
Disparage slightly the alternative that the ? appears in, as a
choice when no alternative applies exactly. The compiler regards
this alternative as one unit more costly for each ? that appears
in it.

!
Disparage severely the alternative that the ! appears in. This
alternative can still be used if it fits without reloading, but if
reloading is needed, some other alternative will be used.

When an insn pattern has multiple alternatives in its constraints,
often the appearance of the assembler code is determined mostly by which
alternative was matched. When this is so, the C code for writing the
assembler code can use the variable which_alternative, which is the
ordinal number of the alternative that was actually satisfied (0 for
the first, 1 for the second alternative, etc.). See

Output Statement
.

1.155 gcc.info/Class Preferences

Register Class Preferences

The operand constraints have another function: they enable the
compiler to decide which kind of hardware register a pseudo register is
best allocated to. The compiler examines the constraints that apply to
the insns that use the pseudo register, looking for the
machine-dependent letters such as d and a that specify classes of
registers. The pseudo register is put in whichever class gets the most
"votes". The constraint letters g and r also vote: they vote in favor
of a general register. The machine description says which registers
are considered general.

Of course, on some machines all registers are equivalent, and no
register classes are defined. Then none of this complexity is relevant.

gcc.info 263 / 506

1.156 gcc.info/Modifiers

Constraint Modifier Characters

=
Means that this operand is write-only for this instruction: the
previous value is discarded and replaced by output data.

+
Means that this operand is both read and written by the
instruction.

When the compiler fixes up the operands to satisfy the constraints,
it needs to know which operands are inputs to the instruction and
which are outputs from it. = identifies an output; + identifies
an operand that is both input and output; all other operands are
assumed to be input only.

&
Means (in a particular alternative) that this operand is written
before the instruction is finished using the input operands.
Therefore, this operand may not lie in a register that is used as
an input operand or as part of any memory address.

& applies only to the alternative in which it is written. In
constraints with multiple alternatives, sometimes one alternative
requires & while others do not. See, for example, the movdf insn
of the 68000.

& does not obviate the need to write =.

%
Declares the instruction to be commutative for this operand and the
following operand. This means that the compiler may interchange
the two operands if that is the cheapest way to make all operands
fit the constraints. This is often used in patterns for addition
instructions that really have only two operands: the result must
go in one of the arguments. Here for example, is how the 68000
halfword-add instruction is defined:

(define_insn "addhi3"
[(set (match_operand:HI 0 "general_operand" "=m,r")

(plus:HI (match_operand:HI 1 "general_operand" "%0,0")
(match_operand:HI 2 "general_operand" "di,g")))]

...)

#
Says that all following characters, up to the next comma, are to be
ignored as a constraint. They are significant only for choosing
register preferences.

*

gcc.info 264 / 506

Says that the following character should be ignored when choosing
register preferences. * has no effect on the meaning of the
constraint as a constraint, and no effect on reloading.

Here is an example: the 68000 has an instruction to sign-extend a
halfword in a data register, and can also sign-extend a value by
copying it into an address register. While either kind of
register is acceptable, the constraints on an address-register
destination are less strict, so it is best if register allocation
makes an address register its goal. Therefore, * is used so that
the d constraint letter (for data register) is ignored when
computing register preferences.

(define_insn "extendhisi2"
[(set (match_operand:SI 0 "general_operand" "=*d,a")

(sign_extend:SI
(match_operand:HI 1 "general_operand" "0,g")))]

...)

1.157 gcc.info/Machine Constraints

Constraints for Particular Machines

Whenever possible, you should use the general-purpose constraint
letters in asm arguments, since they will convey meaning more readily to
people reading your code. Failing that, use the constraint letters
that usually have very similar meanings across architectures. The most
commonly used constraints are m and r (for memory and general-purpose
registers respectively; see

Simple Constraints
), and I, usually the

letter indicating the most common immediate-constant format.

For each machine architecture, the config/machine.h file defines
additional constraints. These constraints are used by the compiler
itself for instruction generation, as well as for asm statements;
therefore, some of the constraints are not particularly interesting for
asm. The constraints are defined through these macros:

REG_CLASS_FROM_LETTER
Register class constraints (usually lower case).

CONST_OK_FOR_LETTER_P
Immediate constant constraints, for non-floating point constants of
word size or smaller precision (usually upper case).

CONST_DOUBLE_OK_FOR_LETTER_P
Immediate constant constraints, for all floating point constants
and for constants of greater than word size precision (usually
upper case).

EXTRA_CONSTRAINT
Special cases of registers or memory. This macro is not required,

gcc.info 265 / 506

and is only defined for some machines.

Inspecting these macro definitions in the compiler source for your
machine is the best way to be certain you have the right constraints.
However, here is a summary of the machine-dependent constraints
available on some particular machines.

AMD 29000 family--a29k.h
l

Local register 0

b
Byte Pointer (BP) register

q
Q register

h
Special purpose register

A
First accumulator register

a
Other accumulator register

f
Floating point register

I
Constant greater than 0, less than 0x100

J
Constant greater than 0, less than 0x10000

K
Constant whose high 24 bits are on (1)

L
16 bit constant whose high 8 bits are on (1)

M
32 bit constant whose high 16 bits are on (1)

N
32 bit negative constant that fits in 8 bits

O
The constant 0x80000000 or, on the 29050, any 32 bit constant
whose low 16 bits are 0.

P
16 bit negative constant that fits in 8 bits

G
H

A floating point constant (in asm statements, use the machine

gcc.info 266 / 506

independent E or F instead)

IBM RS6000--rs6000.h
b

Address base register

f
Floating point register

h
MQ, CTR, or LINK register

q
MQ register

c
CTR register

l
LINK register

x
CR register (condition register) number 0

y
CR register (condition register)

I
Signed 16 bit constant

J
Constant whose low 16 bits are 0

K
Constant whose high 16 bits are 0

L
Constant suitable as a mask operand

M
Constant larger than 31

N
Exact power of 2

O
Zero

P
Constant whose negation is a signed 16 bit constant

G
Floating point constant that can be loaded into a register
with one instruction per word

Q
Memory operand that is an offset from a register (m is

gcc.info 267 / 506

preferable for asm statements)

Intel 386--i386.h
q

a, b, c, or d register

f
Floating point register

t
First (top of stack) floating point register

u
Second floating point register

a
a register

b
b register

c
c register

d
d register

D
di register

S
si register

I
Constant in range 0 to 31 (for 32 bit shifts)

J
Constant in range 0 to 63 (for 64 bit shifts)

K
0xff

L
0xffff

M
0, 1, 2, or 3 (shifts for lea instruction)

G
Standard 80387 floating point constant

Intel 960--i960.h
f

Floating point register (fp0 to fp3)

l
Local register (r0 to r15)

gcc.info 268 / 506

b
Global register (g0 to g15)

d
Any local or global register

I
Integers from 0 to 31

J
0

K
Integers from -31 to 0

G
Floating point 0

H
Floating point 1

MIPS--mips.h
d

General-purpose integer register

f
Floating-point register (if available)

h
Hi register

l
Lo register

x
Hi or Lo register

y
General-purpose integer register

z
Floating-point status register

I
Signed 16 bit constant (for arithmetic instructions)

J
Zero

K
Zero-extended 16-bit constant (for logic instructions)

L
Constant with low 16 bits zero (can be loaded with lui)

M

gcc.info 269 / 506

32 bit constant which requires two instructions to load (a
constant which is not I, K, or L)

N
Negative 16 bit constant

O
Exact power of two

P
Positive 16 bit constant

G
Floating point zero

Q
Memory reference that can be loaded with more than one
instruction (m is preferable for asm statements)

R
Memory reference that can be loaded with one instruction (m
is preferable for asm statements)

S
Memory reference in external OSF/rose PIC format (m is
preferable for asm statements)

Motorola 680x0--m68k.h
a

Address register

d
Data register

f
68881 floating-point register, if available

x
Sun FPA (floating-point) register, if available

y
First 16 Sun FPA registers, if available

I
Integer in the range 1 to 8

J
16 bit signed number

K
Signed number whose magnitude is greater than 0x80

L
Integer in the range -8 to -1

G
Floating point constant that is not a 68881 constant

gcc.info 270 / 506

H
Floating point constant that can be used by Sun FPA

SPARC--sparc.h
f

Floating-point register

I
Signed 13 bit constant

J
Zero

K
32 bit constant with the low 12 bits clear (a constant that
can be loaded with the sethi instruction)

G
Floating-point zero

H
Signed 13 bit constant, sign-extended to 32 or 64 bits

Q
Memory reference that can be loaded with one instruction (m
is more appropriate for asm statements)

S
Constant, or memory address

T
Memory address aligned to an 8-byte boundary

U
Even register

1.158 gcc.info/No Constraints

Not Using Constraints

Some machines are so clean that operand constraints are not
required. For example, on the Vax, an operand valid in one context is
valid in any other context. On such a machine, every operand
constraint would be g, excepting only operands of "load address"
instructions which are written as if they referred to a memory
location’s contents but actual refer to its address. They would have
constraint p.

For such machines, instead of writing g and p for all the
constraints, you can choose to write a description with empty
constraints. Then you write "" for the constraint in every

gcc.info 271 / 506

match_operand. Address operands are identified by writing an address
expression around the match_operand, not by their constraints.

When the machine description has just empty constraints, certain
parts of compilation are skipped, making the compiler faster. However,
few machines actually do not need constraints; all machine descriptions
now in existence use constraints.

1.159 gcc.info/Standard Names

Standard Pattern Names For Generation
=====================================

Here is a table of the instruction names that are meaningful in the
RTL generation pass of the compiler. Giving one of these names to an
instruction pattern tells the RTL generation pass that it can use the
pattern in to accomplish a certain task.

movm
Here m stands for a two-letter machine mode name, in lower case.
This instruction pattern moves data with that machine mode from
operand 1 to operand 0. For example, movsi moves full-word data.

If operand 0 is a subreg with mode m of a register whose own mode
is wider than m, the effect of this instruction is to store the
specified value in the part of the register that corresponds to
mode m. The effect on the rest of the register is undefined.

This class of patterns is special in several ways. First of all,
each of these names must be defined, because there is no other way
to copy a datum from one place to another.

Second, these patterns are not used solely in the RTL generation
pass. Even the reload pass can generate move insns to copy values
from stack slots into temporary registers. When it does so, one
of the operands is a hard register and the other is an operand
that can need to be reloaded into a register.

Therefore, when given such a pair of operands, the pattern must
generate RTL which needs no reloading and needs no temporary
registers--no registers other than the operands. For example, if
you support the pattern with a define_expand, then in such a case
the define_expand mustn’t call force_reg or any other such
function which might generate new pseudo registers.

This requirement exists even for subword modes on a RISC machine
where fetching those modes from memory normally requires several
insns and some temporary registers. Look in spur.md to see how the
requirement can be satisfied.

During reload a memory reference with an invalid address may be
passed as an operand. Such an address will be replaced with a
valid address later in the reload pass. In this case, nothing may
be done with the address except to use it as it stands. If it is

gcc.info 272 / 506

copied, it will not be replaced with a valid address. No attempt
should be made to make such an address into a valid address and no
routine (such as change_address) that will do so may be called.
Note that general_operand will fail when applied to such an
address.

The global variable reload_in_progress (which must be explicitly
declared if required) can be used to determine whether such special
handling is required.

The variety of operands that have reloads depends on the rest of
the machine description, but typically on a RISC machine these can
only be pseudo registers that did not get hard registers, while on
other machines explicit memory references will get optional
reloads.

If a scratch register is required to move an object to or from
memory, it can be allocated using gen_reg_rtx prior to reload.
But this is impossible during and after reload. If there are
cases needing scratch registers after reload, you must define
SECONDARY_INPUT_RELOAD_CLASS and perhaps also
SECONDARY_OUTPUT_RELOAD_CLASS to detect them, and provide patterns
reload_inm or reload_outm to handle them. See

Register Classes
.

The constraints on a movem must permit moving any hard register to
any other hard register provided that HARD_REGNO_MODE_OK permits
mode m in both registers and REGISTER_MOVE_COST applied to their
classes returns a value of 2.

It is obligatory to support floating point movem instructions into
and out of any registers that can hold fixed point values, because
unions and structures (which have modes SImode or DImode) can be
in those registers and they may have floating point members.

There may also be a need to support fixed point movem instructions
in and out of floating point registers. Unfortunately, I have
forgotten why this was so, and I don’t know whether it is still
true. If HARD_REGNO_MODE_OK rejects fixed point values in
floating point registers, then the constraints of the fixed point
movem instructions must be designed to avoid ever trying to reload
into a floating point register.

reload_inm
reload_outm

Like movm, but used when a scratch register is required to move
between operand 0 and operand 1. Operand 2 describes the scratch
register. See the discussion of the SECONDARY_RELOAD_CLASS macro
in see

Register Classes
.

movstrictm
Like movm except that if operand 0 is a subreg with mode m of a
register whose natural mode is wider, the movstrictm instruction
is guaranteed not to alter any of the register except the part

gcc.info 273 / 506

which belongs to mode m.

load_multiple
Load several consecutive memory locations into consecutive
registers. Operand 0 is the first of the consecutive registers,
operand 1 is the first memory location, and operand 2 is a
constant: the number of consecutive registers.

Define this only if the target machine really has such an
instruction; do not define this if the most efficient way of
loading consecutive registers from memory is to do them one at a
time.

On some machines, there are restrictions as to which consecutive
registers can be stored into memory, such as particular starting or
ending register numbers or only a range of valid counts. For those
machines, use a define_expand (see

Expander Definitions
) and make

the pattern fail if the restrictions are not met.

Write the generated insn as a parallel with elements being a set
of one register from the appropriate memory location (you may also
need use or clobber elements). Use a match_parallel (see

RTL Template
) to recognize the insn. See a29k.md and rs6000.md

for examples of the use of this insn pattern.

store_multiple
Similar to load_multiple, but store several consecutive registers
into consecutive memory locations. Operand 0 is the first of the
consecutive memory locations, operand 1 is the first register, and
operand 2 is a constant: the number of consecutive registers.

addm3
Add operand 2 and operand 1, storing the result in operand 0. All
operands must have mode m. This can be used even on two-address
machines, by means of constraints requiring operands 1 and 0 to be
the same location.

subm3, mulm3
divm3, udivm3, modm3, umodm3
sminm3, smaxm3, uminm3, umaxm3
andm3, iorm3, xorm3

Similar, for other arithmetic operations.

mulhisi3
Multiply operands 1 and 2, which have mode HImode, and store a
SImode product in operand 0.

mulqihi3, mulsidi3
Similar widening-multiplication instructions of other widths.

umulqihi3, umulhisi3, umulsidi3
Similar widening-multiplication instructions that do unsigned
multiplication.

gcc.info 274 / 506

divmodm4
Signed division that produces both a quotient and a remainder.
Operand 1 is divided by operand 2 to produce a quotient stored in
operand 0 and a remainder stored in operand 3.

For machines with an instruction that produces both a quotient and
a remainder, provide a pattern for divmodm4 but do not provide
patterns for divm3 and modm3. This allows optimization in the
relatively common case when both the quotient and remainder are
computed.

If an instruction that just produces a quotient or just a remainder
exists and is more efficient than the instruction that produces
both, write the output routine of divmodm4 to call find_reg_note
and look for a REG_UNUSED note on the quotient or remainder and
generate the appropriate instruction.

udivmodm4
Similar, but does unsigned division.

ashlm3
Arithmetic-shift operand 1 left by a number of bits specified by
operand 2, and store the result in operand 0. Here m is the mode
of operand 0 and operand 1; operand 2’s mode is specified by the
instruction pattern, and the compiler will convert the operand to
that mode before generating the instruction.

ashrm3, lshlm3, lshrm3, rotlm3, rotrm3
Other shift and rotate instructions, analogous to the ashlm3
instructions.

Logical and arithmetic left shift are the same. Machines that do
not allow negative shift counts often have only one instruction for
shifting left. On such machines, you should define a pattern named
ashlm3 and leave lshlm3 undefined.

negm2
Negate operand 1 and store the result in operand 0.

absm2
Store the absolute value of operand 1 into operand 0.

sqrtm2
Store the square root of operand 1 into operand 0.

The sqrt built-in function of C always uses the mode which
corresponds to the C data type double.

ffsm2
Store into operand 0 one plus the index of the least significant
1-bit of operand 1. If operand 1 is zero, store zero. m is the
mode of operand 0; operand 1’s mode is specified by the instruction
pattern, and the compiler will convert the operand to that mode
before generating the instruction.

The ffs built-in function of C always uses the mode which

gcc.info 275 / 506

corresponds to the C data type int.

one_cmplm2
Store the bitwise-complement of operand 1 into operand 0.

cmpm
Compare operand 0 and operand 1, and set the condition codes. The
RTL pattern should look like this:

(set (cc0) (compare (match_operand:m 0 ...)
(match_operand:m 1 ...)))

tstm
Compare operand 0 against zero, and set the condition codes. The
RTL pattern should look like this:

(set (cc0) (match_operand:m 0 ...))

tstm patterns should not be defined for machines that do not use
(cc0). Doing so would confuse the optimizer since it would no
longer be clear which set operations were comparisons. The cmpm
patterns should be used instead.

movstrm
Block move instruction. The addresses of the destination and
source strings are the first two operands, and both are in mode
Pmode. The number of bytes to move is the third operand, in mode
m.

The fourth operand is the known shared alignment of the source and
destination, in the form of a const_int rtx. Thus, if the
compiler knows that both source and destination are word-aligned,
it may provide the value 4 for this operand.

These patterns need not give special consideration to the
possibility that the source and destination strings might overlap.

cmpstrm
Block compare instruction, with five operands. Operand 0 is the
output; it has mode m. The remaining four operands are like the
operands of movstrm. The two memory blocks specified are compared
byte by byte in lexicographic order. The effect of the
instruction is to store a value in operand 0 whose sign indicates
the result of the comparison.

Compute the length of a string, with three operands. Operand 0 is
the result (of mode m), operand 1 is a mem referring to the first
character of the string, operand 2 is the character to search for
(normally zero), and operand 3 is a constant describing the known
alignment of the beginning of the string.

floatm n2
Convert signed integer operand 1 (valid for fixed point mode m) to
floating point mode n and store in operand 0 (which has mode n).

floatunsm n2
Convert unsigned integer operand 1 (valid for fixed point mode m)

gcc.info 276 / 506

to floating point mode n and store in operand 0 (which has mode n).

fixm n2
Convert operand 1 (valid for floating point mode m) to fixed point
mode n as a signed number and store in operand 0 (which has mode
n). This instruction’s result is defined only when the value
of operand 1 is an integer.

fixunsm n2
Convert operand 1 (valid for floating point mode m) to fixed point
mode n as an unsigned number and store in operand 0 (which has
mode n). This instruction’s result is defined only when the value
of operand 1 is an integer.

ftruncm2
Convert operand 1 (valid for floating point mode m) to an integer
value, still represented in floating point mode m, and store it in
operand 0 (valid for floating point mode m).

fix_truncm n2
Like fixm n2 but works for any floating point value of mode m by
converting the value to an integer.

fixuns_truncm n2
Like fixunsm n2 but works for any floating point value of mode m
by converting the value to an integer.

truncm n
Truncate operand 1 (valid for mode m) to mode n and store in
operand 0 (which has mode n). Both modes must be fixed point or
both floating point.

extendm n
Sign-extend operand 1 (valid for mode m) to mode n and store in
operand 0 (which has mode n). Both modes must be fixed point or
both floating point.

zero_extendm n
Zero-extend operand 1 (valid for mode m) to mode n and store in
operand 0 (which has mode n). Both modes must be fixed point.

extv
Extract a bit field from operand 1 (a register or memory operand),
where operand 2 specifies the width in bits and operand 3 the
starting bit, and store it in operand 0. Operand 0 must have mode
word_mode. Operand 1 may have mode byte_mode or word_mode; often
word_mode is allowed only for registers. Operands 2 and 3 must be
valid for word_mode.

The RTL generation pass generates this instruction only with
constants for operands 2 and 3.

The bit-field value is sign-extended to a full word integer before
it is stored in operand 0.

extzv
Like extv except that the bit-field value is zero-extended.

gcc.info 277 / 506

insv
Store operand 3 (which must be valid for word_mode) into a bit
field in operand 0, where operand 1 specifies the width in bits and
operand 2 the starting bit. Operand 0 may have mode byte_mode or
word_mode; often word_mode is allowed only for registers.
Operands 1 and 2 must be valid for word_mode.

The RTL generation pass generates this instruction only with
constants for operands 1 and 2.

scond
Store zero or nonzero in the operand according to the condition
codes. Value stored is nonzero iff the condition cond is true.
cond is the name of a comparison operation expression code, such
as eq, lt or leu.

You specify the mode that the operand must have when you write the
match_operand expression. The compiler automatically sees which
mode you have used and supplies an operand of that mode.

The value stored for a true condition must have 1 as its low bit,
or else must be negative. Otherwise the instruction is not
suitable and you should omit it from the machine description. You
describe to the compiler exactly which value is stored by defining
the macro STORE_FLAG_VALUE (see

Misc
). If a description cannot be

found that can be used for all the scond patterns, you should
omit those operations from the machine description.

These operations may fail, but should do so only in relatively
uncommon cases; if they would fail for common cases involving
integer comparisons, it is best to omit these patterns.

If these operations are omitted, the compiler will usually
generate code that copies the constant one to the target and
branches around an assignment of zero to the target. If this code
is more efficient than the potential instructions used for the
scond pattern followed by those required to convert the result
into a 1 or a zero in SImode, you should omit the scond
operations from the machine description.

bcond
Conditional branch instruction. Operand 0 is a label_ref that
refers to the label to jump to. Jump if the condition codes meet
condition cond.

Some machines do not follow the model assumed here where a
comparison instruction is followed by a conditional branch
instruction. In that case, the cmpm (and tstm) patterns should
simply store the operands away and generate all the required insns
in a define_expand (see

Expander Definitions
) for the conditional

branch operations. All calls to expand bcond patterns are
immediately preceded by calls to expand either a cmpm pattern or a

gcc.info 278 / 506

tstm pattern.

Machines that use a pseudo register for the condition code value,
or where the mode used for the comparison depends on the condition
being tested, should also use the above mechanism. See

Jump Patterns
.

The above discussion also applies to scond patterns.

call
Subroutine call instruction returning no value. Operand 0 is the
function to call; operand 1 is the number of bytes of arguments
pushed (in mode SImode, except it is normally a const_int);
operand 2 is the number of registers used as operands.

On most machines, operand 2 is not actually stored into the RTL
pattern. It is supplied for the sake of some RISC machines which
need to put this information into the assembler code; they can put
it in the RTL instead of operand 1.

Operand 0 should be a mem RTX whose address is the address of the
function. Note, however, that this address can be a symbol_ref
expression even if it would not be a legitimate memory address on
the target machine. If it is also not a valid argument for a call
instruction, the pattern for this operation should be a
define_expand (see

Expander Definitions
) that places the address

into a register and uses that register in the call instruction.

call_value
Subroutine call instruction returning a value. Operand 0 is the
hard register in which the value is returned. There are three more
operands, the same as the three operands of the call instruction
(but with numbers increased by one).

Subroutines that return BLKmode objects use the call insn.

call_pop, call_value_pop
Similar to call and call_value, except used if defined and if
RETURN_POPS_ARGS is non-zero. They should emit a parallel that
contains both the function call and a set to indicate the
adjustment made to the frame pointer.

For machines where RETURN_POPS_ARGS can be non-zero, the use of
these patterns increases the number of functions for which the
frame pointer can be eliminated, if desired.

untyped_call
Subroutine call instruction returning a value of any type.
Operand 0 is the function to call; operand 1 is a memory location
where the result of calling the function is to be stored; operand
2 is a parallel expression where each element is a set expression
that indicates the saving of a function return value into the
result block.

gcc.info 279 / 506

This instruction pattern should be defined to support
__builtin_apply on machines where special instructions are needed
to call a subroutine with arbitrary arguments or to save the value
returned. This instruction pattern is required on machines that
have multiple registers that can hold a return value (i.e.
FUNCTION_VALUE_REGNO_P is true for more than one register).

return
Subroutine return instruction. This instruction pattern name
should be defined only if a single instruction can do all the work
of returning from a function.

Like the movm patterns, this pattern is also used after the RTL
generation phase. In this case it is to support machines where
multiple instructions are usually needed to return from a
function, but some class of functions only requires one
instruction to implement a return. Normally, the applicable
functions are those which do not need to save any registers or
allocate stack space.

For such machines, the condition specified in this pattern should
only be true when reload_completed is non-zero and the function’s
epilogue would only be a single instruction. For machines with
register windows, the routine leaf_function_p may be used to
determine if a register window push is required.

Machines that have conditional return instructions should define
patterns such as

(define_insn ""
[(set (pc)

(if_then_else (match_operator
0 "comparison_operator"
[(cc0) (const_int 0)])

(return)
(pc)))]

"condition"
"...")

where condition would normally be the same condition specified on
the named return pattern.

untyped_return
Untyped subroutine return instruction. This instruction pattern
should be defined to support __builtin_return on machines where
special instructions are needed to return a value of any type.

Operand 0 is a memory location where the result of calling a
function with __builtin_apply is stored; operand 1 is a parallel
expression where each element is a set expression that indicates
the restoring of a function return value from the result block.

nop
No-op instruction. This instruction pattern name should always be
defined to output a no-op in assembler code. (const_int 0) will
do as an RTL pattern.

gcc.info 280 / 506

indirect_jump
An instruction to jump to an address which is operand zero. This
pattern name is mandatory on all machines.

casesi
Instruction to jump through a dispatch table, including bounds
checking. This instruction takes five operands:

1. The index to dispatch on, which has mode SImode.

2. The lower bound for indices in the table, an integer constant.

3. The total range of indices in the table--the largest index
minus the smallest one (both inclusive).

4. A label that precedes the table itself.

5. A label to jump to if the index has a value outside the
bounds. (If the machine-description macro CASE_DROPS_THROUGH
is defined, then an out-of-bounds index drops through to the
code following the jump table instead of jumping to this
label. In that case, this label is not actually used by the
casesi instruction, but it is always provided as an operand.)

The table is a addr_vec or addr_diff_vec inside of a jump_insn.
The number of elements in the table is one plus the difference
between the upper bound and the lower bound.

tablejump
Instruction to jump to a variable address. This is a low-level
capability which can be used to implement a dispatch table when
there is no casesi pattern.

This pattern requires two operands: the address or offset, and a
label which should immediately precede the jump table. If the
macro CASE_VECTOR_PC_RELATIVE is defined then the first operand is
an offset which counts from the address of the table; otherwise,
it is an absolute address to jump to. In either case, the first
operand has mode Pmode.

The tablejump insn is always the last insn before the jump table
it uses. Its assembler code normally has no need to use the
second operand, but you should incorporate it in the RTL pattern so
that the jump optimizer will not delete the table as unreachable
code.

save_stack_block
save_stack_function
save_stack_nonlocal
restore_stack_block
restore_stack_function
restore_stack_nonlocal

Most machines save and restore the stack pointer by copying it to
or from an object of mode Pmode. Do not define these patterns on
such machines.

gcc.info 281 / 506

Some machines require special handling for stack pointer saves and
restores. On those machines, define the patterns corresponding to
the non-standard cases by using a define_expand (see

Expander Definitions
) that produces the required insns. The three

types of saves and restores are:

1. save_stack_block saves the stack pointer at the start of
a block that allocates a variable-sized object, and
restore_stack_block restores the stack pointer when the block
is exited.

2. save_stack_function and restore_stack_function do a
similar job for the outermost block of a function and are
used when the function allocates variable-sized objects or
calls alloca. Only the epilogue uses the restored stack
pointer, allowing a simpler save or restore sequence on some
machines.

3. save_stack_nonlocal is used in functions that contain
labels branched to by nested functions. It saves the stack
pointer in such a way that the inner function can use
restore_stack_nonlocal to restore the stack pointer. The
compiler generates code to restore the frame and argument
pointer registers, but some machines require saving and
restoring additional data such as register window information
or stack backchains. Place insns in these patterns to save
and restore any such required data.

When saving the stack pointer, operand 0 is the save area and
operand 1 is the stack pointer. The mode used to allocate the
save area is the mode of operand 0. You must specify an integral
mode, or VOIDmode if no save area is needed for a particular type
of save (either because no save is needed or because a
machine-specific save area can be used). Operand 0 is the stack
pointer and operand 1 is the save area for restore operations. If
save_stack_block is defined, operand 0 must not be VOIDmode since
these saves can be arbitrarily nested.

A save area is a mem that is at a constant offset from
virtual_stack_vars_rtx when the stack pointer is saved for use by
nonlocal gotos and a reg in the other two cases.

allocate_stack
Subtract (or add if STACK_GROWS_DOWNWARD is undefined) operand 0
from the stack pointer to create space for dynamically allocated
data.

Do not define this pattern if all that must be done is the
subtraction. Some machines require other operations such as stack
probes or maintaining the back chain. Define this pattern to emit
those operations in addition to updating the stack pointer.

gcc.info 282 / 506

1.160 gcc.info/Pattern Ordering

When the Order of Patterns Matters
==================================

Sometimes an insn can match more than one instruction pattern. Then
the pattern that appears first in the machine description is the one
used. Therefore, more specific patterns (patterns that will match
fewer things) and faster instructions (those that will produce better
code when they do match) should usually go first in the description.

In some cases the effect of ordering the patterns can be used to hide
a pattern when it is not valid. For example, the 68000 has an
instruction for converting a fullword to floating point and another for
converting a byte to floating point. An instruction converting an
integer to floating point could match either one. We put the pattern
to convert the fullword first to make sure that one will be used rather
than the other. (Otherwise a large integer might be generated as a
single-byte immediate quantity, which would not work.) Instead of using
this pattern ordering it would be possible to make the pattern for
convert-a-byte smart enough to deal properly with any constant value.

1.161 gcc.info/Dependent Patterns

Interdependence of Patterns
===========================

Every machine description must have a named pattern for each of the
conditional branch names bcond. The recognition template must always
have the form

(set (pc)
(if_then_else (cond (cc0) (const_int 0))

(label_ref (match_operand 0 "" ""))
(pc)))

In addition, every machine description must have an anonymous pattern
for each of the possible reverse-conditional branches. Their templates
look like

(set (pc)
(if_then_else (cond (cc0) (const_int 0))

(pc)
(label_ref (match_operand 0 "" ""))))

They are necessary because jump optimization can turn direct-conditional
branches into reverse-conditional branches.

It is often convenient to use the match_operator construct to reduce
the number of patterns that must be specified for branches. For
example,

(define_insn ""

gcc.info 283 / 506

[(set (pc)
(if_then_else (match_operator 0 "comparison_operator"

[(cc0) (const_int 0)])
(pc)
(label_ref (match_operand 1 "" ""))))]

"condition"
"...")

In some cases machines support instructions identical except for the
machine mode of one or more operands. For example, there may be
"sign-extend halfword" and "sign-extend byte" instructions whose
patterns are

(set (match_operand:SI 0 ...)
(extend:SI (match_operand:HI 1 ...)))

(set (match_operand:SI 0 ...)
(extend:SI (match_operand:QI 1 ...)))

Constant integers do not specify a machine mode, so an instruction to
extend a constant value could match either pattern. The pattern it
actually will match is the one that appears first in the file. For
correct results, this must be the one for the widest possible mode
(HImode, here). If the pattern matches the QImode instruction, the
results will be incorrect if the constant value does not actually fit
that mode.

Such instructions to extend constants are rarely generated because
they are optimized away, but they do occasionally happen in nonoptimized
compilations.

If a constraint in a pattern allows a constant, the reload pass may
replace a register with a constant permitted by the constraint in some
cases. Similarly for memory references. You must ensure that the
predicate permits all objects allowed by the constraints to prevent the
compiler from crashing.

Because of this substitution, you should not provide separate
patterns for increment and decrement instructions. Instead, they
should be generated from the same pattern that supports
register-register add insns by examining the operands and generating
the appropriate machine instruction.

1.162 gcc.info/Jump Patterns

Defining Jump Instruction Patterns
==================================

For most machines, GNU CC assumes that the machine has a condition
code. A comparison insn sets the condition code, recording the results
of both signed and unsigned comparison of the given operands. A
separate branch insn tests the condition code and branches or not
according its value. The branch insns come in distinct signed and
unsigned flavors. Many common machines, such as the Vax, the 68000 and

gcc.info 284 / 506

the 32000, work this way.

Some machines have distinct signed and unsigned compare
instructions, and only one set of conditional branch instructions. The
easiest way to handle these machines is to treat them just like the
others until the final stage where assembly code is written. At this
time, when outputting code for the compare instruction, peek ahead at
the following branch using next_cc0_user (insn). (The variable insn
refers to the insn being output, in the output-writing code in an
instruction pattern.) If the RTL says that is an unsigned branch,
output an unsigned compare; otherwise output a signed compare. When
the branch itself is output, you can treat signed and unsigned branches
identically.

The reason you can do this is that GNU CC always generates a pair of
consecutive RTL insns, possibly separated by note insns, one to set the
condition code and one to test it, and keeps the pair inviolate until
the end.

To go with this technique, you must define the machine-description
macro NOTICE_UPDATE_CC to do CC_STATUS_INIT; in other words, no compare
instruction is superfluous.

Some machines have compare-and-branch instructions and no condition
code. A similar technique works for them. When it is time to "output"
a compare instruction, record its operands in two static variables.
When outputting the branch-on-condition-code instruction that follows,
actually output a compare-and-branch instruction that uses the
remembered operands.

It also works to define patterns for compare-and-branch instructions.
In optimizing compilation, the pair of compare and branch instructions
will be combined according to these patterns. But this does not happen
if optimization is not requested. So you must use one of the solutions
above in addition to any special patterns you define.

In many RISC machines, most instructions do not affect the condition
code and there may not even be a separate condition code register. On
these machines, the restriction that the definition and use of the
condition code be adjacent insns is not necessary and can prevent
important optimizations. For example, on the IBM RS/6000, there is a
delay for taken branches unless the condition code register is set three
instructions earlier than the conditional branch. The instruction
scheduler cannot perform this optimization if it is not permitted to
separate the definition and use of the condition code register.

On these machines, do not use (cc0), but instead use a register to
represent the condition code. If there is a specific condition code
register in the machine, use a hard register. If the condition code or
comparison result can be placed in any general register, or if there are
multiple condition registers, use a pseudo register.

On some machines, the type of branch instruction generated may
depend on the way the condition code was produced; for example, on the
68k and Sparc, setting the condition code directly from an add or
subtract instruction does not clear the overflow bit the way that a test
instruction does, so a different branch instruction must be used for

gcc.info 285 / 506

some conditional branches. For machines that use (cc0), the set and
use of the condition code must be adjacent (separated only by note
insns) allowing flags in cc_status to be used. (See

Condition Code
.)

Also, the comparison and branch insns can be located from each other by
using the functions prev_cc0_setter and next_cc0_user.

However, this is not true on machines that do not use (cc0). On
those machines, no assumptions can be made about the adjacency of the
compare and branch insns and the above methods cannot be used. Instead,
we use the machine mode of the condition code register to record
different formats of the condition code register.

Registers used to store the condition code value should have a mode
that is in class MODE_CC. Normally, it will be CCmode. If additional
modes are required (as for the add example mentioned above in the
Sparc), define the macro EXTRA_CC_MODES to list the additional modes
required (see

Condition Code
). Also define EXTRA_CC_NAMES to list the

names of those modes and SELECT_CC_MODE to choose a mode given an
operand of a compare.

If it is known during RTL generation that a different mode will be
required (for example, if the machine has separate compare instructions
for signed and unsigned quantities, like most IBM processors), they can
be specified at that time.

If the cases that require different modes would be made by
instruction combination, the macro SELECT_CC_MODE determines which
machine mode should be used for the comparison result. The patterns
should be written using that mode. To support the case of the add on
the Sparc discussed above, we have the pattern

(define_insn ""
[(set (reg:CC_NOOV 0)

(compare:CC_NOOV
(plus:SI (match_operand:SI 0 "register_operand" "%r")

(match_operand:SI 1 "arith_operand" "rI"))
(const_int 0)))]

""
"...")

The SELECT_CC_MODE macro on the Sparc returns CC_NOOVmode for
comparisons whose argument is a plus.

1.163 gcc.info/Insn Canonicalizations

Canonicalization of Instructions
================================

There are often cases where multiple RTL expressions could represent

gcc.info 286 / 506

an operation performed by a single machine instruction. This situation
is most commonly encountered with logical, branch, and
multiply-accumulate instructions. In such cases, the compiler attempts
to convert these multiple RTL expressions into a single canonical form
to reduce the number of insn patterns required.

In addition to algebraic simplifications, following canonicalizations
are performed:

* For commutative and comparison operators, a constant is always
made the second operand. If a machine only supports a constant as
the second operand, only patterns that match a constant in the
second operand need be supplied.

For these operators, if only one operand is a neg, not, mult,
plus, or minus expression, it will be the first operand.

* For the compare operator, a constant is always the second operand
on machines where cc0 is used (see

Jump Patterns
). On other

machines, there are rare cases where the compiler might want to
construct a compare with a constant as the first operand.
However, these cases are not common enough for it to be worthwhile
to provide a pattern matching a constant as the first operand
unless the machine actually has such an instruction.

An operand of neg, not, mult, plus, or minus is made the first
operand under the same conditions as above.

* (minus x (const_int n)) is converted to (plus x (const_int
-n)).

* Within address computations (i.e., inside mem), a left shift is
converted into the appropriate multiplication by a power of two.

De‘Morgan’s Law is used to move bitwise negation inside a bitwise
logical-and or logical-or operation. If this results in only one
operand being a not expression, it will be the first one.

A machine that has an instruction that performs a bitwise
logical-and of one operand with the bitwise negation of the other
should specify the pattern for that instruction as

(define_insn ""
[(set (match_operand:m 0 ...)

(and:m (not:m (match_operand:m 1 ...))
(match_operand:m 2 ...)))]

"..."
"...")

Similarly, a pattern for a "NAND" instruction should be written

(define_insn ""
[(set (match_operand:m 0 ...)

(ior:m (not:m (match_operand:m 1 ...))
(not:m (match_operand:m 2 ...))))]

gcc.info 287 / 506

"..."
"...")

In both cases, it is not necessary to include patterns for the many
logically equivalent RTL expressions.

* The only possible RTL expressions involving both bitwise
exclusive-or and bitwise negation are (xor:m x y) and (not:m
(xor:m x y)).

* The sum of three items, one of which is a constant, will only
appear in the form

(plus:m (plus:m x y) constant)

* On machines that do not use cc0, (compare x (const_int 0)) will be
converted to x.

* Equality comparisons of a group of bits (usually a single bit)
with zero will be written using zero_extract rather than the
equivalent and or sign_extract operations.

1.164 gcc.info/Peephole Definitions

Machine-Specific Peephole Optimizers
====================================

In addition to instruction patterns the md file may contain
definitions of machine-specific peephole optimizations.

The combiner does not notice certain peephole optimizations when the
data flow in the program does not suggest that it should try them. For
example, sometimes two consecutive insns related in purpose can be
combined even though the second one does not appear to use a register
computed in the first one. A machine-specific peephole optimizer can
detect such opportunities.

A definition looks like this:

(define_peephole
[insn-pattern-1
insn-pattern-2
...]

"condition"
"template"
"optional insn-attributes")

The last string operand may be omitted if you are not using any
machine-specific information in this machine description. If present,
it must obey the same rules as in a define_insn.

In this skeleton, insn-pattern-1 and so on are patterns to match
consecutive insns. The optimization applies to a sequence of insns when

gcc.info 288 / 506

insn-pattern-1 matches the first one, insn-pattern-2 matches the next,
and so on.

Each of the insns matched by a peephole must also match a
define_insn. Peepholes are checked only at the last stage just
before code generation, and only optionally. Therefore, any insn which
would match a peephole but no define_insn will cause a crash in code
generation in an unoptimized compilation, or at various optimization
stages.

The operands of the insns are matched with match_operands,
match_operator, and match_dup, as usual. What is not usual is that the
operand numbers apply to all the insn patterns in the definition. So,
you can check for identical operands in two insns by using
match_operand in one insn and match_dup in the other.

The operand constraints used in match_operand patterns do not have
any direct effect on the applicability of the peephole, but they will
be validated afterward, so make sure your constraints are general enough
to apply whenever the peephole matches. If the peephole matches but
the constraints are not satisfied, the compiler will crash.

It is safe to omit constraints in all the operands of the peephole;
or you can write constraints which serve as a double-check on the
criteria previously tested.

Once a sequence of insns matches the patterns, the condition is
checked. This is a C expression which makes the final decision whether
to perform the optimization (we do so if the expression is nonzero). If
condition is omitted (in other words, the string is empty) then the
optimization is applied to every sequence of insns that matches the
patterns.

The defined peephole optimizations are applied after register
allocation is complete. Therefore, the peephole definition can check
which operands have ended up in which kinds of registers, just by
looking at the operands.

The way to refer to the operands in condition is to write
operands[i] for operand number i (as matched by
(match_operand i ...)). Use the variable insn to refer to the last of
the insns being matched; use prev_nonnote_insn to find the preceding
insns.

When optimizing computations with intermediate results, you can use
condition to match only when the intermediate results are not used
elsewhere. Use the C expression dead_or_set_p (insn, op), where insn
is the insn in which you expect the value to be used for the last time
(from the value of insn, together with use of prev_nonnote_insn), and
op is the intermediate value (from operands[i]).

Applying the optimization means replacing the sequence of insns with
one new insn. The template controls ultimate output of assembler code
for this combined insn. It works exactly like the template of a
define_insn. Operand numbers in this template are the same ones used
in matching the original sequence of insns.

gcc.info 289 / 506

The result of a defined peephole optimizer does not need to match
any of the insn patterns in the machine description; it does not even
have an opportunity to match them. The peephole optimizer definition
itself serves as the insn pattern to control how the insn is output.

Defined peephole optimizers are run as assembler code is being
output, so the insns they produce are never combined or rearranged in
any way.

Here is an example, taken from the 68000 machine description:

(define_peephole
[(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
(set (match_operand:DF 0 "register_operand" "=f")

(match_operand:DF 1 "register_operand" "ad"))]
"FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"
"*

{
rtx xoperands[2];
xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);

#ifdef MOTOROLA
output_asm_insn (\"move.l %1,(sp)\", xoperands);
output_asm_insn (\"move.l %1,-(sp)\", operands);
return \"fmove.d (sp)+,%0\";

#else
output_asm_insn (\"movel %1,sp@\", xoperands);
output_asm_insn (\"movel %1,sp@-\", operands);
return \"fmoved sp@+,%0\";

#endif
}
")

The effect of this optimization is to change

jbsr _foobar
addql #4,sp
movel d1,sp@-
movel d0,sp@-
fmoved sp@+,fp0

into

jbsr _foobar
movel d1,sp@
movel d0,sp@-
fmoved sp@+,fp0

insn-pattern-1 and so on look almost like the second operand of
define_insn. There is one important difference: the second operand of
define_insn consists of one or more RTX’s enclosed in square brackets.
Usually, there is only one: then the same action can be written as an
element of a define_peephole. But when there are multiple actions in a
define_insn, they are implicitly enclosed in a parallel. Then you must
explicitly write the parallel, and the square brackets within it, in the
define_peephole. Thus, if an insn pattern looks like this,

(define_insn "divmodsi4"

gcc.info 290 / 506

[(set (match_operand:SI 0 "general_operand" "=d")
(div:SI (match_operand:SI 1 "general_operand" "0")

(match_operand:SI 2 "general_operand" "dmsK")))
(set (match_operand:SI 3 "general_operand" "=d")

(mod:SI (match_dup 1) (match_dup 2)))]
"TARGET_68020"
"divsl%.l %2,%3:%0")

then the way to mention this insn in a peephole is as follows:

(define_peephole
[...
(parallel
[(set (match_operand:SI 0 "general_operand" "=d")

(div:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "dmsK")))

(set (match_operand:SI 3 "general_operand" "=d")
(mod:SI (match_dup 1) (match_dup 2)))])

...]
...)

1.165 gcc.info/Expander Definitions

Defining RTL Sequences for Code Generation
==

On some target machines, some standard pattern names for RTL
generation cannot be handled with single insn, but a sequence of RTL
insns can represent them. For these target machines, you can write a
define_expand to specify how to generate the sequence of RTL.

A define_expand is an RTL expression that looks almost like a
define_insn; but, unlike the latter, a define_expand is used only for
RTL generation and it can produce more than one RTL insn.

A define_expand RTX has four operands:

* The name. Each define_expand must have a name, since the only use
for it is to refer to it by name.

* The RTL template. This is just like the RTL template for a
define_peephole in that it is a vector of RTL expressions each
being one insn.

* The condition, a string containing a C expression. This
expression is used to express how the availability of this pattern
depends on subclasses of target machine, selected by command-line
options when GNU CC is run. This is just like the condition of a
define_insn that has a standard name.

* The preparation statements, a string containing zero or more C
statements which are to be executed before RTL code is generated
from the RTL template.

gcc.info 291 / 506

Usually these statements prepare temporary registers for use as
internal operands in the RTL template, but they can also generate
RTL insns directly by calling routines such as emit_insn, etc.
Any such insns precede the ones that come from the RTL template.

Every RTL insn emitted by a define_expand must match some
define_insn in the machine description. Otherwise, the compiler
will crash when trying to generate code for the insn or trying to
optimize it.

The RTL template, in addition to controlling generation of RTL insns,
also describes the operands that need to be specified when this pattern
is used. In particular, it gives a predicate for each operand.

A true operand, which needs to be specified in order to generate RTL
from the pattern, should be described with a match_operand in its first
occurrence in the RTL template. This enters information on the
operand’s predicate into the tables that record such things. GNU CC
uses the information to preload the operand into a register if that is
required for valid RTL code. If the operand is referred to more than
once, subsequent references should use match_dup.

The RTL template may also refer to internal "operands" which are
temporary registers or labels used only within the sequence made by the
define_expand. Internal operands are substituted into the RTL template
with match_dup, never with match_operand. The values of the internal
operands are not passed in as arguments by the compiler when it
requests use of this pattern. Instead, they are computed within the
pattern, in the preparation statements. These statements compute the
values and store them into the appropriate elements of operands so that
match_dup can find them.

There are two special macros defined for use in the preparation
statements: DONE and FAIL. Use them with a following semicolon, as a
statement.

DONE
Use the DONE macro to end RTL generation for the pattern. The
only RTL insns resulting from the pattern on this occasion will be
those already emitted by explicit calls to emit_insn within the
preparation statements; the RTL template will not be generated.

FAIL
Make the pattern fail on this occasion. When a pattern fails, it
means that the pattern was not truly available. The calling
routines in the compiler will try other strategies for code
generation using other patterns.

Failure is currently supported only for binary (addition,
multiplication, shifting, etc.) and bitfield (extv, extzv, and
insv) operations.

Here is an example, the definition of left-shift for the SPUR chip:

(define_expand "ashlsi3"
[(set (match_operand:SI 0 "register_operand" "")

(ashift:SI

gcc.info 292 / 506

(match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "nonmemory_operand" "")))]

""
"

{
if (GET_CODE (operands[2]) != CONST_INT

|| (unsigned) INTVAL (operands[2]) > 3)
FAIL;

}")

This example uses define_expand so that it can generate an RTL insn for
shifting when the shift-count is in the supported range of 0 to 3 but
fail in other cases where machine insns aren’t available. When it
fails, the compiler tries another strategy using different patterns
(such as, a library call).

If the compiler were able to handle nontrivial condition-strings in
patterns with names, then it would be possible to use a define_insn in
that case. Here is another case (zero-extension on the 68000) which
makes more use of the power of define_expand:

(define_expand "zero_extendhisi2"
[(set (match_operand:SI 0 "general_operand" "")

(const_int 0))
(set (strict_low_part

(subreg:HI
(match_dup 0)
0))

(match_operand:HI 1 "general_operand" ""))]
""
"operands[1] = make_safe_from (operands[1], operands[0]);")

Here two RTL insns are generated, one to clear the entire output operand
and the other to copy the input operand into its low half. This
sequence is incorrect if the input operand refers to [the old value of]
the output operand, so the preparation statement makes sure this isn’t
so. The function make_safe_from copies the operands[1] into a
temporary register if it refers to operands[0]. It does this by
emitting another RTL insn.

Finally, a third example shows the use of an internal operand.
Zero-extension on the SPUR chip is done by and-ing the result against a
halfword mask. But this mask cannot be represented by a const_int
because the constant value is too large to be legitimate on this
machine. So it must be copied into a register with force_reg and then
the register used in the and.

(define_expand "zero_extendhisi2"
[(set (match_operand:SI 0 "register_operand" "")

(and:SI (subreg:SI
(match_operand:HI 1 "register_operand" "")
0)

(match_dup 2)))]
""
"operands[2]

gcc.info 293 / 506

= force_reg (SImode, gen_rtx (CONST_INT,
VOIDmode, 65535)); ")

Note: If the define_expand is used to serve a standard binary or
unary arithmetic operation or a bitfield operation, then the last insn
it generates must not be a code_label, barrier or note. It must be an
insn, jump_insn or call_insn. If you don’t need a real insn at the
end, emit an insn to copy the result of the operation into itself.
Such an insn will generate no code, but it can avoid problems in the
compiler.

1.166 gcc.info/Insn Splitting

Defining How to Split Instructions
==================================

There are two cases where you should specify how to split a pattern
into multiple insns. On machines that have instructions requiring delay
slots (see

Delay Slots
) or that have instructions whose output is not

available for multiple cycles (see
Function Units
), the compiler phases

that optimize these cases need to be able to move insns into
one-instruction delay slots. However, some insns may generate more
than one machine instruction. These insns cannot be placed into a
delay slot.

Often you can rewrite the single insn as a list of individual insns,
each corresponding to one machine instruction. The disadvantage of
doing so is that it will cause the compilation to be slower and require
more space. If the resulting insns are too complex, it may also
suppress some optimizations. The compiler splits the insn if there is a
reason to believe that it might improve instruction or delay slot
scheduling.

The insn combiner phase also splits putative insns. If three insns
are merged into one insn with a complex expression that cannot be
matched by some define_insn pattern, the combiner phase attempts to
split the complex pattern into two insns that are recognized. Usually
it can break the complex pattern into two patterns by splitting out some
subexpression. However, in some other cases, such as performing an
addition of a large constant in two insns on a RISC machine, the way to
split the addition into two insns is machine-dependent.

The define_split definition tells the compiler how to split a
complex insn into several simpler insns. It looks like this:

(define_split
[insn-pattern]
"condition"
[new-insn-pattern-1
new-insn-pattern-2

gcc.info 294 / 506

...]
"preparation statements")

insn-pattern is a pattern that needs to be split and condition is
the final condition to be tested, as in a define_insn. When an insn
matching insn-pattern and satisfying condition is found, it is replaced
in the insn list with the insns given by new-insn-pattern-1,
new-insn-pattern-2, etc.

The preparation statements are similar to those statements that are
specified for define_expand (see

Expander Definitions
) and are executed

before the new RTL is generated to prepare for the generated code or
emit some insns whose pattern is not fixed. Unlike those in
define_expand, however, these statements must not generate any new
pseudo-registers. Once reload has completed, they also must not
allocate any space in the stack frame.

Patterns are matched against insn-pattern in two different
circumstances. If an insn needs to be split for delay slot scheduling
or insn scheduling, the insn is already known to be valid, which means
that it must have been matched by some define_insn and, if
reload_completed is non-zero, is known to satisfy the constraints of
that define_insn. In that case, the new insn patterns must also be
insns that are matched by some define_insn and, if reload_completed is
non-zero, must also satisfy the constraints of those definitions.

As an example of this usage of define_split, consider the following
example from a29k.md, which splits a sign_extend from HImode to SImode
into a pair of shift insns:

(define_split
[(set (match_operand:SI 0 "gen_reg_operand" "")

(sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]
""
[(set (match_dup 0)

(ashift:SI (match_dup 1)
(const_int 16)))

(set (match_dup 0)
(ashiftrt:SI (match_dup 0)

(const_int 16)))]
"

{ operands[1] = gen_lowpart (SImode, operands[1]); }")

When the combiner phase tries to split an insn pattern, it is always
the case that the pattern is not matched by any define_insn. The
combiner pass first tries to split a single set expression and then the
same set expression inside a parallel, but followed by a clobber of a
pseudo-reg to use as a scratch register. In these cases, the combiner
expects exactly two new insn patterns to be generated. It will verify
that these patterns match some define_insn definitions, so you need not
do this test in the define_split (of course, there is no point in
writing a define_split that will never produce insns that match).

Here is an example of this use of define_split, taken from rs6000.md:

gcc.info 295 / 506

(define_split
[(set (match_operand:SI 0 "gen_reg_operand" "")

(plus:SI (match_operand:SI 1 "gen_reg_operand" "")
(match_operand:SI 2 "non_add_cint_operand" "")))]

""
[(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))
(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]

"
{

int low = INTVAL (operands[2]) & 0xffff;
int high = (unsigned) INTVAL (operands[2]) >> 16;

if (low & 0x8000)
high++, low |= 0xffff0000;

operands[3] = gen_rtx (CONST_INT, VOIDmode, high << 16);
operands[4] = gen_rtx (CONST_INT, VOIDmode, low);

}")

Here the predicate non_add_cint_operand matches any const_int that
is not a valid operand of a single add insn. The add with the smaller
displacement is written so that it can be substituted into the address
of a subsequent operation.

An example that uses a scratch register, from the same file,
generates an equality comparison of a register and a large constant:

(define_split
[(set (match_operand:CC 0 "cc_reg_operand" "")

(compare:CC (match_operand:SI 1 "gen_reg_operand" "")
(match_operand:SI 2 "non_short_cint_operand" "")))

(clobber (match_operand:SI 3 "gen_reg_operand" ""))]
"find_single_use (operands[0], insn, 0)
&& (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ

|| GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"
[(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))
(set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]

"
{

/* Get the constant we are comparing against, C, and see what it
looks like sign-extended to 16 bits. Then see what constant
could be XOR’ed with C to get the sign-extended value. */

int c = INTVAL (operands[2]);
int sextc = (c << 16) >> 16;
int xorv = c ^ sextc;

operands[4] = gen_rtx (CONST_INT, VOIDmode, xorv);
operands[5] = gen_rtx (CONST_INT, VOIDmode, sextc);

}")

To avoid confusion, don’t write a single define_split that accepts
some insns that match some define_insn as well as some insns that
don’t. Instead, write two separate define_split definitions, one for
the insns that are valid and one for the insns that are not valid.

gcc.info 296 / 506

1.167 gcc.info/Insn Attributes

Instruction Attributes
======================

In addition to describing the instruction supported by the target
machine, the md file also defines a group of attributes and a set of
values for each. Every generated insn is assigned a value for each
attribute. One possible attribute would be the effect that the insn
has on the machine’s condition code. This attribute can then be used
by NOTICE_UPDATE_CC to track the condition codes.

Defining Attributes
Specifying attributes and their values.

Expressions
Valid expressions for attribute values.

Tagging Insns
Assigning attribute values to insns.

Attr Example
An example of assigning attributes.

Insn Lengths
Computing the length of insns.

Constant Attributes
Defining attributes that are constant.

Delay Slots
Defining delay slots required for a machine.

Function Units
Specifying information for insn scheduling.

1.168 gcc.info/Defining Attributes

Defining Attributes and their Values

The define_attr expression is used to define each attribute required
by the target machine. It looks like:

(define_attr name list-of-values default)

gcc.info 297 / 506

name is a string specifying the name of the attribute being defined.

list-of-values is either a string that specifies a comma-separated
list of values that can be assigned to the attribute, or a null string
to indicate that the attribute takes numeric values.

default is an attribute expression that gives the value of this
attribute for insns that match patterns whose definition does not
include an explicit value for this attribute. See

Attr Example
, for

more information on the handling of defaults. See
Constant Attributes
,

for information on attributes that do not depend on any particular insn.

For each defined attribute, a number of definitions are written to
the insn-attr.h file. For cases where an explicit set of values is
specified for an attribute, the following are defined:

* A #define is written for the symbol HAVE_ATTR_name.

* An enumeral class is defined for attr_name with elements of the
form upper-name_upper-value where the attribute name and value are
first converted to upper case.

* A function get_attr_name is defined that is passed an insn and
returns the attribute value for that insn.

For example, if the following is present in the md file:

(define_attr "type" "branch,fp,load,store,arith" ...)

the following lines will be written to the file insn-attr.h.

#define HAVE_ATTR_type
enum attr_type {TYPE_BRANCH, TYPE_FP, TYPE_LOAD,

TYPE_STORE, TYPE_ARITH};
extern enum attr_type get_attr_type ();

If the attribute takes numeric values, no enum type will be defined
and the function to obtain the attribute’s value will return int.

1.169 gcc.info/Expressions

Attribute Expressions

RTL expressions used to define attributes use the codes described
above plus a few specific to attribute definitions, to be discussed
below. Attribute value expressions must have one of the following
forms:

gcc.info 298 / 506

(const_int i)
The integer i specifies the value of a numeric attribute. i must
be non-negative.

The value of a numeric attribute can be specified either with a
const_int or as an integer represented as a string in
const_string, eq_attr (see below), and set_attr (see

Tagging Insns
) expressions.

(const_string value)
The string value specifies a constant attribute value. If value
is specified as "*", it means that the default value of the
attribute is to be used for the insn containing this expression.
"*" obviously cannot be used in the default expression of a
define_attr.

If the attribute whose value is being specified is numeric, value
must be a string containing a non-negative integer (normally
const_int would be used in this case). Otherwise, it must contain
one of the valid values for the attribute.

(if_then_else test true-value false-value)
test specifies an attribute test, whose format is defined below.
The value of this expression is true-value if test is true,
otherwise it is false-value.

(cond [test1 value1 ...] default)
The first operand of this expression is a vector containing an even
number of expressions and consisting of pairs of test and value
expressions. The value of the cond expression is that of the
value corresponding to the first true test expression. If
none of the test expressions are true, the value of the cond
expression is that of the default expression.

test expressions can have one of the following forms:

(const_int i)
This test is true if i is non-zero and false otherwise.

(not test)
(ior test1 test2)
(and test1 test2)

These tests are true if the indicated logical function is true.

(match_operand:m n pred constraints)
This test is true if operand n of the insn whose attribute value
is being determined has mode m (this part of the test is ignored
if m is VOIDmode) and the function specified by the string pred
returns a non-zero value when passed operand n and mode m (this
part of the test is ignored if pred is the null string).

The constraints operand is ignored and should be the null string.

(le arith1 arith2)
(leu arith1 arith2)

gcc.info 299 / 506

(lt arith1 arith2)
(ltu arith1 arith2)
(gt arith1 arith2)
(gtu arith1 arith2)
(ge arith1 arith2)
(geu arith1 arith2)
(ne arith1 arith2)
(eq arith1 arith2)

These tests are true if the indicated comparison of the two
arithmetic expressions is true. Arithmetic expressions are formed
with plus, minus, mult, div, mod, abs, neg, and, ior, xor, not,
lshift, ashift, lshiftrt, and ashiftrt expressions.

const_int and symbol_ref are always valid terms (see

Insn Lengths
,for additional forms). symbol_ref is a string

denoting a C expression that yields an int when evaluated by the
get_attr_... routine. It should normally be a global variable.

(eq_attr name value)
name is a string specifying the name of an attribute.

value is a string that is either a valid value for attribute name,
a comma-separated list of values, or ! followed by a value or
list. If value does not begin with a !, this test is true if the
value of the name attribute of the current insn is in the list
specified by value. If value begins with a !, this test is true
if the attribute’s value is not in the specified list.

For example,

(eq_attr "type" "load,store")

is equivalent to

(ior (eq_attr "type" "load") (eq_attr "type" "store"))

If name specifies an attribute of alternative, it refers to the
value of the compiler variable which_alternative (see

Output Statement
) and the values must be small integers. For

example,

(eq_attr "alternative" "2,3")

is equivalent to

(ior (eq (symbol_ref "which_alternative") (const_int 2))
(eq (symbol_ref "which_alternative") (const_int 3)))

Note that, for most attributes, an eq_attr test is simplified in
cases where the value of the attribute being tested is known for
all insns matching a particular pattern. This is by far the most
common case.

gcc.info 300 / 506

(attr_flag name)
The value of an attr_flag expression is true if the flag specified
by name is true for the insn currently being scheduled.

name is a string specifying one of a fixed set of flags to test.
Test the flags forward and backward to determine the direction of
a conditional branch. Test the flags very_likely, likely,
very_unlikely, and unlikely to determine if a conditional branch
is expected to be taken.

If the very_likely flag is true, then the likely flag is also
true. Likewise for the very_unlikely and unlikely flags.

This example describes a conditional branch delay slot which can
be nullified for forward branches that are taken (annul-true) or
for backward branches which are not taken (annul-false).

(define_delay (eq_attr "type" "cbranch")
[(eq_attr "in_branch_delay" "true")
(and (eq_attr "in_branch_delay" "true")

(attr_flag "forward"))
(and (eq_attr "in_branch_delay" "true")

(attr_flag "backward"))])

The forward and backward flags are false if the current insn being
scheduled is not a conditional branch.

The very_likely and likely flags are true if the insn being
scheduled is not a conditional branch. The The very_unlikely and
unlikely flags are false if the insn being scheduled is not a
conditional branch.

attr_flag is only used during delay slot scheduling and has no
meaning to other passes of the compiler.

1.170 gcc.info/Tagging Insns

Assigning Attribute Values to Insns

The value assigned to an attribute of an insn is primarily
determined by which pattern is matched by that insn (or which
define_peephole generated it). Every define_insn and define_peephole
can have an optional last argument to specify the values of attributes
for matching insns. The value of any attribute not specified in a
particular insn is set to the default value for that attribute, as
specified in its define_attr. Extensive use of default values for
attributes permits the specification of the values for only one or two
attributes in the definition of most insn patterns, as seen in the
example in the next section.

The optional last argument of define_insn and define_peephole is a
vector of expressions, each of which defines the value for a single

gcc.info 301 / 506

attribute. The most general way of assigning an attribute’s value is
to use a set expression whose first operand is an attr expression
giving the name of the attribute being set. The second operand of the
set is an attribute expression (see

Expressions
) giving the value of

the attribute.

When the attribute value depends on the alternative attribute (i.e.,
which is the applicable alternative in the constraint of the insn), the
set_attr_alternative expression can be used. It allows the
specification of a vector of attribute expressions, one for each
alternative.

When the generality of arbitrary attribute expressions is not
required, the simpler set_attr expression can be used, which allows
specifying a string giving either a single attribute value or a list of
attribute values, one for each alternative.

The form of each of the above specifications is shown below. In
each case, name is a string specifying the attribute to be set.

(set_attr name value-string)
value-string is either a string giving the desired attribute value,
or a string containing a comma-separated list giving the values for
succeeding alternatives. The number of elements must match the
number of alternatives in the constraint of the insn pattern.

Note that it may be useful to specify * for some alternative, in
which case the attribute will assume its default value for insns
matching that alternative.

(set_attr_alternative name [value1 value2 ...])
Depending on the alternative of the insn, the value will be one of
the specified values. This is a shorthand for using a cond with
tests on the alternative attribute.

(set (attr name) value)
The first operand of this set must be the special RTL expression
attr, whose sole operand is a string giving the name of the
attribute being set. value is the value of the attribute.

The following shows three different ways of representing the same
attribute value specification:

(set_attr "type" "load,store,arith")

(set_attr_alternative "type"
[(const_string "load") (const_string "store")
(const_string "arith")])

(set (attr "type")
(cond [(eq_attr "alternative" "1") (const_string "load")

(eq_attr "alternative" "2") (const_string "store")]
(const_string "arith")))

The define_asm_attributes expression provides a mechanism to specify

gcc.info 302 / 506

the attributes assigned to insns produced from an asm statement. It
has the form:

(define_asm_attributes [attr-sets])

where attr-sets is specified the same as for both the define_insn and
the define_peephole expressions.

These values will typically be the "worst case" attribute values.
For example, they might indicate that the condition code will be
clobbered.

A specification for a length attribute is handled specially. The
way to compute the length of an asm insn is to multiply the length
specified in the expression define_asm_attributes by the number of
machine instructions specified in the asm statement, determined by
counting the number of semicolons and newlines in the string.
Therefore, the value of the length attribute specified in a
define_asm_attributes should be the maximum possible length of a single
machine instruction.

1.171 gcc.info/Attr Example

Example of Attribute Specifications

The judicious use of defaulting is important in the efficient use of
insn attributes. Typically, insns are divided into types and an
attribute, customarily called type, is used to represent this value.
This attribute is normally used only to define the default value for
other attributes. An example will clarify this usage.

Assume we have a RISC machine with a condition code and in which only
full-word operations are performed in registers. Let us assume that we
can divide all insns into loads, stores, (integer) arithmetic
operations, floating point operations, and branches.

Here we will concern ourselves with determining the effect of an
insn on the condition code and will limit ourselves to the following
possible effects: The condition code can be set unpredictably
(clobbered), not be changed, be set to agree with the results of the
operation, or only changed if the item previously set into the
condition code has been modified.

Here is part of a sample md file for such a machine:

(define_attr "type" "load,store,arith,fp,branch" (const_string "arith"))

(define_attr "cc" "clobber,unchanged,set,change0"
(cond [(eq_attr "type" "load")

(const_string "change0")
(eq_attr "type" "store,branch")

(const_string "unchanged")

gcc.info 303 / 506

(eq_attr "type" "arith")
(if_then_else (match_operand:SI 0 "" "")

(const_string "set")
(const_string "clobber"))]

(const_string "clobber")))

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r,r,m")

(match_operand:SI 1 "general_operand" "r,m,r"))]
""
"@
move %0,%1
load %0,%1
store %0,%1"

[(set_attr "type" "arith,load,store")])

Note that we assume in the above example that arithmetic operations
performed on quantities smaller than a machine word clobber the
condition code since they will set the condition code to a value
corresponding to the full-word result.

1.172 gcc.info/Insn Lengths

Computing the Length of an Insn

For many machines, multiple types of branch instructions are
provided, each for different length branch displacements. In most
cases, the assembler will choose the correct instruction to use.
However, when the assembler cannot do so, GCC can when a special
attribute, the length attribute, is defined. This attribute must be
defined to have numeric values by specifying a null string in its
define_attr.

In the case of the length attribute, two additional forms of
arithmetic terms are allowed in test expressions:

(match_dup n)
This refers to the address of operand n of the current insn, which
must be a label_ref.

(pc)
This refers to the address of the current insn. It might have
been more consistent with other usage to make this the address of
the next insn but this would be confusing because the length of the
current insn is to be computed.

For normal insns, the length will be determined by value of the
length attribute. In the case of addr_vec and addr_diff_vec insn
patterns, the length is computed as the number of vectors multiplied by
the size of each vector.

Lengths are measured in addressable storage units (bytes).

gcc.info 304 / 506

The following macros can be used to refine the length computation:

FIRST_INSN_ADDRESS
When the length insn attribute is used, this macro specifies the
value to be assigned to the address of the first insn in a
function. If not specified, 0 is used.

ADJUST_INSN_LENGTH (insn, length)
If defined, modifies the length assigned to instruction insn as a
function of the context in which it is used. length is an lvalue
that contains the initially computed length of the insn and should
be updated with the correct length of the insn. If updating is
required, insn must not be a varying-length insn.

This macro will normally not be required. A case in which it is
required is the ROMP. On this machine, the size of an addr_vec
insn must be increased by two to compensate for the fact that
alignment may be required.

The routine that returns get_attr_length (the value of the length
attribute) can be used by the output routine to determine the form of
the branch instruction to be written, as the example below illustrates.

As an example of the specification of variable-length branches,
consider the IBM 360. If we adopt the convention that a register will
be set to the starting address of a function, we can jump to labels
within 4k of the start using a four-byte instruction. Otherwise, we
need a six-byte sequence to load the address from memory and then
branch to it.

On such a machine, a pattern for a branch instruction might be
specified as follows:

(define_insn "jump"
[(set (pc)

(label_ref (match_operand 0 "" "")))]
""
"*

{
return (get_attr_length (insn) == 4

? \"b %l0\" : \"l r15,=a(%l0); br r15\");
}"

[(set (attr "length") (if_then_else (lt (match_dup 0) (const_int 4096))
(const_int 4)
(const_int 6)))])

1.173 gcc.info/Constant Attributes

Constant Attributes

A special form of define_attr, where the expression for the default
value is a const expression, indicates an attribute that is constant
for a given run of the compiler. Constant attributes may be used to

gcc.info 305 / 506

specify which variety of processor is used. For example,

(define_attr "cpu" "m88100,m88110,m88000"
(const
(cond [(symbol_ref "TARGET_88100") (const_string "m88100")

(symbol_ref "TARGET_88110") (const_string "m88110")]
(const_string "m88000"))))

(define_attr "memory" "fast,slow"
(const
(if_then_else (symbol_ref "TARGET_FAST_MEM")

(const_string "fast")
(const_string "slow"))))

The routine generated for constant attributes has no parameters as it
does not depend on any particular insn. RTL expressions used to define
the value of a constant attribute may use the symbol_ref form, but may
not use either the match_operand form or eq_attr forms involving insn
attributes.

1.174 gcc.info/Delay Slots

Delay Slot Scheduling

The insn attribute mechanism can be used to specify the requirements
for delay slots, if any, on a target machine. An instruction is said to
require a delay slot if some instructions that are physically after the
instruction are executed as if they were located before it. Classic
examples are branch and call instructions, which often execute the
following instruction before the branch or call is performed.

On some machines, conditional branch instructions can optionally
annul instructions in the delay slot. This means that the instruction
will not be executed for certain branch outcomes. Both instructions
that annul if the branch is true and instructions that annul if the
branch is false are supported.

Delay slot scheduling differs from instruction scheduling in that
determining whether an instruction needs a delay slot is dependent only
on the type of instruction being generated, not on data flow between the
instructions. See the next section for a discussion of data-dependent
instruction scheduling.

The requirement of an insn needing one or more delay slots is
indicated via the define_delay expression. It has the following form:

(define_delay test
[delay-1 annul-true-1 annul-false-1
delay-2 annul-true-2 annul-false-2
...])

test is an attribute test that indicates whether this define_delay
applies to a particular insn. If so, the number of required delay

gcc.info 306 / 506

slots is determined by the length of the vector specified as the second
argument. An insn placed in delay slot n must satisfy attribute test
delay-n. annul-true-n is an attribute test that specifies which insns
may be annulled if the branch is true. Similarly, annul-false-n
specifies which insns in the delay slot may be annulled if the branch
is false. If annulling is not supported for that delay slot, (nil)
should be coded.

For example, in the common case where branch and call insns require
a single delay slot, which may contain any insn other than a branch or
call, the following would be placed in the md file:

(define_delay (eq_attr "type" "branch,call")
[(eq_attr "type" "!branch,call") (nil) (nil)])

Multiple define_delay expressions may be specified. In this case,
each such expression specifies different delay slot requirements and
there must be no insn for which tests in two define_delay expressions
are both true.

For example, if we have a machine that requires one delay slot for
branches but two for calls, no delay slot can contain a branch or call
insn, and any valid insn in the delay slot for the branch can be
annulled if the branch is true, we might represent this as follows:

(define_delay (eq_attr "type" "branch")
[(eq_attr "type" "!branch,call")
(eq_attr "type" "!branch,call")
(nil)])

(define_delay (eq_attr "type" "call")
[(eq_attr "type" "!branch,call") (nil) (nil)
(eq_attr "type" "!branch,call") (nil) (nil)])

1.175 gcc.info/Function Units

Specifying Function Units

On most RISC machines, there are instructions whose results are not
available for a specific number of cycles. Common cases are
instructions that load data from memory. On many machines, a pipeline
stall will result if the data is referenced too soon after the load
instruction.

In addition, many newer microprocessors have multiple function
units, usually one for integer and one for floating point, and often
will incur pipeline stalls when a result that is needed is not yet
ready.

The descriptions in this section allow the specification of how much
time must elapse between the execution of an instruction and the time
when its result is used. It also allows specification of when the
execution of an instruction will delay execution of similar instructions

gcc.info 307 / 506

due to function unit conflicts.

For the purposes of the specifications in this section, a machine is
divided into function units, each of which execute a specific class of
instructions in first-in-first-out order. Function units that accept
one instruction each cycle and allow a result to be used in the
succeeding instruction (usually via forwarding) need not be specified.
Classic RISC microprocessors will normally have a single function unit,
which we can call memory. The newer "superscalar" processors will
often have function units for floating point operations, usually at
least a floating point adder and multiplier.

Each usage of a function units by a class of insns is specified with
a define_function_unit expression, which looks like this:

(define_function_unit name multiplicity simultaneity
test ready-delay issue-delay
[conflict-list])

name is a string giving the name of the function unit.

multiplicity is an integer specifying the number of identical units
in the processor. If more than one unit is specified, they will be
scheduled independently. Only truly independent units should be
counted; a pipelined unit should be specified as a single unit. (The
only common example of a machine that has multiple function units for a
single instruction class that are truly independent and not pipelined
are the two multiply and two increment units of the CDC 6600.)

simultaneity specifies the maximum number of insns that can be
executing in each instance of the function unit simultaneously or zero
if the unit is pipelined and has no limit.

All define_function_unit definitions referring to function unit name
must have the same name and values for multiplicity and simultaneity.

test is an attribute test that selects the insns we are describing
in this definition. Note that an insn may use more than one function
unit and a function unit may be specified in more than one
define_function_unit.

ready-delay is an integer that specifies the number of cycles after
which the result of the instruction can be used without introducing any
stalls.

issue-delay is an integer that specifies the number of cycles after
the instruction matching the test expression begins using this unit
until a subsequent instruction can begin. A cost of N indicates an N-1
cycle delay. A subsequent instruction may also be delayed if an
earlier instruction has a longer ready-delay value. This blocking
effect is computed using the simultaneity, ready-delay, issue-delay,
and conflict-list terms. For a normal non-pipelined function unit,
simultaneity is one, the unit is taken to block for the ready-delay
cycles of the executing insn, and smaller values of issue-delay are
ignored.

conflict-list is an optional list giving detailed conflict costs for

gcc.info 308 / 506

this unit. If specified, it is a list of condition test expressions to
be applied to insns chosen to execute in name following the particular
insn matching test that is already executing in name. For each insn in
the list, issue-delay specifies the conflict cost; for insns not in the
list, the cost is zero. If not specified, conflict-list defaults to
all instructions that use the function unit.

Typical uses of this vector are where a floating point function unit
can pipeline either single- or double-precision operations, but not
both, or where a memory unit can pipeline loads, but not stores, etc.

As an example, consider a classic RISC machine where the result of a
load instruction is not available for two cycles (a single "delay"
instruction is required) and where only one load instruction can be
executed simultaneously. This would be specified as:

(define_function_unit "memory" 1 1 (eq_attr "type" "load") 2 0)

For the case of a floating point function unit that can pipeline
either single or double precision, but not both, the following could be
specified:

(define_function_unit
"fp" 1 0 (eq_attr "type" "sp_fp") 4 4 [(eq_attr "type" "dp_fp")])

(define_function_unit
"fp" 1 0 (eq_attr "type" "dp_fp") 4 4 [(eq_attr "type" "sp_fp")])

Note: The scheduler attempts to avoid function unit conflicts and
uses all the specifications in the define_function_unit expression. It
has recently come to our attention that these specifications may not
allow modeling of some of the newer "superscalar" processors that have
insns using multiple pipelined units. These insns will cause a
potential conflict for the second unit used during their execution and
there is no way of representing that conflict. We welcome any examples
of how function unit conflicts work in such processors and suggestions
for their representation.

1.176 gcc.info/Target Macros

Target Description Macros

In addition to the file machine.md, a machine description includes a
C header file conventionally given the name machine.h. This header
file defines numerous macros that convey the information about the
target machine that does not fit into the scheme of the .md file. The
file tm.h should be a link to machine.h. The header file config.h
includes tm.h and most compiler source files include config.h.

Driver
Controlling how the driver runs the compilation ←↩

passes.

gcc.info 309 / 506

Run-time Target
Defining -m options like -m68000 and -m68020.

Storage Layout
Defining sizes and alignments of data.

Type Layout
Defining sizes and properties of basic user data types.

Registers
Naming and describing the hardware registers.

Register Classes
Defining the classes of hardware registers.

Stack and Calling
Defining which way the stack grows and by how much.

Varargs
Defining the varargs macros.

Trampolines
Code set up at run time to enter a nested function.

Library Calls
Controlling how library routines are implicitly called.

Addressing Modes
Defining addressing modes valid for memory operands.

Condition Code
Defining how insns update the condition code.

Costs
Defining relative costs of different operations.

Sections
Dividing storage into text, data, and other sections.

PIC
Macros for position independent code.

Assembler Format
Defining how to write insns and pseudo-ops to output.

Debugging Info
Defining the format of debugging output.

Cross-compilation
Handling floating point for cross-compilers.

Misc
Everything else.

gcc.info 310 / 506

1.177 gcc.info/Driver

Controlling the Compilation Driver, gcc
=======================================

SWITCH_TAKES_ARG (char)
A C expression which determines whether the option -char takes
arguments. The value should be the number of arguments that
option takes-zero, for many options.

By default, this macro is defined to handle the standard options
properly. You need not define it unless you wish to add additional
options which take arguments.

WORD_SWITCH_TAKES_ARG (name)
A C expression which determines whether the option -name takes
arguments. The value should be the number of arguments that
option takes-zero, for many options. This macro rather than
SWITCH_TAKES_ARG is used for multi-character option names.

By default, this macro is defined as
DEFAULT_WORD_SWITCH_TAKES_ARG, which handles the standard
options properly. You need not define WORD_SWITCH_TAKES_ARG
unless you wish to add additional options which take arguments.
Any redefinition should call DEFAULT_WORD_SWITCH_TAKES_ARG and
then check for additional options.

SWITCHES_NEED_SPACES
A string-valued C expression which is nonempty if the linker needs
a space between the -L or -o option and its argument.

If this macro is not defined, the default value is 0.

CPP_SPEC
A C string constant that tells the GNU CC driver program options to
pass to CPP. It can also specify how to translate options you
give to GNU CC into options for GNU CC to pass to the CPP.

Do not define this macro if it does not need to do anything.

NO_BUILTIN_SIZE_TYPE
If this macro is defined, the preprocessor will not define the
builtin macro __SIZE_TYPE__. The macro __SIZE_TYPE__ must then be
defined by CPP_SPEC instead.

This should be defined if SIZE_TYPE depends on target dependent
flags which are not accessible to the preprocessor. Otherwise, it
should not be defined.

NO_BUILTIN_PTRDIFF_TYPE
If this macro is defined, the preprocessor will not define the
builtin macro __PTRDIFF_TYPE__. The macro __PTRDIFF_TYPE__ must
then be defined by CPP_SPEC instead.

This should be defined if PTRDIFF_TYPE depends on target dependent
flags which are not accessible to the preprocessor. Otherwise, it

gcc.info 311 / 506

should not be defined.

SIGNED_CHAR_SPEC
A C string constant that tells the GNU CC driver program options to
pass to CPP. By default, this macro is defined to pass the option
-D__CHAR_UNSIGNED__ to CPP if char will be treated as unsigned
char by cc1.

Do not define this macro unless you need to override the default
definition.

CC1_SPEC
A C string constant that tells the GNU CC driver program options to
pass to cc1. It can also specify how to translate options you
give to GNU CC into options for GNU CC to pass to the cc1.

Do not define this macro if it does not need to do anything.

CC1PLUS_SPEC
A C string constant that tells the GNU CC driver program options to
pass to cc1plus. It can also specify how to translate options you
give to GNU CC into options for GNU CC to pass to the cc1plus.

Do not define this macro if it does not need to do anything.

ASM_SPEC
A C string constant that tells the GNU CC driver program options to
pass to the assembler. It can also specify how to translate
options you give to GNU CC into options for GNU CC to pass to the
assembler. See the file sun3.h for an example of this.

Do not define this macro if it does not need to do anything.

ASM_FINAL_SPEC
A C string constant that tells the GNU CC driver program how to
run any programs which cleanup after the normal assembler.
Normally, this is not needed. See the file mips.h for an example
of this.

Do not define this macro if it does not need to do anything.

LINK_SPEC
A C string constant that tells the GNU CC driver program options to
pass to the linker. It can also specify how to translate options
you give to GNU CC into options for GNU CC to pass to the linker.

Do not define this macro if it does not need to do anything.

LIB_SPEC
Another C string constant used much like LINK_SPEC. The difference
between the two is that LIB_SPEC is used at the end of the command
given to the linker.

If this macro is not defined, a default is provided that loads the
standard C library from the usual place. See gcc.c.

STARTFILE_SPEC

gcc.info 312 / 506

Another C string constant used much like LINK_SPEC. The
difference between the two is that STARTFILE_SPEC is used at the
very beginning of the command given to the linker.

If this macro is not defined, a default is provided that loads the
standard C startup file from the usual place. See gcc.c.

ENDFILE_SPEC
Another C string constant used much like LINK_SPEC. The
difference between the two is that ENDFILE_SPEC is used at the
very end of the command given to the linker.

Do not define this macro if it does not need to do anything.

LINK_LIBGCC_SPECIAL
Define this macro meaning that gcc should find the library
libgcc.a by hand, rather than passing the argument -lgcc to
tell the linker to do the search; also, gcc should not generate -L
options to pass to the linker (as it normally does).

LINK_LIBGCC_SPECIAL_1
Define this macro meaning that gcc should find the library
libgcc.a by hand, rather than passing the argument -lgcc to
tell the linker to do the search.

RELATIVE_PREFIX_NOT_LINKDIR
Define this macro to tell gcc that it should only translate a -B
prefix into a -L linker option if the prefix indicates an absolute
file name.

STANDARD_EXEC_PREFIX
Define this macro as a C string constant if you wish to override
the standard choice of /gnu/lib/gcc-lib/ as the default prefix to
try when searching for the executable files of the compiler.

MD_EXEC_PREFIX
If defined, this macro is an additional prefix to try after
STANDARD_EXEC_PREFIX. MD_EXEC_PREFIX is not searched when the -b
option is used, or the compiler is built as a cross compiler.

STANDARD_STARTFILE_PREFIX
Define this macro as a C string constant if you wish to override
the standard choice of /gnu/lib/ as the default prefix to try when
searching for startup files such as crt0.o.

MD_STARTFILE_PREFIX
If defined, this macro supplies an additional prefix to try after
the standard prefixes. MD_EXEC_PREFIX is not searched when the -b
option is used, or when the compiler is built as a cross compiler.

MD_STARTFILE_PREFIX_1
If defined, this macro supplies yet another prefix to try after the
standard prefixes. It is not searched when the -b option is used,
or when the compiler is built as a cross compiler.

LOCAL_INCLUDE_DIR
Define this macro as a C string constant if you wish to override

gcc.info 313 / 506

the standard choice of /gnu/include as the default prefix to try
when searching for local header files. LOCAL_INCLUDE_DIR comes
before SYSTEM_INCLUDE_DIR in the search order.

Cross compilers do not use this macro and do not search either
/gnu/include or its replacement.

SYSTEM_INCLUDE_DIR
Define this macro as a C string constant if you wish to specify a
system-specific directory to search for header files before the
standard directory. SYSTEM_INCLUDE_DIR comes before
STANDARD_INCLUDE_DIR in the search order.

Cross compilers do not use this macro and do not search the
directory specified.

STANDARD_INCLUDE_DIR
Define this macro as a C string constant if you wish to override
the standard choice of /usr/include as the default prefix to try
when searching for header files.

Cross compilers do not use this macro and do not search either
/usr/include or its replacement.

INCLUDE_DEFAULTS
Define this macro if you wish to override the entire default
search path for include files. The default search path includes
GCC_INCLUDE_DIR, LOCAL_INCLUDE_DIR, SYSTEM_INCLUDE_DIR,
GPLUSPLUS_INCLUDE_DIR, and STANDARD_INCLUDE_DIR. In addition,
GPLUSPLUS_INCLUDE_DIR and GCC_INCLUDE_DIR are defined
automatically by Makefile, and specify private search areas for
GCC. The directory GPLUSPLUS_INCLUDE_DIR is used only for C++
programs.

The definition should be an initializer for an array of structures.
Each array element should have two elements: the directory name (a
string constant) and a flag for C++-only directories. Mark the
end of the array with a null element. For example, here is the
definition used for VMS:

#define INCLUDE_DEFAULTS \
{ \

{ "GNU_GXX_INCLUDE:", 1}, \
{ "GNU_CC_INCLUDE:", 0}, \
{ "SYS$SYSROOT:[SYSLIB.]", 0}, \
{ ".", 0}, \
{ 0, 0} \

}

Here is the order of prefixes tried for exec files:

1. Any prefixes specified by the user with -B.

2. The environment variable GCC_EXEC_PREFIX, if any.

3. The directories specified by the environment variable
COMPILER_PATH.

gcc.info 314 / 506

4. The macro STANDARD_EXEC_PREFIX.

5. /usr/lib/gcc/.

6. The macro MD_EXEC_PREFIX, if any.

Here is the order of prefixes tried for startfiles:

1. Any prefixes specified by the user with -B.

2. The environment variable GCC_EXEC_PREFIX, if any.

3. The directories specified by the environment variable LIBRARY_PATH.

4. The macro STANDARD_EXEC_PREFIX.

5. /usr/lib/gcc/.

6. The macro MD_EXEC_PREFIX, if any.

7. The macro MD_STARTFILE_PREFIX, if any.

8. The macro STANDARD_STARTFILE_PREFIX.

9. /lib/.

10. /usr/lib/.

1.178 gcc.info/Run-time Target

Run-time Target Specification
=============================

CPP_PREDEFINES
Define this to be a string constant containing -D options to
define the predefined macros that identify this machine and system.
These macros will be predefined unless the -ansi option is
specified.

In addition, a parallel set of macros are predefined, whose names
are made by appending __ at the beginning and at the end. These
__ macros are permitted by the ANSI standard, so they are
predefined regardless of whether -ansi is specified.

For example, on the Sun, one can use the following value:

"-Dmc68000 -Dsun -Dunix"

The result is to define the macros __mc68000__, __sun__ and
__unix__ unconditionally, and the macros mc68000, sun and unix
provided -ansi is not specified.

STDC_VALUE

gcc.info 315 / 506

Define the value to be assigned to the built-in macro __STDC__.
The default is the value 1.

extern int target_flags;
This declaration should be present.

TARGET_...
This series of macros is to allow compiler command arguments to
enable or disable the use of optional features of the target
machine. For example, one machine description serves both the
68000 and the 68020; a command argument tells the compiler whether
it should use 68020-only instructions or not. This command
argument works by means of a macro TARGET_68020 that tests a bit in
target_flags.

Define a macro TARGET_featurename for each such option. Its
definition should test a bit in target_flags; for example:

#define TARGET_68020 (target_flags & 1)

One place where these macros are used is in the
condition-expressions of instruction patterns. Note how
TARGET_68020 appears frequently in the 68000 machine description
file, m68k.md. Another place they are used is in the definitions
of the other macros in the machine.h file.

TARGET_SWITCHES
This macro defines names of command options to set and clear bits
in target_flags. Its definition is an initializer with a
subgrouping for each command option.

Each subgrouping contains a string constant, that defines the
option name, and a number, which contains the bits to set in
target_flags. A negative number says to clear bits instead; the
negative of the number is which bits to clear. The actual option
name is made by appending -m to the specified name.

One of the subgroupings should have a null string. The number in
this grouping is the default value for target_flags. Any target
options act starting with that value.

Here is an example which defines -m68000 and -m68020 with opposite
meanings, and picks the latter as the default:

#define TARGET_SWITCHES \
{ { "68020", 1}, \

{ "68000", -1}, \
{ "", 1}}

TARGET_OPTIONS
This macro is similar to TARGET_SWITCHES but defines names of
command options that have values. Its definition is an
initializer with a subgrouping for each command option.

Each subgrouping contains a string constant, that defines the
fixed part of the option name, and the address of a variable. The
variable, type char *, is set to the variable part of the given

gcc.info 316 / 506

option if the fixed part matches. The actual option name is made
by appending -m to the specified name.

Here is an example which defines -mshort-data-number. If the
given option is -mshort-data-512, the variable m88k_short_data
will be set to the string "512".

extern char *m88k_short_data;
#define TARGET_OPTIONS \
{ { "short-data-", &m88k_short_data } }

TARGET_VERSION
This macro is a C statement to print on stderr a string describing
the particular machine description choice. Every machine
description should define TARGET_VERSION. For example:

#ifdef MOTOROLA
#define TARGET_VERSION \

fprintf (stderr, " (68k, Motorola syntax)");
#else
#define TARGET_VERSION \

fprintf (stderr, " (68k, MIT syntax)");
#endif

OVERRIDE_OPTIONS
Sometimes certain combinations of command options do not make
sense on a particular target machine. You can define a macro
OVERRIDE_OPTIONS to take account of this. This macro, if defined,
is executed once just after all the command options have been
parsed.

Don’t use this macro to turn on various extra optimizations for
-O. That is what OPTIMIZATION_OPTIONS is for.

OPTIMIZATION_OPTIONS (level)
Some machines may desire to change what optimizations are
performed for various optimization levels. This macro, if
defined, is executed once just after the optimization level is
determined and before the remainder of the command options have
been parsed. Values set in this macro are used as the default
values for the other command line options.

level is the optimization level specified; 2 if -O2 is specified,
1 if -O is specified, and 0 if neither is specified.

Do not examine write_symbols in this macro! The debugging options
are not supposed to alter the generated code.

1.179 gcc.info/Storage Layout

Storage Layout
==============

Note that the definitions of the macros in this table which are

gcc.info 317 / 506

sizes or alignments measured in bits do not need to be constant. They
can be C expressions that refer to static variables, such as the
target_flags. See

Run-time Target
.

BITS_BIG_ENDIAN
Define this macro to be the value 1 if the most significant bit in
a byte has the lowest number; otherwise define it to be the value
zero. This means that bit-field instructions count from the most
significant bit. If the machine has no bit-field instructions,
then this must still be defined, but it doesn’t matter which value
it is defined to.

This macro does not affect the way structure fields are packed into
bytes or words; that is controlled by BYTES_BIG_ENDIAN.

BYTES_BIG_ENDIAN
Define this macro to be 1 if the most significant byte in a word
has the lowest number.

WORDS_BIG_ENDIAN
Define this macro to be 1 if, in a multiword object, the most
significant word has the lowest number. This applies to both
memory locations and registers; GNU CC fundamentally assumes that
the order of words in memory is the same as the order in registers.

FLOAT_WORDS_BIG_ENDIAN
Define this macro to be 1 if DFmode, XFmode or TFmode floating
point numbers are stored in memory with the word containing the
sign bit at the lowest address; otherwise define it to be 0.

You need not define this macro if the ordering is the same as for
multi-word integers.

BITS_PER_UNIT
Define this macro to be the number of bits in an addressable
storage unit (byte); normally 8.

BITS_PER_WORD
Number of bits in a word; normally 32.

MAX_BITS_PER_WORD
Maximum number of bits in a word. If this is undefined, the
default is BITS_PER_WORD. Otherwise, it is the constant value
that is the largest value that BITS_PER_WORD can have at run-time.

UNITS_PER_WORD
Number of storage units in a word; normally 4.

MAX_UNITS_PER_WORD
Maximum number of units in a word. If this is undefined, the
default is UNITS_PER_WORD. Otherwise, it is the constant value
that is the largest value that UNITS_PER_WORD can have at run-time.

POINTER_SIZE
Width of a pointer, in bits.

gcc.info 318 / 506

PROMOTE_MODE (m, unsignedp, type)
A macro to update m and unsignedp when an object whose type is
type and which has the specified mode and signedness is to be
stored in a register. This macro is only called when type is a
scalar type.

On most RISC machines, which only have operations that operate on
a full register, define this macro to set m to word_mode if m is
an integer mode narrower than BITS_PER_WORD. In most cases, only
integer modes should be widened because wider-precision
floating-point operations are usually more expensive than their
narrower counterparts.

For most machines, the macro definition does not change unsignedp.
However, some machines, have instructions that preferentially
handle either signed or unsigned quantities of certain modes. For
example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
instructions sign-extend the result to 64 bits. On such machines,
set unsignedp according to which kind of extension is more
efficient.

Do not define this macro if it would never modify m.

PROMOTE_FUNCTION_ARGS
Define this macro if the promotion described by PROMOTE_MODE
should also be done for outgoing function arguments.

PROMOTE_FUNCTION_RETURN
Define this macro if the promotion described by PROMOTE_MODE
should also be done for the return value of functions.

If this macro is defined, FUNCTION_VALUE must perform the same
promotions done by PROMOTE_MODE.

PARM_BOUNDARY
Normal alignment required for function parameters on the stack, in
bits. All stack parameters receive at least this much alignment
regardless of data type. On most machines, this is the same as the
size of an integer.

STACK_BOUNDARY
Define this macro if you wish to preserve a certain alignment for
the stack pointer. The definition is a C expression for the
desired alignment (measured in bits).

If PUSH_ROUNDING is not defined, the stack will always be aligned
to the specified boundary. If PUSH_ROUNDING is defined and
specifies a less strict alignment than STACK_BOUNDARY, the stack
may be momentarily unaligned while pushing arguments.

FUNCTION_BOUNDARY
Alignment required for a function entry point, in bits.

BIGGEST_ALIGNMENT
Biggest alignment that any data type can require on this machine,
in bits.

gcc.info 319 / 506

BIGGEST_FIELD_ALIGNMENT
Biggest alignment that any structure field can require on this
machine, in bits. If defined, this overrides BIGGEST_ALIGNMENT for
structure fields only.

MAX_OFILE_ALIGNMENT
Biggest alignment supported by the object file format of this
machine. Use this macro to limit the alignment which can be
specified using the __attribute__ ((aligned (n))) construct. If
not defined, the default value is BIGGEST_ALIGNMENT.

DATA_ALIGNMENT (type, basic-align)
If defined, a C expression to compute the alignment for a static
variable. type is the data type, and basic-align is the alignment
that the object would ordinarily have. The value of this macro is
used instead of that alignment to align the object.

If this macro is not defined, then basic-align is used.

One use of this macro is to increase alignment of medium-size data
to make it all fit in fewer cache lines. Another is to cause
character arrays to be word-aligned so that strcpy calls that copy
constants to character arrays can be done inline.

CONSTANT_ALIGNMENT (constant, basic-align)
If defined, a C expression to compute the alignment given to a
constant that is being placed in memory. constant is the constant
and basic-align is the alignment that the object would ordinarily
have. The value of this macro is used instead of that alignment to
align the object.

If this macro is not defined, then basic-align is used.

The typical use of this macro is to increase alignment for string
constants to be word aligned so that strcpy calls that copy
constants can be done inline.

EMPTY_FIELD_BOUNDARY
Alignment in bits to be given to a structure bit field that
follows an empty field such as int : 0;.

Note that PCC_BITFIELD_TYPE_MATTERS also affects the alignment
that results from an empty field.

STRUCTURE_SIZE_BOUNDARY
Number of bits which any structure or union’s size must be a
multiple of. Each structure or union’s size is rounded up to a
multiple of this.

If you do not define this macro, the default is the same as
BITS_PER_UNIT.

STRICT_ALIGNMENT
Define this macro to be the value 1 if instructions will fail to
work if given data not on the nominal alignment. If instructions
will merely go slower in that case, define this macro as 0.

gcc.info 320 / 506

PCC_BITFIELD_TYPE_MATTERS
Define this if you wish to imitate the way many other C compilers
handle alignment of bitfields and the structures that contain them.

The behavior is that the type written for a bitfield (int, short,
or other integer type) imposes an alignment for the entire
structure, as if the structure really did contain an ordinary
field of that type. In addition, the bitfield is placed within the
structure so that it would fit within such a field, not crossing a
boundary for it.

Thus, on most machines, a bitfield whose type is written as int
would not cross a four-byte boundary, and would force four-byte
alignment for the whole structure. (The alignment used may not be
four bytes; it is controlled by the other alignment parameters.)

If the macro is defined, its definition should be a C expression;
a nonzero value for the expression enables this behavior.

Note that if this macro is not defined, or its value is zero, some
bitfields may cross more than one alignment boundary. The
compiler can support such references if there are insv, extv, and
extzv insns that can directly reference memory.

The other known way of making bitfields work is to define
STRUCTURE_SIZE_BOUNDARY as large as BIGGEST_ALIGNMENT. Then every
structure can be accessed with fullwords.

Unless the machine has bitfield instructions or you define
STRUCTURE_SIZE_BOUNDARY that way, you must define
PCC_BITFIELD_TYPE_MATTERS to have a nonzero value.

If your aim is to make GNU CC use the same conventions for laying
out bitfields as are used by another compiler, here is how to
investigate what the other compiler does. Compile and run this
program:

struct foo1
{

char x;
char :0;
char y;

};

struct foo2
{

char x;
int :0;
char y;

};

main ()
{

printf ("Size of foo1 is %d\n",
sizeof (struct foo1));

printf ("Size of foo2 is %d\n",

gcc.info 321 / 506

sizeof (struct foo2));
exit (0);

}

If this prints 2 and 5, then the compiler’s behavior is what you
would get from PCC_BITFIELD_TYPE_MATTERS.

BITFIELD_NBYTES_LIMITED
Like PCC_BITFIELD_TYPE_MATTERS except that its effect is limited to
aligning a bitfield within the structure.

ROUND_TYPE_SIZE (struct, size, align)
Define this macro as an expression for the overall size of a
structure (given by struct as a tree node) when the size computed
from the fields is size and the alignment is align.

The default is to round size up to a multiple of align.

ROUND_TYPE_ALIGN (struct, computed, specified)
Define this macro as an expression for the alignment of a structure
(given by struct as a tree node) if the alignment computed in the
usual way is computed and the alignment explicitly specified was
specified.

The default is to use specified if it is larger; otherwise, use
the smaller of computed and BIGGEST_ALIGNMENT

MAX_FIXED_MODE_SIZE
An integer expression for the size in bits of the largest integer
machine mode that should actually be used. All integer machine
modes of this size or smaller can be used for structures and
unions with the appropriate sizes. If this macro is undefined,
GET_MODE_BITSIZE (DImode) is assumed.

CHECK_FLOAT_VALUE (mode, value)
A C statement to validate the value value (of type double) for
mode mode. This means that you check whether value fits within
the possible range of values for mode mode on this target machine.
The mode mode is always SFmode or DFmode.

If value is not valid, you should call error to print an error
message and then assign some valid value to value. Allowing an
invalid value to go through the compiler can produce incorrect
assembler code which may even cause Unix assemblers to crash.

This macro need not be defined if there is no work for it to do.

TARGET_FLOAT_FORMAT
A code distinguishing the floating point format of the target
machine. There are three defined values:

IEEE_FLOAT_FORMAT
This code indicates IEEE floating point. It is the default;
there is no need to define this macro when the format is IEEE.

VAX_FLOAT_FORMAT
This code indicates the peculiar format used on the Vax.

gcc.info 322 / 506

UNKNOWN_FLOAT_FORMAT
This code indicates any other format.

The value of this macro is compared with HOST_FLOAT_FORMAT (see

Config
) to determine whether the target machine has the same

format as the host machine. If any other formats are actually in
use on supported machines, new codes should be defined for them.

The ordering of the component words of floating point values
stored in memory is controlled by FLOAT_WORDS_BIG_ENDIAN for the
target machine and HOST_FLOAT_WORDS_BIG_ENDIAN for the host.

1.180 gcc.info/Type Layout

Layout of Source Language Data Types
====================================

These macros define the sizes and other characteristics of the
standard basic data types used in programs being compiled. Unlike the
macros in the previous section, these apply to specific features of C
and related languages, rather than to fundamental aspects of storage
layout.

INT_TYPE_SIZE
A C expression for the size in bits of the type int on the target
machine. If you don’t define this, the default is one word.

MAX_INT_TYPE_SIZE
Maximum number for the size in bits of the type int on the target
machine. If this is undefined, the default is INT_TYPE_SIZE.
Otherwise, it is the constant value that is the largest value that
INT_TYPE_SIZE can have at run-time. This is used in cpp.

SHORT_TYPE_SIZE
A C expression for the size in bits of the type short on the
target machine. If you don’t define this, the default is half a
word. (If this would be less than one storage unit, it is rounded
up to one unit.)

LONG_TYPE_SIZE
A C expression for the size in bits of the type long on the target
machine. If you don’t define this, the default is one word.

MAX_LONG_TYPE_SIZE
Maximum number for the size in bits of the type long on the target
machine. If this is undefined, the default is LONG_TYPE_SIZE.
Otherwise, it is the constant value that is the largest value that
LONG_TYPE_SIZE can have at run-time. This is used in cpp.

LONG_LONG_TYPE_SIZE

gcc.info 323 / 506

A C expression for the size in bits of the type long long on the
target machine. If you don’t define this, the default is two
words.

CHAR_TYPE_SIZE
A C expression for the size in bits of the type char on the target
machine. If you don’t define this, the default is one quarter of
a word. (If this would be less than one storage unit, it is
rounded up to one unit.)

MAX_CHAR_TYPE_SIZE
Maximum number for the size in bits of the type char on the target
machine. If this is undefined, the default is CHAR_TYPE_SIZE.
Otherwise, it is the constant value that is the largest value that
CHAR_TYPE_SIZE can have at run-time. This is used in cpp.

FLOAT_TYPE_SIZE
A C expression for the size in bits of the type float on the
target machine. If you don’t define this, the default is one word.

DOUBLE_TYPE_SIZE
A C expression for the size in bits of the type double on the
target machine. If you don’t define this, the default is two
words.

LONG_DOUBLE_TYPE_SIZE
A C expression for the size in bits of the type long double on the
target machine. If you don’t define this, the default is two
words.

DEFAULT_SIGNED_CHAR
An expression whose value is 1 or 0, according to whether the type
char should be signed or unsigned by default. The user can always
override this default with the options -fsigned-char and
-funsigned-char.

DEFAULT_SHORT_ENUMS
A C expression to determine whether to give an enum type only as
many bytes as it takes to represent the range of possible values
of that type. A nonzero value means to do that; a zero value
means all enum types should be allocated like int.

If you don’t define the macro, the default is 0.

SIZE_TYPE
A C expression for a string describing the name of the data type
to use for size values. The typedef name size_t is defined using
the contents of the string.

The string can contain more than one keyword. If so, separate
them with spaces, and write first any length keyword, then
unsigned if appropriate, and finally int. The string must
exactly match one of the data type names defined in the function
init_decl_processing in the file c-decl.c. You may not omit int
or change the order--that would cause the compiler to crash on
startup.

gcc.info 324 / 506

If you don’t define this macro, the default is "long unsigned int".

PTRDIFF_TYPE
A C expression for a string describing the name of the data type
to use for the result of subtracting two pointers. The typedef
name ptrdiff_t is defined using the contents of the string. See
SIZE_TYPE above for more information.

If you don’t define this macro, the default is "long int".

WCHAR_TYPE
A C expression for a string describing the name of the data type
to use for wide characters. The typedef name wchar_t is defined
using the contents of the string. See SIZE_TYPE above for more
information.

If you don’t define this macro, the default is "int".

WCHAR_TYPE_SIZE
A C expression for the size in bits of the data type for wide
characters. This is used in cpp, which cannot make use of
WCHAR_TYPE.

MAX_WCHAR_TYPE_SIZE
Maximum number for the size in bits of the data type for wide
characters. If this is undefined, the default is WCHAR_TYPE_SIZE.
Otherwise, it is the constant value that is the largest value
that WCHAR_TYPE_SIZE can have at run-time. This is used in cpp.

OBJC_INT_SELECTORS
Define this macro if the type of Objective C selectors should be
int.

If this macro is not defined, then selectors should have the type
struct objc_selector *.

OBJC_SELECTORS_WITHOUT_LABELS
Define this macro if the compiler can group all the selectors
together into a vector and use just one label at the beginning of
the vector. Otherwise, the compiler must give each selector its
own assembler label.

On certain machines, it is important to have a separate label for
each selector because this enables the linker to eliminate
duplicate selectors.

TARGET_BELL
A C constant expression for the integer value for escape sequence
\a.

TARGET_BS
TARGET_TAB
TARGET_NEWLINE

C constant expressions for the integer values for escape sequences
\b, \t and \n.

TARGET_VT

gcc.info 325 / 506

TARGET_FF
TARGET_CR

C constant expressions for the integer values for escape sequences
\v, \f and \r.

1.181 gcc.info/Registers

Register Usage
==============

This section explains how to describe what registers the target
machine has, and how (in general) they can be used.

The description of which registers a specific instruction can use is
done with register classes; see

Register Classes
. For information on

using registers to access a stack frame, see
Frame Registers
. For

passing values in registers, see
Register Arguments
. For returning

values in registers, see
Scalar Return
.

Register Basics
Number and kinds of registers.

Allocation Order
Order in which registers are allocated.

Values in Registers
What kinds of values each reg can hold.

Leaf Functions
Renumbering registers for leaf functions.

Stack Registers
Handling a register stack such as 80387.

Obsolete Register Macros
Macros formerly used for the 80387.

1.182 gcc.info/Register Basics

gcc.info 326 / 506

Basic Characteristics of Registers

FIRST_PSEUDO_REGISTER
Number of hardware registers known to the compiler. They receive
numbers 0 through FIRST_PSEUDO_REGISTER-1; thus, the first pseudo
register’s number really is assigned the number
FIRST_PSEUDO_REGISTER.

FIXED_REGISTERS
An initializer that says which registers are used for fixed
purposes all throughout the compiled code and are therefore not
available for general allocation. These would include the stack
pointer, the frame pointer (except on machines where that can be
used as a general register when no frame pointer is needed), the
program counter on machines where that is considered one of the
addressable registers, and any other numbered register with a
standard use.

This information is expressed as a sequence of numbers, separated
by commas and surrounded by braces. The nth number is 1 if
register n is fixed, 0 otherwise.

The table initialized from this macro, and the table initialized by
the following one, may be overridden at run time either
automatically, by the actions of the macro
CONDITIONAL_REGISTER_USAGE, or by the user with the command
options -ffixed-reg, -fcall-used-reg and -fcall-saved-reg.

CALL_USED_REGISTERS
Like FIXED_REGISTERS but has 1 for each register that is clobbered
(in general) by function calls as well as for fixed registers.
This macro therefore identifies the registers that are not
available for general allocation of values that must live across
function calls.

If a register has 0 in CALL_USED_REGISTERS, the compiler
automatically saves it on function entry and restores it on
function exit, if the register is used within the function.

CONDITIONAL_REGISTER_USAGE
Zero or more C statements that may conditionally modify two
variables fixed_regs and call_used_regs (both of type char [])
after they have been initialized from the two preceding macros.

This is necessary in case the fixed or call-clobbered registers
depend on target flags.

You need not define this macro if it has no work to do.

If the usage of an entire class of registers depends on the target
flags, you may indicate this to GCC by using this macro to modify
fixed_regs and call_used_regs to 1 for each of the registers in
the classes which should not be used by GCC. Also define the
macro REG_CLASS_FROM_LETTER to return NO_REGS if it is called with
a letter for a class that shouldn’t be used.

gcc.info 327 / 506

(However, if this class is not included in GENERAL_REGS and all of
the insn patterns whose constraints permit this class are
controlled by target switches, then GCC will automatically avoid
using these registers when the target switches are opposed to
them.)

NON_SAVING_SETJMP
If this macro is defined and has a nonzero value, it means that
setjmp and related functions fail to save the registers, or that
longjmp fails to restore them. To compensate, the compiler avoids
putting variables in registers in functions that use setjmp.

INCOMING_REGNO (out)
Define this macro if the target machine has register windows.
This C expression returns the register number as seen by the
called function corresponding to the register number out as seen
by the calling function. Return out if register number out is not
an outbound register.

OUTGOING_REGNO (in)
Define this macro if the target machine has register windows.
This C expression returns the register number as seen by the
calling function corresponding to the register number in as seen
by the called function. Return in if register number in is not an
inbound register.

1.183 gcc.info/Allocation Order

Order of Allocation of Registers

REG_ALLOC_ORDER
If defined, an initializer for a vector of integers, containing the
numbers of hard registers in the order in which GNU CC should
prefer to use them (from most preferred to least).

If this macro is not defined, registers are used lowest numbered
first (all else being equal).

One use of this macro is on machines where the highest numbered
registers must always be saved and the save-multiple-registers
instruction supports only sequences of consecutive registers. On
such machines, define REG_ALLOC_ORDER to be an initializer that
lists the highest numbered allocatable register first.

ORDER_REGS_FOR_LOCAL_ALLOC
A C statement (sans semicolon) to choose the order in which to
allocate hard registers for pseudo-registers local to a basic
block.

Store the desired register order in the array reg_alloc_order.
Element 0 should be the register to allocate first; element 1, the
next register; and so on.

gcc.info 328 / 506

The macro body should not assume anything about the contents of
reg_alloc_order before execution of the macro.

On most machines, it is not necessary to define this macro.

1.184 gcc.info/Values in Registers

How Values Fit in Registers

This section discusses the macros that describe which kinds of values
(specifically, which machine modes) each register can hold, and how many
consecutive registers are needed for a given mode.

HARD_REGNO_NREGS (regno, mode)
A C expression for the number of consecutive hard registers,
starting at register number regno, required to hold a value of mode
mode.

On a machine where all registers are exactly one word, a suitable
definition of this macro is

#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
/ UNITS_PER_WORD))

HARD_REGNO_MODE_OK (regno, mode)
A C expression that is nonzero if it is permissible to store a
value of mode mode in hard register number regno (or in several
registers starting with that one). For a machine where all
registers are equivalent, a suitable definition is

#define HARD_REGNO_MODE_OK(REGNO, MODE) 1

It is not necessary for this macro to check for the numbers of
fixed registers, because the allocation mechanism considers them
to be always occupied.

On some machines, double-precision values must be kept in even/odd
register pairs. The way to implement that is to define this macro
to reject odd register numbers for such modes.

The minimum requirement for a mode to be OK in a register is that
the movmode instruction pattern support moves between the register
and any other hard register for which the mode is OK; and that
moving a value into the register and back out not alter it.

Since the same instruction used to move SImode will work for all
narrower integer modes, it is not necessary on any machine for
HARD_REGNO_MODE_OK to distinguish between these modes, provided
you define patterns movhi, etc., to take advantage of this. This
is useful because of the interaction between HARD_REGNO_MODE_OK
and MODES_TIEABLE_P; it is very desirable for all integer modes to

gcc.info 329 / 506

be tieable.

Many machines have special registers for floating point arithmetic.
Often people assume that floating point machine modes are allowed
only in floating point registers. This is not true. Any
registers that can hold integers can safely hold a floating point
machine mode, whether or not floating arithmetic can be done on it
in those registers. Integer move instructions can be used to move
the values.

On some machines, though, the converse is true: fixed-point machine
modes may not go in floating registers. This is true if the
floating registers normalize any value stored in them, because
storing a non-floating value there would garble it. In this case,
HARD_REGNO_MODE_OK should reject fixed-point machine modes in
floating registers. But if the floating registers do not
automatically normalize, if you can store any bit pattern in one
and retrieve it unchanged without a trap, then any machine mode
may go in a floating register, so you can define this macro to say
so.

On some machines, such as the Sparc and the Mips, we get better
code by defining HARD_REGNO_MODE_OK to forbid integers in floating
registers, even though the hardware is capable of handling them.
This is because transferring values between floating registers and
general registers is so slow that it is better to keep the integer
in memory.

The primary significance of special floating registers is rather
that they are the registers acceptable in floating point arithmetic
instructions. However, this is of no concern to
HARD_REGNO_MODE_OK. You handle it by writing the proper
constraints for those instructions.

On some machines, the floating registers are especially slow to
access, so that it is better to store a value in a stack frame
than in such a register if floating point arithmetic is not being
done. As long as the floating registers are not in class
GENERAL_REGS, they will not be used unless some pattern’s
constraint asks for one.

MODES_TIEABLE_P (mode1, mode2)
A C expression that is nonzero if it is desirable to choose
register allocation so as to avoid move instructions between a
value of mode mode1 and a value of mode mode2.

If HARD_REGNO_MODE_OK (r, mode1) and HARD_REGNO_MODE_OK (r, mode2)
are ever different for any r, then MODES_TIEABLE_P (mode1, mode2)
must be zero.

1.185 gcc.info/Leaf Functions

Handling Leaf Functions

gcc.info 330 / 506

On some machines, a leaf function (i.e., one which makes no calls)
can run more efficiently if it does not make its own register window.
Often this means it is required to receive its arguments in the
registers where they are passed by the caller, instead of the registers
where they would normally arrive.

The special treatment for leaf functions generally applies only when
other conditions are met; for example, often they may use only those
registers for its own variables and temporaries. We use the term "leaf
function" to mean a function that is suitable for this special
handling, so that functions with no calls are not necessarily "leaf
functions".

GNU CC assigns register numbers before it knows whether the function
is suitable for leaf function treatment. So it needs to renumber the
registers in order to output a leaf function. The following macros
accomplish this.

LEAF_REGISTERS
A C initializer for a vector, indexed by hard register number,
which contains 1 for a register that is allowable in a candidate
for leaf function treatment.

If leaf function treatment involves renumbering the registers,
then the registers marked here should be the ones before
renumbering--those that GNU CC would ordinarily allocate. The
registers which will actually be used in the assembler code, after
renumbering, should not be marked with 1 in this vector.

Define this macro only if the target machine offers a way to
optimize the treatment of leaf functions.

LEAF_REG_REMAP (regno)
A C expression whose value is the register number to which regno
should be renumbered, when a function is treated as a leaf
function.

If regno is a register number which should not appear in a leaf
function before renumbering, then the expression should yield -1,
which will cause the compiler to abort.

Define this macro only if the target machine offers a way to
optimize the treatment of leaf functions, and registers need to be
renumbered to do this.

REG_LEAF_ALLOC_ORDER
If defined, an initializer for a vector of integers, containing the
numbers of hard registers in the order in which the GNU CC should
prefer to use them (from most preferred to least) in a leaf
function. If this macro is not defined, REG_ALLOC_ORDER is used
for both non-leaf and leaf-functions.

Normally, FUNCTION_PROLOGUE and FUNCTION_EPILOGUE must treat leaf
functions specially. It can test the C variable leaf_function which is
nonzero for leaf functions. (The variable leaf_function is defined
only if LEAF_REGISTERS is defined.)

gcc.info 331 / 506

1.186 gcc.info/Stack Registers

Registers That Form a Stack

There are special features to handle computers where some of the
"registers" form a stack, as in the 80387 coprocessor for the 80386.
Stack registers are normally written by pushing onto the stack, and are
numbered relative to the top of the stack.

Currently, GNU CC can only handle one group of stack-like registers,
and they must be consecutively numbered.

STACK_REGS
Define this if the machine has any stack-like registers.

FIRST_STACK_REG
The number of the first stack-like register. This one is the top
of the stack.

LAST_STACK_REG
The number of the last stack-like register. This one is the
bottom of the stack.

1.187 gcc.info/Obsolete Register Macros

Obsolete Macros for Controlling Register Usage
--

These features do not work very well. They exist because they used
to be required to generate correct code for the 80387 coprocessor of the
80386. They are no longer used by that machine description and may be
removed in a later version of the compiler. Don’t use them!

OVERLAPPING_REGNO_P (regno)
If defined, this is a C expression whose value is nonzero if hard
register number regno is an overlapping register. This means a
hard register which overlaps a hard register with a different
number. (Such overlap is undesirable, but occasionally it allows
a machine to be supported which otherwise could not be.) This
macro must return nonzero for all the registers which overlap each
other. GNU CC can use an overlapping register only in certain
limited ways. It can be used for allocation within a basic block,
and may be spilled for reloading; that is all.

If this macro is not defined, it means that none of the hard
registers overlap each other. This is the usual situation.

INSN_CLOBBERS_REGNO_P (insn, regno)

gcc.info 332 / 506

If defined, this is a C expression whose value should be nonzero if
the insn insn has the effect of mysteriously clobbering the
contents of hard register number regno. By "mysterious" we mean
that the insn’s RTL expression doesn’t describe such an effect.

If this macro is not defined, it means that no insn clobbers
registers mysteriously. This is the usual situation; all else
being equal, it is best for the RTL expression to show all the
activity.

PRESERVE_DEATH_INFO_REGNO_P (regno)
If defined, this is a C expression whose value is nonzero if
accurate REG_DEAD notes are needed for hard register number regno
at the time of outputting the assembler code. When this is so, a
few optimizations that take place after register allocation and
could invalidate the death notes are not done when this register is
involved.

You would arrange to preserve death info for a register when some
of the code in the machine description which is executed to write
the assembler code looks at the death notes. This is necessary
only when the actual hardware feature which GNU CC thinks of as a
register is not actually a register of the usual sort. (It might,
for example, be a hardware stack.)

If this macro is not defined, it means that no death notes need to
be preserved. This is the usual situation.

1.188 gcc.info/Register Classes

Register Classes
================

On many machines, the numbered registers are not all equivalent.
For example, certain registers may not be allowed for indexed
addressing; certain registers may not be allowed in some instructions.
These machine restrictions are described to the compiler using register
classes.

You define a number of register classes, giving each one a name and
saying which of the registers belong to it. Then you can specify
register classes that are allowed as operands to particular instruction
patterns.

In general, each register will belong to several classes. In fact,
one class must be named ALL_REGS and contain all the registers. Another
class must be named NO_REGS and contain no registers. Often the union
of two classes will be another class; however, this is not required.

One of the classes must be named GENERAL_REGS. There is nothing
terribly special about the name, but the operand constraint letters r
and g specify this class. If GENERAL_REGS is the same as ALL_REGS,
just define it as a macro which expands to ALL_REGS.

gcc.info 333 / 506

Order the classes so that if class x is contained in class y then x
has a lower class number than y.

The way classes other than GENERAL_REGS are specified in operand
constraints is through machine-dependent operand constraint letters.
You can define such letters to correspond to various classes, then use
them in operand constraints.

You should define a class for the union of two classes whenever some
instruction allows both classes. For example, if an instruction allows
either a floating point (coprocessor) register or a general register
for a certain operand, you should define a class FLOAT_OR_GENERAL_REGS
which includes both of them. Otherwise you will get suboptimal code.

You must also specify certain redundant information about the
register classes: for each class, which classes contain it and which
ones are contained in it; for each pair of classes, the largest class
contained in their union.

When a value occupying several consecutive registers is expected in a
certain class, all the registers used must belong to that class.
Therefore, register classes cannot be used to enforce a requirement for
a register pair to start with an even-numbered register. The way to
specify this requirement is with HARD_REGNO_MODE_OK.

Register classes used for input-operands of bitwise-and or shift
instructions have a special requirement: each such class must have, for
each fixed-point machine mode, a subclass whose registers can transfer
that mode to or from memory. For example, on some machines, the
operations for single-byte values (QImode) are limited to certain
registers. When this is so, each register class that is used in a
bitwise-and or shift instruction must have a subclass consisting of
registers from which single-byte values can be loaded or stored. This
is so that PREFERRED_RELOAD_CLASS can always have a possible value to
return.

enum reg_class
An enumeral type that must be defined with all the register class
names as enumeral values. NO_REGS must be first. ALL_REGS must
be the last register class, followed by one more enumeral value,
LIM_REG_CLASSES, which is not a register class but rather tells
how many classes there are.

Each register class has a number, which is the value of casting
the class name to type int. The number serves as an index in many
of the tables described below.

N_REG_CLASSES
The number of distinct register classes, defined as follows:

#define N_REG_CLASSES (int) LIM_REG_CLASSES

REG_CLASS_NAMES
An initializer containing the names of the register classes as C
string constants. These names are used in writing some of the
debugging dumps.

gcc.info 334 / 506

REG_CLASS_CONTENTS
An initializer containing the contents of the register classes, as
integers which are bit masks. The nth integer specifies the
contents of class n. The way the integer mask is interpreted is
that register r is in the class if mask & (1 << r) is 1.

When the machine has more than 32 registers, an integer does not
suffice. Then the integers are replaced by sub-initializers,
braced groupings containing several integers. Each
sub-initializer must be suitable as an initializer for the type
HARD_REG_SET which is defined in hard-reg-set.h.

REGNO_REG_CLASS (regno)
A C expression whose value is a register class containing hard
register regno. In general there is more than one such class;
choose a class which is minimal, meaning that no smaller class
also contains the register.

BASE_REG_CLASS
A macro whose definition is the name of the class to which a valid
base register must belong. A base register is one used in an
address which is the register value plus a displacement.

INDEX_REG_CLASS
A macro whose definition is the name of the class to which a valid
index register must belong. An index register is one used in an
address where its value is either multiplied by a scale factor or
added to another register (as well as added to a displacement).

REG_CLASS_FROM_LETTER (char)
A C expression which defines the machine-dependent operand
constraint letters for register classes. If char is such a
letter, the value should be the register class corresponding to
it. Otherwise, the value should be NO_REGS. The register letter
r, corresponding to class GENERAL_REGS, will not be passed to
this macro; you do not need to handle it.

REGNO_OK_FOR_BASE_P (num)
A C expression which is nonzero if register number num is suitable
for use as a base register in operand addresses. It may be either
a suitable hard register or a pseudo register that has been
allocated such a hard register.

REGNO_OK_FOR_INDEX_P (num)
A C expression which is nonzero if register number num is suitable
for use as an index register in operand addresses. It may be
either a suitable hard register or a pseudo register that has been
allocated such a hard register.

The difference between an index register and a base register is
that the index register may be scaled. If an address involves the
sum of two registers, neither one of them scaled, then either one
may be labeled the "base" and the other the "index"; but whichever
labeling is used must fit the machine’s constraints of which
registers may serve in each capacity. The compiler will try both
labelings, looking for one that is valid, and will reload one or
both registers only if neither labeling works.

gcc.info 335 / 506

PREFERRED_RELOAD_CLASS (x, class)
A C expression that places additional restrictions on the register
class to use when it is necessary to copy value x into a register
in class class. The value is a register class; perhaps class, or
perhaps another, smaller class. On many machines, the following
definition is safe:

#define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS

Sometimes returning a more restrictive class makes better code.
For example, on the 68000, when x is an integer constant that is
in range for a moveq instruction, the value of this macro is always
DATA_REGS as long as class includes the data registers. Requiring
a data register guarantees that a moveq will be used.

If x is a const_double, by returning NO_REGS you can force x into
a memory constant. This is useful on certain machines where
immediate floating values cannot be loaded into certain kinds of
registers.

PREFERRED_OUTPUT_RELOAD_CLASS (x, class)
Like PREFERRED_RELOAD_CLASS, but for output reloads instead of
input reloads. If you don’t define this macro, the default is to
use class, unchanged.

LIMIT_RELOAD_CLASS (mode, class)
A C expression that places additional restrictions on the register
class to use when it is necessary to be able to hold a value of
mode mode in a reload register for which class class would
ordinarily be used.

Unlike PREFERRED_RELOAD_CLASS, this macro should be used when
there are certain modes that simply can’t go in certain reload
classes.

The value is a register class; perhaps class, or perhaps another,
smaller class.

Don’t define this macro unless the target machine has limitations
which require the macro to do something nontrivial.

SECONDARY_RELOAD_CLASS (class, mode, x)
SECONDARY_INPUT_RELOAD_CLASS (class, mode, x)
SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x)

Many machines have some registers that cannot be copied directly
to or from memory or even from other types of registers. An
example is the MQ register, which on most machines, can only be
copied to or from general registers, but not memory. Some
machines allow copying all registers to and from memory, but
require a scratch register for stores to some memory locations
(e.g., those with symbolic address on the RT, and those with
certain symbolic address on the Sparc when compiling PIC). In
some cases, both an intermediate and a scratch register are
required.

You should define these macros to indicate to the reload phase

gcc.info 336 / 506

that it may need to allocate at least one register for a reload in
addition to the register to contain the data. Specifically, if
copying x to a register class in mode requires an intermediate
register, you should define SECONDARY_INPUT_RELOAD_CLASS to return
the largest register class all of whose registers can be used as
intermediate registers or scratch registers.

If copying a register class in mode to x requires an intermediate
or scratch register, SECONDARY_OUTPUT_RELOAD_CLASS should be
defined to return the largest register class required. If the
requirements for input and output reloads are the same, the macro
SECONDARY_RELOAD_CLASS should be used instead of defining both
macros identically.

The values returned by these macros are often GENERAL_REGS.
Return NO_REGS if no spare register is needed; i.e., if x can be
directly copied to or from a register of class in mode without
requiring a scratch register. Do not define this macro if it
would always return NO_REGS.

If a scratch register is required (either with or without an
intermediate register), you should define patterns for reload_inm
or reload_outm, as required (see

Standard Names
. These patterns,

which will normally be implemented with a define_expand, should be
similar to the movm patterns, except that operand 2 is the scratch
register.

Define constraints for the reload register and scratch register
that contain a single register class. If the original reload
register (whose class is class) can meet the constraint given in
the pattern, the value returned by these macros is used for the
class of the scratch register. Otherwise, two additional reload
registers are required. Their classes are obtained from the
constraints in the insn pattern.

x might be a pseudo-register or a subreg of a pseudo-register,
which could either be in a hard register or in memory. Use
true_regnum to find out; it will return -1 if the pseudo is in
memory and the hard register number if it is in a register.

These macros should not be used in the case where a particular
class of registers can only be copied to memory and not to another
class of registers. In that case, secondary reload registers are
not needed and would not be helpful. Instead, a stack location
must be used to perform the copy and the movm pattern should use
memory as a intermediate storage. This case often occurs between
floating-point and general registers.

SECONDARY_MEMORY_NEEDED (class1, class2, m)
Certain machines have the property that some registers cannot be
copied to some other registers without using memory. Define this
macro on those machines to be a C expression that is non-zero if
objects of mode m in registers of class1 can only be copied to
registers of class class2 by storing a register of class1 into
memory and loading that memory location into a register of class2.

gcc.info 337 / 506

Do not define this macro if its value would always be zero.

SECONDARY_MEMORY_NEEDED_RTX (mode)
Normally, when SECONDARY_MEMORY_NEEDED is defined, the compiler
will allocate a stack slot when a memory location for a register
copy is needed. If this macro is defined, the compiler instead
uses the memory location defined by this macro.

SMALL_REGISTER_CLASSES
Normally the compiler will avoid choosing spill registers from
registers that have been explicitly mentioned in the rtl (these
registers are normally those used to pass parameters and return
values). However, some machines have so few registers of certain
classes that there would not be enough registers to use as spill
registers if this were done.

You should define SMALL_REGISTER_CLASSES on those machines. When
it is defined, the compiler allows registers explicitly used in
the rtl to be used as spill registers but prevents the compiler
from extending the lifetime of these registers.

Defining this macro is always safe, but unnecessarily defining
this macro will reduce the amount of optimizations that can be
performed in some cases. If this macro is not defined but needs
to be, the compiler will run out of reload registers and print a
fatal error message.

For most machines, this macro should not be defined.

CLASS_LIKELY_SPILLED_P (class)
A C expression whose value is nonzero if pseudos that have been
assigned to registers of class class would likely be spilled
because registers of class are needed for spill registers.

The default value of this macro returns 1 if class has exactly one
register and zero otherwise. On most machines, this default
should be used. Only define this macro to some other expression
if pseudo allocated by local-alloc.c end up in memory because
their hard registers were needed for spill regisers. If this
macro returns nonzero for those classes, those pseudos will only
be allocated by global.c, which knows how to reallocate the pseudo
to another register. If there would not be another register
available for reallocation, you should not change the definition
of this macro since the only effect of such a definition would be
to slow down register allocation.

CLASS_MAX_NREGS (class, mode)
A C expression for the maximum number of consecutive registers of
class class needed to hold a value of mode mode.

This is closely related to the macro HARD_REGNO_NREGS. In fact,
the value of the macro CLASS_MAX_NREGS (class, mode) should be the
maximum value of HARD_REGNO_NREGS (regno, mode) for all regno
values in the class class.

This macro helps control the handling of multiple-word values in

gcc.info 338 / 506

the reload pass.

Three other special macros describe which operands fit which
constraint letters.

CONST_OK_FOR_LETTER_P (value, c)
A C expression that defines the machine-dependent operand
constraint letters that specify particular ranges of integer
values. If c is one of those letters, the expression should check
that value, an integer, is in the appropriate range and return 1
if so, 0 otherwise. If c is not one of those letters, the value
should be 0 regardless of value.

CONST_DOUBLE_OK_FOR_LETTER_P (value, c)
A C expression that defines the machine-dependent operand
constraint letters that specify particular ranges of const_double
values.

If c is one of those letters, the expression should check that
value, an RTX of code const_double, is in the appropriate range
and return 1 if so, 0 otherwise. If c is not one of those
letters, the value should be 0 regardless of value.

const_double is used for all floating-point constants and for
DImode fixed-point constants. A given letter can accept either or
both kinds of values. It can use GET_MODE to distinguish between
these kinds.

EXTRA_CONSTRAINT (value, c)
A C expression that defines the optional machine-dependent
constraint letters that can be used to segregate specific types of
operands, usually memory references, for the target machine.
Normally this macro will not be defined. If it is required for a
particular target machine, it should return 1 if value corresponds
to the operand type represented by the constraint letter c. If c
is not defined as an extra constraint, the value returned should
be 0 regardless of value.

For example, on the ROMP, load instructions cannot have their
output in r0 if the memory reference contains a symbolic address.
Constraint letter Q is defined as representing a memory address
that does not contain a symbolic address. An alternative is
specified with a Q constraint on the input and r on the output.
The next alternative specifies m on the input and a register class
that does not include r0 on the output.

1.189 gcc.info/Stack and Calling

Stack Layout and Calling Conventions
====================================

gcc.info 339 / 506

Frame Layout

Frame Registers

Elimination

Stack Arguments

Register Arguments

Scalar Return

Aggregate Return

Caller Saves

Function Entry

Profiling

1.190 gcc.info/Frame Layout

Basic Stack Layout

STACK_GROWS_DOWNWARD
Define this macro if pushing a word onto the stack moves the stack
pointer to a smaller address.

When we say, "define this macro if ...," it means that the
compiler checks this macro only with #ifdef so the precise
definition used does not matter.

FRAME_GROWS_DOWNWARD
Define this macro if the addresses of local variable slots are at
negative offsets from the frame pointer.

ARGS_GROW_DOWNWARD
Define this macro if successive arguments to a function occupy
decreasing addresses on the stack.

STARTING_FRAME_OFFSET
Offset from the frame pointer to the first local variable slot to
be allocated.

If FRAME_GROWS_DOWNWARD, find the next slot’s offset by
subtracting the first slot’s length from STARTING_FRAME_OFFSET.
Otherwise, it is found by adding the length of the first slot to
the value STARTING_FRAME_OFFSET.

STACK_POINTER_OFFSET
Offset from the stack pointer register to the first location at
which outgoing arguments are placed. If not specified, the
default value of zero is used. This is the proper value for most

gcc.info 340 / 506

machines.

If ARGS_GROW_DOWNWARD, this is the offset to the location above
the first location at which outgoing arguments are placed.

FIRST_PARM_OFFSET (fundecl)
Offset from the argument pointer register to the first argument’s
address. On some machines it may depend on the data type of the
function.

If ARGS_GROW_DOWNWARD, this is the offset to the location above
the first argument’s address.

STACK_DYNAMIC_OFFSET (fundecl)
Offset from the stack pointer register to an item dynamically
allocated on the stack, e.g., by alloca.

The default value for this macro is STACK_POINTER_OFFSET plus the
length of the outgoing arguments. The default is correct for most
machines. See function.c for details.

DYNAMIC_CHAIN_ADDRESS (frameaddr)
A C expression whose value is RTL representing the address in a
stack frame where the pointer to the caller’s frame is stored.
Assume that frameaddr is an RTL expression for the address of the
stack frame itself.

If you don’t define this macro, the default is to return the value
of frameaddr--that is, the stack frame address is also the address
of the stack word that points to the previous frame.

SERTUP_FRAME_ADDRESSES ()
If defined, a C expression that produces the machine-specific code
to setup the stack so that arbitrary frames can be accessed. For
example, on the Sparc, we must flush all of the register windows
to the stack before we can access arbitrary stack frames. This
macro will seldom need to be defined.

RETURN_ADDR_RTX (count, frameaddr)
A C expression whose value is RTL representing the value of the
return address for the frame count steps up from the current frame.
frameaddr is the frame pointer of the count frame, or the frame
pointer of the count - 1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is
defined.

RETURN_ADDR_IN_PREVIOUS_FRAME
Define this if the return address of a particular stack frame is
accessed from the frame pointer of the previous stack frame.

1.191 gcc.info/Frame Registers

Registers That Address the Stack Frame

gcc.info 341 / 506

STACK_POINTER_REGNUM
The register number of the stack pointer register, which must also
be a fixed register according to FIXED_REGISTERS. On most
machines, the hardware determines which register this is.

FRAME_POINTER_REGNUM
The register number of the frame pointer register, which is used to
access automatic variables in the stack frame. On some machines,
the hardware determines which register this is. On other
machines, you can choose any register you wish for this purpose.

HARD_FRAME_POINTER_REGNUM
On some machines the offset between the frame pointer and starting
offset of the automatic variables is not known until after register
allocation has been done (for example, because the saved registers
are between these two locations). On those machines,
FRAME_POINTER_REGNUM as a special, fixed register to be used
internally until the offset is known, and define
HARD_FRAME_POINTER_REGNUM to be the hard register used for the
frame pointer.

You should define this macro only in the very rare circumstances
when it is not possible to calculate the offset between the frame
pointer and the automatic variables until after register
allocation has been completed. When this macro is defined, you
must also indicate in your definition of ELIMINABLE_REGS how to
eliminate FRAME_POINTER_REGNUM into either
HARD_FRAME_POINTER_REGNUM or STACK_POINTER_REGNUM.

Do not define this macro if it would be the same as
FRAME_POINTER_REGNUM.

ARG_POINTER_REGNUM
The register number of the arg pointer register, which is used to
access the function’s argument list. On some machines, this is
the same as the frame pointer register. On some machines, the
hardware determines which register this is. On other machines,
you can choose any register you wish for this purpose. If this is
not the same register as the frame pointer register, then you must
mark it as a fixed register according to FIXED_REGISTERS, or
arrange to be able to eliminate it (see

Elimination
).

STATIC_CHAIN_REGNUM
STATIC_CHAIN_INCOMING_REGNUM

Register numbers used for passing a function’s static chain
pointer. If register windows are used, the register number as
seen by the called function is STATIC_CHAIN_INCOMING_REGNUM, while
the register number as seen by the calling function is
STATIC_CHAIN_REGNUM. If these registers are the same,
STATIC_CHAIN_INCOMING_REGNUM need not be defined.

The static chain register need not be a fixed register.

If the static chain is passed in memory, these macros should not be
defined; instead, the next two macros should be defined.

gcc.info 342 / 506

STATIC_CHAIN
STATIC_CHAIN_INCOMING

If the static chain is passed in memory, these macros provide rtx
giving mem expressions that denote where they are stored.
STATIC_CHAIN and STATIC_CHAIN_INCOMING give the locations as seen
by the calling and called functions, respectively. Often the
former will be at an offset from the stack pointer and the latter
at an offset from the frame pointer.

The variables stack_pointer_rtx, frame_pointer_rtx, and
arg_pointer_rtx will have been initialized prior to the use of
these macros and should be used to refer to those items.

If the static chain is passed in a register, the two previous
macros should be defined instead.

1.192 gcc.info/Elimination

Eliminating Frame Pointer and Arg Pointer

FRAME_POINTER_REQUIRED
A C expression which is nonzero if a function must have and use a
frame pointer. This expression is evaluated in the reload pass.
If its value is nonzero the function will have a frame pointer.

The expression can in principle examine the current function and
decide according to the facts, but on most machines the constant 0
or the constant 1 suffices. Use 0 when the machine allows code to
be generated with no frame pointer, and doing so saves some time
or space. Use 1 when there is no possible advantage to avoiding a
frame pointer.

In certain cases, the compiler does not know how to produce valid
code without a frame pointer. The compiler recognizes those cases
and automatically gives the function a frame pointer regardless of
what FRAME_POINTER_REQUIRED says. You don’t need to worry about
them.

In a function that does not require a frame pointer, the frame
pointer register can be allocated for ordinary usage, unless you
mark it as a fixed register. See FIXED_REGISTERS for more
information.

This macro is ignored and you do not need to define it if the
function ELIMINABLE_REGS is defined.

INITIAL_FRAME_POINTER_OFFSET (depth-var)
A C statement to store in the variable depth-var the difference
between the frame pointer and the stack pointer values immediately
after the function prologue. The value would be computed from
information such as the result of get_frame_size () and the tables

gcc.info 343 / 506

of registers regs_ever_live and call_used_regs.

If ELIMINABLE_REGS is defined, this macro will be not be used and
need not be defined. Otherwise, it must be defined even if
FRAME_POINTER_REQUIRED is defined to always be true; in that case,
you may set depth-var to anything.

ELIMINABLE_REGS
If defined, this macro specifies a table of register pairs used to
eliminate unneeded registers that point into the stack frame. If
it is not defined, the only elimination attempted by the compiler
is to replace references to the frame pointer with references to
the stack pointer.

The definition of this macro is a list of structure
initializations, each of which specifies an original and
replacement register.

On some machines, the position of the argument pointer is not
known until the compilation is completed. In such a case, a
separate hard register must be used for the argument pointer.
This register can be eliminated by replacing it with either the
frame pointer or the argument pointer, depending on whether or not
the frame pointer has been eliminated.

In this case, you might specify:
#define ELIMINABLE_REGS \
{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}

Note that the elimination of the argument pointer with the stack
pointer is specified first since that is the preferred elimination.

CAN_ELIMINATE (from-reg, to-reg)
A C expression that returns non-zero if the compiler is allowed to
try to replace register number from-reg with register number
to-reg. This macro need only be defined if ELIMINABLE_REGS is
defined, and will usually be the constant 1, since most of the
cases preventing register elimination are things that the compiler
already knows about.

INITIAL_ELIMINATION_OFFSET (from-reg, to-reg, offset-var)
This macro is similar to INITIAL_FRAME_POINTER_OFFSET. It
specifies the initial difference between the specified pair of
registers. This macro must be defined if ELIMINABLE_REGS is
defined.

LONGJMP_RESTORE_FROM_STACK
Define this macro if the longjmp function restores registers from
the stack frames, rather than from those saved specifically by
setjmp. Certain quantities must not be kept in registers across a
call to setjmp on such machines.

gcc.info 344 / 506

1.193 gcc.info/Stack Arguments

Passing Function Arguments on the Stack

The macros in this section control how arguments are passed on the
stack. See the following section for other macros that control passing
certain arguments in registers.

PROMOTE_PROTOTYPES
Define this macro if an argument declared in a prototype as an
integral type smaller than int should actually be passed as an
int. In addition to avoiding errors in certain cases of
mismatch, it also makes for better code on certain machines.

PUSH_ROUNDING (npushed)
A C expression that is the number of bytes actually pushed onto the
stack when an instruction attempts to push npushed bytes.

If the target machine does not have a push instruction, do not
define this macro. That directs GNU CC to use an alternate
strategy: to allocate the entire argument block and then store the
arguments into it.

On some machines, the definition

#define PUSH_ROUNDING(BYTES) (BYTES)

will suffice. But on other machines, instructions that appear to
push one byte actually push two bytes in an attempt to maintain
alignment. Then the definition should be

#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)

ACCUMULATE_OUTGOING_ARGS
If defined, the maximum amount of space required for outgoing
arguments will be computed and placed into the variable
current_function_outgoing_args_size. No space will be pushed onto
the stack for each call; instead, the function prologue should
increase the stack frame size by this amount.

Defining both PUSH_ROUNDING and ACCUMULATE_OUTGOING_ARGS is not
proper.

REG_PARM_STACK_SPACE (fndecl)
Define this macro if functions should assume that stack space has
been allocated for arguments even when their values are passed in
registers.

The value of this macro is the size, in bytes, of the area
reserved for arguments passed in registers for the function
represented by fndecl.

This space can be allocated by the caller, or be a part of the
machine-dependent stack frame: OUTGOING_REG_PARM_STACK_SPACE says
which.

gcc.info 345 / 506

MAYBE_REG_PARM_STACK_SPACE
FINAL_REG_PARM_STACK_SPACE (const_size, var_size)

Define these macros in addition to the one above if functions might
allocate stack space for arguments even when their values are
passed in registers. These should be used when the stack space
allocated for arguments in registers is not a simple constant
independent of the function declaration.

The value of the first macro is the size, in bytes, of the area
that we should initially assume would be reserved for arguments
passed in registers.

The value of the second macro is the actual size, in bytes, of the
area that will be reserved for arguments passed in registers.
This takes two arguments: an integer representing the number of
bytes of fixed sized arguments on the stack, and a tree
representing the number of bytes of variable sized arguments on
the stack.

When these macros are defined, REG_PARM_STACK_SPACE will only be
called for libcall functions, the current function, or for a
function being called when it is known that such stack space must
be allocated. In each case this value can be easily computed.

When deciding whether a called function needs such stack space,
and how much space to reserve, GNU CC uses these two macros
instead of REG_PARM_STACK_SPACE.

OUTGOING_REG_PARM_STACK_SPACE
Define this if it is the responsibility of the caller to allocate
the area reserved for arguments passed in registers.

If ACCUMULATE_OUTGOING_ARGS is defined, this macro controls
whether the space for these arguments counts in the value of
current_function_outgoing_args_size.

STACK_PARMS_IN_REG_PARM_AREA
Define this macro if REG_PARM_STACK_SPACE is defined, but the
stack parameters don’t skip the area specified by it.

Normally, when a parameter is not passed in registers, it is
placed on the stack beyond the REG_PARM_STACK_SPACE area.
Defining this macro suppresses this behavior and causes the
parameter to be passed on the stack in its natural location.

RETURN_POPS_ARGS (funtype, stack-size)
A C expression that should indicate the number of bytes of its own
arguments that a function pops on returning, or 0 if the function
pops no arguments and the caller must therefore pop them all after
the function returns.

funtype is a C variable whose value is a tree node that describes
the function in question. Normally it is a node of type
FUNCTION_TYPE that describes the data type of the function. From
this it is possible to obtain the data types of the value and
arguments (if known).

gcc.info 346 / 506

When a call to a library function is being considered, funtype
will contain an identifier node for the library function. Thus, if
you need to distinguish among various library functions, you can
do so by their names. Note that "library function" in this
context means a function used to perform arithmetic, whose name is
known specially in the compiler and was not mentioned in the C
code being compiled.

stack-size is the number of bytes of arguments passed on the
stack. If a variable number of bytes is passed, it is zero, and
argument popping will always be the responsibility of the calling
function.

On the Vax, all functions always pop their arguments, so the
definition of this macro is stack-size. On the 68000, using the
standard calling convention, no functions pop their arguments, so
the value of the macro is always 0 in this case. But an
alternative calling convention is available in which functions
that take a fixed number of arguments pop them but other functions
(such as printf) pop nothing (the caller pops all). When this
convention is in use, funtype is examined to determine whether a
function takes a fixed number of arguments.

1.194 gcc.info/Register Arguments

Passing Arguments in Registers

This section describes the macros which let you control how various
types of arguments are passed in registers or how they are arranged in
the stack.

FUNCTION_ARG (cum, mode, type, named)
A C expression that controls whether a function argument is passed
in a register, and which register.

The arguments are cum, which summarizes all the previous
arguments; mode, the machine mode of the argument; type, the data
type of the argument as a tree node or 0 if that is not known
(which happens for C support library functions); and named, which
is 1 for an ordinary argument and 0 for nameless arguments that
correspond to ... in the called function’s prototype.

The value of the expression should either be a reg RTX for the
hard register in which to pass the argument, or zero to pass the
argument on the stack.

For machines like the Vax and 68000, where normally all arguments
are pushed, zero suffices as a definition.

The usual way to make the ANSI library stdarg.h work on a machine
where some arguments are usually passed in registers, is to cause
nameless arguments to be passed on the stack instead. This is done

gcc.info 347 / 506

by making FUNCTION_ARG return 0 whenever named is 0.

You may use the macro MUST_PASS_IN_STACK (mode, type) in the
definition of this macro to determine if this argument is of a
type that must be passed in the stack. If REG_PARM_STACK_SPACE is
not defined and FUNCTION_ARG returns non-zero for such an
argument, the compiler will abort. If REG_PARM_STACK_SPACE is
defined, the argument will be computed in the stack and then
loaded into a register.

FUNCTION_INCOMING_ARG (cum, mode, type, named)
Define this macro if the target machine has "register windows", so
that the register in which a function sees an arguments is not
necessarily the same as the one in which the caller passed the
argument.

For such machines, FUNCTION_ARG computes the register in which the
caller passes the value, and FUNCTION_INCOMING_ARG should be
defined in a similar fashion to tell the function being called
where the arguments will arrive.

If FUNCTION_INCOMING_ARG is not defined, FUNCTION_ARG serves both
purposes.

FUNCTION_ARG_PARTIAL_NREGS (cum, mode, type, named)
A C expression for the number of words, at the beginning of an
argument, must be put in registers. The value must be zero for
arguments that are passed entirely in registers or that are
entirely pushed on the stack.

On some machines, certain arguments must be passed partially in
registers and partially in memory. On these machines, typically
the first n words of arguments are passed in registers, and the
rest on the stack. If a multi-word argument (a double or a
structure) crosses that boundary, its first few words must be
passed in registers and the rest must be pushed. This macro tells
the compiler when this occurs, and how many of the words should go
in registers.

FUNCTION_ARG for these arguments should return the first register
to be used by the caller for this argument; likewise
FUNCTION_INCOMING_ARG, for the called function.

FUNCTION_ARG_PASS_BY_REFERENCE (cum, mode, type, named)
A C expression that indicates when an argument must be passed by
reference. If nonzero for an argument, a copy of that argument is
made in memory and a pointer to the argument is passed instead of
the argument itself. The pointer is passed in whatever way is
appropriate for passing a pointer to that type.

On machines where REG_PARM_STACK_SPACE is not defined, a suitable
definition of this macro might be

#define FUNCTION_ARG_PASS_BY_REFERENCE\
(CUM, MODE, TYPE, NAMED) \

MUST_PASS_IN_STACK (MODE, TYPE)

FUNCTION_ARG_CALLEE_COPIES (cum, mode, type, named)

gcc.info 348 / 506

If defined, a C expression that indicates when it is the called
function’s responsibility to make a copy of arguments passed by
invisible reference. Normally, the caller makes a copy and passes
the address of the copy to the routine being called. When
FUNCTION_ARG_CALLEE_COPIES is defined and is nonzero, the caller
does not make a copy. Instead, it passes a pointer to the "live"
value. The called function must not modify this value. If it can
be determined that the value won’t be modified, it need not make a
copy; otherwise a copy must be made.

CUMULATIVE_ARGS
A C type for declaring a variable that is used as the first
argument of FUNCTION_ARG and other related values. For some
target machines, the type int suffices and can hold the number of
bytes of argument so far.

There is no need to record in CUMULATIVE_ARGS anything about the
arguments that have been passed on the stack. The compiler has
other variables to keep track of that. For target machines on
which all arguments are passed on the stack, there is no need to
store anything in CUMULATIVE_ARGS; however, the data structure
must exist and should not be empty, so use int.

INIT_CUMULATIVE_ARGS (cum, fntype, libname)
A C statement (sans semicolon) for initializing the variable cum
for the state at the beginning of the argument list. The variable
has type CUMULATIVE_ARGS. The value of fntype is the tree node
for the data type of the function which will receive the args, or 0
if the args are to a compiler support library function.

When processing a call to a compiler support library function,
libname identifies which one. It is a symbol_ref rtx which
contains the name of the function, as a string. libname is 0 when
an ordinary C function call is being processed. Thus, each time
this macro is called, either libname or fntype is nonzero, but
never both of them at once.

INIT_CUMULATIVE_INCOMING_ARGS (cum, fntype, libname)
Like INIT_CUMULATIVE_ARGS but overrides it for the purposes of
finding the arguments for the function being compiled. If this
macro is undefined, INIT_CUMULATIVE_ARGS is used instead.

The value passed for libname is always 0, since library routines
with special calling conventions are never compiled with GNU CC.
The argument libname exists for symmetry with INIT_CUMULATIVE_ARGS.

FUNCTION_ARG_ADVANCE (cum, mode, type, named)
A C statement (sans semicolon) to update the summarizer variable
cum to advance past an argument in the argument list. The values
mode, type and named describe that argument. Once this is done,
the variable cum is suitable for analyzing the following argument
with FUNCTION_ARG, etc.

This macro need not do anything if the argument in question was
passed on the stack. The compiler knows how to track the amount
of stack space used for arguments without any special help.

gcc.info 349 / 506

FUNCTION_ARG_PADDING (mode, type)
If defined, a C expression which determines whether, and in which
direction, to pad out an argument with extra space. The value
should be of type enum direction: either upward to pad above the
argument, downward to pad below, or none to inhibit padding.

The amount of padding is always just enough to reach the next
multiple of FUNCTION_ARG_BOUNDARY; this macro does not control it.

This macro has a default definition which is right for most
systems. For little-endian machines, the default is to pad
upward. For big-endian machines, the default is to pad downward
for an argument of constant size shorter than an int, and upward
otherwise.

FUNCTION_ARG_BOUNDARY (mode, type)
If defined, a C expression that gives the alignment boundary, in
bits, of an argument with the specified mode and type. If it is
not defined, PARM_BOUNDARY is used for all arguments.

FUNCTION_ARG_REGNO_P (regno)
A C expression that is nonzero if regno is the number of a hard
register in which function arguments are sometimes passed. This
does not include implicit arguments such as the static chain and
the structure-value address. On many machines, no registers can be
used for this purpose since all function arguments are pushed on
the stack.

1.195 gcc.info/Scalar Return

How Scalar Function Values Are Returned

This section discusses the macros that control returning scalars as
values--values that can fit in registers.

TRADITIONAL_RETURN_FLOAT
Define this macro if -traditional should not cause functions
declared to return float to convert the value to double.

FUNCTION_VALUE (valtype, func)
A C expression to create an RTX representing the place where a
function returns a value of data type valtype. valtype is a tree
node representing a data type. Write TYPE_MODE (valtype) to get
the machine mode used to represent that type. On many machines,
only the mode is relevant. (Actually, on most machines, scalar
values are returned in the same place regardless of mode).

If PROMOTE_FUNCTION_RETURN is defined, you must apply the same
promotion rules specified in PROMOTE_MODE if valtype is a scalar
type.

If the precise function being called is known, func is a tree node
(FUNCTION_DECL) for it; otherwise, func is a null pointer. This

gcc.info 350 / 506

makes it possible to use a different value-returning convention
for specific functions when all their calls are known.

FUNCTION_VALUE is not used for return vales with aggregate data
types, because these are returned in another way. See
STRUCT_VALUE_REGNUM and related macros, below.

FUNCTION_OUTGOING_VALUE (valtype, func)
Define this macro if the target machine has "register windows" so
that the register in which a function returns its value is not the
same as the one in which the caller sees the value.

For such machines, FUNCTION_VALUE computes the register in which
the caller will see the value. FUNCTION_OUTGOING_VALUE should be
defined in a similar fashion to tell the function where to put the
value.

If FUNCTION_OUTGOING_VALUE is not defined, FUNCTION_VALUE serves
both purposes.

FUNCTION_OUTGOING_VALUE is not used for return vales with
aggregate data types, because these are returned in another way.
See STRUCT_VALUE_REGNUM and related macros, below.

LIBCALL_VALUE (mode)
A C expression to create an RTX representing the place where a
library function returns a value of mode mode. If the precise
function being called is known, func is a tree node
(FUNCTION_DECL) for it; otherwise, func is a null
pointer. This makes it possible to use a different value-returning
convention for specific functions when all their calls are known.

Note that "library function" in this context means a compiler
support routine, used to perform arithmetic, whose name is known
specially by the compiler and was not mentioned in the C code being
compiled.

The definition of LIBRARY_VALUE need not be concerned aggregate
data types, because none of the library functions returns such
types.

FUNCTION_VALUE_REGNO_P (regno)
A C expression that is nonzero if regno is the number of a hard
register in which the values of called function may come back.

A register whose use for returning values is limited to serving as
the second of a pair (for a value of type double, say) need not be
recognized by this macro. So for most machines, this definition
suffices:

#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)

If the machine has register windows, so that the caller and the
called function use different registers for the return value, this
macro should recognize only the caller’s register numbers.

APPLY_RESULT_SIZE

gcc.info 351 / 506

Define this macro if untyped_call and untyped_return need more
space than is implied by FUNCTION_VALUE_REGNO_P for saving and
restoring an arbitrary return value.

1.196 gcc.info/Aggregate Return

How Large Values Are Returned

When a function value’s mode is BLKmode (and in some other cases),
the value is not returned according to FUNCTION_VALUE (see

Scalar Return
). Instead, the caller passes the address of a block of

memory in which the value should be stored. This address is called the
structure value address.

This section describes how to control returning structure values in
memory.

RETURN_IN_MEMORY (type)
A C expression which can inhibit the returning of certain function
values in registers, based on the type of value. A nonzero value
says to return the function value in memory, just as large
structures are always returned. Here type will be a C expression
of type tree, representing the data type of the value.

Note that values of mode BLKmode must be explicitly handled by
this macro. Also, the option -fpcc-struct-return takes effect
regardless of this macro. On most systems, it is possible to
leave the macro undefined; this causes a default definition to be
used, whose value is the constant 1 for BLKmode values, and 0
otherwise.

Do not use this macro to indicate that structures and unions
should always be returned in memory. You should instead use
DEFAULT_PCC_STRUCT_RETURN to indicate this.

DEFAULT_PCC_STRUCT_RETURN
Define this macro to be 1 if all structure and union return values
must be in memory. Since this results in slower code, this should
be defined only if needed for compatibility with other compilers
or with an ABI. If you define this macro to be 0, then the
conventions used for structure and union return values are decided
by the RETURN_IN_MEMORY macro.

If not defined, this defaults to the value 1.

STRUCT_VALUE_REGNUM
If the structure value address is passed in a register, then
STRUCT_VALUE_REGNUM should be the number of that register.

STRUCT_VALUE
If the structure value address is not passed in a register, define

gcc.info 352 / 506

STRUCT_VALUE as an expression returning an RTX for the place where
the address is passed. If it returns 0, the address is passed as
an "invisible" first argument.

STRUCT_VALUE_INCOMING_REGNUM
On some architectures the place where the structure value address
is found by the called function is not the same place that the
caller put it. This can be due to register windows, or it could
be because the function prologue moves it to a different place.

If the incoming location of the structure value address is in a
register, define this macro as the register number.

STRUCT_VALUE_INCOMING
If the incoming location is not a register, then you should define
STRUCT_VALUE_INCOMING as an expression for an RTX for where the
called function should find the value. If it should find the
value on the stack, define this to create a mem which refers to
the frame pointer. A definition of 0 means that the address is
passed as an "invisible" first argument.

PCC_STATIC_STRUCT_RETURN
Define this macro if the usual system convention on the target
machine for returning structures and unions is for the called
function to return the address of a static variable containing the
value.

Do not define this if the usual system convention is for the
caller to pass an address to the subroutine.

This macro has effect in -fpcc-struct-return mode, but it does
nothing when you use -freg-struct-return mode.

1.197 gcc.info/Caller Saves

Caller-Saves Register Allocation

If you enable it, GNU CC can save registers around function calls.
This makes it possible to use call-clobbered registers to hold
variables that must live across calls.

DEFAULT_CALLER_SAVES
Define this macro if function calls on the target machine do not
preserve any registers; in other words, if CALL_USED_REGISTERS has
1 for all registers. This macro enables -fcaller-saves by default.
Eventually that option will be enabled by default on all machines
and both the option and this macro will be eliminated.

CALLER_SAVE_PROFITABLE (refs, calls)
A C expression to determine whether it is worthwhile to consider
placing a pseudo-register in a call-clobbered hard register and
saving and restoring it around each function call. The expression

gcc.info 353 / 506

should be 1 when this is worth doing, and 0 otherwise.

If you don’t define this macro, a default is used which is good on
most machines: 4 * calls < refs.

1.198 gcc.info/Function Entry

Function Entry and Exit

This section describes the macros that output function entry
(prologue) and exit (epilogue) code.

FUNCTION_PROLOGUE (file, size)
A C compound statement that outputs the assembler code for entry
to a function. The prologue is responsible for setting up the
stack frame, initializing the frame pointer register, saving
registers that must be saved, and allocating size additional bytes
of storage for the local variables. size is an integer. file is
a stdio stream to which the assembler code should be output.

The label for the beginning of the function need not be output by
this macro. That has already been done when the macro is run.

To determine which registers to save, the macro can refer to the
array regs_ever_live: element r is nonzero if hard register r is
used anywhere within the function. This implies the function
prologue should save register r, provided it is not one of the
call-used registers. (FUNCTION_EPILOGUE must likewise use
regs_ever_live.)

On machines that have "register windows", the function entry code
does not save on the stack the registers that are in the windows,
even if they are supposed to be preserved by function calls;
instead it takes appropriate steps to "push" the register stack,
if any non-call-used registers are used in the function.

On machines where functions may or may not have frame-pointers, the
function entry code must vary accordingly; it must set up the frame
pointer if one is wanted, and not otherwise. To determine whether
a frame pointer is in wanted, the macro can refer to the variable
frame_pointer_needed. The variable’s value will be 1 at run time
in a function that needs a frame pointer. See

Elimination
.

The function entry code is responsible for allocating any stack
space required for the function. This stack space consists of the
regions listed below. In most cases, these regions are allocated
in the order listed, with the last listed region closest to the
top of the stack (the lowest address if STACK_GROWS_DOWNWARD is
defined, and the highest address if it is not defined). You can
use a different order for a machine if doing so is more convenient
or required for compatibility reasons. Except in cases where

gcc.info 354 / 506

required by standard or by a debugger, there is no reason why the
stack layout used by GCC need agree with that used by other
compilers for a machine.

* A region of current_function_pretend_args_size bytes of
uninitialized space just underneath the first argument
arriving on the stack. (This may not be at the very start of
the allocated stack region if the calling sequence has pushed
anything else since pushing the stack arguments. But
usually, on such machines, nothing else has been pushed yet,
because the function prologue itself does all the pushing.)
This region is used on machines where an argument may be
passed partly in registers and partly in memory, and, in some
cases to support the features in varargs.h and stdargs.h.

* An area of memory used to save certain registers used by the
function. The size of this area, which may also include
space for such things as the return address and pointers to
previous stack frames, is machine-specific and usually
depends on which registers have been used in the function.
Machines with register windows often do not require a save
area.

* A region of at least size bytes, possibly rounded up to an
allocation boundary, to contain the local variables of the
function. On some machines, this region and the save area
may occur in the opposite order, with the save area closer to
the top of the stack.

* Optionally, when ACCUMULATE_OUTGOING_ARGS is defined, a
region of current_function_outgoing_args_size bytes to be
used for outgoing argument lists of the function. See

Stack Arguments
.

Normally, it is necessary for the macros FUNCTION_PROLOGUE and
FUNCTION_EPILOGUE to treat leaf functions specially. The C
variable leaf_function is nonzero for such a function.

EXIT_IGNORE_STACK
Define this macro as a C expression that is nonzero if the return
instruction or the function epilogue ignores the value of the stack
pointer; in other words, if it is safe to delete an instruction to
adjust the stack pointer before a return from the function.

Note that this macro’s value is relevant only for functions for
which frame pointers are maintained. It is never safe to delete a
final stack adjustment in a function that has no frame pointer,
and the compiler knows this regardless of EXIT_IGNORE_STACK.

FUNCTION_EPILOGUE (file, size)
A C compound statement that outputs the assembler code for exit
from a function. The epilogue is responsible for restoring the
saved registers and stack pointer to their values when the
function was called, and returning control to the caller. This
macro takes the same arguments as the macro FUNCTION_PROLOGUE, and

gcc.info 355 / 506

the registers to restore are determined from regs_ever_live and
CALL_USED_REGISTERS in the same way.

On some machines, there is a single instruction that does all the
work of returning from the function. On these machines, give that
instruction the name return and do not define the macro
FUNCTION_EPILOGUE at all.

Do not define a pattern named return if you want the
FUNCTION_EPILOGUE to be used. If you want the target switches to
control whether return instructions or epilogues are used, define a
return pattern with a validity condition that tests the target
switches appropriately. If the return pattern’s validity
condition is false, epilogues will be used.

On machines where functions may or may not have frame-pointers, the
function exit code must vary accordingly. Sometimes the code for
these two cases is completely different. To determine whether a
frame pointer is wanted, the macro can refer to the variable
frame_pointer_needed. The variable’s value will be 1 when
compiling a function that needs a frame pointer.

Normally, FUNCTION_PROLOGUE and FUNCTION_EPILOGUE must treat leaf
functions specially. The C variable leaf_function is nonzero for
such a function. See

Leaf Functions
.

On some machines, some functions pop their arguments on exit while
others leave that for the caller to do. For example, the 68020
when given -mrtd pops arguments in functions that take a fixed
number of arguments.

Your definition of the macro RETURN_POPS_ARGS decides which
functions pop their own arguments. FUNCTION_EPILOGUE needs to
know what was decided. The variable that is called
current_function_pops_args is the number of bytes of its arguments
that a function should pop. See

Scalar Return
.

DELAY_SLOTS_FOR_EPILOGUE
Define this macro if the function epilogue contains delay slots to
which instructions from the rest of the function can be "moved".
The definition should be a C expression whose value is an integer
representing the number of delay slots there.

ELIGIBLE_FOR_EPILOGUE_DELAY (insn, n)
A C expression that returns 1 if insn can be placed in delay slot
number n of the epilogue.

The argument n is an integer which identifies the delay slot now
being considered (since different slots may have different rules of
eligibility). It is never negative and is always less than the
number of epilogue delay slots (what DELAY_SLOTS_FOR_EPILOGUE
returns). If you reject a particular insn for a given delay slot,
in principle, it may be reconsidered for a subsequent delay slot.

gcc.info 356 / 506

Also, other insns may (at least in principle) be considered for
the so far unfilled delay slot.

The insns accepted to fill the epilogue delay slots are put in an
RTL list made with insn_list objects, stored in the variable
current_function_epilogue_delay_list. The insn for the first
delay slot comes first in the list. Your definition of the macro
FUNCTION_EPILOGUE should fill the delay slots by outputting the
insns in this list, usually by calling final_scan_insn.

You need not define this macro if you did not define
DELAY_SLOTS_FOR_EPILOGUE.

1.199 gcc.info/Profiling

Generating Code for Profiling

These macros will help you generate code for profiling.

FUNCTION_PROFILER (file, labelno)
A C statement or compound statement to output to file some
assembler code to call the profiling subroutine mcount. Before
calling, the assembler code must load the address of a counter
variable into a register where mcount expects to find the address.
The name of this variable is LP followed by the number labelno,
so you would generate the name using LP%d in a fprintf.

The details of how the address should be passed to mcount are
determined by your operating system environment, not by GNU CC. To
figure them out, compile a small program for profiling using the
system’s installed C compiler and look at the assembler code that
results.

PROFILE_BEFORE_PROLOGUE
Define this macro if the code for function profiling should come
before the function prologue. Normally, the profiling code comes
after.

FUNCTION_BLOCK_PROFILER (file, labelno)
A C statement or compound statement to output to file some
assembler code to initialize basic-block profiling for the current
object module. This code should call the subroutine
__bb_init_func once per object module, passing it as its sole
argument the address of a block allocated in the object module.

The name of the block is a local symbol made with this statement:

ASM_GENERATE_INTERNAL_LABEL (buffer, "LPBX", 0);

Of course, since you are writing the definition of
ASM_GENERATE_INTERNAL_LABEL as well as that of this macro, you can
take a short cut in the definition of this macro and use the name

gcc.info 357 / 506

that you know will result.

The first word of this block is a flag which will be nonzero if the
object module has already been initialized. So test this word
first, and do not call __bb_init_func if the flag is nonzero.

BLOCK_PROFILER (file, blockno)
A C statement or compound statement to increment the count
associated with the basic block number blockno. Basic blocks are
numbered separately from zero within each compilation. The count
associated with block number blockno is at index blockno in a
vector of words; the name of this array is a local symbol made
with this statement:

ASM_GENERATE_INTERNAL_LABEL (buffer, "LPBX", 2);

Of course, since you are writing the definition of
ASM_GENERATE_INTERNAL_LABEL as well as that of this macro, you can
take a short cut in the definition of this macro and use the name
that you know will result.

BLOCK_PROFILER_CODE
A C function or functions which are needed in the library to
support block profiling.

1.200 gcc.info/Varargs

Implementing the Varargs Macros
===============================

GNU CC comes with an implementation of varargs.h and stdarg.h that
work without change on machines that pass arguments on the stack.
Other machines require their own implementations of varargs, and the
two machine independent header files must have conditionals to include
it.

ANSI stdarg.h differs from traditional varargs.h mainly in the
calling convention for va_start. The traditional implementation takes
just one argument, which is the variable in which to store the argument
pointer. The ANSI implementation of va_start takes an additional
second argument. The user is supposed to write the last named argument
of the function here.

However, va_start should not use this argument. The way to find the
end of the named arguments is with the built-in functions described
below.

__builtin_saveregs ()
Use this built-in function to save the argument registers in
memory so that the varargs mechanism can access them. Both ANSI
and traditional versions of va_start must use __builtin_saveregs,
unless you use SETUP_INCOMING_VARARGS (see below) instead.

On some machines, __builtin_saveregs is open-coded under the

gcc.info 358 / 506

control of the macro EXPAND_BUILTIN_SAVEREGS. On other machines,
it calls a routine written in assembler language, found in
libgcc2.c.

Code generated for the call to __builtin_saveregs appears at the
beginning of the function, as opposed to where the call to
__builtin_saveregs is written, regardless of what the code is.
This is because the registers must be saved before the function
starts to use them for its own purposes.

__builtin_args_info (category)
Use this built-in function to find the first anonymous arguments in
registers.

In general, a machine may have several categories of registers
used for arguments, each for a particular category of data types.
(For example, on some machines, floating-point registers are used
for floating-point arguments while other arguments are passed in
the general registers.) To make non-varargs functions use the
proper calling convention, you have defined the CUMULATIVE_ARGS
data type to record how many registers in each category have been
used so far

__builtin_args_info accesses the same data structure of type
CUMULATIVE_ARGS after the ordinary argument layout is finished
with it, with category specifying which word to access. Thus, the
value indicates the first unused register in a given category.

Normally, you would use __builtin_args_info in the implementation
of va_start, accessing each category just once and storing the
value in the va_list object. This is because va_list will have to
update the values, and there is no way to alter the values
accessed by __builtin_args_info.

__builtin_next_arg ()
This is the equivalent of __builtin_args_info, for stack
arguments. It returns the address of the first anonymous stack
argument, as type void *. If ARGS_GROW_DOWNWARD, it returns the
address of the location above the first anonymous stack argument.
Use it in va_start to initialize the pointer for fetching
arguments from the stack.

__builtin_classify_type (object)
Since each machine has its own conventions for which data types are
passed in which kind of register, your implementation of va_arg
has to embody these conventions. The easiest way to categorize the
specified data type is to use __builtin_classify_type together
with sizeof and __alignof__.

__builtin_classify_type ignores the value of object, considering
only its data type. It returns an integer describing what kind of
type that is--integer, floating, pointer, structure, and so on.

The file typeclass.h defines an enumeration that you can use to
interpret the values of __builtin_classify_type.

These machine description macros help implement varargs:

gcc.info 359 / 506

EXPAND_BUILTIN_SAVEREGS (args)
If defined, is a C expression that produces the machine-specific
code for a call to __builtin_saveregs. This code will be moved to
the very beginning of the function, before any parameter access
are made. The return value of this function should be an RTX that
contains the value to use as the return of __builtin_saveregs.

The argument args is a tree_list containing the arguments that
were passed to __builtin_saveregs.

If this macro is not defined, the compiler will output an ordinary
call to the library function __builtin_saveregs.

SETUP_INCOMING_VARARGS (args_so_far, mode, type,
pretend_args_size, second_time) This macro offers an alternative
to using __builtin_saveregs and defining the macro
EXPAND_BUILTIN_SAVEREGS. Use it to store the anonymous register
arguments into the stack so that all the arguments appear to have
been passed consecutively on the stack. Once this is done, you
can use the standard implementation of varargs that works for
machines that pass all their arguments on the stack.

The argument args_so_far is the CUMULATIVE_ARGS data structure,
containing the values that obtain after processing of the named
arguments. The arguments mode and type describe the last named
argument--its machine mode and its data type as a tree node.

The macro implementation should do two things: first, push onto the
stack all the argument registers not used for the named arguments,
and second, store the size of the data thus pushed into the
int-valued variable whose name is supplied as the argument
pretend_args_size. The value that you store here will serve as
additional offset for setting up the stack frame.

Because you must generate code to push the anonymous arguments at
compile time without knowing their data types,
SETUP_INCOMING_VARARGS is only useful on machines that have just a
single category of argument register and use it uniformly for all
data types.

If the argument second_time is nonzero, it means that the
arguments of the function are being analyzed for the second time.
This happens for an inline function, which is not actually
compiled until the end of the source file. The macro
SETUP_INCOMING_VARARGS should not generate any instructions in
this case.

1.201 gcc.info/Trampolines

Trampolines for Nested Functions
================================

A trampoline is a small piece of code that is created at run time

gcc.info 360 / 506

when the address of a nested function is taken. It normally resides on
the stack, in the stack frame of the containing function. These macros
tell GNU CC how to generate code to allocate and initialize a
trampoline.

The instructions in the trampoline must do two things: load a
constant address into the static chain register, and jump to the real
address of the nested function. On CISC machines such as the m68k,
this requires two instructions, a move immediate and a jump. Then the
two addresses exist in the trampoline as word-long immediate operands.
On RISC machines, it is often necessary to load each address into a
register in two parts. Then pieces of each address form separate
immediate operands.

The code generated to initialize the trampoline must store the
variable parts--the static chain value and the function address--into
the immediate operands of the instructions. On a CISC machine, this is
simply a matter of copying each address to a memory reference at the
proper offset from the start of the trampoline. On a RISC machine, it
may be necessary to take out pieces of the address and store them
separately.

TRAMPOLINE_TEMPLATE (file)
A C statement to output, on the stream file, assembler code for a
block of data that contains the constant parts of a trampoline.
This code should not include a label--the label is taken care of
automatically.

TRAMPOLINE_SECTION
The name of a subroutine to switch to the section in which the
trampoline template is to be placed (see

Sections
). The default is

a value of readonly_data_section, which places the trampoline in
the section containing read-only data.

TRAMPOLINE_SIZE
A C expression for the size in bytes of the trampoline, as an
integer.

TRAMPOLINE_ALIGNMENT
Alignment required for trampolines, in bits.

If you don’t define this macro, the value of BIGGEST_ALIGNMENT is
used for aligning trampolines.

INITIALIZE_TRAMPOLINE (addr, fnaddr, static_chain)
A C statement to initialize the variable parts of a trampoline.
addr is an RTX for the address of the trampoline; fnaddr is an RTX
for the address of the nested function; static_chain is an RTX for
the static chain value that should be passed to the function when
it is called.

ALLOCATE_TRAMPOLINE (fp)
A C expression to allocate run-time space for a trampoline. The
expression value should be an RTX representing a memory reference
to the space for the trampoline.

gcc.info 361 / 506

If this macro is not defined, by default the trampoline is
allocated as a stack slot. This default is right for most
machines. The exceptions are machines where it is impossible to
execute instructions in the stack area. On such machines, you may
have to implement a separate stack, using this macro in
conjunction with FUNCTION_PROLOGUE and FUNCTION_EPILOGUE.

fp points to a data structure, a struct function, which describes
the compilation status of the immediate containing function of the
function which the trampoline is for. Normally (when
ALLOCATE_TRAMPOLINE is not defined), the stack slot for the
trampoline is in the stack frame of this containing function.
Other allocation strategies probably must do something analogous
with this information.

Implementing trampolines is difficult on many machines because they
have separate instruction and data caches. Writing into a stack
location fails to clear the memory in the instruction cache, so when
the program jumps to that location, it executes the old contents.

Here are two possible solutions. One is to clear the relevant parts
of the instruction cache whenever a trampoline is set up. The other is
to make all trampolines identical, by having them jump to a standard
subroutine. The former technique makes trampoline execution faster; the
latter makes initialization faster.

To clear the instruction cache when a trampoline is initialized,
define the following macros which describe the shape of the cache.

INSN_CACHE_SIZE
The total size in bytes of the cache.

INSN_CACHE_LINE_WIDTH
The length in bytes of each cache line. The cache is divided into
cache lines which are disjoint slots, each holding a contiguous
chunk of data fetched from memory. Each time data is brought into
the cache, an entire line is read at once. The data loaded into a
cache line is always aligned on a boundary equal to the line size.

INSN_CACHE_DEPTH
The number of alternative cache lines that can hold any particular
memory location.

Alternatively, if the machine has system calls or instructions to
clear the instruction cache directly, you can define the following
macro.

If defined, expands to a C expression clearing the instruction
cache in the specified interval. If it is not defined, and the
macro INSN_CACHE_SIZE is defined, some generic code is generated
to clear the cache. The definition of this macro would typically
be a series of asm statements. Both BEG and END are both pointer
expressions.

To use a standard subroutine, define the following macro. In

gcc.info 362 / 506

addition, you must make sure that the instructions in a trampoline fill
an entire cache line with identical instructions, or else ensure that
the beginning of the trampoline code is always aligned at the same
point in its cache line. Look in m68k.h as a guide.

TRANSFER_FROM_TRAMPOLINE
Define this macro if trampolines need a special subroutine to do
their work. The macro should expand to a series of asm statements
which will be compiled with GNU CC. They go in a library function
named __transfer_from_trampoline.

If you need to avoid executing the ordinary prologue code of a
compiled C function when you jump to the subroutine, you can do so
by placing a special label of your own in the assembler code. Use
one asm statement to generate an assembler label, and another to
make the label global. Then trampolines can use that label to
jump directly to your special assembler code.

1.202 gcc.info/Library Calls

Implicit Calls to Library Routines
==================================

MULSI3_LIBCALL
A C string constant giving the name of the function to call for
multiplication of one signed full-word by another. If you do not
define this macro, the default name is used, which is __mulsi3, a
function defined in libgcc.a.

DIVSI3_LIBCALL
A C string constant giving the name of the function to call for
division of one signed full-word by another. If you do not define
this macro, the default name is used, which is __divsi3, a
function defined in libgcc.a.

UDIVSI3_LIBCALL
A C string constant giving the name of the function to call for
division of one unsigned full-word by another. If you do not
define this macro, the default name is used, which is __udivsi3, a
function defined in libgcc.a.

MODSI3_LIBCALL
A C string constant giving the name of the function to call for the
remainder in division of one signed full-word by another. If you
do not define this macro, the default name is used, which is
__modsi3, a function defined in libgcc.a.

UMODSI3_LIBCALL
A C string constant giving the name of the function to call for the
remainder in division of one unsigned full-word by another. If
you do not define this macro, the default name is used, which is
__umodsi3, a function defined in libgcc.a.

gcc.info 363 / 506

MULDI3_LIBCALL
A C string constant giving the name of the function to call for
multiplication of one signed double-word by another. If you do not
define this macro, the default name is used, which is __muldi3, a
function defined in libgcc.a.

DIVDI3_LIBCALL
A C string constant giving the name of the function to call for
division of one signed double-word by another. If you do not
define this macro, the default name is used, which is __divdi3, a
function defined in libgcc.a.

UDIVDI3_LIBCALL
A C string constant giving the name of the function to call for
division of one unsigned full-word by another. If you do not
define this macro, the default name is used, which is __udivdi3, a
function defined in libgcc.a.

MODDI3_LIBCALL
A C string constant giving the name of the function to call for the
remainder in division of one signed double-word by another. If
you do not define this macro, the default name is used, which is
__moddi3, a function defined in libgcc.a.

UMODDI3_LIBCALL
A C string constant giving the name of the function to call for the
remainder in division of one unsigned full-word by another. If
you do not define this macro, the default name is used, which is
__umoddi3, a function defined in libgcc.a.

TARGET_EDOM
The value of EDOM on the target machine, as a C integer constant
expression. If you don’t define this macro, GNU CC does not
attempt to deposit the value of EDOM into errno directly. Look in
/usr/include/errno.h to find the value of EDOM on your system.

If you do not define TARGET_EDOM, then compiled code reports
domain errors by calling the library function and letting it
report the error. If mathematical functions on your system use
matherr when there is an error, then you should leave TARGET_EDOM
undefined so that matherr is used normally.

GEN_ERRNO_RTX
Define this macro as a C expression to create an rtl expression
that refers to the global "variable" errno. (On certain systems,
errno may not actually be a variable.) If you don’t define this
macro, a reasonable default is used.

TARGET_MEM_FUNCTIONS
Define this macro if GNU CC should generate calls to the System V
(and ANSI C) library functions memcpy and memset rather than the
BSD functions bcopy and bzero.

LIBGCC_NEEDS_DOUBLE
Define this macro if only float arguments cannot be passed to
library routines (so they must be converted to double). This
macro affects both how library calls are generated and how the

gcc.info 364 / 506

library routines in libgcc1.c accept their arguments. It is
useful on machines where floating and fixed point arguments are
passed differently, such as the i860.

FLOAT_ARG_TYPE
Define this macro to override the type used by the library
routines to pick up arguments of type float. (By default, they
use a union of float and int.)

The obvious choice would be float--but that won’t work with
traditional C compilers that expect all arguments declared as float
to arrive as double. To avoid this conversion, the library
routines ask for the value as some other type and then treat it as
a float.

On some systems, no other type will work for this. For these
systems, you must use LIBGCC_NEEDS_DOUBLE instead, to force
conversion of the values double before they are passed.

FLOATIFY (passed-value)
Define this macro to override the way library routines redesignate
a float argument as a float instead of the type it was passed as.
The default is an expression which takes the float field of the
union.

FLOAT_VALUE_TYPE
Define this macro to override the type used by the library
routines to return values that ought to have type float. (By
default, they use int.)

The obvious choice would be float--but that won’t work with
traditional C compilers gratuitously convert values declared as
float into double.

INTIFY (float-value)
Define this macro to override the way the value of a
float-returning library routine should be packaged in order to
return it. These functions are actually declared to return type
FLOAT_VALUE_TYPE (normally int).

These values can’t be returned as type float because traditional C
compilers would gratuitously convert the value to a double.

A local variable named intify is always available when the macro
INTIFY is used. It is a union of a float field named f and a
field named i whose type is FLOAT_VALUE_TYPE or int.

If you don’t define this macro, the default definition works by
copying the value through that union.

nongcc_SI_type
Define this macro as the name of the data type corresponding to
SImode in the system’s own C compiler.

You need not define this macro if that type is long int, as it
usually is.

gcc.info 365 / 506

nongcc_word_type
Define this macro as the name of the data type corresponding to the
word_mode in the system’s own C compiler.

You need not define this macro if that type is long int, as it
usually is.

perform_...
Define these macros to supply explicit C statements to carry out
various arithmetic operations on types float and double in the
library routines in libgcc1.c. See that file for a full list of
these macros and their arguments.

On most machines, you don’t need to define any of these macros,
because the C compiler that comes with the system takes care of
doing them.

NEXT_OBJC_RUNTIME
Define this macro to generate code for Objective C message sending
using the calling convention of the NeXT system. This calling
convention involves passing the object, the selector and the
method arguments all at once to the method-lookup library function.

The default calling convention passes just the object and the
selector to the lookup function, which returns a pointer to the
method.

1.203 gcc.info/Addressing Modes

Addressing Modes
================

HAVE_POST_INCREMENT
Define this macro if the machine supports post-increment
addressing.

HAVE_PRE_INCREMENT
HAVE_POST_DECREMENT
HAVE_PRE_DECREMENT

Similar for other kinds of addressing.

CONSTANT_ADDRESS_P (x)
A C expression that is 1 if the RTX x is a constant which is a
valid address. On most machines, this can be defined as
CONSTANT_P (x), but a few machines are more restrictive in which
constant addresses are supported.

CONSTANT_P accepts integer-values expressions whose values are not
explicitly known, such as symbol_ref, label_ref, and high
expressions and const arithmetic expressions, in addition to
const_int and const_double expressions.

MAX_REGS_PER_ADDRESS
A number, the maximum number of registers that can appear in a

gcc.info 366 / 506

valid memory address. Note that it is up to you to specify a
value equal to the maximum number that GO_IF_LEGITIMATE_ADDRESS
would ever accept.

GO_IF_LEGITIMATE_ADDRESS (mode, x, label)
A C compound statement with a conditional goto label; executed if
x (an RTX) is a legitimate memory address on the target
machine for a memory operand of mode mode.

It usually pays to define several simpler macros to serve as
subroutines for this one. Otherwise it may be too complicated to
understand.

This macro must exist in two variants: a strict variant and a
non-strict one. The strict variant is used in the reload pass. It
must be defined so that any pseudo-register that has not been
allocated a hard register is considered a memory reference. In
contexts where some kind of register is required, a pseudo-register
with no hard register must be rejected.

The non-strict variant is used in other passes. It must be
defined to accept all pseudo-registers in every context where some
kind of register is required.

Compiler source files that want to use the strict variant of this
macro define the macro REG_OK_STRICT. You should use an #ifdef
REG_OK_STRICT conditional to define the strict variant in that
case and the non-strict variant otherwise.

Subroutines to check for acceptable registers for various purposes
(one for base registers, one for index registers, and so on) are
typically among the subroutines used to define
GO_IF_LEGITIMATE_ADDRESS. Then only these subroutine macros need
have two variants; the higher levels of macros may be the same
whether strict or not.

Normally, constant addresses which are the sum of a symbol_ref and
an integer are stored inside a const RTX to mark them as constant.
Therefore, there is no need to recognize such sums specifically
as legitimate addresses. Normally you would simply recognize any
const as legitimate.

Usually PRINT_OPERAND_ADDRESS is not prepared to handle constant
sums that are not marked with const. It assumes that a naked
plus indicates indexing. If so, then you must reject such
naked constant sums as illegitimate addresses, so that none of
them will be given to PRINT_OPERAND_ADDRESS.

On some machines, whether a symbolic address is legitimate depends
on the section that the address refers to. On these machines,
define the macro ENCODE_SECTION_INFO to store the information into
the symbol_ref, and then check for it here. When you see a const,
you will have to look inside it to find the symbol_ref in order to
determine the section. See

Assembler Format
.

gcc.info 367 / 506

The best way to modify the name string is by adding text to the
beginning, with suitable punctuation to prevent any ambiguity.
Allocate the new name in saveable_obstack. You will have to modify
ASM_OUTPUT_LABELREF to remove and decode the added text and output
the name accordingly, and define STRIP_NAME_ENCODING to access the
original name string.

You can check the information stored here into the symbol_ref in
the definitions of the macros GO_IF_LEGITIMATE_ADDRESS and
PRINT_OPERAND_ADDRESS.

REG_OK_FOR_BASE_P (x)
A C expression that is nonzero if x (assumed to be a reg RTX) is
valid for use as a base register. For hard registers, it should
always accept those which the hardware permits and reject the
others. Whether the macro accepts or rejects pseudo registers
must be controlled by REG_OK_STRICT as described above. This
usually requires two variant definitions, of which REG_OK_STRICT
controls the one actually used.

REG_OK_FOR_INDEX_P (x)
A C expression that is nonzero if x (assumed to be a reg RTX) is
valid for use as an index register.

The difference between an index register and a base register is
that the index register may be scaled. If an address involves the
sum of two registers, neither one of them scaled, then either one
may be labeled the "base" and the other the "index"; but whichever
labeling is used must fit the machine’s constraints of which
registers may serve in each capacity. The compiler will try both
labelings, looking for one that is valid, and will reload one or
both registers only if neither labeling works.

LEGITIMIZE_ADDRESS (x, oldx, mode, win)
A C compound statement that attempts to replace x with a valid
memory address for an operand of mode mode. win will be a C
statement label elsewhere in the code; the macro definition may use

GO_IF_LEGITIMATE_ADDRESS (mode, x, win);

to avoid further processing if the address has become legitimate.

x will always be the result of a call to break_out_memory_refs,
and oldx will be the operand that was given to that function to
produce x.

The code generated by this macro should not alter the substructure
of x. If it transforms x into a more legitimate form, it should
assign x (which will always be a C variable) a new value.

It is not necessary for this macro to come up with a legitimate
address. The compiler has standard ways of doing so in all cases.
In fact, it is safe for this macro to do nothing. But often a
machine-dependent strategy can generate better code.

GO_IF_MODE_DEPENDENT_ADDRESS (addr, label)
A C statement or compound statement with a conditional goto label;

gcc.info 368 / 506

executed if memory address x (an RTX) can have different meanings
depending on the machine mode of the memory reference it is used
for or if the address is valid for some modes but not others.

Autoincrement and autodecrement addresses typically have
mode-dependent effects because the amount of the increment or
decrement is the size of the operand being addressed. Some
machines have other mode-dependent addresses. Many RISC machines
have no mode-dependent addresses.

You may assume that addr is a valid address for the machine.

LEGITIMATE_CONSTANT_P (x)
A C expression that is nonzero if x is a legitimate constant for
an immediate operand on the target machine. You can assume that x
satisfies CONSTANT_P, so you need not check this. In fact, 1 is a
suitable definition for this macro on machines where anything
CONSTANT_P is valid.

1.204 gcc.info/Condition Code

Condition Code Status
=====================

The file conditions.h defines a variable cc_status to describe how
the condition code was computed (in case the interpretation of the
condition code depends on the instruction that it was set by). This
variable contains the RTL expressions on which the condition code is
currently based, and several standard flags.

Sometimes additional machine-specific flags must be defined in the
machine description header file. It can also add additional
machine-specific information by defining CC_STATUS_MDEP.

CC_STATUS_MDEP
C code for a data type which is used for declaring the mdep
component of cc_status. It defaults to int.

This macro is not used on machines that do not use cc0.

CC_STATUS_MDEP_INIT
A C expression to initialize the mdep field to "empty". The
default definition does nothing, since most machines don’t use the
field anyway. If you want to use the field, you should probably
define this macro to initialize it.

This macro is not used on machines that do not use cc0.

NOTICE_UPDATE_CC (exp, insn)
A C compound statement to set the components of cc_status
appropriately for an insn insn whose body is exp. It is this
macro’s responsibility to recognize insns that set the condition
code as a byproduct of other activity as well as those that

gcc.info 369 / 506

explicitly set (cc0).

This macro is not used on machines that do not use cc0.

If there are insns that do not set the condition code but do alter
other machine registers, this macro must check to see whether they
invalidate the expressions that the condition code is recorded as
reflecting. For example, on the 68000, insns that store in address
registers do not set the condition code, which means that usually
NOTICE_UPDATE_CC can leave cc_status unaltered for such insns.
But suppose that the previous insn set the condition code based on
location a4@(102) and the current insn stores a new value in a4.
Although the condition code is not changed by this, it will no
longer be true that it reflects the contents of a4@(102).
Therefore, NOTICE_UPDATE_CC must alter cc_status in this case to
say that nothing is known about the condition code value.

The definition of NOTICE_UPDATE_CC must be prepared to deal with
the results of peephole optimization: insns whose patterns are
parallel RTXs containing various reg, mem or constants which are
just the operands. The RTL structure of these insns is not
sufficient to indicate what the insns actually do. What
NOTICE_UPDATE_CC should do when it sees one is just to run
CC_STATUS_INIT.

A possible definition of NOTICE_UPDATE_CC is to call a function
that looks at an attribute (see

Insn Attributes
) named, for

example, cc. This avoids having detailed information about
patterns in two places, the md file and in NOTICE_UPDATE_CC.

EXTRA_CC_MODES
A list of names to be used for additional modes for condition code
values in registers (see

Jump Patterns
). These names are added to

enum machine_mode and all have class MODE_CC. By convention, they
should start with CC and end with mode.

You should only define this macro if your machine does not use cc0
and only if additional modes are required.

EXTRA_CC_NAMES
A list of C strings giving the names for the modes listed in
EXTRA_CC_MODES. For example, the Sparc defines this macro and
EXTRA_CC_MODES as

#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode
#define EXTRA_CC_NAMES "CC_NOOV", "CCFP"

This macro is not required if EXTRA_CC_MODES is not defined.

SELECT_CC_MODE (op, x, y)
Returns a mode from class MODE_CC to be used when comparison
operation code op is applied to rtx x and y. For example, on the
Sparc, SELECT_CC_MODE is defined as (see see

gcc.info 370 / 506

Jump Patterns
for a

description of the reason for this definition)

#define SELECT_CC_MODE(OP,X,Y) \
(GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
: ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \

|| GET_CODE (X) == NEG) \
? CC_NOOVmode : CCmode))

This macro is not required if EXTRA_CC_MODES is not defined.

1.205 gcc.info/Costs

Describing Relative Costs of Operations
=======================================

These macros let you describe the relative speed of various
operations on the target machine.

CONST_COSTS (x, code, outer_code)
A part of a C switch statement that describes the relative costs
of constant RTL expressions. It must contain case labels for
expression codes const_int, const, symbol_ref, label_ref and
const_double. Each case must ultimately reach a return statement
to return the relative cost of the use of that kind of constant
value in an expression. The cost may depend on the precise value
of the constant, which is available for examination in x, and the
rtx code of the expression in which it is contained, found in
outer_code.

code is the expression code--redundant, since it can be obtained
with GET_CODE (x).

RTX_COSTS (x, code, outer_code)
Like CONST_COSTS but applies to nonconstant RTL expressions. This
can be used, for example, to indicate how costly a multiply
instruction is. In writing this macro, you can use the construct
COSTS_N_INSNS (n) to specify a cost equal to n fast instructions.
outer_code is the code of the expression in which x is contained.

This macro is optional; do not define it if the default cost
assumptions are adequate for the target machine.

ADDRESS_COST (address)
An expression giving the cost of an addressing mode that contains
address. If not defined, the cost is computed from the address
expression and the CONST_COSTS values.

For most CISC machines, the default cost is a good approximation
of the true cost of the addressing mode. However, on RISC
machines, all instructions normally have the same length and

gcc.info 371 / 506

execution time. Hence all addresses will have equal costs.

In cases where more than one form of an address is known, the form
with the lowest cost will be used. If multiple forms have the
same, lowest, cost, the one that is the most complex will be used.

For example, suppose an address that is equal to the sum of a
register and a constant is used twice in the same basic block.
When this macro is not defined, the address will be computed in a
register and memory references will be indirect through that
register. On machines where the cost of the addressing mode
containing the sum is no higher than that of a simple indirect
reference, this will produce an additional instruction and
possibly require an additional register. Proper specification of
this macro eliminates this overhead for such machines.

Similar use of this macro is made in strength reduction of loops.

address need not be valid as an address. In such a case, the cost
is not relevant and can be any value; invalid addresses need not be
assigned a different cost.

On machines where an address involving more than one register is as
cheap as an address computation involving only one register,
defining ADDRESS_COST to reflect this can cause two registers to
be live over a region of code where only one would have been if
ADDRESS_COST were not defined in that manner. This effect should
be considered in the definition of this macro. Equivalent costs
should probably only be given to addresses with different numbers
of registers on machines with lots of registers.

This macro will normally either not be defined or be defined as a
constant.

REGISTER_MOVE_COST (from, to)
A C expression for the cost of moving data from a register in class
from to one in class to. The classes are expressed using the
enumeration values such as GENERAL_REGS. A value of 4 is the
default; other values are interpreted relative to that.

It is not required that the cost always equal 2 when from is the
same as to; on some machines it is expensive to move between
registers if they are not general registers.

If reload sees an insn consisting of a single set between two hard
registers, and if REGISTER_MOVE_COST applied to their classes
returns a value of 2, reload does not check to ensure that the
constraints of the insn are met. Setting a cost of other than 2
will allow reload to verify that the constraints are met. You
should do this if the movm pattern’s constraints do not allow such
copying.

MEMORY_MOVE_COST (m)
A C expression for the cost of moving data of mode m between a
register and memory. A value of 2 is the default; this cost is
relative to those in REGISTER_MOVE_COST.

gcc.info 372 / 506

If moving between registers and memory is more expensive than
between two registers, you should define this macro to express the
relative cost.

BRANCH_COST
A C expression for the cost of a branch instruction. A value of 1
is the default; other values are interpreted relative to that.

Here are additional macros which do not specify precise relative
costs, but only that certain actions are more expensive than GNU CC
would ordinarily expect.

SLOW_BYTE_ACCESS
Define this macro as a C expression which is nonzero if accessing
less than a word of memory (i.e. a char or a short) is no faster
than accessing a word of memory, i.e., if such access require more
than one instruction or if there is no difference in cost between
byte and (aligned) word loads.

When this macro is not defined, the compiler will access a field by
finding the smallest containing object; when it is defined, a
fullword load will be used if alignment permits. Unless bytes
accesses are faster than word accesses, using word accesses is
preferable since it may eliminate subsequent memory access if
subsequent accesses occur to other fields in the same word of the
structure, but to different bytes.

SLOW_ZERO_EXTEND
Define this macro if zero-extension (of a char or short to an int)
can be done faster if the destination is a register that is known
to be zero.

If you define this macro, you must have instruction patterns that
recognize RTL structures like this:

(set (strict_low_part (subreg:QI (reg:SI ...) 0)) ...)

and likewise for HImode.

SLOW_UNALIGNED_ACCESS
Define this macro to be the value 1 if unaligned accesses have a
cost many times greater than aligned accesses, for example if they
are emulated in a trap handler.

When this macro is non-zero, the compiler will act as if
STRICT_ALIGNMENT were non-zero when generating code for block
moves. This can cause significantly more instructions to be
produced. Therefore, do not set this macro non-zero if unaligned
accesses only add a cycle or two to the time for a memory access.

If the value of this macro is always zero, it need not be defined.

DONT_REDUCE_ADDR
Define this macro to inhibit strength reduction of memory
addresses. (On some machines, such strength reduction seems to do
harm rather than good.)

gcc.info 373 / 506

MOVE_RATIO
The number of scalar move insns which should be generated instead
of a string move insn or a library call. Increasing the value
will always make code faster, but eventually incurs high cost in
increased code size.

If you don’t define this, a reasonable default is used.

NO_FUNCTION_CSE
Define this macro if it is as good or better to call a constant
function address than to call an address kept in a register.

NO_RECURSIVE_FUNCTION_CSE
Define this macro if it is as good or better for a function to call
itself with an explicit address than to call an address kept in a
register.

ADJUST_COST (insn, link, dep_insn, cost)
A C statement (sans semicolon) to update the integer variable cost
based on the relationship between insn that is dependent on
dep_insn through the dependence link. The default is to make no
adjustment to cost. This can be used for example to specify to
the scheduler that an output- or anti-dependence does not incur
the same cost as a data-dependence.

1.206 gcc.info/Sections

Dividing the Output into Sections (Texts, Data, ...)
==

An object file is divided into sections containing different types of
data. In the most common case, there are three sections: the text
section, which holds instructions and read-only data; the data section,
which holds initialized writable data; and the bss section, which holds
uninitialized data. Some systems have other kinds of sections.

The compiler must tell the assembler when to switch sections. These
macros control what commands to output to tell the assembler this. You
can also define additional sections.

TEXT_SECTION_ASM_OP
A C expression whose value is a string containing the assembler
operation that should precede instructions and read-only data.
Normally ".text" is right.

DATA_SECTION_ASM_OP
A C expression whose value is a string containing the assembler
operation to identify the following data as writable initialized
data. Normally ".data" is right.

SHARED_SECTION_ASM_OP
if defined, a C expression whose value is a string containing the
assembler operation to identify the following data as shared data.
If not defined, DATA_SECTION_ASM_OP will be used.

gcc.info 374 / 506

INIT_SECTION_ASM_OP
if defined, a C expression whose value is a string containing the
assembler operation to identify the following data as
initialization code. If not defined, GNU CC will assume such a
section does not exist.

EXTRA_SECTIONS
A list of names for sections other than the standard two, which are
in_text and in_data. You need not define this macro on a system
with no other sections (that GCC needs to use).

EXTRA_SECTION_FUNCTIONS
One or more functions to be defined in varasm.c. These functions
should do jobs analogous to those of text_section and
data_section, for your additional sections. Do not define this
macro if you do not define EXTRA_SECTIONS.

READONLY_DATA_SECTION
On most machines, read-only variables, constants, and jump tables
are placed in the text section. If this is not the case on your
machine, this macro should be defined to be the name of a function
(either data_section or a function defined in EXTRA_SECTIONS) that
switches to the section to be used for read-only items.

If these items should be placed in the text section, this macro
should not be defined.

SELECT_SECTION (exp, reloc)
A C statement or statements to switch to the appropriate section
for output of exp. You can assume that exp is either a VAR_DECL
node or a constant of some sort. reloc indicates whether the
initial value of exp requires link-time relocations. Select the
section by calling text_section or one of the alternatives for
other sections.

Do not define this macro if you put all read-only variables and
constants in the read-only data section (usually the text section).

SELECT_RTX_SECTION (mode, rtx)
A C statement or statements to switch to the appropriate section
for output of rtx in mode mode. You can assume that rtx is some
kind of constant in RTL. The argument mode is redundant except in
the case of a const_int rtx. Select the section by calling
text_section or one of the alternatives for other sections.

Do not define this macro if you put all constants in the read-only
data section.

JUMP_TABLES_IN_TEXT_SECTION
Define this macro if jump tables (for tablejump insns) should be
output in the text section, along with the assembler instructions.
Otherwise, the readonly data section is used.

This macro is irrelevant if there is no separate readonly data
section.

gcc.info 375 / 506

ENCODE_SECTION_INFO (decl)
Define this macro if references to a symbol must be treated
differently depending on something about the variable or function
named by the symbol (such as what section it is in).

The macro definition, if any, is executed immediately after the
rtl for decl has been created and stored in DECL_RTL (decl). The
value of the rtl will be a mem whose address is a symbol_ref.

The usual thing for this macro to do is to record a flag in the
symbol_ref (such as SYMBOL_REF_FLAG) or to store a modified name
string in the symbol_ref (if one bit is not enough information).

STRIP_NAME_ENCODING (var, sym_name)
Decode sym_name and store the real name part in var, sans the
characters that encode section info. Define this macro if
ENCODE_SECTION_INFO alters the symbol’s name string.

1.207 gcc.info/PIC

Position Independent Code
=========================

This section describes macros that help implement generation of
position independent code. Simply defining these macros is not enough
to generate valid PIC; you must also add support to the macros
GO_IF_LEGITIMATE_ADDRESS and PRINT_OPERAND_ADDRESS, as well as
LEGITIMIZE_ADDRESS. You must modify the definition of movsi to do
something appropriate when the source operand contains a symbolic
address. You may also need to alter the handling of switch statements
so that they use relative addresses.

PIC_OFFSET_TABLE_REGNUM
The register number of the register used to address a table of
static data addresses in memory. In some cases this register is
defined by a processor’s "application binary interface" (ABI).
When this macro is defined, RTL is generated for this register
once, as with the stack pointer and frame pointer registers. If
this macro is not defined, it is up to the machine-dependent files
to allocate such a register (if necessary).

FINALIZE_PIC
By generating position-independent code, when two different
programs (A and B) share a common library (libC.a), the text of
the library can be shared whether or not the library is linked at
the same address for both programs. In some of these
environments, position-independent code requires not only the use
of different addressing modes, but also special code to enable the
use of these addressing modes.

The FINALIZE_PIC macro serves as a hook to emit these special
codes once the function is being compiled into assembly code, but
not before. (It is not done before, because in the case of
compiling an inline function, it would lead to multiple PIC

gcc.info 376 / 506

prologues being included in functions which used inline functions
and were compiled to assembly language.)

LEGITIMATE_PIC_OPERAND_P (x)
A C expression that is nonzero if x is a legitimate immediate
operand on the target machine when generating position independent
code. You can assume that x satisfies CONSTANT_P, so you need not
check this. You can also assume flag_pic is true, so you need not
check it either. You need not define this macro if all constants
(including SYMBOL_REF) can be immediate operands when generating
position independent code.

1.208 gcc.info/Assembler Format

Defining the Output Assembler Language
======================================

This section describes macros whose principal purpose is to describe
how to write instructions in assembler language-rather than what the
instructions do.

File Framework
Structural information for the assembler file.

Data Output
Output of constants (numbers, strings, addresses).

Uninitialized Data
Output of uninitialized variables.

Label Output
Output and generation of labels.

Initialization
General principles of initialization

and termination routines.

Macros for Initialization
Specific macros that control the handling of

initialization and termination routines.

Instruction Output
Output of actual instructions.

Dispatch Tables
Output of jump tables.

Alignment Output
Pseudo ops for alignment and skipping data.

gcc.info 377 / 506

1.209 gcc.info/File Framework

The Overall Framework of an Assembler File
--

ASM_FILE_START (stream)
A C expression which outputs to the stdio stream stream some
appropriate text to go at the start of an assembler file.

Normally this macro is defined to output a line containing
#NO_APP, which is a comment that has no effect on most
assemblers but tells the GNU assembler that it can save time by not
checking for certain assembler constructs.

On systems that use SDB, it is necessary to output certain
commands; see attasm.h.

ASM_FILE_END (stream)
A C expression which outputs to the stdio stream stream some
appropriate text to go at the end of an assembler file.

If this macro is not defined, the default is to output nothing
special at the end of the file. Most systems don’t require any
definition.

On systems that use SDB, it is necessary to output certain
commands; see attasm.h.

ASM_IDENTIFY_GCC (file)
A C statement to output assembler commands which will identify the
object file as having been compiled with GNU CC (or another GNU
compiler).

If you don’t define this macro, the string gcc_compiled.: is
output. This string is calculated to define a symbol which, on
BSD systems, will never be defined for any other reason. GDB
checks for the presence of this symbol when reading the symbol
table of an executable.

On non-BSD systems, you must arrange communication with GDB in
some other fashion. If GDB is not used on your system, you can
define this macro with an empty body.

ASM_COMMENT_START
A C string constant describing how to begin a comment in the target
assembler language. The compiler assumes that the comment will
end at the end of the line.

ASM_APP_ON
A C string constant for text to be output before each asm
statement or group of consecutive ones. Normally this is "#APP",
which is a comment that has no effect on most assemblers but tells
the GNU assembler that it must check the lines that follow for all
valid assembler constructs.

ASM_APP_OFF

gcc.info 378 / 506

A C string constant for text to be output after each asm statement
or group of consecutive ones. Normally this is "#NO_APP", which
tells the GNU assembler to resume making the time-saving
assumptions that are valid for ordinary compiler output.

ASM_OUTPUT_SOURCE_FILENAME (stream, name)
A C statement to output COFF information or DWARF debugging
information which indicates that filename name is the current
source file to the stdio stream stream.

This macro need not be defined if the standard form of output for
the file format in use is appropriate.

ASM_OUTPUT_SOURCE_LINE (stream, line)
A C statement to output DBX or SDB debugging information before
code for line number line of the current source file to the stdio
stream stream.

This macro need not be defined if the standard form of debugging
information for the debugger in use is appropriate.

ASM_OUTPUT_IDENT (stream, string)
A C statement to output something to the assembler file to handle a
#ident directive containing the text string. If this macro is not
defined, nothing is output for a #ident directive.

OBJC_PROLOGUE
A C statement to output any assembler statements which are
required to precede any Objective C object definitions or message
sending. The statement is executed only when compiling an
Objective C program.

1.210 gcc.info/Data Output

Output of Data

ASM_OUTPUT_LONG_DOUBLE (stream, value)
ASM_OUTPUT_DOUBLE (stream, value)
ASM_OUTPUT_FLOAT (stream, value)

A C statement to output to the stdio stream stream an assembler
instruction to assemble a floating-point constant of TFmode,
DFmode or SFmode, respectively, whose value is value. value
will be a C expression of type REAL_VALUE_TYPE. Macros such as
REAL_VALUE_TO_TARGET_DOUBLE are useful for writing these
definitions.

ASM_OUTPUT_QUADRUPLE_INT (stream, exp)
ASM_OUTPUT_DOUBLE_INT (stream, exp)
ASM_OUTPUT_INT (stream, exp)
ASM_OUTPUT_SHORT (stream, exp)
ASM_OUTPUT_CHAR (stream, exp)

A C statement to output to the stdio stream stream an assembler
instruction to assemble an integer of 16, 8, 4, 2 or 1 bytes,

gcc.info 379 / 506

respectively, whose value is value. The argument exp will be an
RTL expression which represents a constant value. Use
output_addr_const (stream, exp) to output this value as an
assembler expression.

For sizes larger than UNITS_PER_WORD, if the action of a macro
would be identical to repeatedly calling the macro corresponding to
a size of UNITS_PER_WORD, once for each word, you need not define
the macro.

ASM_OUTPUT_BYTE (stream, value)
A C statement to output to the stdio stream stream an assembler
instruction to assemble a single byte containing the number value.

ASM_BYTE_OP
A C string constant giving the pseudo-op to use for a sequence of
single-byte constants. If this macro is not defined, the default
is "byte".

ASM_OUTPUT_ASCII (stream, ptr, len)
A C statement to output to the stdio stream stream an assembler
instruction to assemble a string constant containing the len bytes
at ptr. ptr will be a C expression of type char * and len a C
expression of type int.

If the assembler has a .ascii pseudo-op as found in the Berkeley
Unix assembler, do not define the macro ASM_OUTPUT_ASCII.

ASM_OUTPUT_POOL_PROLOGUE (file funname fundecl size)
A C statement to output assembler commands to define the start of
the constant pool for a function. funname is a string giving the
name of the function. Should the return type of the function be
required, it can be obtained via fundecl. size is the size, in
bytes, of the constant pool that will be written immediately after
this call.

If no constant-pool prefix is required, the usual case, this macro
need not be defined.

ASM_OUTPUT_SPECIAL_POOL_ENTRY (file, x, mode, align, labelno, jumpto)
A C statement (with or without semicolon) to output a constant in
the constant pool, if it needs special treatment. (This macro
need not do anything for RTL expressions that can be output
normally.)

The argument file is the standard I/O stream to output the
assembler code on. x is the RTL expression for the constant to
output, and mode is the machine mode (in case x is a const_int).
align is the required alignment for the value x; you should output
an assembler directive to force this much alignment.

The argument labelno is a number to use in an internal label for
the address of this pool entry. The definition of this macro is
responsible for outputting the label definition at the proper
place. Here is how to do this:

ASM_OUTPUT_INTERNAL_LABEL (file, "LC", labelno);

gcc.info 380 / 506

When you output a pool entry specially, you should end with a goto
to the label jumpto. This will prevent the same pool entry from
being output a second time in the usual manner.

You need not define this macro if it would do nothing.

ASM_OPEN_PAREN
ASM_CLOSE_PAREN

These macros are defined as C string constant, describing the
syntax in the assembler for grouping arithmetic expressions. The
following definitions are correct for most assemblers:

#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"

These macros are provided by real.h for writing the definitions of
ASM_OUTPUT_DOUBLE and the like:

REAL_VALUE_TO_TARGET_SINGLE (x, l)
REAL_VALUE_TO_TARGET_DOUBLE (x, l)
REAL_VALUE_TO_TARGET_LONG_DOUBLE (x, l)

These translate x, of type REAL_VALUE_TYPE, to the target’s
floating point representation, and store its bit pattern in the
array of long int whose address is l. The number of elements in
the output array is determined by the size of the desired target
floating point data type: 32 bits of it go in each long int array
element. Each array element holds 32 bits of the result, even if
long int is wider than 32 bits on the host machine.

The array element values are designed so that you can print them
out using fprintf in the order they should appear in the target
machine’s memory.

REAL_VALUE_TO_DECIMAL (x, format, string)
This macro converts x, of type REAL_VALUE_TYPE, to a decimal
number and stores it as a string into string. You must pass, as
string, the address of a long enough block of space to hold the
result.

The argument format is a printf-specification that serves as a
suggestion for how to format the output string.

1.211 gcc.info/Uninitialized Data

Output of Uninitialized Variables

Each of the macros in this section is used to do the whole job of
outputting a single uninitialized variable.

ASM_OUTPUT_COMMON (stream, name, size, rounded)
A C statement (sans semicolon) to output to the stdio stream
stream the assembler definition of a common-label named name

gcc.info 381 / 506

whose size is size bytes. The variable rounded is the size
rounded up to whatever alignment the caller wants.

Use the expression assemble_name (stream, name) to output the name
itself; before and after that, output the additional assembler
syntax for defining the name, and a newline.

This macro controls how the assembler definitions of uninitialized
global variables are output.

ASM_OUTPUT_ALIGNED_COMMON (stream, name, size, alignment)
Like ASM_OUTPUT_COMMON except takes the required alignment as a
separate, explicit argument. If you define this macro, it is used
in place of ASM_OUTPUT_COMMON, and gives you more flexibility in
handling the required alignment of the variable.

ASM_OUTPUT_SHARED_COMMON (stream, name, size, rounded)
If defined, it is similar to ASM_OUTPUT_COMMON, except that it is
used when name is shared. If not defined, ASM_OUTPUT_COMMON will
be used.

ASM_OUTPUT_LOCAL (stream, name, size, rounded)
A C statement (sans semicolon) to output to the stdio stream
stream the assembler definition of a local-common-label named
name whose size is size bytes. The variable rounded is the size
rounded up to whatever alignment the caller wants.

Use the expression assemble_name (stream, name) to output the name
itself; before and after that, output the additional assembler
syntax for defining the name, and a newline.

This macro controls how the assembler definitions of uninitialized
static variables are output.

ASM_OUTPUT_ALIGNED_LOCAL (stream, name, size, alignment)
Like ASM_OUTPUT_LOCAL except takes the required alignment as a
separate, explicit argument. If you define this macro, it is used
in place of ASM_OUTPUT_LOCAL, and gives you more flexibility in
handling the required alignment of the variable.

ASM_OUTPUT_SHARED_LOCAL (stream, name, size, rounded)
If defined, it is similar to ASM_OUTPUT_LOCAL, except that it is
used when name is shared. If not defined, ASM_OUTPUT_LOCAL will
be used.

1.212 gcc.info/Label Output

Output and Generation of Labels

ASM_OUTPUT_LABEL (stream, name)
A C statement (sans semicolon) to output to the stdio stream
stream the assembler definition of a label named name. Use
the expression assemble_name (stream, name) to output the name

gcc.info 382 / 506

itself; before and after that, output the additional assembler
syntax for defining the name, and a newline.

ASM_DECLARE_FUNCTION_NAME (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream
stream any text necessary for declaring the name name of a
function which is being defined. This macro is responsible for
outputting the label definition (perhaps using ASM_OUTPUT_LABEL).
The argument decl is the FUNCTION_DECL tree node representing the
function.

If this macro is not defined, then the function name is defined in
the usual manner as a label (by means of ASM_OUTPUT_LABEL).

ASM_DECLARE_FUNCTION_SIZE (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream
stream any text necessary for declaring the size of a function
which is being defined. The argument name is the name of the
function. The argument decl is the FUNCTION_DECL tree node
representing the function.

If this macro is not defined, then the function size is not
defined.

ASM_DECLARE_OBJECT_NAME (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream
stream any text necessary for declaring the name name of an
initialized variable which is being defined. This macro must
output the label definition (perhaps using ASM_OUTPUT_LABEL). The
argument decl is the VAR_DECL tree node representing the variable.

If this macro is not defined, then the variable name is defined in
the usual manner as a label (by means of ASM_OUTPUT_LABEL).

ASM_FINISH_DECLARE_OBJECT (stream, decl, toplevel, atend)
A C statement (sans semicolon) to finish up declaring a variable
name once the compiler has processed its initializer fully and
thus has had a chance to determine the size of an array when
controlled by an initializer. This is used on systems where it’s
necessary to declare something about the size of the object.

If you don’t define this macro, that is equivalent to defining it
to do nothing.

ASM_GLOBALIZE_LABEL (stream, name)
A C statement (sans semicolon) to output to the stdio stream
stream some commands that will make the label name global;
that is, available for reference from other files. Use the
expression assemble_name (stream, name) to output the name itself;
before and after that, output the additional assembler syntax for
making that name global, and a newline.

ASM_OUTPUT_EXTERNAL (stream, decl, name)
A C statement (sans semicolon) to output to the stdio stream
stream any text necessary for declaring the name of an external
symbol named name which is referenced in this compilation but not
defined. The value of decl is the tree node for the declaration.

gcc.info 383 / 506

This macro need not be defined if it does not need to output
anything. The GNU assembler and most Unix assemblers don’t
require anything.

ASM_OUTPUT_EXTERNAL_LIBCALL (stream, symref)
A C statement (sans semicolon) to output on stream an assembler
pseudo-op to declare a library function name external. The name
of the library function is given by symref, which has type rtx and
is a symbol_ref.

This macro need not be defined if it does not need to output
anything. The GNU assembler and most Unix assemblers don’t
require anything.

ASM_OUTPUT_LABELREF (stream, name)
A C statement (sans semicolon) to output to the stdio stream
stream a reference in assembler syntax to a label named name.
This should add _ to the front of the name, if that is customary
on your operating system, as it is in most Berkeley Unix systems.
This macro is used in assemble_name.

ASM_OUTPUT_INTERNAL_LABEL (stream, prefix, num)
A C statement to output to the stdio stream stream a label whose
name is made from the string prefix and the number num.

It is absolutely essential that these labels be distinct from the
labels used for user-level functions and variables. Otherwise,
certain programs will have name conflicts with internal labels.

It is desirable to exclude internal labels from the symbol table
of the object file. Most assemblers have a naming convention for
labels that should be excluded; on many systems, the letter L at
the beginning of a label has this effect. You should find out what
convention your system uses, and follow it.

The usual definition of this macro is as follows:

fprintf (stream, "L%s%d:\n", prefix, num)

ASM_GENERATE_INTERNAL_LABEL (string, prefix, num)
A C statement to store into the string string a label whose name
is made from the string prefix and the number num.

This string, when output subsequently by assemble_name, should
produce the output that ASM_OUTPUT_INTERNAL_LABEL would produce
with the same prefix and num.

If the string begins with *, then assemble_name will output the
rest of the string unchanged. It is often convenient for
ASM_GENERATE_INTERNAL_LABEL to use * in this way. If the string
doesn’t start with *, then ASM_OUTPUT_LABELREF gets to output the
string, and may change it. (Of course, ASM_OUTPUT_LABELREF is
also part of your machine description, so you should know what it
does on your machine.)

ASM_FORMAT_PRIVATE_NAME (outvar, name, number)

gcc.info 384 / 506

A C expression to assign to outvar (which is a variable of type
char *) a newly allocated string made from the string name and the
number number, with some suitable punctuation added. Use alloca
to get space for the string.

The string will be used as an argument to ASM_OUTPUT_LABELREF to
produce an assembler label for an internal static variable whose
name is name. Therefore, the string must be such as to result in
valid assembler code. The argument number is different each time
this macro is executed; it prevents conflicts between
similarly-named internal static variables in different scopes.

Ideally this string should not be a valid C identifier, to prevent
any conflict with the user’s own symbols. Most assemblers allow
periods or percent signs in assembler symbols; putting at least
one of these between the name and the number will suffice.

OBJC_GEN_METHOD_LABEL (buf, is_inst, class_name, cat_name, sel_name)
Define this macro to override the default assembler names used for
Objective C methods.

The default name is a unique method number followed by the name of
the class (e.g. _1_Foo). For methods in categories, the name of
the category is also included in the assembler name (e.g.
_1_Foo_Bar).

These names are safe on most systems, but make debugging difficult
since the method’s selector is not present in the name.
Therefore, particular systems define other ways of computing names.

buf is an expression of type char * which gives you a buffer in
which to store the name; its length is as long as class_name,
cat_name and sel_name put together, plus 50 characters extra.

The argument is_inst specifies whether the method is an instance
method or a class method; class_name is the name of the class;
cat_name is the name of the category (or NULL if the method is not
in a category); and sel_name is the name of the selector.

On systems where the assembler can handle quoted names, you can
use this macro to provide more human-readable names.

1.213 gcc.info/Initialization

How Initialization Functions Are Handled
--

The compiled code for certain languages includes constructors (also
called initialization routines)--functions to initialize data in the
program when the program is started. These functions need to be called
before the program is "started"--that is to say, before main is called.

Compiling some languages generates destructors (also called
termination routines) that should be called when the program terminates.

gcc.info 385 / 506

To make the initialization and termination functions work, the
compiler must output something in the assembler code to cause those
functions to be called at the appropriate time. When you port the
compiler to a new system, you need to specify how to do this.

There are two major ways that GCC currently supports the execution of
initialization and termination functions. Each way has two variants.
Much of the structure is common to all four variations.

The linker must build two lists of these functions--a list of
initialization functions, called __CTOR_LIST__, and a list of
termination functions, called __DTOR_LIST__.

Each list always begins with an ignored function pointer (which may
hold 0, -1, or a count of the function pointers after it, depending on
the environment). This is followed by a series of zero or more function
pointers to constructors (or destructors), followed by a function
pointer containing zero.

Depending on the operating system and its executable file format,
either crtstuff.c or libgcc2.c traverses these lists at startup time
and exit time. Constructors are called in forward order of the list;
destructors in reverse order.

The best way to handle static constructors works only for object file
formats which provide arbitrarily-named sections. A section is set
aside for a list of constructors, and another for a list of destructors.
Traditionally these are called .ctors and .dtors. Each object file
that defines an initialization function also puts a word in the
constructor section to point to that function. The linker accumulates
all these words into one contiguous .ctors section. Termination
functions are handled similarly.

To use this method, you need appropriate definitions of the macros
ASM_OUTPUT_CONSTRUCTOR and ASM_OUTPUT_DESTRUCTOR. Usually you can get
them by including svr4.h.

When arbitrary sections are available, there are two variants,
depending upon how the code in crtstuff.c is called. On systems that
support an init section which is executed at program startup, parts of
crtstuff.c are compiled into that section. The program is linked by
the gcc driver like this:

ld -o output_file crtbegin.o ... crtend.o -lgcc

The head of a function (__do_global_ctors) appears in the init
section of crtbegin.o; the remainder of the function appears in the
init section of crtend.o. The linker will pull these two parts of the
section together, making a whole function. If any of the user’s object
files linked into the middle of it contribute code, then that code will
be executed as part of the body of __do_global_ctors.

To use this variant, you must define the INIT_SECTION_ASM_OP macro
properly.

If no init section is available, do not define INIT_SECTION_ASM_OP.

gcc.info 386 / 506

Then __do_global_ctors is built into the text section like all other
functions, and resides in libgcc.a. When GCC compiles any function
called main, it inserts a procedure call to __main as the first
executable code after the function prologue. The __main function, also
defined in libgcc2.c, simply calls __do_global_ctors.

In file formats that don’t support arbitrary sections, there are
again two variants. In the simplest variant, the GNU linker (GNU ld)
and an ‘a.out’ format must be used. In this case,
ASM_OUTPUT_CONSTRUCTOR is defined to produce a .stabs entry of type
N_SETT, referencing the name __CTOR_LIST__, and with the address of the
void function containing the initialization code as its value. The GNU
linker recognizes this as a request to add the value to a "set"; the
values are accumulated, and are eventually placed in the executable as
a vector in the format described above, with a leading (ignored) count
and a trailing zero element. ASM_OUTPUT_DESTRUCTOR is handled
similarly. Since no init section is available, the absence of
INIT_SECTION_ASM_OP causes the compilation of main to call __main as
above, starting the initialization process.

The last variant uses neither arbitrary sections nor the GNU linker.
This is preferable when you want to do dynamic linking and when using
file formats which the GNU linker does not support, such as ‘ECOFF’. In
this case, ASM_OUTPUT_CONSTRUCTOR does not produce an N_SETT symbol;
initialization and termination functions are recognized simply by their
names. This requires an extra program in the linkage step, called
collect2. This program pretends to be the linker, for use with GNU CC;
it does its job by running the ordinary linker, but also arranges to
include the vectors of initialization and termination functions. These
functions are called via __main as described above.

Choosing among these configuration options has been simplified by a
set of operating-system-dependent files in the config subdirectory.
These files define all of the relevant parameters. Usually it is
sufficient to include one into your specific machine-dependent
configuration file. These files are:

aoutos.h
For operating systems using the ‘a.out’ format.

next.h
For operating systems using the ‘MachO’ format.

svr3.h
For System V Release 3 and similar systems using ‘COFF’ format.

svr4.h
For System V Release 4 and similar systems using ‘ELF’ format.

vms.h
For the VMS operating system.

The following section describes the specific macros that control and
customize the handling of initialization and termination functions.

gcc.info 387 / 506

1.214 gcc.info/Macros for Initialization

Macros Controlling Initialization Routines
--

Here are the macros that control how the compiler handles
initialization and termination functions:

INIT_SECTION_ASM_OP
If defined, a C string constant for the assembler operation to
identify the following data as initialization code. If not
defined, GNU CC will assume such a section does not exist. When
you are using special sections for initialization and termination
functions, this macro also controls how crtstuff.c and libgcc2.c
arrange to run the initialization functions.

ASM_OUTPUT_CONSTRUCTOR (stream, name)
Define this macro as a C statement to output on the stream stream
the assembler code to arrange to call the function named name at
initialization time.

Assume that name is the name of a C function generated
automatically by the compiler. This function takes no arguments.
Use the function assemble_name to output the name name; this
performs any system-specific syntactic transformations such as
adding an underscore.

If you don’t define this macro, nothing special is output to
arrange to call the function. This is correct when the function
will be called in some other manner--for example, by means of the
collect2 program, which looks through the symbol table to find
these functions by their names.

ASM_OUTPUT_DESTRUCTOR (stream, name)
This is like ASM_OUTPUT_CONSTRUCTOR but used for termination
functions rather than initialization functions.

If your system uses collect2 as the means of processing
constructors, then that program normally uses nm to scan an object file
for constructor functions to be called. On certain kinds of systems,
you can define these macros to make collect2 work faster (and, in some
cases, make it work at all):

OBJECT_FORMAT_COFF
Define this macro if the system uses COFF (Common Object File
Format) object files, so that collect2 can assume this format and
scan object files directly for dynamic constructor/destructor
functions.

OBJECT_FORMAT_ROSE
Define this macro if the system uses ROSE format object files, so
that collect2 can assume this format and scan object files directly
for dynamic constructor/destructor functions.

These macros are effective only in a native compiler; collect2 as
part of a cross compiler always uses nm.

gcc.info 388 / 506

REAL_NM_FILE_NAME
Define this macro as a C string constant containing the file name
to use to execute nm. The default is to search the path normally
for nm.

1.215 gcc.info/Instruction Output

Output of Assembler Instructions

REGISTER_NAMES
A C initializer containing the assembler’s names for the machine
registers, each one as a C string constant. This is what
translates register numbers in the compiler into assembler
language.

ADDITIONAL_REGISTER_NAMES
If defined, a C initializer for an array of structures containing
a name and a register number. This macro defines additional names
for hard registers, thus allowing the asm option in declarations
to refer to registers using alternate names.

ASM_OUTPUT_OPCODE (stream, ptr)
Define this macro if you are using an unusual assembler that
requires different names for the machine instructions.

The definition is a C statement or statements which output an
assembler instruction opcode to the stdio stream stream. The
macro-operand ptr is a variable of type char * which points to the
opcode name in its "internal" form--the form that is written in
the machine description. The definition should output the opcode
name to stream, performing any translation you desire, and
increment the variable ptr to point at the end of the opcode so
that it will not be output twice.

In fact, your macro definition may process less than the entire
opcode name, or more than the opcode name; but if you want to
process text that includes %-sequences to substitute operands, you
must take care of the substitution yourself. Just be sure to
increment ptr over whatever text should not be output normally.

If you need to look at the operand values, they can be found as the
elements of recog_operand.

If the macro definition does nothing, the instruction is output in
the usual way.

FINAL_PRESCAN_INSN (insn, opvec, noperands)
If defined, a C statement to be executed just prior to the output
of assembler code for insn, to modify the extracted operands so
they will be output differently.

Here the argument opvec is the vector containing the operands

gcc.info 389 / 506

extracted from insn, and noperands is the number of elements of
the vector which contain meaningful data for this insn. The
contents of this vector are what will be used to convert the insn
template into assembler code, so you can change the assembler
output by changing the contents of the vector.

This macro is useful when various assembler syntaxes share a single
file of instruction patterns; by defining this macro differently,
you can cause a large class of instructions to be output
differently (such as with rearranged operands). Naturally,
variations in assembler syntax affecting individual insn patterns
ought to be handled by writing conditional output routines in
those patterns.

If this macro is not defined, it is equivalent to a null statement.

PRINT_OPERAND (stream, x, code)
A C compound statement to output to stdio stream stream the
assembler syntax for an instruction operand x. x is an RTL
expression.

code is a value that can be used to specify one of several ways of
printing the operand. It is used when identical operands must be
printed differently depending on the context. code comes from the
% specification that was used to request printing of the operand.
If the specification was just %digit then code is 0; if the
specification was %ltr digit then code is the ASCII code for ltr.

If x is a register, this macro should print the register’s name.
The names can be found in an array reg_names whose type is char

*[]. reg_names is initialized from REGISTER_NAMES.

When the machine description has a specification %punct (a %
followed by a punctuation character), this macro is called with a
null pointer for x and the punctuation character for code.

PRINT_OPERAND_PUNCT_VALID_P (code)
A C expression which evaluates to true if code is a valid
punctuation character for use in the PRINT_OPERAND macro. If
PRINT_OPERAND_PUNCT_VALID_P is not defined, it means that no
punctuation characters (except for the standard one, %) are used
in this way.

PRINT_OPERAND_ADDRESS (stream, x)
A C compound statement to output to stdio stream stream the
assembler syntax for an instruction operand that is a memory
reference whose address is x. x is an RTL expression.

On some machines, the syntax for a symbolic address depends on the
section that the address refers to. On these machines, define the
macro ENCODE_SECTION_INFO to store the information into the
symbol_ref, and then check for it here. See

Assembler Format
.

DBR_OUTPUT_SEQEND(file)
A C statement, to be executed after all slot-filler instructions

gcc.info 390 / 506

have been output. If necessary, call dbr_sequence_length to
determine the number of slots filled in a sequence (zero if not
currently outputting a sequence), to decide how many no-ops to
output, or whatever.

Don’t define this macro if it has nothing to do, but it is helpful
in reading assembly output if the extent of the delay sequence is
made explicit (e.g. with white space).

Note that output routines for instructions with delay slots must be
prepared to deal with not being output as part of a sequence (i.e.
when the scheduling pass is not run, or when no slot fillers could
be found.) The variable final_sequence is null when not
processing a sequence, otherwise it contains the sequence rtx
being output.

REGISTER_PREFIX
LOCAL_LABEL_PREFIX
USER_LABEL_PREFIX
IMMEDIATE_PREFIX

If defined, C string expressions to be used for the %R, %L, %U,
and %I options of asm_fprintf (see final.c). These are useful
when a single md file must support multiple assembler formats. In
that case, the various tm.h files can define these macros
differently.

ASSEMBLER_DIALECT
If your target supports multiple dialects of assembler language
(such as different opcodes), define this macro as a C expression
that gives the numeric index of the assembler langauge dialect to
use, with zero as the first variant.

If this macro is defined, you may use {option0|option1|option2...}
constructs in the output templates of patterns (see

Output Template
) or in the first argument of asm_fprintf. This

construct outputs option0, option1 or option2, etc., if the value
of ASSEMBLER_DIALECT is zero, one or two, etc. Any special
characters within these strings retain their usual meaning.

If you do not define this macro, the characters {, | and } do not
have any special meaning when used in templates or operands to
asm_fprintf.

Define the macros REGISTER_PREFIX, LOCAL_LABEL_PREFIX,
USER_LABEL_PREFIX and IMMEDIATE_PREFIX if you can express the
variations in assemble language syntax with that mechanism. Define
ASSEMBLER_DIALECT and use the {option0|option1} syntax if the
syntax variant are larger and involve such things as different
opcodes or operand order.

ASM_OUTPUT_REG_PUSH (stream, regno)
A C expression to output to stream some assembler code which will
push hard register number regno onto the stack. The code need not
be optimal, since this macro is used only when profiling.

gcc.info 391 / 506

ASM_OUTPUT_REG_POP (stream, regno)
A C expression to output to stream some assembler code which will
pop hard register number regno off of the stack. The code need
not be optimal, since this macro is used only when profiling.

1.216 gcc.info/Dispatch Tables

Output of Dispatch Tables

ASM_OUTPUT_ADDR_DIFF_ELT (stream, value, rel)
This macro should be provided on machines where the addresses in a
dispatch table are relative to the table’s own address.

The definition should be a C statement to output to the stdio
stream stream an assembler pseudo-instruction to generate a
difference between two labels. value and rel are the numbers of
two internal labels. The definitions of these labels are output
using ASM_OUTPUT_INTERNAL_LABEL, and they must be printed in the
same way here. For example,

fprintf (stream, "\t.word L%d-L%d\n",
value, rel)

ASM_OUTPUT_ADDR_VEC_ELT (stream, value)
This macro should be provided on machines where the addresses in a
dispatch table are absolute.

The definition should be a C statement to output to the stdio
stream stream an assembler pseudo-instruction to generate a
reference to a label. value is the number of an internal label
whose definition is output using ASM_OUTPUT_INTERNAL_LABEL. For
example,

fprintf (stream, "\t.word L%d\n", value)

ASM_OUTPUT_CASE_LABEL (stream, prefix, num, table)
Define this if the label before a jump-table needs to be output
specially. The first three arguments are the same as for
ASM_OUTPUT_INTERNAL_LABEL; the fourth argument is the jump-table
which follows (a jump_insn containing an addr_vec or
addr_diff_vec).

This feature is used on system V to output a swbeg statement for
the table.

If this macro is not defined, these labels are output with
ASM_OUTPUT_INTERNAL_LABEL.

ASM_OUTPUT_CASE_END (stream, num, table)
Define this if something special must be output at the end of a
jump-table. The definition should be a C statement to be executed
after the assembler code for the table is written. It should write

gcc.info 392 / 506

the appropriate code to stdio stream stream. The argument table
is the jump-table insn, and num is the label-number of the
preceding label.

If this macro is not defined, nothing special is output at the end
of the jump-table.

1.217 gcc.info/Alignment Output

Assembler Commands for Alignment

ASM_OUTPUT_ALIGN_CODE (file)
A C expression to output text to align the location counter in the
way that is desirable at a point in the code that is reached only
by jumping.

This macro need not be defined if you don’t want any special
alignment to be done at such a time. Most machine descriptions do
not currently define the macro.

ASM_OUTPUT_LOOP_ALIGN (file)
A C expression to output text to align the location counter in the
way that is desirable at the beginning of a loop.

This macro need not be defined if you don’t want any special
alignment to be done at such a time. Most machine descriptions do
not currently define the macro.

ASM_OUTPUT_SKIP (stream, nbytes)
A C statement to output to the stdio stream stream an assembler
instruction to advance the location counter by nbytes bytes.
Those bytes should be zero when loaded. nbytes will be a C
expression of type int.

ASM_NO_SKIP_IN_TEXT
Define this macro if ASM_OUTPUT_SKIP should not be used in the
text section because it fails put zeros in the bytes that are
skipped. This is true on many Unix systems, where the pseudo-op
to skip bytes produces no-op instructions rather than zeros when
used in the text section.

ASM_OUTPUT_ALIGN (stream, power)
A C statement to output to the stdio stream stream an assembler
command to advance the location counter to a multiple of 2 to the
power bytes. power will be a C expression of type int.

1.218 gcc.info/Debugging Info

gcc.info 393 / 506

Controlling Debugging Information Format
==

All Debuggers
Macros that affect all debugging formats uniformly.

DBX Options
Macros enabling specific options in DBX format.

DBX Hooks
Hook macros for varying DBX format.

File Names and DBX
Macros controlling output of file names in DBX format.

SDB and DWARF
Macros for SDB (COFF) and DWARF formats.

1.219 gcc.info/All Debuggers

Macros Affecting All Debugging Formats

DBX_REGISTER_NUMBER (regno)
A C expression that returns the DBX register number for the
compiler register number regno. In simple cases, the value of this
expression may be regno itself. But sometimes there are some
registers that the compiler knows about and DBX does not, or vice
versa. In such cases, some register may need to have one number in
the compiler and another for DBX.

If two registers have consecutive numbers inside GNU CC, and they
can be used as a pair to hold a multiword value, then they must
have consecutive numbers after renumbering with
DBX_REGISTER_NUMBER. Otherwise, debuggers will be unable to
access such a pair, because they expect register pairs to be
consecutive in their own numbering scheme.

If you find yourself defining DBX_REGISTER_NUMBER in way that does
not preserve register pairs, then what you must do instead is
redefine the actual register numbering scheme.

DEBUGGER_AUTO_OFFSET (x)
A C expression that returns the integer offset value for an
automatic variable having address x (an RTL expression). The
default computation assumes that x is based on the frame-pointer
and gives the offset from the frame-pointer. This is required for
targets that produce debugging output for DBX or COFF-style
debugging output for SDB and allow the frame-pointer to be
eliminated when the -g options is used.

gcc.info 394 / 506

DEBUGGER_ARG_OFFSET (offset, x)
A C expression that returns the integer offset value for an
argument having address x (an RTL expression). The nominal offset
is offset.

PREFERRED_DEBUGGING_TYPE
A C expression that returns the type of debugging output GNU CC
produces when the user specifies -g or -ggdb. Define this if you
have arranged for GNU CC to support more than one format of
debugging output. Currently, the allowable values are DBX_DEBUG,
SDB_DEBUG, DWARF_DEBUG, and XCOFF_DEBUG.

The value of this macro only affects the default debugging output;
the user can always get a specific type of output by using -gstabs,
-gcoff, -gdwarf, or -gxcoff.

1.220 gcc.info/DBX Options

Specific Options for DBX Output

DBX_DEBUGGING_INFO
Define this macro if GNU CC should produce debugging output for DBX
in response to the -g option.

XCOFF_DEBUGGING_INFO
Define this macro if GNU CC should produce XCOFF format debugging
output in response to the -g option. This is a variant of DBX
format.

DEFAULT_GDB_EXTENSIONS
Define this macro to control whether GNU CC should by default
generate GDB’s extended version of DBX debugging information
(assuming DBX-format debugging information is enabled at all). If
you don’t define the macro, the default is 1: always generate the
extended information if there is any occasion to.

DEBUG_SYMS_TEXT
Define this macro if all .stabs commands should be output while in
the text section.

ASM_STABS_OP
A C string constant naming the assembler pseudo op to use instead
of .stabs to define an ordinary debugging symbol. If you don’t
define this macro, .stabs is used. This macro applies only to DBX
debugging information format.

ASM_STABD_OP
A C string constant naming the assembler pseudo op to use instead
of .stabd to define a debugging symbol whose value is the current
location. If you don’t define this macro, .stabd is used. This
macro applies only to DBX debugging information format.

gcc.info 395 / 506

ASM_STABN_OP
A C string constant naming the assembler pseudo op to use instead
of .stabn to define a debugging symbol with no name. If you don’t
define this macro, .stabn is used. This macro applies only to DBX
debugging information format.

DBX_NO_XREFS
Define this macro if DBX on your system does not support the
construct xstagname. On some systems, this construct is used to
describe a forward reference to a structure named tagname. On
other systems, this construct is not supported at all.

DBX_CONTIN_LENGTH
A symbol name in DBX-format debugging information is normally
continued (split into two separate .stabs directives) when it
exceeds a certain length (by default, 80 characters). On some
operating systems, DBX requires this splitting; on others,
splitting must not be done. You can inhibit splitting by defining
this macro with the value zero. You can override the default
splitting-length by defining this macro as an expression for the
length you desire.

DBX_CONTIN_CHAR
Normally continuation is indicated by adding a \ character to the
end of a .stabs string when a continuation follows. To use a
different character instead, define this macro as a character
constant for the character you want to use. Do not define this
macro if backslash is correct for your system.

DBX_STATIC_STAB_DATA_SECTION
Define this macro if it is necessary to go to the data section
before outputting the .stabs pseudo-op for a non-global static
variable.

DBX_TYPE_DECL_STABS_CODE
The value to use in the "code" field of the .stabs directive for a
typedef. The default is N_LSYM.

DBX_STATIC_CONST_VAR_CODE
The value to use in the "code" field of the .stabs directive for a
static variable located in the text section. DBX format does not
provide any "right" way to do this. The default is N_FUN.

DBX_REGPARM_STABS_CODE
The value to use in the "code" field of the .stabs directive for a
parameter passed in registers. DBX format does not provide any
"right" way to do this. The default is N_RSYM.

DBX_REGPARM_STABS_LETTER
The letter to use in DBX symbol data to identify a symbol as a
parameter passed in registers. DBX format does not customarily
provide any way to do this. The default is ’P’.

DBX_MEMPARM_STABS_LETTER
The letter to use in DBX symbol data to identify a symbol as a
stack parameter. The default is ’p’.

gcc.info 396 / 506

DBX_FUNCTION_FIRST
Define this macro if the DBX information for a function and its
arguments should precede the assembler code for the function.
Normally, in DBX format, the debugging information entirely
follows the assembler code.

DBX_LBRAC_FIRST
Define this macro if the N_LBRAC symbol for a block should precede
the debugging information for variables and functions defined in
that block. Normally, in DBX format, the N_LBRAC symbol comes
first.

1.221 gcc.info/DBX Hooks

Open-Ended Hooks for DBX Format

DBX_OUTPUT_LBRAC (stream, name)
Define this macro to say how to output to stream the debugging
information for the start of a scope level for variable names. The
argument name is the name of an assembler symbol (for use with
assemble_name) whose value is the address where the scope begins.

DBX_OUTPUT_RBRAC (stream, name)
Like DBX_OUTPUT_LBRAC, but for the end of a scope level.

DBX_OUTPUT_ENUM (stream, type)
Define this macro if the target machine requires special handling
to output an enumeration type. The definition should be a C
statement (sans semicolon) to output the appropriate information
to stream for the type type.

DBX_OUTPUT_FUNCTION_END (stream, function)
Define this macro if the target machine requires special output at
the end of the debugging information for a function. The
definition should be a C statement (sans semicolon) to output the
appropriate information to stream. function is the FUNCTION_DECL
node for the function.

DBX_OUTPUT_STANDARD_TYPES (syms)
Define this macro if you need to control the order of output of the
standard data types at the beginning of compilation. The argument
syms is a tree which is a chain of all the predefined global
symbols, including names of data types.

Normally, DBX output starts with definitions of the types for
integers and characters, followed by all the other predefined
types of the particular language in no particular order.

On some machines, it is necessary to output different particular
types first. To do this, define DBX_OUTPUT_STANDARD_TYPES to
output those symbols in the necessary order. Any predefined types
that you don’t explicitly output will be output afterward in no
particular order.

gcc.info 397 / 506

Be careful not to define this macro so that it works only for C.
There are no global variables to access most of the built-in
types, because another language may have another set of types.
The way to output a particular type is to look through syms to see
if you can find it. Here is an example:

{
tree decl;
for (decl = syms; decl; decl = TREE_CHAIN (decl))

if (!strcmp (IDENTIFIER_POINTER (DECL_NAME (decl)),
"long int"))

dbxout_symbol (decl);
...

}

This does nothing if the expected type does not exist.

See the function init_decl_processing in c-decl.c to find the
names to use for all the built-in C types.

Here is another way of finding a particular type:

{
tree decl;
for (decl = syms; decl; decl = TREE_CHAIN (decl))

if (TREE_CODE (decl) == TYPE_DECL
&& (TREE_CODE (TREE_TYPE (decl))

== INTEGER_CST)
&& TYPE_PRECISION (TREE_TYPE (decl)) == 16
&& TYPE_UNSIGNED (TREE_TYPE (decl)))

/* This must be unsigned short. */
dbxout_symbol (decl);

...
}

1.222 gcc.info/File Names and DBX

File Names in DBX Format

DBX_WORKING_DIRECTORY
Define this if DBX wants to have the current directory recorded in
each object file.

Note that the working directory is always recorded if GDB
extensions are enabled.

DBX_OUTPUT_MAIN_SOURCE_FILENAME (stream, name)
A C statement to output DBX debugging information to the stdio
stream stream which indicates that file name is the main source
file--the file specified as the input file for compilation. This
macro is called only once, at the beginning of compilation.

gcc.info 398 / 506

This macro need not be defined if the standard form of output for
DBX debugging information is appropriate.

DBX_OUTPUT_MAIN_SOURCE_DIRECTORY (stream, name)
A C statement to output DBX debugging information to the stdio
stream stream which indicates that the current directory during
compilation is named name.

This macro need not be defined if the standard form of output for
DBX debugging information is appropriate.

DBX_OUTPUT_MAIN_SOURCE_FILE_END (stream, name)
A C statement to output DBX debugging information at the end of
compilation of the main source file name.

If you don’t define this macro, nothing special is output at the
end of compilation, which is correct for most machines.

DBX_OUTPUT_SOURCE_FILENAME (stream, name)
A C statement to output DBX debugging information to the stdio
stream stream which indicates that file name is the current source
file. This output is generated each time input shifts to a
different source file as a result of #include, the end of an
included file, or a #line command.

This macro need not be defined if the standard form of output for
DBX debugging information is appropriate.

1.223 gcc.info/SDB and DWARF

Macros for SDB and DWARF Output

SDB_DEBUGGING_INFO
Define this macro if GNU CC should produce COFF-style debugging
output for SDB in response to the -g option.

DWARF_DEBUGGING_INFO
Define this macro if GNU CC should produce dwarf format debugging
output in response to the -g option.

PUT_SDB_...
Define these macros to override the assembler syntax for the
special SDB assembler directives. See sdbout.c for a list of these
macros and their arguments. If the standard syntax is used, you
need not define them yourself.

SDB_DELIM
Some assemblers do not support a semicolon as a delimiter, even
between SDB assembler directives. In that case, define this macro
to be the delimiter to use (usually \n). It is not necessary to
define a new set of PUT_SDB_op macros if this is the only change
required.

gcc.info 399 / 506

SDB_GENERATE_FAKE
Define this macro to override the usual method of constructing a
dummy name for anonymous structure and union types. See sdbout.c
for more information.

SDB_ALLOW_UNKNOWN_REFERENCES
Define this macro to allow references to unknown structure, union,
or enumeration tags to be emitted. Standard COFF does not allow
handling of unknown references, MIPS ECOFF has support for it.

SDB_ALLOW_FORWARD_REFERENCES
Define this macro to allow references to structure, union, or
enumeration tags that have not yet been seen to be handled. Some
assemblers choke if forward tags are used, while some require it.

1.224 gcc.info/Cross-compilation

Cross Compilation and Floating Point
====================================

While all modern machines use 2’s complement representation for
integers, there are a variety of representations for floating point
numbers. This means that in a cross-compiler the representation of
floating point numbers in the compiled program may be different from
that used in the machine doing the compilation.

Because different representation systems may offer different amounts
of range and precision, the cross compiler cannot safely use the host
machine’s floating point arithmetic. Therefore, floating point
constants must be represented in the target machine’s format. This
means that the cross compiler cannot use atof to parse a floating point
constant; it must have its own special routine to use instead. Also,
constant folding must emulate the target machine’s arithmetic (or must
not be done at all).

The macros in the following table should be defined only if you are
cross compiling between different floating point formats.

Otherwise, don’t define them. Then default definitions will be set
up which use double as the data type, == to test for equality, etc.

You don’t need to worry about how many times you use an operand of
any of these macros. The compiler never uses operands which have side
effects.

REAL_VALUE_TYPE
A macro for the C data type to be used to hold a floating point
value in the target machine’s format. Typically this would be a
struct containing an array of int.

REAL_VALUES_EQUAL (x, y)
A macro for a C expression which compares for equality the two
values, x and y, both of type REAL_VALUE_TYPE.

gcc.info 400 / 506

REAL_VALUES_LESS (x, y)
A macro for a C expression which tests whether x is less than y,
both values being of type REAL_VALUE_TYPE and interpreted as
floating point numbers in the target machine’s representation.

REAL_VALUE_LDEXP (x, scale)
A macro for a C expression which performs the standard library
function ldexp, but using the target machine’s floating point
representation. Both x and the value of the expression have type
REAL_VALUE_TYPE. The second argument, scale, is an integer.

REAL_VALUE_FIX (x)
A macro whose definition is a C expression to convert the
target-machine floating point value x to a signed integer. x has
type REAL_VALUE_TYPE.

REAL_VALUE_UNSIGNED_FIX (x)
A macro whose definition is a C expression to convert the
target-machine floating point value x to an unsigned integer. x
has type REAL_VALUE_TYPE.

REAL_VALUE_RNDZINT (x)
A macro whose definition is a C expression to round the
target-machine floating point value x towards zero to an integer
value (but still as a floating point number). x has type
REAL_VALUE_TYPE, and so does the value.

REAL_VALUE_UNSIGNED_RNDZINT (x)
A macro whose definition is a C expression to round the
target-machine floating point value x towards zero to an unsigned
integer value (but still represented as a floating point number).
x has type REAL_VALUE_TYPE, and so does the value.

REAL_VALUE_ATOF (string, mode)
A macro for a C expression which converts string, an expression of
type char *, into a floating point number in the target machine’s
representation for mode mode. The value has type REAL_VALUE_TYPE.

REAL_INFINITY
Define this macro if infinity is a possible floating point value,
and therefore division by 0 is legitimate.

REAL_VALUE_ISINF (x)
A macro for a C expression which determines whether x, a floating
point value, is infinity. The value has type int. By default,
this is defined to call isinf.

REAL_VALUE_ISNAN (x)
A macro for a C expression which determines whether x, a floating
point value, is a "nan" (not-a-number). The value has type int.
By default, this is defined to call isnan.

Define the following additional macros if you want to make floating
point constant folding work while cross compiling. If you don’t define
them, cross compilation is still possible, but constant folding will
not happen for floating point values.

gcc.info 401 / 506

REAL_ARITHMETIC (output, code, x, y)
A macro for a C statement which calculates an arithmetic operation
of the two floating point values x and y, both of type
REAL_VALUE_TYPE in the target machine’s representation, to produce
a result of the same type and representation which is stored in
output (which will be a variable).

The operation to be performed is specified by code, a tree code
which will always be one of the following: PLUS_EXPR, MINUS_EXPR,
MULT_EXPR, RDIV_EXPR, MAX_EXPR, MIN_EXPR.

The expansion of this macro is responsible for checking for
overflow. If overflow happens, the macro expansion should execute
the statement return 0;, which indicates the inability to perform
the arithmetic operation requested.

REAL_VALUE_NEGATE (x)
A macro for a C expression which returns the negative of the
floating point value x. Both x and the value of the expression
have type REAL_VALUE_TYPE and are in the target machine’s floating
point representation.

There is no way for this macro to report overflow, since overflow
can’t happen in the negation operation.

REAL_VALUE_TRUNCATE (mode, x)
A macro for a C expression which converts the floating point value
x to mode mode.

Both x and the value of the expression are in the target machine’s
floating point representation and have type REAL_VALUE_TYPE.
However, the value should have an appropriate bit pattern to be
output properly as a floating constant whose precision accords
with mode mode.

There is no way for this macro to report overflow.

REAL_VALUE_TO_INT (low, high, x)
A macro for a C expression which converts a floating point value x
into a double-precision integer which is then stored into low and
high, two variables of type int.

REAL_VALUE_FROM_INT (x, low, high)
A macro for a C expression which converts a double-precision
integer found in low and high, two variables of type int, into a
floating point value which is then stored into x.

1.225 gcc.info/Misc

Miscellaneous Parameters
========================

PREDICATE_CODES
Define this if you have defined special-purpose predicates in the

gcc.info 402 / 506

file machine.c. This macro is called within an initializer of an
array of structures. The first field in the structure is the name
of a predicate and the second field is an array of rtl codes. For
each predicate, list all rtl codes that can be in expressions
matched by the predicate. The list should have a trailing comma.
Here is an example of two entries in the list for a typical RISC
machine:

#define PREDICATE_CODES \
{"gen_reg_rtx_operand", {SUBREG, REG}}, \
{"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},

Defining this macro does not affect the generated code (however,
incorrect definitions that omit an rtl code that may be matched by
the predicate can cause the compiler to malfunction). Instead, it
allows the table built by genrecog to be more compact and
efficient, thus speeding up the compiler. The most important
predicates to include in the list specified by this macro are
thoses used in the most insn patterns.

CASE_VECTOR_MODE
An alias for a machine mode name. This is the machine mode that
elements of a jump-table should have.

CASE_VECTOR_PC_RELATIVE
Define this macro if jump-tables should contain relative addresses.

CASE_DROPS_THROUGH
Define this if control falls through a case insn when the index
value is out of range. This means the specified default-label is
actually ignored by the case insn proper.

CASE_VALUES_THRESHOLD
Define this to be the smallest number of different values for
which it is best to use a jump-table instead of a tree of
conditional branches. The default is four for machines with a
casesi instruction and five otherwise. This is best for most
machines.

WORD_REGISTER_OPERATIONS
Define this macro if operations between registers with integral
mode smaller than a word are always performed on the entire
register. Most RISC machines have this property and most CISC
machines do not.

LOAD_EXTEND_OP (mode)
Define this macro to be a C expression indicating when insns that
read memory in mode, an integral mode narrower than a word, set the
bits outside of mode to be either the sign-extension or the
zero-extension of the data read. Return SIGN_EXTEND for values of
mode for which the insn sign-extends, ZERO_EXTEND for which it
zero-extends, and NIL for other modes.

This macro is not called with mode non-integral or with a width
greater than or equal to BITS_PER_WORD, so you may return any
value in this case. Do not define this macro if it would always
return NIL. On machines where this macro is defined, you will

gcc.info 403 / 506

normally define it as the constant SIGN_EXTEND or ZERO_EXTEND.

IMPLICIT_FIX_EXPR
An alias for a tree code that should be used by default for
conversion of floating point values to fixed point. Normally,
FIX_ROUND_EXPR is used.

FIXUNS_TRUNC_LIKE_FIX_TRUNC
Define this macro if the same instructions that convert a floating
point number to a signed fixed point number also convert validly
to an unsigned one.

EASY_DIV_EXPR
An alias for a tree code that is the easiest kind of division to
compile code for in the general case. It may be TRUNC_DIV_EXPR,
FLOOR_DIV_EXPR, CEIL_DIV_EXPR or ROUND_DIV_EXPR. These four
division operators differ in how they round the result to an
integer. EASY_DIV_EXPR is used when it is permissible to use any
of those kinds of division and the choice should be made on the
basis of efficiency.

MOVE_MAX
The maximum number of bytes that a single instruction can move
quickly from memory to memory.

MAX_MOVE_MAX
The maximum number of bytes that a single instruction can move
quickly from memory to memory. If this is undefined, the default
is MOVE_MAX. Otherwise, it is the constant value that is the
largest value that MOVE_MAX can have at run-time.

SHIFT_COUNT_TRUNCATED
A C expression that is nonzero if on this machine the number of
bits actually used for the count of a shift operation is equal to
the number of bits needed to represent the size of the object
being shifted. When this macro is non-zero, the compiler will
assume that it is safe to omit a sign-extend, zero-extend, and
certain bitwise ‘and’ instructions that truncates the count of a
shift operation. On machines that have instructions that act on
bitfields at variable positions, which may include ‘bit test’
instructions, a nonzero SHIFT_COUNT_TRUNCATED also enables
deletion of truncations of the values that serve as arguments to
bitfield instructions.

If both types of instructions truncate the count (for shifts) and
position (for bitfield operations), or if no variable-position
bitfield instructions exist, you should define this macro.

However, on some machines, such as the 80386 and the 680x0,
truncation only applies to shift operations and not the (real or
pretended) bitfield operations. Define SHIFT_COUNT_TRUNCATED to
be zero on such machines. Instead, add patterns to the md file
that include the implied truncation of the shift instructions.

You need not define this macro if it would always have the value
of zero.

gcc.info 404 / 506

TRULY_NOOP_TRUNCATION (outprec, inprec)
A C expression which is nonzero if on this machine it is safe to
"convert" an integer of inprec bits to one of outprec bits (where
outprec is smaller than inprec) by merely operating on it as if it
had only outprec bits.

On many machines, this expression can be 1.

When TRULY_NOOP_TRUNCATION returns 1 for a pair of sizes for modes
for which MODES_TIEABLE_P is 0, suboptimal code can result. If
this is the case, making TRULY_NOOP_TRUNCATION return 0 in such
cases may improve things.

STORE_FLAG_VALUE
A C expression describing the value returned by a comparison
operator with an integral mode and stored by a store-flag
instruction (scond) when the condition is true. This description
must apply to all the scond patterns and all the comparison
operators whose results have a MODE_INT mode.

A value of 1 or -1 means that the instruction implementing the
comparison operator returns exactly 1 or -1 when the comparison is
true and 0 when the comparison is false. Otherwise, the value
indicates which bits of the result are guaranteed to be 1 when the
comparison is true. This value is interpreted in the mode of the
comparison operation, which is given by the mode of the first
operand in the scond pattern. Either the low bit or the sign bit
of STORE_FLAG_VALUE be on. Presently, only those bits are used by
the compiler.

If STORE_FLAG_VALUE is neither 1 or -1, the compiler will generate
code that depends only on the specified bits. It can also replace
comparison operators with equivalent operations if they cause the
required bits to be set, even if the remaining bits are undefined.
For example, on a machine whose comparison operators return an
SImode value and where STORE_FLAG_VALUE is defined as 0x80000000,
saying that just the sign bit is relevant, the expression

(ne:SI (and:SI x (const_int power-of-2)) (const_int 0))

can be converted to

(ashift:SI x (const_int n))

where n is the appropriate shift count to move the bit being
tested into the sign bit.

There is no way to describe a machine that always sets the
low-order bit for a true value, but does not guarantee the value
of any other bits, but we do not know of any machine that has such
an instruction. If you are trying to port GNU CC to such a
machine, include an instruction to perform a logical-and of the
result with 1 in the pattern for the comparison operators and let
us know (see

How to Report Bugs
).

gcc.info 405 / 506

Often, a machine will have multiple instructions that obtain a
value from a comparison (or the condition codes). Here are rules
to guide the choice of value for STORE_FLAG_VALUE, and hence the
instructions to be used:

* Use the shortest sequence that yields a valid definition for
STORE_FLAG_VALUE. It is more efficient for the compiler to
"normalize" the value (convert it to, e.g., 1 or 0) than for
the comparison operators to do so because there may be
opportunities to combine the normalization with other
operations.

* For equal-length sequences, use a value of 1 or -1, with -1
being slightly preferred on machines with expensive jumps and
1 preferred on other machines.

* As a second choice, choose a value of 0x80000001 if
instructions exist that set both the sign and low-order bits
but do not define the others.

* Otherwise, use a value of 0x80000000.

Many machines can produce both the value chosen for
STORE_FLAG_VALUE and its negation in the same number of
instructions. On those machines, you should also define a pattern
for those cases, e.g., one matching

(set A (neg:m (ne:m B C)))

Some machines can also perform and or plus operations on condition
code values with less instructions than the corresponding scond
insn followed by and or plus. On those machines, define the
appropriate patterns. Use the names incscc and decscc,
respectively, for the the patterns which perform plus or minus
operations on condition code values. See rs6000.md for some
examples. The GNU Superoptizer can be used to find such
instruction sequences on other machines.

You need not define STORE_FLAG_VALUE if the machine has no
store-flag instructions.

FLOAT_STORE_FLAG_VALUE
A C expression that gives a non-zero floating point value that is
returned when comparison operators with floating-point results are
true. Define this macro on machine that have comparison
operations that return floating-point values. If there are no
such operations, do not define this macro.

Pmode
An alias for the machine mode for pointers. Normally the
definition can be

#define Pmode SImode

FUNCTION_MODE
An alias for the machine mode used for memory references to
functions being called, in call RTL expressions. On most machines

gcc.info 406 / 506

this should be QImode.

INTEGRATE_THRESHOLD (decl)
A C expression for the maximum number of instructions above which
the function decl should not be inlined. decl is a FUNCTION_DECL
node.

The default definition of this macro is 64 plus 8 times the number
of arguments that the function accepts. Some people think a larger
threshold should be used on RISC machines.

SCCS_DIRECTIVE
Define this if the preprocessor should ignore #sccs directives and
print no error message.

NO_IMPLICIT_EXTERN_C
Define this macro if the system header files support C++ as well
as C. This macro inhibits the usual method of using system header
files in C++, which is to pretend that the file’s contents are
enclosed in extern "C" {...}.

HANDLE_PRAGMA (stream)
Define this macro if you want to implement any pragmas. If
defined, it should be a C statement to be executed when #pragma is
seen. The argument stream is the stdio input stream from which
the source text can be read.

It is generally a bad idea to implement new uses of #pragma. The
only reason to define this macro is for compatibility with other
compilers that do support #pragma for the sake of any user
programs which already use it.

DOLLARS_IN_IDENTIFIERS
Define this macro to control use of the character $ in identifier
names. The value should be 0, 1, or 2. 0 means $ is not allowed
by default; 1 means it is allowed by default if -traditional is
used; 2 means it is allowed by default provided -ansi is not used.
1 is the default; there is no need to define this macro in that case.

NO_DOLLAR_IN_LABEL
Define this macro if the assembler does not accept the character $
in label names. By default constructors and destructors in G++
have $ in the identifiers. If this macro is defined, . is used
instead.

NO_DOT_IN_LABEL
Define this macro if the assembler does not accept the character .
in label names. By default constructors and destructors in G++
have names that use .. If this macro is defined, these names are
rewritten to avoid ..

DEFAULT_MAIN_RETURN
Define this macro if the target system expects every program’s main
function to return a standard "success" value by default (if no
other value is explicitly returned).

The definition should be a C statement (sans semicolon) to

gcc.info 407 / 506

generate the appropriate rtl instructions. It is used only when
compiling the end of main.

HAVE_ATEXIT
Define this if the target system supports the function atexit from
the ANSI C standard. If this is not defined, and
INIT_SECTION_ASM_OP is not defined, a default exit function will
be provided to support C++.

EXIT_BODY
Define this if your exit function needs to do something besides
calling an external function _cleanup before terminating with
_exit. The EXIT_BODY macro is only needed if netiher
HAVE_ATEXIT nor INIT_SECTION_ASM_OP are defined.

INSN_SETS_ARE_DELAYED (insn)
Define this macro as a C expression that is nonzero if it is safe
for the delay slot scheduler to place instructions in the delay
slot of insn, even if they appear to use a resource set or
clobbered in insn. insn is always a jump_insn or an insn; GNU CC
knows that every call_insn has this behavior. On machines where
some insn or jump_insn is really a function call and hence has
this behavior, you should define this macro.

You need not define this macro if it would always return zero.

INSN_REFERENCES_ARE_DELAYED (insn)
Define this macro as a C expression that is nonzero if it is safe
for the delay slot scheduler to place instructions in the delay
slot of insn, even if they appear to set or clobber a resource
referenced in insn. insn is always a jump_insn or an insn. On
machines where some insn or jump_insn is really a function call
and its operands are registers whose use is actually in the
subroutine it calls, you should define this macro. Doing so
allows the delay slot scheduler to move instructions which copy
arguments into the argument registers into the delay slot of insn.

You need not define this macro if it would always return zero.

1.226 gcc.info/Config

The Configuration File

The configuration file xm-machine.h contains macro definitions that
describe the machine and system on which the compiler is running,
unlike the definitions in machine.h, which describe the machine for
which the compiler is producing output. Most of the values in
xm-machine.h are actually the same on all machines that GNU CC runs
on, so large parts of all configuration files are identical. But there
are some macros that vary:

USG

gcc.info 408 / 506

Define this macro if the host system is System V.

VMS
Define this macro if the host system is VMS.

FAILURE_EXIT_CODE
A C expression for the status code to be returned when the compiler
exits after serious errors.

SUCCESS_EXIT_CODE
A C expression for the status code to be returned when the compiler
exits without serious errors.

HOST_WORDS_BIG_ENDIAN
Defined if the host machine stores words of multi-word values in
big-endian order. (GNU CC does not depend on the host byte
ordering within a word.)

HOST_FLOAT_WORDS_BIG_ENDIAN
Define this macro to be 1 if the host machine stores DFmode,
XFmode or TFmode floating point numbers in memory with the
word containing the sign bit at the lowest address; otherwise,
define it to be zero.

This macro need not be defined if the ordering is the same as for
multi-word integers.

HOST_FLOAT_FORMAT
A numeric code distinguishing the floating point format for the
host machine. See TARGET_FLOAT_FORMAT in

Storage Layout
for the

alternatives and default.

HOST_BITS_PER_CHAR
A C expression for the number of bits in char on the host machine.

HOST_BITS_PER_SHORT
A C expression for the number of bits in short on the host machine.

HOST_BITS_PER_INT
A C expression for the number of bits in int on the host machine.

HOST_BITS_PER_LONG
A C expression for the number of bits in long on the host machine.

ONLY_INT_FIELDS
Define this macro to indicate that the host compiler only supports
int bit fields, rather than other integral types, including enum,
as do most C compilers.

EXECUTABLE_SUFFIX
Define this macro if the host system uses a naming convention for
executable files that involves a common suffix (such as, in some
systems, .exe) that must be mentioned explicitly when you run the
program.

gcc.info 409 / 506

OBSTACK_CHUNK_SIZE
A C expression for the size of ordinary obstack chunks. If you
don’t define this, a usually-reasonable default is used.

OBSTACK_CHUNK_ALLOC
The function used to allocate obstack chunks. If you don’t define
this, xmalloc is used.

OBSTACK_CHUNK_FREE
The function used to free obstack chunks. If you don’t define
this, free is used.

USE_C_ALLOCA
Define this macro to indicate that the compiler is running with the
alloca implemented in C. This version of alloca can be found in
the file alloca.c; to use it, you must also alter the Makefile
variable ALLOCA. (This is done automatically for the systems on
which we know it is needed.)

If you do define this macro, you should probably do it as follows:

#ifndef __GNUC__
#define USE_C_ALLOCA
#else
#define alloca __builtin_alloca
#endif

so that when the compiler is compiled with GNU CC it uses the more
efficient built-in alloca function.

FUNCTION_CONVERSION_BUG
Define this macro to indicate that the host compiler does not
properly handle converting a function value to a
pointer-to-function when it is used in an expression.

HAVE_VPRINTF
Define this if the library function vprintf is available on your
system.

MULTIBYTE_CHARS
Define this macro to enable support for multibyte characters in the
input to GNU CC. This requires that the host system support the
ANSI C library functions for converting multibyte characters to
wide characters.

HAVE_PUTENV
Define this if the library function putenv is available on your
system.

NO_SYS_SIGLIST
Define this if your system does not provide the variable
sys_siglist.

USE_PROTOTYPES
Define this to be 1 if you know that the host compiler supports
prototypes, even if it doesn’t define __STDC__, or define it to be
0 if you do not want any prototypes used in compiling GNU CC. If

gcc.info 410 / 506

USE_PROTOTYPES is not defined, it will be determined automatically
whether your compiler supports prototypes by checking if __STDC__
is defined.

NO_MD_PROTOTYPES
Define this if you wish suppression of prototypes generated from
the machine description file, but to use other prototypes within
GNU CC. If USE_PROTOTYPES is defined to be 0, or the host
compiler does not support prototypes, this macro has no effect.

MD_CALL_PROTOTYPES
Define this if you wish to generate prototypes for the gen_call or
gen_call_value functions generated from the machine description
file. If USE_PROTOTYPES is defined to be 0, or the host compiler
does not support prototypes, or NO_MD_PROTOTYPES is defined, this
macro has no effect. As soon as all of the machine descriptions
are modified to have the appropriate number of arguments, this
macro will be removed.

Some systems do provide this variable, but with a different name
such as _sys_siglist. On these systems, you can define
sys_siglist as a macro which expands into the name actually
provided.

NO_STAB_H
Define this if your system does not have the include file stab.h.
If USG is defined, NO_STAB_H is assumed.

In addition, configuration files for system V define bcopy, bzero
and bcmp as aliases. Some files define alloca as a macro when compiled
with GNU CC, in order to take advantage of the benefit of GNU CC’s
built-in alloca.

1.227 gcc.info/Index

Index

#pragma
Misc

$
Dollar Signs

’
Incompatibilities

(nil)
RTL Objects

3b1 installation
3b1 Install

gcc.info 411 / 506

<?
Min and Max

>?
Min and Max

?: side effect
Conditionals

#pragma implementation, implied
C++ Interface

#pragma, reason for not using
Function Attributes

in template
Output Template

* in template
Output Statement

?: extensions
Lvalues

?: extensions
Conditionals

absm2 instruction pattern
Standard Names

abs and attributes
Expressions

ACCUMULATE_OUTGOING_ARGS and stack frames
Function Entry

addm3 instruction pattern
Standard Names

addr_diff_vec, length of
Insn Lengths

addr_vec, length of
Insn Lengths

aligned attribute
Variable Attributes

allocate_stack instruction pattern
Standard Names

alloca and SunOs
Installation

alloca vs variable-length arrays
Variable Length

gcc.info 412 / 506

alloca, for SunOs
Sun Install

alloca, for Unos
Unos Install

andm3 instruction pattern
Standard Names

and and attributes
Expressions

and, canonicalization of
Insn Canonicalizations

ARG_POINTER_REGNUM and virtual registers
Regs and Memory

ashiftrt and attributes
Expressions

ashift and attributes
Expressions

ashlm3 instruction pattern
Standard Names

ashrm3 instruction pattern
Standard Names

asm_operands, RTL sharing
Sharing

asm_operands, usage
Assembler

asm expressions
Extended Asm

bcond instruction pattern
Standard Names

bcopy, implicit usage
Library Calls

BITS_BIG_ENDIAN, effect on sign_extract
Bit Fields

BLKmode, and function return values
Calls

bzero, implicit usage
Library Calls

call_insn and /u
Flags

gcc.info 413 / 506

call_pop instruction pattern
Standard Names

call_value_pop instruction pattern
Standard Names

call_value instruction pattern
Standard Names

call instruction pattern
Standard Names

call usage
Calls

casesi instruction pattern
Standard Names

cc0, RTL sharing
Sharing

cmpm instruction pattern
Standard Names

cmpstrm instruction pattern
Standard Names

code_label and /i
Flags

compare, canonicalization of
Insn Canonicalizations

cond and attributes
Expressions

const_double, RTL sharing
Sharing

const_int and attribute tests
Expressions

const_int and attributes
Expressions

const_int, RTL sharing
Sharing

const_string and attributes
Expressions

const applied to function
Function Attributes

const function attribute
Function Attributes

gcc.info 414 / 506

define_insn example
Example

divm3 instruction pattern
Standard Names

divmodm4 instruction pattern
Standard Names

div and attributes
Expressions

EDOM, implicit usage
Library Calls

ENCODE_SECTION_INFO and address validation
Addressing Modes

ENCODE_SECTION_INFO usage
Instruction Output

eq and attributes
Expressions

errno, implicit usage
Library Calls

extendmn instruction pattern
Standard Names

extv instruction pattern
Standard Names

extzv instruction pattern
Standard Names

ffsm2 instruction pattern
Standard Names

FIRST_PARM_OFFSET and virtual registers
Regs and Memory

fixmn2 instruction pattern
Standard Names

fixunsmn2 instruction pattern
Standard Names

fixuns_truncmn2 instruction pattern
Standard Names

fix_truncmn2 instruction pattern
Standard Names

floatmn2 instruction pattern
Standard Names

gcc.info 415 / 506

floatunsmn2 instruction pattern
Standard Names

float as function value type
Incompatibilities

format function attribute
Function Attributes

FRAME_GROWS_DOWNWARD and virtual registers
Regs and Memory

FRAME_POINTER_REGNUM and virtual registers
Regs and Memory

fscanf, and constant strings
Incompatibilities

ftruncm2 instruction pattern
Standard Names

FUNCTION_EPILOGUE and trampolines
Trampolines

FUNCTION_PROLOGUE and trampolines
Trampolines

g++ 1.xx
Invoking G++

g++ older version
Invoking G++

g++, separate compiler
Invoking G++

genflags, crash on Sun 4
Installation Problems

geu and attributes
Expressions

ge and attributes
Expressions

goto in C++
Destructors and Goto

gprof
Debugging Options

gtu and attributes
Expressions

gt and attributes
Expressions

gcc.info 416 / 506

HImode, in insn
Insns

if_then_else and attributes
Expressions

if_then_else usage
Side Effects

indirect_jump instruction pattern
Standard Names

inline automatic for C++ member fns
Inline

insn and /i
Flags

insn and /s
Flags

insn and /u
Flags

insv instruction pattern
Standard Names

integrated, in insn
Flags

integrated, in reg
Flags

in_struct, in code_label
Flags

in_struct, in insn
Flags

in_struct, in insn
Flags

in_struct, in label_ref
Flags

in_struct, in mem
Flags

in_struct, in reg
Flags

in_struct, in subreg
Flags

iorm3 instruction pattern
Standard Names

gcc.info 417 / 506

ior and attributes
Expressions

ior, canonicalization of
Insn Canonicalizations

label_ref and /s
Flags

label_ref, RTL sharing
Sharing

leu and attributes
Expressions

le and attributes
Expressions

load_multiple instruction pattern
Standard Names

long long data types
Long Long

longjmp and automatic variables
C Dialect Options

longjmp and automatic variables
Interface

longjmp incompatibilities
Incompatibilities

longjmp warnings
Warning Options

lshiftrt and attributes
Expressions

lshift and attributes
Expressions

lshlm3 instruction pattern
Standard Names

lshrm3 instruction pattern
Standard Names

lt and attributes
Expressions

main and the exit status
VMS Misc

match_dup and attributes
Insn Lengths

gcc.info 418 / 506

match_operand and attributes
Expressions

maxm3 instruction pattern
Standard Names

memcpy, implicit usage
Library Calls

memset, implicit usage
Library Calls

mem and /s
Flags

mem and /u
Flags

mem and /v
Flags

mem, RTL sharing
Sharing

minm3 instruction pattern
Standard Names

minus and attributes
Expressions

minus, canonicalization of
Insn Canonicalizations

mktemp, and constant strings
Incompatibilities

modm3 instruction pattern
Standard Names

mode attribute
Variable Attributes

mod and attributes
Expressions

movm instruction pattern
Standard Names

movstrm instruction pattern
Standard Names

movstrictm instruction pattern
Standard Names

mulm3 instruction pattern
Standard Names

gcc.info 419 / 506

mulhisi3 instruction pattern
Standard Names

mulqihi3 instruction pattern
Standard Names

mulsidi3 instruction pattern
Standard Names

mult and attributes
Expressions

mult, canonicalization of
Insn Canonicalizations

MUST_PASS_IN_STACK, and FUNCTION_ARG
Register Arguments

negm2 instruction pattern
Standard Names

neg and attributes
Expressions

neg, canonicalization of
Insn Canonicalizations

ne and attributes
Expressions

nop instruction pattern
Standard Names

noreturn function attribute
Function Attributes

not and attributes
Expressions

not, canonicalization of
Insn Canonicalizations

one_cmplm2 instruction pattern
Standard Names

packed attribute
Variable Attributes

pc and attributes
Insn Lengths

pc, RTL sharing
Sharing

plus and attributes
Expressions

gcc.info 420 / 506

plus, canonicalization of
Insn Canonicalizations

prof
Debugging Options

PUSH_ROUNDING, interaction with STACK_BOUNDARY
Storage Layout

QImode, in insn
Insns

qsort, and global register variables
Global Reg Vars

REG_PARM_STACK_SPACE, and FUNCTION_ARG
Register Arguments

reg and /i
Flags

reg and /s
Flags

reg and /u
Flags

reg and /v
Flags

reg, RTL sharing
Sharing

reload_in instruction pattern
Standard Names

reload_out instruction pattern
Standard Names

restore_stack_block instruction pattern
Standard Names

restore_stack_function instruction pattern
Standard Names

restore_stack_nonlocal instruction pattern
Standard Names

return instruction pattern
Standard Names

return, in C++ function header
Naming Results

rotlm3 instruction pattern
Standard Names

gcc.info 421 / 506

rotrm3 instruction pattern
Standard Names

scond instruction pattern
Standard Names

save_stack_block instruction pattern
Standard Names

save_stack_function instruction pattern
Standard Names

save_stack_nonlocal instruction pattern
Standard Names

scanf, and constant strings
Incompatibilities

scratch, RTL sharing
Sharing

setjmp incompatibilities
Incompatibilities

sign_extract, canonicalization of
Insn Canonicalizations

sqrtm2 instruction pattern
Standard Names

sscanf, and constant strings
Incompatibilities

STACK_DYNAMIC_OFFSET and virtual registers
Regs and Memory

STACK_POINTER_OFFSET and virtual registers
Regs and Memory

STACK_POINTER_REGNUM and virtual registers
Regs and Memory

STARTING_FRAME_OFFSET and virtual registers
Regs and Memory

strlenm instruction pattern
Standard Names

subm3 instruction pattern
Standard Names

subreg and /s
Flags

subreg and /u
Flags

gcc.info 422 / 506

subreg, in strict_low_part
RTL Declarations

subreg, special reload handling
Regs and Memory

SYMBOL_REF_FLAG, in ENCODE_SECTION_INFO
Sections

symbol_ref and /u
Flags

symbol_ref and /v
Flags

symbol_ref, RTL sharing
Sharing

tablejump instruction pattern
Standard Names

tcov
Debugging Options

truncmn instruction pattern
Standard Names

tstm instruction pattern
Standard Names

udivm3 instruction pattern
Standard Names

udivmodm4 instruction pattern
Standard Names

umaxm3 instruction pattern
Standard Names

uminm3 instruction pattern
Standard Names

umodm3 instruction pattern
Standard Names

umulhisi3 instruction pattern
Standard Names

umulqihi3 instruction pattern
Standard Names

umulsidi3 instruction pattern
Standard Names

unchanging, in call_insn
Flags

gcc.info 423 / 506

unchanging, in insn
Flags

unchanging, in reg and mem
Flags

unchanging, in subreg
Flags

unchanging, in symbol_ref
Flags

untyped_call instruction pattern
Standard Names

untyped_return instruction pattern
Standard Names

used, in symbol_ref
Flags

volatile applied to function
Function Attributes

volatil, in insn
Flags

volatil, in mem
Flags

volatil, in reg
Flags

volatil, in symbol_ref
Flags

WORDS_BIG_ENDIAN, effect on subreg
Regs and Memory

xorm3 instruction pattern
Standard Names

xor, canonicalization of
Insn Canonicalizations

zero_extendmn instruction pattern
Standard Names

zero_extract, canonicalization of
Insn Canonicalizations

libgcc.a
Library Calls

stdarg.h and register arguments
Register Arguments

gcc.info 424 / 506

stdarg.h and RT PC
RT Options

tm.h macros
Target Macros

varargs.h and RT PC
RT Options

VAXCRTL
VMS Misc

xm-machine.h
Config

! in constraint
Multi-Alternative

in constraint
Modifiers

% in constraint
Modifiers

% in template
Output Template

& in constraint
Modifiers

* in constraint
Modifiers

+ in constraint
Modifiers

/i in RTL dump
Flags

/s in RTL dump
Flags

/s in RTL dump
Flags

/u in RTL dump
Flags

/v in RTL dump
Flags

0 in constraint
Simple Constraints

< in constraint
Simple Constraints

gcc.info 425 / 506

= in constraint
Modifiers

> in constraint
Simple Constraints

? in constraint
Multi-Alternative

d in constraint
Simple Constraints

E in constraint
Simple Constraints

F in constraint
Simple Constraints

g in constraint
Simple Constraints

G in constraint
Simple Constraints

H in constraint
Simple Constraints

i in constraint
Simple Constraints

I in constraint
Simple Constraints

m in constraint
Simple Constraints

n in constraint
Simple Constraints

o in constraint
Simple Constraints

p in constraint
Simple Constraints

Q, in constraint
Simple Constraints

r in constraint
Simple Constraints

store_multiple instruction pattern
Standard Names

s in constraint
Simple Constraints

gcc.info 426 / 506

V in constraint
Simple Constraints

X in constraint
Simple Constraints

_ in variables in macros
Naming Types

abort
C Dialect Options

abort
Portability

abs
C Dialect Options

abs
Arithmetic

absolute value
Arithmetic

access to operands
Accessors

accessors
Accessors

ACCUMULATE_OUTGOING_ARGS
Stack Arguments

ADDITIONAL_REGISTER_NAMES
Instruction Output

address
RTL Template

address constraints
Simple Constraints

address of a label
Labels as Values

addressing modes
Addressing Modes

ADDRESS_COST
Costs

address_operand
Simple Constraints

addr_diff_vec
Side Effects

gcc.info 427 / 506

addr_vec
Side Effects

ADJUST_COST
Costs

ADJUST_INSN_LENGTH
Insn Lengths

aggregates as return values
Aggregate Return

alignment
Alignment

Alliant
Interoperation

alloca
C Dialect Options

ALLOCATE_TRAMPOLINE
Trampolines

ALL_REGS
Register Classes

alternate keywords
Alternate Keywords

AMD29K options
AMD29K Options

analysis, data flow
Passes

and
Arithmetic

ANSI support
C Dialect Options

apostrophes
Incompatibilities

APPLY_RESULT_SIZE
Scalar Return

ARGS_GROW_DOWNWARD
Frame Layout

argument passing
Interface

arguments in frame (88k)
M88K Options

gcc.info 428 / 506

arguments in registers
Register Arguments

arguments on stack
Stack Arguments

ARG_POINTER_REGNUM
Frame Registers

arg_pointer_rtx
Frame Registers

arithmetic libraries
Interface

arithmetic shift
Arithmetic

arithmetic simplifications
Passes

arithmetic, in RTL
Arithmetic

arrays of length zero
Zero Length

arrays of variable length
Variable Length

arrays, non-lvalue
Subscripting

ashift
Arithmetic

ashiftrt
Arithmetic

ASM_APP_OFF
File Framework

ASM_APP_ON
File Framework

ASM_BYTE_OP
Data Output

ASM_CLOSE_PAREN
Data Output

ASM_COMMENT_START
File Framework

ASM_DECLARE_FUNCTION_NAME
Label Output

gcc.info 429 / 506

ASM_DECLARE_FUNCTION_SIZE
Label Output

ASM_DECLARE_OBJECT_NAME
Label Output

ASM_FILE_END
File Framework

ASM_FILE_START
File Framework

ASM_FINAL_SPEC
Driver

ASM_FINISH_DECLARE_OBJECT
Label Output

ASM_FORMAT_PRIVATE_NAME
Label Output

asm_fprintf
Instruction Output

ASM_GENERATE_INTERNAL_LABEL
Label Output

ASM_GLOBALIZE_LABEL
Label Output

ASM_IDENTIFY_GCC
File Framework

asm_input
Side Effects

asm_noperands
Insns

ASM_NO_SKIP_IN_TEXT
Alignment Output

ASM_OPEN_PAREN
Data Output

ASM_OUTPUT_ADDR_DIFF_ELT
Dispatch Tables

ASM_OUTPUT_ADDR_VEC_ELT
Dispatch Tables

ASM_OUTPUT_ALIGN
Alignment Output

ASM_OUTPUT_ALIGNED_COMMON
Uninitialized Data

gcc.info 430 / 506

ASM_OUTPUT_ALIGNED_LOCAL
Uninitialized Data

ASM_OUTPUT_ALIGN_CODE
Alignment Output

ASM_OUTPUT_ASCII
Data Output

ASM_OUTPUT_BYTE
Data Output

ASM_OUTPUT_CASE_END
Dispatch Tables

ASM_OUTPUT_CASE_LABEL
Dispatch Tables

ASM_OUTPUT_CHAR
Data Output

ASM_OUTPUT_COMMON
Uninitialized Data

ASM_OUTPUT_CONSTRUCTOR
Macros for Initialization

ASM_OUTPUT_DESTRUCTOR
Macros for Initialization

ASM_OUTPUT_DOUBLE
Data Output

ASM_OUTPUT_DOUBLE_INT
Data Output

ASM_OUTPUT_EXTERNAL
Label Output

ASM_OUTPUT_EXTERNAL_LIBCALL
Label Output

ASM_OUTPUT_FLOAT
Data Output

ASM_OUTPUT_IDENT
File Framework

ASM_OUTPUT_INT
Data Output

ASM_OUTPUT_INTERNAL_LABEL
Label Output

ASM_OUTPUT_LABEL
Label Output

gcc.info 431 / 506

ASM_OUTPUT_LABELREF
Label Output

ASM_OUTPUT_LOCAL
Uninitialized Data

ASM_OUTPUT_LONG_DOUBLE
Data Output

ASM_OUTPUT_LOOP_ALIGN
Alignment Output

ASM_OUTPUT_OPCODE
Instruction Output

ASM_OUTPUT_POOL_PROLOGUE
Data Output

ASM_OUTPUT_QUADRUPLE_INT
Data Output

ASM_OUTPUT_REG_POP
Instruction Output

ASM_OUTPUT_REG_PUSH
Instruction Output

ASM_OUTPUT_SHARED_COMMON
Uninitialized Data

ASM_OUTPUT_SHARED_LOCAL
Uninitialized Data

ASM_OUTPUT_SHORT
Data Output

ASM_OUTPUT_SKIP
Alignment Output

ASM_OUTPUT_SOURCE_FILENAME
File Framework

ASM_OUTPUT_SOURCE_LINE
File Framework

ASM_OUTPUT_SPECIAL_POOL_ENTRY
Data Output

ASM_SPEC
Driver

ASM_STABD_OP
DBX Options

ASM_STABN_OP
DBX Options

gcc.info 432 / 506

ASM_STABS_OP
DBX Options

assembler format
File Framework

assembler instructions
Extended Asm

assembler instructions in RTL
Assembler

assembler names for identifiers
Asm Labels

assembler syntax, 88k
M88K Options

ASSEMBLER_DIALECT
Instruction Output

assemble_name
Label Output

assembly code, invalid
Bug Criteria

assigning attribute values to insns
Tagging Insns

asterisk in template
Output Statement

atof
Cross-compilation

attr
Tagging Insns

attribute expressions
Expressions

attribute of variables
Variable Attributes

attribute specifications
Attr Example

attribute specifications example
Attr Example

attributes, defining
Defining Attributes

attr_flag
Expressions

gcc.info 433 / 506

autoincrement addressing, availability
Portability

autoincrement/decrement addressing
Simple Constraints

autoincrement/decrement analysis
Passes

automatic inline for C++ member fns
Inline

backslash
Output Template

backtrace for bug reports
Bug Reporting

barrier
Insns

BASE_REG_CLASS
Register Classes

basic blocks
Passes

bcmp
Config

BIGGEST_ALIGNMENT
Storage Layout

BIGGEST_FIELD_ALIGNMENT
Storage Layout

Bison parser generator
Installation

bit fields
Bit Fields

bit shift overflow (88k)
M88K Options

BITFIELD_NBYTES_LIMITED
Storage Layout

BITS_BIG_ENDIAN
Storage Layout

BITS_PER_UNIT
Storage Layout

BITS_PER_WORD
Storage Layout

gcc.info 434 / 506

bitwise complement
Arithmetic

bitwise exclusive-or
Arithmetic

bitwise inclusive-or
Arithmetic

bitwise logical-and
Arithmetic

BLKmode
Machine Modes

BLOCK_PROFILER
Profiling

BLOCK_PROFILER_CODE
Profiling

BRANCH_COST
Costs

break_out_memory_refs
Addressing Modes

bug criteria
Bug Criteria

bug report mailing lists
Bug Lists

bugs
Bugs

bugs, known
Trouble

builtin functions
C Dialect Options

byte writes (29k)
AMD29K Options

BYTES_BIG_ENDIAN
Storage Layout

byte_mode
Machine Modes

bzero
Config

C compilation options
Invoking GCC

gcc.info 435 / 506

C intermediate output, nonexistent
G++ and GCC

C language extensions
C Extensions

C language, traditional
C Dialect Options

C statements for assembler output
Output Statement

c++
Invoking G++

C++
G++ and GCC

C++ compilation options
Invoking GCC

C++ interface and implementation headers
C++ Interface

C++ language extensions
C++ Extensions

C++ member fns, automatically inline
Inline

C++ misunderstandings
C++ Misunderstandings

C++ named return value
Naming Results

C++ options, command line
C++ Dialect Options

C++ pragmas, effect on inlining
C++ Interface

C++ source file suffixes
Invoking G++

C++ static data, declaring and defining
Static Definitions

call
Side Effects

call-clobbered register
Register Basics

call-saved register
Register Basics

gcc.info 436 / 506

call-used register
Register Basics

CALLER_SAVE_PROFITABLE
Caller Saves

calling conventions
Stack and Calling

calling functions in RTL
Calls

call_insn
Insns

CALL_USED_REGISTERS
Register Basics

call_used_regs
Register Basics

canonicalization of instructions
Insn Canonicalizations

CAN_ELIMINATE
Elimination

case labels in initializers
Labeled Elements

case ranges
Case Ranges

case sensitivity and VMS
VMS Misc

CASE_DROPS_THROUGH
Misc

CASE_VALUES_THRESHOLD
Misc

CASE_VECTOR_MODE
Misc

CASE_VECTOR_PC_RELATIVE
Misc

cast to a union
Cast to Union

casts as lvalues
Lvalues

cc0
Regs and Memory

gcc.info 437 / 506

cc0_rtx
Regs and Memory

CC1PLUS_SPEC
Driver

CC1_SPEC
Driver

CCmode
Machine Modes

cc_status
Condition Code

CC_STATUS_MDEP
Condition Code

CC_STATUS_MDEP_INIT
Condition Code

CDImode
Machine Modes

change_address
Standard Names

CHAR_TYPE_SIZE
Type Layout

CHECK_FLOAT_VALUE
Storage Layout

CHImode
Machine Modes

class definitions, register
Register Classes

class preference constraints
Class Preferences

classes of RTX codes
Accessors

CLASS_LIKELY_SPILLED_P
Register Classes

CLASS_MAX_NREGS
Register Classes

CLEAR_INSN_CACHE (BEG, END)
Trampolines

clobber
Side Effects

gcc.info 438 / 506

code generation conventions
Code Gen Options

code generation RTL sequences
Expander Definitions

code motion
Passes

codes, RTL expression
RTL Objects

code_label
Insns

CODE_LABEL_NUMBER
Insns

COImode
Machine Modes

combiner pass
Regs and Memory

command options
Invoking GCC

common subexpression elimination
Passes

compare
Arithmetic

compilation in a separate directory
Other Dir

compiler bugs, reporting
Bug Reporting

compiler compared to C++ preprocessor
G++ and GCC

compiler options, C++
C++ Dialect Options

compiler passes and files
Passes

compiler version, specifying
Target Options

COMPILER_PATH
Environment Variables

complement, bitwise
Arithmetic

gcc.info 439 / 506

complex numbers
Complex

compound expressions as lvalues
Lvalues

computed gotos
Labels as Values

computing the length of an insn
Insn Lengths

cond
Comparisons

condition code register
Regs and Memory

condition code status
Condition Code

condition codes
Comparisons

conditional expressions as lvalues
Lvalues

conditional expressions, extensions
Conditionals

CONDITIONAL_REGISTER_USAGE
Register Basics

conditions, in patterns
Patterns

configuration file
Config

conflicting types
Disappointments

const0_rtx
Constants

CONST0_RTX
Constants

const1_rtx
Constants

CONST1_RTX
Constants

CONST2_RTX
Constants

gcc.info 440 / 506

const2_rtx
Constants

constant attributes
Constant Attributes

constant folding
Passes

constant folding and floating point
Cross-compilation

constant propagation
Passes

constants in constraints
Simple Constraints

CONSTANT_ADDRESS_P
Addressing Modes

CONSTANT_ALIGNMENT
Storage Layout

CONSTANT_P
Addressing Modes

CONSTANT_POOL_ADDRESS_P
Flags

constm1_rtx
Constants

constraint modifier characters
Modifiers

constraint, matching
Simple Constraints

constraints
Constraints

constraints, machine specific
Machine Constraints

constructing calls
Constructing Calls

constructor expressions
Constructors

constructors vs goto
Destructors and Goto

constructors, output of
Initialization

gcc.info 441 / 506

CONST_CALL_P
Flags

CONST_COSTS
Costs

const_double
Constants

CONST_DOUBLE_CHAIN
Constants

CONST_DOUBLE_LOW
Constants

CONST_DOUBLE_MEM
Constants

CONST_DOUBLE_OK_FOR_LETTER_P
Register Classes

const_int
Constants

CONST_OK_FOR_LETTER_P
Register Classes

const_string
Constants

const_true_rtx
Constants

contributors
Contributors

controlling register usage
Register Basics

controlling the compilation driver
Driver

conventions, run-time
Interface

conversions
Conversions

Convex options
Convex Options

copy_rtx_if_shared
Sharing

core dump
Bug Criteria

gcc.info 442 / 506

cos
C Dialect Options

costs of instructions
Costs

COSTS_N_INSNS
Costs

CPLUS_INCLUDE_PATH
Environment Variables

CPP_PREDEFINES
Run-time Target

CPP_SPEC
Driver

CQImode
Machine Modes

cross compilation and floating point
Cross-compilation

cross compiling
Target Options

cross-compiler, installation
Cross-Compiler

cross-jumping
Passes

CSImode
Machine Modes

CTImode
Machine Modes

CUMULATIVE_ARGS
Register Arguments

current_function_epilogue_delay_list
Function Entry

current_function_outgoing_args_size
Stack Arguments

current_function_pops_args
Function Entry

current_function_pretend_args_size
Function Entry

C_INCLUDE_PATH
Environment Variables

gcc.info 443 / 506

data flow analysis
Passes

DATA_ALIGNMENT
Storage Layout

data_section
Sections

DATA_SECTION_ASM_OP
Sections

DBR_OUTPUT_SEQEND
Instruction Output

dbr_sequence_length
Instruction Output

DBX
Interoperation

DBX_CONTIN_CHAR
DBX Options

DBX_CONTIN_LENGTH
DBX Options

DBX_DEBUGGING_INFO
DBX Options

DBX_FUNCTION_FIRST
DBX Options

DBX_LBRAC_FIRST
DBX Options

DBX_MEMPARM_STABS_LETTER
DBX Options

DBX_NO_XREFS
DBX Options

DBX_OUTPUT_ENUM
DBX Hooks

DBX_OUTPUT_FUNCTION_END
DBX Hooks

DBX_OUTPUT_LBRAC
DBX Hooks

DBX_OUTPUT_MAIN_SOURCE_DIRECTORY
File Names and DBX

DBX_OUTPUT_MAIN_SOURCE_FILENAME
File Names and DBX

gcc.info 444 / 506

DBX_OUTPUT_MAIN_SOURCE_FILE_END
File Names and DBX

DBX_OUTPUT_RBRAC
DBX Hooks

DBX_OUTPUT_SOURCE_FILENAME
File Names and DBX

DBX_OUTPUT_STANDARD_TYPES
DBX Hooks

DBX_REGISTER_NUMBER
All Debuggers

DBX_REGPARM_STABS_CODE
DBX Options

DBX_REGPARM_STABS_LETTER
DBX Options

DBX_STATIC_CONST_VAR_CODE
DBX Options

DBX_STATIC_STAB_DATA_SECTION
DBX Options

DBX_TYPE_DECL_STABS_CODE
DBX Options

DBX_WORKING_DIRECTORY
File Names and DBX

DCmode
Machine Modes

De Morgan’s law
Insn Canonicalizations

dead code
Passes

dead_or_set_p
Peephole Definitions

deallocating variable length arrays
Variable Length

death notes
Obsolete Register Macros

DEBUGGER_ARG_OFFSET
All Debuggers

DEBUGGER_AUTO_OFFSET
All Debuggers

gcc.info 445 / 506

debugging information generation
Passes

debugging information options
Debugging Options

debugging, 88k OCS
M88K Options

debug_rtx
Bug Reporting

DEBUG_SYMS_TEXT
DBX Options

declaration scope
Incompatibilities

declarations inside expressions
Statement Exprs

declarations, RTL
RTL Declarations

declaring attributes of functions
Function Attributes

declaring static data in C++
Static Definitions

DEFAULT_CALLER_SAVES
Caller Saves

DEFAULT_GDB_EXTENSIONS
DBX Options

DEFAULT_MAIN_RETURN
Misc

DEFAULT_PCC_STRUCT_RETURN
Aggregate Return

DEFAULT_SHORT_ENUMS
Type Layout

DEFAULT_SIGNED_CHAR
Type Layout

define_asm_attributes
Tagging Insns

define_attr
Defining Attributes

define_delay
Delay Slots

gcc.info 446 / 506

define_expand
Expander Definitions

define_function_unit
Function Units

define_insn
Patterns

define_peephole
Expander Definitions

define_split
Insn Splitting

defining attributes and their values
Defining Attributes

defining jump instruction patterns
Jump Patterns

defining peephole optimizers
Peephole Definitions

defining RTL sequences for code generation
Expander Definitions

defining static data in C++
Static Definitions

delay slots, defining
Delay Slots

delayed branch scheduling
Passes

DELAY_SLOTS_FOR_EPILOGUE
Function Entry

dependencies for make as output
Environment Variables

dependencies, make
Preprocessor Options

DEPENDENCIES_OUTPUT
Environment Variables

Dependent Patterns
Dependent Patterns

destructors vs goto
Destructors and Goto

destructors, output of
Initialization

gcc.info 447 / 506

detecting -traditional
C Dialect Options

DFmode
Machine Modes

dialect options
C Dialect Options

digits in constraint
Simple Constraints

DImode
Machine Modes

directory options
Directory Options

disabling certain registers
Register Basics

dispatch table
Dispatch Tables

div
Arithmetic

DIVDI3_LIBCALL
Library Calls

divide instruction, 88k
M88K Options

division
Arithmetic

division
Arithmetic

division
Arithmetic

DIVSI3_LIBCALL
Library Calls

dollar signs in identifier names
Dollar Signs

DOLLARS_IN_IDENTIFIERS
Misc

DONE
Expander Definitions

DONT_REDUCE_ADDR
Costs

gcc.info 448 / 506

double-word arithmetic
Long Long

DOUBLE_TYPE_SIZE
Type Layout

downward funargs
Nested Functions

driver
Driver

DW bit (29k)
AMD29K Options

DWARF_DEBUGGING_INFO
SDB and DWARF

DYNAMIC_CHAIN_ADDRESS
Frame Layout

EASY_DIV_EXPR
Misc

ELIGIBLE_FOR_EPILOGUE_DELAY
Function Entry

ELIMINABLE_REGS
Elimination

empty constraints
No Constraints

EMPTY_FIELD_BOUNDARY
Storage Layout

ENCODE_SECTION_INFO
Sections

ENDFILE_SPEC
Driver

endianness
Portability

enum machine_mode
Machine Modes

enum reg_class
Register Classes

enumeration clash warnings
Warning Options

environment variables
Environment Variables

gcc.info 449 / 506

epilogue
Function Entry

eq
Comparisons

equal
Comparisons

eq_attr
Expressions

error
Storage Layout

error messages
Warnings and Errors

escape sequences, traditional
C Dialect Options

exclamation point
Multi-Alternative

exclusive-or, bitwise
Arithmetic

EXECUTABLE_SUFFIX
Config

exit
C Dialect Options

exit status and VMS
VMS Misc

EXIT_BODY
Misc

EXIT_IGNORE_STACK
Function Entry

expander definitions
Expander Definitions

EXPAND_BUILTIN_SAVEREGS
Varargs

explicit register variables
Explicit Reg Vars

expression codes
RTL Objects

expressions containing statements
Statement Exprs

gcc.info 450 / 506

expressions, compound, as lvalues
Lvalues

expressions, conditional, as lvalues
Lvalues

expressions, constructor
Constructors

expr_list
Insns

extended asm
Extended Asm

extensible constraints
Simple Constraints

extensions, ?:
Conditionals

extensions, ?:
Lvalues

extensions, C language
C Extensions

extensions, C++ language
C++ Extensions

extern int target_flags
Run-time Target

external declaration scope
Incompatibilities

EXTRA_CC_MODES
Condition Code

EXTRA_CC_NAMES
Condition Code

EXTRA_CONSTRAINT
Register Classes

EXTRA_SECTIONS
Sections

EXTRA_SECTION_FUNCTIONS
Sections

fabs
C Dialect Options

FAIL
Expander Definitions

gcc.info 451 / 506

FAILURE_EXIT_CODE
Config

fatal signal
Bug Criteria

features, optional, in system conventions
Run-time Target

ffs
Arithmetic

ffs
C Dialect Options

file name suffix
Overall Options

file names
Link Options

files and passes of the compiler
Passes

final pass
Passes

FINALIZE_PIC
PIC

FINAL_PRESCAN_INSN
Instruction Output

FINAL_REG_PARM_STACK_SPACE
Stack Arguments

final_scan_insn
Function Entry

final_sequence
Instruction Output

FIRST_INSN_ADDRESS
Insn Lengths

FIRST_PARM_OFFSET
Frame Layout

FIRST_PSEUDO_REGISTER
Register Basics

FIRST_STACK_REG
Stack Registers

FIRST_VIRTUAL_REGISTER
Regs and Memory

gcc.info 452 / 506

fix
Conversions

fix
Conversions

fixed register
Register Basics

FIXED_REGISTERS
Register Basics

fixed_regs
Register Basics

FIXUNS_TRUNC_LIKE_FIX_TRUNC
Misc

flags in RTL expression
Flags

float
Conversions

FLOATIFY
Library Calls

floating point and cross compilation
Cross-compilation

FLOAT_ARG_TYPE
Library Calls

float_extend
Conversions

FLOAT_STORE_FLAG_VALUE
Misc

float_truncate
Conversions

FLOAT_TYPE_SIZE
Type Layout

FLOAT_VALUE_TYPE
Library Calls

FLOAT_WORDS_BIG_ENDIAN
Storage Layout

force_reg
Standard Names

forwarding calls
Constructing Calls

gcc.info 453 / 506

frame layout
Frame Layout

FRAME_GROWS_DOWNWARD
Frame Layout

frame_pointer_needed
Function Entry

FRAME_POINTER_REGNUM
Frame Registers

FRAME_POINTER_REQUIRED
Elimination

frame_pointer_rtx
Frame Registers

function attributes
Function Attributes

function call conventions
Interface

function entry and exit
Function Entry

function pointers, arithmetic
Pointer Arith

function prototype declarations
Function Prototypes

function units, for scheduling
Function Units

function, size of pointer to
Pointer Arith

function-call insns
Calls

functions that have no side effects
Function Attributes

functions that never return
Function Attributes

functions with printf or scanf style arguments
Function Attributes

functions, leaf
Leaf Functions

FUNCTION_ARG
Register Arguments

gcc.info 454 / 506

FUNCTION_ARG_ADVANCE
Register Arguments

FUNCTION_ARG_BOUNDARY
Register Arguments

FUNCTION_ARG_CALLEE_COPIES
Register Arguments

FUNCTION_ARG_PADDING
Register Arguments

FUNCTION_ARG_PARTIAL_NREGS
Register Arguments

FUNCTION_ARG_PASS_BY_REFERENCE
Register Arguments

FUNCTION_ARG_REGNO_P
Register Arguments

FUNCTION_BLOCK_PROFILER
Profiling

FUNCTION_BOUNDARY
Storage Layout

FUNCTION_CONVERSION_BUG
Config

FUNCTION_EPILOGUE
Function Entry

FUNCTION_INCOMING_ARG
Register Arguments

FUNCTION_MODE
Misc

FUNCTION_OUTGOING_VALUE
Scalar Return

FUNCTION_PROFILER
Profiling

FUNCTION_PROLOGUE
Function Entry

FUNCTION_VALUE
Scalar Return

FUNCTION_VALUE_REGNO_P
Scalar Return

G++
G++ and GCC

gcc.info 455 / 506

g++
Invoking G++

GCC
G++ and GCC

GCC_EXEC_PREFIX
Environment Variables

ge
Comparisons

gencodes
Passes

genconfig
Passes

generalized lvalues
Lvalues

general_operand
RTL Template

GENERAL_REGS
Register Classes

generating assembler output
Output Statement

generating insns
RTL Template

genflags
Passes

GEN_ERRNO_RTX
Library Calls

get_attr
Expressions

get_attr_length
Insn Lengths

GET_CLASS_NARROWEST_MODE
Machine Modes

GET_CODE
RTL Objects

get_frame_size
Elimination

get_insns
Insns

gcc.info 456 / 506

get_last_insn
Insns

GET_MODE
Machine Modes

GET_MODE_ALIGNMENT
Machine Modes

GET_MODE_BITSIZE
Machine Modes

GET_MODE_CLASS
Machine Modes

GET_MODE_MASK
Machine Modes

GET_MODE_NAME
Machine Modes

GET_MODE_NUNITS
Machine Modes

GET_MODE_SIZE
Machine Modes

GET_MODE_UNIT_SIZE
Machine Modes

GET_MODE_WIDER_MODE
Machine Modes

GET_RTX_CLASS
Accessors

GET_RTX_FORMAT
Accessors

GET_RTX_LENGTH
Accessors

geu
Comparisons

global offset table
Code Gen Options

global register after longjmp
Global Reg Vars

global register allocation
Passes

global register variables
Global Reg Vars

gcc.info 457 / 506

GLOBALDEF
Global Declarations

GLOBALREF
Global Declarations

GLOBALVALUEDEF
Global Declarations

GLOBALVALUEREF
Global Declarations

GNU CC and portability
Portability

GNU CC command options
Invoking GCC

goto with computed label
Labels as Values

GO_IF_LEGITIMATE_ADDRESS
Addressing Modes

GO_IF_MODE_DEPENDENT_ADDRESS
Addressing Modes

gp-relative references (MIPS)
MIPS Options

greater than
Comparisons

greater than
Comparisons

greater than
Comparisons

grouping options
Invoking GCC

gt
Comparisons

gtu
Comparisons

HANDLE_PRAGMA
Misc

hard registers
Regs and Memory

hardware models and configurations, specifying
Submodel Options

gcc.info 458 / 506

HARD_FRAME_POINTER_REGNUM
Frame Registers

HARD_REGNO_MODE_OK
Values in Registers

HARD_REGNO_NREGS
Values in Registers

HAVE_ATEXIT
Misc

HAVE_POST_DECREMENT
Addressing Modes

HAVE_POST_INCREMENT
Addressing Modes

HAVE_PRE_DECREMENT
Addressing Modes

HAVE_PRE_INCREMENT
Addressing Modes

HAVE_PUTENV
Config

HAVE_VPRINTF
Config

header files and VMS
Include Files and VMS

high
Constants

HImode
Machine Modes

HOST_BITS_PER_CHAR
Config

HOST_BITS_PER_INT
Config

HOST_BITS_PER_LONG
Config

HOST_BITS_PER_SHORT
Config

HOST_FLOAT_FORMAT
Config

HOST_FLOAT_WORDS_BIG_ENDIAN
Config

gcc.info 459 / 506

HOST_WORDS_BIG_ENDIAN
Config

HPPA Options
HPPA Options

i386 Options
i386 Options

IBM RS/6000 and PowerPC Options
RS-6000 and PowerPC Options

IBM RT options
RT Options

IBM RT PC
Interoperation

identifier names, dollar signs in
Dollar Signs

identifiers, names in assembler code
Asm Labels

identifying source, compiler (88k)
M88K Options

IEEE_FLOAT_FORMAT
Storage Layout

if_then_else
Comparisons

immediate_operand
RTL Template

IMMEDIATE_PREFIX
Instruction Output

implicit argument: return value
Naming Results

IMPLICIT_FIX_EXPR
Misc

implied #pragma implementation
C++ Interface

include files and VMS
Include Files and VMS

INCLUDE_DEFAULTS
Driver

inclusive-or, bitwise
Arithmetic

gcc.info 460 / 506

INCOMING_REGNO
Register Basics

incompatibilities of GNU CC
Incompatibilities

increment operators
Bug Criteria

INDEX_REG_CLASS
Register Classes

initialization routines
Initialization

initializations in expressions
Constructors

initializers with labeled elements
Labeled Elements

initializers, non-constant
Initializers

INITIALIZE_TRAMPOLINE
Trampolines

INITIAL_ELIMINATION_OFFSET
Elimination

INITIAL_FRAME_POINTER_OFFSET
Elimination

INIT_CUMULATIVE_ARGS
Register Arguments

INIT_CUMULATIVE_INCOMING_ARGS
Register Arguments

INIT_SECTION_ASM_OP
Sections

INIT_SECTION_ASM_OP
Macros for Initialization

inline functions
Inline

inline functions, omission of
Inline

inline, automatic
Passes

inlining and C++ pragmas
C++ Interface

gcc.info 461 / 506

insn
Insns

insn attributes
Insn Attributes

insn canonicalization
Insn Canonicalizations

insn lengths, computing
Insn Lengths

insn splitting
Insn Splitting

insn-attr.h
Defining Attributes

insns
Insns

insns, generating
RTL Template

insns, recognizing
RTL Template

INSN_ANNULLED_BRANCH_P
Flags

INSN_CACHE_DEPTH
Trampolines

INSN_CACHE_LINE_WIDTH
Trampolines

INSN_CACHE_SIZE
Trampolines

INSN_CLOBBERS_REGNO_P
Obsolete Register Macros

INSN_CODE
Insns

INSN_DELETED_P
Flags

INSN_FROM_TARGET_P
Flags

insn_list
Insns

INSN_REFERENCES_ARE_DELAYED
Misc

gcc.info 462 / 506

INSN_SETS_ARE_DELAYED
Misc

INSN_UID
Insns

installation trouble
Trouble

installing GNU CC
Installation

installing GNU CC on the 3b1
3b1 Install

installing GNU CC on the Sun
Sun Install

installing GNU CC on Unos
Unos Install

installing GNU CC on VMS
VMS Install

instruction attributes
Insn Attributes

instruction combination
Passes

instruction patterns
Patterns

instruction recognizer
Passes

instruction scheduling
Passes

instruction scheduling
Passes

instruction splitting
Insn Splitting

integrated
Flags

INTEGRATE_THRESHOLD
Misc

integrating function code
Inline

Intel 386 Options
i386 Options

gcc.info 463 / 506

Interdependence of Patterns
Dependent Patterns

interface and implementation headers, C++
C++ Interface

interfacing to GNU CC output
Interface

intermediate C version, nonexistent
G++ and GCC

INTIFY
Library Calls

introduction Top

INT_TYPE_SIZE
Type Layout

invalid assembly code
Bug Criteria

invalid input
Bug Criteria

invoking g++
Invoking G++

in_data
Sections

in_struct
Flags

in_text
Sections

ior
Arithmetic

isinf
Cross-compilation

isnan
Cross-compilation

jump instruction patterns
Jump Patterns

jump instructions and set
Side Effects

jump optimization
Passes

jump threading

gcc.info 464 / 506

Passes

jump_insn
Insns

JUMP_LABEL
Insns

JUMP_TABLES_IN_TEXT_SECTION
Sections

kernel and user registers (29k)
AMD29K Options

keywords, alternate
Alternate Keywords

known causes of trouble
Trouble

labeled elements in initializers
Labeled Elements

labels as values
Labels as Values

LABEL_NUSES
Insns

LABEL_OUTSIDE_LOOP_P
Flags

LABEL_PRESERVE_P
Flags

label_ref
Constants

labs
C Dialect Options

language dialect options
C Dialect Options

large bit shifts (88k)
M88K Options

large return values
Aggregate Return

LAST_STACK_REG
Stack Registers

LAST_VIRTUAL_REGISTER
Regs and Memory

ldexp

gcc.info 465 / 506

Cross-compilation

le
Comparisons

leaf functions
Leaf Functions

leaf_function
Leaf Functions

leaf_function_p
Standard Names

LEAF_REGISTERS
Leaf Functions

LEAF_REG_REMAP
Leaf Functions

left rotate
Arithmetic

left shift
Arithmetic

left shift
Arithmetic

LEGITIMATE_CONSTANT_P
Addressing Modes

LEGITIMATE_PIC_OPERAND_P
PIC

LEGITIMIZE_ADDRESS
Addressing Modes

length-zero arrays
Zero Length

less than
Comparisons

less than or equal
Comparisons

leu
Comparisons

LIBCALL_VALUE
Scalar Return

LIBGCC_NEEDS_DOUBLE
Library Calls

Libraries

gcc.info 466 / 506

Link Options

library subroutine names
Library Calls

LIBRARY_PATH
Environment Variables

LIB_SPEC
Driver

LIMIT_RELOAD_CLASS
Register Classes

link options
Link Options

LINK_LIBGCC_SPECIAL
Driver

LINK_LIBGCC_SPECIAL_1
Driver

LINK_SPEC
Driver

load address instruction
Simple Constraints

LOAD_EXTEND_OP
Misc

local labels
Local Labels

local register allocation
Passes

local variables in macros
Naming Types

local variables, specifying registers
Local Reg Vars

LOCAL_INCLUDE_DIR
Driver

LOCAL_LABEL_PREFIX
Instruction Output

logical shift
Arithmetic

logical-and, bitwise
Arithmetic

LOG_LINKS

gcc.info 467 / 506

Insns

longjmp
Global Reg Vars

LONGJMP_RESTORE_FROM_STACK
Elimination

LONG_DOUBLE_TYPE_SIZE
Type Layout

LONG_LONG_TYPE_SIZE
Type Layout

LONG_TYPE_SIZE
Type Layout

loop optimization
Passes

lo_sum
Arithmetic

lshift
Arithmetic

lshiftrt
Arithmetic

lt
Comparisons

ltu
Comparisons

lvalues, generalized
Lvalues

M680x0 options
M680x0 Options

M88k options
M88K Options

machine dependent options
Submodel Options

machine description macros
Target Macros

machine descriptions
Machine Desc

machine mode conversions
Conversions

machine modes

gcc.info 468 / 506

Machine Modes

machine specific constraints
Machine Constraints

macro with variable arguments
Macro Varargs

macros containing asm
Extended Asm

macros, inline alternative
Inline

macros, local labels
Local Labels

macros, local variables in
Naming Types

macros, statements in expressions
Statement Exprs

macros, target description
Target Macros

macros, types of arguments
Typeof

make
Preprocessor Options

make_safe_from
Expander Definitions

matching constraint
Simple Constraints

matching operands
Output Template

match_dup
RTL Template

match_operand
RTL Template

match_operator
RTL Template

match_op_dup
RTL Template

match_parallel
RTL Template

match_par_dup

gcc.info 469 / 506

RTL Template

match_scratch
RTL Template

math libraries
Interface

math, in RTL
Arithmetic

maximum operator
Min and Max

MAX_BITS_PER_WORD
Storage Layout

MAX_CHAR_TYPE_SIZE
Type Layout

MAX_FIXED_MODE_SIZE
Storage Layout

MAX_INT_TYPE_SIZE
Type Layout

MAX_LONG_TYPE_SIZE
Type Layout

MAX_MOVE_MAX
Misc

MAX_OFILE_ALIGNMENT
Storage Layout

MAX_REGS_PER_ADDRESS
Addressing Modes

MAX_UNITS_PER_WORD
Storage Layout

MAX_WCHAR_TYPE_SIZE
Type Layout

MAYBE_REG_PARM_STACK_SPACE
Stack Arguments

mcount
Profiling

MD_CALL_PROTOTYPES
Config

MD_EXEC_PREFIX
Driver

MD_STARTFILE_PREFIX

gcc.info 470 / 506

Driver

MD_STARTFILE_PREFIX_1
Driver

mem
Regs and Memory

member fns, automatically inline
Inline

memcmp
C Dialect Options

memcpy
C Dialect Options

memory model (29k)
AMD29K Options

memory reference, nonoffsettable
Simple Constraints

memory references in constraints
Simple Constraints

MEMORY_MOVE_COST
Costs

MEM_IN_STRUCT_P
Flags

MEM_VOLATILE_P
Flags

messages, warning
Warning Options

messages, warning and error
Warnings and Errors

middle-operands, omitted
Conditionals

minimum operator
Min and Max

minus
Arithmetic

MIPS options
MIPS Options

misunderstandings in C++
C++ Misunderstandings

mod

gcc.info 471 / 506

Arithmetic

MODDI3_LIBCALL
Library Calls

mode classes
Machine Modes

MODES_TIEABLE_P
Values in Registers

MODE_CC
Machine Modes

MODE_COMPLEX_FLOAT
Machine Modes

MODE_COMPLEX_INT
Machine Modes

MODE_FLOAT
Machine Modes

MODE_FUNCTION
Machine Modes

MODE_INT
Machine Modes

MODE_PARTIAL_INT
Machine Modes

MODE_RANDOM
Machine Modes

modifiers in constraints
Modifiers

MODSI3_LIBCALL
Library Calls

MOVE_MAX
Misc

MOVE_RATIO
Costs

MULDI3_LIBCALL
Library Calls

MULSI3_LIBCALL
Library Calls

mult
Arithmetic

MULTIBYTE_CHARS

gcc.info 472 / 506

Config

multiple alternative constraints
Multi-Alternative

multiplication
Arithmetic

multiprecision arithmetic
Long Long

name augmentation
VMS Misc

named patterns and conditions
Patterns

named return value in C++
Naming Results

names used in assembler code
Asm Labels

names, pattern
Standard Names

naming convention, implementation headers
C++ Interface

naming types
Naming Types

ne
Comparisons

neg
Arithmetic

nested functions
Nested Functions

nested functions, trampolines for
Trampolines

newline vs string constants
C Dialect Options

next_cc0_user
Jump Patterns

NEXT_INSN
Insns

NEXT_OBJC_RUNTIME
Library Calls

nil

gcc.info 473 / 506

RTL Objects

no constraints
No Constraints

no-op move instructions
Passes

non-constant initializers
Initializers

non-static inline function
Inline

nongcc_SI_type
Library Calls

nongcc_word_type
Library Calls

nonoffsettable memory reference
Simple Constraints

NON_SAVING_SETJMP
Register Basics

not
Arithmetic

not equal
Comparisons

not using constraints
No Constraints

note
Insns

NOTE_INSN_BLOCK_BEG
Insns

NOTE_INSN_BLOCK_END
Insns

NOTE_INSN_DELETED
Insns

NOTE_INSN_FUNCTION_END
Insns

NOTE_INSN_LOOP_BEG
Insns

NOTE_INSN_LOOP_CONT
Insns

NOTE_INSN_LOOP_END

gcc.info 474 / 506

Insns

NOTE_INSN_LOOP_VTOP
Insns

NOTE_INSN_SETJMP
Insns

NOTE_LINE_NUMBER
Insns

NOTE_SOURCE_FILE
Insns

NOTICE_UPDATE_CC
Condition Code

NO_BUILTIN_PTRDIFF_TYPE
Driver

NO_BUILTIN_SIZE_TYPE
Driver

NO_DOLLAR_IN_LABEL
Misc

NO_DOT_IN_LABEL
Misc

NO_FUNCTION_CSE
Costs

NO_IMPLICIT_EXTERN_C
Misc

NO_MD_PROTOTYPES
Config

NO_RECURSIVE_FUNCTION_CSE
Costs

NO_REGS
Register Classes

NO_STAB_H
Config

NO_SYS_SIGLIST
Config

NUM_MACHINE_MODES
Machine Modes

N_REG_CLASSES
Register Classes

OBJC_GEN_METHOD_LABEL

gcc.info 475 / 506

Label Output

OBJC_INCLUDE_PATH
Environment Variables

OBJC_INT_SELECTORS
Type Layout

OBJC_PROLOGUE
File Framework

OBJC_SELECTORS_WITHOUT_LABELS
Type Layout

Objective C
G++ and GCC

OBJECT_FORMAT_COFF
Macros for Initialization

OBJECT_FORMAT_ROSE
Macros for Initialization

OBSTACK_CHUNK_ALLOC
Config

OBSTACK_CHUNK_FREE
Config

OBSTACK_CHUNK_SIZE
Config

obstack_free
3b1 Install

OCS (88k)
M88K Options

offsettable address
Simple Constraints

old-style function definitions
Function Prototypes

omitted middle-operands
Conditionals

ONLY_INT_FIELDS
Config

open coding
Inline

operand access
Accessors

operand constraints

gcc.info 476 / 506

Constraints

operand substitution
Output Template

operands
Patterns

OPTIMIZATION_OPTIONS
Run-time Target

optimize options
Optimize Options

optional hardware or system features
Run-time Target

options to control warnings
Warning Options

options, C++
C++ Dialect Options

options, code generation
Code Gen Options

options, debugging
Debugging Options

options, dialect
C Dialect Options

options, directory search
Directory Options

options, GNU CC command
Invoking GCC

options, grouping
Invoking GCC

options, linking
Link Options

options, optimization
Optimize Options

options, order
Invoking GCC

options, preprocessor
Preprocessor Options

order of evaluation, side effects
Non-bugs

order of options

gcc.info 477 / 506

Invoking GCC

order of register allocation
Allocation Order

Ordering of Patterns
Pattern Ordering

ORDER_REGS_FOR_LOCAL_ALLOC
Allocation Order

other directory, compilation in
Other Dir

OUTGOING_REGNO
Register Basics

OUTGOING_REG_PARM_STACK_SPACE
Stack Arguments

output file option
Overall Options

output of assembler code
File Framework

output statements
Output Statement

output templates
Output Template

output_addr_const
Data Output

output_asm_insn
Output Statement

overflow while constant folding
Cross-compilation

OVERLAPPING_REGNO_P
Obsolete Register Macros

overloaded virtual fn, warning
Warning Options

OVERRIDE_OPTIONS
Run-time Target

parallel
Side Effects

parameter forward declaration
Variable Length

parameters, miscellaneous

gcc.info 478 / 506

Misc

PARM_BOUNDARY
Storage Layout

parser generator, Bison
Installation

parsing pass
Passes

passes and files of the compiler
Passes

passing arguments
Interface

PATTERN
Insns

pattern conditions
Patterns

pattern names
Standard Names

Pattern Ordering
Pattern Ordering

patterns
Patterns

pc
Regs and Memory

PCC_BITFIELD_TYPE_MATTERS
Storage Layout

PCC_STATIC_STRUCT_RETURN
Aggregate Return

pc_rtx
Regs and Memory

PDImode
Machine Modes

peephole optimization
Passes

peephole optimization, RTL representation
Side Effects

peephole optimizer definitions
Peephole Definitions

percent sign

gcc.info 479 / 506

Output Template

perform_...
Library Calls

PIC
PIC

PIC
Code Gen Options

PIC_OFFSET_TABLE_REGNUM
PIC

plus
Arithmetic

Pmode
Misc

pointer arguments
Function Attributes

POINTER_SIZE
Storage Layout

portability
Portability

portions of temporary objects, pointers to
Temporaries

position independent code
PIC

post_dec
Incdec

post_inc
Incdec

pragma
Misc

pragma, reason for not using
Function Attributes

pragmas in C++, effect on inlining
C++ Interface

pragmas, interface and implementation
C++ Interface

predefined macros
Run-time Target

PREDICATE_CODES

gcc.info 480 / 506

Misc

PREFERRED_DEBUGGING_TYPE
All Debuggers

PREFERRED_OUTPUT_RELOAD_CLASS
Register Classes

PREFERRED_RELOAD_CLASS
Register Classes

preprocessing numbers
Incompatibilities

preprocessing tokens
Incompatibilities

preprocessor options
Preprocessor Options

PRESERVE_DEATH_INFO_REGNO_P
Obsolete Register Macros

prev_cc0_setter
Jump Patterns

PREV_INSN
Insns

prev_nonnote_insn
Peephole Definitions

pre_dec
Incdec

pre_inc
Incdec

PRINT_OPERAND
Instruction Output

PRINT_OPERAND_ADDRESS
Instruction Output

PRINT_OPERAND_PUNCT_VALID_P
Instruction Output

processor selection (29k)
AMD29K Options

product
Arithmetic

PROFILE_BEFORE_PROLOGUE
Profiling

profiling, code generation

gcc.info 481 / 506

Profiling

program counter
Regs and Memory

prologue
Function Entry

PROMOTE_FUNCTION_ARGS
Storage Layout

PROMOTE_FUNCTION_RETURN
Storage Layout

PROMOTE_MODE
Storage Layout

PROMOTE_PROTOTYPES
Stack Arguments

promotion of formal parameters
Function Prototypes

pseudo registers
Regs and Memory

PSImode
Machine Modes

PTRDIFF_TYPE
Type Layout

push address instruction
Simple Constraints

PUSH_ROUNDING
Stack Arguments

putenv
Config

PUT_CODE
RTL Objects

PUT_MODE
Machine Modes

PUT_REG_NOTE_KIND
Insns

PUT_SDB_...
SDB and DWARF

QImode
Machine Modes

question mark

gcc.info 482 / 506

Multi-Alternative

quotient
Arithmetic

r0-relative references (88k)
M88K Options

ranges in case statements
Case Ranges

read-only strings
Incompatibilities

READONLY_DATA_SECTION
Sections

REAL_ARITHMETIC
Cross-compilation

REAL_INFINITY
Cross-compilation

REAL_NM_FILE_NAME
Macros for Initialization

REAL_VALUES_EQUAL
Cross-compilation

REAL_VALUES_LESS
Cross-compilation

REAL_VALUE_ATOF
Cross-compilation

REAL_VALUE_FIX
Cross-compilation

REAL_VALUE_FROM_INT
Cross-compilation

REAL_VALUE_ISINF
Cross-compilation

REAL_VALUE_ISNAN
Cross-compilation

REAL_VALUE_LDEXP
Cross-compilation

REAL_VALUE_NEGATE
Cross-compilation

REAL_VALUE_RNDZINT
Cross-compilation

REAL_VALUE_TO_DECIMAL

gcc.info 483 / 506

Data Output

REAL_VALUE_TO_INT
Cross-compilation

REAL_VALUE_TO_TARGET_DOUBLE
Data Output

REAL_VALUE_TO_TARGET_LONG_DOUBLE
Data Output

REAL_VALUE_TO_TARGET_SINGLE
Data Output

REAL_VALUE_TRUNCATE
Cross-compilation

REAL_VALUE_TYPE
Cross-compilation

REAL_VALUE_UNSIGNED_FIX
Cross-compilation

REAL_VALUE_UNSIGNED_RNDZINT
Cross-compilation

recognizing insns
RTL Template

recog_operand
Instruction Output

reg
Regs and Memory

register allocation
Passes

register allocation order
Allocation Order

register allocation, stupid
Passes

register class definitions
Register Classes

register class preference constraints
Class Preferences

register class preference pass
Passes

register pairs
Values in Registers

register positions in frame (88k)

gcc.info 484 / 506

M88K Options

register positions in frame (88k)
M88K Options

Register Transfer Language (RTL)
RTL

register usage
Registers

register use analysis
Passes

register variable after longjmp
Global Reg Vars

register-to-stack conversion
Passes

registers
Extended Asm

registers arguments
Register Arguments

registers for local variables
Local Reg Vars

registers in constraints
Simple Constraints

registers, global allocation
Explicit Reg Vars

registers, global variables in
Global Reg Vars

REGISTER_MOVE_COST
Costs

REGISTER_NAMES
Instruction Output

register_operand
RTL Template

REGISTER_PREFIX
Instruction Output

REGNO_OK_FOR_BASE_P
Register Classes

REGNO_OK_FOR_INDEX_P
Register Classes

REGNO_REG_CLASS

gcc.info 485 / 506

Register Classes

regs_ever_live
Function Entry

REG_ALLOC_ORDER
Allocation Order

REG_CC_SETTER
Insns

REG_CC_USER
Insns

REG_CLASS_CONTENTS
Register Classes

REG_CLASS_FROM_LETTER
Register Classes

REG_CLASS_NAMES
Register Classes

REG_DEAD
Insns

REG_DEP_ANTI
Insns

REG_DEP_OUTPUT
Insns

REG_EQUAL
Insns

REG_EQUIV
Insns

REG_FUNCTION_VALUE_P
Flags

REG_INC
Insns

REG_LABEL
Insns

REG_LEAF_ALLOC_ORDER
Leaf Functions

REG_LIBCALL
Insns

REG_LOOP_TEST_P
Flags

reg_names

gcc.info 486 / 506

Instruction Output

REG_NONNEG
Insns

REG_NOTES
Insns

REG_NOTE_KIND
Insns

REG_NO_CONFLICT
Insns

REG_OK_FOR_BASE_P
Addressing Modes

REG_OK_FOR_INDEX_P
Addressing Modes

REG_OK_STRICT
Addressing Modes

REG_PARM_STACK_SPACE
Stack Arguments

REG_RETVAL
Insns

REG_UNUSED
Insns

REG_USERVAR_P
Flags

REG_WAS_0
Insns

relative costs
Costs

RELATIVE_PREFIX_NOT_LINKDIR
Driver

reload pass
Regs and Memory

reloading
Passes

reload_completed
Standard Names

reload_in_progress
Standard Names

remainder

gcc.info 487 / 506

Arithmetic

reporting bugs
Bugs

representation of RTL
RTL

rest argument (in macro)
Macro Varargs

rest_of_compilation
Passes

rest_of_decl_compilation
Passes

return
Side Effects

return value of main
VMS Misc

return value, named, in C++
Naming Results

return values in registers
Scalar Return

returning aggregate values
Aggregate Return

returning structures and unions
Interface

RETURN_ADDR_IN_PREVIOUS_FRAME
Frame Layout

RETURN_ADDR_RTX
Frame Layout

RETURN_IN_MEMORY
Aggregate Return

RETURN_POPS_ARGS
Stack Arguments

right rotate
Arithmetic

right shift
Arithmetic

rotate
Arithmetic

rotate

gcc.info 488 / 506

Arithmetic

rotatert
Arithmetic

ROUND_TYPE_ALIGN
Storage Layout

ROUND_TYPE_SIZE
Storage Layout

RS/6000 and PowerPC Options
RS-6000 and PowerPC Options

RT options
RT Options

RT PC
Interoperation

RTL addition
Arithmetic

RTL comparison
Arithmetic

RTL comparison operations
Comparisons

RTL constant expression types
Constants

RTL constants
Constants

RTL declarations
RTL Declarations

RTL difference
Arithmetic

RTL expression
RTL Objects

RTL expressions for arithmetic
Arithmetic

RTL format
Accessors

RTL format characters
Accessors

RTL function-call insns
Calls

RTL generation

gcc.info 489 / 506

Passes

RTL insn template
RTL Template

RTL integers
RTL Objects

RTL memory expressions
Regs and Memory

RTL object types
RTL Objects

RTL postdecrement
Incdec

RTL postincrement
Incdec

RTL predecrement
Incdec

RTL preincrement
Incdec

RTL register expressions
Regs and Memory

RTL representation
RTL

RTL side effect expressions
Side Effects

RTL strings
RTL Objects

RTL structure sharing assumptions
Sharing

RTL subtraction
Arithmetic

RTL sum
Arithmetic

RTL vectors
RTL Objects

RTX (See RTL)
RTL Objects

RTX_COSTS
Costs

RTX_INTEGRATED_P

gcc.info 490 / 506

Flags

RTX_UNCHANGING_P
Flags

run-time conventions
Interface

run-time options
Code Gen Options

run-time target specification
Run-time Target

saveable_obstack
Addressing Modes

scalars, returned as values
Scalar Return

SCCS_DIRECTIVE
Misc

scheduling, delayed branch
Passes

scheduling, instruction
Passes

scheduling, instruction
Passes

SCHED_GROUP_P
Flags

SCmode
Machine Modes

scope of a variable length array
Variable Length

scope of declaration
Disappointments

scope of external declarations
Incompatibilities

scratch
Regs and Memory

scratch operands
Regs and Memory

SDB_ALLOW_FORWARD_REFERENCES
SDB and DWARF

SDB_ALLOW_UNKNOWN_REFERENCES

gcc.info 491 / 506

SDB and DWARF

SDB_DEBUGGING_INFO
SDB and DWARF

SDB_DELIM
SDB and DWARF

SDB_GENERATE_FAKE
SDB and DWARF

search path
Directory Options

second include path
Preprocessor Options

SECONDARY_INPUT_RELOAD_CLASS
Register Classes

SECONDARY_MEMORY_NEEDED
Register Classes

SECONDARY_MEMORY_NEEDED_RTX
Register Classes

SECONDARY_OUTPUT_RELOAD_CLASS
Register Classes

SECONDARY_RELOAD_CLASS
Register Classes

SELECT_CC_MODE
Condition Code

SELECT_RTX_SECTION
Sections

SELECT_SECTION
Sections

separate directory, compilation in
Other Dir

sequence
Side Effects

sequential consistency on 88k
M88K Options

set
Side Effects

setjmp
Global Reg Vars

SETUP_FRAME_ADDRESSES

gcc.info 492 / 506

Frame Layout

SETUP_INCOMING_VARARGS
Varargs

set_attr
Tagging Insns

set_attr_alternative
Tagging Insns

SET_DEST
Side Effects

SET_SRC
Side Effects

SFmode
Machine Modes

shared strings
Incompatibilities

shared VMS run time system
VMS Misc

SHARED_SECTION_ASM_OP
Sections

sharing of RTL components
Sharing

shift
Arithmetic

SHIFT_COUNT_TRUNCATED
Misc

SHORT_TYPE_SIZE
Type Layout

side effect in ?:
Conditionals

side effects, macro argument
Statement Exprs

side effects, order of evaluation
Non-bugs

signed division
Arithmetic

signed maximum
Arithmetic

signed minimum

gcc.info 493 / 506

Arithmetic

SIGNED_CHAR_SPEC
Driver

sign_extend
Conversions

sign_extract
Bit Fields

SImode
Machine Modes

simple constraints
Simple Constraints

simplifications, arithmetic
Passes

sin
C Dialect Options

sizeof
Typeof

SIZE_TYPE
Type Layout

SLOW_BYTE_ACCESS
Costs

SLOW_UNALIGNED_ACCESS
Costs

SLOW_ZERO_EXTEND
Costs

smaller data references (88k)
M88K Options

smaller data references (MIPS)
MIPS Options

SMALL_REGISTER_CLASSES
Register Classes

smax
Arithmetic

smin
Arithmetic

SPARC options
SPARC Options

specified registers

gcc.info 494 / 506

Explicit Reg Vars

specifying compiler version and target machine
Target Options

specifying hardware config
Submodel Options

specifying machine version
Target Options

specifying registers for local variables
Local Reg Vars

speed of instructions
Costs

splitting instructions
Insn Splitting

sqrt
C Dialect Options

sqrt
Arithmetic

square root
Arithmetic

stack arguments
Stack Arguments

stack checks (29k)
AMD29K Options

stack frame layout
Frame Layout

STACK_BOUNDARY
Storage Layout

STACK_DYNAMIC_OFFSET
Frame Layout

STACK_GROWS_DOWNWARD
Frame Layout

STACK_PARMS_IN_REG_PARM_AREA
Stack Arguments

STACK_POINTER_OFFSET
Frame Layout

STACK_POINTER_REGNUM
Frame Registers

stack_pointer_rtx

gcc.info 495 / 506

Frame Registers

STACK_REGS
Stack Registers

stage1
Installation

standard pattern names
Standard Names

STANDARD_EXEC_PREFIX
Driver

STANDARD_INCLUDE_DIR
Driver

STANDARD_STARTFILE_PREFIX
Driver

start files
Tools and Libraries

STARTFILE_SPEC
Driver

STARTING_FRAME_OFFSET
Frame Layout

statements inside expressions
Statement Exprs

static data in C++, declaring and defining
Static Definitions

STATIC_CHAIN
Frame Registers

STATIC_CHAIN_INCOMING
Frame Registers

STATIC_CHAIN_INCOMING_REGNUM
Frame Registers

STATIC_CHAIN_REGNUM
Frame Registers

STDC_VALUE
Run-time Target

storage layout
Storage Layout

STORE_FLAG_VALUE
Misc

strcmp

gcc.info 496 / 506

C Dialect Options

strcpy
C Dialect Options

strcpy
Storage Layout

strength-reduction
Passes

STRICT_ALIGNMENT
Storage Layout

strict_low_part
RTL Declarations

string constants
Incompatibilities

string constants vs newline
C Dialect Options

STRIP_NAME_ENCODING
Sections

strlen
C Dialect Options

structure passing (88k)
M88K Options

structure value address
Aggregate Return

structures
Incompatibilities

structures, constructor expression
Constructors

structures, returning
Interface

STRUCTURE_SIZE_BOUNDARY
Storage Layout

STRUCT_VALUE
Aggregate Return

STRUCT_VALUE_INCOMING
Aggregate Return

STRUCT_VALUE_INCOMING_REGNUM
Aggregate Return

STRUCT_VALUE_REGNUM

gcc.info 497 / 506

Aggregate Return

stupid register allocation
Passes

submodel options
Submodel Options

subreg
Regs and Memory

SUBREG_PROMOTED_UNSIGNED_P
Flags

SUBREG_PROMOTED_VAR_P
Flags

SUBREG_REG
Regs and Memory

SUBREG_WORD
Regs and Memory

subscripting
Subscripting

subscripting and function values
Subscripting

SUCCESS_EXIT_CODE
Config

suffixes for C++ source
Invoking G++

Sun installation
Sun Install

suppressing warnings
Warning Options

surprises in C++
C++ Misunderstandings

SVr4
M88K Options

SWITCHES_NEED_SPACES
Driver

SWITCH_TAKES_ARG
Driver

symbolic label
Sharing

symbol_ref

gcc.info 498 / 506

Constants

SYMBOL_REF_FLAG
Flags

SYMBOL_REF_USED
Flags

syntax checking
Warning Options

SYSTEM_INCLUDE_DIR
Driver

sys_siglist
Config

tagging insns
Tagging Insns

tail recursion optimization
Passes

target description macros
Target Macros

target machine, specifying
Target Options

target options
Target Options

target specifications
Run-time Target

target-parameter-dependent code
Passes

TARGET_BELL
Type Layout

TARGET_BS
Type Layout

TARGET_CR
Type Layout

TARGET_EDOM
Library Calls

TARGET_FF
Type Layout

TARGET_FLOAT_FORMAT
Storage Layout

TARGET_MEM_FUNCTIONS

gcc.info 499 / 506

Library Calls

TARGET_NEWLINE
Type Layout

TARGET_OPTIONS
Run-time Target

TARGET_SWITCHES
Run-time Target

TARGET_TAB
Type Layout

TARGET_VERSION
Run-time Target

TARGET_VT
Type Layout

TCmode
Machine Modes

template debugging
Warning Options

temporaries, lifetime of
Temporaries

termination routines
Initialization

text_section
Sections

TEXT_SECTION_ASM_OP
Sections

TFmode
Machine Modes

thunks
Nested Functions

TImode
Machine Modes

TMPDIR
Environment Variables

top level of compiler
Passes

traditional C language
C Dialect Options

TRADITIONAL_RETURN_FLOAT

gcc.info 500 / 506

Scalar Return

trampolines for nested functions
Trampolines

TRAMPOLINE_ALIGNMENT
Trampolines

TRAMPOLINE_SECTION
Trampolines

TRAMPOLINE_SIZE
Trampolines

TRAMPOLINE_TEMPLATE
Trampolines

TRANSFER_FROM_TRAMPOLINE
Trampolines

TRULY_NOOP_TRUNCATION
Misc

truncate
Conversions

type alignment
Alignment

typedef names as function parameters
Incompatibilities

typeof
Typeof

udiv
Arithmetic

UDIVDI3_LIBCALL
Library Calls

UDIVSI3_LIBCALL
Library Calls

Ultrix calling convention
Interoperation

umax
Arithmetic

umin
Arithmetic

umod
Arithmetic

UMODDI3_LIBCALL

gcc.info 501 / 506

Library Calls

UMODSI3_LIBCALL
Library Calls

unchanging
Flags

undefined behavior
Bug Criteria

undefined function value
Bug Criteria

underscores in variables in macros
Naming Types

underscores, avoiding (88k)
M88K Options

union, casting to a
Cast to Union

unions
Incompatibilities

unions, returning
Interface

UNITS_PER_WORD
Storage Layout

UNKNOWN_FLOAT_FORMAT
Storage Layout

Unos installation
Unos Install

unreachable code
Passes

unshare_all_rtl
Sharing

unsigned division
Arithmetic

unsigned greater than
Comparisons

unsigned greater than
Comparisons

unsigned less than
Comparisons

unsigned less than

gcc.info 502 / 506

Comparisons

unsigned minimum and maximum
Arithmetic

unsigned_fix
Conversions

unsigned_float
Conversions

unspec
Side Effects

unspec_volatile
Side Effects

use
Side Effects

used
Flags

USER_LABEL_PREFIX
Instruction Output

USE_C_ALLOCA
Config

USE_PROTOTYPES
Config

USG
Config

value after longjmp
Global Reg Vars

values, returned by functions
Scalar Return

varargs implementation
Varargs

variable alignment
Alignment

variable attributes
Variable Attributes

variable number of arguments
Macro Varargs

variable-length array scope
Variable Length

variable-length arrays

gcc.info 503 / 506

Variable Length

variables in specified registers
Explicit Reg Vars

variables, local, in macros
Naming Types

Vax calling convention
Interoperation

VAX options
VAX Options

VAX_FLOAT_FORMAT
Storage Layout

VIRTUAL_INCOMING_ARGS_REGNUM
Regs and Memory

VIRTUAL_OUTGOING_ARGS_REGNUM
Regs and Memory

VIRTUAL_STACK_DYNAMIC_REGNUM
Regs and Memory

VIRTUAL_STACK_VARS_REGNUM
Regs and Memory

VMS
Config

VMS and case sensitivity
VMS Misc

VMS and include files
Include Files and VMS

VMS installation
VMS Install

void pointers, arithmetic
Pointer Arith

void, size of pointer to
Pointer Arith

VOIDmode
Machine Modes

volatil
Flags

volatile memory references
Flags

voting between constraint alternatives

gcc.info 504 / 506

Class Preferences

vprintf
Config

warning for enumeration conversions
Warning Options

warning for overloaded virtual fn
Warning Options

warning messages
Warning Options

warnings vs errors
Warnings and Errors

WCHAR_TYPE
Type Layout

WCHAR_TYPE_SIZE
Type Layout

which_alternative
Output Statement

whitespace
Incompatibilities

WORDS_BIG_ENDIAN
Storage Layout

word_mode
Machine Modes

WORD_REGISTER_OPERATIONS
Misc

WORD_SWITCH_TAKES_ARG
Driver

XCmode
Machine Modes

XCOFF_DEBUGGING_INFO
DBX Options

XEXP
Accessors

XFmode
Machine Modes

XINT
Accessors

xor

gcc.info 505 / 506

Arithmetic

XSTR
Accessors

XVEC
Accessors

XVECEXP
Accessors

XVECLEN
Accessors

XWINT
Accessors

zero division on 88k
M88K Options

zero-length arrays
Zero Length

zero_extend
Conversions

zero_extract
Bit Fields

\
Output Template

__bb_init_func
Profiling

__builtin_apply
Constructing Calls

__builtin_apply_args
Constructing Calls

__builtin_args_info
Varargs

__builtin_classify_type
Varargs

__builtin_next_arg
Varargs

__builtin_return
Constructing Calls

__builtin_saveregs
Varargs

__CTOR_LIST__

gcc.info 506 / 506

Initialization

__DTOR_LIST__
Initialization

	gcc.info
	gcc.info
	gcc.info/Copying
	gcc.info/Contributors
	gcc.info/Boycott
	gcc.info/G++ and GCC
	gcc.info/Invoking GCC
	gcc.info/Option Summary
	gcc.info/Overall Options
	gcc.info/Invoking G++
	gcc.info/C Dialect Options
	gcc.info/C++ Dialect Options
	gcc.info/Warning Options
	gcc.info/Debugging Options
	gcc.info/Optimize Options
	gcc.info/Preprocessor Options
	gcc.info/Assembler Options
	gcc.info/Link Options
	gcc.info/Directory Options
	gcc.info/Target Options
	gcc.info/Submodel Options
	gcc.info/M680x0 Options
	gcc.info/VAX Options
	gcc.info/SPARC Options
	gcc.info/Convex Options
	gcc.info/AMD29K Options
	gcc.info/M88K Options
	gcc.info/RS-6000 and PowerPC Options
	gcc.info/RT Options
	gcc.info/MIPS Options
	gcc.info/i386 Options
	gcc.info/HPPA Options
	gcc.info/Intel 960 Options
	gcc.info/DEC Alpha Options
	gcc.info/Clipper Options
	gcc.info/System V Options
	gcc.info/Code Gen Options
	gcc.info/Environment Variables
	gcc.info/Running Protoize
	gcc.info/Installation
	gcc.info/Other Dir
	gcc.info/Cross-Compiler
	gcc.info/Steps of Cross
	gcc.info/Configure Cross
	gcc.info/Tools and Libraries
	gcc.info/Cross Runtime
	gcc.info/Cross Headers
	gcc.info/Build Cross
	gcc.info/PA Install
	gcc.info/Sun Install
	gcc.info/3b1 Install
	gcc.info/Unos Install
	gcc.info/VMS Install
	gcc.info/WE32K Install
	gcc.info/MIPS Install
	gcc.info/Collect2
	gcc.info/Header Dirs
	gcc.info/C Extensions
	gcc.info/Statement Exprs
	gcc.info/Local Labels
	gcc.info/Labels as Values
	gcc.info/Nested Functions
	gcc.info/Constructing Calls
	gcc.info/Naming Types
	gcc.info/Typeof
	gcc.info/Lvalues
	gcc.info/Conditionals
	gcc.info/Long Long
	gcc.info/Complex
	gcc.info/Zero Length
	gcc.info/Variable Length
	gcc.info/Macro Varargs
	gcc.info/Subscripting
	gcc.info/Pointer Arith
	gcc.info/Initializers
	gcc.info/Constructors
	gcc.info/Labeled Elements
	gcc.info/Case Ranges
	gcc.info/Cast to Union
	gcc.info/Function Attributes
	gcc.info/Function Prototypes
	gcc.info/Dollar Signs
	gcc.info/Character Escapes
	gcc.info/Alignment
	gcc.info/Variable Attributes
	gcc.info/Inline
	gcc.info/Extended Asm
	gcc.info/Asm Labels
	gcc.info/Explicit Reg Vars
	gcc.info/Global Reg Vars
	gcc.info/Local Reg Vars
	gcc.info/Alternate Keywords
	gcc.info/Incomplete Enums
	gcc.info/Function Names
	gcc.info/C++ Extensions
	gcc.info/Naming Results
	gcc.info/Min and Max
	gcc.info/Destructors and Goto
	gcc.info/C++ Interface
	gcc.info/Trouble
	gcc.info/Actual Bugs
	gcc.info/Installation Problems
	gcc.info/Cross-Compiler Problems
	gcc.info/Interoperation
	gcc.info/External Bugs
	gcc.info/Incompatibilities
	gcc.info/Fixed Headers
	gcc.info/Disappointments
	gcc.info/C++ Misunderstandings
	gcc.info/Static Definitions
	gcc.info/Temporaries
	gcc.info/Protoize Caveats
	gcc.info/Non-bugs
	gcc.info/Warnings and Errors
	gcc.info/Bugs
	gcc.info/Bug Criteria
	gcc.info/Bug Lists
	gcc.info/Bug Reporting
	gcc.info/Sending Patches
	gcc.info/Service
	gcc.info/VMS
	gcc.info/Include Files and VMS
	gcc.info/Global Declarations
	gcc.info/VMS Misc
	gcc.info/Portability
	gcc.info/Interface
	gcc.info/Passes
	gcc.info/RTL
	gcc.info/RTL Objects
	gcc.info/Accessors
	gcc.info/Flags
	gcc.info/Machine Modes
	gcc.info/Constants
	gcc.info/Regs and Memory
	gcc.info/Arithmetic
	gcc.info/Comparisons
	gcc.info/Bit Fields
	gcc.info/Conversions
	gcc.info/RTL Declarations
	gcc.info/Side Effects
	gcc.info/Incdec
	gcc.info/Assembler
	gcc.info/Insns
	gcc.info/Calls
	gcc.info/Sharing
	gcc.info/Reading RTL
	gcc.info/Machine Desc
	gcc.info/Patterns
	gcc.info/Example
	gcc.info/RTL Template
	gcc.info/Output Template
	gcc.info/Output Statement
	gcc.info/Constraints
	gcc.info/Simple Constraints
	gcc.info/Multi-Alternative
	gcc.info/Class Preferences
	gcc.info/Modifiers
	gcc.info/Machine Constraints
	gcc.info/No Constraints
	gcc.info/Standard Names
	gcc.info/Pattern Ordering
	gcc.info/Dependent Patterns
	gcc.info/Jump Patterns
	gcc.info/Insn Canonicalizations
	gcc.info/Peephole Definitions
	gcc.info/Expander Definitions
	gcc.info/Insn Splitting
	gcc.info/Insn Attributes
	gcc.info/Defining Attributes
	gcc.info/Expressions
	gcc.info/Tagging Insns
	gcc.info/Attr Example
	gcc.info/Insn Lengths
	gcc.info/Constant Attributes
	gcc.info/Delay Slots
	gcc.info/Function Units
	gcc.info/Target Macros
	gcc.info/Driver
	gcc.info/Run-time Target
	gcc.info/Storage Layout
	gcc.info/Type Layout
	gcc.info/Registers
	gcc.info/Register Basics
	gcc.info/Allocation Order
	gcc.info/Values in Registers
	gcc.info/Leaf Functions
	gcc.info/Stack Registers
	gcc.info/Obsolete Register Macros
	gcc.info/Register Classes
	gcc.info/Stack and Calling
	gcc.info/Frame Layout
	gcc.info/Frame Registers
	gcc.info/Elimination
	gcc.info/Stack Arguments
	gcc.info/Register Arguments
	gcc.info/Scalar Return
	gcc.info/Aggregate Return
	gcc.info/Caller Saves
	gcc.info/Function Entry
	gcc.info/Profiling
	gcc.info/Varargs
	gcc.info/Trampolines
	gcc.info/Library Calls
	gcc.info/Addressing Modes
	gcc.info/Condition Code
	gcc.info/Costs
	gcc.info/Sections
	gcc.info/PIC
	gcc.info/Assembler Format
	gcc.info/File Framework
	gcc.info/Data Output
	gcc.info/Uninitialized Data
	gcc.info/Label Output
	gcc.info/Initialization
	gcc.info/Macros for Initialization
	gcc.info/Instruction Output
	gcc.info/Dispatch Tables
	gcc.info/Alignment Output
	gcc.info/Debugging Info
	gcc.info/All Debuggers
	gcc.info/DBX Options
	gcc.info/DBX Hooks
	gcc.info/File Names and DBX
	gcc.info/SDB and DWARF
	gcc.info/Cross-compilation
	gcc.info/Misc
	gcc.info/Config
	gcc.info/Index

